Vol. 4, No. 5, 2010

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 12, 2133–2308
Issue 11, 1945–2131
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Le problème de Bogomolov effectif sur les variétés abéliennes

Aurélien Galateau

Vol. 4 (2010), No. 5, 547–598
Abstract

On obtient une nouvelle minoration du minimum essentiel en petite codimension sur les variétés abéliennes, sous une conjecture concernant leurs idéaux premiers ordinaires. Cette minoration, déjà connue dans le cas torique depuis les travaux d’Amoroso et David, est optimale « à ε près » en le degré de la sous-variété. La preuve suit la méthode des pentes et est basée sur les propriétés p-adiques des points de torsion des variétés abéliennes.

We give a new lower bound for the essential minimum of subvarieties of abelian varieties with small codimension, under a conjecture about ordinary primes in abelian varieties. This lower bound, known in the toric case through the work of Amoroso and David, is best “up to an ε” in the degree of the subvariety. The proof follows the slope method and is based on the p-adic properties of torsion points in abelian varieties.

Keywords
Bogomolov, variété abélienne, minoration, hauteur, abelian variety, lower bound, height
Mathematical Subject Classification 2000
Primary: 11G10
Secondary: 11J81, 14G40
Milestones
Received: 25 June 2009
Revised: 16 November 2009
Accepted: 20 December 2009
Published: 10 July 2010
Authors
Aurélien Galateau
Mathematisches Institut
Universität Basel
Rheinsprung, 21
CH-4051 Basel
Switzerland
Bâtiment 425
Université Paris-Sud
91405 Orsay
France
http://www.math.u-psud.fr/~galateau