Vol. 4, No. 5, 2010

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Connected gradings and the fundamental group

Claude Cibils, María Julia Redondo and Andrea Solotar

Vol. 4 (2010), No. 5, 625–648
Abstract

The main purpose of this paper is to provide explicit computations of the fundamental groups of several algebras. For this purpose, given a k-algebra A, we consider the category of all connected gradings of A by a group G and we study the relation between gradings and Galois coverings. This theoretical tool gives information about the fundamental group of A, which allows its computation using complete lists of gradings.

Keywords
grading, Galois covering, fundamental group
Mathematical Subject Classification 2000
Primary: 16W50
Secondary: 16S50
Milestones
Received: 24 November 2009
Accepted: 1 April 2010
Published: 10 July 2010
Authors
Claude Cibils
Institut de mathématiques et de modélisation de Montpellier I3M
UMR 5149
Université Montpellier 2
F-34095 Montpellier cedex 5
France
http://www.math.univ-montp2.fr/~cibils/
María Julia Redondo
Departamento de Matemática
Universidad Nacional del Sur
Avenida Leandro N. Alem 1253
B8000CPB Bahía Blanca
Argentina
http://inmabb.criba.edu.ar/gente/mredondo/
Andrea Solotar
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón 1
C1428EGA Buenos Aires
Argentina
http://mate.dm.uba.ar/~asolotar