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ALGEBRA AND NUMBER THEORY 4:6(2010)

Generalized moonshine
I: Genus-zero functions

Scott Carnahan

We introduce a notion of Hecke-monicity for functions on certain moduli spaces
associated to torsors of finite groups over elliptic curves, and show that it implies
strong invariance properties under linear fractional transformations. Specifically,
if a weakly Hecke-monic function has algebraic integer coefficients and a pole
at infinity, then it is either a holomorphic genus-zero function invariant under a
congruence group or of a certain degenerate type. As a special case, we prove the
same conclusion for replicable functions of finite order, which were introduced
by Conway and Norton in the context of monstrous moonshine. As an applica-
tion, we introduce a class of Lie algebras with group actions, and show that the
characters derived from them are weakly Hecke-monic. When the Lie algebras
come from chiral conformal field theory in a certain sense, then the characters
form holomorphic genus-zero functions invariant under a congruence group.
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Introduction

We define a holomorphic genus-zero function to be a holomorphic function f :
H → C on the complex upper half-plane, with finite-order poles at cusps, such
that there exists a discrete group 0f ⊂ SL2(R) for which f is invariant under the
action of 0f by Möbius transformations, inducing a dominant injection H/0f →C.

Keywords: moonshine, replicable function, Hecke operator, generalized moonshine.
This material is partly based upon work supported by the National Science Foundation under grant
DMS-0354321.
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650 Scott Carnahan

A holomorphic genus-zero function f therefore generates the field of meromor-
phic functions on the quotient of H by its invariance group. In this paper, we are
interested primarily in holomorphic congruence genus-zero functions, especially
those f for which 0(N ) ⊂ 0f for some N > 0. These functions are often called
Hauptmoduln.

The theory of holomorphic genus-zero modular functions began with Jacobi’s
work on elliptic and modular functions in the early 1800’s, but did not receive
much attention until the 1970’s, when Conway and Norton found numerical rela-
tionships between the Fourier coefficients of a distinguished class of these functions
and the representation theory of the largest sporadic finite simple group M, called
the monster. Using their own computations together with work of Thompson and
McKay, they formulated the monstrous moonshine conjecture, which asserts the
existence of a graded representation V \

=
⊕

n≥−1 Vn of M such that for each
g ∈M, the graded character Tg(τ ) :=

∑
n≥−1 Tr(g|Vn)qn is a normalized holomor-

phic genus-zero function invariant under some congruence group 00(N ), where the
normalization indicates a q-expansion of the form q−1

+ O(q). More precisely,
they gave a list of holomorphic genus-zero functions fg as candidates for Tg, whose
first several coefficients arise from characters of the monster, and whose invariance
groups 0 fg contain some 00(N ) [Conway and Norton 1979]. By unpublished work
of Koike, the power series expansions of fg satisfy a condition known as complete
replicability, given by a family of recurrence relations, and the relations determine
the full expansion of fg from only the first seven coefficients of fgn for n ranging
over powers of two.

Borcherds [1992] proved this conjecture using a combination of techniques from
the theory of vertex algebras and infinite-dimensional Lie algebras: V \ was con-
structed by Frenkel, Lepowsky, and Meurman [1988] as a vertex operator algebra,
and Borcherds used it to construct the monster Lie algebra, which inherits an action
of the monster. Since the monster Lie algebra is a generalized Kac–Moody algebra
with a homogeneous action of M, it admits twisted denominator formulas, which
relate the coefficients of Tg to characters of powers of g acting on the root spaces.
In particular, each Tg is completely replicable, and Borcherds completed the proof
by checking that the first seven coefficients matched the expected values.

Knowing this theorem and some additional data, one can ask at least two natural
questions:

(1) The explicit checking of coefficients at the end of the proof has been called
a “conceptual gap” in [Cummins and Gannon 1997], and this problem has been
rectified in some sense by replacing that step with noncomputational theorems:

• Borcherds [1992] pointed out that the twisted denominator formulas imply
that the functions Tg are completely replicable.



Generalized moonshine, I: Genus-zero functions 651

• Kozlov [1994] showed that completely replicable functions satisfy lots of
modular equations.

• Cummins and Gannon [1997] showed that power series satisfying enough
modular equations are either holomorphic genus-zero and invariant under
00(N ), or of a particular degenerate type resembling trigonometric functions.

• One can eliminate the degenerate types, either by appealing to a result of
Martin [1996] asserting that completely replicable series that are “J -final” (a
condition that holds for all Tg, since T1 = J ) are invariant under 00(N ) for
some N , or by using a result of Dong, Li, and Mason [2000] that restricts the
form of the q-expansions at other cusps.

Since modular functions live on moduli spaces of structured elliptic curves, one
might ask how these recursion relations and replicability relate to group actions
and moduli of elliptic curves.

(2) One might wonder if similar behavior applies to groups other than the monster.
Conway and Norton [1979] suggested that other sporadic groups may exhibit prop-
erties resembling moonshine, and [Queen 1981] produced strong computational
evidence for this. Norton [Mason 1987, Appendix] organized this data into the
generalized moonshine conjecture, which asserts the existence of a generalized
character Z that associates a holomorphic function on H to each commuting pair
of elements of the monster, satisfying the following conditions:

• Z(g, h, τ ) is invariant under simultaneous conjugation of g and h.

• For any
(a

c
b
d

)
∈SL2(Z), there exists a nonzero constant γ (said to be a twenty-

fourth root of unity in [Norton 2001]) such that

Z(gahc, gbhd , τ )= γZ
(

g, h, aτ+b
cτ+d

)
.

• The coefficients of the q-expansion of Z(g, h, τ ) for fixed g form characters
of a graded representation of a central extension of CM(g).

• Z(g, h, τ ) is either constant or holomorphic congruence genus-zero.

• Z(g, h, τ )= j (τ )−744= q−1
+196884q+21493760q2

+· · · if and only if
g = h = 1.

This conjecture is still open, but if we fix g=1, it reduces to the original moonshine
conjecture. One might hope that techniques similar to those used in [Borcherds
1992] can be applied to attack this conjecture in other cases, and the answer seems
to be affirmative. For example, Höhn [2003] has proved it for the case when g
is an involution in conjugacy class 2A, using a construction of a vertex algebra
with baby monster symmetry, and roughly following the outline of Borcherds’
proof. However, there are obstructions to making this technique work in general,
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since there are many elements of the monster for which we do not know character
tables of centralizers or their central extensions. One might ask whether there
is a reasonably uniform way of generating holomorphic congruence genus-zero
functions from actions of groups on certain Lie algebras.

This paper is an attempt to unify the two questions, and set the stage for a
more detailed study of the infinite-dimensional algebraic structures involved. The
main result is that modular functions (and more generally, singular q-expansions
with algebraic integer coefficients) that are holomorphic on H and satisfy a certain
Hecke-theoretic property are holomorphic congruence genus-zero or degenerate
in a specified way. As a special case, we find that finite-order replicable func-
tions with algebraic integer coefficients, as defined in Section 4, satisfy the same
property. The algebraic integer condition is sufficient for our purposes, since we
intend to use this theorem in the context of representations of finite groups. Since
modular functions with algebraic coefficients that are holomorphic on H and in-
variant under a congruence group have bounded denominators (see [Shimura 1971,
Theorem 3.52] and divide by a suitable power of 1), it is reasonable to conjecture
that all holomorphic congruence genus-zero functions whose poles have integral
residue and constant term have algebraic integer coefficients.

We apply the theory to show that when a group acts on an infinite-dimensional
Lie algebra with a special form, the character functions are holomorphic congru-
ence genus-zero. We call these algebras Fricke compatible because they have the
form we expect from elements g ∈M for which the function Tg is invariant under
a Fricke involution τ 7→ −1/Nτ . Later papers in this series will focus on con-
structing these and other (non-Fricke compatible) Lie algebras, first by generators-
and-relations, and then by applying a version of the no-ghost theorem to abelian
intertwiner algebras. At the time of writing, this strategy does not seem to yield a
complete proof of generalized moonshine, because of some subtleties in computing
eigenvalue multiplicities for certain cyclic groups of composite order acting on
certain irreducible twisted modules of V \. It is possible that some straightforward
method of controlling these multiplicities has escaped our attention, but for the
near future we plan to rest the full result on some precisely stated assumptions.

Most of the general ideas in the proof are not new, but our specific implementa-
tion bears meaningful differences from the existing literature. In fact, Hecke oper-
ators have been related to genus-zero questions since the beginning of moonshine,
under the guise of replicability, and the question of relating replication to holomor-
phic genus-zero modular functions was proposed in the original paper [Conway and
Norton 1979]. However, the idea of using an interpretation via moduli of elliptic
curves with torsors is relatively recent, and arrives from algebraic topology. Equi-
variant Hecke operators, or more generally, isogenies of (formal) groups, can be
used to describe operations on complex-oriented cohomology theories like elliptic
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cohomology, and they were introduced in various forms in [Ando 1995; Baker
1998]. More precise connections to generalized moonshine were established in
[Ganter 2009].

Summary. In Section 1, we introduce Hecke operators, first as operators on mod-
ular functions, and then on general power series. In Section 2, we define Hecke-
monicity and prove elementary properties of Hecke-monic functions. In Section
3, we relate Hecke-monicity to equivariant modular equations. Most of this step
is a minor modification of part of Kozlov’s master’s thesis [1994]. In Section 4,
we prove a holomorphic congruence genus-zero theorem, and our proof borrows
heavily from [Cummins and Gannon 1997]. Most of the arguments require minimal
alteration from the form given in that paper, so in those cases we simply indicate
which changes need to be made. In Section 5, we focus on the special case of
replicable functions, and we show that those with finite order and algebraic integer
coefficients are holomorphic congruence genus-zero or of a specific degenerate
type. In Section 6, we conclude with an application to groups acting on Lie alge-
bras, and show that under certain conditions arising from conformal field theory,
the characters from the action on homology yield holomorphic congruence genus-
zero functions.

1. Equivariant Hecke operators

The aims of this section are to introduce a combinatorial formula for equivariant
Hecke operators for functions that are not necessarily modular, and to prove some
elementary properties. The geometric language of stacks and torsors is only used in
this section, and only to justify the claim that these Hecke operators occur naturally.
It is not strictly necessary for understanding the formula, and the reader may skip
everything in this section except for the statements of the lemmata without missing
substantial constituents of the main theorem.

Let G be a finite group, and let MG
Ell denote the analytic stack of elliptic curves

equipped with G-torsors (also known as the Hom stack Hom(MEll, BG)). Objects
in the fibered category are diagrams

P→ E
e
� S

of complex analytic spaces satisfying:

• P→E is a G-torsor (that is, an analytically locally trivial principal G-bundle).

• E→ S is a smooth proper morphism, whose fibers are genus-one curves.

• e is a section of E→ S.

Morphisms are fibered diagrams satisfying the condition that the torsor maps are
G-equivariant. This is a smooth Deligne–Mumford stack (in the sense of [Behrend
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and Noohi 2006]). For each positive integer n, we consider the degree-n G-Hecke
correspondence, given by the diagram

IG
n

s
⇒

t
MG

Ell

defined as follows: IG
n is the stack of n-isogenies of elliptic curves with G-torsors.

Its objects are diagrams
P2

π

��
E1

f //

��

E2

��

S
e2

FF

e1

XX

of complex analytic spaces, where:

• π is a G-torsor.

• E1→ S and E2→ S are smooth proper morphisms, whose geometric fibers
are genus-one curves.

• e1 and e2 are sections of the corresponding maps.

• f is an n-isogeny, that is, a homomorphism whose kernel is a finite flat T -
group scheme of length n (in particular, f makes the evident triangle diagrams
commute).

As before, morphisms are fibered diagrams satisfying the condition that the torsor
maps are G-equivariant. The two canonical maps s, t : IG

n →MG
Ell are defined by

s(E1, E2, P2, S)= (E1×E2 P2→ E1 � S) and t (E1, E2, P2, S)= (P2→ E2 � S)
for objects, and the evident diagrams are given for morphisms. One can show that
s and t are finite étale morphisms of degree ψ(n) =

∏
p | n(1+ 1/p), essentially

by transferring the arguments of [Katz and Mazur 1985, Proposition 6.5.1] to the
analytic setting.

The Hecke operator nTn is defined as the canonical trace map s∗t∗ on the struc-
ture sheaf of MG

Ell. Over each point, it satisfies the formula

nTn( f )(P
G
→ E)=

∑
0→H→E ′

π
→E→0

|H |=n

f (π∗P
G
→ E ′),

where the sum is over all degree-n isogenies to E . When G is trivial, this is the
usual weight-zero Hecke operator.

We wish to describe these operators in terms of functions on the complex upper
half-plane, and this requires an analytic uniformization of the moduli problem.
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Following the unpublished book [Conrad ≥ 2010] and [Deligne 1971], the upper
half-plane classifies pairs (π, ψ), where π : E→ S is an elliptic curve, and

ψ : R1π∗Z→ Z2

is an isomorphism whose exterior square induces the (negative of the) canon-
ical isomorphism R2π∗Z(1)→ Z. By dualizing, one has a universal diagram
Z2
× H → C × H → H defining a family of elliptic curves E → H equipped

with oriented bases of fiberwise H1. There is an SL2(Z)-action from the left via
Möbius transformations (equivalently, changing the oriented homology basis of
a curve), that induces a surjection onto MEll. When we consider G-torsors over
elliptic curves equipped with homology bases, we find that they are classified up
to isomorphism by their monodromy along the basis, given by a conjugacy class
of a pair of commuting elements in G. Since a pair of commuting elements is a
homomorphism from Z×Z→G, there is also an action of SL2(Z) on commuting
pairs of elements from the right via (g, h)

(a
c

b
d

)
= (gahc, gbhd). We obtain an

identification on the level of points:

MG
Ell
∼= Hom(Z×Z,G)/G ×

SL2(Z)
H,

where the quotient by G arises from the action by conjugation on the target. The
identification can be promoted to an equivalence of analytic stacks by choosing a
uniformizing moduli problem of triples (P→ E→ S, ψ, ẽ : S→ P), where ψ is
as above, and ẽ is a lift of e : S→ E to the G-torsor. It is represented by a disjoint
union of upper half-planes in bijection with Hom(Z×Z,G), and one obtains the
quotient via commuting actions of G (on the set of lifts ẽ) and SL2(Z) (on the set
of ψ).

With this presentation, we can recast the Hecke operators in terms of holomor-
phic functions on the complex upper half-plane H. We can write any f :MG

Ell→C

as f (g, h, τ ), for g and h commuting elements of G, and τ ∈H. Also, f is invari-
ant under simultaneous conjugation on g and h, and satisfies f (gahc, gbhd , τ ) =

f (g, h, (aτ+b)/(cτ+d)). In particular, for fixed g and h, f (g, h, τ ) is a holomor-
phic modular function, invariant under 0(lcm(|g|, |h|)). Following [Ganter 2009],
we map the homology basis to (−1, τ ), so (g, h, τ ) describes an elliptic curve
C/〈−1, τ 〉 equipped with a G-torsor with monodromy (g, h). (Many texts use the
basis (1, τ ) when studying modular functions, mostly because τ then becomes the
ratio of periods, but our convention is what we need for the left SL2(Z) action to
work correctly.) Any degree-n isogeny from an elliptic curve E ′ to C/〈−1, τ 〉 can
be described as the identity map on C, where E ′ is the quotient by a unique index-n
sublattice of 〈−1, τ 〉. Since we are assuming SL2(Z)-equivariance of f , we can
choose any basis, and get the same value from f . We preferentially choose bases
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(−d, aτ + b), where d is the index in Z of the intersection of the sublattice with
Z, and we get

Tn( f )(g, h, τ )= 1
n

∑
ad=n

0≤b<d

f
(

gd , g−bha,
aτ+b

d

)
.

Suppose we wanted to extend the notion of Hecke operator to a larger class
of functions, particularly ones that are not a priori completely independent of the
choice of homology basis of our elliptic curve. One might hope that we could have
a good notion for all functions on Hom(Z×Z,G)/G×H. Unfortunately, there is no
canonical choice of homology basis for E ′ (that is, a basis for the index-n sublattice
of 〈−1, τ 〉), and it is difficult make choices in a systematic way that makes the sum
a canonical quantity, so we do not know of any definition of Hecke operator for
arbitrary functions on Hom(Z×Z,G)/G×H that is particularly natural. However,
there is an intermediate form of equivariance for which we can make a canonical
definition, using the subgroup ±Z := {±

( 1
0

n
1

)
: n ∈ Z} ∼= Z× Z/2Z. Invariance

under this group implies that for a function f on

Hom(Z×Z,G)/G ×
±Z

H, (1)

we have f (g, gh, τ )= f (g, h, τ + 1), so the Fourier expansion of f (g, h, τ ) is a
power series in q1/|g| that converges on the punctured open unit disc parametrized
by q1/|g|, |q| < 1. We will assume the existence of a lower bound on exponents,
that is, that all of our power series are Laurent series.

We can interpret this geometrically. The quotient (1) is a disjoint union of punc-
tured unit discs, and parametrizes G-torsors over elliptic curves that are equipped
with a distinguished primitive element of H1 (up to sign — the −1 automorphism
inverts the monodromy and fixes the curve, so as long as we remember that any
function is invariant under this transformation, we can safely ignore it). This ele-
ment functions as the first element in the homology basis, since the action of ±Z

renders all choices of second oriented basis element equivalent. It also uniquely
determines a multiplicative uniformization C×

π
→ E with kernel 〈q〉, |q|< 1. One

can classify the G-torsors over an elliptic curve with multiplicative uniformization
by studying its monodromy. Monodromy along the primitive homology element
gives a distinguished element g, up to conjugacy. Monodromy along a path from
1 to q in C× yields a commuting element h that is unique up to conjugation that
is simultaneous with g. However, the set of homotopy classes of paths to q is a
Z-torsor given by winding number around zero, and the action changes this mon-
odromy by powers of g, so the equivalence classes of G-torsors are determined by
assigning a commuting element h not to q, but to a choice of q1/|g|.
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Definition. Given an elliptic curve E equipped with a multiplicative uniformiza-
tion, a restricted degree-n isogeny is a pullback diagram

C× //

��

C×

��
E ′ // E

where the bottom row is a degree-n isogeny of elliptic curves.

The map on top is then given by a d-th power map, for some d | n. If we examine
kernels of the uniformization, we find that this induces an inclusion Z → Z by
multiplication by a := n/d . If we let q generate the kernel of the uniformization
on the target, the isogenies that pull back to the d-th power map on C× are then
classified by d-th roots of qa in the source, and there are exactly d of them. In
particular, there is a bijection between degree-n isogenies in the classical sense
and degree-n restricted isogenies. Each restricted isogeny then has the form

C×/q(a/d)Z
z 7→zd

// C×/qZ .

We can rephrase this using lattices: A uniformized elliptic curve is given by an
equivalence class of lattices 〈−1, τ 〉, where we consider two lattices equivalent if
the second elements differ by an integer. The isogeny condition is equivalent to
demanding that the distinguished homology basis element is −d for some d | n, as
we chose before.

We can now define our Hecke operators by summing over pullbacks along our
restricted isogenies.

Lemma 1.1. Given a function f on (1), define the function nT̂n f on the same space
by assigning to each elliptic curve equipped with a G-torsor and multiplicative
uniformization the sum of f evaluated on the sources of restricted isogenies of
degree n. Then

nT̂n f (g, h, τ )=
∑

ad=n

∑
0≤b<d

f
(

gd , g−bha,
aτ+b

d

)
,

that is, we get the same formula for Hecke operators as we would over MG
Ell.

Proof. Fix an elliptic curve E with a multiplicative uniformization and a G-torsor.
We may assume that E ∼=C/〈−1, τ 〉 for some τ ∈H, where the path from 0 to −1
along R maps to the distinguished homology element. Let g be the monodromy of
the G-torsor along the image of this path, and let h be the monodromy along the
image of a path from 0 to τ . Fix a restricted isogeny, that is, an index-n sublattice
of 〈−1, τ 〉 together with a (uniquely defined) fixed negative integer −d, d | n. The
path from 0 to −d is the chosen primitive homology element of the source elliptic
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curve. The monodromy of the G-torsor along the image of this path is gd . The
sublattice is characterized by a second homology generator aτ+b for a= n/d , and
b is uniquely determined modulo d. The generator then has monodromy hag−b,
and by applying the (1/d)-dilation homothety, the elliptic curve is given by the
point (aτ + b)/d . To show that the formula above holds, it suffices to show that
f , evaluated on these generators, does not depend on which coset representative
modulo d we choose. This independence arises from the ±Z-equivariance, that is,
if we choose b and b′ such that b− b′ = kd , then

f
(

gd , g−b′ha,
aτ+b′

d

)
= f

(
gd , g−bhagkd ,

aτ+b−kd
d

)
= f

(
gd , g−bha,

aτ+b
d
− k+ k

)
= f

(
gd , g−bha,

aτ+b
d

)
. �

From now on, we will use the notation nTn for this Hecke operator, instead of nT̂n .

Lemma 1.2. If f is a function on Hom(Z×Z,G)/G ×
±Z

H, then

Tk Tm f (g, h, τ )=
∑

t | (k,m)

1
t

Tkm/t2 f (gt , ht , τ ).

Proof.

Tk Tm f (g, h, τ )= Tk
1
m

∑
ad=m
0≤b<d
(a,b,d)=1

f
(

gd , g−bha,
aτ+b

d

)

=
1

km

∑
a′d ′=k

0≤b′<d ′

∑
ad=m
0≤b<d

f
(

gdd ′, g−bd ′−ab′haa′,
aa′τ+ab′+bd ′

dd ′
)

=
1

km

∑
a′d ′=k
ad=m

t=(a,d ′)

∑
0≤b′<d ′
0≤b<d

f
(

gt (dd ′/t), gt ((−bd ′−b′a)/t)ht (aa′/t),
a′ at τ + b′ at + b d ′

t

d d ′
t

)

=
1

km

∑
t | (k,m)

∑
a′d ′=k/t
ad=m/t
(a,d ′)=1

∑
0≤b′<td ′
0≤b<d

f
(

gtdd ′, gt (−bd ′−ab′)htaa′,
aa′τ+ab′+bd ′

dd ′
)

=
1

km

∑
t | (k,m)

∑
a′′d ′′=km/t2

t
∑

0≤b′′<d ′′
f
(

gtd ′′, g−tb′′hta′′,
a′′τ+b′′

d ′′
)

=

∑
t | (k,m)

1
t

Tkm/t2 f (gt , ht , τ ).
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We explain the second-to-last equality using Kozlov’s argument [1994]. In this
step, we substitute a′′ = aa′, d ′′ = dd ′, and b′′ for any solution to the congruence
ab′ + bd ′ ≡ b′′ (mod dd ′). By ±Z-invariance, it remains to show that for any
0 ≤ b′′ < dd ′, this congruence has exactly t solutions. There are exactly tdd ′

possible values of b and b′ satisfying 0≤ b< d , 0≤ b′< td ′, and dd ′ values of b′′

satisfying 0≤ b′′ < d ′′. The first value is t times the second value, so it suffices to
show that for any fixed admissible pair (b, b′) there are exactly t solutions (c, c′)
satisfying 0 ≤ c < d and 0 ≤ c′ < td ′ to the congruence ab′ + bd ′ ≡ ac′ + cd ′

(mod dd ′). Any such solution yields the identity dd ′ | a(b′ − c′)+ d ′(b − c), so
d ′ | a(b′ − c′). Since (a, d ′) = 1, d ′ | b′ − c′, so we write c′ = b′ + sd ′, and there
are t choices of s that satisfy 0 ≤ c′ < td ′. Canceling d ′ in the identity yields
d | as + b− c, so each choice of s gives a uniquely defined value of c satisfying
0≤ c < d. �

It is also possible to prove this by working one prime at a time, or by invoking
the moduli interpretation and enumerating restricted isogenies.

2. Hecke-monicity

Definition. Let f be a holomorphic function on (1). We say that f is Hecke-monic
if on each connected component, the restriction of nTn( f ) is a monic polynomial
of degree n in the restriction of f , for all positive integers n.

Remark. Since we only require our functions to admit translation-equivariance,
and the Hecke operators only involve transformations of the form τ 7→ (aτ+b)/d ,
Hecke-monicity only depends on the values of f when the monodromy around
the first homology basis element lies in a subset of G that is closed under taking
power maps. We will find it useful to weaken the condition that f be defined on
all components. For example, if we choose g ∈ G, we only need to consider the
functions { f (1, gi , τ )}i>0 to define Hecke operators on f (1, g, τ ).

Definition. Let g, h ∈ G be commuting elements, and let f be a function on the
connected components of (1) corresponding to pairs (gd , g−bha) for a, b, d > 0.
We say that f is weakly Hecke-monic for (g, h) if for all n> 0, nTn f (g, h, τ ) is a
monic polynomial of degree n in f (g, h, τ ). We say that f is semiweakly Hecke-
monic for (g, h) if for all n > 0, nTn f (gd , g−bha, τ ) is a monic polynomial of
degree n in f (gd , g−bha, τ ) for all a, b, d > 0.

We use the notation e(x) to denote e2π i x for the rest of this paper.

Lemma 2.1. Let f be a weakly Hecke-monic function for (g, h), and let N > 0
satisfy gN

= hN
= 1. If f (g, h, τ ) has a singularity at infinity, then its q-expansion

has the form ζqC/|g|
+O(1) for C a negative integer and ζ a root of unity satisfying

ζ N
= 1 if N is even and ζ 2N

= 1 if N is odd.
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Proof. Let f (g, h, τ )=
∑

n∈(1/|g|)Z anqn
= an0qn0 +an1qn1 +· · · for an0 nonzero,

n0 < 0, and let p be a prime congruent to 1 mod N . Then

pTp f (g, h, τ )= f (g, h p, pτ)+
p−1∑
b=0

f
(

g p, g−bh, τ+b
p

)

= f (g, h, pτ)+
p−1∑
b=0

f
(

g, h, τ+b
p
− b

)
=

∑
n

anq pn
+

∑
n

an

∑
b

e
(

n
(
τ+b

p
− b

))
=

∑
n

anq pn
+

∑
n

anqn/p
∑

b

e
(

nb 1− p
p

)
.

Hecke-monicity implies that an0q pn0 = (an0qn0)p for all p congruent to 1 mod N ,
so ζ = an0 is an M-th root of unity, where M is the greatest common divisor of
{p− 1 : p prime, p ≡ 1(N )}. M = k N for some integer k, and (k, N ) = 1, since
otherwise (k/(k, N ))N + 1 would be a residue class mod M that is coprime to M
but not congruent to 1. By the Chinese Remainder Theorem, k must have a unique
residue class mod k that is coprime to k. Therefore, the only possible values of k
are 1 or 2, and k = 2 is only possible when N is odd.

If f (g, h, τ ) is a singular monomial ζqC/|g| with C < 0, then we are done.
Otherwise, we assume an1 6= 0, and from the calculation above, we have

pTp f (g, h, τ )=

an0q pn0 + an0qn0/p
∑

b

e
(

n0b p−1
p

)
+ · · · n1 > n0/p2

an0q pn0 + an1q pn1 + · · · n1 < n0/p2.

We will not bother with the case of equality, because we will let p become large. If
n1 < 0, then the second case will hold for almost all p congruent to 1 mod N , and
if n1 ≥ 0, then the first case will hold for all such p. If n1 < 0 and p is sufficiently
large, then

an0q pn0 + an1q pn1 + · · · = (an0qn0 + an1qn1 + · · · )p
+ c(an0qn0 + · · · )p−1

+ · · ·

= an0q pn0 + pa p−1
n0

an1q(p−1)n0+n1 + · · ·

= an0q pn0 + pan1q(p−1)n0+n1 + · · · .

This yields an equality an1q pn1 = pan1q(p−1)n0+n1 , which under our assumptions
is a contradiction. Therefore, n1 ≥ 0, and we are done. �

Lemma 2.2. Let f be a weakly Hecke-monic function for (g, h) such that

f (g, h, τ )= ζqC/|g|
+ O(1)
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for some C < 0 and some root of unity ζ . Then there exists some N such that
pTp f (g, h, τ )= ζ pqCp/|g|

+ O(1) for all primes p > N.

Proof. Since 〈g, h〉 has finite order, we can choose N such that N/|g| is greater than
the order of any pole of f (gk, glhm, τ ) at infinity, as k and l range over Z/|g|Z
and m ranges over Z/|h|Z. Suppose p > N , and write any singular functions
f (g p, g−bh, τ ) as ζbqCb/|g|+ O(1). Then

pTp f (g, h, τ )= f (g, h p, pτ)+
∑

0≤b<d

f
(

g p, g−bh, τ+b
p

)
= f (g, h p, pτ)+

∑
b

ζbe
( bCb

p |g|

)
qCb/p |g|

+ O(1).

Since p > |Cb|, Cb/p |g| > −1/|g| for all b such that f (g p, g−bh, τ ) has a pole
at infinity. However, the above sum is a polynomial in f (g, h, τ ), and therefore a
power series in q1/|g|, so the only contribution with a negative power of q comes
from f (g, h p, pτ). We have f (g, h p, pτ)= ζ ′qC ′ p/|g|

+O(1) for some ζ ′ and C ′,
and since this is a monic polynomial of degree p in f (g, h, τ ), we have ζ ′ = ζ p

and C ′ = C . �

Proposition 2.3. Let f be a weakly Hecke-monic function for (g, h), such that
f (g, h, τ ) = ζqC/|g|

+ O(1) for some C < 0 and some root of unity ζ . Then
f (g, h, τ ) is invariant under translation by |g|/C , that is, the only nonzero terms
in the q-expansion are those with integer powers of qC/|g|.

Proof. Suppose f (g, h, τ ) is not a power series in qC/|g|, and let n0 be the smallest
integer such that n0 is not a multiple of C , and the coefficient an0 of qn0/|g| in the
q-expansion of f (g, h, τ ) is nonzero. Choose N as in Lemma 2.2, and let p be
a prime satisfying p > N , p ≡ 1 (mod |g|) and (p− 1)C + n0 < 0 (that is, p is
large).

By the lemma, pTp f (g, h, τ ) has q-expansion ζ pqCp/|g|
+ O(1). However,

pTp f (g, h, τ ) is a monic polynomial of degree p in f (g, h, τ ), so we can write
its q-expansion as a sum of a series in qC/|g| and a series with initial term

pζ p−1an0q(p−1)C+n0 .

Since the coefficient is nonzero and the exponent is negative, we have a contradic-
tion. �

3. Modular equations

Cummins and Gannon found a characterization of holomorphic genus-zero func-
tions invariant under 00(N ) as power series satisfying many modular equations.
We show that weakly Hecke-monic functions satisfy a similar condition, and we
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modify the first half of their proof to get global symmetries. In particular, any
Hecke-monic function on MG

Ell is holomorphic congruence genus-zero on noncon-
stant components.

Lemma 3.1. Fix a positive integer n, and let f be weakly Hecke-monic for (gt , ht)

for all t |n. Then the power sum symmetric polynomials in{
f
(

gd , g−bha,
aτ+b

d

)
: ad = n, 0≤ b < d

}
are polynomials in f (gt , ht , τ ) for t ranging over positive integers dividing n.
Furthermore, the term with highest degree in f (g, h, τ ) has coefficient equal to
one. In particular, if n is a prime satisfying gn

= g and hn
= h, then the power

sums are polynomials in f (g, h, τ ).

Proof. This is essentially the same as in [Kozlov 1994]. We apply nTn to the
equation f m

= mTm( f )− am−1 f m−1
− · · ·− a1 f − a0 to find that the power sum∑

ad=n
0≤b<d

f
(

gd , g−bha,
aτ+b

d

)m
= nTn( f (g, h, τ )m)

can be written as a sum of mnTnTm( f )(g, h, τ ) and a linear combination of Tn

applied to lower degree polynomials in f (g, h, τ ). By induction on m, these are
polynomials in f (gt , ht , τ ) for t | n. �

Lemma 3.2. Fix n ≥ 2 square-free, and let f be a weakly Hecke-monic function
for (gt , ht) for all t | n. Then there exists a monic polynomial Fn(x) of degree
n
∏

p | n(p+ 1)/p, whose coefficients are polynomials in f (gt , ht , τ ) for t | n, and
with roots { f (gd , g−bha, (aτ +b)/d) : ad = n, 0≤ b< d, (a, b, d)= 1} for any τ .

Proof. Since n is square-free, the condition (a, b, d) = 1 is a consequence of
ad = n. The power sums generate the ring of symmetric polynomials in{

f
(

gd , g−bha,
aτ+b

d

)}
,

from which we draw the coefficients of Fn . �

A holomorphic function f on H is said to satisfy a modular equation of order n
if there exists a monic polynomial Fn(x) of degree n

∏
p | n(p+ 1)/p whose coef-

ficients are polynomials in f , and with roots f ((aτ + b)/d) for a, b, d satisfying
ad = n, 0 ≤ b < d, (a, b, d) = 1. We will use a slightly altered notion to account
for invariance under congruence groups other than 00(N ).

Definition. Let g, h ∈ G be a commuting pair, and let f be a function on

({(g, gnh)}n∈Z) ×
±Z

H.
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If p is a prime satisfying g p
= g and h p

= h, we say f (g, h, τ ) satisfies an equi-
variant modular equation of order p if there exists a monic polynomial Fn(x) of
degree p + 1, whose coefficients are polynomials in f (g, h, τ ) and whose roots
are f (g, g−bh, (aτ + b)/d) for a, b, d satisfying ad = p, 0≤ b < d .

When g = 1 and f (1, h, τ ) has q-expansion q−1
+ O(q), this agrees with the

nonequivariant notion.

Proposition 3.3. Suppose g, h ∈ G commute. If a function f is weakly Hecke-
monic for (g, h), then f (g, h, τ ) satisfies equivariant modular equations of order
p for all primes p congruent to 1 modulo lcm(|g|, |h|).

Proof. Since g p
= g and h p

= h, this is a special case of Lemma 3.2. �

If f (g, h, τ ) satisfies an equivariant modular equation of order p, we can write
the polynomial Fp(x) as a two-variable polynomial Fp(y, x) ∈ C[x, y], where
we set y = f (g, h, τ ), and expand the coefficients of Fp(x) as polynomials in
f (g, h, τ ). If f (g, h, τ ) is a nonconstant holomorphic function, then Fp(y, x) is
uniquely defined by the properties that it is monic of degree p+ 1 in x and that it
vanishes under the substitutions f (g, h, τ ) for y and f (g, g−bh, (aτ+b)/d) for x
for any τ ∈H. This is because a polynomial in one variable is uniquely determined
by its values on a nonempty open subset of C, and the coefficients of Fp(x) are
polynomials in f (g, h, τ ), which includes such an open subset in its range.

Lemma 3.4. Let p be a prime satisfying g p
= g and h p

= h. Suppose f (g, h, τ )
is a nonconstant holomorphic function satisfying an equivariant modular equation
of order p. Then Fp(y, x)= Fp(x, y).

Proof. This is a modification of [Kozlov 1994, Proposition 3.2].
If d = 1, then Fp( f (g, h, τ ), f (g, h, pτ)) = 0. We make the substitution τ :=

(τ ′+ b)/p− b for 0≤ b < p, and we get

0= Fp

(
f
(

g, h, τ
′
+b
p
− b

)
, f (g, h, τ ′+ b− pb)

)
= Fp

(
f
(

g, g−bh, τ
′
+b
p

)
, f (g, h, τ ′)

)
.

Then f (g, g−bh, (τ ′+ b)/p) is a root of Fp(y, f (g, h, τ ′)).
If d = p, then Fp( f (g, h, τ ), f (g, h, (τ +b)/p−b))= 0. We make the substi-

tution τ = pτ ′+ pb− b for 0≤ b < p, and we get

0= Fp
(

f (g, h, pτ ′+ pb− b), f (g, h, τ ′)
)
= Fp

(
f (g, h, pτ ′), f (g, h, τ ′)

)
.

Then f (g, h, pτ ′) is a root of Fp(y, f (g, h, τ ′)).
This proves that Fn(y, f (g, h, τ )) has roots f (g, g−bh, (aτ + b)/d), which

means that for any fixed τ ∈ H, Fp( f (g, h, τ ), x) = Fp(x, f (g, h, τ )) ∈ C[x].
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The coefficients of Fp(x) = Fp(x, f (g, h, τ )) are polynomials in f , so they are
uniquely determined by finitely many values. If f is nonconstant and holomor-
phic on some nonempty open set, then the coefficients of Fp(x, y) match those of
Fp(y, x), so we get a polynomial equality. �

Proposition 3.5. If f is weakly Hecke-monic for (g, h) and f (g, h, τ ) has a pole
at infinity, f (g, h, τ ) admits global symmetries; in other words, if f (g, h, τ1) =

f (g, h, τ2) for given τ1, τ2 ∈ H, there exists γ ∈ SL2(R) such that τ1 = γτ2, and
f (g, h, τ )= f (g, h, γτ ) for all τ ∈ H.

Proof. By Proposition 3.3, f (g, h, τ ) satisfies equivariant modular equations of
degree p for infinitely many primes p congruent to 1 modulo lcm(|g|, |h|).

We give a list of modifications of the first half of [Cummins and Gannon 1997]
(up to Proposition 4.6) to allow equivariance. Note that the summands for d = p
are f (g, g−bh, (τ + b)/p) = f (g, h, (τ + b)/p− b), 0 ≤ b < p, so we make the
global modification that

A(p)=
{(1 (1−p)b

0 p

)
: 0≤ b < p

}
∪

{(p 0
0 1

)}
.

The proof of existence of global symmetries in [Cummins and Gannon 1997]
needs the following cosmetic changes:

• The statement of Lemma 2.2, Condition 1 should be changed from z1−z2 ∈Z

to z1− z2 ∈ (|g|/C)Z.

• In Lemma 2.5, β should be changed to
(n/d r−dr

0 d

)
; the proof uses the

symmetry of Fp(x, y) (Lemma 3.4).

• The statement of Lemma 3.2 requires the form of β ∈ A(p) to be changed as
above.

• All instances of Z in the proof of Lemma 3.3 should be replaced by (|g|/C)Z.

• The phrase “translating by integers if necessary” in the proof of Proposition
4.3 should become “translating by integer multiples of (|g|/C) if necessary.”

• In the proof of Proposition 4.6, the form of β ∈ A(p) needs to be suitably
adjusted. �

Corollary 3.6. Let f be a Hecke-monic function on MG
Ell. If f (g, h, τ ) is noncon-

stant, then it is a holomorphic congruence genus-zero function.

Proof. From our hypotheses, we know that f (g, h, τ ) is invariant under some
0(N ), and we are assuming that f has no essential singularities at cusps. There-
fore, if f (g, h, τ ) is nonconstant, then there is some

(a
c

b
d

)
∈ SL2(Z) such that

f (g, h, (aτ + b)/(cτ + d)) has a pole at infinity. Then f (gahc, gbhd , τ ) has
a pole at infinity, and satisfies the hypotheses of the proposition. This implies
f (gahc, gbhd , τ ) is holomorphic congruence genus-zero, so f (g, h, τ ) is also. �
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4. Finite level

Theorem 1.3 of [Cummins and Gannon 1997] asserts that any series q−1
+ O(q)

with algebraic integer coefficients satisfying modular equations of all orders co-
prime to some n is either holomorphic genus-zero and invariant under some 00(N ),
or a function of the form q−1

+ ζq for ζ either zero or a twenty-fourth root of
unity. The hypotheses we use to prove Theorem 4.6 are weaker, since the functions
satisfy equivariant modular equations only for primes congruent to 1 (mod n), and
the functions have the form qC/|g|

+ O(1). However, our conclusions are weaker,
since even if we normalize to an integral-powered q-series, we only have invariance
under 01(N ), much like the situation in [Cummins 2002].

Definition. Let G be a subgroup of SL2(R), and let M , N , and C be nonzero inte-
gers such that M | N . We say that the quadruple (G,M, N ,C) satisfies properties
(1)–(3) if:

(1) G is a discrete group.

(2) The stabilizer of infinity G∞ ⊂ G is 〈−Id,
(

1 M
0 1

)
〉.

(3) For all primes p congruent to 1 mod N , and all
(a

c
b
d

)
∈G, there exist integers

l and k such that l | p, 0≤−k < p/ l, and such thatap
l

k(1− p)a
C

+ lb

c
l

1
p

(k(1− p)c
C

+ ld
)
 ∈ G.

Lemma 4.1. If (G,M, N ,C) satisfies properties (1)–(3), and γ ∈ G, then there
exists λ ∈ R such that λγ ∈ GL+2 (Q).

Proof. This is a minor variation of [Cummins and Gannon 1997, Lemma 5.4]. Our
G∞ is a subgroup of theirs, so double coset invariants surject. We define rm ≡ a/c
(mod M) instead of mod 1, but it is still a G∞ double coset invariant for our G∞.
The proof there uses a slightly different property (3) for G, but the two left entries
of the matrices match, and that is what is needed. �

Following [Cummins and Gannon 1997], we say that
(a

c
b
d

)
is primitive if a, b, c, d

are integers with no common factors. By the previous lemma, there exists for any
γ ∈ G some λ ∈ R (unique up to sign) such that λγ is primitive, and we define |γ|
to be the determinant of λγ. This is an invariant of the double coset G∞γG∞.

Lemma 4.2. Let (G,M, N ,C) satisfy properties (1)–(3), let γ1 ∈ G, let

λγ1 =

(a1 b1

c1 d1

)
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be primitive, and assume c1 6= 0. Choose a prime p ≡ 1 (mod NC), and choose a
sequence of elements {γn}n≥1 ⊂ G by iteratively applying property (3). Define

λγi =

(ai bi

ci di

)
∈ M2(Q),

and let li , ki ∈Z be the corresponding integers arising in each application of prop-
erty (3).

(a) The sequence {ci }i≥1 eventually stabilizes to some c∞ = c1/
∏

i≥1 li ∈Q, that
is, all but finitely many li are equal to 1.

(b) If c∞ ∈ Z, then di ∈ Z for all i ≥ 1.

(c) If c∞ is a nonzero integer multiple of p, then p divides di for all i ≥ 1.

(d) There exists W > 0, depending only on c1 and λ, such that if p > W , then
li = 1 and di ∈ Z for all i ≥ 1.

Proof. This is a minor alteration of [Cummins and Gannon 1997, Lemma 5.7], and
we point out the necessary changes.

Statement (a) follows from [Shimura 1971, Lemma 1.25], which asserts that
the lower left entries of elements of a discrete subgroup of SL2(R) that don’t fix
infinity are bounded away from zero.

Statements (b) and (c) can be proved by following the proofs of [Cummins and
Gannon 1997, Lemma 5.7a and 5.7b], and changing n to p, ki to ki (1 − p)/C
(which is an integer by our assumption on p), and p2(( j−i)η+s)+s′ to p2(i−i0+s)+s′ .
The last alteration is mostly to rectify a typographical error.

The assertion about li = 1 in (d) follows from [Shimura 1971, Lemma 1.25],
and the assertion about di follows from (b). �

Lemma 4.3. Suppose (G,M, N ,C) satisfies properties (1)–(3), and G does not
stabilize infinity. Then G contains an element of the form

( 1
n

0
1

)
for n a nonzero

multiple of NC.

Proof. Since G does not stabilize infinity, then G contains γ such that the primitive
λγ =

(a
c

b
d

)
has c 6= 0, and hence

γ′ = γ
(1 −NC |γ|

0 1

)
γ−1
=

(1+ NCac −NCa2

NCc2 1− NCac

)
∈ G ∩0(N ).

Let W (γ′) be the constant given by the fourth part of Lemma 4.2. After trans-
lating on the right by multiples of

(
1 NC
0 1

)
, we find that G has an element

g =
(1+ NCac b′

NCc2 p

)
,
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with p≡1 (mod NC) a prime larger than W (γ′). Since both matrices have primitive
multipliers λ = 1 and the same bottom left entries, W (γ′) = W (g). We apply
Lemma 4.2(d) and use property (3) to find that G contains((1+ NCac)p k(1− p)(1− NCac)/C + b′

NCc2 k(1− p)Nc2
+ 1

)
∈ 0(NC)

for some 0 ≤ k < p. Since M | N , we can multiply on the right by
(

1 km N
0 1

)
∈ G,

where m = (p− 1)/(NC) ∈ Z, and this yields(
∗ ∗

NCc2 1

)
∈ 0(N ).

We multiply on the left by a suitable multiple of
(

1 N
0 1

)
to get

( 1 0
NCc2 1

)
∈ G. �

Lemma 4.4. Let X be a set of matrices
(1+ an bn

cn 1+ dn

)
∈ 0(n), satisfying:

• For every integer c0, there exists an element of X as above with c = c0.

• For all nonzero c, and all a0 and d0 satisfying (1+a0n, cn)= (1+d0n, cn)=1,
there exists an element of X as above such that a ≡ a0 (mod |c|n) and d ≡ d0

(mod |c|n).

Then X is a complete set of double coset representatives for 0(n) with respect to
the subgroup 〈

(
1 n
0 1

)
〉.

Proof.
(1 en

0 1

)(1+ an bn
cn 1+ dn

)(1 f n
0 1

)
=

(1+ an+ cen2 (b+ e+ f )n+ (a f + de)n2
+ ce f n3

cn 1+ dn+ c f n2

)
.

To find all double coset representatives, it suffices to cover the possible lower tri-
angular entries, since for c 6= 0, the top right entry is uniquely determined by the
fact that the determinant is one. Any element of X satisfying c= 0 lies in the group
〈
(

1 n
0 1

)
〉, so the corresponding double coset is equal to this group. �

Lemma 4.5. Suppose (G,M, N ,C) satisfies properties (1)–(3), and suppose G
contains

( 1
n

0
1

)
for some nonzero integer n for NC | n. Then G contains 0(n).

Proof. It suffices to produce double coset representatives with respect to transla-
tions, so suppose we are given a, c, d satisfying the conditions in the above lemma,
with c 6= 0. Let r > 0 be a lower bound on absolute value of nonzero lower
left entries of elements of G, guaranteed by [Shimura 1971, Lemma 1.25]. By
Dirichlet, there exist primes p and q such that p≡ 1+an (mod |c|n2), q ≡ 1+dn
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(mod |c|n2), and p>max(|c|n/r, |c|n). Since (1+an)(1+dn)−bcn2
= 1, there

exists an integer m such that pq = mcn2
+ 1. Then( 1 0

cn 1

)(1 mn
0 1

)
=

( 1 mn
cn pq

)
∈ G.

By Lemma 4.2(d), any application of property (3) for our choice of p to this matrix
requires l = 1, so G contains( p k(1− p)p/C +mn

cn k(1− p)cn/pC + q

)
,

with (k(1− p)cn)/pC ∈ Z. By our assumptions on p, (1− p)cn is coprime to
p, so k = 0. Therefore, G contains

( p mn
cn q

)
, and this is the desired double coset

representative. �

We say that a function on H is of trigonometric type if after some transformation
τ 7→ aτ + b, it has the form q−1

+ a0+ ζq, for ζ a root of unity or zero.

Theorem 4.6. Let f be weakly Hecke-monic for (g, h), and suppose f (g, h, τ )
has a pole at infinity, and q-expansion coefficients that are algebraic integers. Then
f (g, h, τ ) is either of trigonometric type or holomorphic congruence genus-zero.

Proof. By Proposition 2.3, the q-expansion of f (g, h, τ ) has the form ζqC/|g|
+

O(1) ∈ Q((q−C/|g|)) for some root of unity ζ and some negative integer C . By
Proposition 3.3, f (g, h, τ ) satisfies equivariant modular equations for all primes
p satisfying g p

= g, h p
= h. Following the proof of [Cummins and Gannon 1997,

Lemma 7.1] (changing (az+b)/d to (az+b(1−d))/d and Z to (|g|/C)Z), we find
that f (g, h, τ ) is invariant under a discrete subgroup of SL2(R). By Proposition
3.5, f (g, h, τ ) admits global symmetries, and in particular, an altered version of
[Cummins and Gannon 1997, Lemma 3.2] holds, where A(p) is replaced by the
equivariant version. In summary, the group G of global symmetries of f (g, h, τ )
satisfies the following three conditions:

(1) G is a discrete group.

(2) The stabilizer of infinity G∞ ⊂ G is
〈
−Id,

( 1 |g|/C
0 1

)〉
.

(3) For all primes p congruent to 1 mod lcm(|g|, |h|), and all
(a

c
b
d

)
∈ G, there

exist integers l and k such that l | p, 0≤−k < p/ l, and such that( p 0
0 1

)(a b
c d

)( l k(p− 1)
0 p/ l

)−1
=

(ap/ l k(1− p)a+ lb
c/ l (k(1− p)c+ ld)/p

)
∈ G.

We now consider the function f (g, h,−τ/C), which is a power series in q1/|g|.
Let G ′ denote the subgroup of SL2(R) that fixes f (g, h,−τ/C), so

G ′ =
(
−1/C 0

0 1

)
G
(
−C 0

0 1

)
.
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The quadruple (G ′, |g|, lcm(|g|, |h|),C) then satisfies conditions (1)–(3).
If G ′ does not fix infinity, then by the previous lemmata, G ′ contains 0(n)

for some n, and G contains some congruence group. Therefore f (g, h, τ ) is a
holomorphic congruence genus-zero function.

If G ′ fixes infinity, then G=G∞=
〈
−Id,

( 1 |g|/C
0 1

)〉
. The proof that f (g, h, τ ) is

of trigonometric type is given by following the first half of the proof of [Cummins
and Gannon 1997, Lemma 7.2], and replacing modular equations with equivariant
modular equations, and q with q−C/|g|. �

Remark. The proof of [Cummins and Gannon 1997, Lemma 7.2] allows us to
make a slightly stronger statement: If we don’t necessarily have algebraic integer
coefficients, but we know that f (g, h, τ )= ζqC/|g|

+
∑

n≥0 anq−nC/|g| satisfies∑
n |an|

2 > 1, then f (g, h, τ ) is a holomorphic congruence genus-zero function.

5. Replicability

In this paragraph, we summarize some results and assertions in [Norton 1984].
One can start with a formal power series f (q) = q−1

+
∑

n>0 anqn and define
numbers Hm,n for m, n ∈ Z>0 by the bivarial transform:

log
f (p)− f (q)
p−1− q−1 =−

∞∑
m,n=1

Hm,n pmqn.

For each n > 0, there is a unique normalized Faber polynomial 8n(x) (depending
on f ), defined by the property that 8n( f (q)) = q−n

+ O(q). The polynomial in
f (q) that is n times the coefficient of pn in the formal series− log p( f (p)− f (q))
also has this form, so we have 8n( f (q)) = q−n

+ n
∑

m Hm,nqm . We say that
f (q) is replicable if and only if for any t > 0 there exists a series f (t)(q)= q−1

+

O(q) such that 8n( f (q))=
∑

ad=n,0≤b<d f (a)((aτ + b)/d). The series f (t) =∑
n>0 a(t)n qn is called the t-th replicate of f , and by suitable use of induction, one

can show that it is unique if it exists, and its coefficients satisfy the relation

Hm,n =
∑

t | (m,n)

1
t

a(t)mn/t2

In particular, if f is replicable, Hm,n only depends on (m, n) and mn. Another
induction argument implies the converse of this, that is, that one can define repli-
cability by this independence.

Note. Replicability was originally defined only for power series with rational in-
teger coefficients, and for more general series, there is some disagreement in the
literature regarding the correct definition. Norton has proposed a definition of
replicability for series that have irrational cyclotomic integer coefficients, and it
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seems to involve a Galois action. This is potentially useful when considering
functions invariant under some 00(N ). One can instead extend one of the integral
definitions above to allow arbitrary complex coefficients, without alteration of the
formulas, and this was done in [Kozlov 1994]. We use the latter generalization of
the condition here, because we can prove something about series that satisfy it.

Definition. A replicable function is a replicable power series that converges on
the open unit q-disc, that is, one that expands to a holomorphic function on H. A
replicable function has order n if f (m) = f (m+n) for all m > 0.

We note that a replicable function of finite order has a unique minimal order, but
not a unique order. If f is a replicable function, then all 8m( f ) are holomorphic
on H, and hence all f (m) are also holomorphic on H.

We would like to relate replicability to Hecke-monicity.

Lemma 5.1. If f is a weakly Hecke-monic function for (1, g) such that

f (1, g, τ )= q−1
+ O(q),

then f (1, gm, τ ) has the form q−1
+ O(1), and is uniquely defined by the Hecke-

monic property up to a constant.

Proof. For the purposes of induction, we assume f (1, gk, τ )= q−1
+O(1) for all

k < m. Then

mTm f (1, g, τ )=
∑

ad=m
0≤b<d

f
(

1, ga,
aτ+b

d

)
= f (1, gm,mτ)+

∑
d |m
d<m

∑
0≤b<d

e(b/d)qm/d2
+ O(1).

Since mTm f (1, g, τ ) is monic of degree m in f (1, g, τ ), the leading term is q−m ,
and all of the other summands have poles of lower order. By subtracting those
summands, we find that the leading term of f (1, gm,mτ) is q−m , so f (1, gm, τ )

has leading term q−1. Since f (1, gm, τ ) is a power series in q, it has the form we
want.

To show uniqueness, suppose there were some f ′(1, gm, τ )= q−1
+O(1) such

that f ′(1, gm,mτ)+
∑

ad=m, d<m, 0≤b<d f (1, gd , (aτ + b)/d) is monic of degree
m in f (1, g, τ ). Since this sum and mTm f (1, g, τ ) have the same coefficients in
negative degree, f ′(1, gm,mτ)− f (1, gm,mτ)= O(1). However, this difference
must be a polynomial in f (1, g, τ ), so it is constant. �

Lemma 5.2. If f is a weakly Hecke-monic function for (1, g) such that

f (1, gm, τ )= q−1
+ O(q)
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for all m > 0, then nTn f (1, g, τ ) is the unique polynomial in f (1, g, τ ) whose
expansion is q−n

+ O(q).

Proof. nTn f (1, g, τ )=
∑

ad=n
0≤b<d

f
(

1, ga,
aτ+b

d

)

=

∑
d | n

∑
0≤b<d

e
(
−(n/d)τ−b

d

)
+ O(q1/n)

=

∑
d | n

e(−nτ/d2)
∑

0≤b<d

e(−b/d)+ O(q1/n)

=

∑
d | n

e(−nτ/d2)δd,1+ O(q1/n)= q−n
+ O(q1/n).

Because f (1, g, τ ) is a power series in q and nTn f (1, g, τ ) is a polynomial in
f (1, g, τ ), we can refine the O(q1/n) to O(q). If we add any other polynomial in
f (1, g, τ ), the leading term will yield a nontrivial contribution to the nonpositive
powers in the expansion, so the polynomial is unique. �

Proposition 5.3. The map f (m)(τ ) 7→ f (1, gm, τ ) induces a bijection between
replicable functions of order N and weakly Hecke-monic functions for (1, g) on

Hom(Z×Z,Z/NZ) ×
±Z

H

whose expansions at infinity have the form q−1
+ O(q), where g is a generator of

Z/NZ.

Proof. We first assume that f (1) is replicable, so 8n( f (1)) =
∑

ad=n
0≤b<d

f (a)
(aτ+b

d

)
.

Then

8n( f (1)(τ ))=
∑

ad=n
0≤b<d

f (a)
(aτ+b

d

)
=

∑
ad=n

0≤b<d

f
(

1, ga,
aτ+b

d

)
= nTn f (1, g, τ ).

Therefore, nT n f (1, g, τ ) is a monic polynomial in f (1, g, τ ) for all n, and f is
weakly Hecke-monic for (1, g).

Now let f be a weakly Hecke-monic function for (1, g) satisfying f (1, gi , τ )=

q−1
+O(q). By Lemma 5.2, mTm f (1, g, τ )= q−m

+O(q), and is a monic poly-
nomial in f (1, g, τ ), so it is equal to q−m

+m
∑

k Hk,mqk
=8n( f ). If we assume

for the purposes of induction that f (1, gk, τ )= f (k)(τ ) for all k |m, k 6= m, then∑
ad=m
0≤b<d

f
(

1, ga,
aτ+b

d

)
= mTm f (1, g, τ )=8m( f )=

∑
ad=m
0≤b<d

f (a)
(aτ+b

d

)

implies f (m) = f (1, gm, τ ). �
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Corollary 5.4. If f is a replicable function of finite order with algebraic inte-
ger coefficients, then f is either of trigonometric type or holomorphic congruence
genus-zero for a group containing 01(N ) for some N.

Proof. By the above proposition, f together with its replicates forms a weakly
Hecke-monic function for (1, g), where g generates a cyclic group whose order is
that of f . By Theorem 4.6, f (1, g, τ ) is either of trigonometric type or holomor-
phic congruence genus-zero and invariant under a group containing 0(N ) for some
N . Since f is invariant under translation by 1, it is invariant under 01(N ). �

Norton [1984] also defined a stronger notion: f is completely replicable if all
f (t) are replicable, or equivalently, if the s-th replication power of f (t) is f (st) for
all s and t [Kozlov 1994, Proposition 2.5]. He also pointed out that

−J (z+ 1
2)= q−1

+ 196884q − 21493760q2
+ · · ·

is a function that is replicable but not completely replicable.

Corollary 5.5. The above bijection specializes to a bijection between completely
replicable functions of order N and semiweakly Hecke-monic functions for (1, g)
on

Hom(Z×Z,Z/NZ) ×
±Z

H

whose expansions at infinity have the form q−1
+ O(q).

Proof. Using the proposition, we get a chain of equivalent statements:

• f (1) is completely replicable.

• f (m) is replicable for all m.

• f is weakly Hecke-monic for all (1, gm).

• f is semiweakly Hecke-monic for (1, g). �

Corollary 5.6. The above bijection specializes to a bijection between completely
replicable functions f (1) with rational integer coefficients invariant under 00(N )
and Hecke-monic functions f on M

Z/NZ

Ell satisfying the property that the q-expan-
sions of f (1, gi , τ ) have the form q−1

+ O(q), with rational integer coefficients.

Proof. It suffices to show that if f (1) is invariant under 00(N ), then f (m) is in-
variant under 00(N/(m, N )). The completely replicable functions with integer
coefficients were exhaustively enumerated in [Alexander et al. 1992], and their
fixing groups were found to obey this condition in [Ferenbaugh 1993]. �

Replicable functions without a specified order also have an interpretation in
terms of Hecke-monicity, if we allow our group G to be infinite. If we let g generate



Generalized moonshine, I: Genus-zero functions 673

a copy of Z, we can think of replicable functions together with their replicable
powers as weakly Hecke-monic functions for (1, g) on

Hom(Z×Z,Z) ×
±Z

H.

Unfortunately, the finite order condition is essential for our techniques to produce
a genus-zero statement.

6. twisted denominator formulas

Given a Lie algebra of a rather specialized form described below, we can make
strong statements about certain characters of automorphisms acting on homology.
When this Lie algebra arises from conformal field theory in a certain way, we
show that in fact the characters are holomorphic congruence genus-zero functions.
The particular constraints on the Lie algebra force it to be “mostly free” in the
sense that its higher homology is very small. This is somewhat related to work
of Jurisich [1998] on free Lie subalgebras of generalized Kac–Moody algebras
like the monster Lie algebra. Some connections to elliptic cohomology appear in
unpublished work of Lurie [2005] concerning exponential operations on elliptic
λ-rings.

Let G be a finite group, and let g be an element of order N in the center of G.
Suppose we have a collection

V= {V i, j/N
k : i, j ∈ Z/NZ, k ∈ (1/N )Z}

of G-modules, such that the action of g on V i, j/N
k is given by constant multiplica-

tion by the root of unity e( j/N ), and such that dim V i, j/N
k grows subexponentially

with k, that is, for any ε > 0, there is some C > 0 such that dim V i, j/N
k < Ceεk for

all i, j, k.

Note. We occasionally write V i, j/N
k where i and j are given as integers, tacitly re-

ducing modulo N , so V i, j/N
k is the same G-module as V i+aN , j/N+b

k for all integers
a and b.

Definition. A complex Lie algebra E is Fricke compatible with V if the following
conditions are satisfied:

• E is graded by Z>0×
1
N Z, with finite- dimensional homogeneous components

Ei, j . We introduce degree indicator symbols p and q , which denote grading
shifts by (1, 0) and (0, 1

N ), respectively, and write the graded vector space de-
composition as E =

⊕
i>0, j∈(1/N )Z Ei, j pi q j . We can view this as a character

decomposition of E under an action of a two-dimensional torus H .

• E admits a homogeneous action of G by Lie algebra automorphisms, such
that we have G-module isomorphisms Ei, j ∼= V i, j

1+i j .
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• The homology of E is given by H0(E)= C,

H1(E)=
⊕

n∈(1/N )Z

V 1,n
1+n pqn, H2(E)= p

∞⊕
m=0

V 1,−1/N
1−1/N ⊗ V m,1/N

1+m/N pm,

and Hi (E)= 0 for i > 2.

• E1,−1/N ∼= V 1,−1/N
1−1/N is one-dimensional.

Remark. Our use of the term “Fricke compatible” is motivated by considerations
from conformal field theory. If g is a Fricke element of the monster, that is, if the
McKay–Thompson series Tg(τ ) = Tr(gq L0−1

|V \) is invariant under the transfor-
mation τ 7→ −1/Nτ for some N , and if G is a central extension of the centralizer
of g in the monster, then we expect the Lie algebra of physical states of the g-
orbifold intertwiner algebra to be a generalized Kac–Moody algebra whose positive
subalgebra is isomorphic to E as a Lie algebra with a homogeneous action of G by
automorphisms, and we expect the unique irreducible g-twisted module of V \ to
be isomorphic to H1(E) as a graded G-module. If g is a non-Fricke element, then
we expect the compatible Lie algebra to have a large abelian subalgebra and higher
homology described by its exterior powers. We explore this further in [Carnahan
2009; ≥ 2010].

Proposition 6.1 (Twisted denominator formula). Suppose E is Fricke compatible
with V. Then for any h ∈ G,

p−1
+

∑
m>0

Tr
(
h|V 1,−1/N

1−1/N

)
Tr
(
h|V m,1/N

1+m/N

)
pm
−

∑
n∈(1/N )Z

Tr
(
h|V 1,n

n+1

)
qn

= p−1 exp
(
−

∑
i>0

∑
m>0

n∈(1/N )Z

Tr
(
hi
|V m,n

1+mn

)
pimq in/ i

)
.

Proof. This is essentially identical to [Borcherds 1992, Section 8]. The Chevalley–
Eilenberg resolution yields the equation H(E)=

∧
(E) of virtual H×G-represen-

tations, and the left side is given by taking traces on the homology groups given
above. By Adams’ exponential formula from K -theory, we have∧

(U )= exp
(
−

∑
i>0

ψ i (U )/ i
)

for any finite-dimensional H×G-module U (which we take to be the homogeneous
components Ei, j or finite sums thereof). The ψ i are the i-th Adams operations,
which satisfy the identity Tr(g|ψ i (U ))= Tr(gi

|U ). The right side of the equation
is then given by extending this to a formal sum on the infinite-dimensional direct
sum of homogeneous components, and this is allowed because their degrees are
supported in a strict half-space. �
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For any h ∈ G, we define formal orbifold partition functions:

Z(gk, glhm, τ ) :=
∑

n∈(1/N )Z

∑
r∈(1/N )Z/Z

n∈kr+Z

Tr
(
glhm
|V k,r

1+n

)
e(nτ).

We refer to the collection of these functions as Z , and they converge on H, by the
subexponential growth condition. We can then define equivariant Hecke operators:

Tn Z(g, h, τ )= 1
n

∑
ad=n

0≤b<d

Z
(

gd , g−bha,
aτ+b

d

)
.

Proposition 6.2. Suppose E is Fricke compatible with V. Then Z is weakly Hecke-
monic for (g, h).

Proof. We multiply both sides of the twisted denominator formula by p, and view-
ing the equality as an identification of formal expansions, we take logarithms.

log
(

1− p
∑

n∈(1/N )Z

Tr
(
h|V 1,n

1+n

)
qn
+

∑
m>0

Tr
(
h|V 1,−1/N

1−1/N

)
Tr
(
h|V m,1/N

1+m/N

)
pm+1

)
=−

∑
i>0

∑
m>0

n∈(1/N )Z

Tr
(
hi
|V m,n

1+mn

)
pimq in/ i

=−

∑
m>0

∑
a |m

1
a

∑
n∈(1/N )Z

Tr
(
ha
|V m/a,n

1+mn/a

)
pmqan

=−

∑
m>0

∑
ad=m

1
a

∑
0≤b<d

1
d

∑
n∈(1/N )Z

Tr
(
ha
|V d,n

1+dn

)
pmqan

=−

∑
m>0

∑
ad=m

1
a

∑
0≤b<d

1
d

∑
n∈(1/N )Z

∑
r∈(1/N )Z/Z

n∈dr+Z

e(−br)Tr
(
ha
|V d,r

1+n

)
e(br)qan/d pm

=−

∑
m>0

1
m

∑
ad=m
0≤b<d

∑
n∈(1/N )Z

∑
r∈(1/N )Z/Z

n∈dr+Z

Tr
(
g−bha

|V d,r
1+n

)
e
(

n aτ+b
d

)
pm

=−

∑
m>0

1
m

∑
ad=m
0≤b<d

Z
(

gd , g−bha,
aτ+b

d

)
pm
=−

∑
m>0

Tm Z(g, h, τ )pm .

Isolating the terms that are degree k in p on the first line yields a polynomial
of degree k in Z(g, h, τ ), with leading coefficient −1/k. This implies that for all
k, kTk Z(g, h, τ ) as a formal q-series is a monic polynomial of degree k in the
q-expansion of Z(g, h, τ ). All of the formal orbifold partition functions uniquely
define holomorphic functions on H, so for all k, kTk Z(g, h, τ ) is a monic polyno-
mial of degree k in Z(g, h, τ ), where they are viewed as functions on H. �



676 Scott Carnahan

We describe a connection to generalized moonshine. Recall that one of the key
hypotheses in the conjecture was the existence of certain representations of central
extensions of centralizers of elements. An interpretation of these representations
was given in [Dixon et al. 1988], where they were said to be twisted Hilbert spaces
of an orbifold conformal field theory. In our language, these are twisted modules of
the vertex operator algebra V \. The theoretical details of vertex operator algebras
and twisted modules are outside the scope of this paper, but we can think of these
objects as graded vector spaces, where the grading is given by eigenvalues of a
semisimple operator L0. When a vertex operator algebra has a unique irreducible
g-twisted module for some automorphism g, Schur’s lemma produces a natural
action of some central extension of the centralizer of g on the twisted module. The
two facts we need concerning twisted modules are from [Dong et al. 2000]:

(1) (Theorem 10.3) If V is a holomorphic C2-cofinite vertex operator algebra with
central charge 24, and g is a conformal automorphism of finite order, then
there exists a unique irreducible g-twisted module V (g) up to isomorphism.

(2) (Theorems 5.4, 6.4, and 8.1) Let M > 0 satisfy gM
= hM

= 1, and suppose
we have a G-module isomorphism

V (gi )∼=
⊕

k∈(1/N )Z

⊕
j∈Z/NZ

V i, j/N
k ,

where V (gi ) is the irreducible gi -twisted module, and the outer sum gives the
L0-eigenvalue decomposition. For any

(a
c

b
d

)
∈ SL2(Z),

Z
(

gi , h, aτ+b
cτ+d

)
lies in a certain space of holomorphic functions on H, each element of which
is annihilated by a differential operator of the form

( d
dτ
)m
+

m−1∑
j=0

r j (q)
( d

dτ
) j
,

where m > 0 and r j (q) ∈ C[[q1/M
]] converges on H.

Proposition 6.3. Suppose that E is a Lie algebra Fricke compatible with V, and
suppose that G acts conformally on a holomorphic C2-cofinite vertex operator
algebra V of central charge 24, such that for all i ∈ Z/NZ, we have G-module
isomorphisms V (gi )∼=

⊕
k∈(1/N )Z

⊕
j∈Z/NZ V i, j/N

k as in Fact (2). Then Z(g, h, τ )
is a holomorphic congruence genus-zero function.
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Proof. By Proposition 6.2, Z is weakly Hecke-monic for (g, h). Since E1,−1/N =

V 1,−1/N
1−1/N is one-dimensional, the trace of h on this space is nonzero, so Z(g, h, τ )

has a pole at infinity. By Theorem 4.6, Z(g, h, τ ) is then either a holomorphic
congruence genus-zero function, or of trigonometric type. However, the expansion
of any function of trigonometric type at a cusp other than infinity is not annihilated
by any differential operator of the form given in Fact (2). �

The hypotheses for this proposition are quite strong, but it is not a vacuous
statement. When G = M and g = 1, this implies the McKay–Thompson series
are holomorphic congruence genus-zero modular functions, assuming the positive
subalgebra of the monster Lie algebra is Fricke compatible with V \. This compat-
ibility was proved in [Borcherds 1992, Section 8]. When G = 2.B, the nontrivial
central extension of the baby monster simple group, and g is the central element
of order two, this yields holomorphic congruence genus-zero characters for the
conjugacy class 2A case of generalized moonshine, assuming there exists a Lie
algebra Fricke compatible with the suitable twisted modules. The holomorphic
congruence genus-zero result was proved in [Höhn 2003] using a construction of
a Fricke compatible Lie algebra, and Proposition 6.3 allows one to eliminate the
explicit computations in the final step of the proof, which involved matching the
first 25 coefficients of the character for every conjugacy class of G with Norton’s
list of known replicable functions.
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Integral trace forms
associated to cubic extensions

Guillermo Mantilla-Soler

Given a nonzero integer d, we know by Hermite’s Theorem that there exist only
finitely many cubic number fields of discriminant d. However, it can happen that
two nonisomorphic cubic fields have the same discriminant. It is thus natural to
ask whether there are natural refinements of the discriminant which completely
determine the isomorphism class of the cubic field. Here we consider the trace
form qK : trK/Q(x2)|O0

K
as such a refinement. For a cubic field of fundamental

discriminant d we show the existence of an element TK in Bhargava’s class group
Cl(Z2

⊗Z2
⊗Z2
;−3d) such that qK is completely determined by TK . By using

one of Bhargava’s composition laws, we show that qK is a complete invariant
whenever K is totally real and of fundamental discriminant.
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1. Introduction

Generalities. A difference between quadratic and nonquadratic number fields is
that the former are totally characterized by their discriminant. One natural choice
for a refined discriminant is given by the isometry class with respect to the trace
form of the lattice defined by the maximal order. The purpose of this paper is to
give a detailed analysis of this refinement for cubic extensions, and to show under
which conditions this refinement characterizes the field. Given a number field K
with maximal order OK , we consider the trace form trK/Q(x2)|OK .

MSC2000: primary 11E12; secondary 11R29, 11R16, 11E76.
Keywords: integral trace forms, cubic fields, Bhargava’s class group, discriminants of number

fields.
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Question 1.1. Do there exist two nonisomorphic number fields K and L such that
their corresponding trace forms are isomorphic?

In this paper we analyze this question in the case of cubic extensions.

Definition 1.2. Let K be a number field and let OK be its maximal order. The
trace zero module O0

K is the set {x ∈ OK : trK/Q(x)= 0}.

Our main result is this:

Theorem 6.5. Let K be a cubic number field of positive, fundamental discrimi-
nant. Let L be a number field such that there exists an isomorphism of quadratic
modules

〈O0
K , trK/Q(x2)|O0

K
〉 ∼= 〈O0

L , trL/Q(x2)|O0
L
〉,

and assume 9 - dL . Then K ∼= L.

Outline of the paper. We start by analyzing Question 1.1 for general cubic fields.
For this purpose we consider first the case in which the common discriminant of
K and L is not fundamental.1

Nonfundamental discriminants. In this case, we find that our proposed refinement
does not characterize the field. In other words, for nonfundamental discriminants
we have an affirmative answer to Question 1.1. We divide the class of nonfun-
damental discriminants into two groups according to sign. We further divide the
positive discriminants into two groups: those that are perfect squares, and those that
are not. For each one of these cases we show that there are some nonfundamental
discriminants such that Question 1.1 has an affirmative answer.

(i) Negative nonfundamental discriminants. We define a sequence of positive
integers 6 and a family of triples {Km, Lm, Em}m∈6 with the following prop-
erties (see Proposition 3.4):
• Km and Lm are two nonisomorphic cubic fields with discriminant −3n2,

where n is a positive integer depending only on m.
• An elliptic curve Em defined over Q such that Em[3](Q) determines com-

pletely a ternary quadratic form equivalent to both trK/Q(x2)|OKm
and

trK/Q(x2)|OLm
.

(ii) Square discriminants. In this case we generalize in Theorem 3.1 a result of
Conner and Perlis [1984, Theorem IV.1.1 with p = 3]. Let K and L be
two Galois cubic number fields of the same discriminant and let M be either
OK or O0

K . Then trK/Q(x2)|M and trL/Q(x2)|M are equivalent. Since there
are examples of nonisomorphic Galois cubic fields of the same discriminant,
Question 1.1 has a positive answer for such cases.

1Recall that d is a fundamental discriminant if it is the discriminant of a quadratic field.
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(iii) Positive, nonfundamental, nonsquare discriminants. See Example 3.6 for two
fields with positive, non-square-free, non-perfect-square discriminant and iso-
metric integral trace forms.

Main results. For fields of fundamental discriminant we see, thanks to Lemma 2.5,
that the binary quadratic form trK/Q(x2)|O0

K
is a refinement of the discriminant.

Hence, we reformulate Question 1.1.

Question 1.3. Do there exist two nonisomorphic cubic fields K and L such that
the forms trK/Q(x2)|O0

K
and trL/Q(x2)|O0

L
are isomorphic?

Although this question has relevance for us only for fundamental discriminants,
we note that the examples (i), (ii) and (iii) described above also answer 1.3 in an af-
firmative way. On the other hand, for fundamental discriminants (see diagram 4-1),
class field theory provides examples of nonisomorphic cubic fields of the same
discriminant. Among the fields with negative discriminants we found examples
giving an affirmative answer to Question 1.3.

It is clear, thanks to the results developed so far, that one should consider work-
ing over cubic fields of fundamental discriminant. We show for such discriminants
that the trace form is equal, as an element of a narrow class group, to the Hessian
multiplied by an element that only depends on the discriminant.

Theorem 5.5. Let K be a cubic field with discriminant dK . Assume that dK is
fundamental and that 3 - dK . Let FK = (a, b, c, d) be a cubic in the GL2(Z)-
equivalence class defined by K . Then 1

2qK ∗CdK = H±1
K as elements of Cl+

Q(
√
−3dK )

,
where CdK = (3, 0, dK /4) or CdK = (3, 3, (dK +3)/4) in accordance with whether
dk ≡ 0 (mod 4) or dk ≡ 1 (mod 4).

By reformulating all of this in the language of Bhargava’s composition of cubes
[2004], we show that the trace form arises naturally as a projection of a cube
determined by the field.

Theorem 6.2. Let K be a cubic field with discriminant dK and associated cubic
form FK = (a, b, c, d). Assume that dK is fundamental and that 3 does not ramify.
Then there exists TFK ∈Cl(Z2

⊗Z2
⊗Z2
;−3dK ) such that (π1 ◦φ)(TFK )

±1
=

1
2qK

as elements of Cl+
Q(
√
−3dK )

.

In this setting, Theorem 6.5 follows from Theorem 5.11, which is the modern
version of a theorem of Eisenstein [1844]. By reformulating Theorem 6.5 (see
Theorem 6.8 and its corollary), we obtain one inequality of the classical Scholz
reflection principle [1932].

Theorem 6.5 can be obtained with the tools developed by Eisenstein [1844].
However, we have decided to use Bhargava’s theory of 2× 2× 2 orbits of cubes,
to suggest that it might be possible to use some other prehomogeneous spaces to
“generalize” Theorem 6.5 to higher dimensions.
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2. Basic facts

Definition 2.1. Let G be a free abelian group. We say that a map q : G→ Z is a
quadratic form if

• q(nx)= n2q(x) for all integer n, and

• the map Bq : G×G→ 1
2 Z defined as Bq(x, y)= 1

2(q(x + y)− q(x)− q(y))
is Z-bilinear.

Remark 2.2. Let 〈G, q〉 be a quadratic Z-module of rank n = rank(G). After
choosing a basis, we can think of q as a homogeneous polynomial in n variables
of degree two, that is, q ∈ (Sym2Zn)∗. There is a natural action of GL2(Z) on
(Sym2Zn)∗. Under this action, q and q1 belong to the same orbit if and only if
〈G, q〉 is isometric to 〈G1, q1〉. Abusing notation, we denote this by q ∼GL2(Z) q1.

Let K be a number field and let OK be its maximal order. The map

q̃K : OK → Z, x 7→ trK/Q(x2),

defines a quadratic form with corresponding bilinear form

BK (x, y)= trK/Q(xy)|OK .

Thus, 〈OK , q̃K 〉 is a quadratic Z-module and its discriminant is precisely the
discriminant of K . Hence, if K and L are two number fields such that 〈OK , q̃K 〉

and 〈OL , q̃L〉 are isomorphic quadratic Z-modules, we have

[K :Q] = [L :Q] and Disc K = Disc L .

Therefore the isomorphism class of 〈OK , q̃K 〉 is to us a natural refinement of the
discriminant.

Lemma 2.3. Let K be a number field of degree n and let G K = Z+ O0
K . We have

|OK /G K | = |trK/Q(OK )/nZ |.

Corollary 2.4. Let K and L be number fields. If

f : 〈OK , BK 〉 → 〈OL , BL〉

is an isomorphism, then Disc G K = Disc GL .

Proof. Since trL/Q( f (x) f (y))= trK/Q(xy) for all x, y ∈ OK we have that trK/Q :

OK �Z implies trL/Q :OL �Z. Since f is an isometry, the argument is symmetric
in K and L . By Lemma 2.3 we have |OK /G K | = |OL/GL |. Hence

Disc G K = |OK /G K |
2 Disc OK = |OL/GL |

2 Disc OL = Disc GL . �

For a number field K , we set qk = q̃K |O0
K

.
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Lemma 2.5. Let K and L be two number fields of degree n. Assume they both
have discriminants that are square-free at all primes dividing n. Further, sup-
pose that 〈O0

K , qK 〉 and 〈O0
L , qL〉 are isomorphic. Then K and L have the same

discriminant.

Proof. Since Disc G K = Disc GL , we have that

|OK /G K |
2 Disc OK = |OL/GL |

2 Disc OL .

The result now follows from Lemma 2.3. �

Proposition 2.6. Let K be a Galois number field of prime degree p. Then p rami-
fies in K if and only if trK/Q(OK )= pZ.

Proof. It is clear that trK/Q(OK )= pZ implies that p ramifies in K . Next, assuming
that p ramifies, let P be the unique prime of OK lying above p. By hypothesis,
we have that |OK /P| = p. In particular, P is a maximal Z-submodule of OK .
Since 1 /∈ P , we must have OK = Z+ P . Since P is Galois invariant, trK/Q(P)⊆
P ∩Z= pZ. Thus trK/Q(OK )= trK/Q(Z+ P)⊆ pZ. �

3. Galois fields and rational 3-torsion

In this section we explain some situations in which Questions 1.1 and 1.3 have
positive answers. The examples in this section are characterized by having dis-
criminants with a nontrivial square factor.

The following result is a generalization of the case p = 3 of [Conner and Perlis
1984, Theorem IV.1.1].

Theorem 3.1. Let K and L be two Galois, cubic number fields of discriminant
D = d2. We have

〈O0
K , qK 〉 ∼= 〈O0

L , qL〉 ∼=

{
2d(x2

+ xy+ y2) if 3 - d,
2
3 d(x2

+ xy+ y2) otherwise.

The isometry can be chosen so it extends to one between 〈OK , q̃K 〉 and 〈OL , q̃L〉.

Proof. Assume first that 3 does not divide D. By Theorem 132 of Hilbert [1900],
write OK = e1Z⊕e2Z⊕e3Z, where σ(e1)= e2, σ(e2)= e3, and σ is a generator of
Gal(K/Q). Because 3 does not ramify, Proposition 2.6 implies that trF/Q(e1)= 1,
and furthermore that O0

K = (e1 − e2)Z⊕ (e1 − e3)Z. Let a = trF/Q(e2
1) and b =

trF/Q(e1e2). Then

M =

(1+2a−2b)/3 a−b a−b
a−b 2a−2b a−b
a−b a−b 2a−2b

 and M0 = (a−b)
(

2 1
1 2

)
represent respecitvely the trace form over OK in the basis {e1, e1−e2, e1−e3},
and the trace form over O0

K in the basis {e1−e2, e2−e3}. Note that a+2b =
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(trF/Q(e1))
2
= 1; thus D = det M = (a−b)2(a+2b) = (a−b)2. By the Cauchy–

Schwartz inequality, a−b > 0, and hence d = a−b, which implies that a =
(1+2d)/3 and b = (1−d)/3. Thus, every cubic field of discriminant d2, with
3 - d , has an integral basis for which the trace form over OK has representative
matrix M (respectively trace form over O0

K has representative matrix M0).
On the other hand, if 3 divides d , then Proposition 2.6 and Lemma 2.3 imply

that OK = Z⊕O0
K . Hence, q̃K is totally determined by qK = q̃K |O0

K
. Since every

integral quadratic form of discriminant −3 is SL2(Z)-equivalent to (x2
+xy+y2),

the result follows from the following claim. �

Claim. 3
2d

qK is an integral, primitive, binary quadratic form of discriminant −3.

Proof of claim. Let {α, β} an integral basis for O0
K . Let Oα ⊆ O0

K be the Z-module
generated by {α, σ (α)}, where σ is a generator for Gal(K/Q). Since α /∈ Z, we
know that α and σ(α) are distinct elements of OK with the same norm. In partic-
ular, σ(α) cannot be a rational multiple of α, so rankZ(O)= 2. Thus, [O0

K : Oα] is
finite, and moreover σ(α) = mα + [O0

K : Oα]β for some integer m. Note that(
trK/Q(α

2), 2 trK/Q(αβ), trK/Q(β
2)
)
,
(

trK/Q(α
2), 2 trK/Q(ασ(α)), trK/Q(σ (α)

2)
)

represent qK in the bases {α, β} and {α, σ (α)} respectively. Hence

trK/Q(α
2) trK/Q(σ (α)

2)− tr2
K/Q(ασ(α))

= [O0
K : Oα]

2( trK/Q(α
2) trK/Q(β

2)− trK/Q(αβ)
)
. (3-1)

Since Disc K = d2 and OK = Z+ O0
K , 1

3 d2
= trK/Q(α

2) trK/Q(β
2)− trK/Q(αβ).

On the other hand, since α ∈ O0
K , trK/Q(α

2)=−2 trK/Q(ασ(α)), and the left side
of (3-1) is 3 tr2

K/Q(ασ(α)). Thus,

trK/Q(ασ(α))=±[O0
K : Oα]

d
3
. (3-2)

In particular we see that d
3 divides 1

2 trK/Q(α
2). Exchanging the roles of α and β

we see that d
3 also divides 1

2 trK/Q(β
2). Now consider σ(α) = mα+ [O0

K : Oα]β.
Multiplying both sides by α and then taking traces, we see that d

3 divides trK/Q(αβ).
We conclude that (trK/Q(α

2), 2 trK/Q(αβ), trK/Q(β
2)) can be written as 2d

3 f , with
f an integral quadratic form of discriminant −3. �

Example 3.2. Let K and L be cubic fields defined by x3
+ 6x2

− 9x + 1 and
2x3
+ 3x2

− 9x + 2 respectively. One sees by direct computation that K and L
are nonisomorphic fields of discriminant 3969; for instance, they have different
regulators.

We conclude that the trace form does not characterize the field in the case where
the discriminant is a square. Proposition 3.4 below is an indication that the case of
the square discriminant is not the only case that should be reconsidered, but also the
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non-square-free case. Cubic fields of a fixed discriminant 1 can be parametrized
by a subset of rational points on a certain elliptic curve. Assume that L =Q(β) is a
cubic field defined by the equation x3

+ px+q ∈Z[x]. If OL =Z[β], then Disc L=
−27q2

− 4p3. Hence if K is a cubic field of discriminant 1, one could try to find
a cubic field L of the same discriminant by finding rational points (−1

3 p,± 1
2q) of

y2
= x3

−
1

1081. Using this idea, we construct a family of nonisomorphic cubic
fields with prescribed discriminant. We need the following result from algebraic
number theory.

Proposition 3.3 [Marcus 1977]. Let m be a nonperfect cube integer and α a root
of x3
−m. Write m = m f m2

s , with m f square-free and gcd(m f ,ms)= 1. Suppose
that m 6≡ ±1 (mod 9). Then {1, α, α2/ms} is an integral basis for Km =Q(α); in
particular, Disc Km =−27(msm f )

2.

Let 6 = {m ∈ N \N3
| ms 6= 1,m f ms 6≡ ±1 (mod 9),m 6≡ ±1 (mod 9)}.

Proposition 3.4. Let m ∈ 6 and Km, Lm be the cubic fields defined by x3
− m

and x3
−m f ms respectively, with m f ,ms as in Proposition 3.3. Then Km, Lm are

cubic fields with equivalent trace forms, and have discriminant −3(3m f ms)
2.

Proof. By the discussion above and Proposition 3.3, we have that Km defines the
rational elliptic curve Em : y2

= x3
+

1
4 m2

f m2
s . A simple calculation shows that

Em[3](Q)= {∞, (0, 1
2 m f ms), (0,−1

2 m f ms)}, and these points define the field Lm .
Let P be a generator of Em[3](Q) and let

Mm =

3 0 0
0 0 6y(p)
0 6y(p) 0

 .
Then Mm represents simultaneously the trace form in OKm and OLm with respect
to the bases given by Proposition 3.3. �

The pair of number fields given by Proposition 3.4 need not be isomorphic, as
the following example demonstrates.

Example 3.5. Let m = 12 so that K12 and L12 are the cubic fields defined by
x3
−12 and x3

−6 respectively. Then 〈OK , q̃K12〉 and 〈OL , q̃L12〉 are isomorphic to
〈Z3, 3x2

+36yz〉. We see that K12 and L12 are nonisomorphic fields of discriminant
−2235 by direct computation; for instance, 7 splits in L12 but is inert in K12.

Recall that for Galois cubic fields of fixed discriminant, there is only one pos-
sibility for the trace form (see Theorem 3.1), since after a suitable scaling we are
left with a binary quadratic form of discriminant −3. Inspired by this, we began
looking for discriminants D of totally real cubic fields satisfying four conditions:
(i) D is a nonperfect square; (ii) D is nonfundamental; (iii) up to square factors
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and factors of 3, −D defines an imaginary quadratic field of class number 1. and
(iv) there are at least two cubic fields of discriminant D.

It turns out that the first D satisfying these conditions (see tables at the end of
[Ennola and Turunen 1985]) is D= 66825= 355211. For this value of D we have:

Example 3.6. Let K and L be the cubic fields defined by 2x3
+3x2

−21x+4 and
x3
+ 9x2

− 18x − 3 respectively. Then 〈OK , q̃K 〉 and 〈OL , q̃L〉 are isomorphic to
〈Z3, 3x2

+ 90(y2
+ yz+ 3z2)〉. One sees by direct computation that K and L are

nonisomorphic fields of discriminant 355211 (they have different regulators).

None of our results so far yield positive answers to Questions 1.1 or 1.3 with
fundamental discriminant. It is thus natural to ask whether those questions have
negative answers in the special case where the discriminant of the cubic field is
fundamental. Under these circumstances we exhibit a more convenient refinement.
To describe this, let K be a cubic number field and recall our notation qk = q̃K |O0

K
.

Then qK is an integral, binary quadratic form. Moreover, under the fundamental
discriminant hypothesis, the isometry class of 〈O0

K , qK 〉 is a refinement of the
discriminant, as shown in Lemma 2.5.

4. Cubic fields with fundamental discriminant

In this section, all cubic fields are assumed to have fundamental discriminant. The
first question that comes to mind is this: for which fundamental discriminants d
does there exist a cubic field with discriminant d? Moreover, we would like to
know for which values of d there is more than one isomorphism class of cubic
fields of discriminant d . It turns out that class field theory gives nice answers
to these questions. Let K be a cubic field of fundamental discriminant d and
Galois closure K̃ . Clearly, Q(

√
d) ⊆ K̃ , and this extension is unramified. Since

d is a fundamental discriminant, Gal(K̃/Q) ∼= S3. Hence [K̃ : Q(
√

d)] = 3, and
K̃/Q(

√
d) is abelian. Therefore, if Hd denotes the Hilbert class field of Q(

√
d),

and ClQ(
√

d) denotes the ideal class group of Q(
√

d), we have this diagram:

Hd

HK ClQ(
√

d)

K̃

S3

Z/2Z Z/3Z

K Q(
√

d)

Z/2Z

Q

(4-1)
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Thus, if we start with K as above, we obtain HK , an index-3 subgroup of ClQ(
√

d).
Conversely, it can be shown [Hasse 1930] that the fixed field of an index-3 subgroup
of ClQ(

√
d) corresponds to the Galois closure of a cubic field of discriminant d .

Hence:

Proposition 4.1 [Hasse 1930]. The number of isomorphism classes of cubic fields
of discriminant d is (3r3(d)− 1)/2, where r3(d)= dimF3(ClQ(

√
d)⊗Z F3).

Corollary 4.2 [Hasse 1930]. There exists a cubic field K of discriminant d if and
only if ClQ(

√
d)[3] 6= 0.

Section 3 gave affirmative answers to Questions 1.1 and 1.3 for nonfundamental
discriminants. Example 4.3 shows that among fundamental discriminants, one still
finds positive answers to Questions 1.1 and 1.3.

Example 4.3. The fundamental discriminant of least absolute value with r3(d)> 1
is d =−3299. For this value of d , ClQ(

√
d)
∼= Z/3Z⊕Z/9Z; hence there exist four

nonisomorphic cubic fields of discriminant −3299. Among these four fields, the
ones defined by x3

+ 2x + 11 and x3
− 16x + 27 have isometric trace-0 parts.

Cubic fields with square-free discriminants lead us to 3-torsion of class groups
of quadratic fields. Another very well-known source of class groups of quadratic
fields is binary quadratic forms. Let us recall briefly how these two are connected.
Let 1 be a non-perfect-square integer and let 01 (respectively 01

1) be the set of
GL2(Z)-equivalence classes (respectively SL2(Z)-equivalence classes) of primi-
tive, binary quadratic forms of discriminant 1. Gauss composition gives a group
structure to 01

1, and furthermore this group is isomorphic to the narrow class group
Cl+Q(

√
1). In particular, |01| ≤

∣∣Cl+Q(
√
1)

∣∣. Now, let K be a cubic field of discrim-
inant d not divisible by 3. According to the next lemma, the GL2(Z)-equivalence
class of

[ 1
2qK

]
defines an element of 0−3d . Thus, if we denote by Cd the set of

isomorphism classes of cubic fields of discriminant d , we have the map

8d : Cd → 0−3d , K 7→
[1

2qK
]
.

Since Cl+Q(
√

9897)
∼= Z/3Z and |C−3299| = 4, the previous example can be restated

as the noninjectivity of 8−3299.

Lemma 4.4. Let K be a cubic field with fundamental discriminant d. Then 1
2qK is

an integral, binary quadratic form of discriminant −3d.

Proof. Note that Disc qK = −4 Disc O0
K = −

4
3 |OK /G K |

2d. Since d is funda-
mental, 9 - d . In particular, trK/Q is a surjection from OK to Z, and thanks to
Lemma 2.3, we have Disc qK = −12d . Note that if x ∈ O0

K , then trK/Q(x2) =

trK/Q(x2)− tr2
K/Q(x) ∈ 2Z, and hence 1

2qK is integral. �

Remark 4.5. In fact 1
2qK is primitive if 3 - d , as seen in Corollary 5.4.



690 Guillermo Mantilla-Soler

Often it is more convenient to work with primitive forms than general ones.
Since qK ∼GL2(Z) qL if and only if aqK ∼GL2(Z) aqL for any nonzero rational
number a, Remark 4.5 will allow us to restrict ourselves to primitive forms.

5. Trace form and class groups

In this section we calculate qK explicitly, and then show that for positive funda-
mental discriminants, qK characterizes the field. We start by recalling [Delone and
Faddeev 1964; Gan et al. 2002; Belabas and Cohen 1998] on the parametrization
of cubic rings. Every conjugacy class of a cubic ring R has associated to it a unique
integral binary cubic form (a, b, c, d) := F(x, y) = ax3

+ bx2 y+ cxy2
+ dy3 up

to GL2(Z)-equivalence. Let K be a cubic number field and F the form associated
to its maximal order. Among the properties of F , we have:

• K =Q(θ), where θ ∈ K is a root of FK (x, 1).

• dK := Disc K = Disc(a, b, c, d)= b2c2
− 27a2d2

+ 18abcd − 4ac3
− 4b3d .

• The Hessian form of F , HF = (P, Q, R) := Px2
+Qxy+ Ry2, has discrim-

inant −3dK , where

P = b2
− 3ac, Q = bc− 9ad, R = c2

− 3bd.

• HF is covariant with respect to the GL2(Z)-action on binary cubic forms and
on binary quadratic forms.

• B= {1,−aθ, d/θ} is a Z-basis of OK .

• If dK is fundamental, then HF is a primitive, binary quadratic form.

Lemma 5.1. Let α = −aθ and β = d/θ . Then HF is realized as the integral
quadratic form 3

2 trK/Q(X2) over the Z-module

OB
K = SpanZ

{
α−

trK/Q(α)

3
, β −

trK/Q(β)

3

}
.

Proof. Note that a2 F(x/a, 1) and d2 F(1, x/d) are the minimal polynomials over
Q of α and β respectively. Hence, trK/Q(α) = b, trK/Q(β) = −c, trK/Q(αβ) =

−3ad , trK/Q(α
2) = b2

− 2ac, and trK/Q(β
2) = c2

− 2bd. From this and a simple
calculation the result follows. �

Proposition 5.2. Let α0 = α−
1
3 trK/Q(α) and β0 = β −

1
3 trK/Q(β). Then

O0
k =


O1 = SpanZ{α0, 3β0} if b ≡ 0 (mod 3),

O2 = SpanZ{3α0, β0} if c ≡ 0 (mod 3),

O3 = SpanZ{α0−β0, 3β0} if b ≡−c (mod 3),

O4 = SpanZ{α0+β0, 3β0} if b ≡ c (mod 3).
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Proof. By Lemma 5.1, ( 3
2 trK/Q(X2)|OB

K )=−3dK or, equivalently,( 1
2 trK/Q(X2)|OB

K
)
=−

1
3 dK .

On the other hand,

−3dK =
( 1

2 trK/Q(X2)|O0
K
)
= [OB

K : O
0
K ]

2( 1
2 trK/Q(X2)|OB

K
)
. (5-1)

It follows that [OB
K : O

0
K ] = 3. Notice that for each i , the given congruence condi-

tions on b and c imply that Oi ⊆ O0
K . Since [OB

K : Oi ] = 3 for i ∈ {1, 2, 3, 4}, the
result follows. �

Corollary 5.3. Let K be a cubic field and let FK = (a, b, c, d) be a cubic form
associated to K . Let HK = (P, Q, R) be the Hessian of FK . Then the binary qua-
dratic form 1

2 trK/Q(X2) on the lattice O0
K can be explicitly described as follows:

(P/3, Q, 3R) if b ≡ 0 (mod 3),

(3P, Q, R/3) if c ≡ 0 (mod 3),

(3P, 2P − Q, 1
3(P + R− Q)) if b ≡−c (mod 3),

(3P, 2P + Q, 1
3(P + Q+ R)) if b ≡ c (mod 3).

Proof. By Lemma 5.1, the matrix of 3
2 trK/Q(X2) over OB

K in the basis {α0, β0} is
given by

M =
( P Q/2

Q/2 R

)
.

Let N1 =
(

1 0
0 3

)
, N2 =

(
3 0
0 1

)
, N3 =

( 1 −1
0 3

)
, and N4 =

( 1 0
−1 3

)
. Then the coordinates

of the vector Ni (α0, β0)
t form a basis of Oi , for i ∈ {1, 2, 3, 4}. Hence, 1

3 Ni M N t
i

is the matrix that represents 1
2 trK/Q(X2) over Oi in such a basis. After applying

Proposition 5.2, the result follows. �

From now on, whenever we choose a cubic form FK in the GL2(Z)-class given
by the field K , what we mean by 1

2qK is the quadratic form in the coordinates given
by Corollary 5.3.

Corollary 5.4. If K is a cubic field with fundamental discriminant d not divisible
by 3, then 1

2qK is a primitive, integral, binary quadratic form of discriminant−3d.

Proof. By Lemma 4.4, it remains only to prove that 1
2qK is primitive. Since Hk is

primitive and 9 -−3d , the result follows from Corollary 5.3. �

For a fixed FK in the GL2(Z)-class given by the field K , we have found explicit
relations between the binary quadratic forms 1

2qK and HK . Since they have the
same discriminant, namely −3dK , one might ask what their relation is as elements
of the group Cl+Q(√−3dK )

. A small objection to this question is that even though
HK represents a valid element of this group, 1

2qK need not, since it may not be
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primitive. Yet, as Corollary 5.4 shows, 1
2qK is primitive whenever 3 does not

ramify in K . In this setting we are able to find the following connection between
forms.

Theorem 5.5. Let K be a cubic field with discriminant dK . Assume that dK is
fundamental and that 3 does not divide dK . Let FK = (a, b, c, d) be a cubic in the
GL2(Z)-equivalence class defined by K . Then 1

2qK ∗ CdK = H±1
K as elements of

Cl+Q(√−3dK )
, where CdK =

(
3, 0, 1

4 dK
)

or CdK =
(
3, 3, 1

4(dK + 3)
)

in accordance
with whether dk ≡ 0 (mod 4) or dk ≡ 1 (mod 4).

Proof. We work out the case when dk≡1 (mod 4), the other case being completely
analogous. By Arndt’s composition algorithm [Buell 1989, Theorem 4.10],

CK ∗ (P,Q,R)= (P/3,Q,3R) if b ≡ 0 (mod 3),

CK ∗ (3P,Q,R/3)= (P,Q,R) if c ≡ 0 (mod 3),

CK ∗ (3P,2P−Q,(P+R−Q)/3)= (P,2P−Q,P+R−Q) if b ≡−c (mod 3),

CK ∗ (3P,2P+Q,(P+Q+R)/3)= (P,2P+Q,P+R+Q) if b ≡ c (mod 3).

Using the matrix
( 1 −1

0 1

)
, we see that we have the identities in Cl+Q(√−3dK )

(P, 2P − Q, P + R− Q)= H−1
K and (P, 2P + Q, P + R+ Q)= HK .

Since CK is its own inverse, the result follows from the explicit description of 1
2qK

given in Corollary 5.3. �

Remark 5.6. Note that given K , we have freedom in choosing FK in such a way
that b 6≡ −c (mod 3). Hence Theorem 5.5 can be actually interpreted as saying
that 1

2qK ∗CdK = HK .

Remark 5.7. We denote the form CK by CdK in order to stress the fact that this
form only depends on the discriminant of K .

Bhargava’s composition laws on cubes and their relation to the trace form. We
have related the trace form, in the cubic case, to class groups of quadratic fields.
There is a well-known generalization of Gauss’s composition of quadratic forms
to cubic forms. Inspired by this generalization, we expected some connection be-
tween the cubic forms attached to cubic number fields, and the quadratic forms
given by the traces of these fields. We briefly recall some of the basics of Bhar-
gava’s laws on cubes and then we explain how to get such a connection (see The-
orem 6.2).

In his Ph.D. thesis [2004], Bhargava generalizes the composition laws on binary
quadratic forms of a fixed discriminant 1 discovered by Gauss. Bhargava defines
a SL2(Z)× SL2(Z)× SL2(Z)-action on the set of 2× 2× 2 integral cubes of dis-
criminant1. Let Cl(Z2

⊗Z2
⊗Z2
;1) be the space of orbits given of action. Using
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the generalization of Gauss’s composition mentioned above, Bhargava discovered
a composition law on Cl(Z2

⊗Z2
⊗Z2
;1).

In explicit terms, one can think of a 2×2×2 integral cube C as a pair of 2×2 inte-
gral matrices (A, B), where A is the front face and B is the back face. Let Q1(C)=

− det(Ax + By), Q2(C)=− det(
[ x

y
]
|B
[ x

y
]
) and Q3(C)=− det(At

[ x
y
]
|B t
[ x

y
]
).

It can be verified that Disc Q1=Disc Q2=Disc Q3. This common discriminant
1 is precisely the definition of the discriminant of C. If

g := (g1, g3, g3) ∈ 0 := SL2(Z)×SL2(Z)×SL2(Z)

and (A, B) is a cube, then

g · (A, B) := g1

(
g3 Agt

2

g3 Bgt
2

)
.

This action preserves the discriminant. Moreover, if Q1, Q2, Q3 are primitive
forms, one has that Q1 ∗ Q2 ∗ Q3 = 0 as elements of Cl+Q(

√
1). Conversely, let

(Q1, Q2, Q3) be a triple of primitive, binary quadratic forms of discriminant 1
such that Q1 ∗ Q2 ∗ Q3 = 0. Then there is a unique class on Cl(Z2

⊗Z2
⊗Z2
;1)

giving rise to (Q1, Q2, Q3) as above. With this in hand, it is simple to define a
composition law on cubes: (A, B)+ (A′, B ′) is the cube that corresponds to the
triple (Q1 ∗ Q′1, Q2 ∗ Q′2, Q3 ∗ Q′3). Furthermore:

Theorem 5.8 [Bhargava 2004]. There is an isomorphism

φ : Cl(Z2
⊗Z2
⊗Z2
;1)→ Cl+

Q(
√
1)
×Cl+

Q(
√
1)

defined by (A, B)0 7→ ([Q1] SL2(Z), [Q2] SL2(Z)).

Definition 5.9. A binary cubic form f (x, y) ∈ Z[x, y] is called a Gaussian cubic
form if it is of the form (a0, 3a1, 3a2, a3). The set of Gaussian cubic forms is
denoted by Sym3Z2.

One may naturally associate to a Gaussian cubic form f = (a0, 3a1, 3a2, a3) a
triple symmetric cube:

f 7→

a1 a2

a0 a1

a2 a3

a1 a2



694 Guillermo Mantilla-Soler

The correspondence between cubic forms and cubes is identified with a map

ι : Sym3Z2
→ Z2

⊗Z2
⊗Z2.

If we replace f by a Gaussian form in the same SL2(Z) equivalence class as f ,
one obtains a well defined element under the 0-action on cubes.

Let
Cl(Sym3Z2

;1)

be the set of Gaussian forms, up to SL2(Z)-action, such that the corresponding
cubes have fundamental discriminant 1.

Remark 5.10. One must distinguish between the notions of the discriminant of
cubic forms and the discriminant of cubes. For example, let f be a Gaussian form
of discriminant D. Then the cube corresponding to f has discriminant1=− 1

27 D.

It turns out that Cl(Sym3Z2
;1) is an abelian group. Furthermore,

[ι] : [ f ]SL2(Z) 7→ [ι( f )]0

is a group homomorphism. By composing the homomorphisms

Cl(Sym3Z2
;1)

[ι]
→ Cl(Z2

⊗Z2
⊗Z2
;1)

φ
→ Cl+Q(

√
1)×Cl+Q(

√
1)

π1
→ Cl+Q(

√
1),

Bhargava obtains:

Theorem 5.11 [Bhargava 2004; Hoffman and Morales 2000]. There is a surjective
homomorphism

φ1 : Cl( Sym3Z2
;1)� Cl+

Q(
√
1)
[3],

where φ1 is the first projection of φ composed with [ι]. The cardinality of the kernel
is equal to |U/U 3

|, where U denotes the group of units in Q(
√
1). In other words,

the kernel has order 1 if 1<−3, or 3 otherwise.

This theorem was in essence first obtained by Eisenstein [1844], but he incor-
rectly asserted that the kernel of the map was always trivial. Later Arnt and Cayley
pointed out that it is not a bijection if 1≥−3.

Remark 5.12. Explicitly,

φ1(a0, 3a1, 3a2, a3)= (a2
1 − a0a2, a1a2− a0a3, a2

2 − a1a3).

6. From cubic fields to cubes and trace forms

Given K , a cubic field of discriminant dK , and representative form FK (x, y) =
(a, b, c, d), we naturally associate a cube as follows:
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K : ax3
+ bx2 y+ cxy2

+ dy3
7−→

b c

3a b

c 3d

b c

We obtain in this way an element

KF ∈ [ι](Cl(Sym3Z2
;−3dK ))⊆ Cl(Z2

⊗Z2
⊗Z2
;−3dK ).

Let D be a fundamental discriminant. Let CD ∈ Cl(Z2
⊗ Z2

⊗ Z2
;−3D) be

given by
D+3

4 3

0 3

0 −1

1 0

or

D
4 3

0 3

0 −1

1 0

in accordance with whether D ≡ 0 (mod 4) or D ≡ 1 (mod 4).

Lemma 6.1. Let K be a cubic field with a fixed cubic form F = (a, b, c, d). Then
Q1(KF )= HF and Q1(CdK )= CdK .

Proof. The result follows easily using the definition Q1(A, B)=− det(Ax + By)
for a cube (A, B). �

Theorem 6.2. Let K be a cubic field with discriminant dK and associated cubic
form FK = (a, b, c, d). Assume that dK is fundamental and that 3 does not ramify.
Let TFK = KF +CdK . Then (π1 ◦φ)(TFK )

±1
=

1
2qK as elements of Cl+

Q(
√
−3dK )

.

Proof. Since φ is a group homomorphism, we have

φ(TFK )= φ((K )F ) ∗φ(CdK ).

Projecting to the first component by π1, we get that (π1 ◦ φ)(TFK ) = HK ∗ CdK .
Since all of the functions involved are group homomorphisms, the result follows
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from Theorem 5.5. In other “words”,

b c

3a b

c 3d

b c

+

D+3
4 3

0 3

0 −1

1 0

φ1
7→

1
2 trK (x2). �

Remark 6.3. We could choose FK (see Remark 5.6) so that the conclusion of
Theorem 6.2 is (π1 ◦φ)(TFK )=

1
2qK .

Theorem 6.4. Let K be a cubic field with discriminant dK , and let FK (x, y) =
(a, b, c, d) be a cubic form associated to K . Assume that dK is fundamental and
that 3 ramifies in K/Q. Then we have

φ1 : Cl( Sym3Z2
;−dK /3)→ Cl+

Q(
√
−dK /3)

[3]

( fK ) SL2(Z) 7→ (1
6qK ) SL2(Z),

where

fK (x, y) :=


1
3 F(x, 3y) if b ≡ 0 (mod 3),
1
3 F(3x, y) if c ≡ 0 (mod 3),
1
3 F(x, 3(y− x)) if b ≡−c (mod 3),
1
3 F(x, 3(y+ x)) if b ≡ c (mod 3).

Proof. Replacing F(x, y) with either F(y, x), F(x, y−x) or F(x, y+x), we may
assume that b≡ 0 (mod 3). With this in hand, we have that dK ≡−ac3 (mod 3),
and since 3 ramifies, ac≡ 0 (mod 3). On the other hand, since dK is fundamental,
we see that 3|a. By Corollary 5.3, 1

2qK = ((b2
− 3ac)/3, bc− 9ad, 3(c2

− 3bd)),
and thus 1

6qK = ((
1
3 b)2− 1

3ac, 1
3 bc− a

3 9d, (c2
−

b
3 9d)), which is φ1(

1
3 F(x, 3y)). �

Theorem 6.5. Let K be a cubic number field of positive, fundamental discrimi-
nant, and let L be a number field such there exists an isomorphism of quadratic
modules

〈O0
K , qK 〉 ∼= 〈O0

L , qL〉.

Further assume 9 - dL . Then K ∼= L.

Proof. By Lemma 2.5, we have dK = dL . As usual, fix cubic forms FK (x, y) and
FL(x, y) in the classes given by K and L respectively. Suppose first that 3 - dK .
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Since the isometry between the forms need not be proper, we can only ensure that,
as elements of Cl+Q(√−3dK )

,
1
2qK = (

1
2qL)

±1.

By Theorem 6.2, we have (π1 ◦ φ)(TFK )
±1
= (π1 ◦ φ)(TFL ). Replacing FK (x, y)

by FK (x,−y) has the effect of replacing HFK (x, y) by HFK (x,−y). On the other
hand, HFK (x,−y) is inverse to HFK in the narrow class group. Since CdK has order
2, Theorem 5.5 says that we may replace FK (x, y) by FK (x,−y), if necessary, so
we may assume that

(π1 ◦φ)(TFK )= (π1 ◦φ)(TFL ).

Equivalently,
(π1 ◦φ)(KFK )= (π1 ◦φ)(KFL ).

Notice that KF = ι(3F), so φ1(3FK ) = φ1(3FL). Since dK > 1, Theorem 5.11
implies that 3FK and 3FL are SL2(Z)-equivalent. Since we could have replaced
FK (x, y) by FK (x,−y), the equivalence between 3FK and 3FL is up to GL2(Z).
In any case this implies that K ∼= L . If 3 | dK , we apply Theorem 6.4 and the
argument follows the same lines as in the case without 3-ramification. �

Observations. Given 1 ∈ Z, let X1 be the set of integral, primitive, binary qua-
dratic forms of discriminant 1. Recall our notation 01 = GL2(Z) \ X1 and
01
1 = SL2(Z) \ X1.
Let d be a positive fundamental discriminant, nd := gcd(3, d), and Cd the set

of isomorphism classes of cubic fields of discriminant d .

Remark 6.6. Theorem 6.5 is equivalent to the injectivity of

8d : Cd → 0
−3d/n2

d
, K 7→

[ 1
2nd

qK

]
.

Since Gauss’s composition induces a group isomorphism between Cl+Q(
√
−3d/n2

d )

and 01
−3d/n2

d
, we have a double cover

π : Cl+Q(
√
−3d/n2

d )
→ 0

−3d/n2
d

with the property that the fiber of every point consists of an element and its in-
verse. Therefore, even though qK /2nd does not define a point in Cl+Q(

√
−3d/n2

d )
, it

defines a cyclic subgroup, the one generated by π−1(8d(K )). Corollary 5.3 and
Theorem 6.4 provide us with a generator of this group. Let gk be such a generator.
Using Arndt’s composition algorithm [Buell 1989], one sees that g3

K = CK when
3 - d , and that gK has order 3 otherwise. Since CdK has order 2, it follows that
〈π−1(8d(K ))〉 has order 2nd .

Proposition 6.7. Let d > 0 be a fundamental discriminant. The map K 7→ 〈gK 〉 is
injective.



698 Guillermo Mantilla-Soler

Proof. Since 〈gK 〉 has order 3 or 6, its set of generators is {g±1
K }. Thus, if

〈gK 〉=〈gL〉, then g±1
K = gL . Projecting under π , we obtain 8d(K ) = 8d(L), and

the result follows from Remark 6.6. �

The unique subgroup of order 3 of 〈gK 〉 is given by 〈g2
K 〉. From Proposition 6.7

we thus have:

Theorem 6.8. Let d > 0 be a fundamental discriminant such that Cd 6= ∅. Let
P3(Cl+Q(√−3d)) be the set of subgroups of size 3 of Cl+

Q(
√
−3d)

. Then

2d : Cd → P3(ClQ(√−3d)), K 7→ 〈g2
K 〉

is injective.

The injection 2d provides an alternative proof for one inequality of the Scholz
reflection principle [1932].

Corollary 6.9. Let d be a positive fundamental discriminant, and let r = r3(−3d)
and s = r3(d) (recall our notation r3(d)= dimF3(ClQ(

√
d)⊗Z F3)). Then s ≤ r .

Proof. (3s
− 1)/2= |Cd | and (3r

− 1)/2= |P3(ClQ(√−3d))|. �
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Parabolic induction and Hecke modules
in characteristic p for p-adic GLn

Rachel Ollivier

We classify the simple supersingular modules for the pro-p-Iwahori Hecke al-
gebra H of p-adic GLn by proving a conjecture by Vignéras about a mod p
numerical Langlands correspondence on the side of the Hecke modules. We
define a process of induction for H-modules in characteristic p that reflects the
parabolic induction for representations of the p-adic general linear group and
explore the semisimplification of the standard nonsupersingular H-modules in
light of this process.
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1. Introduction

Let F be a p-adic field and let n ≥ 1 be an integer. When exploring the category
of smooth mod p representations of GLn(F), it is natural to consider the functor
that associates to such a representation its subspace of invariant vectors under the
action of the pro-p-Iwahori subgroup of GLn(F). It has values in the category of
right modules in characteristic p over the pro-p Hecke algebra H. The structure of
this Hecke algebra has been studied by Vignéras [2005], and the classification of
the simple modules in the case n = 3 is given in [Ollivier 2006b]. Three families
of H-modules appear, namely, the regular, singular, and supersingular ones. This

MSC2000: primary 20C08; secondary 20G05, 22E50.
Keywords: mod p representations of Hecke algebras and p-adic groups, parabolic induction,

integral Bernstein presentation, integral Satake transform.
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definition resonates with the idea that, just as the regular modules should be related
to the principal series and the supersingular modules to the supersingular represen-
tations, likewise the singular modules should be related to the hybrid case where
one induces a supersingular representation from a strict Levi subgroup of GLn(F).
The first link has been explored and proves fruitful [Ollivier 2006a; 2006c; Grosse-
Klönne 2009; Vignéras 2008]. Except for the isolated case of GL2(Qp), the link
between supersingular modules and representations does not seem tight enough
to give substantial information about the supersingular representations [Breuil and
Paskunas 2007]. However, a striking numerical coincidence occurs: in this article
(Section 7), we prove Conjecture 1 of [Vignéras 2005], which says that any nonzero
simple supersingular module contains a character for the affine Hecke subalgebra
of H. It implies the following result, which can be seen as a numerical Langlands
correspondence on the side of the Hecke modules.

Theorem 1.1. The number of n-dimensional simple supersingular modules (with
fixed action of the uniformizer) over the pro-p-Hecke algebra of GLn(F) is equal
to the number of smooth irreducible n-dimensional mod p representations of the
absolute Galois group of F (with fixed determinant of a Frobenius).

The aim of Sections 5 and 6 is to investigate the nonsupersingular Hecke mod-
ules. We define a process of induction for Hecke modules in characteristic p and
relate it to the parabolic induction on the side of the representations of GLn(F). In
characteristic zero, one of the ingredients for the construction of types by covers
consists in embedding a Hecke algebra relative to a Levi subgroup into a Hecke
algebra relative to GLn(F) using Iwahori decomposition and the notion of positive
subalgebra. This allows a reading of the parabolic induction of representations in
terms of induction on the side of the Hecke modules [Bushnell and Kutzko 1998,
§6]. Some of these results can be adapted to the case of mod ` representations
when ` 6= p [Vignéras 1998; Dat 1999]. In characteristic p, one cannot expect
an injection of the pro-p Hecke algebra H(L) relative to a strict standard Levi
subgroup L into the pro-p Hecke algebra of GLn(F). Nevertheless, it is still true
for the positive part H(L+) of H(L). We now provide a summary of the results
proved in this article, keeping in mind that all the modules have mod p coefficients.

Let M be a right H(L)-module with scalar action of the uniformizers. The
H-module induced from M is defined in Section 5A by the tensor product over
H(L+) of M by H. This process of induction defines an exact functor from the
category of H(L)-modules with scalar action of the uniformizers into the category
of right H-modules.

In Section 5B, we recall the definition of a standard H-module: a regular, sin-
gular or supersingular character (with values in a field with characteristic p) of the
commutative part A of H gives rise to a standard module. This standard module
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and any of its quotients are then called regular, singular or supersingular respec-
tively. Any simple H-module is a quotient of a standard module. We show in
Section 5C that the standard modules relative to L-adapted characters of A are
induced from H(L)-modules in the sense defined above. These are a special case
of nonsupersingular standard modules. Owing to intertwining operators defined
in Section 5D, any nonsupersingular standard module can be related to a standard
module of this kind. We then give sufficient conditions for these operators to be
isomorphisms, from which we deduce:

• Assuming that Conjecture 5.20 is true, we bolster the definition of nonsupersin-
gular modules with the proof that any simple nonsupersingular H-module appears
in the semisimplification of a standard module that is induced from a H(L)-module,
where L is a strict Levi subgroup of GLn(F). We prove the conjecture and its con-
sequence for the simple modules that are actually modules over the Iwahori–Hecke
algebra. The key to this proof is a theorem by Rogawski [1985] which relies on
the Kazhdan–Lusztig polynomials for the Iwahori–Hecke algebra in characteristic
zero (Section 5E).

•We show that if an irreducible H(L)-module M satisfies Hypothesis (?), it gives
rise by induction to an irreducible H-module (Section 5F).

• In Section 6B, we consider the compact induction U (resp. UL ) of the trivial
character of the pro-p-Iwahori subgroup of GLn(F) (resp. L), and relate the repre-
sentation M⊗H(L+)U to the one which is parabolically induced from M⊗H(L)UL .
Denote the latter representation of GLn(F) by ρM.

We compare the H-module induced from M with the pro-p-invariant subspace
of ρM. So far we have made no specific hypothesis about the p-adic field F , the
Levi subgroup L , or the H(L)-module M with scalar action of the uniformizers.

In Section 6D we give some examples in the case where F =Qp and the stan-
dard Levi subgroup L is isomorphic to a product of GL1(Qp)’s and GL2(Qp)’s.
In these cases, the irreducible representations of L and the corresponding Hecke
modules are thoroughly understood. Our process of induction describes explicitly
the pro-p-invariant subspace of ρM, which is irreducible as a Hecke module in
the chosen examples. After the first version of this article was written, however,
Herzig announced that he could prove that these representations ρM are actually
irreducible.

While this article does not draw on Herzig’s work [2010, Theorem 8.1], it is
noticeable that Hypothesis (?) reflects parallel conditions. Our approach, which
focuses on the Hecke modules, does not require any further hypotheses on F and L .
A barrier to further investigation of the pro-p-invariant subspace of the irreducible
induced representations classified in [Herzig 2010] is the lack of knowledge of the
(pro-p-invariants of) supersingular representations of L , for general L and F .
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In Section 8, we work with the Iwahori–Hecke algebra. Using [Schneider and
Teitelbaum 2006], which deals with p-adic Hecke algebras, we make an integral
Satake transform for the generic Iwahori–Hecke algebra of GLn(F) explicit. By
analyzing the map (8-7), Barthel and Livné’s method for producing unramified
representations [1995] can then be related to the construction of representations
arising from the natural left adjoint of the functor of the Iwahori-invariants.

2. Affine root system and Weyl groups

2A. We consider an affine root datum (3, 3̌,8, 8̌,5, 5̌); for this notion and
the facts in the subsequent review, see [Lusztig 1989, 1]. An element of the free
abelian group 3 is called a weight. We will denote by 〈 . , . 〉 the perfect pairing
on 3× 3̌. The elements of 3̌ are the coweights. The elements in 8 ⊂ 3 are the
coroots, while those in 8̌ ⊂ 3̌ are the roots. There is a correspondence α ↔ α̌

between roots and coroots satisfying 〈α, α̌〉 = 2. The set 5 of simple coroots is a
basis for 8, and the corresponding set 5̌ of simple roots is a basis for 8̌. Let 8̌+

and 8̌− denote, respectively the set of roots which are positive and negative with
respect to 5̌. There is a partial order on 8̌ given by α̌ ≤ β̌ if and only if β̌ − α̌
is a linear combination with (integral) nonnegative coefficients of elements in 5̌.
Denote by5m the set of coroots such that the associated root is a minimal element
in 8̌ for ≤.

To the (simple) root α̌ corresponds the (simple) reflection sα : λ 7→ λ−〈λ, α̌〉α,
which leaves 8 stable. Reciprocally, we will denote by α̌s the simple root asso-
ciated to the simple reflection s. The finite Weyl group W0 is the subgroup of
GL(3) generated by the simple reflections sα for α ∈ 5. It is a Coxeter system
with generating set S0= {sα, α ∈5}. We will denote by (w0, λ) 7→

w0λ the natural
action of W0 on the set of weights and by W0(λ) the stabilizer of a weight λ under
the action of W0. This action induces a natural action of W0 on the coweights which
stabilizes the set of roots. The set 3 acts on itself by translations: for any weight
λ, we denote by eλ the associated translation. The Weyl group W is the semidirect
product of W0 and 3. For w0 ∈ W0 and λ ∈ 3, observe that w0eλ = e

w0λw0. The
affine Weyl group Waff is the semidirect product of W0 and 8.

The Weyl group acts on 8̌×Z by

w0eλ : (α̌, k) 7→ (w0α̌, k−〈λ, α̌〉),

where we denote by (w0, α̌) 7→w0α̌ the natural action of W0 on the roots. Define
the set of affine roots by 8̌= 8̌+ ∪ 8̌− ⊂ 8̌×Z, where

8̌+ := {(α̌, k), α̌ ∈8, k > 0} ∪ {(α̌, 0), α̌ ∈8+},

8̌− := {(α̌, k), α̌ ∈8, k < 0} ∪ {(α̌, 0), α̌ ∈8−},
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and the set of simple affine roots by 5̌ := {(α̌, 0), α ∈ 5} ∪ {(α̌, 1), α̌ ∈ 5m}.
Identifying α̌ with (α̌, 0), we will often consider 5 a subset of 5̌.

For A ∈ 5̌, denote by sA the associated reflection sA = sα if A = (α̌, 0) and
sA= sαeα if A= (α̌, 1). The affine Weyl group is a Coxeter system with generating
set

Saff = {sA, A ∈ 5̌}.

The length on the Coxeter group Waff extends to W in such a way that, for any
w ∈W ,

`(w) := #{A ∈ 8̌+, w(A) ∈ 8̌−}.

The Weyl group is the semidirect product of Waff by the subgroup� of the elements
with length zero. The Bruhat order ≤ inflates from Waff to W [Vignéras 2005,
Proposition 1].

2B. The length on W has the following properties [Lusztig 1989; Vignéras 2006,
appendice]. Let λ, λ′ ∈3, w0, w

′

0 ∈W0, w ∈W , A ∈ 8̌.

2B1. `(wsA)=

{
`(w)+ 1 if wA ∈ 8̌+,

`(w)− 1 if wA ∈ 8̌−.

2B2. The quantity `(w0)+ `(w
′

0eλ)− `(w0w
′

0eλ) is twice the number of positive
roots α̌ ∈ 8̌+ satisfying

w′0α̌ ∈ 8̌
−, w0w

′

0α̌ ∈ 8̌
+, 〈λ, α̌〉 ≥ 0 or

w′0α̌ ∈ 8̌
+, w0w

′

0α̌ ∈ 8̌
−, 〈λ, α̌〉< 0.

2B3. Set n(α̌, w0eλ) = 〈λ, α̌〉 if w0α̌ ∈ 8̌
+ and n(α̌, w0eλ) = 1+ 〈λ, α̌〉 other-

wise. If the integers n(α̌, w0eλ) and n(α̌, eλ
′

) have the same sign (or one of them
vanishes) for all α̌ ∈ 8̌+, then

`(w0eλ+λ
′

)= `(w0eλ)+ `(eλ
′

).

2C. The root datum associated to p-adic GLn.

2C1. We denote by F a nonarchimedean locally compact field with ring of integers
O, maximal ideal P and residue field Fq , where q is a power of p. We choose a
uniformizer π and fix the valuation (denoted by val) normalized by val(π)= 1 and
the corresponding absolute value | . | such that |π | = q−1.

Let n ∈ N, n ≥ 2. Denote by G the group of F-valued points of the general
linear group GLn , by K0 the maximal compact GLn(O), by I the standard upper
Iwahori subgroup of K0 and by I (1) its unique pro-p-Sylow. It contains the first
congruent subgroup K1 of the matrices in K0 which are congruent to the identity
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modulo π . The element

$ =


0 1 0 0 · · ·
0 0 1 0 · · ·
...

. . .
. . .

0 · · · 0 1
π 0 · · · · · · 0


normalizes the Iwahori subgroup and $ n

= π.Id is central in G. Let B denote
the upper triangular Borel subgroup of G with Levi decomposition B = U T and
modulus character δ : B→ Z[q±1

].
Consider the affine root datum associated to (G, B, T ). The set of cocharacters

of T identifies with3' T/(T ∩K0)'Zn . We will also consider it a multiplicative
subgroup of G by lifting T/(T ∩ K0) to the subgroup of diagonal matrices with
coefficients in πZ. The simple positive roots are

α̌i : diag(π x1, π x2 . . . , π xn ) 7→ xi+1− xi , for i = 1, . . . , n− 1.

Identifying the reflection si associated to α̌i with the transposition (i, i + 1) gives
an isomorphism between the finite Weyl group W0 and the symmetric group Sn .
We see W = W03 as a subgroup of G. It is a system of representatives of the
double cosets I\G/I .

There is a unique coroot in5m and the associated root is−α̌0, where α̌0 denotes
the positive root

α̌0 = α̌1+ · · ·+ α̌n−1.

The reflection associated to (−α̌0, 1) is s0 = $ s1$
−1. A generating set for the

affine Weyl group is Saff={s0, s1, . . . , sn−1}. The subgroup� of W of the elements
with length zero is generated by $ .

For s ∈ Saff, denote by8s :GL2(F)→G the associated morphism [Iwahori and
Matsumoto 1965]. Recall that the cocharacter associated to s is the map F∗→ T ,
x 7→ 8s

( x 0
0 x−1

)
. Denote by Ts the image of F∗q by this cocharacter and set φs =

8s
(
−1 0
0 1

)
.

Define the dominant and antidominant weights respectively by

3dom = {λ ∈3, 〈λ, α̌〉 ≥ 0 for any α̌ ∈ 8̌+},

3anti = {λ ∈3, 〈λ, α̌〉 ≤ 0 for any α̌ ∈ 8̌+}.

A weight µ ∈ 3 is said to be minuscule if 〈µ, α̌〉 ∈ {0,±1} for any positive root
α̌ ∈ 8̌+. To any subset J ⊂ {1, . . . , n} corresponds a minuscule weight µJ defined
by (µJ )i =π if i ∈ J , (µJ )i =1 otherwise. The semigroup3anti of the antidominant
weights is generated by the minuscule antidominant weights

{µ1, . . . , µn−1, µ
±1
n },
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where, for i ∈ {1, . . . , n}, we denote by µi the minuscule weight associated to
{1, . . . , i}. Set µ0 := µ∅.

2C2. The Weyl group W of G identifies with the quotient of the normalizer NG(T )
of T in G by T ∩ K0. The extended Weyl group W (1) of G is defined to be the
quotient NG(T )/(T ∩ K1). We have an exact canonically split sequence

0→ T→W (1)
→W → 0,

where T denotes the finite diagonal torus of the Chevalley group GLn(Fq). For any
subset X of W we will denote by X (1) its inverse image in W (1). In particular, the
set of extended weights 3(1), which identifies with the direct product of 3 by T,
is seen as the set of translations on itself. Again, for any extended weight λ, we
denote by eλ the associated translation. An extended weight is said to be dominant,
antidominant, or minuscule if its component in3 is so. The action of the extended
Weyl group on 3(1) and on 8̌× Z is the one inflated from the action of W . By
Teichmüller lifting, we identify3(1) and W (1)

=W03
(1) with subgroups of G. The

extended affine Weyl group W (1)
aff is generated by S(1)aff . The length function on W

extends to W (1) in such a way that the elements of T have length zero.
The extended Weyl group W (1) is a system of representatives of the double

cosets I (1)\G/I (1).

2C3. Throughout, we fix a standard Levi subgroup L = L1×· · ·×Lm in G, where
L j 'GLn j (F) for j ∈ {1, . . . ,m} with n1+· · ·+nm = n. Set 1 := {1, . . . , n−1}
and define its subset 1L to be the set of i such that si ∈ L . Denote by W0,L the
finite Weyl group of L . It is a Coxeter group generated by {si , i ∈1L}. Denote by
8̌L ⊂ 8̌ the set of associated roots, and by 8̌+L = 8̌L ∩8̌

+ the set of positive ones.
The Weyl group WL of L is the semidirect product of W0,L by 3. The extended
Weyl group W (1)

L of L is the semidirect product of W0,L by 3(1).

Proposition 2.1. There exists a system DL of representatives of the right cosets
W0,L\W0 such that

`(w0d)= `(w0)+ `(d) for all w0 ∈W0,L , d ∈ DL . (2-1)

Any d ∈ DL is the unique element with minimal length in W0,Ld.

Proof. The proposition is proved in [Carter 1985, 2.3.3], where DL is explicitly
given by

DL := {d ∈W0, d−18̌+L ⊂ 8̌
+
}. (2-2)

This concludes the proof. �

Proposition 2.2. Let d ∈ DL and s ∈ S0.

(1) If `(ds)= `(d)− 1 then ds ∈ DL .

(2) If `(ds)= `(d)+ 1 then either ds ∈ DL or W0,Lds =W0,Ld.
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Proof. Suppose ds /∈ DL . Let i ∈ {1, . . . , n− 1} be such that s = si . Since d ∈ DL

and dsi 6∈ DL , there is an element β̌ ∈ 8̌+L such that d−1β̌ ∈ 8̌+ and si d−1β̌ 6∈ 8̌+.
But α̌i is the only positive root made negative by si [Carter 1985, Proposition 2.2.6],
so d−1β̌ = α̌i . This implies in particular that dα̌i ∈ 8̌+, and so `(dsi )= `(d)+ 1
by 2B1. The fact that dα̌i belongs to 8̌L ensures that dsi d−1

∈W0,L . �

2C4. We denote the upper standard parabolic subgroup associated to L by P . It has
Levi decomposition P = L N , and N will denote the opposite unipotent subgroup.
The Iwahori subgroup decomposes into I = I+ IL I−, where

I+ = I ∩ N , IL = I ∩ L , I− = I ∩ N .

We also set IL(1) := I (1)∩L . As in [Vignéras 1998, II.4] and [Bushnell and Kutzko
1998, 6], we consider the semigroup L+ of L-positive elements: an element w ∈ L
is called L-positive if it contracts I+ and dilates I−, that is,

w I+w−1
⊂ I+ and w−1 I−w ⊂ I−.

The elements w in W (1)
L which are L-positive are the ones satisfying

w(8̌+− 8̌+L )⊂ 8̌+. (2-3)

A weight λ ∈ 3(1) is said to be L-positive if the associated translation in W (1) is
L-positive. It means that 〈λ, α̌〉 ≤ 0 for any α̌ ∈ 8̌+ − 8̌+L . For example, if L is
the diagonal torus, a weight λ is T -positive if and only if it is antidominant.

The set DL is also a system of representatives of the right cosets WL\W , and
we have a weak analog of (2-1):

Lemma 2.3. For any w ∈W (1)
L which is L-positive and any d ∈ DL ,

`(wd)= `(w)+ `(d). (2-4)

Proof. Let d ∈ DL , and let w ∈ W (1)
L be a L-positive element. Write w = eλw0.

Equality (2-4) is equivalent to `(d−1)+ `(w−1
0 e−λ)− `(d−1w−1

0 e−λ)= 0.
Let α̌ ∈ 8̌+ be a positive root. Suppose w−1

0 α̌ ∈ 8̌+ and d−1w−1
0 α̌ ∈ 8̌−. Then

by (2-2) and (2-3), one has w−1
0 α̌ ∈ 8̌+− 8̌+L and w(w−1

0 α̌, 0) = (α̌,−〈λ, α̌〉) ∈
8̌+, so 〈−λ, α̌〉 ≥ 0. In the same way, one gets 〈−λ, α̌〉 < 0 if w−1

0 α̌ ∈ 8̌− and
d−1w−1

0 α̌∈ 8̌+. Applying the length property 2B2 then gives the required equality.
�

Lemma 2.4. The set I (1)L+K0 is the disjoint union of the sets I (1)L+d I (1)
where d runs over DL .

Proof. Lemma 2.3 implies that I (1)w+d I (1)= I (1)w+ I (1)d I (1) for any d ∈ DL

and any L-positive w+ ∈ W (1)
L . So the set I (1)L+ I (1)d I (1) is the disjoint union

of the sets I (1)w+d I (1), where w+ runs over the L-positive elements of W (1)
L . It
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is equal to I (1)L+d I (1). In particular, the sets I (1)L+d I (1) are pairwise disjoint
for d ∈ DL .

The set I (1)L+K0 is the union of the sets I (1)w+ I (1)w0d I (1), where d runs
over DL , w0 over W0,L and w+ over the L-positive elements in W (1)

L . By Propo-
sition 2.1, we have I (1)w0d I (1) = I (1)w0 I (1)d I (1), so I (1)w+ I (1)w0d I (1) =
I (1)w+ I (1)w0 I (1)d I (1), and, since w+ and w0 are L-positive,

I (1)w+ I (1)w0d I (1)= I (1)w+ IL(1)w0 I (1)d I (1)⊂ I (1)L+ I (1)d I (1). �

Proposition 2.5. There is a system D of representatives of the right cosets W0\W
such that

`(w0d)= `(w0)+ `(d), for all w0 ∈W0, d ∈ D. (2-5)

Any d ∈ D is the unique element with minimal length in W0d.

Proof. Set
D := {d ∈W, d−18̌+ ⊂ 8̌+}.

First check that the cosets W0d are pairwise disjoint for d ∈ D. Let d, d ′ ∈ D,
w0, w

′

0 ∈W0 be such that w0d = w′0d ′. If d 6= d ′, then w0 6= w
′

0 and there exists a
simple root β̌ ∈ 5̌ such that `(sβw−1

0 w′0) = `(w
−1
0 w′0)− 1, that is, (w′−1

0 w0)β̌ =

(d ′d−1)β̌ ∈ 8̌−. But d ′ ∈D, and hence d−1β̌ ∈ d ′−1(8̌−)⊂ 8̌−, which contradicts
the fact that d ∈ D.

For w ∈ W , we prove by induction on the length of w that there exists an
(obviously unique) (w0, d)∈W0×D such thatw=w0d and `(w0d)=`(w0)+`(d).

By 2B1, saying thatw does not belong to D means that there exists a simple root
α̌ ∈ 5̌ such that `(sαw)= `(w)−1. In particular, if w has length 0, it belongs to D.
Suppose now that `(w) > 0 and that it does not belong to D. Then, by induction,
there exists (w0, d) ∈W0×D with sαw=w0d and `(sαw)= `(w0)+ `(d), where
α is chosen as before. So w = sαw0d and

`(w)= `(sαw)+ 1= `(w0)+ `(d)+ 1.

Verifying that `(w) = `(sαw0)+ `(d) is just verifying that `(sαw0) = `(w0)+ 1,
which is true, since otherwise `(sαw0) < `(w0) and `(w) ≤ `(sαw0) + `(d) <
`(w0)+ `(d)= `(w)− 1.

We have proved that D is a system of representatives of the right cosets W0\W
and that it satisfies (2-5). In particular, any d ∈ D is the unique element with
minimal length in W0d , since w0 ∈W0 has length zero if and only if w0 = 1. �

Lemma 2.6. Any d ∈D can be written d = eλw0 ∈W , with w0 ∈W0 and λ ∈3 a
dominant weight such that

`(eλw0)+ `(w
−1
0 )= `(eλ).
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Proof. By definition of the set D, we have (w−1
0 α̌, 〈λ, α̌〉) ∈ 8̌+ for every α̌ ∈ 8̌+.

Then λ is dominant and w−1
0 α̌ ∈ 8̌+ if α̌ ∈ 8̌+ satisfies 〈λ, α̌〉 = 0. Applying the

length property 2B2, one gets the required equality. �

Proposition 2.7. Let d ∈ D and s ∈ Saff.

(1) If `(ds)= `(d)− 1 then ds ∈ D.

(2) If `(ds)= `(d)+ 1 then either ds ∈ D or W0ds =W0d.

Proof. Write d = eλw0 ∈W .

(A) We first prove the proposition for s in the finite Weyl group; write s = si with
1 ≤ i ≤ n − 1. Saying that dsi 6∈ D means that there exists β̌ ∈ 8̌+ such that
d−1β̌ = (α̌i , 0), since (α̌i , 0) is the only positive affine root made negative by si .
This implies in particular that dα̌i ∈ 8̌+, so `(dsi )= `(d)+ 1. We have

β̌ = w0α̌i , 〈λ,w0α̌i 〉 = 0.

The latter equality means that w0siw
−1
0 fixes λ, so

dsi = eλw0si = w0siw
−1
0 eλw0 ∈W0d.

(B) Now suppose s = s0. Recall that the associated affine simple root is (−α̌0, 1).
The coroot α0 can be seen as the diagonal matrix (π−1, 1, . . . , 1, π). Write s0 =

ρe−α0 , where ρ denotes the reflection sending α0 to its opposite. Saying that
`(ds0)= `(d)+ 1 means that d(−α̌0, 1) ∈ 8̌+, that is, we are either in case (a) or
in case (b):

(a) 〈λ,w0α̌0〉 ≥ 0,

(b) w0α̌0 ∈ 8̌
− and 〈λ,w0α̌0〉 = −1.

Saying that `(ds0)=`(d)−1 means that d(−α̌0, 1)∈ 8̌−, so we are in case (c) (note
that since λ is dominant, it is impossible to simultaneously have the conditions
w0α̌0 ∈8

+ and 〈λ,w0α̌0〉 = −1):

(c) 〈λ,w0α̌0〉<−1.

By definition of the reflection ρ, hypothesis (b) says that w0ρw
−1
0 λ= λ+w0α0, so

that we have ds0 = eλw0ρe−α0 = w0ρw
−1
0 eλw0 ∈W0d.

Suppose that we are under hypothesis (a) or (c), that is, 〈λ,w0α̌0〉 6= −1. Take
β̌ ∈ 5̌. Under the action of s0d−1, it becomes the affine root

s0d−1β̌ = (ρw−1
0 β̌, 〈λ, β̌〉+ 〈α0, w

−1
0 β̌〉).

Let us check that it belongs to 8̌+, which will prove that ds0 ∈ D. Recall that
d ∈ D, so

d−1β̌ = (w−1
0 β̌, 〈λ, β̌〉) ∈ 8̌+.
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First we verify that 〈α0, w
−1
0 β̌〉 + 〈λ, β̌〉 ≥ 0. Since 〈α0, w

−1
0 β̌〉 ∈ {0,±1,±2},

the required inequality is true if 〈λ, β̌〉 ≥ 2. If 〈λ, β̌〉 = 0, then w−1
0 β̌ ∈ 8+ and

〈α0, w
−1
0 β̌〉 ≥ 0. If 〈λ, β̌〉 = 1 then, by the chosen hypotheses, w−1

0 β̌ 6= −α̌0, so
〈α0, w

−1
0 β̌〉 6= −2.

Finally, we have to show that 〈α0, w
−1
0 β̌〉 + 〈λ, β̌〉 = 0 implies ρw−1

0 β̌ ∈ 8̌+.
A positive root γ̌ becomes a positive root under the action of ρ if and only if it is
fixed by the action of ρ, or in other words, if 〈α0, γ̌〉 = 0. Suppose that

〈λ, β̌〉 = 〈α0, w
−1
0 β̌〉 = 0;

then w−1
0 β̌ ∈ 8̌+, and so, by the preceding remark, ρw−1

0 β̌ ∈ 8̌+. Suppose that

〈λ, β̌〉 = −〈α0, w
−1
0 β̌〉> 0;

then w−1
0 β̌ ∈ 8̌−, and by the preceding remark, ρw0β̌ ∈ 8̌

+. �

3. Hecke algebras and universal modules

3A. Consider the Chevalley group G=GLn(Fq) and its standard upper Borel sub-
group B with Levi decomposition B=TU. We denote by U the opposite unipotent
subgroup. The double cosets U\G/U are represented by the extended Weyl group
of G, which is isomorphic to the extended finite Weyl group W (1)

0 of G. The
finite universal module Z[U\G] of Z-valued functions with support on the right
cosets U\G is endowed with a natural action of G. The ring H(G,U) of its Z[G]-
endomorphisms will be called the finite Hecke ring. By Frobenius reciprocity, a
Z-basis of the latter identifies with the characteristic functions of the double cosets
U\G/U.

We call the space Z[I (1)\G] of Z-valued functions with finite support on the
right cosets I (1)\G the pro-p-universal module. It is endowed with an action of
G. The subspace of the functions that are actually left invariant under the Iwa-
hori subgroup constitute a G-subspace that is isomorphic to the universal module
Z[I\G].

The Z-ring of the Z[G]-endomorphisms of Z[I (1)\G] will be called the pro-p-
Hecke ring and denoted by H(G, I (1)). By Frobenius reciprocity, H(G, I (1)) is
seen as the convolution ring of the functions with finite support on the double cosets
of G modulo I (1). Among these functions, the ones that are actually biinvariant
under the Iwahori subgroup constitute a ring that is isomorphic to the Iwahori–
Hecke ring H(G, I ) of the Z[G]-endomorphisms of Z[I\G].

A Z-basis for H(G, I (1)) (resp. H(G, I )) is given by the characteristic functions
of the double cosets I (1)\G/I (1) (resp. I\G/I ).
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For w ∈W (1), we denote by τw the element of H(G, I (1)) corresponding to the
associated double coset. The subalgebra generated by the elements τw forw∈W (1)

aff
is called the affine Hecke algebra.

The subspace of Z[I (1)\G] of the functions with support in K0 identifies with
the finite universal module. Among the Z[G]-endomorphisms of the pro-p-uni-
versal module, those stabilizing this subspace form a subring that identifies with
the finite Hecke algebra. It is the subring generated by the elements τw forw∈W (1)

0 .
Fix k an algebraic closure of Fq . The space Z[I (1)\G] ⊗Z k is endowed with

a smooth action of G and is isomorphic to the compact induction indG
I (1) 1k of the

trivial character with values in k of the pro-p-Iwahori subgroup. We will denote
by U this representation of G.

3B. The pro-p-Hecke ring is the ring with Z-basis (τw)w∈W (1) satisfying the braid
and quadratic relations, namely

• τwτw′ = τww′ for any w, w′ ∈W (1) such that `(ww′)= `(w)+ `(w′), and

• τ 2
s = q +

(∑
t∈Ts

τφsτt
)
τs for s ∈ Saff,

in the notation of 2C1. From now on, we consider q an indeterminate and work
with the Z[q]-algebra H with generators (τw)w∈W (1) satisfying the relations above.
It will be called the generic pro-p-Hecke algebra.

For w ∈W (1), set
τ ∗w := q`(w)τ−1

w . (3-1)

The map µ : τw 7→ (−1)`(w)τ ∗
w−1 defines an involutive algebra endomorphism of

H [Vignéras 2005, Corollary 2].

Remark 3.1. For s∈ Saff, one checks that the following equalities hold in H⊗Z[q]k:

(τ ∗s )
2
= (τs + νs)

2
= τ ∗s νs = νsτ

∗

s ,

where νs := −
∑

t∈Ts
τφsτt .

4. Pro- p-Iwahori Hecke algebra relative to a Levi subgroup of G

The generic pro-p-Hecke algebra H(L) of the Levi subgroup L is the tensor product
of the generic pro-p-Hecke algebras of the L j ’s, for j ∈ {1, . . . ,m}. For any
element w= (w1, . . . , wm) in the extended Weyl group W (1)

L of L , we will denote
by

τ ⊗w :=
m⊗

j=1
τw j

the corresponding element of H(L). Denote by H(L+) the subspace of H(L)
generated over Z[q] by the elements τ ⊗w corresponding to L-positive elements w
in W (1)

L . From [Bushnell and Kutzko 1998, 6.12] and [Vignéras 1998, II], we know
that H(L+) is a Z[q]-algebra and the following holds.
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Proposition 4.1. The natural injective map θ+L

H(L+)→H, τ ⊗w 7→ τw, (4-1)

where w ∈ W (1)
L is L-positive, respects the product. It extends uniquely into an

injective morphism θL of Z[q±1
]-algebras

θL :H(L)⊗Z[q] Z[q±1
] →H⊗Z[q] Z[q±1

].

The proof of the second assertion [Bushnell and Kutzko 1998; Vignéras 1998]
makes use of the following (strongly) L-positive central element in L:

aL = eλL , where λL =
∑

j∈1−1L

µj , (4-2)

and the fact that for any w ∈ W (1)
L there exists r ∈ N such that ar

Lw is L-positive.
Then θL(τ

⊗
w ) is given by τ−r

aL
τar

Lw
, which is well-defined in H⊗Z[q] Z[q±1

] (and
does not depend on the choice of r ).

We will call H(L+) the positive subalgebra of H(L). We will sometimes iden-
tify it with its image in H without further notice.

4A. Classical Bernstein presentation. In the case where the Levi subgroup L is
the diagonal torus T , the map θT is simply denoted by θ and called the Bernstein
embedding. It is more traditional to consider its renormalization

θ̃ : Z[q±1/2
][3(1)] →H⊗Z[q] Z[q±1/2

],

λ 7→ δ1/2(λ)θ(λ),
(4-3)

whose image is denoted by A[q±1/2
], where δ is the modulus character of the

Borel subgroup defined in 2C1. The following well-known properties of this com-
mutative subalgebra are proved in, for example, [Lusztig 1989, 3] (and [Vignéras
2005, 1.4] for the extension to the pro-p case). The center of H⊗Z[q]Z[q±1/2

] is the
image under θ̃ of the subspace Z[q±1/2

][3(1)]W0 of the invariants in Z[q±1/2
][3(1)]

under the natural action of W0. The Hecke algebra H⊗Z[q]Z[q±1/2
] is a free right

module over A[q±1/2
] with basis {τw0, w0 ∈W0}.

4B. Integral Bernstein presentation. In this section, we recall the results obtained
by Vignéras [2005] concerning an integral version of the previous Bernstein pre-
sentation. We present them in the light of [Schneider and Teitelbaum 2006].

4B1. Following [Schneider and Teitelbaum 2006, p. 10 and Example 2], we con-
sider the action of W0 on Z[q±1/2

][3(1)] twisted by the map

γ :W0×3
(1)
→ Z[q±1/2

], (w0, λ) 7→
δ1/2(w0λ)

δ1/2(λ)
. (4-4)
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This map is a cocycle in the sense that it satisfies

(a) γ(v0w0, λ)= γ(v0,
w0λ)γ(w0, λ), for v0, w0 ∈W0 and λ ∈3(1),

so we have a well-defined action of W0 on 3(1) denoted by (w0, λ) 7→ w0 � λ and
given by

w0 � λ = γ(w0, λ)
w0λ. (4-5)

The map γ also satisfies the following conditions:

(b) γ(w0, λµ)= γ(w0, λ)γ(w0, µ), for w0 ∈W0 and λ,µ ∈3(1),

(c) γ(w0, λ)= 1 for w0 ∈W0, λ ∈3(1) such that w0λ= λ,

so the twisted action (4-5) extends into an action on Z[q±1/2
][3(1)], which is com-

patible with the structure of Z[q±1/2
]-algebra.

Lemma 4.2 [Schneider and Teitelbaum 2006, Example 2 and Lemma 4.2]. (1)
For w0 ∈W0, λ ∈3(1), one has

γ(w0, λ)=
∏

α̌∈8̌+∩w−1
0 (8̌−)

|α̌(λ)|,

so γ actually takes values in Z[q±1
].

(2) Any λ ∈ 3(1) can be written λ1 − λ2 with λ1, λ2 antidominant weights. Let
w0 ∈W0 such that w0λ is antidominant. Then

γ(w0, λ)= q−(`(λ)−`(λ1)+`(λ2))/2

and it does not depend on the choice of w0, λ1, λ2.

4B2. Let λ ∈3(1) and w0 ∈W0 such that w0λ is antidominant. Define the element
E(λ) in H⊗Z[q] Z[q±1

] by

E(λ) := γ(w0, λ)
−1θ(λ)= γ(w−1

0 , w0λ)θ(λ). (4-6)

It is proved in [Vignéras 2005] that E(λ) actually lies in H (see Theorem 4.5 below
for the precise statement). Hence, we have an injective Z[q]-equivariant map

E : Z[q][3(1)] →H, (4-7)

but it does not respect the product. The natural action of W0 on 3(1) induces an
action of W0 on the image A of E .

Proposition 4.3 (integral Bernstein relations). Let λ ∈ 3(1) be a weight, α̌ ∈ 5̌ a
simple root and s the associated reflection. The following holds in H:

(1) If 〈λ, α̌〉 = 0, then E(λ) and τs commute.

(2) If 〈λ, α̌〉 = 1, then τs E(λ)= E(sλ)τ ∗s and E(λ)τs = τ
∗
s E(sλ).
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Proof. This is a direct corollary of the classical Bernstein relations proved in
[Lusztig 1989, Proposition 3.6] and [Vignéras 2005, Proposition 5]. An integral
version of these is proved in [Ollivier 2006a, 4.4.1] (use the involution µ defined
in 3B to pass from the definition of the Bernstein map in the latter to the present
situation). �

Lemma 4.4. Let λ ∈ 3 be antidominant. Then E(λ) = τeλ and E(λ−1) = τ ∗eλ .
Suppose also that λ is minuscule. Let d ∈W0 with minimal length in W0(λ)d. Then

E(d
−1
λ)= τd−1eλτ

∗

d−1 and τd E(d
−1
λ)= E(λ)τ ∗d−1 .

Proof. First recall that an element λ ∈ 3 is T -positive if and only if it is an-
tidominant. So θ(λ) = θ+T (λ) = τeλ . Then, by Lemma 4.2(2) and since θ respects
the product, one has E(λ−1)= q`(λ)τ−1

eλ = τ
∗

eλ . We have proved the first statement,
which gives the second one for the case d=1. Suppose λ is minuscule and show the
second one by induction on `(d). Let d ∈W0 with minimal length in W0(λ)d and
`(d)>0. Let s ∈ S0 such that `(ds)= `(d)−1. Then τ ∗sd−1τ

∗
s = τ

∗

d−1 and dα̌s ∈ 8̌
−.

The stabilizer W0(λ) is a Coxeter subgroup of W0, so Proposition 2.2 applies: ds
has minimal length in W0(λ)ds. In particular, this implies that dsd−1 does not
stabilize λ, so 〈λ, dα̌s〉> 0. The length property 2B2 then gives `(s)+`(d−1eλ)=
`(sd−1eλ). By induction, E(sd−1

λ)= τsd−1eλτ
∗

sd−1 = τsτd−1eλτ
∗

sd−1 . Now work in
H⊗Z[q] Z[q±1

] and apply the Bernstein relations (2) to d−1
λ:

E(d
−1
λ)= τ−1

s E(sd−1
λ)τ ∗s = τd−1eλτ

∗

d−1 .

The last equality of the lemma easily follows using 2B2 and the fact that 〈λ, α̌〉= 0
implies d−1α̌ ∈ 8̌+ for any α̌ ∈ 8̌+. �

Theorem 4.5 [Vignéras 2005, Theorems 2, 3, and 4]. The image A of E is a Z[q]-
algebra. It coincides with the intersection A[q±1/2

]∩H. The action of W0 on A is
compatible with the structure of Z[q]-algebra.

A Z[q]-basis for A is given by (E(λ))λ∈3(1) .
As a Z[q]-algebra, A is generated by elements corresponding to minuscule

weights, that is, by the elements τt for t ∈ T and

(E(µI ))I({1,...,n}, E(µ{1,...,n})±1

with the relations

E(µI )E(µJ )= qbc E(µI∪J )E(µI∩J ) (4-8)

for any I, J ⊂ {1, . . . , n} with |I ∩ J | = a, |I | = a+ b, |J | = a+ c.
The center of H is the space of W0-invariants in A.
As an A-module, H is finitely generated; as a module over the center, A is

finitely generated.
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The proof of the theorem relies on the more general definition of an element
E(w) ∈H associated to any w = eλw0 ∈W (1):

E(w) := q(`(w)−`(w0)−`(eλ))/2 E(λ)τw0 (4-9)

in H⊗Z[q]Z[q±1/2
], and the fact that the elements (E(w))w∈W (1) constitute a Z[q]-

basis for H called the integral Bernstein basis.

Remark 4.6. Note that (4-8) implies that in H⊗Z[q] k, the product E(µI )E(µJ )

is zero unless either I ⊂ J or J ⊂ I .

4C. For w = (w1, . . . ., wm) ∈ W (1)
L , we denote by E ⊗(w) ∈ H(L) the tensor

product of the Bernstein elements corresponding to the elements w j in the generic
pro-p-Hecke algebras of the L i s. The Hecke algebra H(L) contains the commuta-
tive subring AL with Z[q]-basis (E ⊗(λ))λ∈3(1) .

Proposition 4.7. A Z[q]-basis for the positive subalgebra H(L+) is given by

(E ⊗(w))w,

where w runs over the L-positive elements in W (1)
L . For any such w, one has

θ+L (E
⊗(w))= E(w). (4-10)

Proof. (A) We first check that E ⊗(λ) lies in the positive subalgebra H(L+) for any
L-positive weight λ ∈3(1). It is enough to show the property for λ minuscule. In
this case, using Lemma 4.4, one easily computes E ⊗(λ) and checks that the ele-
ments of the Iwahori–Matsumoto basis appearing in its decomposition correspond
to L-positive elements in W (1)

L .
Now considerw= (w1, . . . , wm)∈W (1)

L . Writew= eλv with λ∈3(1), v∈W0,L .
Since W0,L normalizes I− and I+, the element w is L-positive if and only if λ is
an L-positive weight. Decompose λ = (λ1, . . . , λm) and v = (v1, . . . , vm) in the
Levi L and recall that, after extending the scalars to Z[q±1/2

],

E ⊗(w)=
m∏

j=1

q(`(w j )−`(v j )−`(e
λ j ))/2 E ⊗(λ)τ ⊗v . (4-11)

The element τ ⊗v lies in the positive subalgebra, and E ⊗(λ) does too if w is L-
positive, so the property also holds for E ⊗(w).

Once we know that E ⊗(w) lies in the positive subalgebra H(L+) for any L-
positive element w ∈W (1)

L , it is clear that these elements constitute a Z[q]-basis of
H(L+) by using [Vignéras 2006, 1.5].

(B) Let us show Equality (4-10) for L-positive elements of the form eλ with
λ ∈ 3(1). The weight λ can be written λ = µ− ν, where µ, ν ∈ 3(1) are anti-
dominant weights which decompose into µ= (µ1, . . . , µm), ν = (ν1, . . . , νm), so
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λ= (λ1, . . . , λm) with λi = µi − νi for i = 1, . . . ,m. By definition,

E ⊗(λ)=
m∏

i=1

q(`(e
λi )+`(eνi )−`(eµi ))/2θ⊗(λ)

and
E(λ)= q(`(e

λ)+`(eν)−`(eµ))/2θ(λ).

Note that uniqueness in Proposition 4.1 gives θL ◦ θ
⊗
= θ , where θ ⊗ denotes the

tensor product of the Bernstein maps, so the required equality will be proved once
we have checked that

`(eλ)+ `(eν)− `(eµ)=
m∑

i=1

(`(eλi )+ `(eνi )− `(eµi )). (4-12)

By the definition of the length on 3(1),

`(eλ)+ `(eν)− `(eµ)=
∑
α̌∈8̌+

|〈µ− ν, α̌〉| + |〈ν, α̌〉| − |〈µ, α̌〉|

=

∑
α̌∈8̌+

|〈µ− ν, α̌〉| − 〈ν, α̌〉+ 〈µ, α̌〉.

A positive root α̌ will give a zero contribution to this sum if and only if 〈ν, α̌〉 ≥
〈µ, α̌〉. According to (2-3), the fact that λ is L-positive ensures that it is the case
for every α̌ ∈ 8̌+ − 8̌+L . Hence the sum can be restricted to the roots α̌ ∈ 8̌+L ,
which proves that (4-12) holds.

We return to the general case of an L-positive element of the form w= eλv. By
the previous case, applying θL to (4-11) gives

θL(E ⊗(w))=
k∏

j=1

q(`(w j )−`(v j )−`(e
λ j ))/2 E(λ)τv.

Since E(w)= q(`(w)−`(v)−`(e
λ))/2 E(λ)τv, it remains to check that

k∑
j=1

(`(eλ j )+ `(v j )− `(eλ jv j ))= `(eλ)+ `(v)− `(eλv).

By 2B2, the right side of this equality is twice the number of roots α̌ ∈ 8̌+ such
that vα̌ ∈ 8̌− and 〈λ, vα̌〉 < 0. But v ∈ W0,L , so any α̌ ∈ 8̌+ satisfying vα̌ ∈ 8̌−

belongs to 8̌+L . Now applying 2B2 to each summand of the left hand side, this
remark ensures that the equality holds. �

Proposition 4.7 says in particular that the Z[q]-algebra

AL+ :=AL ∩H(L+) (4-13)

has Z[q]-basis E ⊗(λ), where λ runs over the L-positive weights λ in 3(1).
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Proposition 4.8. For any h ∈H, there is r ∈ N such that

τ r
aL

h ∈
∑

d∈DL

H(L+)τd .

Proof. Let w ∈ W (1). Write w = eλw0d with w0 ∈ W0,L , d ∈ DL and λ ∈ 3(1) a
weight that decomposes into λ= µ− ν where µ and ν are antidominant. There is
r ∈ N such that ar

Leλw0 is a L-positive element and `(ar
Lw) = `(a

r
Leλw0)+ `(d)

by Property (2-4). Note that ar
Leλ = erλL+µ−ν and that rλL +µ is antidominant.

The elements E(w) and E(ar
Leλw0) of the integral Bernstein basis of H can be

written respectively

E(w)= q(`(w)−`(w0)−`(d)+`(eν)−`(eµ))/2τµτ
−1
ν τw0τd

and
E(ar

Leλw0)= q(`(a
r
L eλw0)−`(w0)+`(eν)−`(ar

L )−`(e
µ))/2τ r

aL
τµτ
−1
ν τw0,

so the element

τ r
aL

E(w)= q(`(w)+`(a
r
L )−`(a

r
Lw))/2 E(ar

Leλw0)τd

belongs to H(L+)τd . �

5. Inducing Hecke modules

5A. We consider the category CL of the k-vector spaces M endowed with a struc-
ture of right H(L)-module such that the central invertible elements τ ⊗µj

, j ∈1−1L

act by multiplication by nonzero scalars. This category is closed relative to sub-
quotients.

Proposition 5.1. Let M be a k-vector space endowed with a right action of the
positive algebra H(L+). Suppose that the central invertible elements τ ⊗µj

, j ∈
1−1L act by multiplication by nonzero scalars. Then there is a unique structure
of right module over H(L) on M extending the action of H(L+).

Proof. The element τ ⊗aL
defined by (4-2) is the product of the τ ⊗µj

, j ∈ 1−1L .
Denote by ζ the scalar action of τ ⊗aL

on M. The Hecke algebra H(L) is generated by
H(L+) and by the central elements (τ ⊗aL

)±1. So, if M is endowed with an action of
H(L), it is unique and the natural map M→M⊗H(L+)H(L) is surjective. Define
the map M⊗H(L+) H(L)→M, v⊗ τ ⊗h 7→ ζ−r v τ ⊗ar

L h , where h ∈W (1)
L and r ∈ N

is chosen so that ar
Lh is L-positive. One checks that this map is well-defined and

factors into an inverse for the previous one. �

Proposition 5.2. Let M in CL . As a vector space, M⊗H(L+) H decomposes into
the direct sums

M⊗H(L+) H=
⊕

d∈DL

M⊗ τd (5-1)
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and

M⊗H(L+) H=
⊕

d∈DL

M⊗ τ ∗d−1 . (5-2)

Each subspace in these decompositions is isomorphic to M via the natural maps
M→M⊗ τd and M→M⊗ τ ∗d−1 .

The decomposition (5-2) is a decomposition into eigenspaces for the action of
τaL : it acts by zero on each M⊗ τ ∗d−1 with d 6= 1 and by ζ on M⊗ τ1.

Corollary 5.3. Let L, M, N in CL be such that there is an exact sequence of right
H(L)-modules 0 → L → M → N → 0. Then one has an exact sequence of
H-modules

0→ L⊗H(L+) H→M⊗H(L+) H→N⊗H(L+) H→ 0.

Corollary 5.4. Suppose that N and L in CL are finite-dimensional over k and
that they have the same semisimplification as H(L)-modules. Then any irreducible
quotient of the H-module N⊗H(L+)H is also an irreducible subquotient of L⊗H(L+)

H.

Corollary 5.5. Let M in CL be such that M⊗H(L+)H is an irreducible H-module.
Then M is an irreducible H(L)-module.

Corollaries 5.3 and 5.5 easily follow from Proposition 5.2.

Proof of Corollary 5.4. Let N be an irreducible quotient of N⊗H(L+) H. Let N0

be a subquotient of the H(L)-module N with minimal dimension over k such that
N is a quotient of N0⊗H(L+) H. Using Corollary 5.3 and the irreducibility of N ,
one sees that N0 is irreducible as an H(L)-module. Hence N0 is an irreducible
subquotient of L, so that N appears in the semisimplification of L⊗H(L+) H. �

Proof of Proposition 5.2.
(A) Proposition 4.8 ensures that

M⊗H(L+) H=
∑

d∈DL

M⊗ τd . (5-3)

Since τ ∗d−1 decomposes with respect to the Iwahori–Matsumoto basis into the sum
of τd and of other terms corresponding to elements with strictly smaller length
[Vignéras 2005, Lemma 13], we also have

M⊗H(L+) H=
∑

d∈DL

M⊗ τ ∗d−1 . (5-4)

(B) Let µ ∈ 3(1) be a minuscule weight and m ∈M. If µ is not L-positive, then
E(µ) acts by zero on m⊗ 1 (Because of relations (4-8), there is j ∈1−1L such
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that E(µ)E(µj ) = 0; since E(µj ) = τeµj acts by a nonzero scalar on m ⊗ 1, the
element E(µ) acts by zero.) We show by induction on `(d) that, for any d ∈ DL ,

m⊗ τ ∗d−1 E(µ)= m⊗ E(dµ)τ ∗d−1 . (5-5)

Let d ∈ DL and let s ∈ S0 be such that ds ∈ DL and `(ds) = `(d)+ 1. These
hypotheses imply dα̌s ∈ 8̌

+
−8̌+L . Suppose that (5-5) holds. We have to show that

m⊗ τ ∗d−1τ
∗

s E(µ)= m⊗ E(dsµ)τ ∗d−1τ
∗

s . (5-6)

If 〈µ, α̌s〉 = 0, then µ = sµ and E(µ) and τ ∗s commute by Proposition 4.3(1),
so we have the required equality.

If 〈µ, α̌s〉> 0, then

m⊗τ ∗d−1τ
∗

s E(µ)= m⊗ τ ∗d−1(τs + νs)E(µ)

= m⊗τ ∗d−1 E(sµ)τ ∗s +m⊗τ ∗d−1 E(µ)νs by the Bernstein relations

= m⊗E(dsµ)τ ∗d−1τ
∗

s +m⊗E(dµ)τ ∗d−1νs by induction.

The hypothesis on µ implies that 〈dµ, dα̌s〉> 0, so dµ is not L-positive. Hence the
second part of the preceding sum is zero, which gives the required equality.

If 〈µ, α̌s〉< 0, then

m⊗ τ ∗d−1τ
∗

s E(µ)= m⊗ τ ∗d−1 E(sµ)τs by the Bernstein relations

= m⊗ E(dsµ)τ ∗d−1τs by induction.

But 〈dsµ, dα̌s〉> 0, so dsµ is not L-positive. Hence we have proved that both sides
of (5-6) are zero.

By Proposition 2.2, we have proved (5-6) by induction.

(C) Result (B) shows that the right action of E(d
−1
λL) on M⊗ τ ∗

d ′−1 is zero for
any d ′ ∈ DL d ′ 6= d and that it is a multiplication by ζ on M⊗ τ ∗d−1 . Hence, the
decomposition (5-4) is a direct sum.

(D) Let us prove that
M→M⊗ τ ∗

d−1
0

is injective for any d0 ∈ DL . Let m ∈M such that

m⊗ τ ∗
d−1

0
= 0. (5-7)

Let (mν)ν∈N be a family of generators of the H(L+)-module M that contains m,
say mν0 =m. By [Bourbaki 1961, Chapitre 1, §2, n◦ 11], (5-7) implies that there is
a finite family (kι)ι∈I of elements in H and a finitely supported family (bι,ν)ι∈I,ν∈N

of elements in H(L+) such that

•
∑

ν∈N mνbι,ν = 0 for any ι ∈ I,
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•
∑

ι∈I bι,ν0kι = τ ∗d−1
0

,

•
∑

ι∈I bι,νkι = 0 for any ν 6= ν0.

By Proposition 4.8, there exists r ∈ N such that τ r
aL

kι =
∑

d∈DL
cι,dτd with

cι,d ∈H(L+) for any ι ∈ I. The component of

τ r
aL
τ ∗

d−1
0
=

∑
d∈DL

∑
ι

bι,ν0cι,dτd

with support in I (1)L+d0 I (1) is equal to τ r
aL
τd0 on one hand, and to

∑
ι bι,ν0cι,d0τd0

on the other hand. So, by Lemma 2.4, we get τ r
aL
τd0 =

∑
ι bι,ν0cι,d0τd0 and then

τ r
aL
=
∑

ι bι,ν0cι,d0 .
The same argument applied to 0 =

∑
ι∈I bι,νkι shows that 0 =

∑
ι bι,νcι,d0 for

ν 6= ν0.
Multiplying 0 =

∑
ν∈N mνbι,ν by cι,d0 for any ι ∈ I, and then summing over ι,

gives 0= mν0τ
r
aL

, and hence m = 0.
This proves the remaining assertions of Proposition 5.2, also using again the

argument of [Vignéras 2005, Lemma 13] to deduce the direct sum (5-1) from the
direct sum (5-2). �

5B. Standard modules. The field k is naturally a Z[q]-module via the specializa-
tion q 7→ 0. A k-character of A is a morphism of unitary rings χ : A→ k which
is compatible with the structures of Z[q]-modules. The set of k-characters of A

inherits a natural action of W0 given by (w0, χ) 7→
w0χ .

Because of (4-8), one has E(µJ )E(µK ) = 0 for any J, K ⊂ {1, . . . , n}, unless
either J ⊂ K or K ⊂ J . So, a k-character χ of A is completely determined by its
values on {τt , t ∈ T}, the flag

J0 =∅ ( J1 ( · · ·( Jr = {1, . . . , n}

of the subsets Ji ⊂ {1, . . . , n} such that χ(E(µJi )) is nonzero, and these nonzero
values. The standard module induced by χ is the right H-module

χ ⊗A H.

The set of minuscule weights (µJi )i∈{1,...,r} we call the support of χ . We say
that χ has dominant or antidominant support if every weight in the support is so.

Recall that any k-vector space which is a simple H-module is a quotient of a
standard module [Vignéras 2005, 1.4].

Definition 5.6. The character χ , the associated standard module, and any quotient
of the latter are said to be regular if the flag is maximal, that is, r=n; supersingular
if the flag is minimal, that is, r = 1; and singular otherwise.

If n = 1, we make the convention that any character of A is supersingular.
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5C. Inducing standard modules.

5C1. A k-character χ :A→ k is called adapted to L (or L-adapted) if χ(E(λL)) is
nonzero, where λL is defined by (4-2). This implies that χ has L-positive support,
that is, any weight in its support is L-positive. A k-character χL : AL → k of the
integral Bernstein subalgebra of H(L) is the tensor product of k-characters of the
integral Bernstein algebras corresponding to the L j ’s, j ∈ {1, . . . ,m}. The value
of χL on the invertible element τ ⊗aL

being nonzero, χL is completely determined
by its restriction to AL+ and we have an isomorphism of H(L)-modules:

χL ⊗AL H(L)' χL ⊗AL+
H(L).

There is a one-to-one correspondence between the k-characters χL of AL and
the k-characters of A adapted to L: it associates the character χ :A→ k adapted
to L with the character χL given on AL+ by

χL(E ⊗(λ)) := χ ◦ θL(E ⊗(λ))= χ(E(λ))

for any L-positive weight λ ∈3(1).
The algebra AL is endowed not only with an action of the finite Weyl group

W0,L , but also of the normalizer of W0,L in W0. Nevertheless, the previous corre-
spondence is only compatible with the action of W0,L which preserves the set of
L-positive weights in 3(1).

5C2. With Proposition 5.1, the previous paragraph gives the following result.

Proposition 5.7. Given χL :AL → k, let χ :A→ k be the associated L-adapted
character of A. The standard module relative to χ is induced by the standard
module relative to χL in the sense that the following isomorphisms of H-modules
hold:

χ ⊗A H' χL ⊗AL H(L)⊗H(L+) H' χL ⊗AL+
H.

5D. Intertwining operators between standard modules. Let χ :A→ k be a char-
acter. We assume that L is a strict Levi subgroup of G and that χ is adapted to L .
Then its support contains at least {µj , j ∈1−1L}.

Let d ∈W0 and s ∈ S0 be a simple reflection such that d, ds ∈ DL and `(ds)=
`(d)+ 1. Let ξ be the k-character ξ = d−1

χ . Denote respectively by ϕ and ϕs the
canonical generators of the standard modules induced by ξ and sξ .

5D1. Definition of the intertwiners.

Remark 5.8. The fact that `(ds)= `(d)+ 1 implies that dα̌s is a positive root.
That both ds and d belong to DL implies that ds /∈ W0,Ld , so there exists j in

1−1L such that dsd−1
µj 6=µj : the weight d−1

µj lies in the support of ξ and satisfies
〈

d−1
µj , α̌s〉 = 〈µj , dα̌s〉< 0. Because of relations (4-8), any other minuscule weight

µ in the support of ξ will then satisfy 〈µ, α̌s〉 ≤ 0.



Parabolic induction and Hecke modules in characteristic p for p-adic GLn 723

Lemma 5.9. The vector ϕτ ∗s is an eigenvector for the character sξ of A.

Proof. It is easy to check that ϕτ ∗s τt =
sξ(τt)ϕτ

∗
s for any t ∈ T (or see [Ollivier

2006a, 4.4.2]). We have yet to show that

ϕτ ∗s E(µJ )=
sξ(E(µJ )) ϕτ

∗

s (5-8)

for any minuscule weight µJ associated to J ⊂ {1, . . . , n− 1}.
If µJ is fixed by s, the Bernstein relations ensure that τ ∗s and E(µJ ) commute

and (5-8) holds.
If 〈µJ , α̌s〉> 0, the Bernstein relations give

ϕτ ∗s E(µJ )= ϕτs E(µJ )+ϕE(µJ )νs = ϕE(sµJ )τ
∗

s =
sξ(E(µJ )) ϕτ

∗

s ,

because µJ is not in the support of ξ by Remark 5.8 .
If 〈µJ , α̌s〉<0, the Bernstein relations give ϕτ ∗s E(µJ )=ϕE(sµJ )τs=0, because

sµJ is not in the support of ξ , and (5-8) holds. �

We choose a weight d−1
µj as in Remark 5.8. It is a minuscule weight in the

support of ξ . It can be denoted by µK for some K ⊂ {1, . . . , n}. Recall that
〈µK , α̌s〉< 0. Set

β := ξ(E(µK∪sK ))ξ(E(µK∩sK ))ξ(E(µK ))
−1,

where sK denotes the image of K under the natural action of s.

Remark 5.10. Because of the relations (4-8), this scalar β is zero as soon as
there exists a minuscule weight µJ different from µK in the support of ξ such
that 〈µJ , α̌s〉< 0.

Lemma 5.11. The vector ϕs(E(seµK )−βνs) is an eigenvector for the character ξ
of A.

Proof. Note that νs lies in A and commutes with τs . See [Ollivier 2006a, 4.4.2] to
check that ϕs(E(seµK )−βνs)τt = ξ(τt)ϕs(E(seµK )−βνs) for any t ∈ T. We have
yet to prove that

ϕs(E(seµK )−βνs)E(µJ )= ξ(E(µJ )) ϕs(E(seµK )−βνs) (5-9)

for any minuscule weight µJ associated to J ⊂ {1, . . . , n− 1}.
We use the fact that after extending the scalars to Z[q±1/2

], we have

E(seµK )= q−1 E(sµK )τs = q−1τ ∗s E(µK ). (5-10)

If µJ is fixed by s, then (5-9) holds.
If 〈µJ , α̌s〉 < 0, then µJ is not in the support of sξ by Remark 5.8, and the left

side of (5-9) is ϕs E(seµK )E(µJ ). The Bernstein relations and (5-10) give
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E(seµK )E(µJ )

= E(sµJ )E(seµK )− νsq(|K |−|
sK∩J |)(|J |−|sK∩J |)−1 E(µ sK∪J )E(µ sK∩J ). (5-11)

• If J 6= K , the power of q in the preceding equality is at least 1, so

ϕs E(seµK )E(µJ )= ξ(E(µJ )) ϕs E(seµK ).

If J is in the support of ξ , then β = 0 by Remark 5.10, and (5-9) holds. If J
is not in the support of ξ , we have proved that both sides of (5-9) are zero.

• If J = K , then (5-11) gives equality (5-9).

If 〈µJ , α̌s〉 > 0, then µJ is not in the support of ξ and the right side of (5-9) is
zero. The Bernstein relations give

E(seµK )E(µJ )

= E(sµJ )E(seµK )+ νsq(|K |−|K∩J |)(|J |−|K∩J |)−1 E(sµK∪J )E(sµK∩J ), (5-12)

so ϕs E(seµK )E(µJ )= ϕsνsq(|K |−|K∩J |)(|J |−|K∩J |)−1 E(sµK∪J )E(sµK∩J ).

• If J 6= sK , the latter power of q is at least 1, so the only remaining term in
the left side of (5-9) is equal to −sξ(E(µJ ))β ϕsνs : if µJ is in the support
of sξ , then β = 0 by Remark 5.10; if µJ is not in the support of sξ , then
sξ(E(µJ ))= 0.

• If J = sK , then ϕs E(seµK )E(µJ )= ξ(E(µK ))βϕsνs , so the left side of (5-9)
is zero. �

The preceding lemmas allow us to define an H-equivariant morphism 8 from
the standard module induced by ξ into the one induced by sξ , and another,9, going
the other way around. They are fully determined by 8(ϕ) = ϕs(E(seµK )− βνs)

and 9(ϕs)= ϕτ
∗
s .

Lemma 5.12. The composition of 8 and 9 is the homothety with ratio

ξ(E(µK )−βν
2
s ).

Proof. Any d0 ∈ W0 such that sµK =
d−1

0 µj satisfies 〈µj , d0α̌s〉 = −〈µK , α̌s〉 > 0,
so d0α̌s ∈ 8̌

− and `(d0s)= `(d0)− 1. Hence

τ ∗
d−1

0
τs = 0

in H⊗Z[q]k, and Lemma 4.4 ensures that E(sµK )τs = 0 in H⊗Z[q]k. Thus ϕsτs = 0
and ϕs(E(seµK )−βνs)τ

∗
s = ξ(E(µK )−βν

2
s )ϕs, and8◦9 is a homothety with ratio

ξ(E(µK )−βν
2
s ). Using the equalities E(µK )E(seµK )=τs E(µK∩sK )E(µK∪sK ) and

τs E(seµK ) = E(µK ), one checks that 9 ◦8 is a homothety with the same ratio.
�



Parabolic induction and Hecke modules in characteristic p for p-adic GLn 725

5D2. Conditions of isomorphism.
5D2.1. Suppose that χL is a tensor product of supersingular characters. Then the
support of χ is exactly {µj , j ∈1−1L}.

Recall that the standard Levi subgroup L decomposes into L = L1× · · ·× Lm ,
where L i is isomorphic to GLni (F) for i ∈ {1, . . . ,m}. There exists a simple
reflection not belonging to W0,L but normalizing W0,L if and only if one can find
two consecutive L i and L i+1 with i ∈ {1, . . . ,m− 1} such that ni = ni+1 = 1.

We will say that χL satisfies Hypothesis (?) if for any simple reflection s j not
belonging to W0,L but normalizing W0,L , the characters s jχL and χL differ.

Lemma 5.13. Let j ∈1 and suppose that the simple reflection s j does not belong
to W0,L but normalizes W0,L . The k-character χL and its conjugate by s j coincide
if and only if two conditions are satisfied:

• χ(ν2
s j
) 6= 0, that is, χ(ν2

s j
)= 1,

• χ(E(µj ))
2
= χ(E(µj−1))χ(E(µj+1)).

Proof. First note that ν2
s j
=
∑

t∈Ts j
τt . One then easily checks that χ(ν2

s j
) = 1

if the characters χL and its conjugate by s j coincide on the space generated by
{τ ⊗t , t ∈T}, and that χ(ν2

s j
)= 0 otherwise (see also [Ollivier 2006a, Remarque 7]).

Saying that s j does not belong to W0,L means that eµj−1 , eµj , eµj+1 are central
elements in L , so χ(E(µj−1)), χ(E(µj )), χ(E(µj+1)) are nonzero elements in k.
The characters χL and its conjugate by s j coincide if and only if they coincide on
the space generated by {τ ⊗t , t ∈ T}, and

χ(E(µj ))

χ(E(µj−1))
=
χ(E(µj+1))

χ(E(µj ))
. �

By Lemma 5.12, it is clear that if β = 0, then I (ξ) and I (sξ) are isomorphic.
Saying that β is nonzero means that µK∪sK and µK∩sK both belong to the support of
ξ . Because of the hypothesis on the support of χ , this implies that µj+1 =

dµK∪sK ,
µj =

dµK , µj−1 =
dµK∩sK belong to the support of χ and that dsd−1

= s j is a
simple reflection not belonging to W0,L and normalizing W0,L . By Hypothesis (?),
Lemma 5.13 then proves that ξ(E(µK )− βν

2
s ) is nonzero, so I (ξ) and I (sξ) are

isomorphic.
By induction and using Proposition 2.2, we get the following result.

Proposition 5.14. Let χ :A→ k be an L-adapted character.
Suppose that the associated χL : AL → k is a tensor product of supersingular

characters and that it satisfies Hypothesis (?). Then the standard module induced
by χ is isomorphic to the standard module induced by any conjugate d−1

χ of χ
under the action of the inverse of an element d ∈ DL .
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5D2.2. Let χ0 : A→ k be a character with antidominant support, and L be the
maximal Levi subgroup such that the associated character χ0,L :A→ k is a tensor
product of supersingular or regular characters. This Levi subgroup can be described
in the following way: any j ∈1 lies in 1−1L if and only if µj lies in the support
of χ0 and at least one of µj+1 or µj−1 does not lie in the support of χ0.

We suppose now that χ = w0χ0, where w0 ∈W0,L . It is adapted to L and we can
apply the results of Section 5D1.

Consider as before the weight µK in the support of ξ and the element j ∈1−1L

such that µK =
d−1
µj . Then µK∪sK and µK∩sK cannot be simultaneously in the sup-

port of ξ ; otherwiseµj−1, µj , µj+1 would be in the support of χ0, which contradicts
the definition of 1−1L . Hence β = 0 and I (ξ) and I (sξ) are isomorphic. By
induction (using Proposition 2.2), the following proposition is proved.

Proposition 5.15. Let χ0 :A→ k be a character with antidominant support and L
the maximal Levi subgroup such that the associated character χ0,L : AL → k is a
tensor product of supersingular or regular characters. Letw0∈W0,L . The standard
module induced by χ := w0χ0 is isomorphic to the standard module induced by any
conjugate d−1

χ of χ under the action of the inverse of an element d ∈ DL .

5E. Nonsupersingular Hecke modules.

5E1. Regular standard modules.

Proposition 5.16. The standard module induced by a character χ : A→ k with
regular support is a k-vector space with dimension n!.

5E1.1. Our proof relies on further ingredients relative to root data and Coxeter
systems. Let R ⊂ 5̌ be a set of simple roots and denote by 〈R〉 the subset of 8+

generated by R. Define W0(R) to be the subset of W0 whose elements w satisfy
w(R)⊂ 8̌− and w(5̌− R)⊂ 8̌+.

Lemma 5.17. In W0(R) there is a unique element wR with minimal length. It is
an involution and its length is equal to the cardinality of 〈R〉.

Proof. The length of an elementw in W0 being the number of positive roots α∈8+

such that wα ∈ 8− (Section 2A), any element in W0(R) has length larger than
the cardinality of 〈R〉. The subgroup of W0 generated by the simple reflections
corresponding to the simple roots in R has a unique maximal length element wR ,
with length the cardinality of 〈R〉. It is an involution satisfying wR(R)=−R and
wR(8

+
−〈R〉)⊂8+ [Bourbaki 1968, Chapitre VI, §1, n◦ 1.6, corollaire 3]. This

element belongs to W0(R).
Let w ∈ W0(R). Suppose that `(w) = `(wR). Then the roots in 〈R〉 are the

only positive ones made negative by w. Applying the length property 2B2 and the
definition of W0(R), we then see that `(w) = `(wwR)+ `(wR), so wwR = 1 and
w = wR . �
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Lemma 5.18. Let w ∈ W0(R). Suppose that w 6= wR and consider s j ∈ S0 such
that `(s jwwR) = `(wwR)− 1. Then `(s jw) = `(w)− 1, the element s jw lies in
W0(R) and the positive root −w−1α̌ j is not a simple root.

Proof. The hypothesis on the length ensures that wRw
−1α̌ j ∈ 8̌

−. Because of
the properties of w and wR , it implies w−1α̌ j ∈ 8̌

− and `(s jw) = `(w) − 1.
More precisely, one checks that the only possibility is −w−1α̌ j ∈ 8̌

+
− 〈R〉. So,

if −w−1α̌ j were a simple root, it would be an element in 5̌− R, which would
contradict w(5̌ − R) ⊂ 8̌+. It remains to check that s jw lies in W0(R). Let
α̌ ∈ R. Since wα̌ ∈ 8̌− − {−α̌ j }, we have s jwα̌ ∈ 8̌

−. Let α̌ ∈ 5̌− R. Since
wα̌ ∈ 8̌+−{α̌ j }, we have s jwα̌ ∈ 8̌

+. �

Lemma 5.19. Denote by σ ∈W0 the cycle (n, n−1, . . . , 1). Let α̌ ∈ 5̌− R. There
exists j ∈ {1, . . . , n− 1} such that σ jwR ∈W (R ∪ {α̌}).

Proof. We first make some remarks.

(1) Let β̌ ∈ 5̌−R be a simple root. ThenwR β̌ is a positive root. Also, sβ appears
in any reduced decomposition of the transposition wRsβwR according to the
set S0. From this, one easily deduces that wR β̌ ≥ β̌, where ≥ denotes the
partial order on 8̌ described in 2A. Conversely, let α̌ ∈ 5̌− R. If wR β̌ ≥ α̌,
this means that sα appears in any reduced decomposition ofwRsβwR , so β̌= α̌.

(2) Let j ∈ {1, . . . , n− 1} and β̌ ∈ 8̌+. Then σ j β̌ ∈ 8̌− if and only if β ≥ α̌ j .

Let α̌ ∈ 5̌− R as in the lemma and j ∈ {1, . . . , n − 1} such that α̌ = α̌ j . We
check that σ jwR ∈W0(R ∪ {α̌ j }). Any β̌ ∈ R is sent by wR to an element in −R,
which in turn is sent by σ j to an element in 8̌− by (2). Let β̌ ∈ 5̌− R. Then
wR β̌ ∈8

+ and using (2), σ jwR β̌ ∈ 8̌
− if and only if wR β̌ ≥ α̌ j , which by (1) is

equivalent to β̌ = α̌ j . �

Proof of Proposition 5.16. Let χ :A→ k be a character with regular antidominant
support.

(A) Let R ⊂ 5̌ be as in 5E1.1. We prove by induction on the length of w ∈W0(R)
that the standard modules induced by wχ and wRχ are isomorphic as H-modules.

Let w ∈ W0(R). Suppose w 6= wR; then there is s j ∈ S0 such that `(s jwwR)=

`(wwR)− 1. By Lemma 5.18, this implies `(s jw) = `(w)− 1 and the element
s jw also lies in W0(R). Set ξ = s jwχ . We prove that ξ and s j ξ induce isomorphic
standard modules. We are in the situation of Section 5D; the Levi subgroup here is
simply the diagonal torus. So we have two well-defined intertwining operators
between the standard modules in question. By Remark 5.10, there is an easy
sufficient condition for these operators to be isomorphisms: it suffices to check
that there is more than one minuscule weight µ in the support of ξ satisfying
〈µ, α̌ j 〉 < 0; that is, that there is more than one antidominant minuscule weight λ
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such that 〈λ,w−1α̌ j 〉 > 0. This is true, because w−1α̌ j ∈ 8
− and −w−1α̌ j is not

a simple root, by Lemma 5.18.

(B) For w ∈ W0, the standard modules induced by wχ and σwχ have the same
dimension, as proved in [Ollivier 2006a, Proposition 2].

(C) Let R⊂ 5̌ be a set of simple roots. We prove by induction on the cardinality of
R that the standard module induced by wχ is n!-dimensional for any w ∈ W0(R).
If R = ∅, then W0(R) = {1}, and the result is given by Propositions 5.2 and 5.7.
Suppose that the property holds for some set of simple roots R ( 5̌. Let α̌ ∈ 5̌−R
and w ∈ W0(R ∪ {α̌}). By Lemma 5.19, there is a power σ j of the cycle σ such
that σ jwR ∈W0(R ∪ {α̌}). We conclude using (A) and (B). �

5E1.2. The motivation for Proposition 5.16 is this:

Conjecture 5.20. Let χ :A→ k be a character with regular support and w0 ∈W0.
The standard modules induced by w0χ and χ have the same semisimplification as
modules over H.

We can prove the conjecture if we consider characters of A which are totally
degenerate on the finite torus, that is, for t ∈ T, the value χ(τt) only depends
on the orbit of t under the action of W0. By twisting, we can consider that χ is
trivial on the finite torus. Then the standard module induced by χ can be seen
as a module over the Iwahori–Hecke algebra (see for example Section 8). One
can then apply the arguments listed in [Ollivier 2006b, 2.4] (for the case of GL3)
to show that χ and its conjugates induce standard modules which have the same
semisimplification. The first argument comes from [Vignéras 2006, théorème 6]:
the character χ can be lifted to a character χ0 with values in Zp, and we see the
latter as a character with values in Qp. Since the standard module induced by χ is
n!-dimensional over Fp, [Vignéras 2006, théorème 5] says that it is isomorphic to
the reduction of the canonical integral structure of the H⊗Z[q]Qp standard module
induced by χ0. To conclude, we recall Proposition 2.3 of [Rogawski 1985]: two
standard modules for the Iwahori–Hecke algebra in characteristic zero have the
same semisimplification if they are induced by conjugate characters. The proof is
based on the description of an explicit basis for the standard modules owing to the
Kazhdan–Lusztig polynomials for the Iwahori–Hecke algebra.

Proposition 5.21. Conjecture 5.20 is true for the standard modules over the Iwa-
hori–Hecke algebra, that is, for characters χ that are trivial on the finite torus.

5E2. Nonsupersingular simple modules and induction. Recall that a nonsupersin-
gular character χ :A→ k with antidominant support is adapted to some strict Levi
subgroup L of G. So the associated standard module is induced from a H(L)-
module by Proposition 5.7. In the light of this, the following proposition bolsters
the definition of a nonsupersingular module.
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Proposition 5.22. Assume that Conjecture 5.20 is true. Any simple nonsupersingu-
lar H-module appears in the semisimplification of a standard module for H relative
to a nonsupersingular character with antidominant support.

Proof. Let M be a simple nonsupersingular module: it is a quotient of a standard
module induced by some nonsupersingular character ξ :A→ k. Let w ∈W0 with
minimal length such that χ := wξ has antidominant support. We want to prove
that M appears in the semisimplification of the standard module induced by χ .
Let L be the standard Levi subgroup associated to χ as in Proposition 5.15. Let
(w0, d) ∈W0,L × DL be such that w =w0d . Recall that `(w)= `(w0)+ `(d). By
Proposition 5.15, the standard modules induced by w−1

0 χ and ξ are isomorphic. So
M is an irreducible quotient of the standard module induced by w−1

0 χ . We have yet
to check that it is a subquotient of the standard module induced by χ .

• If L = G, then χ is a regular character and the claim comes from Conjecture
5.20.

• Suppose L 6= G. Decompose L ' L1×· · ·× Lm and w−1
0 = (w1, . . . , wm) ∈

L1×· · ·×Lm . Both χ and w
−1
0 χ are L-adapted: denote by χL=χL1⊗· · ·⊗χLm

the character of AL corresponding to χ . Then w−1
0 χL =

w1χL1 ⊗ · · ·⊗
wmχLm

corresponds to w−1
0 χ . If χL i is a supersingular character for an i ∈ {1, . . . ,m},

then wiχ and χ have the same support, so by minimality of the length ofw, we
must have wi = 1. In other words, if wi 6= 1, then χL i is a regular character of
AL i . So Conjecture 5.20 says that the standard modules for H(L) induced by
χL and w−1

0 χL have the same semisimplification. Then applying Proposition
5.7 and Corollary 5.4, one gets that M is an irreducible subquotient of the
standard module induced by χ . �

Proposition 5.23. The statement of Proposition 5.22 holds without further hypoth-
esis for modules over the Iwahori–Hecke algebra.

5F. Irreducible induced modules. Let M be a k-vector space endowed with a
structure of right H(L)-module. Let M be irreducible as an H(L)-module. Then
it is finite-dimensional and has a central character [Vignéras 2007, 5.3], so M is a
quotient of some standard module for H(L) induced by a character χL :AL → k.
In particular, M belongs to the category CL defined in 5A. Suppose that χL is
the tensor product of supersingular characters and consider as before its associated
L-adapted character χ :A→ k.

Proposition 5.24. Let χ ′ be a k-character for A contained in M⊗H(L+)H. There is
d ∈DL such that dχ ′ is the L-adapted character associated to some W0,L -conjugate
of χL .
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Proof. First note, using the braid relations in H(L) and the fact that χL is a product
of supersingular characters, that any k-character for AL contained in M is a W0,L -
conjugate of χL . Then, using Proposition 5.7, note that M⊗H(L+) H is a quotient
of the standard module for H induced by χ . So it has a central character given
by the restriction of χ to the center of H. Any k-character χ ′ for A contained in
M⊗H(L+)H has the same restriction to the center, which ensures that the supports
of χ ′ and χ are conjugate, and more precisely, that there is an element d ∈ DL

such that χ and dχ ′ coincide on (E(λ))λ∈3. In particular, χ ′(E(d
−1
λL)) 6= 0, so

the character χ ′ is supported by an element in M⊗ τ ∗d−1 by Proposition 5.2 and
its proof. With the braid relations in H, our first remark then shows that dχ ′ is the
L-adapted character associated to some W0,L -conjugate of χL . �

Corollary 5.25. Suppose that χL satisfies Hypothesis (?). Then M⊗H(L+) H is an
irreducible H-module.

Proof. A nontrivial irreducible submodule of M⊗H(L+)H is a quotient of a standard
module for H. By Proposition 5.24, the latter is induced by a k-character χ ′ such
that dχ ′ is the L-adapted character associated to w0χL for some d ∈ DL and w0 ∈

W0,L . It is clear that w0χL satisfies Hypothesis (?) since χL does, so Proposition
5.14 ensures that the standard module induced by χ ′ is isomorphic to the one
induced by dχ ′. In particular, any nonzero submodule of M⊗H(L+) H contains an
L-adapted character, and hence a nonzero eigenvector for τaL and the value ζ . By
Proposition 5.2 and by the irreducibility of M, any nonzero submodule contains
M⊗ τ1, and hence it is the whole M⊗H(L+) H. �

6. Parabolic induction and compact induction

Recall that the universal module U is the compact induction to G of the trivial
character of I (1) with values in k. We will denote by UL the compact induction to
L of the trivial character of IL(1) with values in k. These representations of G and
L are respectively generated by the characteristic functions of the pro-p-Iwahori
subgroups I (1) and IL(1). We will denote both of these by 1 when there is no
possible ambiguity.

We consider a module M in the category CL defined in 5A. Let (π(M), V ) be
the representation of G on M⊗H(L+) U and (πL(M), VL) the representation of L
on M⊗H(L) UL .

6A. The parabolic induction IndG
P πL(M) is the smooth part of the space of func-

tions f : G→ VL satisfying f (lng)= l. f (g) for g ∈ G, (l, n) ∈ L × N , endowed
with the action of G by right translation.

6A1. The set DL is a system of representatives of the double cosets P\G/U in the
Chevalley group. For d ∈ DL , set Ud = U ∩ d−1Ud and Ud = U ∩ d−1Ud. Any
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element in U can be written as a product of an element of Ud and of an element of
Ud and this decomposition is unique. From this, one deduces that any element in
PdU decomposes uniquely in PdUd [Carter 1985, 2.5.12].

The set DL is also a system of representatives of the double cosets P\G/I (1).
For any d ∈ DL , one has

Pd I (1)=
∐

y

P I (1)dy, (6-1)

where dy runs over a system of representatives of I (1)\I (1)d I (1).
For any d ∈ DL and any IL(1)-invariant element v in πL(M), the I (1)-invariant

function fPd I (1),v with support Pd I (1) and value v at d is a well-defined element
of IndG

P πL(M). Any I (1)-invariant function in the latter representation is a linear
combination of such functions.

6A2. The right action of τd maps fP I (1),v to an I (1)-invariant element with support
Pd I (1), which is completely determined by its value at d . Using (6-1), one easily
checks that this value is v, so

( fP I (1),v)τd = fPd I (1),v (6-2)

6A3. Let w ∈W (1)
L . Suppose it is a L-positive element.

According to [Vignéras 1998, II.4], there is a system of representatives of the
right cosets I (1)\I (1)w I (1) respecting the decomposition of IL(1)w IL(1) into
right cosets mod IL(1). Explicitly, from the decomposition

IL(1)w IL(1)=
∐

x

IL(1)wx

one gets
I (1)w I (1)=

∐
x

I (1)wx I (1)−

and a decomposition I (1)w I (1)=
∐

x,ux
I (1)wxux , where ux belong to I (1)−.

From arguments analogous to [Schneider and Stuhler 1991, Proposition 7], one
shows that P I (1)wx ∩ P I (1)wxux 6= ∅ implies I (1)wxux = I (1)wx : the hy-
pothesis can be written Pw−1 I (1)−wx ∩ Pw−1 I (1)−wxux 6= ∅, and we recall
that I (1)− is normalized by x ∈ IL(1). So there exists an element κ1xux x−1κ2 in
P with κ1, κ2 ∈ w

−1 I (1)−w ⊂ I (1)−. Since P ∩ I (1)− = {1}, one deduces that
xux x−1

∈ w−1 I (1)w and I (1)wxux = I (1)wx .
The right action of τw ∈H on fP I (1),v gives the I (1)-invariant function with sup-

port P I (1) and value at 1G given by
∑

x,ux
fP I (1),v((wxux)

−1). But (wxux)
−1
∈

P I (1) implies 1 ∈ P I (1)wx ∩ P I (1)wxux ; therefore this value is
∑

x(wx)−1v =

vτ ⊗w , and
( fP I (1),v)τw = f P I (1),vτ ⊗w . (6-3)
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6B. For any m ∈M, there is a well-defined G-equivariant map

Fm :U→ IndG
P πL(M)

sending the characteristic function of I (1) on fP I (1),m⊗1. The computation of 6A3
shows that we then have a G-equivariant morphism

F : π(M)→ IndG
P πL(M), m⊗ u 7→ Fm(u). (6-4)

Remark 6.1. In the case where L is the diagonal torus T and M is a character of
AT , the map F is an isomorphism [Schneider and Stuhler 1991; Vignéras 2004].

6C. In the tensor product M⊗H(L) UL , the group L only acts on UL , so there is
a natural morphism of H(L)-modules

M→ (M⊗H(L) UL)
IL (1), (6-5)

and a natural morphism of H-modules

M⊗H(L+) H→ (M⊗H(L+) U)I (1), (6-6)

which composes with F to give the morphism of H-modules

M⊗H(L+) H→ (IndG
PπL(M))I (1). (6-7)

6C1. If (6-5) is not trivial, then (6-7) is not trivial and neither is (6-6). By adjunc-
tion, if there exists a representation (πL , VL) of L and a nonzero H(L)-equivariant
map M→ V IL (1)

L , then (6-5) is not trivial.

6C2. Suppose (6-5) is surjective. Then (6-7) is surjective.

6C3. Using Proposition 5.2, one sees that (6-7) is injective if (6-5) is injective. In
this case, (6-6) is also injective.

In 5F, we gave sufficient conditions for certain irreducible H(L)-modules M

to induce irreducible H-modules. Under these conditions, and if (6-5) is nonzero,
then (6-7) allows us to describe an irreducible subspace M⊗H(L) H of the pro-p-
invariants of IndG

PπL(M).
If H(L) is a direct factor of UL as a left H(L)-module, then (6-5) is injective

for any M in CL . This is the case if F has residue field Fp and L is isomorphic to
a product of GL1(F)’s and GL2(F)’s [Ollivier 2007, 2.1.3].

6D. Examples.

6D1. If L is the diagonal torus T , then M identifies with a character χT :AT → k.
By Remark 6.1 and previous results, the representation M⊗H(L+) U is isomor-
phic to the principal series induced by the character T → k∗, t 7→ χT (t−1). The
semisimplification of this representation and of its space of pro-p-invariants is well-
understood [Grosse-Klönne 2009; Ollivier 2006a; Ollivier 2006c; Vignéras 2008].
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6D2. We consider the case where F = Qp. Suppose that L is isomorphic to
a product of GL1(Qp)’s and GL2(Qp)’s. There is an equivalence of categories
between the right H(L)-modules (with scalar action of the uniformizers) and the
representations of L generated by their IL(1)-invariants (with scalar action of the
uniformizers). In particular, (6-5) is an isomorphism for any M. If L is the diagonal
torus, it is clear. Otherwise, the result is given by [Ollivier 2009]. So, for any M

in CL , the map (6-7) is an isomorphism.

6D2.1. Suppose that G =GL3(Qp) and L is isomorphic to GL2(Qp)×GL1(Qp).
Let χL :AL→k be the tensor product of two supersingular characters. It satisfies

Hypothesis (?). Denote by M the standard module for H(L) induced by χL . It
is irreducible and 2-dimensional. Because of the above-mentioned equivalence of
categories, the representation M⊗H(L+)UL is the tensor product of a supersingular
representation of GL2(Qp) by a character of GL1(Qp).

By Corollary 5.25, the H-module M⊗H(L+)H is irreducible. By the remarks of
6C, it is isomorphic to the subspace of I (1)-invariants of the representation which
is parabolically induced from M⊗H(L+) UL . Hence, this subspace generates an
irreducible subrepresentation for GL3(Qp). By the results of Herzig, this subrep-
resentation is actually the whole IndG

PπL(M).

6D2.2. Suppose that G is GL4(Qp) and L is isomorphic to GL2(Qp)×GL2(Qp).
Let χL : AL → k be the tensor product of two supersingular characters. It sat-
isfies Hypothesis (?). Denote by M the standard module for H(L) induced by
χL . It is irreducible and 4-dimensional. The same arguments as before ensure
that M⊗H(L+) UL is the tensor product of two supersingular representations of
GL2(Qp), and that the H-module M⊗H(L+)H is irreducible and isomorphic to the
space of I (1)-invariants of the representation which is parabolically induced from
M⊗H(L+) UL . The latter is an irreducible representation by the results of Herzig.

7. Supersingular modules

Fix a supersingular character χ :A→ k. It is defined by its restriction to {τt , t ∈T},
its value ζ ∈ k∗ on E(µ{1,...,n}) and by the fact that for any λ ∈ 3(1) such that
`(eλ) > 0, the scalar χ(E(λ)) is zero.

Let M be a nonzero quotient of the standard module for H induced by χ . Denote
by Mχ the sum of the equivariant subspaces in M for A and the W0-conjugates of
χ (it is nonzero).

Proposition 7.1. Mχ is stable under the action of the finite Hecke algebra.

Proof. This is a direct consequence of the integral Bernstein relations. �
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Recall that the simple modules for the finite Hecke algebra are the characters
[Cabanes and Enguehard 2004, Theorem 6.12]. So the proposition says in partic-
ular that Mχ contains a character for the finite Hecke algebra. Denote by m ∈ Mχ

its support. The set D was introduced by Proposition 2.5 and one has the following
result.

Proposition 7.2. The set of the lengths `(d), where d runs over the elements of D

such that m E(d) 6= 0, is bounded.

Proof. Let d ∈D. Write d = eλw0 ∈W . According to Lemma 2.6, the weight λ is
dominant, so (after a suitable twist of d by a power of the central element $ n) it
decomposes into a linear combination

λ=
∑

1≤i≤n−1

−niµi

with nonnegative integral coefficients. Suppose that one of the coefficients, say n j ,
is at least 2. Then λ+µj is still dominant and we show that

(1) d ′ := eλ+µjw0 ∈ D,

(2) `(d) = `(e−µj )+ `(d ′), which easily implies that E(d) = E(−µj )E(d ′) and
m E(d)= 0.

Since λ+µj is dominant, the only thing one has to check to make sure that d ′∈D

is the following: for any α̌∈8̌+, if 〈λ+µj , α̌〉=0 thenw−1
0 α̌∈8̌+. Since d=eλw0

is already in D, the only tricky case is 〈λ, α̌〉 = −〈µj , α̌〉> 0. By definition of the
weight µj , this condition implies that α̌ ≥ α̌ j and 2≤ n j = 〈λ, α̌ j 〉 ≤ 〈λ, α̌〉, which
contradicts the fact 〈λ, α̌〉 = −〈µj , α̌〉 = 1, since µj is minuscule.

Now for the second assertion, recall from 2B3 that this equality holds if and
only if, for any α̌ ∈ 8̌+,

〈µj , α̌〉 n(α̌, w−1
0 e−λ−µj ) ≥ 0, (7-1)

where the integer n(α̌, w−1
0 e−λ−µj ) is 〈−λ−µj , α̌〉 in the case w−1

0 α̌ ∈ 8̌+ and
1−〈λ+µj , α̌〉 if w−1

0 α̌ ∈ 8̌−. In the case w−1
0 α̌ ∈ 8̌+, inequality (7-1) obviously

holds. Suppose now that w−1
0 α̌ ∈ 8̌− and that 〈µj , α̌〉 = −1. Then α̌ ≥ α̌ j , so

again, 2≤ 〈λ, α̌〉 and n(α̌, w−1
0 e−λ−µj )≤ 0. �

Choose d ∈ D an element with maximal length such that m E(d) 6= 0.

Theorem 7.3. The element m E(d) is an eigenvector for the action of the affine
Hecke algebra.

Proof. With Lemmas 2.6 and 4.4 we compute E(d)= τ ∗d−1 for any d ∈D. First note
that the braid relations in H ensure that m E(d) is an eigenvector for the elements of
the form τt with t ∈T. Let s ∈ Saff. We have to show that m E(d)τ ∗s is proportional
to m E(d).



Parabolic induction and Hecke modules in characteristic p for p-adic GLn 735

• If `(ds) = `(d)− 1, then τ ∗d−1 = τ
∗

(sd)−1τ
∗
s . In H⊗Z k, where (τ ∗s )

2
= τ ∗s νs

(Remark 3.1), we have τ ∗d−1τ
∗
s = τ

∗

d−1νs , so m E(d)τ ∗s = m E(d)νs , which is
proportional to m E(d) by our first remark.

• If `(ds) = `(d)+ 1, then τ ∗
(ds)−1 = τ

∗

d−1τ
∗
s . If ds ∈ D, then 0 = m E(ds) =

mτ ∗
(ds)−1 = m E(d)τ ∗s by the maximal property of `(d). If ds 6∈ D, then

Proposition 2.7 says that there exists w0 ∈ W0 such that ds = w0d with
`(w0)+ `(d)= `(ds). So

E(d)τ ∗s = τ
∗

w−1
0

E(d).

Since m is a character for the finite Hecke algebra, mτ ∗
w−1

0
is proportional to

m, so m E(d)τ ∗s is proportional to m E(d). �

The statement of the theorem is exactly the claim of [Vignéras 2005, Conjec-
ture 1], where it is proven that it implies the numerical correspondence described
by Theorem 1.1 in our introduction.

8. Generic spherical Hecke algebra and Iwahori–Hecke algebra

8A. Denote by ∗ the convolution operator in the generic pro-p-Hecke algebra H

and by eI ∈ H the characteristic function of the Iwahori subgroup. The generic
Iwahori–Hecke algebra H coincides with the algebra eI ∗H∗eI with unit eI , so all
the results of Sections 3 and 4 have (well-known) analogs in the Iwahori case. The
generic Iwahori–Hecke algebra H has Z[q]-basis (Tw)w∈W , where Tw= eI ∗τw∗eI

corresponds to the double coset Iw I , satisfying the following braid and quadratic
relations.

• TwTw′ = Tww′ for any w, w′ ∈W such that `(ww′)= `(w)+ `(w′),

• T2
s = q + (q − 1)Ts for s ∈ Saff.

Denote by 2 the classic Bernstein embedding

2 : Z[q±1/2
][3] →H⊗Z[q] Z[q±1/2

]

naturally arising from the Bernstein map θ of Section 4A and satisfying2(λ)= Teλ

for any antidominant weight λ ∈3. For w ∈W , define E(w) := eI ∗ E(w)∗ eI . It
is explicitly given by the formula

E(w)= q(`(w)−`(w0)−`(eλ1 )+`(eλ2 ))/22(λ)Tw0

for λ ∈ 3 and w0 ∈ W0 such that w = eλw0 and λ1, λ2 ∈ 3 are antidominant
weights satisfying λ= λ1−λ2. Theorem 4.5, translated to the Iwahori case, gives
the following results (see also [Vignéras 2006, Chapitre 3]). The image A of E :
Z[q][3] → H coincides with the intersection of H with the image of 2. It has
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Z[q]-basis (E(λ))λ∈3. As a Z[q]-algebra, it is generated by the elements

(E(λI ))I({1,...,n}, E(λ{1,...,n})±1

with the relations
E(λI )E(λJ )= qbcE(λI∪J )E(λI∩J ) (8-1)

for any I, J ⊂ {1, . . . , n} with |I ∩ J | = a, |I | = a+ b, |J | = a+ c. The center of
H is the space of W0-invariants in A. It is equal to the Z[q]-algebra of polynomials
in the variables

Z1, . . . , Zn−1, Z±1
n ,

where, for i ∈ {1, . . . , n}, we denote by Zi the central element

Zi =
∑

w0∈W0/W0(µi )

E(w0µi ).

8B. Integral Satake isomorphism. We closely follow the work of Schneider and
Teitelbaum [2006], who introduce a renormalized version of the classic Satake
map in order to get a p-adic Satake isomorphism, and check that their description
provides us in addition with an integral Satake isomorphism.

8B1. In Section 4B, we defined a twisted action of W0 on the weights. Denote by
Z[q±1/2

][3]W0,γ the space of invariants of Z[q±1/2
][3] under this action. It has

Z[q±1/2
]-basis {σλ}λ with

σλ =
∑

w0∈W0/W0(λ)

w0 � λ=
∑

w0∈W0/W0(λ)

γ(w0, λ)
w0λ,

where λ runs over the set 3anti of antidominant weights. Note that σλ is well-
defined for any weight λ thanks to property (c) (of Section 4B) of the cocycle γ .

We call the generic spherical Hecke algebra and denote by HZ[q](G, K0) the
Z[q]-algebra Z[q][K0\G/K0] of the functions with finite support on the double
cosets of G modulo K0, with the usual convolution product. The Z[q±1/2

]-algebra
HZ[q](G, K0)⊗Z[q] Z[q±1/2

] will be denoted by HZ[q±1/2](G, K0).
A system of representatives for the double cosets K0\G/K0 is given by the set

3anti of antidominant weights. For λ∈3, denote by ψλ the characteristic function
of K0 eλK0. The results of [Schneider and Teitelbaum 2006, p. 23] with ξ = 1 give
the next theorem, the proof of which involves the subsequent lemma.

Theorem 8.1. There is an injective morphism of Z[q±1/2
]-algebras

S :HZ[q±1/2](G, K0)→ Z[q±1/2
][3],

ψλ, λ ∈3anti 7→
∑
η∈3anti

c(η, λ)ση, (8-2)

where c(η, λ)= [(UeηK0∩K0eλK0)/K0]. Its image is equal to Z[q±1/2
][3]W0,γ .
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Lemma 8.2. If η, λ ∈3 are antidominant weights, then

(1) c(λ, λ)= 1, and

(2) c(η, λ)= 0 unless λ− η is an antidominant weight.

Note that, the coefficient c(η, λ) being integral, the image of HZ[q](G, K0) by
the map S lies in Z[q][ σλ, λ ∈ 3anti]. From this lemma, one also deduces the
following result.

Lemma 8.3. The image of HZ[q](G, K0) by the map S is Z[q][ σλ, λ ∈3anti].

Proof. One has to check that any σλ with λ∈3anti lies in the image of HZ[q](G, K0)

by the map S. Recall that the element $ n
= eµn is central in G, so if the weight λ

has the form kµn with k ∈Z, then σλ is the image by S of ψkµn , which is invertible
in HZ[q](G, K0). So it remains to prove the property for nontrivial weights λ that
can be written λ=

∑n−1
i=1 kiµi , with ki ∈N, and we do it by induction on

∑n−1
i=1 ki .

The only antidominant weights η such that λ−η is antidominant are the
∑n−1

i=1 miµi

with 0≤mi ≤ ki . By induction, if such an η satisfies η 6= λ, then ση is in the image
of HZ[q](G, K0) by S. Lemma 8.2(1) then ensures that it is also true for σλ. �

We have checked that the map in Theorem 8.1 actually defines an integral ver-
sion of a Satake isomorphism: the restriction of S to the generic spherical algebra
HZ[q](G, K0) defines an isomorphism

S :HZ[q](G, K0)
∼
→ Z[q][σλ, λ ∈3anti]. (8-3)

An important consequence of Lemma 4.2 and property (a) of the cocycle γ is
the fact that for any w0 ∈ W0, the coefficient γ(w0, λ) belongs to Z[q] if λ is
antidominant. So σλ actually lies in Z[q][3]. The supports of the elements σλ
being disjoint for λ ∈3anti and each coefficient γ(1, λ) being 1, one obtains

Z[q±1/2
][3]W0,γ ∩Z[q][3] = Z[q][ σλ, λ ∈3anti]. (8-4)

8C. Compatibility of Bernstein and Satake transforms. Note that for any anti-
dominant weight λ, the element

2(σλ)=
∑

w0∈W0/W0(λ)

E(w0λ) (8-5)

belongs to the center of H. The description of the center of H in Section 8A implies
the following.

Proposition 8.4. Composing 2 with the isomorphism (8-3) gives an isomorphism
between HZ[q](G, K0) and the center of H.
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For 1 ≤ i ≤ n, denote by Ti the element ψµi . The generic spherical algebra
HZ[q](G, K0) is an algebra of polynomials in the variables T1, . . . , Tn−1, T±1

n .
Consider the G-equivariant map

Z[q][I\G] → Z[q][K0\G],

f 7→ eK0 ∗ f,
(8-6)

where eK0 denotes the characteristic function of K0 and the convolution product is
given by

eK0 ∗ f (x)=
∑

t∈G/I

eK0(t) f (t−1x)=
∑

t∈I\K0

f (t x) for x ∈ G.

Proposition 8.5. Composing the maps

HZ[q](G, K0)
2◦S
−→ A

eK0∗ .
−→ Z[q][K0\G]

gives the identity on HZ[q](G, K0).

Proof. See [Schneider and Stuhler 1991, p. 32]. �

Note that the compatibility refers to the classic Bernstein map and the integral
Satake transform.

8D. Denote by R the mod p reduction of the map (8-6), that is, the G-equivariant
map

indG
I 1k→ indG

K0
1k,

f 7→ eK0 ∗ f,
(8-7)

where indG
I 1k and indG

K0
1k denote respectively the compact induction of the trivial

character with values in k of the Iwahori subgroup I and of the maximal compact
subgroup K0.

Proposition 8.6. Let µ ∈ 3 be a minuscule weight. The image by R of E(µ) ∈
A⊗Z[q] k is equal to ψµ ∈ HZ[q](G, K0)⊗Z[q] k if µ is a dominant weight, and to
zero otherwise.

The proof will be a consequence of the following lemmas.

Lemma 8.7. For µ ∈3 dominant and minuscule,

K0eµK0 =
∐

d∈D, d�eµ
K0d I,

where � denotes the extended Bruhat order on W .

Proof. We have to prove that for µ ∈ 3 dominant and minuscule, D ∩ K0eµK0

= {d ∈ D, d � eµ}. For any such weight µ, the corresponding translation can be
written eµ=$ kw0 with k ∈ {0, . . . , n} and w0 ∈W0. By definition of the extended
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Bruhat order, an element d ∈W satisfies d � eµ if and only if it has the form d =
$ kw withw∈W0 such thatw�w0. So {d ∈D, d� eµ}⊂D∩K0eµK0. Let d ∈D.
Lemma 2.6 says that d can be written d = eλw with w ∈W0 and λ∈3 a dominant
weight such that `(eλ)= `(d)+ `(w−1). If d ∈ K0eµK0, then K0eλK0 = K0eµK0

and λ = µ. Since $ has length zero, one then has `(w0w)+ `(w
−1) = `(w0), so

w0w � w0 and d =$ kw0w � eµ. �

Lemma 8.8. For w ∈W ,

R(Tw)= |I\(K0 ∩ Iw Iw−1)| 1K0w I =

{
1K0w I if w ∈ D,

0 otherwise.
Proof. By definition, the map (8-6) sends the characteristic function Tw of Iw I
onto |I\(K0∩Iw Iw−1)| 1K0w I . We have to show that the index |I\(K0∩Iw Iw−1)|

is equal to 1 if w ∈D and is equal to a nontrivial power of q otherwise. If w ∈D,
then by length property, one easily checks that K0 ∩ Iw Iw−1

= I . Suppose now
that w is not an element of D, that is, that it is not the minimal length element in
W0w: there exists s ∈ S0 such that Iw I = I s I sw I . Hence Iw Iw−1

∩K0 contains
I s I s, which has q right cosets modulo I . �

Lemma 8.9. For any dominant weight λ ∈3, the following holds in H⊗Z[q] k:

E(λ)=
∑

w∈W, w�eλ
Tw.

Proof. Let us show that for any x ∈W , one has

T∗x−1 =

∑
w∈W, w�x

Tw ∈H⊗Z[q] k.

This proves the lemma because E(λ)= T∗e−λ for a dominant weight λ. It is enough
to show the equality for x ∈Waff, and we do it by induction on `(x). If x = s ∈ Saff,
then T∗x−1 = T∗s = Ts + 1− q = Ts + 1 in H⊗Z[q] k. Now suppose x ∈ Waff and
s ∈ S is such that `(sx)= `(x)+ 1. In H⊗Z[q] k, one has by induction

T∗(sx)−1 = T∗s T∗x−1 = (Ts + 1)
∑
y�x

Ty =
∑
y�x

Ts Ty +
∑
y�x

Ty .

Let y� x . If `(sy)=`(y)+1, then Ts Ty=Tsy and sy� sx . Otherwise Ts Ty=−Ty ,
so T∗

(sx)−1 =
∑

sy′�y′�sx
Ty′ +

∑
y�sx, y�sy

Ty =
∑

y�sx
Ty . �

Lemma 8.10. If µ is minuscule and not dominant, then R(E(µ))= 0.

Proof. Let λ be the unique antidominant weight in the orbit of µ and d ∈ W0

with minimal length in W0(λ)d such that µ = d−1
λ. Lemma 4.4 says that E(µ) =

Teµd−1 T∗d−1 . For any w0 ∈ W0, we have `(eµd−1)+ `(w0)= `(eµd−1w0), which
can be seen by applying 2B2 and recalling that for any α̌ ∈ 8̌+, if 〈λ, α̌〉 = 0
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then d−1α̌ ∈ 8̌+. This implies that the elements of the Iwahori–Matsumoto basis
appearing in the decomposition of E(µ) have the form τeµd−1w0 , with w0 ∈W0. In
particular, if µ is not dominant, then eµd−1w0 is not an element of D, by Lemma
2.6, and E(µ) is sent by R on zero, by Lemma 8.8. �

Proof of Proposition 8.6. Let µ ∈3 be a minuscule weight. If it is not dominant,
Lemma 8.10 says that its image by R is zero. If it is dominant, Lemmas 8.8 and
8.9 together say that R(E(µ)) is the sum of the characteristic functions of K0w I ,
where w ∈ D, w � eµ, which, by Lemma 8.7, is the characteristic function of
K0eµK0. �

8E. On Barthel–Livné’s unramified representations for GLn. For i ∈{1, . . . , n},
choose αi ∈ k with αn 6= 0. Set α0 = 1. Define χ0 to be the k-character of A with
dominant support given by E(µ{n−i+1,...,n}) 7→ αi for i ∈ {1, . . . , n}.

Define the associated character of H(G, K0)Z[q]⊗k by Ti 7→αi for i ∈{1, . . . , n}
and denote by

indG
K0

1k∑
i (Ti −αi )

the quotient of the universal representation indG
K0

1k by
∑

i (Ti −αi ) indG
K0

1k .
By the results of 8D, the G-equivariant surjective morphism

indG
I 1k→

indG
K0

1k∑
i (Ti −αi )

,

f 7→ R( f ) mod
∑

i

(Ti −αi )
(8-8)

factors into a surjective G-equivariant morphism

χ0⊗A indG
I 1k→

indG
K0

1k∑
i (Ti −αi )

. (8-9)

Example 8.11. Suppose that one of the αi , i ∈ {1, . . . , n − 1} is nonzero. The
unique character of A with antidominant support in the W0-orbit of χ0 satisfies
Hypothesis (?) of Section 5D if and only if αi−1αiαi+1 6= 0 implies αi

2
6=αi−1αi+1

for any i ∈ {1, . . . , n− 1}.
Under this hypothesis and if none of the elements αi is zero, then, by the results

of [Ollivier 2006a], the representation χ0⊗A indG
I 1k is irreducible and isomorphic

to the principal series induced by the unramified character

T → k∗, µi 7→ α−1
i ,

and (8-9) is an isomorphism.
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Patching and admissibility over
two-dimensional complete local domains

Danny Neftin and Elad Paran

We develop a patching machinery over the field E = K ((X, Y )) of formal power
series in two variables over an infinite field K . We apply this machinery to
prove that if K is separably closed and G is a finite group of order not divisible
by char E , then there exists a G-crossed product algebra with center E if and
only if the Sylow subgroups of G are abelian of rank at most 2.

Introduction

Complete local domains play an important role in commutative algebra and alge-
braic geometry, and their algebraic properties were already described in 1946 by
Cohen’s structure theorem. The Galois theoretic properties of their quotient fields
were extensively studied over the past two decades. The pioneering work in this
line of research is due to Harbater [1987], who introduced the method of patching
to prove that if R is a complete local domain with quotient field K , then every
finite group occurs as a Galois group over K(x). This result was strengthened by
Pop [1996] and, in a different language, by Haran and Jarden [1998], who showed
that if moreover R is of dimension 1, then every finite split embedding problem
over K(x) is solvable.

The first step towards higher dimension was made by Harbater and Stevenson
[2005], who essentially showed that if R is a complete local domain of dimension
2, then every finite split embedding problem over Quot R has |R| independent
solutions. That is, the absolute Galois group of Quot R is semifree of rank |R| (see
[Bary-Soroker et al. 2008] for details on this notion). This result was generalized
in [Pop 2010; Paran 2010], where it is shown that if K is the quotient field of a
complete local domain of dimension exceeding 1, then GalK is semifree.

Despite the major progress made in the study of Galois theory over these fields,
little is known about the structure of division algebras over them. A step in that
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direction was recently made by Harbater et al. [2009], who consider a question re-
lating Galois theory and Brauer theory over a field E : Which groups are admissible
over E? That is, which finite groups occur as a Galois group of an adequate Galois
extension F/E (recall that an extension F/E is called adequate if F is a maximal
subfield in an E-central division algebra). Equivalently, for which groups G there
is a G-crossed product division algebra with center E . Note that for E as above
and a finite extension F/E , the above maximality requirement can be omitted since
any F which is a subfield of an E-division algebra is also a maximal subfield of
some E-division algebra (see Remark 3.9).

This question was first considered by Schacher [1968] over global fields. He
proved that any Q-admissible group has metacyclic Sylow subgroups and conjec-
tured the converse. Admissibility has been studied extensively over global fields
[Stern 1982; Sonn 1983; Schacher and Sonn 1992; Liedahl 1996; Feit 2004; Neftin
2009], function fields, and fields of Laurent series [Fein et al. 1992; Fein and
Schacher 1995a; 1995b].

The main theorem of [Harbater et al. 2009] asserts that if E is a function field
in one variable over a complete discretely valued field with an algebraically closed
residue field, then a finite group G of order not divisible by char E is admissible
over E if and only if each of the Sylow subgroups of G is abelian of rank at most
2 (i.e., generated by two elements).

In this work, we take the next natural step, and determine the admissible groups
over quotient fields of equicharacteristic (that is, having the same characteristic
as their residue field) two-dimensional complete local domains, with a separa-
bly closed residue field. In particular, we determine the admissible groups over
C((X, Y )), whenever C is a separably closed field. This problem was posed to the
first author by David Harbater. We show that the result of [Harbater et al. 2009]
holds over these fields as well.

Main Theorem. Let R be an equicharacteristic complete local domain of dimen-
sion 2, with a separably closed residue field. Let G be a finite group of order not
divisible by char R. Then G is admissible over Quot R if and only if each of its
Sylow subgroups is abelian of rank at most 2.

The “only if” part of this result is essentially proven in [Harbater et al. 2009],
using results of [Colliot-Thélène et al. 2002].

The “if” part actually holds in greater generality — the residue field need not
be separably closed, it suffices that it contains a primitive root of unity of order k,
for each k ∈ N not divisible by char R (Proposition 3.7). Our proof strategy for
the backward direction is as follows. We first use Cohen’s structure theorem to
reduce the problem from Quot R to a field E of the form K((X, Y )). We then
apply a patching argument as in [Harbater et al. 2009]; we explicitly realize each
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Sylow subgroup of G by a Galois extension of E which is a maximal subfield in
some E-central division algebra. We then patch these realizations into a Galois
extension F/E with group G, in a way that also patches the division algebras into
an E-central division algebra D containing F as a maximal subfield.

A key ingredient in our proof is a patching machinery over fields of the form
K((X, Y )), where K may be an arbitrary infinite field. In [Pop 2010; Paran 2010],
problems over K((X, Y )) are lifted to K((X, Y ))(Z), solved there (via different
methods), and then the solutions are specialized into solutions over K((X, Y )) using
Hilbertianity. This approach seems inapplicable to our current goal, since ade-
quate extensions usually do not remain adequate under specialization. Instead we
patch groups directly over K((X, Y )). To this end we define “analytic fields” over
K((X, Y )), satisfying the axioms of algebraic patching (i.e., matrix factorization
and intersection), as presented in [Haran and Jarden 1998] (a slightly different ax-
iomatization from the “field patching” axiomatization of [Harbater and Hartmann
2007]). The construction of these analytic rings is of a rigid-geometric nature. In
recent communication with David Harbater, we learned that a formal-geometric
analogue of this form of patching was carried out by him in [2003, Theorem 5.3.9]
in order to solve split embedding problems over the field C((X, Y )) of formal power
series in two variables over the complex numbers. The core patching arguments
in the proof of [Harbater 2003, Theorem 5.3.9] can be extended to replace C by
an arbitrary field and used to study admissible groups, in a similar fashion to our
development here.

1. Analytic fields

In this section we establish our patching machinery. Fix an infinite field K , and let
E = K((X, Y )) = Quot(K [[X, Y ]]) be the field of formal power series over K in
the variables X and Y . Denote by v the order function of the maximal ideal 〈X, Y 〉
in K [[X, Y ]]. Then v extends uniquely to a discrete rank-1 valuation of E . Note
that K [[X, Y ]] is strictly contained in the valuation ring of v in E .

Construction 1.1 (analytic rings over E). Let I be a finite set. For each i ∈ I let
ci ∈ K , such that ci 6= c j for i 6= j (such a choice is possible since K is infinite).
For each i ∈ I denote zi = Y/(X − ci Y ) ∈ E . For each J ⊆ I , consider the
subring K [z j | j ∈ J ][X, Y ] of E , and let DJ be the completion of this ring with
respect to v. Note that for each J ⊆ I , DJ ⊆ DI , and that D∅ = K [[X, Y ]], since
K [[X, Y ]] is complete. Let Q = Quot DI , and for each i ∈ I let Qi = E · DIr{i}
and Q′i =

⋂
j 6=i Q j .

For the rest of this section, we fix the notation of Construction 1.1. A geometric
interpretation of the rings defined in Construction 1.1 appears in Remark 1.12. In
order to present this interpretation, we need several lemmas.
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Lemma 1.2. Let i ∈ I . Then v is trivial on K(zi ).

Proof. It suffices to prove that v is trivial on K [zi ]. Let 0 6= f =
∑d

n=0 anzn
i ∈K [zi ],

with a0, . . . , ad ∈ K . Without loss of generality, a0 6= 0. We have

d∑
n=0

anzn
i =

∑d
n=0 anY n(X − ci Y )d−n

(X − ci Y )d
.

By opening parentheses, the numerator in this expression can be written as a sum
of monomials of degree d. For n = 0 we get the summand a0 Xd , while all other
monomials in this presentation have a positive power of Y , so they do not cancel
a0 Xd . Thus the numerator has value d , and clearly so does the denominator, so
v( f )= 0. �

Corollary 1.3. The valuation v is trivial on K [zi | i ∈ I ].

Proof. Note that for each i, j ∈ I we have K(zi ) = K(z j ). Thus by the preceding
lemma, v is trivial on K(zi ) = K(z j | j ∈ I ), and in particular v is trivial on the
subring K [zi | i ∈ I ]. �

Lemma 1.4. Let J ⊆ I and j ∈ J . Then the ring K [zl | l ∈ J ][X − c j Y ] is
isomorphic to the ring of polynomials in one variable over K [zl | l ∈ J ].

Proof. To prove the claim we show that if
∑d

n=0 an(X−c j Y )n=0, for a0, . . . , ad ∈

K [zl | l ∈ J ], then a0 = · · · = ad = 0. If not, suppose (without loss of generality)
that a0 6= 0. By Corollary 1.3, v(a0)= 0 while v(ak(X−c j Y )k)= v(ak)+k= k> 0
for each k> 0. Hence∞= v(0)= v

(∑d
n=0 an(X−c j Y )n

)
= 0, a contradiction. �

By Lemma 1.4, for each J ⊆ I, j ∈ J , each element of K [zl | l ∈ J ][X− c j Y ]
has a unique presentation as a polynomial in X − c j Y . Thus we have a natural
valuation on this ring, given by v′

(∑d
n=0 an(X−c j Y )n

)
=min(n | an 6= 0), and we

may form the completion K [zl | l ∈ J ][[X − c j Y ]] of this ring with respect to v′.

Proposition 1.5. Let J ⊆ I and j ∈ J . Then DJ = K [zl | l ∈ J ][[X − c j Y ]], and v
is given on DJ by v

(∑
∞

n=0 an(X − c j Y )n
)
=min(n | an 6= 0).

Proof. By Lemma 1.4, v coincides with v′ (given in the paragraph preceding this
proposition) on K [zl | l ∈ J ][X − c j Y ]; hence K [zl | l ∈ J ][[X − c j Y ]] is the
completion of K [zl | l ∈ J ][X − c j Y ] with respect to v, and v coincides with v′

on the completion. Note that K [zl | l ∈ J ][X − c j Y ] = K [zl | l ∈ J ][X, Y ] (since
Y = z j (X − c j Y ) and X = (1+ c j z j )(X − c j Y )); hence by the definition of DJ

we are done. �



Patching and admissibility over two-dimensional complete local domains 747

Lemma 1.6. Let J ⊆ I . Then K [z j | j ∈ J ] =
∑

j∈J K [z j ].

Proof. For each i 6= j ∈ J we have

zi · z j =
Y 2

(X − ci Y ) · (X − c j Y )
=

1
ci−c j

· zi +
1

c j−ci
z j .

The claim now follows by induction on |I |. �

Proposition 1.7. Let J, J ′ ⊆ I . Then for each f ∈ DJ∪J ′ there exist f1 ∈ DJ and
f2 ∈ DJ ′ with v( f1), v( f2)≥ v( f ), such that f = f1+ f2.

Proof. Replace J with J r (J ∩ J ′) to assume that J ∩ J ′ =∅. Moreover, without
loss of generality J, J ′ are nonempty. Choose j ∈ J and j ′ ∈ J ′, and let

AJ = K [zl | l ∈ J ], AJ ′ = K [zl | l ∈ J ′], A = K [zl | l ∈ J ∪ J ′].

By Proposition 1.5, DJ = AJ [[X − c j Y ]], DJ ′ = AJ [[X − c j ′Y ]], and DJ∪J ′ =

A[[X−c j Y ]]. Let f =
∑
∞

n=m an(X−c j Y )n ∈ DJ∪J ′ , with am 6= 0. Then v( f )=m
by Proposition 1.5. By Lemma 1.6, A = AJ + AJ ′ . For each n ≥ m, let bn ∈

AJ , b′n ∈ AJ ′ such that an = bn + b′n . Let f1 =
∑
∞

n=m bn(X − c j Y )n and f2 =

f − f1 =
∑
∞

n=m b′n(X − c j Y )n . Then f1 ∈ DJ and v( f1)≥m. It remains to prove
that f2 ∈ DJ ′ and that v( f2)≥ m. This follows by the equality:

f2 =

∞∑
n=m

b′n(X − c j Y )n =
∞∑

n=m

b′n((X − c j ′Y )+ (c j ′ − c j )Y )n

=

∞∑
n=m

(b′n(1+ (c j ′ − c j )z j ′)
n)(X − c j ′Y )n. �

The next lemma is a variant of [Harbater and Hartmann 2007, Lemma 3.3],
allowing nonprincipal ideals.

Lemma 1.8. Let R ⊆ R1 and R2 ⊆ R0 be domains such that R0 = R1+ R2. Let w
be a nontrivial discrete valuation on Quot R0 such that R is complete with respect
to w and w(x) ≥ 0 for all x ∈ R0. Let p, p1, p2, and p0 be the centers of w in R,
R1, R2, and R0, respectively. Suppose that pR0 = p0 and R/p = R1/p1 ∩ R2/p2

(inside R0/p0). Then R1 ∩ R2 = R.

Proof. First, note that p0 = p1 + p2. Indeed, suppose x ∈ p0 = pR0. Then x =∑n
i=1 ai xi for some a1, . . . , an ∈ R0 and x1, . . . , xn ∈ p. For each 1≤ i ≤ n, write

ai = bi + b′i with bi ∈ R1 and b′i ∈ R2. Then
∑

ai xi =
∑

bi xi +
∑

b′i xi ∈ p1+ p2,
since p⊆ p1, p2.

Let S = R1 ∩ R2 and q be the center of w at S. Then the sequence 0→ S→
R1 × R2→ R0→ 0 is exact (where the second map is the diagonal map and the
third map is substraction). This sequence induces an exact sequence 0→ S/q→
(R1/p1)× (R2/p2)→ R0/p0→ 0. Indeed, the only nontrivial part in showing this
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is to check that the kernel of the substraction map is contained in the image of the
diagonal map. Suppose (x1+p1, x2+p2)∈ (R1/p1)×(R2/p2) satisfies x1−x2 ∈p0.
Since p0 = p1 + p2 we may choose y1 ∈ p1, y2 ∈ p2 such that x1 − y1 = x2 − y2.
Then (x1+ p1, x2+ p2)= (x1− y1+ p1, x2− y2+ p2) belongs to the image of the
diagonal map. Thus the sequence is exact.

Since p is the center ofw on R and p1 the center ofw on R1, we have R∩p1= p.
In particular, the diagonal map R/p→ (R1/p1)× (R2/p2) is injective. Since R0 =

R1+R2, the substraction map (R1/p1)×(R2/p2)→ R0/p0 is surjective. Thus, since
R/p= R1/p1∩R2/p2, the sequence 0→ R/p→ (R1/p1)×(R2/p2)→ R0/p0→ 0
is also exact. It follows that the natural map R/p→ S/q is an isomorphism. In
particular, S = R+ pS. By induction we have S = R+ pk S for each k ∈ N. Since
p0 = pR0, p 6= 0. Since w is discrete, there exists an integer m such that v(x)≥m
for each x ∈ p. Thus v(x) ≥ mk for each x ∈ pk ; hence R is w-dense in S and
therefore the completion of R with respect to w contains S. By our assumptions,
R is complete; hence R = S. �

Lemma 1.9. The set {zn
i | i ∈ I, n ∈ N∪ {0}} is K-linearly independent.

Proof. Suppose a0 +
∑

i∈I
∑di

n=1 ai,nzn
i = 0, where di ∈ N and a0, ai,n ∈ K for

each i and n. We wish to show that a0 = ai,n = 0 for each i and n. Suppose
there exist i ∈ I and n ∈ N such that ai,n 6= 0. Without loss of generality, n = di .
Since X − ci Y is a prime element of K [X, Y ], it defines a discrete valuation on
K(X, Y ), which we denote by w. We have w(Y )=w(Y −c j X)= 0 for each j 6= i
in I . Thus w

(
a0 +

∑
j 6=i
∑d j

n=1 a j,nzn
j

)
≥ 0, while w

(∑di
n=1 ai,nzn

i

)
= −di . Thus

w(0)= w
(
a0+

∑
j∈I
∑d j

n=1 a j,nzn
j

)
=−di , a contradiction. �

Proposition 1.10. Suppose J, J ′ ⊆ I . Then DJ ∩ DJ ′ = DJ∩J ′ .

Proof. Clearly, DJ∩J ′ ⊆ DJ ∩ DJ ′ . For the converse inclusion, we distinguish
between two cases. First suppose that J ∩ J ′ 6= ∅, and fix j ∈ J ∩ J ′. Then
DJ = K [zk | k ∈ J ][[X − c j Y ]] and DJ ′ = K [zk | k ∈ J ′][[X − c j Y ]]; hence
DJ ∩DJ ′ = (K [zk | k ∈ J ]∩K [zk | k ∈ J ′])[[X−c j Y ]]. By Lemma 1.9 K [zk | k ∈ J ]
∩K [zk | k ∈ J ′] = K [zk | k ∈ J ∩ J ′]; hence y ∈ DJ∩J ′ .

Now suppose that J ∩ J ′=∅ and let R= K [[X, Y ]] = D∅, R1= DJ , R2= DJ ′ ,
and R0=DJ∪J ′ . Since v( f )≥0 for each f ∈K [z j | j ∈ J∪ J ′][X, Y ], we also have
v( f ) ≥ 0 for each f in the completion R0. The ring R is complete with respect
to v, and R = R1+ R2 by Proposition 1.7. Let p, p1, p2, and p0 be the centers of
v at R, R1, R2, and R0, respectively. Then p is generated by X and Y , and p0 is
generated by X − c j Y for any j ∈ J , by Proposition 1.5. It follows that pR0 = p0.
In order to apply Lemma 1.8, it remains to check that R1/p1 ∩ R2/p2 = R/p in
R0/p0. Indeed, we have R1/p1 = K [z j | j ∈ J ], R2/p2 = K [z j | j ∈ J ′], and
R0/p0 = K . By Lemma 1.9, we are done. �
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Proposition 1.11. For each i ∈ I , Q′i ∩ Qi = E.

Proof. Since Q′i =
⋂

j 6=i Q j , the assertion is that
⋂

j∈I Q j = E . Indeed, let
y ∈

⋂
j∈I Q j . For each j ∈ J write y = f j/q j with f j ∈ DIr{ j}, q j ∈ K [[X, Y ]].

Taking a common denominator we may assume that q j is independent of j , and
denote q = q j (for all j ∈ J ). It suffices to prove that qy ∈ K [[X, Y ]] ⊆ E . But
qy = q j y = f j ∈ DIr{ j} for all j ∈ I ; hence, by Proposition 1.10,

qy ∈
⋂
j∈I

DIr{ j} = D∅ = K [[X, Y ]]. �

The next remark gives a rigid-geometric and a formal-geometric interpretation
of the rings DJ .

Remark 1.12. Let J ⊆ I , j ∈ J , and t = X − c j Y . By Proposition 1.5, DJ =

K [zl | l∈ J ][[t]] is the t-adic completion of K [zl | l∈ J ][t]; thus DJ [t−1
] is the t-adic

completion of K [zl | l ∈ J ][t, t−1
]. We have K [zl | l ∈ J ][t, t−1

]⊆ K((t))[zl | l ∈ J ]
⊆ DJ [t−1

]; hence DJ [t−1
] is the t-adic completion of A := K((t))[zl | l ∈ J ]. Let

T = K [[t]], F = K((t)), and s = X/Y . Then s is a free variable over F . Let
vt be the t-adic valuation on F , and extend it to F(s) by vt(s) = 0. Note that
zk = 1/(s− ck) and vt(cl − ck)= 0 for all distinct l, k ∈ J . By [Haran and Jarden
1998, Lemma 3.1(c)] (with wk , K , and x there replaced by zk , F , and s here), each
element 0 6= f ∈ A can be uniquely written as

f = f0+
∑
k∈J

∞∑
n=1

fknzn
k , (1)

where f0, fkn ∈ F are almost all zero. Uniqueness in the presentation (1) implies
that vt( f )=minkn{vt( f0), vt( fkn)}.

By [Haran and Jarden 1998, Lemma 3.3] the completion DJ [t−1
] of A is the

ring of holomorphic functions on the affinoid U = P r
(⋃

l∈J B(cl)
)
, where P is

the projective s-line and B(cl) is a disc of radius 1 with center cl for each l ∈ J
[Fresnel and van der Put 2004, §2.2]. Moreover, each element f ∈ DJ [t−1

] can
be uniquely presented as in (1), where f0 ∈ F and { fln}

∞

n=1 is a null sequence in
F (with respect to vt ) for each l ∈ J . Thus, in the rigid-geometric language, DJ

is the ring of holomorphic functions on U having no pole at t . Its elements are of
the form (1), where the coefficients are now in T (and { fkn}

∞

n=1 is a null sequence
for each k ∈ J ). In particular, T [zl | l ∈ J ] is dense in DJ .

Let X̂ be the projective s-line over T , and let X be its closed fibre. Put

U = X r {cl | l ∈ J }.

Then RU = T [1/(s− cl) | l ∈ J ] = T [zl | l ∈ J ] is the set of functions on X̂ which
are regular on U . Since RU is t-adically dense in DJ = K [1/(s− cl) | l ∈ J ][[t]],
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DJ is the t-adic completion of RU . In formal-geometric language, this means that
DJ = R̂U is the ring of regular functions on the t-adic thickening of U [Harbater
and Hartmann 2007, Notation 4.3].

Corollary 1.13. Let J ⊆ I, j ∈ J .

(a) For each 0 6= g ∈ DJ ,

DJ [(X − c j Y )−1
] = K((X − c j Y ))[zk | k ∈ J ] + gDJ [(X − c j Y )−1

].

(b) For each f ∈ DJ there are h ∈ K [[X−c j Y ]][z j ] and u ∈ D×J such that f = hu.

(c) The ring Q j is a field.

Proof. In the notation of Remark 1.12, each element f ∈ DJ [t−1
] can be written

in the form u · h with u ∈ DJ [t−1
]
× and h ∈ F[z j ], by [Haran and Jarden 1998,

Lemma 3.7]. If f ∈ DJ then we can multiply u and h by a power of t to assume
that u ∈ D×J and h ∈ K [[t]][z j ]. This proves (b). Part (a) is given by [Haran and
Jarden 1998, Corollary 3.8]. By [Harbater and Hartmann 2007, Corollary 4.8] (now
viewing the rings DJ in the formal-geometric context) Quot DJ is the compositum
of K((t))(X/Y ) and DJ . Since K((t))(X/Y ) ⊆ E , we have Quot DJ = E DJ .
Applying this argument for J r { j} instead of J we have Q j = Quot(DIr{ j}) =

E DIr{ j}; hence Quot Q j = Quot(E DIr{ j}) = E Quot(DIr{ j}) = E DIr{ j} = Q j

is a field. �

The proof of the following proposition is based on that of Corollary 4.4 of [Haran
and Jarden 1998]. (We cannot use that corollary as it is, since condition (e′) of that
claim does not hold for DI itself.)

Proposition 1.14. Let i ∈ I , n ∈ N, and b ∈ GLn(Q). There exist b1 ∈ GLn(Qi )

and b2 ∈ GLn(Q′i ) such that b = b1 · b2.

Proof. Denote by | · | the absolute value on Q that corresponds to v. Each of the
rings A = DI , A1 = DIr{i}, and A2 = D{i} is complete with respect to | · | and
Proposition 1.7 asserts that condition (d′) of Example 4.3 of [Haran and Jarden
1998] holds for these rings. We extend | · | to the maximum norm ‖ · ‖ on Mn(Q),
as in the same example. Then Mn(A), Mn(A1), and Mn(A2) are complete with
respect to ‖ · ‖ and condition (d) of [Haran and Jarden 1998, §4] holds. By Cartan’s
lemma [Haran and Jarden 1998, Lemma 4.2], for each a∈GLn(A)with ‖a−1‖<1
there exist a1 ∈ GL1(A1) and a2 ∈ GL1(A2) such that a = a1 · a2.

Let E1 = Quot A1 = Qi and E2 = Quot A2 = Q′i . In order to factor b (which
need not be in GLn(A)), let t = X − ci Y , T = k[[t]]. By Remark 1.12 (for J = I )
A0 = T [zk | k ∈ I ] is a dense subring of A, and by Corollary 1.13(b) there exists
h ∈ A0 such that hb ∈Mn(A). If hb= b1b′2 with b1 ∈GLn(E1) and b′2 ∈GLn(E2),
then b = b1b2 with b2 = b′2/h ∈ GLn(E2). So we may assume that b ∈Mn(A).



Patching and admissibility over two-dimensional complete local domains 751

Let 0 6= d = det(b) ∈ A. By Corollary 1.13(b) there are 0 6= g ∈ A0 and u ∈ A×

such that d = gu. Let b′′ ∈ Mn(A) be the adjoint matrix of b, so that bb′′ = d1.
Let b′ = u−1b′′. Then b′ ∈Mn(A) and bb′ = g1. Put

V = {a′ ∈Mn(A[t−1
]) | ba′ ∈ gMn(A[t−1

])}, V0 = V ∩Mn(A0[t−1
]).

V is an additive subgroup of Mn(A[t−1
]) and gMn(A[t−1

]) ≤ V . By Corollary
1.13(a), Mn(A[t−1

])=Mn(A0[t−1
])+gMn(A[t−1

]); hence V =V0+gMn(A[t−1
]).

Since A0 is dense in A, gMn(A0[t−1
]) is dense in gMn(A[t−1

]). It follows that
V0 = V0 + gMn(A0[t−1

]) is dense in V = V0 + gMn(A[t−1
]). As b′ ∈ V , there

exists a0 ∈ V0 such that ‖b′ − a0‖ < |g|/‖b‖. Put a = a0/g ∈ Mn(Q). Then
ba ∈ Mn(A[t−1

]) and ‖1−ba‖ = ‖(1/g)b(b′−a0)‖ ≤ (1/|g|)‖b‖ · ‖b′−a0‖< 1.
Hence ‖ba‖=1, so each entry in ba has a nonnegative value at v. By Remark 1.12,
v coincides with the t-adic valuation on A; hence all the entries of ba belong to A.
Thus ba ∈ Mn(A), and since ‖1−ba‖< 1 and Mn(A) is complete, ba ∈GLn(A).
In particular, det a 6= 0 and hence a ∈ GLn(Quot A0) ⊆ GLn(E2). By the first
paragraph of this proof, there exist b1 ∈ GLn(A1) ⊆ GLn(E1) and b′2 ∈ GLn(A2)

such that ba = b1b′2. Then b2 = b′2a−1
∈ GLn(E2) satisfies b = b1b2. �

Corollary 1.15. Suppose G is a finite group. For each i ∈ I let Fi be a Galois
extension of E with group Gi contained in G, such that Fi ⊆ Q′i . If G=〈Gi | i ∈ I 〉
then E = (E, Fi , Qi , Q;Gi ,G)i∈I is a patching datum [Haran and Jarden 1998,
Definition 1.1]. In particular, G occurs as a Galois group over E.

Proof. By Corollary 1.13(c), Qi is a field for each i ∈ I . Conditions (2a), (2b),
and (2d) of [Haran and Jarden 1998, Definition 1.1] are given in the hypothesis.
Conditions (2c) and (2e) are given by Propositions 1.11 and 1.14, respectively.
Thus E is a patching datum. By [Haran and Jarden 1998, Lemma 1.3(a)], there
exists a Galois extension F of E with group G. �

2. p-groups

Fix the notation of Section 1, including that of Construction 1.1, and let p denote
a prime number. In this section we realize p-groups of rank at most 2 by adequate
extensions of E , and embed these extensions into the analytic fields.

Lemma 2.1. Let J ⊆ I , j ∈ J , and t = X − c j Y .

(a) Suppose f =
∑d

l=0 fl zl
j ∈ K [[t]][z j ] is a polynomial such that v( f1) = 0 and

v( fl) > 0 for each l > 1. Then f is prime in DJ [t−1
].

(b) The ring DJ [t−1
] is a unique factorization domain.

(c) For each a, b, c ∈ K× with a 6= −b and 2 ≤ m ∈ N, the elements 1+ az j +

tm−1zm
j , 1+ bz j − tm−1zm

j , 1+ cz j are nonassociate primes of DJ [t−1
].
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Proof. Set F= K((t)). Then DJ [t−1
]= F{zk | k ∈ J } (see Remark 1.12). Viewed as

an element of F{z j }, f is regular of pseudodegree 1; see Definition 1.4 of [Haran
and Völklein 1996]. Hence, by Corollary 1.7 of the same work, we have f = u ·q ,
where u ∈ F{z j }

×
⊆ DJ [t−1

]
× and q = q0+z j ∈ F[z j ] is a linear polynomial with

v(q0)≥0. Thus to prove (a), it suffices to show that q is prime in DJ [t−1
]. Without

loss of generality q0 6= 0, and we set c = c j − 1/q0. Then q = z j − 1/(c− c j );
hence, by [Paran 2008, Lemma 6.4(a)] (with D, r , and 1 there replaced by F , 1,
and j here), q generates the kernel of an epimorphism from DJ [t−1

] onto a domain
(actually a field here); hence q is prime. This proves (a).

Since DJ [t−1
] is a principal ideal domain by [Haran and Jarden 1998, Proposi-

tion 3.9], part (b) follows.
By part (a), r = 1+ az j + tm−1zm

j , r ′ = 1+ bz j − tm−1zm
j , and s = 1+ cz j are

primes of DJ [t−1
]. If s | r , then −1/c is a root of r , a contradiction. Thus r and s

(and similarly, r ′ and s) are nonassociates.
If r | r ′ then r | r + r ′. By the argument of the preceding paragraph, r + r ′ =

2+ (a+ b)z j is a prime, nonassociate to r , a contradiction. This proves (c). �

Lemma 2.2. Let K be a field that contains a primitive q-th root of unity, for some
q ∈ N. Let v be a discrete valuation on K which is trivial on the prime field of
K , and let a ∈ K with v(a) = 0. Suppose L = K(a1/q) is a Kummer extension
of K , and that L/K is unramified at v. Then v(xσ ) = v(x) for each x ∈ L and
σ ∈ Gal(L/K ).

Proof. Extend v arbitrarily to L , let O be the valuation ring of v in K , and O ′

the valuation ring of v in L . Since K contains a primitive q-th root of unity,
q is not divisible by p = char K . Thus d = disc(T q

− a, K ) = kaq−1, where
k ∈ Z is not divisible by p. Hence v(d) = 0, and by [Fried and Jarden 2005,
Lemma 6.1.2] we have O ′ = O[a1/q

]. Put α = a1/q and let x =
∑q−1

i=0 biα
n
∈ K ,

with b0, . . . , bq−1 ∈ K . We claim that v(x) = mini v(bi ). Indeed, since L/K is
unramified at v, we may multiply x by a power of a uniformizer of v in K , to
assume that v(x)= 0. Since O ′ = O[α], v(bi )≥ 0 for each 0≤ i ≤ q − 1. On the
other hand v(x) ≥ mini v(biα

i ) = mini v(bi ), since v(α) = (1/n)v(a) = 0. Thus
v(bi )= 0 for some 0≤ i ≤ q − 1; hence v(x)=mini v(bi ).

Now, let σ ∈Gal(L/K ) and let x =
∑q−1

i=0 biα
n
∈ K , with b0, . . . , bq−1 ∈ K , be

an arbitrary element. We have ασ = ζα, where ζ is some q-th root of unity. Then
v(xσ )= v

(∑q−1
i=0 biζ

iαi
)
=mini v(biζ

i )=mini v(bi )= v(x). �

Recall that given a field K , any K-central simple algebra A is of the form Mn(D)
for some K-division algebra D. The index of A is defined to be ind A=

√
dimK D.

So, A is a division algebra if and only if ind A =
√

dimK A. Let us denote Brauer
equivalence by ∼ and the exponent of A (its order in the Brauer group) by exp A.
A subfield F of A is a maximal subfield of A if and only if dimK A = [F : K ]2.
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Furthermore, a field F is a maximal subfield of A if and only if dimK A= [F : K ]2

and F splits A [Reiner 1975, Theorem 28.4 and Corollary 28.11].
The proof of the next proposition is partially based on that of [Harbater et al.

2009, Proposition 4.4].

Proposition 2.3. Fix i ∈ I , and let H be an abelian p-group of rank at most 2,
where p 6= char K . Suppose K contains an |H |-th primitive root of unity. Let E ′

be a finite extension of E. Then there exists an H-Galois extension Fi/E such that
Fi ⊆ Q′i , Fi is contained as a maximal subfield in an E-division algebra D′i , and
D′i ⊗E E ′Qi remains a division algebra (where E ′Qi is the compositum of E ′ and
Qi in an algebraic closure of Q).

Proof. Let us start by constructing Fi . Write H =Cq×C ′q , where q and q ′ are pow-
ers of p. For each k ∈N, the elements X−ci Y+Y k and X+ci Y−Y k are irreducible
and hence prime in the unique factorization domain K [[X, Y ]]. Only finitely many
primes of K [[X, Y ]] are ramified at E ′/E ; hence for a sufficiently large 2≤ k ∈N,
f = X − ci Y + Y k , and g = X + ci Y − Y k are unramified at E ′/E . That is,
the corresponding valuations v f and vg are unramified. Let a = f/(X − ci Y )
and b = g/(X − ci Y ). Clearly v f (X − ci Y ) = v f (g) = 0; hence v f (a) = 1
and v f (b) = 0. Similarly, vg(a) = 0 and vg(b) = 1. Consider the polynomial
h(U ) = U q

− a over D{i} = K [zi ][[X − ci Y ]]. Note that a = 1+ zk
i (X − ci Y )k−1,

hence h(1) ∈ (X − ci Y )D{i} and h′(1) = q ∈ K× ⊆ D×
{i}. By the ring version of

Hensel’s lemma (for the ideal (X − ci Y )D{i}) h(U ) has a root s ∈ D{i}. Note that
v f (s)= 1/q /∈ Z; hence s /∈ E . Since K contains a primitive |H |-th root of unity,
it contains a primitive q-th root of unity. By Kummer theory E(s)/E is a Galois
extension with group Cq . Similarly, there exists s ′ ∈ D{i} satisfying (s ′)q

′

= b, and
E(s ′)/E is Galois with group Cq ′ . Let Fi = E(s, s ′)⊆ Q′i .

Since v f (a)= 1, h(U ) is irreducible over E , by Eisenstein’s criterion. Denoting
the reduction modulo g by ·̄ , h̄(U ) = U q

− ā is separable, since ā 6= 0. Thus
by [Fried and Jarden 2005, Lemma 2.3.4], E(s)/E is unramified at vg. Clearly,
E(s ′)/E is totally ramified at vg. Thus E(s) and E(s ′) are linearly disjoint over
E ; hence Gal(Fi/E)= H .

Let D′i be the quaternion algebra (a, b)qq ′ [Pierce 1982, Section 15.4]. Note
that D′i can be also viewed as the cyclic algebra (E(a1/qq ′)/E, σ, b), for some
generator σ of Gal(E(a1/qq ′)/E). We claim that Fi splits D′i . By [Reiner 1975,
Theorem 30.8], we have

D′i ⊗E E(s)∼ (E(s1/q ′)/E(s), σ q , b);

thus D′i ⊗E Fi ∼ (Fi (s1/q ′)/Fi , σ
q , b). The cyclic algebra (Fi (s1/q ′)/Fi , σ

q , b)
is split if and only if b is a norm from Fi (s1/q ′) (see for example [Reiner 1975,
Theorem 30.4]), i.e., if and only if b ∈ NFi (s1/q′ )/Fi (Fi (s1/q ′)). This holds since
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b= NFi (s1/q′ )/Fi (s
′). Thus Fi splits D′i . As [Fi : E] = qq ′, Fi is a maximal subfield

of the E-central simple algebra D′i . We shall show that D′i ⊗E E ′Qi is a division
algebra and from this it will follow that D′i is a division algebra.

In order to show that D′i ⊗E E ′Qi is a division algebra we construct auxiliary
valuations. Choose j ∈ I r {i}, and let

t = X − c j Y, r = 1+ (c j + ci )z j − tk−1zk
j , r ′ = 1+ (c j − ci )z j + tk−1zk

j .

By Lemma 2.1(c) r and r ′ are nonassociate prime elements in DIr{i}[t−1
], so they

define discrete valuations vr and vr ′ on Qi = Quot(DIr{i}) = Quot(DIr{i}[t−1
])

such that vr (r ′)= vr ′(r)= 0. By Lemma 2.1(c) we also have

vr ′(1+ (c j − ci )z j )= vr (1+ (c j − ci )z j )= 0.

Note that

b =
X − c j Y + (c j + ci )Y − Y k

X − c j Y + (c j − ci )Y
=

t + (c j + ci )t z j − t j zk
j

t + (c j − ci )t z j
=

r
1+ (c j − ci )z j

.

Similarly, a = r ′/(1+ (c j − ci )z j ). Thus vr (b) = 1, vr ′(b) = 0, vr (a) = 0, and
vr ′(a)=1. Then the polynomial U qq ′

−a is irreducible over DIr{i}, by Eisenstein’s
criterion (using vr ′). Thus Qi (a1/qq ′)/Qi is unramified at vr (again by [Fried and
Jarden 2005, Lemma 2.3.4]); hence so is E ′Qi (a1/qq ′)/E ′Qi .

Only finitely many primes of the unique factorization domain DIr{i}[t−1
] (see

Lemma 2.1(b)) are ramified at the finite extension E ′Qi/Qi ; hence, without loss of
generality, we may assume that E ′Qi/Qi is unramified at vr ′ (by possibly choosing
an even larger k beforehand). On the other hand, Qi (a1/qq ′)/Qi is totally ramified
at vr ′ ; hence

[E ′Qi (a1/qq ′) : E ′Qi ] = [Qi (a1/qq ′) : Qi ] = qq ′.

We can now show that D′i ⊗E E ′Qi is a division algebra. A sufficient condition
for this to hold is that exp(D′i ⊗E E ′Qi ) = qq ′. This happens if and only if for
every 1≤ m ≤ qq ′− 1 the algebra (E ′Qi (a1/qq ′)/E ′Qi , σ, bm)∼ (D′i ⊗E E ′Qi )

m

does not split. Let N denote the norm NE ′Qi (a1/qq′ )/E ′Qi . For any 1≤m ≤ qq ′−1,
the algebra (D′i ⊗E E ′Qi )

m splits if and only if bm
∈ N (E ′Qi (a1/qq ′)× ) [Reiner

1975, Theorem 30.4].
Since E ′Qi (a1/qq ′)/E ′Qi is unramified at vr , we have vr (x)= vr (xσ ) for each

x ∈ E ′Qi (a1/qq ′), by Lemma 2.2. Hence

vr (N (x))=
qq ′−1∑

l=0

vr (xσ
l
)= qq ′vr (x)

for all x ∈ E ′Qi (a1/qq ′). Since vr (b)= 1, bm
6∈ N (E ′Qi (a1/qq ′)× ) for all 1≤m ≤

qq ′− 1. Thus, exp(D′i ⊗E E ′Qi )= qq ′ and D′i ⊗E E ′Qi is a division algebra. �
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3. Patching and admissibility

We have established the patching machinery needed to prove our Main Theorem.
We first recall some general properties of induced algebras and Frobenius algebras.

Remark 3.1 (induced algebras). Let G be a finite group and H ≤ G. Let P/Q be
a finite field extension with H = Gal(P/Q). Let

N = IndG
H P =

{∑
θ∈G

aθθ | aθ ∈ P, aτθ = aθτ for all θ ∈ G, τ ∈ H
}

be a ring with respect to point-wise addition and multiplication. Then P can be
embedded as a subring of N by choosing representatives θ1=1, . . . , θk of H\G and
sending an element x ∈ P to

∑k
i=1,τ∈H xτ θiτ . Furthermore, by choosing different

representatives N can be presented as a direct sum of copies of P .
If P splits a central simple Q-algebra A then

IndG
H P ⊗Q A ∼= IndG

H P ⊗P (P ⊗Q A)∼ IndG
H P ⊗P P ∼= IndG

H P;

hence A splits over IndG
H P . For a definition of a split separable (Azumaya) algebra

over a ring, see [DeMeyer and Ingraham 1971, §5].

The next definition, remark, and proposition appear in Section 2.1 of [Jacobson
1996].

Definition 3.2 (Frobenius algebras). Let F be a field. An F-algebra A is a Frobe-
nius algebra if A contains a hyperplane that does not contain any nonzero one sided
ideal of A.

Remark 3.3. An algebra A1⊕· · ·⊕ As is Frobenius if and only if Ai is Frobenius
for each 1 ≤ i ≤ s. Any algebra F[a] (with a single generator) is Frobenius. Let
L/K be an H -extension. By Remark 3.1, IndG

H L can be decomposed into a sum
of copies of L and it follows that IndG

H L is a Frobenius algebra.

Proposition 3.4 [Jacobson 1996, Theorem 2.2.3]. Let A be an F-central simple
algebra and K a commutative Frobenius subalgebra of A such that dimF A =
[K : F]2. Then any embedding of K into A can be extended to an inner automor-
phism of A.

Lemma 3.5. Let R be an equicharacteristic complete local domain of dimension
r. Suppose that the residue field of R contains a primitive root of unity of order k,
for each k ∈N with char R6 | k. Then R is a finite module over a subring of the form
K [[X1, . . . , Xr ]], where K is a field containing a primitive root of unity of order k,
for each k ∈ N with char K 6 | k.

Proof. By Cohen’s structure theorem [Matsumura 1986, §29], R is finitely gener-
ated over a subring of the form B = K0[[X1, . . . , Xn]], for some field K0. Since
dim B = dim R = r , we have n = r .
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Let K be the field obtained by adjoining all primitive roots of unity of order
not divisible by char R to K0. By our assumptions, K is contained in the residue
field of R; hence K/K0 is a finite (separable) extension. By Hensel’s lemma, R
contains K . Since [K : K0] is finite, K(K0[[X1, . . . , Xr ]])= K [[X1, . . . , Xr ]]. Thus
R is finite over K [[X1, . . . , Xr ]] (since it is finite over K0[[X1, . . . , Xr ]]). �

The final ingredient we need in order to prove our Main Theorem is patching of
central simple algebras. The content of the next proposition is essentially given in
[Harbater et al. 2009], but for specific fields Qi , while here we present it for general
fields satisfying a matrix factorization property. We note that [Harbater et al. 2009,
Theorem 4.1] uses the terminology of categories and equivalence of categories.
Here we prefer a more explicit presentation, working with vector spaces and bases,
as in [Haran and Jarden 1998]. The proof of the proposition combines the proof of
[Haran and Jarden 1998, Lemma 1.2] (where a more restricted assertion is made
for specific types of algebras), and the proof of [Harbater and Hartmann 2007,
Theorem 7.1(vi)] (where the assertion is made for specific types of fields).

Proposition 3.6. Let I be a finite set. For each i ∈ I let Qi be a field contained
in a Qi -algebra Ai . Let Q be a field containing Qi for each i ∈ I , and contained
in a Q-algebra AQ which contains Ai for each i ∈ I . Moreover, suppose that
Ai Q = AQ and dimQi Ai = dimQ AQ for each i ∈ I . Finally, suppose that

(∗) for each B ∈GLn(Q) there exist Bi ∈GLn(Qi ) and B ′i ∈GLn
(⋂

j 6=i Q j
)

such
that B = Bi B ′i .

Then, letting E =
⋂

i∈I Qi , A=
⋂

i∈I Ai is an E-algebra satisfying AQi = Ai for
each i ∈ I . Moreover, if each Ai is central simple, then so is A.

Proof. For each i ∈ I , let Ci be a basis for Ai over Qi . Since Ai Q = AQ ,
SpanQ(Ci ) = AQ , and since dimQi Ai = dimQ AQ , Ci is a basis for AQ over
Q, for each i ∈ I . We now construct a basis C for AQ over Q, which is also a basis
for Ai over Qi , for all i ∈ I .

For each subset J of I we find, by induction on |J |, a basis VJ for AQ over Q
which is also a basis for A j over Q j , for each j ∈ J . Then for I = J we will get
the basis C.

If J = ∅ there is nothing to prove. Suppose that |J | ≥ 1, choose k ∈ J and
let J ′ = J r {k}. By assumption there is a basis VJ for AQ over Q which is a
basis for Ai over Qi for each i ∈ J ′. Since Ci is a common basis for AQ and Ai ,
there is a matrix B ∈ GLn(Q) such that Ck B = VJ ′ . By condition (∗) in the state-
ment of the proposition, there exist Bk ∈ GLn(Qk) and M ∈ GLn

(⋂
k 6= j∈I Q j

)
⊆⋂

j∈J ′ GLn(Q j ) such that B = Bk M . Put VJ = VJ ′M−1. Then VJ is a basis for
AQ over Q which is also a basis for A j over Q j for each j ∈ J ′. Moreover, VJ

is also a basis for Ak over Qk , since VJ = Vk B M−1
= Vk Bk . This completes the

induction.
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The existence of the common basis C implies that AQi = Ai for each i ∈ I .
As Ai is a Qi -central simple algebra for any i ∈ I (a single i suffices), A is an E-
central simple algebra. This follows, for example, from [Saltman 1999, Theorem
2.2.c]. �

Proposition 3.7. Let R be an equicharacteristic complete local domain of dimen-
sion 2, with residue field containing a primitive root of unity of order k for each
k ∈ N with char R6 | k. Let G be a finite group of order not divisible by char R,
whose Sylow subgroups are abelian of rank at most 2. Then G is admissible over
Quot R.

Proof. By Lemma 3.5, R is a finite module over a subring of the form B =
K [[X, Y ]], where K contains a primitive root of unity of order k for each k ∈N not
divisible by p = char R. Let E = Quot B = K((X, Y )) and E ′ = Quot R. Then E ′

is a finite extension of E .

Part A: A patching datum. Let (pi )i∈I be the prime factors of n=|G|, for some in-
dex set I . For each i ∈ I , let Gi be a pi -Sylow subgroup of G. Apply Construction
1.1 to obtain rings Qi , i ∈ I , contained in the common field Q. For each i ∈ I , we
may apply Proposition 2.3 to obtain a Galois extension Fi/E with group Gi , such
that Fi ⊆ Q′i and Fi is contained as a maximal subfield in a division E-algebra D′i .
Moreover, D′i ⊗E E ′Qi remains a division algebra. Thus Di := D′i ⊗E Qi is also a
division algebra. By Corollary 1.13(c), Qi is a field for each i ∈ I . Put Pi = Fi Qi .
Since Fi splits D′i , Pi splits Di , and since [Pi : Qi ]= [Fi : E] = ind(D′i )= ind(Di ),
Pi is a maximal subfield of Di . Let E = (E, Fi , Qi , Q;Gi ,G)i∈I . By Corollary
1.15, E is a patching datum.

Part B: Induced algebras [Haran and Jarden 1998, §1]. Consider the induced alge-
bra N = IndG

1 Q of dimension n over Q, and the Qi -subalgebra Ni = IndG
Gi

Pi for
each i ∈ I (see Remark 3.1). Then G acts on N by

(∑
θ∈G aθθ

)σ
=
∑

θ∈G aθσ−1θ=∑
θ∈G aσθθ for each σ ∈ G. The field Q is embedded diagonally in N , which

induces an embedding of Qi in Ni , for each i ∈ I . We view these embeddings as
containments. By Lemma 1.2 of [Haran and Jarden 1998] there is a basis for N
over Q, which is also a basis for Ni over Qi , for each i ∈ I . In particular, we have
Ni Q = N for each i ∈ I . By Lemma 1.3 of the same paper, F =

⋂
i∈I Ni is a

Galois field extension of E with group G, and there exists an E-embedding of F
into Q. Denote the image of F under this embedding by F ′.

Part C: Division algebras. It remains to prove that the extension F ′/E is adequate.
Let AQ =Mn(Q), and for each i ∈ I let ni = [G :Gi ]. As AQ is split of dimension
n2 and N is of dimension n over Q, we also have an embedding of N into AQ . We
view N as a subalgebra of AQ via this embedding.

Fix i ∈ I . Since Pi = Fi Qi splits Di , it follows by Remark 3.1 that Ni also splits
Di . Moreover, by [DeMeyer and Ingraham 1971, Theorem 5.5] there is a central
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simple Qi -algebra Ai which is Brauer equivalent to Di , in which Ni embeds as a
maximal commutative separable Qi -subalgebra so that dimQi (Ai )=dimQi (Ni )

2
=

n2. We view Ni as contained in Ai via this embedding.
Since Pi splits Di , we have

Di ⊗Qi Q ∼= (Di ⊗Qi Pi )⊗Pi Q ∼=Mn/ni (Pi )⊗Pi Q ∼=Mn/ni (Q).

Since ind(Di )= n/ni and dimQ AQ = n2 we get that Ai ∼=Mni (Di ). Thus we have
Ai⊗Qi Q∼=Mni (Di )⊗Qi Q∼=Mn(Q)= AQ , and we denote the induced Q-algebras
isomorphism Ai ⊗Qi Q→ AQ by ψi . We cannot identify these two algebras via
this isomorphism, since it might not be compatible with the containments Ni ⊆ Ai

and N ⊆ AQ . This compatibility problem can be settled similarly to [Harbater et
al. 2009, Lemma 4.2]:

By Part B we have N = Ni Q and dimQi Ni = dimQ N = n. Thus we have
an isomorphism δi : N = Ni Q → Ni ⊗Qi Q for which the following diagram
commutes:

Ai Ai ⊗Qi Q

Ni N
δi // Ni ⊗Qi Q.

id⊗Qi Q

OO

(2)

By Remark 3.3, N = IndG
1 Q is a Frobenius (commutative) subalgebra of AQ .

By Proposition 3.4, the embedding ψi (id⊗Qi Q)δi : N → AQ extends to an inner
automorphism αi of AQ . Let ψ ′i = α

−1
i ψi . Then α−1

i ψi (id⊗Qi Q)δi is the identity
map on N = Ni Q, so we have the commutative diagram

Ai ⊗Qi Q
ψ ′i // AQ

Ni Q

(id⊗Qi Q)δi

OO

N .

OO
(3)

Combining (2) and (3), we get the following commutative diagram:

Ai Ai ⊗Qi Q
ψ ′i // AQ

Ni Ni Q

(id⊗Qi Q)δi

OO

N .

OO

This diagram gives an embedding Ai→ AQ which is compatible with the contain-
ments Ni ⊆ Ai and N ⊆ AQ , so we may now identify Ai as a subring of AQ , via this
embedding. Moreover, sinceψ ′i is an isomorphism, we have Ai⊗Qi Q= Ai Q= AQ
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by this identification. The following diagram explains the containment relations:

Ai AQ

Ni N
Di

Qi Pi Q
D′i

E Fi Q′i .

Let A=
⋂

i∈I Ai . By Proposition 3.6, A is a central simple E-algebra for which
AQi = Ai for each i ∈ I . In particular, A = Mk(D) for some division algebra D
of index n/k.

Now, D⊗E Qi is Brauer equivalent to A⊗E Qi ∼= Ai , which is Brauer equivalent
to Di . Thus, n/ni = ind(Di ) | ind D for each i ∈ I and n = lcmi (n/ni ) | ind D. It
follows that k = 1 and A is a division algebra. Naturally, F is a subfield of A and
ind A= [F : E]. It follows that F is a maximal subfield of the division algebra A.

By choosing a basis for A/F and considering the corresponding structure con-
stants one can form an E-division algebra A′ which is E-isomorphic to A such that
F ′ is a maximal subfield of A′.

We will show that A′⊗EE ′ is an E ′-division algebra, but first let us show that this
implies that F ′E ′/E ′ is an adequate G-extension (and hence G is E ′-admissible).
Indeed, if A′ ⊗E E ′ is a division algebra, then F ′ ⊗E E ′ is a field. It follows that
F ′ ⊗E E ′ ∼= F ′E ′, since F ′ ⊗E E ′ is G-Galois over E ′ [Saltman 1999, Theorem
6.3]. Thus, [F ′E ′ : E ′] = [F ′ : E] and F ′ ∩ E ′ = E . Since F ′E ′ splits A′⊗E E ′

and as ind(A′⊗E E ′) = [F ′E ′ : E ′], F ′E ′ is a maximal subfield of A′⊗E E ′ and
hence an adequate G-extension.

In order to show that A′ ⊗E E ′ is an E ′-division algebra, we first note that for
each i ∈ I , Pi = Fi Qi = F ′Qi , by [Haran and Völklein 1996, Lemma 3.6(b)].
Thus, we have the diagram

A′⊗E Qi A′⊗E ′ Qi E ′

A′ A′⊗E E ′

Pi Pi E ′

F ′ F ′E ′

Qi Qi E ′

E E ′.

As mentioned above, A′⊗E Qi is Brauer equivalent to Di = D′i ⊗E Qi . Thus
A′⊗E Qi E ′ is Brauer equivalent to D′i ⊗Qi Qi E ′, which by the choice of D′i is a
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division algebra. Then, for all i ∈ I ,

n
ni
= ind(D′i )= ind(D′i ⊗Qi Qi E ′) | ind(A′⊗E Qi E ′) | ind(A′⊗E E ′).

It follows that n = lcmi∈I (n/ni ) | ind(A′⊗E E ′). Hence n = ind(A′⊗ E ′), which
shows that A′⊗E E ′ is a division algebra. �

As a corollary, we get our Main Theorem, which we restate for convenience:

Theorem 3.8. Let R be an equicharacteristic complete local domain of dimension
2, with a separably closed residue field. Let E =Quot R and let G be a finite group
of order not divisible by char E. Then G is E-admissible if and only if all the Sylow
subgroups of G are abelian of rank at most 2.

Proof. By Proposition 3.7, if the Sylow subgroups of G are abelian of rank at most 2
then G is E-admissible. For the converse, assume G is E-admissible. For a prime v
of E , let ramv denote the ramification map ramv :Br E→H1(G Ev , Q/Z) [Saltman
1999]. Following [Harbater et al. 2009], we say that an α ∈ Br E is determined by
ramification with respect to a set of primes � if there is a prime v ∈ � for which
exp(α) = exp(ramv(α)). Let D be an E-division algebra with maximal subfield
L that has Galois group G = Gal(L/E). Let p = char E (possibly p = 0). By
[Harbater et al. 2009, Theorem 3.3], if D satisfies:

(1) the order of D is prime to p and ind D = exp D, and

(2) D is determined by ramification with respect to some set of discrete valuations
whose residue characteristic is prime to |G|,

then G has Sylow subgroups that are abelian of rank at most 2. Condition (1) is
satisfied for any α of order prime to p by Theorem 2.1 of [Colliot-Thélène et al.
2002], while condition (2) is satisfied by Corollary 1.9(c) of the same paper with
respect to the set of codimension 1 primes of R. �

Remark 3.9. Let E be as above. By [Colliot-Thélène et al. 2002, Theorem 2.1],
any Brauer class α ∈ Br E of order prime to char E has ind(α) = exp(α). Thus
by [Schacher 1968, Proposition 2.2], a subfield of an E-division algebra is also a
maximal subfield of some E-division algebra.
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Minimisation and reduction of
2-, 3- and 4-coverings of elliptic curves

John E. Cremona, Tom A. Fisher and Michael Stoll

We consider models for genus-one curves of degree n for n = 2, 3 and 4, which
arise in explicit n-descent on elliptic curves. We prove theorems on the existence
of minimal models with the same invariants as the minimal model of the Jacobian
elliptic curve and provide simple algorithms for minimising a given model, valid
over general number fields. Finally, for genus-one models defined over Q, we
develop a theory of reduction and again give explicit algorithms for n = 2, 3
and 4.
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1. Introduction

Let E be an elliptic curve defined over a number field K . An n-descent on E
computes the n-Selmer group Sel(n)(K , E) of E , which parametrises the every-
where locally soluble n-coverings of E up to isomorphism. An n-covering of E is
a principal homogeneous space C for E , together with a map π : C→ E that fits
into a commutative diagram

C
π

��
ψ

���
�
�

E
·n // E

where ψ :C→ E is an isomorphism defined over the algebraic closure K , compat-
ible with the structure of C as a principal homogeneous space. In a series of papers
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[Cremona et al. 2008; 2009; n.d.], it is shown how to produce explicit equations
of covering curves from a more abstract representation of the Selmer group. (The
latter is computed, at least for n prime, in [Schaefer and Stoll 2004].)

In general, an n-covering C can be realised as a smooth curve of degree n inside
a Severi–Brauer variety S of dimension n − 1 (when n = 2, we obtain a double
cover of a conic instead of an embedding). If C has points everywhere locally, as
will be the case when C represents an element of the n-Selmer group of E , then the
same statement is true of S, and hence S ∼= Pn−1, so that C has a degree-n model
in projective space. Thus, for n = 2, we get a double cover of P1 ramified in four
points, for n=3, we get a plane cubic curve, and for n=4, we get an intersection of
two quadrics in P3. For larger n, these models are no longer complete intersections,
but can be given by a number of quadratic equations.

In this paper, we will focus on the problem of how to produce nice models of the
covering curves, i.e., models given by equations with small integral coefficients, in
the cases n = 2, 3 and 4. The advantage of having such a nice model is two-fold.
On the one hand, rational points on the covering curve can be expected to be of
smaller height on a model with small coefficients, and therefore will be found more
easily. On the other hand, if no rational points are found, one would like to use the
covering curve as the basis for a further descent, and the necessary computations
are greatly facilitated when the given model is nice.

This problem naturally splits into two parts: minimisation and reduction. Min-
imisation makes the invariants of the model smaller by eliminating spurious bad
primes and reducing the exponents of primes of bad reduction, to obtain a so-
called minimal model. We will prove the following theorem. (See Section 2 for
the definitions of models for n-coverings and their invariants.)

Theorem 1.1. Let n = 2, 3 or 4. Let K be a number field of class number one,
and E an elliptic curve defined over K . If C is an n-covering of E which is
everywhere locally soluble (i.e., C has points over all completions of K ) then C has
a model with integral coefficients and the same discriminant as a global minimal
Weierstrass equation for E.

By contrast, reduction attempts to reduce the size of the coefficients by an in-
vertible integral (i.e., unimodular) linear change of coordinates, which leaves the
invariants unchanged. Both processes are necessary to obtain a nice model: min-
imisation without reduction will provide a model with small invariants, but most
likely rather large coefficients, whereas reduction without minimisation will not be
able to make the coefficients really small, since the invariants will still be large.

After introducing the kinds of models we will be using and their invariants in
Section 2, we state our main results on minimisation over local fields in Section 3A,
and discuss how they relate to earlier work. The most important of these results
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(the Minimisation Theorem, Theorem 3.4) is proved in Section 3B. The proof is
short and transparent, but is not algorithmic. We remedy this in Section 4 where
we give practical algorithms for computing minimal models, that may be seen as
generalising Tate’s algorithm [1975]. In Section 4E we deduce Theorem 1.1 from
our local results, and explain how it may be generalised to arbitrary number fields.
Moreover, as our local minimisation results make no restriction on the characteris-
tic of the local field, they have more general global applications; in particular, one
obtains results over function fields as well as number fields.

The algorithms of Section 4 may be combined with the Minimisation Theorem
to prove the Strong Minimisation Theorem, Theorem 3.5(i). This states that if an
n-covering of E (defined over a local field, and represented by a degree-n model)
is soluble over the maximal unramified extension, then it has a model with integral
coefficients and the same discriminant as a minimal Weierstrass equation for E . In
Section 5 we prove the converse, Theorem 3.5(ii), thereby showing that the Strong
Minimisation Theorem is best possible.

In Section 6, we discuss reduction for general n-coverings, and more specifically
for n = 2, 3 and 4. Our results for reduction only cover the case where the ground
field is Q. A comparable theory of reduction over a general number field would be
very useful in practice, but has not yet been sufficiently developed.

Finally we give examples of both minimisation and reduction (over K =Q) in
Section 7. Our algorithms have all been implemented over Q in MAGMA [Bosma
et al. 1997] for n = 2, 3 and 4.

As stated earlier, the main application of our results is in explicit n-descent on
elliptic curves over number fields. Minimisation and reduction of binary quartics is
also used in the invariant theory method for 2-descent [Birch and Swinnerton-Dyer
1963; Cremona 1997]. For n= 3, Djabri and Smart [1998] consider the possibility
of carrying out 3-descent using invariant theory in a similar way; one stumbling-
block there was the inability to minimise plane cubic models for 3-coverings.

2. Genus-one models

In this section, we specify the models of the covering curves that we will use,
together with their invariants c4, c6 and 1. For completeness and later reference
we include the case n = 1. Note that we use the term genus-one model to include
singular models, which do not define curves of genus one.

Definition 2.1. A Weierstrass equation, or genus-one model of degree 1, is an
equation of the form

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6. (2-1)
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The space of all Weierstrass equations with coefficients a1, . . . , a6 in a ring R
will be denoted X1(R). We say that two such models are R-equivalent if they are
related by substitutions

x← u2x + r, y← u3 y+ u2sx + t, (2-2)

for some u∈ R× and r, s, t ∈ R. We write G1(R) for the group of all transformations
[u; r, s, t] and define det([u; r, s, t])= u−1. The invariants c4, c6 and 1 are certain
primitive polynomials in a1, . . . , a6 with integer coefficients, satisfying

c3
4− c2

6 = 17281.

Definition 2.2. A genus-one model of degree 2, or generalised binary quartic, is
an equation of the form

y2
+ P(x, z)y = Q(x, z)

where P and Q are homogeneous polynomials of degrees 2 and 4. We sometimes
abbreviate this as (P, Q). The space of all such models with coefficients in a ring R
is denoted X2(R). Two such models are R-equivalent if they are related by substi-
tutions x←m11x+m21z, z← m12x +m22z and y← µ−1 y+ r0x2

+ r1xz+ r2z2

for some µ ∈ R×, r = (r0, r1, r2) ∈ R3 and M = (mi j ) ∈GL2(R). We write G2(R)
for the group of all such transformations [µ, r,M], and define

det([µ, r,M])= µ det(M).

A generalised binary quartic y2
+ P(x1, x2)y= Q(x1, x2) over a field K defines

a subscheme C(P,Q) ⊂ P(1, 1, 2), the ambient space being a weighted projective
space with coordinates x1, x2, y. We say that the model 8= (P, Q) is K-soluble
if C8(K ) 6=∅.

The binary quartic F(x, z) = ax4
+ bx3z + cx2z2

+ dxz3
+ ez4 has invariants

c4(F)= 24 I and c6(F)= 25 J , where I and J are given by

I = 12ae− 3bd + c2, J = 72ace− 27ad2
− 27b2e+ 9bcd − 2c3.

The discriminant1= (c3
4−c2

6)/1728 is 16 times the usual discriminant of a quartic
polynomial. The invariants of a generalised binary quartic are obtained by com-
pleting the square, i.e., c4(P, Q) = c4(

1
4 P2
+ Q) and so on. We find that c4, c6

and 1 are primitive integer coefficient polynomials in the coefficients of P and Q,
again satisfying c3

4− c2
6 = 17281.

Earlier work on 2-coverings, including [Birch and Swinnerton-Dyer 1963] and
[Stoll and Cremona 2002], used the more restrictive binary quartic models with
P = 0. We use generalised binary quartics here, in order to obtain more uniform
local results at places with residue characteristic 2.
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Definition 2.3. A genus-one model of degree 3 is a ternary cubic. We write X3(R)
for the space of all ternary cubics with coefficients in a ring R. Two such models
are R-equivalent if they are related by multiplying by µ∈ R× and then substituting
x j ←

∑3
i=1 mi j xi for some M = (mi j ) ∈ GL3(R). We write G3(R)=R××GL3(R)

for the group of all such transformations [µ,M], and we define

det([µ,M])= µ det(M).

A ternary cubic F(x, y, z) over a field K defines a subscheme CF ⊂ P2. The
model F is K-soluble if CF (K ) 6=∅.

The invariants c4 and c6 may be defined as follows. Let

H(F)= det

Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz


be the Hessian of F , which is again a ternary cubic. Then we have

H(H(F))= 48c4(F)2 F + 16c6(F)H(F);

the sign of c4(F) is fixed by requiring that 1 = (c3
4 − c2

6)/1728 has integer co-
efficients. Then c4, c6 and 1 are primitive integer coefficient polynomials in the
coefficients of F and satisfy c3

4− c2
6 = 17281.

Definition 2.4. A genus-one model of degree 4, or quadric intersection, is an
ordered pair (Q1, Q2) of quadrics (homogeneous polynomials of degree 2) in
4 variables. The space of all such models with coefficients in a ring R is de-
noted X4(R). Quadric intersections (Q1, Q2) and (Q′1, Q′2) are R-equivalent if
they are related by putting Q′1 = m11 Q1 + m12 Q2 and Q′2 = m21 Q1 + m22 Q2

for some M = (mi j ) ∈ GL2(R) and then substituting x j ←
∑4

i=1 ni j xi for some
N = (ni j ) ∈ GL4(R). We write G4(R) = GL2(R)×GL4(R) for the group of all
such transformations [M, N ], and define det([M, N ])= det(M) det(N ).

A quadric intersection 8 = (Q1, Q2) over a field K defines a subscheme C8
of P3. The model 8 is K-soluble if C8(K ) 6=∅.

The invariants c4 and c6 may be defined as follows. Let A and B be the matrices
of second partial derivatives of Q1 and Q2. Then F(x, z) = det(Ax + Bz) is
a binary quartic. We define c4(Q1, Q2) = 2−4c4(F), c6(Q1, Q2) = 2−6c6(F)
and 1(Q1, Q2) = 2−121(F). These scalings are chosen so that c4, c6 and 1 are
primitive integer coefficient polynomials in the coefficients of Q1 and Q2. They
satisfy c3

4− c2
6 = 17281.

Earlier work on 4-coverings, including [Siksek 1995] and [Womack 2003], used
pairs of symmetric matrices rather the pairs of quadrics. We use quadrics here, in
order to obtain more uniform local results at places with residue characteristic 2.
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Remark 2.5. There is also a definition of genus-one model of degree 5; see [Fisher
2008a]. The minimisation and reduction of these models (and possible extensions
to larger degrees) will be the subject of future investigations.

Remark 2.6. There is a natural way in which we can rewrite a Weierstrass equation
(a genus-one model of degree 1) as a genus-one model of degree 2, 3 or 4 (see
Lemma 3.11). We have normalised the invariants c4, c6 and 1 so that they agree
with the usual formulae (see [Silverman 1986, Chapter III], for example) when
specialised to one of these Weierstrass models.

Definition 2.7. Let K be a field and K its algebraic closure. Let K [Xn] be the
polynomial ring in the coefficients of a genus-one model of degree n. A polynomial
F ∈ K [Xn] is an invariant of weight k if F ◦ g = det(g)k F for all g ∈ Gn(K ).

For n = 1, 2, 3, 4 we defined polynomials c4, c6,1 ∈ Z[Xn] with

c3
4− c2

6 = 17281.

Theorem 2.8. Let n = 1, 2, 3 or 4.

(i) The polynomials c4, c6,1 ∈ K [Xn] are invariants of weights 4, 6 and 12.

(ii) A genus-one model8∈ Xn(K ) defines a smooth curve C8 of genus one (over
K ) if and only if 1(8) 6= 0.

(iii) If char(K ) 6= 2, 3 then c4 and c6 generate the ring of invariants. Moreover if
8∈ Xn(K ) with1(8) 6= 0 then the Jacobian of the curve C8 has Weierstrass
equation y2

= x3
− 27c4(8)x − 54c6(8).

Proof. The invariants c4, c6 and 1 were known to the nineteenth century invariant
theorists. The observation that they give a formula for the Jacobian is due to Weil
[1954; 1983]. See [An et al. 2001] for a brief survey, or [Fisher 2008a] for a proof
of the theorem exactly as it is stated here. �

As was first pointed out to us by Rodriguez-Villegas, it is possible to work back
through Tate’s formulaire [Silverman 1986, Chapter III] to write the invariants c4

and c6 in terms of polynomials a1, . . . , a6.

Lemma 2.9. There exist a1, a2, a3, a4, a6 ∈ Z[Xn] and b2, b4, b6 ∈ Z[Xn] with

b2 = a2
1 + 4a2, b4 = a1a3+ 2a4, b6 = a2

3 + 4a6,

c4 = b2
2− 24b4, c6 =−b3

2+ 36b2b4− 216b6.

Proof. The lemma is proved by splitting into the cases n = 2, 3, 4 and giving
explicit formulae for the a-invariants. (The case n = 1 is a tautology.)

Case n = 2. The a-invariants of the generalised binary quartic,

y2
+ (lx2

+mxz+ nz2)y = ax4
+ bx3z+ cx2z2

+ dxz3
+ ez4,
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are

a1 = m, a2 = c− ln, a3 = ld + nb,

a4 =−4ae+ bd − (l2e+ lnc+ n2a),

a6 =−4ace+ad2
+b2e−(l2ce+m2ae+n2ac+lnbd)+lmbe+mnad.

(2-3)

Case n = 3. The a-invariants of the ternary cubic,

ax3
+ by3

+ cz3
+ a2x2 y+ a3x2z+ b1xy2

+ b3 y2z+ c1xz2
+ c2 yz2

+mxyz,

are1

a1 = m,

a2 =−(a2c2+ a3b3+ b1c1),

a3 = 9abc− (ab3c2+ ba3c1+ ca2b1)− (a2b3c1+ a3b1c2),

a4 =−3(abc1c2+ acb1b3+ bca2a3)+ a(b1c2
2+ b2

3c1)+ b(a2c2
1+ a2

3c2)

+ c(a2
2b3+ a3b2

1)+ a2c2a3b3+ b1c1a2c2+ a3b3b1c1,

a6 =−27a2b2c2
+ 9abc(ab3c2+ ca2b1+ ba3c1)+ · · ·+ abcm3.

(2-4)

These formulae in the case n = 3 were first given in [Artin et al. 2005].

Case n = 4. Let Q =
∑

i≤ j ci j xi x j be a quadric in 4 variables. Then

det
(
∂2 Q
∂xi∂x j

)
= pf(Q)2+ 4 rd(Q)

where pf(Q)= c12c34+c13c24+c14c23 and rd(Q)∈Z[c11, c12, . . . , c44]. We define
the a-invariants of the quadric intersection (Q1, Q2) to be the a-invariants of the
generalised binary quartic

y2
+ pf(x Q1+ zQ2)y = rd(x Q1+ zQ2). �

The polynomials ai of Lemma 2.9 are far from unique. They can be modified
by any transformation of the form [±1; r, s, t] with r, s, t ∈Z[Xn]. We next extend
Theorem 2.8(iii) to fields of arbitrary characteristic. (The reader only interested in
applications over number fields and their completions may safely skip this result.)

Theorem 2.10. Let K be any field, and n = 1, 2, 3 or 4. For all 8 ∈ Xn(K ) with
1(8) 6= 0, the Jacobian of the curve C8 has Weierstrass equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6, (2-5)

where ai = ai (8).

1We follow classical notation for the coefficient labels, but warn the reader that the symbols a2,
a3 have different meanings on the left and right sides of (2-4).
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Proof. For n = 3 this is a special case of a theorem of Artin, Rodriguez-Villegas
and Tate [2005]. The cases n = 2, 4 may be proved using similar techniques. We
sketch a simplified form of the proof, covering the cases n = 2, 3 and 4. (The case
n = 1 is of course a tautology.)

Let C/S be the universal family over2 S = Spec(Z[Xn][1
−1
]). By Theorem

2.8(ii) the fibres are smooth projective curves of genus one. Let J/S be the Jaco-
bian of C/S, in the sense that J is the S-scheme representing the relative Picard
functor Pic0

C/S; see [Bosch et al. 1990, §9.3, Theorem 1]. Each fibre of J/S is the
Jacobian of the corresponding fibre of C/S and hence an elliptic curve. By a gen-
eralisation of the usual procedure for putting an elliptic curve in Weierstrass form
(see [Deligne 1975] or [Artin et al. 2005, Theorem 2] for a further generalisation)
J is defined as a subscheme of P2

S by the homogenisation of

y2
+ a′1xy+ a′3 y = x3

+ a′2x2
+ a′4x + a′6 (2-6)

for some a′1, . . . , a′6 ∈ Z[Xn][1
−1
]. Thus for every field K , and every 8 ∈ Xn(K )

with 1(8) 6= 0, the Weierstrass equation (2-6) gives a model for the Jacobian
of C8.

It only remains to show that (2-5) and (2-6) are related by a transformation
in G1(R) where R = Z[Xn][1

−1
]. By Theorem 2.8(iii) they are related by some

[u; r, s, t] ∈G1(K ) where K =Q(Xn). Since for any genus-one model with1 6= 0,
(2-5) and (2-6) both specialise to a nonsingular Weierstrass equation, it follows that
u ∈ R×. Then, since R is integrally closed, a standard argument (see [Silverman
1986, Chapter VII, Proposition 1.3]) shows that r, s, t ∈ R. �

We note that a1, . . . , a6 are not invariants in the sense of Definition 2.7. The
ring of invariants when char(K ) = 2 or 3 is described in [Fisher 2008a, §10]. As
is noted there, these do not give a formula for the Jacobian.

3. Minimisation theorems

3A. Statement of results. Let K be a field with normalised discrete valuation
v : K×→ Z. We write OK for the valuation ring (or ring of integers) of K and fix
a uniformiser π ∈ K . We assume throughout that the residue field k = OK /πOK

is perfect. A field extension L/K is unramified if there is a (normalised) discrete
valuation w : L×→ Z extending v. The strict Henselisation K sh of K is an un-
ramified extension of K , that satisfies the conclusions of Hensel’s lemma and has
residue field k̄, the algebraic closure of k. (See [Milne 2008, Definition 4.8] or
[Raynaud 1970, Chapter VIII] for the precise definition.) If K is complete (with

2In [Artin et al. 2005] the authors work over S = Spec(Z[X3]) \ {0}. This gives a more general
result, but also makes the proof more difficult.
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respect to v) then K sh is the maximal unramified extension K nr of K as defined in
[Serre 1979, Chapter III, §5].

We work with genus-one models of degree n = 1, 2, 3 or 4. The invariants c4,
c6 and 1 of a genus-one model were defined in Section 2.

Definition 3.1. (i) A genus-one model 8 ∈ Xn(K ) is nonsingular if 1(8) 6= 0.

(ii) A genus-one model 8 ∈ Xn(K ) is integral if it has coefficients in OK .

(iii) A nonsingular model 8 ∈ Xn(OK ) is minimal if v(1(8)) is minimal among
all integral models K-equivalent to 8, otherwise 8 is nonminimal.

Algorithms for computing minimal models in the case n = 1 have been given
by Tate [1975] (see also [Silverman 1994, Chapter IV, §9]) and Laska [1982].
The latter can be refined using Kraus’ conditions [Kraus 1989] as described in
[Connell 1996, Chapter V] or [Cremona 1997, §3.2]. (Laska’s algorithm and
its refinements are simpler than Tate’s algorithm, but are only applicable when
char(K ) 6= 2, 3.) In Section 4 we give algorithms for computing minimal models
in the cases n = 2, 3, 4.

In the following lemma we define the level of a genus-one model.

Lemma 3.2. Let 8 ∈ Xn(K ) be a nonsingular model of degree n. Let 1E be the
minimal discriminant of E = Jac(C8).

(i) v(1(8))= v(1E)+ 12l for some integer l, which we call the level of 8.

(ii) If char(k) 6= 2, 3 then l =min{bv(c4(8))/4c, bv(c6(8))/6c}.

(iii) The level of an integral model is always nonnegative.

Proof. If char(k) 6=2, 3 then this is clear by Theorem 2.8 and the standard formulae
for transforming Weierstrass equations. In general (that is, to prove (iii) when
char(k) = 2 or 3, or even to define the level when char(K ) = 2 or 3) we use
Lemma 2.9 and Theorem 2.10 instead. �

The level of 8 ∈ Xn(K ) may be computed as v(u) where [u; r, s, t] ∈ G1(K ) is
a transformation that minimises the Weierstrass equation (2-5).

Definition 3.3. The minimal level of 8 ∈ Xn(K ) is the minimum of the levels of
all integral models K-equivalent to 8. Thus an integral model 8 is minimal (see
Definition 3.1) if and only if it has level equal to this minimal level.

If n = 1 then the minimal level is 0, for trivial reasons. So from now on we
take n = 2, 3 or 4. The most important result on minimisation states that every
K-soluble model has minimal level 0, or in other words, that every K-soluble model
is K-equivalent to an integral model whose discriminant has the same valuation as
that of the discriminant of the minimal model of the Jacobian elliptic curve.
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Theorem 3.4 (Minimisation Theorem). Let 8 ∈ Xn(K ) be a nonsingular genus-
one model. If C8(K ) 6=∅ then 8 has minimal level 0.

The following strengthening of the Minimisation Theorem shows that a non-
singular model is K-equivalent to an integral model of level 0 if and only if it is
K sh-soluble.

Theorem 3.5. Let 8 ∈ Xn(K ) be nonsingular.

(i) (Strong Minimisation Theorem). If C8(K sh) 6=∅ then8 has minimal level 0.

(ii) (Converse Theorem). If C8(K sh)=∅ then the minimal level is at least 1, and
is equal to 1 if char(k) - n.

Algorithms for minimising K-soluble binary quartics over K =Qp are sketched
by Birch and Swinnerton-Dyer [1963, Lemmas 3–5], with details in the case where
p is neither 2 nor 3. Their algorithms give a proof of the Minimisation Theorem
for n = 2, except when p = 2 (in which case further work is required to handle
the cross terms). As pointed out in [Stoll and Cremona 2002] this generalises
immediately to any local field K with char(k) 6= 2, 3. These calculations were
extended to the case n = 3, in conjunction with the authors’ work on 3-descent
[Cremona et al. 2008; 2009; n.d.]. The case n = 4 was treated by Womack [2003,
Section 2.5], using a method that goes via the results for n = 2.

In each case, the approach taken is to start with a K sh-soluble model8∈ Xn(OK )

with v(c4(8))≥ 4 and v(c6(8))≥ 6, and then by a series of substitutions to show
that 8 is K-equivalent to an integral model of smaller level. This leads to both a
proof of the Strong Minimisation Theorem and a practical algorithm for minimis-
ing. However, this traditional approach suffers from the following drawbacks.

• It is necessary to split into a large number of (elementary yet tedious) cases,
and the number of cases grows rapidly with n.

• The modifications required if char(k) = 2 or 3 are somewhat involved. (The
hypothesis that8 has positive level has to be made explicit using either Kraus’
conditions [1989] or the “a-invariants” defined in Lemma 2.9.)

We take a different approach, in which the tasks of proving the Minimisation
Theorem and finding a practical algorithm for minimising are treated separately.
A proof of the Minimisation Theorem for n = 2, 3 (in all residue characteristics)
is given in [Fisher 2007]. In Section 3B we simplify the proof and extend it to the
case n=4. Unfortunately this approach does not lead to any readily implementable
algorithm, nor does it prove the Strong Minimisation Theorem.

In Sections 4A (case n = 2) and 4B (case n = 3) we specify a rather simple-
minded procedure and show that, given any nonminimal integral model, iterating
this procedure will eventually decrease the level. This gives an algorithm for com-
puting minimal models. In Section 4C we give an algorithm in the case n=4 based
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on the treatment in [Womack 2003]. The algorithms for n = 2 and n = 4 must be
modified when char(k) = 2 as described in Section 4D. These modifications are
required since, as noted in Section 2, our models for n-coverings differ slightly
from those used previously in the literature. We have also defined the level, not in
an absolute way, but by comparison with a minimal model for the Jacobian elliptic
curve. The combined effect of these changes is that our results are much cleaner
to state, in particular for residue characteristic 2, and can be proved uniformly,
without assumptions on the ramification index.

As is the case for Tate’s algorithm, it is clear from the form of our algorithms
(for n= 2, 3, 4) that their success or otherwise is unchanged by an unramified field
extension. We deduce the following.

Theorem 3.6. The minimal level of a nonsingular genus-one model of degree 2, 3
or 4 is unchanged by an unramified field extension.

The Strong Minimisation Theorem is then an immediate consequence of Theo-
rem 3.6 and the Minimisation Theorem.

In Section 5 we show how to write down examples of minimal genus-one models
of positive level. We call the models arising in our construction critical models;
see Definition 5.1. We show (for n = 2, 3) that any K sh-insoluble model is K-
equivalent to a critical model. There is a corresponding result for models of degree
n = 4. The proof of the Converse Theorem, 3.5(ii), is then reduced to a statement
about the possible levels of a critical model (see Lemma 5.4).

Theorem 3.5 in the case n = 2 may already be found in [Liu 1996, remarque
21]. We claim that our proof is much simpler, and in any case serves as a template
for our generalisations to n= 3, 4. Liu also gives an algorithm for minimising [Liu
1996, p. 4594, remarque 11] (still for n = 2), which although not made explicit
appears to be the same as ours.

We remark that minimisations are not unique, in the sense that there can be more
than one OK -equivalence class of minimal models K -equivalent to a given genus-
one model. Following on from our work and that of Liu, Sadek [2009] explains
how to compute the number of such classes.

For a more general, but necessarily less explicit, discussion of the problem of
minimising homogeneous polynomials (of degree d in n variables) see [Kollár
1997].

3B. Proof of the Minimisation Theorem. In this subsection only we relax our
assumptions on OK and K . It will only be necessary to assume that OK is a prin-
cipal ideal domain and K is its field of fractions. The definitions of a nonsingular
model and an integral model (see Definition 3.1) carry over as before. We consider
models of degree n = 2, 3 or 4.
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Let E be an elliptic curve over K , with identity OE ∈ E(K ), and let D be a
K-rational divisor on E of degree n. We write [D] for the linear equivalence class
of D. We pick a basis f1, . . . , fn for the Riemann–Roch space L(D), and let
E→Pn−1 be the morphism given by P 7→ ( f1(P) : . . . : fn(P)). Then according
as n = 2, 3 or 4, we find that E may be written as either a double cover of P1, a
plane cubic, or an intersection of two quadrics in P3. It is therefore defined by a
suitable genus-one model8∈ Xn(K ). Moreover this model is uniquely determined
up to K-equivalence by the pair (E, [D]): replacing D by an equivalent divisor
or changing basis for the space L(D) only has the effect of a linear change of
coordinates on Pn−1, so only changes the genus-one model by a K-equivalence. In
this situation we say that the genus-one model 8 represents the pair (E, [D]).

Similarly, we obtain a genus-one model 8 ∈ Xn(K ), well-defined up to K-
equivalence, representing every pair (C, [D]) where C is a genus-one curve and
D a divisor of degree n on C; we have C ∼= C8 (over K ), and in particular, 8 is
K-soluble if and only if C(K ) 6=∅. Under this isomorphism, the divisor class [D]
on C maps to a distinguished divisor class [D8] of degree n on C8, namely the
class of the fibres of the map C8 → P1 if n = 2, or the hyperplane section if
n = 3, 4. It is a tautology that 8 represents (C8, [D8]).

Lemma 3.7. Every K-soluble nonsingular genus-one model arises from a pair
(E, [D]) in the manner described above.

Proof. If 8 ∈ Xn(K ) is a K-soluble nonsingular model then C8 is a smooth curve
of genus one with a rational point, hence is an elliptic curve. Now it is obvious
that the genus-one model determined by the pair (C8, [D8]) is just 8. �

The aim of this section is to prove the following theorem. The Minimisation
Theorem, 3.4, is then an immediate consequence by Lemma 3.7.

Theorem 3.8. Let E/K be an elliptic curve with integral Weierstrass equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6 (3-1)

and let D ∈DivK (E) be a divisor on E of degree n = 2, 3 or 4. Then (E, [D]) can
be represented by an integral genus-one model with the same discriminant as (3-1).

This theorem states that, in the K-equivalence class of genus-one models rep-
resenting (E, [D]), there is one which is integral and has the same discriminant
as any given integral Weierstrass model for E . Our strategy for proving this starts
with two observations.

Firstly, the claim really does only depend on the divisor class [D] and not the
given specific divisor D in that class, since the K-equivalence class of genus-one
models representing (E, [D]) only depends on the divisor class.
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Secondly, if τQ : E→ E is translation by some point Q ∈ E(K ), then the pairs
(E, [D]) and (E, [τ ∗Q D]) determine K-equivalent genus-one models. This follows
from the fact that the map E→Pn−1 determined by [τ ∗Q D] is the composite of τQ

and the map determined by [D].
Using the classical facts that every K-rational divisor D of degree n is linearly

equivalent to a unique divisor of the form (n−1).OE+ P for some P ∈ E(K ), and
that divisors on an elliptic curve are linearly equivalent if and only if they have the
same degree and the same sum, it suffices to prove Theorem 3.8 for such divisors
as P runs over a set of coset representatives for E(K )/nE(K ).

In Lemmas 3.11 and 3.12, we show using explicit formulae that Theorem 3.8
holds in the cases D = n.OE and D = (n − 1).OE + P where P ∈ E(K ) is an
integral point, that is, a point with coordinates in OK . This is already enough to
prove Theorem 3.8 in the case OK is a complete discrete valuation ring with residue
characteristic prime to n. Indeed, by the theory of formal groups, every nonzero
element of E(K )/nE(K ) may then be represented by an integral point.

In general we rely on the following two lemmas, proved later in this subsection.

Lemma 3.9 (unprojection lemma). Let D ∈ DivK (E) have degree 2 or 3, and let
P ∈ E(K ). If Theorem 3.8 holds for D then it holds for D+ P.

Lemma 3.10 (projection lemma). Let D ∈ DivK (E) have degree 3 or 4, and let
P ∈ E(K ). If Theorem 3.8 holds for D then it holds for D− P.

Theorem 3.8 may be deduced from these lemmas in more than one way. For
example, if n = 3 or 4 then D ∼ (n − 1).OE + P for some P ∈ E(K ). Then we
quote the result for D′ = (n− 1).OE and use the unprojection lemma. Likewise if
n= 2 or 3 then D∼ (n+1).OE− P for some P ∈ E(K ). Then we quote the result
for D′ = (n+ 1).OE and apply the projection lemma to D′.

Theorem 3.8 in the case D = n.OE follows from the formulae we used to nor-
malise the invariants c4, c6 and 1: see Remark 2.6.

Lemma 3.11. Let E be an elliptic curve with Weierstrass equation

Y 2
+ a1 XY + a3Y = X3

+ a2 X2
+ a4 X + a6. (3-2)

Then the pair (E, [n.OE ]) determines genus-one models as follows:

n = 2 : y2
+ (a1x1x2+ a3x2

2)y = x3
1 x2+ a2x2

1 x2
2 + a4x1x3

2 + a6x4
2;

n = 3 : y2z+ a1xyz+ a3 yz2
− x3
− a2x2z− a4xz2

− a6z3
= 0;

n = 4 : x2
− zt = 0, y2

+ a1xy+ a3 yz− xt − a2x2
− a4xz− a6z2

= 0.

Moreover, each of these models has the same invariants c4, c6 and 1 as (3-2).

Proof. In the case n = 2 we embed E in P(1, 1, 2) via (x1 : x2 : y) = (X : 1 : Y ).
In the cases n = 3, 4 we embed E in Pn−1 via (z : x : y) = (1 : X : Y ) and
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(z : x : y : t) = (1 : X : Y : X2) respectively. The statement about the invariants
follows by direct calculation. �

Next we prove Theorem 3.8 in the case D = (n− 1).OE + P where P ∈ E(K )
is an integral point. By a substitution X ← X + X (P), Y ← Y + Y (P) we may
assume that P is the point (0, 0).

Lemma 3.12. Let E be an elliptic curve with Weierstrass equation

Y 2
+ a1 XY + a3Y = X3

+ a2 X2
+ a4 X (3-3)

and let P = (0, 0). Then the pair (E, [(n − 1).OE + P]) determines genus-one
models as follows:

n = 2 : y2
+ (−x2

1 + a1x1x2+ a2x2
2)y =−a3x1x3

2 − a4x4
2;

n = 3 : y2z− x2 y+ a1xyz+ a2 yz2
+ a3xz2

+ a4z3
= 0;

n = 4 : zt − xy+ a1 yz+ a3z2
= 0, y2

− xt + a2 yz+ a4z2
= 0.

Moreover, each of these models has the same invariants c4, c6 and 1 as (3-3).

Proof. The rational function

F =
Y + a1 X + a3

X
=

X2
+ a2 X + a4

Y
belongs to the Riemann–Roch space L(OE + P). In the case n = 2 we embed E
in P(1, 1, 2) via (x1 : x2 : y) = (F : 1 : X). In the cases n = 3, 4 we embed E in
Pn−1 via (z : x : y) = (1 : F : X) and (z : x : y : t) = (1 : F : X : Y ) respectively.
The statement about the invariants follows by direct calculation. �

It remains to prove Lemmas 3.9 and 3.10. One observation that we use in the
proofs is the following.

Lemma 3.13. The group SLn(OK ) acts transitively on Pn−1(K ).

Proof. Since OK is a principal ideal domain this is standard. See for example
[Jacobson 1985, Exercise 6, p. 186]. �

We now explain how we pass between results for generalised binary quartics
(case n = 2) and ternary cubics (case n = 3).

Lemma 3.14. Let D ∈ DivK (E) be a divisor of degree 2 and let P ∈ E(K ). Let
f1, f2 and f3 be binary forms over K with deg fi = i . The following statements
are equivalent.

(i) The pair (E, [D]) is represented by the generalised binary quartic

y2
+ f2(x1, x2)y = f1(x1, x2) f3(x1, x2) (3-4)

and P is the point defined by f1 = y = 0.
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(ii) The pair (E, [D+ P]) is represented by the ternary cubic

f1(X, Z)Y 2
− f2(X, Z)Y − f3(X, Z)= 0 (3-5)

and P is the point (X : Y : Z)= (0 : 1 : 0).

Proof. We first show that the curves C2 and C3 defined by (3-4) and (3-5) are
isomorphic. An isomorphism φ : C2→ C3 is given by

φ : (x1 : x2 : y) 7→ (X : Y : Z)= (x1 f1(x1, x2) : y+ f2(x1, x2) : x2 f1(x1, x2))

= (x1 y : f3(x1, x2) : x2 y),

with inverse

φ−1
: (X : Y : Z) 7→ (x1 : x2 : y)= (X : Z : f1(X, Z)Y − f2(X, Z)).

The isomorphism identifies the points { f1= y=0}∈C2(K ) and (0 :1 :0)∈C3(K ).
To prove the equivalence of (i) and (ii) we note that if D= P1+ P2 is a fibre of the
map C2→P1

; (x1 : x2 : y) 7→ (x1 : x2) then the points φ(P1), φ(P2) and (0 : 1 : 0)
are collinear on C3 ⊂ P2. �

There is an entirely analogous result for passing between ternary cubics (case
n = 3) and quadric intersections (case n = 4).

Lemma 3.15. Let D ∈DivK (E) be a divisor of degree 3 and let P ∈ E(K ). Let l1,
l2, q1 and q2 be ternary forms over K with deg li = 1 and deg qi = 2. The following
statements are equivalent.

(i) The pair (E, [D]) is represented by the ternary cubic

l1(x1, x2, x3)q2(x1, x2, x3)− l2(x1, x2, x3)q1(x1, x2, x3)= 0, (3-6)

and P is the point defined by l1 = l2 = 0.

(ii) The pair (E, [D+ P]) is represented by the quadric intersection

l1(x1, x2, x3)x4+ q1(x1, x2, x3)= 0, l2(x1, x2, x3)x4+ q2(x1, x2, x3)= 0,
(3-7)

and P is the point (x1 : x2 : x3 : x4)= (0 : 0 : 0 : 1).

Proof. We first show that the curves C3 and C4 defined by (3-6) and (3-7) are
isomorphic. An isomorphism φ : C3→ C4 is given by

φ : (x1 : x2 : x3) 7→ (x1l1 : x2l1 : x3l1 : −q1)= (x1l2 : x2l2 : x3l2 : −q2)

with inverse φ−1
: (x1 : x2 : x3 : x4) 7→ (x1 : x2 : x3). This isomorphism identifies the

points {l1= l2= 0} ∈C3(K ) and (0 : 0 : 0 : 1)∈C4(K ). To prove the equivalence of
(i) and (ii) we note that if C3⊂P2 meets some line in the divisor D= P1+P2+P3

then the points φ(P1), φ(P2), φ(P3) and (0 : 0 : 0 : 1) are coplanar on C4 ⊂P3. �
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A generic computation shows that the genus-one models (3-4) and (3-5) in
Lemma 3.14 have the same discriminant. Likewise the models (3-6) and (3-7)
in Lemma 3.15 have the same discriminant.

Proof of Lemma 3.9. (i) Let D ∈ DivK (E) be a divisor of degree 2, and suppose
the pair (E, [D]) is represented by an integral generalised binary quartic of dis-
criminant 1. By Lemma 3.13 (with n = 2) we may assume that P is the point
(x1 : x2 : y) = (1 : 0 : η) for some η ∈ K . Since OK is integrally closed it follows
that η∈OK . By making a substitution y← y+ηx2

1 we may assume that η= 0. Our
model is now of the form (3-4) with f1(x1, x2)= x2. Then the ternary cubic (3-5)
is an integral model of discriminant 1 representing the pair (E, [D+ P]).

(ii) Let D ∈ DivK (E) be a divisor of degree 3, and suppose the pair (E, [D]) is
represented by an integral ternary cubic of discriminant 1. By Lemma 3.13 (with
n = 3) we may assume that P is the point (x1 : x2 : x3) = (0 : 0 : 1). Our model
is now of the form (3-6) with l1 = x1 and l2 = x2. We may choose the quadratic
forms q1 and q2 to have coefficients in OK . Then the quadric intersection (3-7) is
an integral model of discriminant 1 representing the pair (E, [D+ P]). �

Proof of Lemma 3.10. (i) Let D ∈ DivK (E) be a divisor of degree 3, and suppose
the pair (E, [D]) is represented by an integral ternary cubic of discriminant 1. By
Lemma 3.13 (with n= 3) we may assume that P is the point (X :Y : Z)= (0 : 1 : 0).
Our model is now of the form (3-5). Then the generalised binary quartic (3-4) is
an integral model of discriminant 1 representing the pair (E, [D− P]).

(ii) Let D ∈ DivK (E) be a divisor of degree 4, and suppose the pair (E, [D]) is
represented by an integral quadric intersection of discriminant 1. By Lemma 3.13
(with n = 4) we may assume that P is the point (x1 : x2 : x3 : x4) = (0 : 0 : 0 : 1).
Our model is now of the form (3-7) for some forms l1, l2, q1 and q2 with coeffi-
cients in OK . Then the ternary cubic (3-6) is an integral model of discriminant 1
representing the pair (E, [D− P]). �

Remark 3.16. In principle these proofs give an algorithm for minimising K-soluble
models, but only once a K-rational point is explicitly known. (Although it is easy
to decide solubility over local fields, if the model is far from minimal then we
would need to know a local point to very high precision. Hence our comment that
this is not a readily implementable algorithm.)

4. Minimisation algorithms

In this section we give algorithms for minimising binary quartics (case n = 2),
ternary cubics (case n=3) and quadric intersections (case n=4). As in Section 3A
we work over a field K which is the field of fractions of a discrete valuation
ring OK . There is no need to assume that K is complete (or even Henselian). We
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fix a uniformiser π and write k=OK /πOK for the residue field. In the cases n=2, 4
we initially assume that char(k) 6= 2, leaving the case char(k)= 2 to Section 4D.

Our algorithms for n = 2, 3 share some common features which we now eluci-
date. In these cases we specify a procedure that takes as input an integral genus-
one model of positive level, and returns a K-equivalent integral model of the same
or smaller level. We then show that if the model is nonminimal then the level
must decrease after finitely many iterations, and give a bound N on the number
of iterations required. This also gives a test for minimality: if N iterations of the
procedure fail to decrease the level, then the model must be minimal.

The proofs are by induction on the slope, which we define as the least valuation
of the determinant of a matrix M ∈GLn(K ) with entries in OK that can be used to
decrease the level. The slope of a minimal model is undefined. The arguments we
use are incapable of proving the Minimisation Theorem, since we assume at the
outset that the given model has a slope, i.e., is nonminimal.

The following lemma is used to show that our procedure gives a well-defined
map on OK -equivalence classes. This is useful, since it means we are free to replace
our model by an OK -equivalent one at any stage of the proof. We write Im for the
m×m identity matrix.

Lemma 4.1. Let GLn(K ) act on Pn−1 in the natural way (via left multiplication
of column vectors by matrices). Let α =Diag(Ir , πIn−r ) for some 0< r < n. Then
the subgroup of GLn(OK ) consisting of transformations whose reduction modulo π
preserves the subspace {xr+1 = . . .= xn = 0} is

GLn(OK )∩αGLn(OK )α
−1.

Proof. Identifying Pn−1(K ) with the nonzero elements of K n modular scalars,
GLn(OK ) is the subgroup preserving On

K and we are interested in the subgroup
which also preserves Or

K ⊕ (πOK )
n−r
= α(On

K ). The statement is now clear. �

This lemma is used as follows. Suppose that 8 and 9 are GLn(OK )-equivalent
models, and the matrix relating them (or its transpose, depending on conventions)
is one whose reduction modulo π preserves the subspace {xr+1 = . . . = xn = 0}.
Then the models 8′ and 9 ′ obtained by applying α = Diag(Ir , πIn−r ) to both 8
and 9 will again be GLn(OK )-equivalent.

4A. Minimisation of 2-coverings. Let F ∈ K [x, z] be a binary quartic, say

F(x, z)= ax4
+ bx3z+ cx2z2

+ dxz3
+ ez4.

Viewing the set of these as a subset of X2(K ), the group of K-equivalences between
binary quartics is K××GL2(K ), where [µ,M] acts via F 7→ µ2(F ◦ M). Note
that [π−2,Diag(π, π)] acts trivially, so we may if convenient assume that M has
entries in OK , not all in πOK .



780 John E. Cremona, Tom A. Fisher and Michael Stoll

We say that an integral binary quartic F is minimal if v(1(F)) is minimal among
all integral binary quartics K-equivalent to F . If char(k)= 2 then this need not be
the same as being minimal as a generalised binary quartic. We define the valuation
v(F) to be the minimum of the valuations of the coefficients. If v(F) ≥ 2, then
F is not minimal, and indeed dividing through by π2 gives a K-equivalent integral
model of smaller level. The algorithm for minimising binary quartics is described
in the following theorem.

Theorem 4.2. Let F ∈ OK [x, z] be a nonsingular binary quartic. Suppose that
v(F)= 0 or 1, but F has positive level. If char(k)= 2 then further assume that F
is nonminimal. Then

(i) The reduction mod π of F1(x, z)= π−v(F)F(x, z) has either a triple or quad-
ruple root defined over k.

(ii) The following procedure replaces F by a K-equivalent integral model of the
same level.

• Move the repeated root of F1(x, z) mod π to (x : z)= (0 : 1).
• Replace F(x, z) by π−2 F(πx, z).

(iii) If F is nonminimal then the procedure in (ii) gives v(F) ≥ 2 after at most 2
iterations.

Proof. We first prove the theorem in the case F ∈ OK [x, z] is nonminimal. By
hypothesis there exists [µ,M] ∈ K××GL2(K ) with

v(µ det(M))≤−1 and v(µ2(F ◦M))≥ 0,

i.e., the transform of F by [µ,M] has smaller level and is still integral. Hence
v(F ◦ M) ≥ 2v(det M)+ 2. The slope s of F is defined to be the least possible
valuation of det M , for M such a matrix with entries in OK . By Lemma 4.1 we
are free to replace F by any OK -equivalent binary quartic. So, putting M in Smith
normal form, we may assume that F(πs x, z) ≡ 0 (mod π2s+2) where s is the
slope. For s ≥ 2, this condition works out as π2

| c, πs+2
| d and π2s+2

| e. So the
only possible slopes are s = 0, 1, 2 (as if these conditions hold for some s > 2,
then they also hold for s = 2, and s was defined to be minimal). If s = 0, then
v(F)≥2 contrary to hypothesis. If s=1, then the coefficients of F have valuations
satisfying ≥ 0, ≥ 1, ≥ 2, ≥ 3 and ≥ 4. So either v(F) = 0 and F(x, z) mod π
has a quadruple root at (x : z)= (0 : 1), or v(F)= 1 and π−1 F(x, z) mod π has a
triple or quadruple root at (x : z)= (0 : 1). If s = 2, then the coefficients of F have
valuations satisfying ≥ 0, = 0, ≥ 2, ≥ 4 and ≥ 6. Then F(x, z)mod π has a triple
root at (0 : 1). In each of these cases (s = 1 and s = 2) statements (i) and (ii) of the
theorem are now immediate. Moreover the procedure in (ii) returns a K-equivalent
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integral model of smaller slope. Hence at most 2 iterations are required to give
v(F)≥ 2, establishing (iii).

It remains to prove (i) and (ii) in the case char(k) 6= 2 and F has positive level
(but could be minimal). Statement (i) follows from the fact that F1 mod π is a null
form, i.e., both the invariants I and J vanish. (Since k is perfect the multiple root
is defined over k.) For (ii) we must show that if v(F) = 0 and the reduction of
F mod π has a repeated root at (x : z) = (0 : 1) then π2

| e. But in this case there
are smooth k̄-points on the reduction of C mod π where C= {y2

= F(x, z)}. We
then have C(K sh) 6= ∅, and Theorem 3.4 shows that F is nonminimal over K sh.
Our earlier argument now applies, keeping in mind that π is still a uniformizer
for K sh. �

To give a satisfactory analogue of this algorithm when char(k) = 2 we must
work with generalised binary quartics. We give details in Section 4D.

4B. Minimisation of 3-coverings. The valuation v(F) of a ternary cubic

F(x, y, z)=ax3
+by3

+cz3
+a2x2 y+a3x2z+b1xy2

+b3 y2z+c1xz2
+c2 yz2

+mxyz

is the minimum valuation of a coefficient. If v(F)≥ 1 then F is nonminimal, and
indeed dividing through by π gives a K-equivalent integral model of smaller level.
The algorithm for minimising ternary cubics is described in the following theorem.

Theorem 4.3. Let F ∈ X3(OK ) be a nonsingular ternary cubic. Suppose v(F)= 0,
but F has positive level. Then

(i) The singular locus of the reduction

S=
{
(x : y : z) ∈ P2

∣∣∣ F ≡ ∂F
∂x
≡
∂F
∂y
≡
∂F
∂z
≡ 0 (mod π)

}
is either a point or a line, and is defined over k.

(ii) The following procedure replaces F by a K-equivalent integral ternary cubic
of the same level.
• Make a GL3(OK )-transformation to move the singular locus S to the point
(1 : 0 : 0), respectively the line {z = 0}.

• Replace F(x, y, z) by πF(π−1x, y, z), respectively π−1 F(x, y, πz).

(iii) If F is nonminimal then the procedure in (ii) gives v(F) ≥ 1 after at most 4
iterations.

Proof. We are given that F has positive level. It follows that its reduction mod π
is a null-form, i.e., the invariants c4, c6 and 1 all vanish. The classification of
singular ternary cubics (up to equivalence over an algebraically closed field) is
well known. See for example [Dolgachev 2003, §10.3] or [Poonen 2001]. The
possible null-forms are either a cuspidal cubic, a line touching a conic, three lines
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through a common point, a double line and a line, or a triple line. So over k̄ the
singular locus of the reduction is either a point or a line. Since k is perfect, this
point or line is already defined over k. This proves (i).

Next we prove (ii) and (iii) in the case F is nonminimal. By hypothesis there
exists [µ,M] ∈ K××GL3(K )with v(µ det(M))≤−1 such that the transform of F
by [µ,M] is still integral. The slope s of F is the least possible valuation of det M ,
for M such a matrix with entries in OK . By Lemma 4.1 we are free to replace F
by any OK -equivalent ternary cubic. So putting the transformation matrix in Smith
normal form we may assume that F satisfies

F(x, πa y, πbz)≡ 0 (mod πa+b+1) (4-1)

for some 0≤a≤b with a+b= s. If a=b=0 then v(F)≥1, contrary to hypothesis.
If a= 0 and b≥ 1 then the reduction of F mod π only involves the monomials xz2,
yz2 and z3. Hence S is the line {z = 0}. If a ≥ 1 then the coefficients of x3, x2 y
and x2z all vanish mod π. Hence S is either the point (1 : 0 : 0) or a line through
this point. In each of these cases it is clear that the procedure in (ii) returns an
integral model of the same level and smaller slope. Moreover it gives v(F) ≥ 1
after a finite number of iterations (bounded by the initial slope). The next lemma
shows that the only possible slopes are 0, 1, 2, 3 and 5. Hence at most 4 iterations
are required, establishing (iii).

It remains to prove (ii) in the case F has positive level, but could be minimal.
We must show that if (1 : 0 : 0) is the only singular point on the reduction then
F(1, 0, 0)≡0 (mod π2). But in this case there are smooth k̄-points on the reduction.
The proof is completed exactly as in Theorem 4.2. �

We say that a pair (a, b) is admissible for F if (4-1) holds.

Lemma 4.4. If some pair (a, b) with 0 ≤ a ≤ b is admissible for F then at least
one of the pairs (0, 0), (0, 1), (1, 1), (1, 2) or (2, 3) is admissible for F.

Proof. Suppose (a, b) is admissible for F . We make the observations:

• If a = 0 and b ≥ 1 then (0, 1) is admissible.

• If a = b ≥ 1 then (1, 1) is admissible.

• If a ≥ 1 and b ≥ 2a then (1, 2) is admissible.

• If a ≥ 2 and b ≥ a+ 1 then (2, 3) is admissible.

The only remaining possibility is (a, b)= (0, 0). �

Example 4.5. We apply our algorithm to a cuspidal cubic (although this is singu-
lar, there are π-adically close smooth ternary cubics that are treated in the same
way by our algorithm). An arrow labelled (0, a, b) indicates that we make the
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transformation [π−a−b,Diag(1, πa, πb)].

xz2
− y3 (0,1,1)

−→ xz2
−πy3

(0,0,1)
−→ πxz2

− y3

(0,1,0)
−→ xz2

−π2 y3

(0,0,1)
−→ π(xz2

− y3).

So this is an example where our algorithm takes the maximum possible of 4 itera-
tions to give v(F)≥ 1.

4C. Minimisation of 4-coverings. In this subsection we prove the Strong Min-
imisation Theorem, 3.5(i), and Theorem 3.6 in the case n = 4, assuming that
char(k) 6= 2. The proofs are constructive and give an algorithm for minimising
quadric intersections. The modifications required when char(k)= 2 are described
in the next subsection.

We define a map

d : X4(K )→ X2(K ), (Q1, Q2) 7→ F(x, z)= det(Ax + Bz), (4-2)

where A and B are the matrices of second partial derivatives of Q1 and Q2. As
noted in Definition 2.4 we have 1(Q1, Q2)= 2−121(F).

Lemma 4.6. Let (Q1, Q2) ∈ X4(K ) be a nonsingular quadric intersection. Then
F = d(Q1, Q2) is nonsingular, and there is a morphism of genus-one curves
C(Q1,Q2)→ CF defined over K .

Proof. A formula for this morphism is given by classical invariant theory [An
et al. 2001; Merriman et al. 1996]. We write the binary quartic F = d(Q1, Q2)

as F(x, z) = ax4
+ bx3z+ cx2z2

+ dxz3
+ ez4, and let T1 and T2 be the quadrics

whose matrices of second partial derivatives M1 and M2 are determined by

adj
(
adj(A)x + adj(B)z

)
= a2 Ax3

+ aM1x2z+ eM2xz2
+ e2 Bz3. (4-3)

Then J 2
≡ F(T1,−T2) mod (Q1, Q2) where J = 1

4
∂(Q1, Q2, T1, T2)
∂(x1, x2, x3, x4)

. �

Lemma 4.7. If [M, N ] ∈ G4(K ) then there is a commutative diagram

X4(K )
[M,N ] //

d

��

X4(K )

d

��
X2(K )

[det N ,M]// X2(K ).

In particular d induces a well-defined map on K-equivalence classes.

Proof. This is clear. �
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Following [Womack 2003], we deduce the Minimisation Theorem for n=4 from
the n = 2 version. The modifications required to prove Theorems 3.5(i) and 3.6
are given at the end of this subsection (see Proposition 4.12).

Proposition 4.8. If (Q1, Q2) ∈ X4(K ) is nonsingular and K-soluble then it is
K-equivalent to an integral model of level 0.

Proof. Since (Q1, Q2) is K-soluble, it follows by Lemma 4.6 that d(Q1, Q2) is
K-soluble. So by the Minimisation Theorem for n = 2 we know that d(Q1, Q2)

is K-equivalent to an integral binary quartic F(x, z) of level 0. It is clear by
Lemma 4.7 that (Q1, Q2) is K-equivalent to a quadric intersection (Q′1, Q′2) with
d(Q′1, Q′2)= F . The following lemma shows we may take (Q′1, Q′2) integral. This
is then the required integral model of level 0. �

Notice that the next three lemmas are false when char(k)=2, as we could otherwise
use the above proof to find integral models of level −v(2).

Lemma 4.9. Let (Q1, Q2) ∈ X4(K ) be a K-soluble nonsingular quadric intersec-
tion. If d(Q1, Q2) is integral then (Q1, Q2) is K-equivalent to an integral quadric
intersection (Q′1, Q′2) with d(Q′1, Q′2)= d(Q1, Q2).

Proof. By a transformation [µI2, I4] for suitable µ ∈ OK we obtain an integral
quadric intersection (Q′1, Q′2) with d(Q′1, Q′2)= µ

4d(Q1, Q2). We now apply the
following lemma, as many times as required, at each stage preserving the integrality
of (Q′1, Q′2) while dividing d(Q′1, Q′2) by a square in πOK . �

Recall that we write v(F) for the minimum of the valuations of the coefficients
of the binary quartic F . The following is Womack’s “main reduction lemma”.

Lemma 4.10. Let (Q1, Q2)∈ X4(OK ) be a nonsingular K-soluble integral quadric
intersection. If F = d(Q1, Q2) satisfies v(F) ≥ 2 then (Q1, Q2) is K-equivalent
to an integral quadric intersection of smaller level by means of a transformation
[λI2, N ] ∈ G4(K ) with λ ∈ K× and N ∈ GL4(K ).

The following geometric lemma prepares for the proof of Lemma 4.10. We say
that two pairs of quadratic forms in m variables are k-equivalent if they are in the
same orbit for the natural action of GL2(k)×GLm(k). (This extends our earlier
definition in the case m = 4.) Over an algebraically closed field, the lemma may
alternatively be deduced from the classification of pairs of quadrics using the Segre
symbol, as given in [Hodge and Pedoe 1952, Chapter XIII, §11].

Lemma 4.11. Let Q1 and Q2 be quadratic forms in m = 3 or 4 variables over a
field k with char(k) 6= 2. Let A and B be the matrices of second partial derivatives
of Q1 and Q2. Assume that

• {Q1 = Q2 = 0} ⊂ Pm−1 is not a cone, that is, ker A∩ ker B = 0, and

• the binary form F(x, z)= det(Ax + Bz) is identically zero.
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Then the k-equivalence class of (Q1, Q2) is uniquely determined:

(i) If m = 3 then (Q1, Q2) is k-equivalent to (x1x2, x2x3).

(ii) If m = 4 then (Q1, Q2) is k-equivalent to (x1x2, x2x3− x2
4).

Proof. (i) We must show that the GCD of Q1 and Q2 is a linear form, and for this
we may assume that k is algebraically closed. Since some quadric in the pencil
has rank 2, we may assume that Q1 = x1x2. Then the condition det(Ax+ Bz)= 0
works out as b33 = b13b23 = det B = 0. Swapping x1 and x2 if necessary, we may
assume that b13 = b33 = 0. Then b23 6= 0 (otherwise we would have a cone) and
the condition det B = 0 forces b11 = 0. Making a substitution for x3 now puts
(Q1, Q2) in the required form.

(ii) Suppose {Q1 = Q2 = 0} ⊂P3 has a singular point defined over k. Moving this
point to (1 : 0 : 0 : 0), it is easy to reduce to the case

A =


0 1
1 0

0 0
0 0

0 0
0 0

A′

 , B =


0 0
0 ∗

0 0
∗ ∗

0 ∗
0 ∗

B ′

 .
The condition det(Ax+Bz)= 0 now becomes det(A′x+B ′z)= 0. Hence we may
assume that A′ and B ′ are scalar multiples of(

0 0
0 1

)
.

Then b23 6= 0 (otherwise we have a cone) and a substitution in x3 brings us to the
case

(Q1, Q2)= (x1x2+ λx2
4 , x2x3+µx2

4)

for some λ,µ∈k. Replacing one of these quadrics by a suitable linear combination,
and then making a substitution in x1 and x3 to compensate, we may assume that
λ= 0. Then µ 6= 0 (otherwise we have a cone) and we rescale to get µ=−1.

By Theorem 2.8(ii) there is a singular point defined over k̄. So running the above
proof over k̄ shows that {Q1 = Q2 = 0} ⊂ P3 is the union of a conic and a line,
meeting at a unique point. This point of intersection is a k-rational singular point.
Our earlier proof now applies. �

Proof of Lemma 4.10. We write Q1, Q2 for the reductions of Q1, Q2 modulo π.
In the proof we often arrive at one of the following three special situations.

Situation 1: The reduction C(Q1,Q2) contains a plane defined over k. By means
of a GL4(OK )-transformation we may move the plane to {x1 = 0}. We apply the
transformation [π−1 I2,Diag(π, 1, 1, 1)] to give an integral model of smaller level.
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Situation 2: The reduction C(Q1,Q2) is a cone over a point x∈P3(k), and moreover
Q1(x) ≡ Q2(x) ≡ 0 (mod π2). By a GL4(OK )-transformation we may move the
point to (1 : 0 : 0 : 0). We apply the transformation [I2,Diag(π−1, 1, 1, 1)] to give
an integral model of smaller level.

Situation 3: The reduction C(Q1,Q2) contains a line defined over k. By a GL4(OK )-
transformation we may move the line to {x1= x2= 0}. The flip-flop transformation
[π−1 I2,Diag(π, π, 1, 1)] gives an integral model of the same level.

Let A and B be the matrices of second partial derivatives of Q1 and Q2. Let A
and B be their reductions mod π. We split into cases according to the value of the
common nullity, defined as s = dim(ker A∩ ker B).

If s = 0 then by Lemma 4.11(ii) we are in Situation 3. Applying the flip-flop
transformation brings us to the case s ≥ 1.

If s = 1 we may assume that Q1 and Q2 are quadratic forms in x2, x3 and x4

only. Let A′ and B ′ be the 3 by 3 matrices of second partial derivatives. Then

F(x, z)≡ (a11x + b11z) det(A′x + B ′z) (mod π2). (4-4)

Since v(F) ≥ 2 we have either a11 ≡ b11 ≡ 0 (mod π2), in which case we are in
Situation 2, or det(A′x + B ′z)= 0, in which case Lemma 4.11(i) shows we are in
Situation 1.

If s ≥ 2 we may assume that Q1 and Q2 are binary quadratic forms in x1 and
x2. If Q1 and Q2 simultaneously represent 0 over k, then we are in Situation 1.
Otherwise we apply the flip-flop transformation [π−1 I2,Diag(π, π, 1, 1)] to give
an integral model (R1, R2) of the same level. Then R1 and R2 are binary quadratic
forms in x3 and x4. If R1 and R2 simultaneously represent 0 over k then we are in
Situation 1. Otherwise we obtain a contradiction to our hypothesis that (Q1, Q2) is
K-soluble. Indeed if (x1 : x2 : x3 : x4) were a K-point with min{v(xi ) : 1≤ i ≤ 4}= 0
then from Q1(x)≡ Q2(x)≡ 0 (mod π) we deduce x1 ≡ x2 ≡ 0 (mod π) and from
Q1(x)≡ Q2(x)≡ 0 (mod π2) we deduce x3 ≡ x4 ≡ 0 (mod π). �

This completes the proof of Proposition 4.8. We now modify the proof so that
we can deduce Theorems 3.5(i) and 3.6 in the case n = 4 from the corresponding
results for n=2. The situation considered at the end of the last paragraph motivates
the definition of a critical model, see Definition 5.1(iii) below.

Proposition 4.12. If (Q1, Q2) ∈ X4(K ) is nonsingular then it is K-equivalent to
either an integral model 8 ∈ X4(OK ) with d(8) minimal (and hence 8 minimal),
or a critical model (as specified in Definition 5.1(iii), page 793).

Proof. By Lemma 4.7 we may assume that d(Q1, Q2) is a minimal binary quartic.
We then follow the proof of Lemma 4.9, but without the hypothesis of K-solubility.
This hypothesis was only used at the end of the proof of Lemma 4.10. We may
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assume that one of the pairs, say Q1 and Q2, simultaneously represents 0 over k̄.
(Otherwise we would have a critical model.) If they do not simultaneously repre-
sent 0 over k, then they must be linearly dependent. So it is clear we can reduce
the level, but not necessarily using a transformation of the specified form. In the
proof of Lemma 4.9 we repeatedly applied Lemma 4.10. For the final application
it does not matter what transformation we use. In all earlier applications we have
v(F) ≥ 3. If A1, B1 and A2, B2 are the 2 by 2 matrices representing the pairs of
binary quadratic forms Q1, Q2 and R1, R2 then

F(x, z)≡ π2 det(A1x + B1z) det(A2x + B2z) (mod π3).

The hypothesis v(F) ≥ 3 therefore ensures that one of the pairs simultaneously
represents 0 over k. We are then in Situation 1 and can proceed as before. �

In Lemma 5.3 (see below) we show that critical models are minimal. Hence
following the proof of Proposition 4.12 gives an algorithm for minimising quadric
intersections, even in the case they are not K-soluble.

Proposition 4.12 also allows us to deduce the case n = 4 of Theorems 3.5(i)
and 3.6 from the case n = 2. Here we use the easy facts that critical models are
K sh-insoluble, and remain critical after any unramified field extension.

4D. Minimisation in residue characteristic 2. We describe how to modify our
algorithms in the cases n = 2, 4 when char(k) = 2. In the case n = 2 the issue is
that we must work with generalised binary quartics instead of just binary quartics.
Recall that a generalised binary quartic, or genus-one model of degree 2, is an
equation of the form

y2
+ P(x, z)y = Q(x, z),

where P and Q are homogeneous polynomials of degrees 2 and 4. The coefficients
of P and Q are labelled l, m, n and a, b, c, d , e. Notice that in characteristic 2
the binary quadratic form ∂2 Q/∂x∂z = bx2

+ dz2 is a covariant of the quartic Q.
Moreover this covariant vanishes if and only if Q is a square. (Recall that k is
perfect, and so every element of k is a square.)

We say that two models are y-equivalent if they are related by a y-substitution,
that is, a substitution of the form x← x , z← z, y← y+ r0x2

+ r1xz+ r2z2. The
valuation of (P, Q) ∈ X2(OK ) is

v(P, Q)=max{min(2v(P ′), v(Q′)) : (P ′, Q′) is y-equivalent to (P, Q)}.

It is easy to check that v(P, Q) only depends on the OK -equivalence class of
(P, Q).

If v(P) = 0 or v(P) ≥ 1 and Q(x, z) is not a square mod π then v(P, Q) = 0.
Otherwise we can make a y-substitution so that v(Q) ≥ 1. Then either v(Q)= 1,
in which case v(P, Q)= 1, or v(Q)≥ 2, in which case (P, Q) is nonminimal, and
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indeed dividing P and Q through by π and π2 gives a K-equivalent integral model
of smaller level. Theorem 4.2 has the following analogue.

Theorem 4.13. Let (P, Q)∈ X2(OK ) be a nonsingular generalised binary quartic.
Suppose that v(P, Q)= 0 or 1, but (P, Q) has positive level.

(i) The reduction mod π of

Q1(x, z)=


P(x, z) if v(P)= 0,
∂2 Q
∂x∂z

if v(P)≥ 1 and v(P, Q)= 0,

π−1 Q(x, z) if v(P)≥ 1 and v(Q)= 1

has a unique repeated root defined over k.

(ii) The following procedure replaces (P, Q) by a K-equivalent integral model of
the same level.
• If v(P, Q)= 1 then make a y-substitution so that v(Q)≥ 1.
• Move the repeated root of Q1(x, z) mod π to (x : z)= (0 : 1).
• Make a y-substitution so that π| e. (This is possible since π | n and every

element of k is a square.)
• Replace P(x, z) by π−1 P(πx, z) and Q(x, z) by π−2 Q(πx, z).

(iii) If (P, Q) is nonminimal then the procedure in (ii) gives v(P, Q) ≥ 2 after at
most 2 iterations.

Proof. We first show that if (i) holds for (P, Q) then it holds for any OK -equivalent
model (P ′, Q′). We say that forms f, g ∈ k[x, z] are k-equivalent if

f (x, z)= λg(αx +βz, γx + δz)

for some λ, α, β, γ, δ ∈ k with λ(αδ−βγ) 6= 0. Each of the following claims is an
easy consequence of the definition of OK -equivalence (as given in Section 2) and
our assumption that char(k)= 2.

• The reductions mod π of P(x, z) and P ′(x, z) are k-equivalent; in particular,
v(P)= 0⇐⇒ v(P ′)= 0.

• If v(P) ≥ 1 then the reductions mod π of ∂2 Q/∂x∂z and ∂2 Q′/∂x∂z are
k-equivalent; note that v(P, Q)= v(P ′, Q′).

• If v(P)≥ 1 and v(Q)= v(Q′)= 1 then the reductions mod π of π−1 Q(x, z)
and π−1 Q′(x, z) are k-equivalent.

It is now clear that if (i) holds for (P, Q) then it holds for (P ′, Q′). Next we show
that the procedure in (ii) gives a well-defined map on OK -equivalence classes.
This does not automatically follow from Lemma 4.1, as we must also consider
y-substitutions. Suppose we start with some model satisfying (i), and carry out the



Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves 789

first three steps of the procedure in (ii) in two different ways. The result is a pair
of OK -equivalent models (P, Q) and (P ′, Q′) related by some [1, r,M] ∈G2(OK ).
Since the reduction of M mod π fixes the repeated root (0 : 1) we have π |m21.
Labelling the coefficients of (P, Q) in the usual way, and likewise for (P ′, Q′),
we have π | n, e and π | n′, e′. Therefore π | r2. It is now routine to check that if (ii)
holds for (P, Q), i.e. π | n, d and π2

| e, then (ii) holds for (P ′, Q′), i.e. π | n′, d ′

and π2
| e′. Moreover the transformed models are related by

[1, (πr0, r1, π
−1r2),Diag(π, 1)M Diag(π−1, 1)] ∈ G2(OK ).

Thus the procedure gives a well-defined map on OK -equivalence classes.
We are now free in the proof to replace (P, Q) by any OK -equivalent model.

So if (P, Q) is nonminimal we may assume that P(πs x, z) ≡ 0 (mod πs+1) and
Q(πs x, z)≡ 0 (mod π2s+2) for some integer s ≥ 0. We call the least such integer s
the slope. As happened for binary quartics, the only possible slopes are s= 0, 1, 2.
If s = 0 then v(P, Q)≥ 2 contrary to hypothesis. If s = 1 then the coefficients of
(P, Q) have valuations satisfying

≥ 0, ≥ 1, ≥ 2; ≥ 0, ≥ 1, ≥ 2, ≥ 3, ≥ 4.

If v(P)=0 then P(x, z)mod π has a double root at (x : z)=(0 :1). Otherwise, since
every element of k is a square (recall k is perfect), we can make a y-substitution
y ← y + r0x2 so that v(Q) ≥ 1. Then π−1 Q(x, z) mod π has either a triple or
quadruple root at (x : z) = (0 : 1). If s = 2 then the coefficients of (P, Q) have
valuations satisfying

≥ 0, ≥ 1, ≥ 3; ≥ 0, = 0, ≥ 2, ≥ 4, ≥ 6.

So in this case v(P, Q)= 0. If v(P)= 0 then P(x, z) mod π has a double root at
(x : z)= (0 : 1). Otherwise bx2

+ dz2 mod π has a double root at (x : z)= (0 : 1).
In each of the cases s = 1, 2 it is now clear that the procedure in (ii) returns a K-
equivalent integral model of smaller slope. Hence at most 2 iterations are required
to give v(P, Q)≥ 2.

It remains to prove (i) and (ii) in the case (P, Q) has positive level (but could
be minimal). If (P, Q) is K sh-soluble then after an unramified extension we have
C(P,Q)(K ) 6= ∅. Then Theorem 3.4 shows that (P, Q) is non-minimal, and our
earlier argument applies. Otherwise, we show in Proposition 5.6 below, that (P, Q)
is OK -equivalent to a model whose coefficients have valuations satisfying

≥ 1, ≥ 1, ≥ 2; = 1, ≥ 2, ≥ 2, ≥ 3, = 3.

Statements (i) and (ii) are then clear. �
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Next we modify the algorithm for minimising quadric intersections, as presented
in Section 4C. First we replace d by the map

d′ : X4(K )→ X2(K ),

(Q1, Q2) 7→ (P, Q)= (pf(x Q1+ zQ2), rd(x Q1+ zQ2)),
(4-5)

where pf and rd were defined in the proof of Lemma 2.9. Then

1(Q1, Q2)=1(P, Q).

We call (P, Q) the doubling of (Q1, Q2). (The reason for this name is that d′ acts
as multiplication-by-2 on the Weil–Châtelet group.) The analogue of Lemma 4.6
(using d′ instead of d) is immediate if char(K ) 6= 2. Indeed, the covering map
C(Q1,Q2)→ C(P,Q) is given by

(x1 : x2 : x3 : x4) 7→ (T1 : −T2 : J ′),

where J ′ = 1
2(J − lT 2

1 +mT1T2 − nT 2
2 ), and l,m, n are the coefficients of P . If

char(K )= 2, then the role of J ′ is taken by

J ′′ = 1
2

(
J − lT 2

1 +mT1T2− nT 2
2 +mn(lT1+mT2)Q1+ lm(nT2+mT1)Q2

+ l2n3 Q2
1+ lmn(ln+m2)Q1 Q2+ l3n2 Q2

2
)
.

It may be verified by direct calculation that T1, T2 and J ′′ have coefficients in
Z[X4]. Moreover T1 and T2 cannot both vanish identically on C(Q1,Q2). (We
checked this for the models specified in Lemma 3.11, and then used the covariance
of T1 and T2.) Hence in all characteristics there is a morphism C(Q1,Q2)→C(P,Q)
given by (x1 : x2 : x3 : x4) 7→ (T1 : −T2 : J ′′).

The diagram in Lemma 4.7 (using d′ instead of d) no longer commutes, but it
does commute up to y-equivalence, and this is sufficient for our purposes.

Definition 4.14. Let Q ∈ k[x1, . . . , xm] be a quadratic form in m variables.

(i) The kernel ker Q of Q is the subspace of km defined by the vanishing of Q
and all its partial derivatives. (Recall that k is perfect, so the restriction of Q
to the subspace where all the partial derivatives vanish is the square of a linear
form.) The rank of Q is m− dim ker Q.

(ii) The discriminant of Q is

1m(Q)=
{

det(∂2 Q/∂xi∂x j ) if m is even,
1
2 det(∂2 Q/∂xi∂x j ) if m is odd.

The discriminant 1m is a polynomial in the coefficients of Q with integer coeffi-
cients. Therefore Definition 4.14(ii) is valid in all characteristics. Recall that we
defined pf and rd so that 14(Q)= pf(Q)2+ 4 rd(Q).
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Lemma 4.15. Let Q1 and Q2 be quadratic forms in m = 3 or 4 variables over a
field k with char(k)= 2. Assume that

• {Q1 = Q2 = 0} ⊂ Pm−1 is not a cone, i.e., ker Q1 ∩ ker Q2 = 0, and

• if m = 3 then13(x Q1+ zQ2)= 0, whereas if m = 4 then pf(x Q1+ zQ2)= 0
and rd(x Q1+ zQ2) is a square.

Then the k-equivalence class of (Q1, Q2) is uniquely determined, and is as given
in Lemma 4.11.

Proof. This is similar to the proof of Lemma 4.11. �

In Lemma 4.10 we made the hypothesis that v(F) ≥ 2 where F = d(Q1, Q2).
This should now be replaced by the hypothesis that d′(Q1, Q2) is y-equivalent to
a model (P, Q) with v(P)≥ 1 and v(Q)≥ 2. Then

P(x, z)= pf(x Q1+ zQ2)+ 2h(x, z),

Q(x, z)= rd(x Q1+ zQ2)− pf(x Q1+ zQ2)h(x, z)− h(x, z)2,
(4-6)

for some h ∈ K [x, z]. Since (Q1, Q2) is integral it follows that h ∈ OK [x, z]. Then
pf(x Q1+ zQ2) = 0 and rd(x Q1+ zQ2) is a square. Moreover if rd(x Q1+ zQ2)

vanishes mod π then it vanishes mod π2.
The common nullity is s = dim(ker Q1 ∩ ker Q2). In the case s = 1 we may

assume that Q1 and Q2 reduce to quadratic forms in x2, x3 and x4 only. Call these
Q′1 and Q′2. The analogue of (4-4) is

rd(x Q1+ zQ2)≡ (αx +βz)13(x Q′1+ zQ′2) (mod π2)

where α and β are the coefficients of x2
1 in Q1 and Q2. In all other respects, the

proof of the Lemma 4.10 goes through as before. By repeated application of this
lemma we obtain the following analogue of Lemma 4.9.

Lemma 4.16. Let (Q1, Q2) ∈ X4(K ) be a K-soluble nonsingular quadric inter-
section. If d′(Q1, Q2) is y-equivalent to an integral generalised binary quartic
then (Q1, Q2) is K-equivalent to an integral quadric intersection (Q′1, Q′2) such
that d′(Q′1, Q′2) is y-equivalent to d′(Q1, Q2).

The Minimisation Theorem for n= 4 now follows from the Minimisation Theorem
for n = 2 exactly as before.

The proof of Proposition 4.12 (with d replaced by d′) is modified as follows. We
follow the proof of Lemma 4.16 but without the hypothesis of K -solubility. This
hypothesis is only used when s ≥ 2. In this case

(Q1, Q2)= (α11x2
1 +α12x1x2+α22x2

2 , β11x2
1 +β12x1x2+β22x2

2)
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and applying the transformation [π−1 I2,Diag(π, π, 1, 1)] gives (R1, R2) with

(R1, R2)= (γ33x2
3 + γ34x3x4+ γ44x2

4 , δ33x2
3 + δ34x3x4+ δ44x2

4).

We must show that if Q1 and Q2 are linearly dependent and d′(Q1, Q2) is y-
equivalent to a model (P, Q) with v(P) ≥ 2 and v(Q) ≥ 3 then one of the pairs
Q1, Q2 or R1, R2 simultaneously represents 0 over k. Since s ≥ 2 we already
know that pf(x Q1+ zQ2) vanishes mod π and rd(x Q1+ zQ2) vanishes mod π2.
It follows by (4-6) that pf(x Q1+ zQ2) vanishes mod π2 and π−2 rd(x Q1+ zQ2)

is a square mod π. Hence

α12γ34 = β12δ34 = α12δ34+β12γ34 = 0

and

α2
12(γ33δ44+ γ44δ33)+ γ

2
34(α11β22+α22β11)= 0

β2
12(γ33δ44+ γ44δ33)+ δ

2
34(α11β22+α22β11)= 0.

Since Q1 and Q2 are linearly dependent we have α11β22+ α22β11 = 0. So either
α12 = β12 = 0, in which case Q1 and Q2 simultaneously represent 0 over k, or
γ34= δ34= γ33δ44+γ44δ33= 0 in which case R1 and R2 simultaneously represent
0 over k.

4E. Minimisation over global fields. Our theorems and algorithms for minimisa-
tion, as given above, were stated for genus-one models defined over a local field.
We now discuss the global situation, and in particular prove Theorem 1.1. We
restate that here in a more precise form. A genus-one model defined over a number
field is called integral if its coefficients are algebraic integers.

Theorem 4.17. Let n = 2, 3 or 4. Let K be a number field of class number one.
Let 8 be a nonsingular genus-one model of degree n defined over K , and let E be
the Jacobian of C8. Suppose that C8 is locally soluble at all finite places. Then
there is a K-equivalent integral genus-one model with discriminant equal to the
discriminant of a global minimal Weierstrass equation for E.

Proof. To deduce this result directly from the statement of the Minimisation Theo-
rem, 3.4, one would be led to using a version of strong approximation. See [Fisher
2007] for details in the cases n = 2, 3. The case n = 4 is similar. Although these
proofs are not difficult, it is a notable advantage of the algorithmic approach taken
in this section that the passage from local to global becomes a triviality.

Indeed, suppose K is a number field with class number one. Let p be a prime
of K and put k = OK /p. Then for any pair of m-dimensional subspaces U, V ⊂ kn

there exists M ∈ SLn(OK ) whose reduction mod p takes U to V . (Indeed, the case
dim U = dim V = 1 is Lemma 3.13, and the general case is similar.) Since p is
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principal, say p = πOK , we can therefore follow the algorithms for minimising at
p using π as the uniformiser, without changing the level (or integrality) at other
primes.

After first scaling the given model to be integral at all primes, we apply this
procedure to the finite number of primes at which the resulting model has positive
level. This gives an integral model which has level zero at all primes of K . By
the definition of level, the discriminant of this model is equal to that of any global
minimal model for E , up to a unit factor. Since this unit must be a 12th power, a
final scaling by a suitable global unit gives the result. �

Theorem 1.1 is an immediate corollary, since every n-covering which is locally
soluble at all places of K can be represented by a genus-one model defined over K .

To extend this theorem to a general number field K , we may replace integrality
by S-integrality, where S is a (finite) set of primes generating the class group, so
that the ring of S-integers is a principal ideal domain. The minimal model may then
only be S-integral rather than integral. Just as with Weierstrass models for elliptic
curves, there may be no global minimal model when the class number is greater
than 1. In practice, we can alternatively find models which are simultaneously
minimal at all primes in any given finite set, while being at least integral at all
other primes.

Similar results may be deduced from our local results in the case where K is a
function field, i.e., a finite extension of Fq(t).

5. Minimisation of insoluble genus-one models

We return to working over a discrete valuation field K as specified in Section 3A. In
this section we prove the Converse Theorem, 3.5(ii), which shows that the Strong
Minimisation Theorem, 3.5(i), is best possible.

Definition 5.1. (i) A generalised binary quartic (P, Q) ∈ X2(OK ) is critical if
the valuations of its coefficients l, m, n, a, b, c, d and e satisfy

≥ 1, ≥ 1, ≥ 2; = 1, ≥ 2, ≥ 2, ≥ 3, = 3.

(ii) A ternary cubic F ∈ X3(OK ) is critical if the valuations of its coefficients
satisfy the inequalities indicated in the following diagram.

z3

xz2 yz2

x2z xyz y2z
x3 x2 y xy2 y3

= 2
≥ 2 ≥ 2

≥ 1 ≥ 1 ≥ 2
= 0 ≥ 1 ≥ 1 = 1

(iii) A quadric intersection (Q1, Q2) ∈ X4(OK ) is critical if the reductions of Q1

and Q2 mod π are quadratic forms in x1 and x2 with no common root in P1(k̄),
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and on putting

(R1, R2)= [π
−1 I2,Diag(π, π, 1, 1)](Q1, Q2)

the reductions of R1 and R2 mod π are quadratic forms in x3 and x4 with no
common root in P1(k̄).

We show in the next three lemmas that critical models are insoluble, minimal
and of positive level. We then show (for n = 2, 3) that every K sh-insoluble model
is K-equivalent to a critical model. There is a corresponding result for models of
degree n = 4.

Lemma 5.2. Critical models are insoluble over K .

Proof. We give details in the case n = 2. Suppose (x, y, z) ∈ K 3 is a nonzero
solution of y2

+ P(x, z)y = Q(x, z). Clearing denominators we may assume that
min{v(x), v(z)} = 0. It follows that y ∈ OK . Then reducing the equation mod πi

for i = 1, 2, 3, 4 we successively deduce π | y, π | x , π2
| y and π | z. In particular

min{v(x), v(z)} > 0. This is the required contradiction. The cases n = 3, 4 are
similar. �

Since the definition of a critical model is unchanged by an unramified field exten-
sion, it follows immediately that critical models are insoluble over K sh.

Lemma 5.3. Critical models are minimal.

Proof. In the cases n= 2, 3 we give a very quick proof. Indeed, if8were nonmini-
mal, then our algorithms in Sections 4A, 4B and 4D would succeed in reducing the
level. But on the contrary, when given a critical model, these algorithms endlessly
cycle between two or three OK -equivalence classes. (Treating the case n= 4 in the
same way would give a circular argument, as the current lemma was cited at the
end of Section 4C.)

Alternatively we can imitate the proof of Lemma 5.2. We give details in the
case n = 4. We define

s(Q1, Q2)=max{−v(det M) : [M, I4](Q1, Q2) ∈ X4(OK )}.

Suppose [M, N ]∈G4(K ) is a transformation taking the critical model8=(Q1, Q2)

to an integral model of smaller level. We may assume that N has entries in OK ,
not all in πOK . Let ξ j (x1, . . . , x4)=

∑4
i=1ni j xi . For i = 1, 2 we put

Qi ◦ N = Qi (ξ1, . . . , ξ4) ∈ OK [x1, . . . , x4].

Our hypothesis is that s(Q1 ◦ N , Q2 ◦ N ) > v(det N ).
If v(Q1 ◦ N ) = 0 then replacing Q2 by Q2 + λQ1 for suitable λ ∈ OK we

may assume that v(Q2 ◦ N ) > v(det N ). To understand this last condition, we
put N in Smith normal form. Explicitly we write N = U Diag(πa, πb, πc, 1)V
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for some U, V ∈ GL4(OK ) and a ≥ b ≥ c ≥ 0. Since v(Q2) = 0 we must have
2a > v(det N ) = a+ b+ c and therefore a− b+ c ≥ 1. It follows that Q2 ◦ V ≡
x1
(∑4

i=1 εi xi
)
(mod π2) for some εi ∈ OK with ε2 ≡ ε3 ≡ ε4 ≡ 0 (mod π). In

other words, Q2 ≡ µl1l2 (mod π2) for some µ ∈ OK and linear forms l1, l2 in
OK [x1, . . . , x4] with l1 ≡ l2 (mod π). This contradicts the definition of a critical
model (as it would follow that R2 vanishes mod π). Hence v(Q1◦N )≥1. Similarly
v(Q2 ◦N )≥ 1. Since Q1 and Q2 are binary quadratic forms with no common root
we deduce ξ1 ≡ ξ2 ≡ 0 (mod π). Let ξ ′i = π

−1ξi for i = 1, 2. We put

(R1, R2)= [π
−1 I2,Diag(π, π, 1, 1)](Q1, Q2).

Let N ′ be the matrix with columns the coefficients of ξ3, ξ4, ξ ′1 and ξ ′2. Then
(R1, R2) is a critical model and s(R1 ◦ N ′, R2 ◦ N ′) > v(det N ′). Repeating the
same arguments we deduce ξ3 ≡ ξ4 ≡ 0 (mod π). This contradicts our scaling of
the matrix N . �

The next lemma describes the possible levels of a critical model. For this we
need to work explicitly with the a-invariants defined in the proof of Lemma 2.9.
Although a1, . . . , a6 are not invariants (in the sense of Definition 2.7), they are
isobaric in the sense that

n = 2, ai ◦ [µ, 0,Diag(ξ1, ξ2)] = (µξ1ξ2)
i ai ,

n = 3, ai ◦ [µ,Diag(ξ1, ξ2, ξ3)] = (µξ1ξ2ξ3)
i ai ,

n = 4, ai ◦ [Diag(µ1, µ2),Diag(ξ1, ξ2, ξ3, ξ4)] = (µ1µ2ξ1ξ2ξ3ξ4)
i ai ,

for all i . (We use the notation for transformations of genus-one models introduced
in Section 2.) In the following we write t (m) as a shorthand for π−m t .

Lemma 5.4. The level of a critical model is at least 1 and equal to 1 if char(k) - n.

Proof. Case n=2. By (2-3) we have πi
| ai for all i . A convenient way to check this

is to note that π−3/2 P(π1/2x, z) and π−3 Q(π1/2x, z) have coefficients in OK [π
1/2
],

and then to use the isobaric property. It follows that (P, Q) has positive level.
Now suppose that char(k) 6= 2 and (P, Q) has level greater than 1. Completing
the square we may assume that l = m = n = 0. Then a1 = a3 = 0 and y2

=

x3
+ a(2)2 x2

+ a(4)4 x + a(6)6 is an integral Weierstrass equation of positive level.
According to Tate’s algorithm the cubic polynomial

x3
+ a(2)2 x2

+ a(4)4 x + a(6)6 ≡ (x + c(2))(x2
− 4a(1)e(3)) (mod π)

has a triple root defined over k. This contradicts the definition of a critical model.

Case n = 3. By (2-4) we have πi
| ai for all i . A convenient way to check this is to

note that π−2 F(π2/3x, π1/3 y, z) has coefficients in OK [π
1/3
], and then to use the
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isobaric property. It follows that F has positive level. Now suppose that char(k) 6=3
and F has level greater than 1. Then

y2
+ a(1)1 xy+ a(3)3 y = x3

+ a(2)2 x2
+ a(4)4 x + a(6)6

is an integral Weierstrass equation of positive level. By (2-4) we find a(2)2 ≡ a(4)4 ≡

0 (mod π) and

a(1)1 ≡ m(1) (mod π),

a(3)3 ≡ 9ab(1)c(2) (mod π),

a(6)6 ≡−27(ab(1)c(2))2+ ab(1)c(2)(m(1))3 (mod π).

So it suffices to show that if there is a Weierstrass equation over k of the form

y2
+αxy+ 9βy = x3

+ (α3
− 27β)β

with c4=1= 0, then β = 0. We have c4=α(α
3
−216β) and1=−β(α3

+27β)3.
Since 216+ 27= 35 is nonzero in k, it follows that β = 0 as required.

Case n = 4. The quadric intersection [π−1 I2,Diag(π1/2, π1/2, 1, 1)](Q1, Q2) has
coefficients in OK [π

1/2
]. It follows by the isobaric property of the a-invariants

that πi
| ai for all i and hence that (Q1, Q2) has positive level. Now suppose that

char(k) 6= 2. Then F = d(Q1, Q2) satisfies F(x, z)≡π2 f1(x, z) f2(x, z) (mod π3)

where f1, f2 ∈ OK [x, z] are binary quadratic forms, neither having a repeated root
mod π. (So their product cannot have a triple or quadruple root.) It follows by
Theorem 4.2(i) that F and hence (Q1, Q2) has level 1. �

Example 5.5. The following examples of critical models, all with level 2, show
that the hypothesis char(k) - n cannot be removed from Lemma 5.4.

K =Q2 y2
= 2x4

+ 24x2z2
+ 8z4,

K =Q3 x3
+ 3y3

+ 9z3
+ 18xyz = 0,

K =Q2 x2
1 + 2x2

3 + 4x2x4 = x2
2 + 2x2

4 + 4x1x3 = 0,

To complete the proof of Theorem 3.5(ii) we prove the following. The doubling
map d′ was defined in Section 4D. (If char(k) 6=2 then we can work with d instead.)

Proposition 5.6. Let 8 ∈ Xn(OK ) be a K sh-insoluble minimal genus-one model.

(i) If n = 2 or 3 then 8 is OK -equivalent to a critical model.

(ii) If n = 4 then8 is K-equivalent to either a critical model or an integral model
(Q1, Q2) with d′(Q1, Q2) critical.

First we need three lemmas.
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Lemma 5.7. Let k be an algebraically closed field. Suppose that either

(a) 8= (P, Q) ∈ X2(k) and P2
+ 4Q is not identically zero,

(b) 8= (F) ∈ X3(k) is nonzero and is not the cube of a linear form,

(c) 8 = (Q1, Q2) ∈ X4(k) and every quadric in the pencil spanned by Q1 and
Q2 has rank at least 2.

Then C8 has a smooth k-point (on some 1-dimensional component).

Proof. For n = 2, 3 this is clear. In the case n = 4 we are looking for a transverse
point of intersection of Q1 and Q2, i.e., a point where the Jacobian matrix has
rank 2. We prove the result more generally for intersections of two quadrics in m
variables. This enables us to reduce to the case ker Q1 ∩ ker Q2 = 0. Now let P
be a singular point on the quadric intersection. (If there is no such point there is
nothing to prove.) Then moving this point to (1 : 0 : . . . : 0) we may assume that
Q1 = x1x2+ g1(x2, . . . , xm) and Q2 = g2(x2, . . . , xm) for some g1 and g2. Since
rank(Q2)≥ 2 we can pick a smooth point (x2 : . . . : xm) on {Q2 = 0} ⊂Pm−2 with
x2 6= 0. Then solving the equation Q1= 0 for x1 gives the required transverse point
of intersection on {Q1 = Q2 = 0}. �

Lemma 5.8. Let 8 ∈ Xn(OK ) be a K sh-insoluble minimal genus-one model.

(a) If n = 2 then 8 = (P, Q) with v(P, Q) = 1. Moreover if v(Q) = 1 then the
reduction of π−1 Q(x, z) mod π has either two double roots or a quadruple
root (over k̄).

(b) If n= 3 then8 is a ternary cubic whose reduction mod π is (a constant times)
the cube of a linear form.

(c) If n = 4 then there is a quadric of rank 1 in the reduced pencil; that is, if
8= (Q1, Q2) then rank(λQ1+µQ2)= 1 for some (λ : µ) ∈ P1(k̄).

Proof. We recall that K sh has residue field k̄. The idea of the proof is that if 8 is
not of the form listed, then we can use Lemma 5.7 to find a smooth k̄-point on the
reduction, and use the Henselian property to lift it to a K sh-point, thereby obtaining
a contradiction.

A little more needs to be said in the case n = 2. If char(k) 6= 2 then completing
the square gives v(P) ≥ 1 and Lemma 5.7 shows that v(Q) ≥ 1. If char(k) = 2
then Lemma 5.7 shows that v(P) ≥ 1. If Q(x, z) mod π had a simple root over k̄
then we could lift to a K sh-point on C(P,Q) with y = 0. It follows that Q(x, z) is
a square mod π. So by a y-substitution we may suppose v(Q) ≥ 1. In all residue
characteristics we now have v(P) ≥ 1 and v(Q) ≥ 1. We cannot have v(Q) ≥ 2
since (P, Q) is minimal. If π−1 Q(x, z) mod π had a simple root over k̄ then we
could lift to a K sh-point on C(P,Q) with y = 0. It follows that this polynomial has
either two double roots or a quadruple root. �
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Lemma 5.9. Suppose (P, Q), (P ′, Q′) ∈ X2(OK ) are K-equivalent models of the
same level related by a substitution [µ, r,M] ∈ G2(K ) where M ∈ GL2(K ) has
Smith normal form Diag(1, πs). Then v(1(P, Q))≥ 2s.

Proof. Let (P, Q) have coefficients l, m, n, a, b, c, d and e. Replacing our models
by OK -equivalent ones we may assumeµ=π−s and M=Diag(πs, 1). If we assume
for simplicity that r = 0, then we have πs

| n, d and π2s
| e. Since the discriminant

1 ∈ Z[X2] belongs to the ideal (n2, nd, d2, e) it follows that v(1(P, Q))≥ 2s.
For general r we can write the transformation [π−s, r,Diag(πs, 1)] either as

y← πs y+ r0x2
+ r1xz+ r2z2 followed by x← πs x,

or as

x← πs x followed by y← πs(y+πsr0x2
+ r1xz+π−sr2z2).

Since Q′ has coefficients in OK we have

v(r2
0 + r0l − a)≥−2s and v(r2

2 + r2n− e)≥ 2s.

Hence πsr0, r2 ∈ OK . So replacing our models by OK -equivalent ones we may
assume that r0= r2=0. Then the middle coefficient of Q′ gives v(r2

1+r1m−c)≥0
and hence r1 ∈ OK . Once more replacing (P, Q) by an OK -equivalent model we
may assume that r0 = r1 = r2 = 0. Our earlier proof now applies. �

Proof of Proposition 5.6. We split into the cases n = 2, 3, 4.

Case n = 2. Applying Lemma 5.8 to 8 = (P, Q) we may assume that v(P) ≥ 1,
v(Q)= 1 and π−1 Q(x, z) mod π has either two double roots or a quadruple root.

We first rule out the possibility of two double roots. After an unramified field
extension we may assume that these roots are defined over k. So without loss of
generality Q(x, z) ≡ πx2z2 (mod π2). We replace P(x, z) by π−1 P(πx, z) and
Q(x, z) by π−2 Q(πx, z). By Lemma 5.8 we again have v(P, Q)≥ 1. We make a
substitution y← y+r2z2 so that v(P)≥ 1 and v(Q)≥ 1. Now π−1 Q(x, z) mod π
has a double root at (x : z)=(1 :0). By Lemma 5.8 it has a second double root, say at
(λ : 1). We make the substitution x← x+λz. Then Q(x, z)≡πx2z2 (mod π2). We
can now repeat this process indefinitely. It follows by Lemma 5.9 that1(P, Q)=0.
This is the required contradiction.

It remains to consider the case of a quadruple root, say Q(x, z)≡πx4 (mod π2).
Let l1, m1, n1, a1, b1, c1, d1 and e1 be the coefficients of P1(x, z) = π−1 P(πx, z)
and Q1(x, z)= π−2 Q(πx, z). By Lemma 5.8 we can make a substitution

y← y+ r2z2

so that π divides n1 and e1. Then π−1 Q1(x, z) mod π has at least a triple root at
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(x : z)= (1 : 0). So by Lemma 5.8 we have π2
| d1 and v(e1)= 1. The coefficients

of (P, Q) now satisfy the definition of a critical model.

Case n = 3. By Lemma 5.8 our ternary cubic F must reduce mod π to the cube of
a linear form. So without loss of generality, we have

F = π f3(y, z)+π f2(y, z)x +π f1(y, z)x2
+ ax3.

with π - a. Then F1(x, y, z) = π−1 F(πx, y, z) is a minimal ternary cubic and by
Lemma 5.8 its reduction mod π is the cube of a linear form in y and z. After a
suitable transformation of y and z, we may assume that f3(y, z) ≡ by3 (mod π)
with π - b (otherwise F would not be minimal). Now

F2(x, y, z)= π−1 F1(x, πy, z)

is again a minimal ternary cubic, and its reduction mod π is (c′x + cz)z2. Again
this must be a nonzero cube. So c′ = 0 and c is a unit. The coefficients of F now
satisfy the definition of a critical model.

Case n = 4. We divide the proof into the following two lemmas.

Lemma 5.10. Let (Q1, Q2) ∈ X4(OK ) be a K sh-insoluble minimal quadric inter-
section. Let

s = dim(ker Q1 ∩ ker Q2)

be the common nullity of the reduced pencil.

(i) If s ≤ 1 then the reduced pencil contains a unique rank 1 quadric, and the
following procedure replaces (Q1, Q2) by a K-equivalent minimal quadric
intersection with s ≥ 1.

• Make a GL2(OK )×GL4(OK )-transformation so that Q2 ≡ x2
1 (mod π).

• Apply the transformation [Diag(1, π−1),Diag(π, 1, 1, 1)].

(ii) If s ≥ 2 then (Q1, Q2) is OK -equivalent to a critical model.

Proof. (i) By Lemma 5.8 there is a rank 1 quadric in the reduced pencil. It is unique
(and therefore defined over k) as we would otherwise have s ≥ 2. The remaining
statements are clear.

(ii) We may assume that Q1 and Q2 are binary quadratic forms in x1 and x2. Since
the model is minimal, these forms have no common root in P1(k̄). We put

(R1, R2)= [π
−1 I2,Diag(π, π, 1, 1)](Q1, Q2).

Then R1 and R2 reduce to binary quadratic forms in x3 and x4. Again, since the
model is minimal, these forms have no common root in P1(k̄). Hence (Q1, Q2) is
critical. �
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Lemma 5.11. Let 8 ∈ X4(OK ) satisfy the hypotheses of Lemma 5.10 with s = 1.
If the procedure in Lemma 5.10(i) may be iterated indefinitely, then 8 is OK -
equivalent to a quadric intersection (Q1, Q2) where the valuations of the coef-
ficients of Q1 and Q2 satisfy the inequalities indicated in the following diagram:

x2
1 x1x2 x1x3 x1x4

x2
2 x2x3 x2x4

x2
3 x3x4

x2
4

≥ 0 ≥ 0 = 0 ≥ 1
= 0 ≥ 1 ≥ 1

≥ 1 ≥ 1
= 1

= 0 ≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 = 1

= 1 ≥ 2
≥ 2

Proof. We may assume that 8= (Q1, Q2) has reduction

(Q1, Q2)= (x1l(x2, x3)+ f (x2, x3), cx2
1) (5-1)

for some c ∈ k and l, f ∈ k[x2, x3]. Since (Q1, Q2) is minimal we have c f 6= 0. So
the reduction is (set-theoretically) either a line or a pair of lines. We show in the
case of a pair of lines that the procedure in Lemma 5.10(i) must give s ≥ 2 after a
finite number of iterations (bounded in terms of the valuation of the discriminant).
The first iteration gives (R1, R2) with (R1, R2) = ( f (x2, x3), g(x2, x3, x4)), for
some g ∈ k[x2, x3, x4]. Since f has rank 2 we may assume on replacing R2 by
R2+ λR1 for suitable λ ∈ OK that g has rank 1. If g has no coefficient of x2

4 then
s ≥ 2. Otherwise a GL4(OK )-transformation puts (R1, R2) in the form (5-1) with
l = 0 (and the same f as before). The process is then repeated. By considering the
effect on the doubling it follows by Lemma 5.9 that only finitely many iterations
are possible.

It remains to consider the case where the reduction is (set-theoretically) a line.
We may assume that 8= (Q1, Q2) and its transforms,

(R1, R2)= [Diag(1, π−1),Diag(π, 1, 1, 1)](Q1, Q2),

(S1, S2)= [Diag(π−1, 1),Diag(1, π, 1, 1)](R1, R2),

under the first two iterations have reductions

(Q1, Q2)= (x1(α1x1+α2x2+α3x3)+ x2
2 , x2

1), (5-2)

(R1, R2)= (x2
2 , x2(β2x2+β3x3+β4x4)+ g(x3, x4)), (5-3)

(S1, S2)= (α3x1x3+ λx3
3 +µx3x4+ νx2

4 , g(x3, x4)), (5-4)

for some αi , βi , λ, µ, ν ∈ k and g ∈ k[x3, x4]. By (5-2) we have α3 6= 0 (otherwise
s ≥ 2). Since the reduction cannot be a pair of lines, we see first by (5-3) that g
has rank 1, and then by (5-4) that g = γx2

3 for some γ 6= 0. Finally (5-3) and (5-4)
show that β4 6= 0 and ν 6= 0 (otherwise s ≥ 2). The valuations of the coefficients of
Q1 and Q2 now satisfy the inequalities indicated in the statement of the lemma. �
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Proposition 5.6(ii) follows from the last two lemmas and the observation that if
(Q1, Q2) satisfies the conclusions of Lemma 5.11 then its doubling is critical. �

6. Reduction

In this section, we assume that the ground field is Q. The main reason for this is
that a comparable theory of reduction over a general number field has not yet been
sufficiently developed.

Let C ⊂ Pn−1 be a genus-one normal curve defined over Q of degree n (or,
if n = 2, let C→ P1 be a double cover) with points everywhere locally, so that
C represents an element of the n-Selmer group of its Jacobian elliptic curve E .
If n ∈ {2, 3, 4}, we can, by the results and algorithms of the previous sections,
assume that C = C8 where 8 is a genus-one model which is both integral and
minimal, so that its invariants c4, c6 and1 coincide with those of a minimal model
of E . This means that the invariants are as small as possible (in absolute value).
However, it does not necessarily mean that the equations defining C will have small
coefficients. To achieve this, we will employ reduction. Leaving aside the aesthetic
value of equations with small coefficients, the main benefit of a reduced model is
that further computations like searching for rational points on C or performing
further descents on C are greatly facilitated.

The idea of reduction is to find a unimodular transformation (i.e., an invertible
integral linear change of coordinates on Pn−1) that makes the equations defining C

smaller. Unimodular transformations have the property of preserving the integrality
and invariants of the model, so they will not destroy its minimality. In the language
of Section 2, a unimodular transformation is just a Z-equivalence.

If we were allowed to make a coordinate change from SLn(C) instead, then we
could always bring our model into one of the following standard forms, where in
general a, b ∈ C (see for example [Hulek 1986]). When n = 3, we can achieve
this normal form even by a transformation from SL3(R), so in this case, we can
take a, b ∈ R. We will call these forms Hesse forms, generalising the classical
terminology for n = 3. They are as follows:

n = 2 : y2
= a(x4

0 + x4
1)+ bx2

0 x2
1 ,

n = 3 : a(x3
0 + x3

1 + x3
2)+ bx0x1x2 = 0,

n = 4 : a(x2
0 + x2

2)+ bx1x3 = 0, a(x2
1 + x2

3)+ bx0x2 = 0.

In these forms, the coefficients a and b are bounded in terms of the invariants, so
we can expect them to be small. Therefore, we would like to come close to a model
of this kind, but using a unimodular transformation.
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We need some way of measuring how close two models are. On the standard
Hesse models, the action of the n-torsion of the Jacobian, E[n], is given by the so-
call standard representation, where one generator multiplies each x j by ζ j

n and the
other generator does a cyclic shift of the coordinates. (Here ζn denotes a primitive
n-th root of unity.) To this representation, we can associate an invariant inner
product on Cn , which is unique up to scaling. It is easy to check that this invariant
inner product is just the standard one on Cn . Now our approach is to associate an
inner product to a given model C, and consider the model to be close to a standard
model when the associated inner product is close to the standard one, which means
that it is reduced in an appropriate sense. This is explained in some detail in the
following subsection.

6A. The reduction covariant. Let K =R or C. We write Yn(K ) for the set of all
genus-one normal curves of degree n defined over K , inside a fixed copy of Pn−1.
(If n= 2 we consider double covers of P1 instead.) The difference between Yn(K )
and Xn(K ) is that we now consider actual curves in Pn−1 (or the set of ramification
points of C→ P1 when n = 2), instead of defining equations.

Let H+n (C) be the space of positive definite Hermitian n×n matrices, and H+n (R)

the space of positive definite symmetric real n×n matrices. We can identify these
spaces with the spaces of positive definite Hermitian and real quadratic forms in
n variables, respectively. There are natural and compatible (left) actions of SLn(K )
on Yn(K ) and H+n (K ) given by the canonical map

SLn(K )→ PGLn(K )= Aut(Pn−1
K )

on the one hand and by
g ·M = ḡ−t Mg−1

on the other, where γ−t denotes the inverse transpose of the matrix γ. If we identify
the matrix M ∈H+n (K ) with the quadratic or Hermitian form Q(x)= x̄ tMx , then
the compatibility of the actions means that (g · Q)(gx)= Q(x).

Theorem 6.1. For each n ≥ 2 there is a unique SLn(C)-covariant map

ϕC : Yn(C)→H+n (C)/R
×

>0.

This map is compatible with complex conjugation, and so restricts to an SLn(R)-
covariant map

ϕR : Yn(R)→H+n (R)/R
×

>0.

Proof. Let C→ Pn−1 be a genus-one normal curve defined over C, with Jaco-
bian E . The action of E[n] on C extends to Pn−1 and hence defines a group
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homomorphism χ : E[n](C)→ PGLn(C). Lifting to SLn(C) we obtain a diagram

0 // µn // Hn

��

// E[n](C)

χ

��

// 0

0 // µn // SLn(C) // PGLn(C) // 0.

The Heisenberg group Hn is a nonabelian group of order n3. It comes with a nat-
ural n-dimensional representation, called the Schrödinger representation, which
is known to be irreducible (since it is equivalent to the standard representation
mentioned above). Now by the Weyl unitary trick, every irreducible complex rep-
resentation of a finite group has a unique invariant inner product. (Recall that
existence is proved by averaging over the group, and uniqueness (up to R×>0) using
Schur’s lemma.)

We define ϕC(C) to be the (matrix of the) Heisenberg invariant inner product,
i.e., ϕC(C) is uniquely determined up to positive real scalars by the property that

h̄−tϕC(C)h−1
= ϕC(C)

for all h ∈ Hn . If g ∈ SLn(C), the Heisenberg groups Hn and H ′n of C and g ·C
are related by H ′n = gHng−1. Then g · ϕC(C) = ḡ−tϕC(C)g−1 is an H ′n-invariant
inner product, and so must be equal to ϕC(g ·C). Hence ϕC is SLn(C)-covariant.
Moreover, since Hn ⊂ SLn(C), this choice of covariant is forced on us. The com-
patibility with complex conjugation is seen in the same way. �

Remark 6.2. In general ϕR is not the only SLn(R)-covariant. However, it is if the
points of E[n] are defined over R, as happens in the case n = 2 and 1 > 0 [Stoll
and Cremona 2003, Lemma 3.2].

In practical terms, we have the following corollary.

Corollary 6.3. Let MT∈GLn(C) describe the action of T ∈E[n](C) on C→Pn−1.
Then the reduction covariant ϕC(C) is∑

T∈E[n](C)

1
|det MT |

2/n M t
T MT .

Proof. To get an invariant inner product, we can take any inner product and average
over its orbit under the action of Hn . Applying this to the standard inner product,
we find that we can take, up to scaling,

ϕC(C)=
∑
h∈Hn

h̄−t h−1
=

∑
h∈Hn

h̄t h. (6-1)

In the statement of the corollary, MT ∈ GLn(C) is any lift of the element τT in
PGLn(C) describing the action of T on Pn−1(C). The various preimages of τT in
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Hn are given by h = α−1 MT where α ∈ C with αn
= det MT . We then have

h̄t h = ᾱ−1α−1 M t
T MT =

1
|det MT |

2/n M t
T MT .

Since this only depends on T , it is sufficient to take the sum in (6-1) just over
T ∈ E[n](C), instead of over h ∈ Hn . �

We can now define what we mean by a reduced genus-one normal curve.

Definition 6.4. A genus-one normal curve C→Pn−1 defined over R is Minkowski
reduced if ϕR(C) is the Gram matrix of a Minkowski reduced lattice basis, and
likewise with “LLL” instead of “Minkowski”.

Note that a lattice basis is (Minkowski or LLL) reduced if it is close to the stan-
dard basis of the standard lattice in the sense that the basis vectors are (short and)
nearly orthogonal. The notion of a Minkowski reduced model has nice theoretical
properties (it is optimal and essentially unique), whereas for practical purposes, it
is important to be able to compute a reduced lattice basis efficiently; this is possible
when using LLL reduced models.

If we start with some given (minimal) model C→Pn−1, then in order to reduce
it, we first compute its reduction covariant ϕR(C). We apply the LLL algorithm
[Lenstra et al. 1982] to this Gram matrix, resulting in a unimodular transformation
U and an LLL reduced Gram matrix M , such that M =U tϕR(C)U =U−1

·ϕR(C).
We then apply the transformation U−1 to our model C. Since ϕR(C) is a covariant,
we will have that ϕR(U−1

· C) = M is LLL reduced. Therefore U−1
· C is the

(minimal and) reduced model we are looking for.

Remark 6.5. Let H : Xn→ Xn be the Hessian, as defined in [Fisher 2006a]. Then
every nonsingular model in the pencil spanned by 8 and H(8) defines a curve
with the same reduction covariant — since they have the same Heisenberg group.
The case n = 2 was previously given as [Cremona 1999, Propositions 10 and 13].

In the following subsections we discuss how to compute ϕR. There are two basic
approaches. One is to find the hyperosculating points of C(C) numerically and to
compute the covariant from them. If n = 2, we are looking for the ramification
points of the covering C→ P1; if n = 3, for the flex points of the plane cubic
curve C ⊂ P2. The other approach is to use the n-torsion points in E(C) instead
and compute their action on Pn−1. Generally speaking, the first approach leads
to simpler formulas, whereas the second approach tends to be numerically more
stable.

6B. Reduction of 2-coverings. We identify H+2 (R) with the space of real positive
definite binary quadratic forms, and H+2 (R)/R

×

>0 with the upper half-plane. This
identification maps a real positive definite binary quadratic form to its unique root
in the upper half-plane.
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Using the ramification points. Let F(x, z) ∈R[x, z] be homogeneous of degree 4.
We assume that f (X) = F(X, 1) has degree 4 as well. (If the leading coefficient
is zero, make a change of coordinates first.) Let θ1, . . . , θ4 ∈ C be the roots of f .
It is shown in [Stoll and Cremona 2003] that ϕR is given by

ϕR(F)(x, z)=
4∑

i=1

1
| f ′(θi )|

(x − θi z)(x − θi z).

This goes back to [Julia 1917], where three different formulas are given according
to the number of real roots of f ; see also [Cremona 1999].

The formula is still valid for ϕC, in the form

ϕC(F)(x, z)=
4∑

i=1

1
| f ′(θi )|

|x − θi z|2.

In practice one should first numerically compute the roots of the resolvent cubic
(which is not changed by reduction) and then compute the roots of f from these.

Using the 2-torsion of E. The binary quartic

F(x, z)= ax4
+ bx3z+ cx2z2

+ dxz3
+ ez4

has invariants I and J (see Section 2) and resolvent cubic r(X)= X3
− 3I X + J .

For ϕ a root of r we set

α1(ϕ)= 4aϕ− 8ac+ 3b2,

α2(ϕ)= bϕ− 6ad + bc,

α3(ϕ)=
−2ϕ2

+2cϕ−9bd+4c2

3
,

and

W =
(

0 −1
1 0

)
, Aϕ =

(
α1(ϕ) α2(ϕ)

α2(ϕ) α3(ϕ)

)
.

Lemma 6.6. If α1(ϕ) 6= 0, then the action of the corresponding point T ∈ E[2]
on P1 is given by MT =W Aϕ .

Proof. Let H(x, z) be the Hessian of F . The pencil spanned by F and H contains
three degenerate quartics: for each root ϕ′ of the resolvent cubic, we have

α1(ϕ
′)
(
4ϕ′F(x, z)− 1

3 H(x, z)
)
=
(
α1(ϕ

′)x2
+ 2α2(ϕ

′)xz+α3(ϕ
′)z2)2

.

Since the action of T leaves both F and H invariant, MT must induce an involution
on P1 that either fixes or swaps the roots of the quadratic on the right hand side;
there is exactly one root ϕ′ such that the roots of the corresponding quadratic are
fixed. Therefore ϕ′=ϕ, and the lemma follows by checking that W Aϕ does indeed
fix the roots of the relevant quadratic. �
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Lemma 6.7. If MT ∈ GL2 describes the action of T ∈ E[2] on C→ P1 then∑
T∈E[2]

1
det MT

M t
T MT = 0. (6-2)

Proof. We can verify this generically using the formula of Lemma 6.6. �

Proposition 6.8. Let F ∈ R[x, z] be a nonsingular binary quartic, with resolvent
cubic r(X)= X3

− 3I X + J .

(i) If 1(F) > 0 then the reduction covariant is ±Aϕ where ϕ is the unique root
of r with det(Aϕ) > 0 and the sign is that of α1(ϕ).

(ii) If 1(F) < 0 then the reduction covariant is

Re
( 1
|det Aϕ|

AϕAϕ −
1

det Aϕ
A2
ϕ

)
where ϕ is a complex root of r .

Proof. If 1(F) > 0, then r has three real roots. Since det(Aϕ) = −α1(ϕ)r ′(ϕ)/3,
the analysis in [Cremona 1999] shows that there is a unique root ϕ of r with
det(Aϕ) > 0 (in particular, α1(ϕ) 6= 0). By Lemmas 6.6 and 6.7 the reduction
covariant simplifies (up to a factor of 2) to∑

T∈E[2], det MT>0

1
det MT

M t
T MT = I2+

1
det Aϕ

A2
ϕ =

trAϕ
det Aϕ

Aϕ,

by the Cayley–Hamilton theorem. So ±Aϕ is the positive definite symmetric ma-
trix we are looking for, with the sign that makes the top left entry positive.

If 1(F) < 0, then r has a pair of complex conjugate roots, say ϕ and ϕ. If
E[2] = {0, S, T, T }, then we can take MS = MT MT , so

det(MS)= |det(MT )|
2 > 0.

By Lemmas 6.6 and 6.7 again, the reduction covariant simplifies to

Re
( 1
|det MT |

M t
T MT −

1
det MT

M t
T MT

)
= Re

( 1
|det Aϕ|

AϕAϕ −
1

det Aϕ
A2
ϕ

)
.

Notice that we cannot have α1(ϕ) = α1(ϕ) = 0, since then the resolvent cubic
would have a repeated root, contradicting the fact that F is nonsingular. �

The cross terms. So far, we have shown how to find a unimodular transformation
of the coordinates on P1 that reduces the 2-covering. (If we start with a generalised
binary quartic (P, Q) then we work with F = P2

+4Q.) There is still an ambiguity
coming from the possibility of making a y-substitution in the general form of a 2-
covering. The most reasonable convention seems to be to arrange that the cross
term coefficients l, m and n are 0 or 1.
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6C. Reduction of 3-coverings.

Using the flex points. Let F(x, y, z) ∈ R[x, y, z] be a nonsingular ternary cu-
bic. In order to find its reduction covariant (as a positive definite quadratic form
Q(x, y, z)), we proceed as follows. Let H(x, y, z) be the Hessian of F as defined
in Section 2. Then the intersection of F = 0 and H = 0 consists of nine distinct
points, the flex points of F . Three of them are real, the others come in three
complex conjugate pairs.

There are twelve lines each containing three of the flex points, coming in four
triples of lines that do not meet in a flex point. (These triples are the “syzygetic
triangles” mentioned below.) One of these triples has all three lines real, call them
L11, L12 and L13. Another one has one line real, call it L21, and two complex con-
jugate lines, call them L22 and L23. Then Q spans the one-dimensional intersection
of the spaces spanned by L2

11, L2
12 and L2

13, and by L2
21 and L22L23, respectively.

In order to see why this recipe works, first observe that it clearly defines an
SL3(R)-covariant map. We can always make an SL3(R)-transformation to bring F
into the standard Hesse form

F(x, y, z)= a(x3
+ y3
+ z3)+ bxyz.

Then L11, L22 and L33 are x , y and z, and L21, L22 and L23 are x + y + z, x +
ζ3 y+ ζ 2

3 z and x+ ζ 2
3 y+ ζ3z (where ζ3 is a primitive cube root of unity). One then

looks at the intersection

〈x2, y2, z2
〉 ∩ 〈(x + y+ z)2, x2

+ y2
+ z2
− xy− yz− zx〉

and finds it is one-dimensional, spanned by x2
+ y2
+ z2, which is the reduction

covariant of any F in Hesse form.
The only way we know to implement this method in practice is by numerically

solving for the flex points. If the given model is far from reduced, then usually sev-
eral of the flex points are very close to one another, which makes the computation
of the lines difficult. Another practical problem is that the two spaces of quadrics
we compute are only approximate and therefore will usually not have a nontrivial
intersection.

Using the 3-torsion on E. This is the method described in [Fisher 2006b, §9.5].
Let F(x, y, z) be a ternary cubic with invariants c4 and c6 and Hessian H as defined
in Section 2. Let T = (xT , yT ) be a 3-torsion point on the Jacobian

E : y2
= x3
− 27c4x − 54c6.

Then the cubic T(x, y, z)=2xT F−3H is the product of 3 linear forms. (In [Hilbert
1993, II.7] it is called a “syzygetic triangle”.) Making a change of coordinates (if
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necessary) we may suppose T(1, 0, 0) 6= 0. We label the coefficients

T(x, y, z)= r x3
+s1x2 y+s2xy2

+s3 y3
+t1x2z+t2xz2

+t3z3
+uxyz+vy2z+wyz2.

The proof of [Fisher 2006b, Theorem 7.1] describes how to compute a formula
for MT , where the entries are polynomials in r , s1, s2, . . . , w and yT . Up to a
scaling, this works out as MT = r A+ 2yT B where

A11=−12rs2w− 36rs3t2+ 12ruv+ 4s2
1w+ 4s1s2t2− 8s1t1v− s1u2

+ 12s3t2
1 ,

A12=−54rs3w+ 18rv2
+ 6s1s2w− 3s1uv− 6s2t1v+ 9s3t1u,

A13=−81rs3t3+ 9rvw+ 9s1s2t3− 3s1t2v− 3s2t1w+ 9s3t1t2,

A21= 36rs2t2− 9ru2
− 12s2

1 t2+ 12s1t1u− 12s2t2
1 ,

A22= 24rs2w+18rs3t2−15ruv−8s2
1w−2s1s2t2+10s1t1v+2s1u2

−3s2t1u−6s3t2
1 ,

A23= 54rs2t3− 9ruw− 18s2
1 t3+ 6s1t1w+ 3s1t2u− 6s2t1t2,

A31= 0,

A32=−18rs2v+ 27rs3u+ 6s2
1v− 3s1s2u− 18s1s3t1+ 6s2

2 t1,

A33=−12rs2w+18rs3t2+3ruv+4s2
1w−2s1s2t2−2s1t1v−s1u2

+3s2t1u−6s3t2
1

and B = r B1+ (s2
1 t2− s1t1u+ s2t2

1 )E13 with

B1 =

 s1u− 2s2t1 s1v− 3s3t1 s1w− 4s2t2− t1v+ u2

−3ru+ 2s1t1 −3rv+ s2t1 −3rw+ s1t2
6rs2− 2s2

1 9rs3− s1s2 3rv− s1u+ s2t1

 .
(Notes: Ei j is the 3 by 3 matrix with (i, j) entry 1 and all other entries 0. Our
matrices A and B would be called r3(det P)A and r3 B in the notation of [Fisher
2006b].) This formula comes with the caveat (see [Fisher 2006b, Remark 7.2])
that it may give zero. However, as this will not happen for both T and −T , we
may get around the problem by computing MT as (M−T )

−1 if necessary.
Once we have computed MT for all T ∈ E[3] the reduction covariant is computed

using Corollary 6.3.

6D. Reduction of 4-coverings. We could again try to find the reduction covariant
starting from the 16 hyperosculating points on C and the quadruples of planes con-
taining four of them, which are the analogue of the syzygetic triangles. However,
this approach does not seem to be very promising.

Instead, we use the fact that below the given 4-covering C, there is a 2-covering
C2; let π : C→ C2 be the covering map. If A and B are the symmetric matrices
corresponding to the quadrics defining C⊂P3, then C2 has equation y2

= F(x, z)
where

F(x, z) := det(Ax + Bz).
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Applying reduction to the quartic on the right hand side, we find a good basis of
the pencil of quadrics. It remains to find the reduction covariant of C.

Let θ j ∈C ( j = 1, 2, 3, 4) be the ramification points of C2→P1, i.e., the roots
of f (X)= F(X, 1). Let G j ( j = 1, 2, 3, 4) be a linear form (unique up to scaling)
describing the preimage of θ j on C⊂P3. Then (fixing the polynomials giving the
covering map π : C→ C2) there are α j ∈ C× such that

(x − θ j z) ◦π= α j G2
j .

Now the action of T ∈ E[4] on C induces the action of 2T ∈ E[2] on C2. Therefore
the action of T ∈ E[2] on C will be trivial on C2, hence the corresponding matrix
MT ∈ SL4 will fix the G j up to sign. In fact, it can be checked that the action
of E[2] on P3 lifts to a representation on C4, which is isomorphic to the regular
representation, and the G j span the four eigenspaces. So any Hermitian form that
is invariant under H4 must be invariant under E[2] and thus be of the form

4∑
j=1

λ j |G j |
2.

It remains to determine the coefficients λ j .

Proposition 6.9. Keep the notation introduced so far, and let f (X) = F(X, 1).
Then the reduction covariant of C is the positive definite Hermitian form

ϕC(C)=

4∑
j=1

|α j |

| f ′(θ j )|1/2
|G j |

2.

If C is defined over R, then the restriction of this Hermitian form to R4 will be
the positive definite quadratic form ϕR(C).

Proof. We first check that the given form is invariant under SL2(C) acting on
P1 (that is, does not depend on the choice of basis of the pencil of quadrics).
We know (see page 805) that

∑4
j=1| f

′(θ j )|
−1
|x − θ j z|2 is an SL2(C)-covariant;

the same computation (which deals with each summand separately) shows that∑4
j=1| f

′(θ j )|
−1/2
|x − θ j z| is a covariant as well. But |x − θ j z| = |α j G2

j |, and the
coordinates in G j are not affected by the SL2(C)-action, so the expression given
in the statement is invariant.

Now we check that the given form is covariant with respect to the action of
SL4(C). But this is clear since every α j G2

j is covariant.
Since we can move any C into standard form by the action of SL2(C)×SL4(C),

it now suffices to verify that our formula gives the correct result when C is in
standard form

a(x2
0 + x2

2)+ 2bx1x3 = a(x2
1 + x2

3)+ 2bx0x2 = 0.
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In this case, the 2-covering C2 is given by

y2
= (a4

+ b4)x2z2
− a2b2(x4

+ z4)

and the map π (see Lemma 4.6 for formulae), followed by the map C2→ P1, is
given by

(x : z)=
(
b3(x2

1 + x2
3)+ 2a3x0x2 : −b3(x2

0 + x2
2)− 2a3x1x3

)
.

The roots θ j of f (X) = −a2b2 X4
+ (a4

+ b4)X2
− a2b2 are a/b, −a/b, b/a and

−b/a, and up to a common factor b4
−a4, we can take α j = 1/b, 1/b, 1/a, −1/a

and G j = x1 − x3, x1 + x3, x0 − x2, x0 + x2. Also, | f ′(θ j )| = c|θ j | for some
constant c. Since |α j |/|θ j |

1/2 has the same value |ab|−1/2 for all j , our expression
gives, up to a constant factor again,

|x1− x3|
2
+ |x1+ x3|

2
+ |x0− x2|

2
+ |x0+ x2|

2
= 2(|x0|

2
+ |x1|

2
+ |x2|

2
+ |x3|),

which is the correct result for a 4-covering in standard form. �

In order to find the α j and G j , we can make use of a result from [Fisher 2008b],
where it is observed that α j G2

j is the quadratic form corresponding to the matrix

eθ−1
j A+M1+ θ j M2+ aθ2

j B;

here F(x, z)= det(Ax + Bz)= ax4
+bx3z+ cx2z2

+dxz3
+ ez4 and M1 and M2

are obtained from relation (4-3).

7. Examples

In this section we illustrate minimisation and reduction for two explicit examples
over Q (one a 3-covering and the other a 4-covering). We then give references to
further examples.

7A. Minimisation and reduction of a 3-covering. We consider the elliptic curve
105630d1 in [Cremona n.d.] with Weierstrass equation

E : y2
+ xy = x3

+ x2
− 114848533x − 472424007827.

Computing the 3-Selmer group [Schaefer and Stoll 2004] we find Sel(3)(Q, E) ∼=
Z/3Z. In [Cremona et al. 2008; 2009; n.d.] we show how to write down elements
of the 3-Selmer group explicitly as 3-coverings of E . In this case our MAGMA
programs find (before minimisation and reduction) that a generator is represented
by the 3-covering C⊂ P2 with equation

F1(x, y, z)= 27089x3
+ 2142y3

+ 291938z3
+ 10008x2 y− 127341x2z

+ 92937xy2
+ 104736y2z+ 21093xz2

− 71172yz2
− 2655xyz.
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(Random choices in the programs mean it need not return the same cubic every
time. However, the answer will always be Q-equivalent to F1, and this can be
checked using the algorithm in [Fisher 2006b].) The discriminant of this ternary
cubic is 1(F1) = 312

· 50312
·1E where 1E = 239

· 3 · 59
· 73
· 503 is the minimal

discriminant of E . So F1 has level 1 at the primes 3 and 503. Reducing mod 3 we
find F1(x, y, z) = 2(x + z)3 (mod 3). The level is decreased by the first iteration
of our algorithm (see Theorem 4.3). Explicitly, we put

F2(x, y, z)=
1
32 F1(3x − y, z, y).

Likewise we find F2(x, y, z)≡ 284(x+329y+33z)3 (mod 503) and our algorithm
puts

F3(x, y, z)=
1

5032 F2(503x − 33y+ z, z, y− 10z)

= 40877301x3
− 11504y3

+ 12z3
− 8035425x2 y− 64887x2z

+526580xy2
− 200y2z+ 5803xz2

− 383yz2
+ 7307xyz.

The 3-torsion of y2
= x3
− 27c4x − 54c6 over C is generated by

S = (667989.968057, 420236746.168),

T = (−264330.994609, 34120617.5970i).

The formulae in Section 6C show that S and T act on {F3 = 0} via

MS =

285.46 −19.022 3.4264
4352.6 −290.04 52.341
509.05 −33.785 4.5806


(entries being given to five-digit precision) and

MT =

−50.656+ 47.060i 3.2758− 3.3464i 0.11909+ 2.2683i
−786.55+ 717.15i 50.871− 51.000i 1.8675 + 34.587i
−119.84+ 93.073i 7.8268− 6.5354i −0.21547+ 3.9405i

 .
We have scaled these matrices to have determinant 1. By Corollary 6.3 the matrix
of the reduction covariant (given to twelve-digit precision) is

A =

 176413988.185 −11560848.1174 3471.84429193
−11560848.1174 757736.524016 −1499.92503970

3471.84429193 −1499.92503970 13237.5156939

 .
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Running the LLL algorithm on the lattice with Gram matrix A results in the uni-
modular transformation

U =

 0 0 1
4 61 6
−3 −46 −4

 .
Accordingly we put F4(x, y, z)= F3(4y− 3z, 61y− 46z, x + 6y− 4z) and find

F4(x, y, z)=

12x3
+ 12y3

+ 171z3
+ 65x2 y+ 65x2z− 94y2z+ 87xz2

+ 101yz2
+ 7xyz.

This ternary cubic has solution

(x : y : z)= (345420 : −1638959 : −373029),

which by the formulae in [An et al. 2001] maps down to a point

x =
−74872620773608422623058757914981065217

1094350394576962212 ,

y =
51043047025320389176098494307847798722958228061916407587

1094350394576962213

on E(Q) of canonical height 86.5313 . . . . Since the torsion subgroup of E(Q) is
trivial, it follows that rank E(Q)= 1. It is equally convenient to find this generator
using Heegner points.

Note that the MAGMA implementation of 3-descent does the minimisation and
reduction automatically. To extract the intermediate model F1(x, y, z) = 0, one
should first specify that 3-descent prints out some of its working, using the com-
mand SetVerbose("ThreeDescent",1);

7B. Minimisation and reduction of a 4-covering. In [Skorobogatov 2001, §8.1],
an example is given of a 4-covering C of the elliptic curve E : y2

= x3
−1221 that

represents an element of exact order 4 in the Shafarevich–Tate group of E . The
symmetric matrices corresponding to the two quadrics defining C⊂ P3 are given
as (to keep with our convention, we multiply by 2 so that entries are the second
partial derivatives)

A = 2


−1 11 −66 396
11 −66 396 −2520
−66 396 −2520 16335
396 −2520 16335 −105786

 , B = 2


−1 −3 33 −198
−3 33 −198 1188
33 −198 1188 −7560

−198 1188 −7560 49005

 .
We will use x1, . . . , x4 as the coordinates on P3. We find that

det(Ax + Bz)= 24
· 38(−9x4

+ 13x3z− 18x2z2
+ 3z4) ,
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which makes it clear that the model is non-minimal at p=2 and p=3. We compute
that the discriminant of our quadric intersection is (2 · 34)12 times the (minimal)
discriminant −24 35 112 372 of E , which shows that the level at 2 is 1 and the level
at 3 is 4; the model is already minimal at all other primes.

We first minimise at p = 3. According to our algorithm (see Section 4C), we
have to look at the reductions of A and B mod 3, which are

Ā =


1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 and B̄ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


The common nullity is s = 2, and the reduced quadratic forms already involve
only the first two variables. They represent zero simultaneously over F3; the plane
x1 = 0 is contained in the reduction of the curve. So we apply the transformation
[

1
3 I2,Diag(3, 1, 1, 1)], resulting in the new pair of matrices (which we will again

denote by A and B)

A=


−6 22 −132 792
22 −44 264 −1680

−132 264 −1680 10890
792 −1680 10890 −70524

 , B=


−6 −6 66 −396
−6 22 −132 792
66 −132 792 −5040

−396 792 −5040 32670


The level at p = 3 of the new model is 3. Reducing mod 3, we have now

Ā =


0 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , B̄ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


The common nullity is again s = 2, and there is a plane contained in the re-
duction. This time, the plane is x2 = 0, so we swap x1 and x2 before we apply
[

1
3 I2,Diag(3, 1, 1, 1)]. The result is a model of level 2:

A =


−132 22 264 −1680

22 −2 −44 264
264 −44 −560 3630

−1680 264 3630 −23508

 , B =


66 −6 −132 792
−6 −2 22 −132
−132 22 264 −1680

792 −132 −1680 10890


Now we get a different situation mod 3:

Ā =


0 1 0 0
1 1 1 0
0 1 1 0
0 0 0 0

 , B̄ =


0 0 0 0
0 1 1 0
0 1 0 0
0 0 0 0


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The common nullity is s = 1. We swap x1 and x4 so that the reduced forms only
involve the last three variables. Then we see that we are in ‘Situation 2’, so we
apply the transformation [I2,Diag(1

3 , 1, 1, 1)]. This results in a model of level 1,
given by

A =


−2612 88 1210 −560

88 −2 −44 22
1210 −44 −560 264
−560 22 264 −132

 , B =


1210 −44 −560 264
−44 −2 22 −6
−560 22 264 −132

264 −6 −132 66


In the last minimisation step at p = 3, the reductions are now

Ā =


1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0

 , B̄ =


1 1 1 0
1 1 1 0
1 1 0 0
0 0 0 0


The common nullity is once more s = 1, while the common kernel is spanned by
(1,−1, 0, 0). We move it to (1, 0, 0, 0) and are in Situation 2 again. After applying
[I2,Diag( 1

3 , 1, 1, 1)], we obtain a model that is now minimal at p = 3.

A =


−310 30 418 −194

30 −2 −44 22
418 −44 −560 264
−194 22 264 −132

 , B =


144 −14 −194 90
−14 −2 22 −6
−194 22 264 −132

90 −6 −132 66


We still have to minimise at p= 2, using the algorithm described in Section 4D.

We first find the “double” of our model:

d′(A, B)= (P, Q)=
(
22(6413x2

− 5665xz+ 1248z2),

22(41126578x4
− 72659303x3z

+ 48099091x2z2
− 14139840xz3

+ 1557501z4)
)

We see that we already have v2(P) ≥ 1 and v2(Q) ≥ 2. The common kernel of
the reductions mod 2 of the two quadratic forms is spanned by (1, 1, 0, 1) and
(0, 0, 1, 0), so the common nullity is s = 2. We change coordinates so that the
common kernel is given by x1 = x2 = 0. Then the reductions of the quadrics are
x2

1 and x2
2 , so they do not simultaneously represent zero. We apply the ‘flip-flop’

transformation [12 I2,Diag(2, 2, 1, 1)], after which the reductions are x3x4 and x2
4 ,

so now there is the plane x4 = 0 contained in the reduction of the curve. We
swap x1 and x4 and then apply [12 I2,Diag(2, 1, 1, 1)] to obtain a pair of matrices
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representing a globally minimal model:

A =


−728 −424 319 −474
−424 −252 187 −280

319 187 −140 209
−474 −280 209 −310

 , B =


348 198 −152 220
198 114 −86 130
−152 −86 66 −97

220 130 −97 144


We now apply reduction to this model as described in Section 6D. We have

det(Ax + Bz)= 4(−9x4
+ 13x3z− 18x2z2

+ 3z4) .

Following [An et al. 2001] and [Fisher 2008b], we compute the quadratic forms
T1, T2 whose symmetric matrices M1, M2 are given by

adj
(
adj(A)x + adj(B)z)

)
= 42
· 81Ax3

− 4 · 9M1x2z+ 4 · 3M2xz2
+ 42
· 9Bz3 .

Then, writing Q1 and Q2 for the quadratic forms corresponding to A and B,

αG2
= 12θ−1 Q1+ T1+ θT2− 36θ2 Q2

for θ a root of f (X)= det(X A+ B). We can for example take

G = (−18θ3
− 28θ2

+ 6θ + 2)x1+ (18θ3
− 26θ2

+ 2)x2+ (18θ2
+ θ − 3)x3− 2x4

and α=−1395θ3
+1367θ2

−2155θ−1001. Also, f ′(θ)=12(−12θ3
+13θ2

−12θ ).
The matrix corresponding to

√
12
∑

θ |α||G|
2/| f ′(θ)|1/2 is (to five decimal places)

8857.72019 5117.00780 −3885.97776 5665.67630
5117.00780 3080.24124 −2279.16858 3348.18401
−3885.97776 −2279.16858 1716.07038 −2498.36286

5665.67630 3348.18401 −2498.36286 3706.96839

 .

We apply LLL to this Gram matrix and obtain the reducing transformation matrix

U =


−5 −2 −6 0
−6 −3 −7 −1
−15 −7 −17 0

3 1 4 1

 ,
which finally brings the two matrices defining C into the form

U tAU =


−2 0 −1 −2

0 −2 −1 0
−1 −1 −2 2
−2 0 2 −2

 , U tBU =


0 0 −1 1
0 2 −1 −1
−1 −1 0 −1

1 −1 −1 −2

 .
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These correspond, after a sign change, to the quadratic forms

Q1 = x2
1 + x1x3+ 2x1x4+ x2

2 + x2x3+ x2
3 − 2x3x4+ x2

4 ,

Q2 = x1x3− x1x4− x2
2 + x2x3+ x2x4+ x3x4+ x2

4 .

7C. Further examples and applications. One useful application of the methods
described in this paper is to help find large generators in the Mordell–Weil group of
an elliptic curve E . This has already be demonstrated in Section 7A. Each rational
point P ∈ E(Q) lifts to one of the n-coverings of E . If we have a nice and small
(i.e., minimised and reduced) model C of this n-covering, then the logarithmic
height with respect to C→Pn−1 of the preimage Q of P in C(Q) will be smaller
by a factor of about 1

2n than the logarithmic x-coordinate height of P — standard
properties of heights imply that

h(Q)=
1

2n
hx(P)+ O(1)

where the implied constant depends on the equations defining C→ Pn−1. If the
equations have small coefficients, this constant should be small as well. Therefore
we can hope to find P much more easily by searching for Q on C. In fact, this
application was the motivation for the first tentative steps towards reduction of 4-
coverings. The story begins with [Gebel et al. 1998], where the authors determined
Mordell–Weil generators for all Mordell curves y2

= x3
+ D, with D a nonzero

integer of absolute value at most 104 (in order to determine all the integral points
on these curves), with one exception, D = 7823. The analytic rank of this curve
is 1, so we know that the Mordell–Weil rank must be also 1; however the Birch–
Swinnerton-Dyer Conjecture predicts a generator of fairly large height. One of us
(Stoll) used minimisation and reduction of 4-coverings in a fairly ad hoc fashion
to find a good model of the one relevant 4-covering of E : y2

= x3
+7823, so that a

point search on this 4-covering curve was successful, thus resolving this last open
case. The result was reported in a posting [Stoll 2002] to the NMBRTHRY mailing
list. We give a short summary of the steps and the result. By a standard 2-descent,
one obtains a 2-covering curve

C : y2
=−18x4

+ 116x3
+ 48x2

− 12x + 30 .

A second 2-descent on C following [Merriman et al. 1996] produces a 4-covering
of E , whose initial model was given by quadrics with coefficients of up to 15 dec-
imal digits. Using the methods described here, one finds a model D ⊂ P3 given
by

2x1x2+ x1x3+ x1x4+ x2x4+ x2
3 − 2x2

4 = 0,

x2
1 + x1x3− x1x4+ 2x2

2 − x2x3+ 2x2x4− x2
3 − x3x4+ x2

4 = 0.
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It is not very difficult to find the point P = (116 : 207 : 474 : −332) on D. This
point then gives rise to the point

Q =
(

53463613
32109353

,
23963346820191122

321093532

)
on C , which in turn finally produces the Mordell–Weil generator on E , with coor-
dinates

x =
2263582143321421502100209233517777

119816734100955612 ,

y =
186398152584623305624837551485596770028144776655756

119816734100955613 .

Note that in the version given in the mailing list posting, the model was not minimal
at 2 (in fact, it had level 2 at 2).

4-descent including minimisation and reduction was also used to find some of
the elliptic curves of high rank and prescribed torsion listed in [Dujella n.d.], for
example the curve with E(Q)∼= Z/12Z×Z4.

Minimised and reduced models of 2-, 3-, and 4-coverings provide the starting
point for the computation of 6- and 12-coverings as described in [Fisher 2008c].
These then allow us to find even larger generators (of logarithmic canonical height
> 600). For example, this method was used to find the last missing generators
for curves of prime conductor and rank at least 2 in the Stein–Watkins database
[2002].

A table giving representatives of all elements of order 3 in the Shafarevich–Tate
groups of all elliptic curves of conductor < 130 000 can be found at [Fisher n.d.].
(It is only known that the table is complete if one assumes the conjecture of Birch
and Swinnerton-Dyer.) The final form of these ternary cubics was obtained by
applying the methods described in this paper to the original models produced by
the algorithms described in [Schaefer and Stoll 2004] and [Cremona et al. 2008;
2009; n.d.].
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