Patching and admissibility over two-dimensional complete local domains

Danny Neftin and Elad Paran
Patching and admissibility over two-dimensional complete local domains

Danny Neftin and Elad Paran

We develop a patching machinery over the field $E = K((X, Y))$ of formal power series in two variables over an infinite field K. We apply this machinery to prove that if K is separably closed and G is a finite group of order not divisible by $\text{char} E$, then there exists a G-crossed product algebra with center E if and only if the Sylow subgroups of G are abelian of rank at most 2.

Introduction

Complete local domains play an important role in commutative algebra and algebraic geometry, and their algebraic properties were already described in 1946 by Cohen’s structure theorem. The Galois theoretic properties of their quotient fields were extensively studied over the past two decades. The pioneering work in this line of research is due to Harbater [1987], who introduced the method of patching to prove that if R is a complete local domain with quotient field K, then every finite group occurs as a Galois group over $K(x)$. This result was strengthened by Pop [1996] and, in a different language, by Haran and Jarden [1998], who showed that if moreover R is of dimension 1, then every finite split embedding problem over $K(x)$ is solvable.

The first step towards higher dimension was made by Harbater and Stevenson [2005], who essentially showed that if R is a complete local domain of dimension 2, then every finite split embedding problem over Quot R has $|R|$ independent solutions. That is, the absolute Galois group of Quot R is semifree of rank $|R|$ (see [Bary-Soroker et al. 2008] for details on this notion). This result was generalized in [Pop 2010; Paran 2010], where it is shown that if K is the quotient field of a complete local domain of dimension exceeding 1, then $\text{Gal} K$ is semifree.

Despite the major progress made in the study of Galois theory over these fields, little is known about the structure of division algebras over them. A step in that

 MSC2000: primary 12E30; secondary 16S35.
 Keywords: patching, admissible groups, division algebras, complete local domains.

The second author was partially supported by the Israel Science Foundation (grant No. 343/07), and by an ERC grant.

743
direction was recently made by Harbater et al. [2009], who consider a question relating Galois theory and Brauer theory over a field E: \textit{Which groups are admissible over E?} That is, which finite groups occur as a Galois group of an adequate Galois extension F/E (recall that an extension F/E is called adequate if F is a maximal subfield in an E-central division algebra). Equivalently, for which groups G there is a G-crossed product division algebra with center E. Note that for E as above and a finite extension F/E, the above maximality requirement can be omitted since any F which is a subfield of an E-division algebra is also a maximal subfield of some E-division algebra (see Remark 3.9).

This question was first considered by Schacher [1968] over global fields. He proved that any \mathbb{Q}-admissible group has metacyclic Sylow subgroups and conjectured the converse. Admissibility has been studied extensively over global fields [Stern 1982; Sonn 1983; Schacher and Sonn 1992; Liedahl 1996; Feit 2004; Neftin 2009], function fields, and fields of Laurent series [Fein et al. 1992; Fein and Schacher 1995a; 1995b].

The main theorem of [Harbater et al. 2009] asserts that if E is a function field in one variable over a complete discretely valued field with an algebraically closed residue field, then a finite group G of order not divisible by char E is admissible over E if and only if each of the Sylow subgroups of G is abelian of rank at most 2 (i.e., generated by two elements).

In this work, we take the next natural step, and determine the admissible groups over quotient fields of equicharacteristic (that is, having the same characteristic as their residue field) two-dimensional complete local domains, with a separably closed residue field. In particular, we determine the admissible groups over $\mathbb{C}((X, Y))$, whenever \mathbb{C} is a separably closed field. This problem was posed to the first author by David Harbater. We show that the result of [Harbater et al. 2009] holds over these fields as well.

Main Theorem. Let R be an equicharacteristic complete local domain of dimension 2, with a separably closed residue field. Let G be a finite group of order not divisible by char R. Then G is admissible over Quot R if and only if each of its Sylow subgroups is abelian of rank at most 2.

The “only if” part of this result is essentially proven in [Harbater et al. 2009], using results of [Colliot-Thélène et al. 2002].

The “if” part actually holds in greater generality — the residue field need not be separably closed, it suffices that it contains a primitive root of unity of order k, for each $k \in \mathbb{N}$ not divisible by char R (Proposition 3.7). Our proof strategy for the backward direction is as follows. We first use Cohen’s structure theorem to reduce the problem from Quot R to a field E of the form $K((X, Y))$. We then apply a patching argument as in [Harbater et al. 2009]; we explicitly realize each
Sylow subgroup of G by a Galois extension of E which is a maximal subfield in some E-central division algebra. We then patch these realizations into a Galois extension F/E with group G, in a way that also patches the division algebras into an E-central division algebra D containing F as a maximal subfield.

A key ingredient in our proof is a patching machinery over fields of the form $K((X, Y))$, where K may be an arbitrary infinite field. In [Pop 2010; Paran 2010], problems over $K((X, Y))$ are lifted to $K((X, Y))(Z)$, solved there (via different methods), and then the solutions are specialized into solutions over $K((X, Y))$ using Hilbertianity. This approach seems inapplicable to our current goal, since adequate extensions usually do not remain adequate under specialization. Instead we patch groups directly over $K((X, Y))$. To this end we define “analytic fields” over $K((X, Y))$, satisfying the axioms of algebraic patching (i.e., matrix factorization and intersection), as presented in [Haran and Jarden 1998] (a slightly different axiomatization from the “field patching” axiomatization of [Harbater and Hartmann 2007]). The construction of these analytic rings is of a rigid-geometric nature. In recent communication with David Harbater, we learned that a formal-geometric analogue of this form of patching was carried out by him in [2003, Theorem 5.3.9] in order to solve split embedding problems over the field $\mathbb{C}((X, Y))$ of formal power series in two variables over the complex numbers. The core patching arguments in the proof of [Harbater 2003, Theorem 5.3.9] can be extended to replace \mathbb{C} by an arbitrary field and used to study admissible groups, in a similar fashion to our development here.

1. Analytic fields

In this section we establish our patching machinery. Fix an infinite field K, and let $E = K((X, Y)) = \text{Quot}(K[[X, Y]])$ be the field of formal power series over K in the variables X and Y. Denote by v the order function of the maximal ideal $\langle X, Y \rangle$ in $K[[X, Y]]$. Then v extends uniquely to a discrete rank-1 valuation of E. Note that $K[[X, Y]]$ is complete. Let $Q = \text{Quot} D_I$, and for each $i \in I$ let $Q_i = E \cdot D_{I \setminus \{i\}}$ and $Q'_i = \bigcap_{j \neq i} Q_j$.

For the rest of this section, we fix the notation of Construction 1.1. A geometric interpretation of the rings defined in Construction 1.1 appears in Remark 1.12. In order to present this interpretation, we need several lemmas.
Lemma 1.2. Let \(i \in I \). Then \(v \) is trivial on \(K(z_i) \).

Proof. It suffices to prove that \(v \) is trivial on \(K[z_i] \). Let \(0 \neq f = \sum_{n=0}^{d} a_n z_i^n \in K[z_i] \), with \(a_0, \ldots, a_d \in K \). Without loss of generality, \(a_0 \neq 0 \). We have

\[
\sum_{n=0}^{d} a_n z_i^n = \sum_{n=0}^{d} a_n Y^n (X - c_j Y)^{d-n} / (X - c_j Y)^d.
\]

By opening parentheses, the numerator in this expression can be written as a sum of monomials of degree \(d \). For \(n = 0 \) we get the summand \(a_0 X^d \), while all other monomials in this presentation have a positive power of \(Y \), so they do not cancel \(a_0 X^d \). Thus the numerator has value \(d \), and clearly so does the denominator, so \(v(f) = 0 \).

Corollary 1.3. The valuation \(v \) is trivial on \(K[z_i \mid i \in I] \).

Proof. Note that for each \(i, j \in I \) we have \(K(z_i) = K(z_j) \). Thus by the preceding lemma, \(v \) is trivial on \(K(z_i) = K(z_j \mid j \in I) \), and in particular \(v \) is trivial on the subring \(K[z_i \mid i \in I] \).

Lemma 1.4. Let \(J \subseteq I \) and \(j \in J \). Then the ring \(K[z_i \mid l \in J][X - c_j Y] \) is isomorphic to the ring of polynomials in one variable over \(K[z_i \mid l \in J] \).

Proof. To prove the claim we show that if \(\sum_{n=0}^{d} a_n (X - c_j Y)^n = 0 \), for \(a_0, \ldots, a_d \in K[z_i \mid l \in J] \), then \(a_0 = \cdots = a_d = 0 \). If not, suppose (without loss of generality) that \(a_0 \neq 0 \). By Corollary 1.3, \(v(a_0) = 0 \) while \(v(a_k (X - c_j Y)^k)) = v(a_k) + k = k > 0 \) for each \(k > 0 \). Hence \(\infty = v(0) = v(\sum_{n=0}^{d} a_n (X - c_j Y)^n) = 0 \), a contradiction.

By Lemma 1.4, for each \(J \subseteq I, j \in J \), each element of \(K[z_i \mid l \in J][X - c_j Y] \) has a unique presentation as a polynomial in \(X - c_j Y \). Thus we have a natural valuation on this ring, given by \(v'(\sum_{n=0}^{d} a_n (X - c_j Y)^n) = \min(n \mid a_n \neq 0) \), and we may form the completion \(\hat{K[z_i \mid l \in J][X - c_j Y]} \) of this ring with respect to \(v' \).

Proposition 1.5. Let \(J \subseteq I \) and \(j \in J \). Then \(D_J = K[z_i \mid l \in J][X - c_j Y] \), and \(v \) is given on \(D_J \) by \(v(\sum_{n=0}^{\infty} a_n (X - c_j Y)^n) = \min(n \mid a_n \neq 0) \).

Proof. By Lemma 1.4, \(v \) coincides with \(v' \) (given in the paragraph preceding this proposition) on \(K[z_i \mid l \in J][X - c_j Y] \); hence \(K[z_i \mid l \in J][X - c_j Y] \) is the completion of \(K[z_i \mid l \in J][X - c_j Y] \) with respect to \(v \), and \(v \) coincides with \(v' \) on the completion. Note that \(K[z_i \mid l \in J][X - c_j Y] = K[z_i \mid l \in J][X, Y] \) (since \(Y = z_j(X - c_j Y) \) and \(X = (1 + c_j z_j)(X - c_j Y) \)); hence by the definition of \(D_J \) we are done.
Lemma 1.6. Let $J \subseteq I$. Then $K[z_j \mid j \in J] = \sum_{j \in J} K[z_j]$.

Proof. For each $i \neq j \in J$ we have

$$z_i \cdot z_j = \frac{Y^2}{(X - c_i Y) \cdot (X - c_j Y)} = \frac{1}{c_i - c_j} z_i + \frac{1}{c_j - c_i} z_j.$$

The claim now follows by induction on $|I|$. \hfill \Box

Proposition 1.7. Let $J, J' \subseteq I$. Then for each $f \in D_{J \cup J'}$ there exist $f_1 \in D_J$ and $f_2 \in D_{J'}$ with $v(f_1), v(f_2) \geq v(f)$, such that $f = f_1 + f_2$.

Proof. Replace J with $J \setminus (J \cap J')$ to assume that $J \cap J' = \emptyset$. Moreover, without loss of generality J, J' are nonempty. Choose $j \in J$ and $j' \in J'$, and let

$$A_J = K[z_l \mid l \in J], \quad A_{J'} = K[z_l \mid l \in J'], \quad A = K[z_l \mid l \in J \cup J'].$$

By Proposition 1.5, $D_J = A_J[[X - c_J Y]]$, $D_{J'} = A_{J'}[[X - c_{J'} Y]]$, and $D_{J \cup J'} = A[[X - c_J Y]]$. Let $f = \sum_{n=m}^{\infty} a_n (X - c_J Y)^n \in D_{J \cup J'}$, with $a_m \neq 0$. Then $v(f) = m$ by Proposition 1.5. By Lemma 1.6, $A = A_J + A_{J'}$. For each $n \geq m$, let $b_n \in A_J, b_n' \in A_{J'}$ such that $a_n = b_n + b_n'$. Let $f_1 = \sum_{n=m}^{\infty} b_n (X - c_J Y)^n$ and $f_2 = f - f_1 = \sum_{n=m}^{\infty} b_n' (X - c_{J'} Y)^n$. Then $f_1 \in D_J$ and $v(f_1) \geq m$. It remains to prove that $f_2 \in D_{J'}$ and that $v(f_2) \geq m$. This follows by the equality:

$$f_2 = \sum_{n=m}^{\infty} b_n' (X - c_{J'} Y)^n = \sum_{n=m}^{\infty} b_n' ((X - c_{J'} Y) + (c_{J'} - c_J) Y)^n$$

$$= \sum_{n=m}^{\infty} (b_n' (1 + (c_{J'} - c_J) z_{J'}) Y)^n. \hfill \Box$$

The next lemma is a variant of [Harbater and Hartmann 2007, Lemma 3.3], allowing nonprincipal ideals.

Lemma 1.8. Let $R \subseteq R_1$ and $R_2 \subseteq R_0$ be domains such that $R_0 = R_1 + R_2$. Let w be a nontrivial discrete valuation on $\text{Quot } R_0$ such that R is complete with respect to w and $w(x) \geq 0$ for all $x \in R_0$. Let p, p_1, p_2, and p_0 be the centers of w in $R, R_1, R_2,$ and R_0, respectively. Suppose that $p R_0 = p_0$ and $R/p = R_1/p_1 \cap R_2/p_2$ (inside R_0/p_0). Then $R_1 \cap R_2 = R$.

Proof. First, note that $p_0 = p_1 + p_2$. Indeed, suppose $x \in p_0 = p R_0$. Then $x = \sum_{i=1}^{n} a_i x_i$ for some $a_1, \ldots, a_n \in R_0$ and $x_1, \ldots, x_n \in p$. For each $1 \leq i \leq n$, write $a_i = b_i + b_i'$ with $b_i \in R_1$ and $b_i' \in R_2$. Then $\sum a_i x_i = \sum b_i x_i + \sum b_i' x_i \in p_1 + p_2$, since $p \subseteq p_1, p_2$.

Let $S = R_1 \cap R_2$ and q be the center of w at S. Then the sequence $0 \to S \to R_1 \times R_2 \to R_0 \to 0$ is exact (where the second map is the diagonal map and the third map is substraction). This sequence induces an exact sequence $0 \to S/q \to (R_1/p_1) \times (R_2/p_2) \to R_0/p_0 \to 0$. Indeed, the only nontrivial part in showing this
is to check that the kernel of the substitution map is contained in the image of the diagonal map. Suppose \((x_1 + p_1, x_2 + p_2) \in (R_1/p_1) \times (R_2/p_2)\) satisfies \(x_1 - x_2 \in p_0\). Since \(p_0 = p_1 + p_2\) we may choose \(y_1 \in p_1, y_2 \in p_2\) such that \(x_1 - y_1 = x_2 - y_2\). Then \((x_1 + p_1, x_2 + p_2) = (x_1 - y_1 + p_1, x_2 - y_2 + p_2)\) belongs to the image of the diagonal map. Thus the sequence is exact.

Since \(p\) is the center of \(w\) on \(R\) and \(p_1\) the center of \(w\) on \(R_1\), we have \(R \cap p_1 = p\). In particular, the diagonal map \(R/p \to (R_1/p_1) \times (R_2/p_2)\) is injective. Since \(R_0 = R_1 + R_2\), the substitution map \((R_1/p_1) \times (R_2/p_2) \to R_0/p_0\) is surjective. Thus, since \(R/p = R_1/p_1 \cap R_2/p_2\), the sequence \(0 \to R/p \to (R_1/p_1) \times (R_2/p_2) \to R_0/p_0 \to 0\) is also exact. It follows that the natural map \(R/p \to S/q\) is an isomorphism. In particular, \(S = R + pS\). By induction we have \(S = R + p^nS\) for each \(n \in \mathbb{N}\). Since \(p_0 = pR_0\), \(p \neq 0\). Since \(w\) is discrete, there exists an integer \(m\) such that \(v(x) \geq m\) for each \(x \in p\). Thus \(v(x) \geq mk\) for each \(x \in p^k\); hence \(R\) is \(w\)-dense in \(S\) and therefore the completion of \(R\) with respect to \(w\) contains \(S\). By our assumptions, \(R\) is complete; hence \(R = S\).

Lemma 1.9. The set \(\{z_i^n | i \in I, n \in \mathbb{N} \cup \{0\}\}\) is \(K\)-linearly independent.

Proof. Suppose \(a_0 + \sum_{i \in I} \sum_{n=1}^{d_i} a_{i,n} z_i^n = 0\), where \(d_i \in \mathbb{N}\) and \(a_0, a_{i,n} \in K\) for each \(i\) and \(n\). We wish to show that \(a_0 = a_{i,n} = 0\) for each \(i\) and \(n\). Suppose there exist \(i \in I\) and \(n \in \mathbb{N}\) such that \(a_{i,n} \neq 0\). Without loss of generality, \(n = d_i\). Since \(X - c_i Y\) is a prime element of \(K[X,Y]\), it defines a discrete valuation on \(K(X,Y)\), which we denote by \(w\). We have \(w(Y) = w(Y - c_j X) = 0\) for each \(j \neq i\) in \(I\). Thus \(w(a_0 + \sum_{j \neq i} \sum_{n=1}^{d_i} a_{j,n} z_j^n) \geq 0\), while \(w(\sum_{n=1}^{d_i} a_{i,n} z_i^n) = -d_i\). Thus \(w(0) = w(a_0 + \sum_{j \neq i} \sum_{n=1}^{d_i} a_{j,n} z_j^n) = -d_i\), a contradiction. □

Proposition 1.10. Suppose \(J, J' \subseteq I\). Then \(D_J \cap D_{J'} = D_{J \cap J'}\).

Proof. Clearly, \(D_J \cap D_{J'} \subseteq D_J \cap D_{J'}\). For the converse inclusion, we distinguish between two cases. First suppose that \(J \cap J' \neq \emptyset\), and fix \(j \in J \cap J'\). Then \(D_J = K[z_k | k \in J][X - c_j Y]\) and \(D_{J'} = K[z_k | k \in J'][X - c_j Y]\); hence \(D_J \cap D_{J'} = (K[z_k | k \in J] \cap K[z_k | k \in J'])[X - c_j Y]\). By Lemma 1.9 \(K[z_k | k \in J]\) \(\cap K[z_k | k \in J'] = K[z_k | k \in J \cap J']\); hence \(y \in D_J \cap D_{J'}\).

Now suppose that \(J \cap J' = \emptyset\) and let \(R = K[X,Y] = D_\emptyset, R_1 = D_J, R_2 = D_{J'}, \) and \(R_0 = D_{J \cup J'}\). Since \(v(f) \geq 0\) for each \(f \in K[z_j | j \in J \cup J'][X, Y]\), we also have \(v(f) \geq 0\) for each \(f\) in the completion \(R_0\). The ring \(R\) is complete with respect to \(v\), and \(R = R_1 + R_2\) by Proposition 1.7. Let \(p, p_1, p_2,\) and \(p_0\) be the centers of \(v\) at \(R, R_1, R_2,\) and \(R_0\), respectively. Then \(p\) is generated by \(X\) and \(Y\), and \(p_0\) is generated by \(X - c_j Y\) for any \(j \in J\), by Proposition 1.5. It follows that \(p R_0 = p_0\). In order to apply Lemma 1.8, it remains to check that \(R_1/p_1 \cap R_2/p_2 = R/p\) in \(R_0/p_0\). Indeed, we have \(R_1/p_1 = K[z_j | j \in J], R_2/p_2 = K[z_j | j \in J'], \) and \(R_0/p_0 = K\). By Lemma 1.9, we are done. □
Proposition 1.11. For each \(i \in I \), \(Q_i' \cap Q_i = E \).

Proof. Since \(Q_i' = \bigcap_{j \neq i} Q_j \), the assertion is that \(\bigcap_{j \in I} Q_j = E \). Indeed, let \(y \in \bigcap_{j \in I} Q_j \). For each \(j \in J \) write \(y = f_j/q_j \) with \(f_j \in D_{I \setminus \{j\}} \), \(q_j \in K[[X, Y]] \). Taking a common denominator we may assume that \(q_j \) is independent of \(j \), and denote \(q = q_j \) (for all \(j \in J \)). It suffices to prove that \(qy \in K[[X, Y]] \subseteq E \). But \(qy = q_jy = f_j \in D_{I \setminus \{j\}} \) for all \(j \in I \); hence, by Proposition 1.10,

\[
qy \in \bigcap_{j \in I} D_{I \setminus \{j\}} = D_\emptyset = K[[X, Y]].
\]

The next remark gives a rigid-geometric and a formal-geometric interpretation of the rings \(D_J \).

Remark 1.12. Let \(J \subseteq I \), \(j \in J \), and \(t = X - c_jY \). By Proposition 1.5, \(D_J = K[z_l \mid l \in J][t] \) is the \(t \)-adic completion of \(K[z_l \mid l \in J][t] \); thus \(D_J[t^{-1}] \) is the \(t \)-adic completion of \(K[z_l \mid l \in J][t, t^{-1}] \). We have \(K[z_l \mid l \in J][t, t^{-1}] \subseteq K((t))[z_l \mid l \in J] \subseteq D_J[t^{-1}] \); hence \(D_J[t^{-1}] \) is the \(t \)-adic completion of \(A := K((t))[z_l \mid l \in J] \). Let \(T = K[[t]] \), \(F = K((t)) \), and \(s = X/Y \). Then \(s \) is a free variable over \(F \). Let \(v_t \) be the \(t \)-adic valuation on \(F \), and extend it to \(F(s) \) by \(v_t(s) = 0 \). Note that \(z_k = 1/(s - c_k) \) and \(v_t(c_l - c_k) = 0 \) for all distinct \(l, k \in J \). By [Haran and Jarden 1998, Lemma 3.1(c)] (with \(w_k \), \(K \), and \(x \) there replaced by \(z_k \), \(F \), and \(s \) here), each element \(0 \neq f \in A \) can be uniquely written as

\[
f = f_0 + \sum_{k \in J} \sum_{n=1}^\infty f_{kn} z_k^n,
\]

where \(f_0, f_{kn} \in F \) are almost all zero. Uniqueness in the presentation (1) implies that \(v_t(f) = \min_{kn} \{ v_t(f_0), v_t(f_{kn}) \} \).

By [Haran and Jarden 1998, Lemma 3.3] the completion \(D_J[t^{-1}] \) of \(A \) is the ring of holomorphic functions on the affinoid \(U = \mathbb{P} \setminus \bigcup_{l \in J} B(c_l) \), where \(\mathbb{P} \) is the projective \(s \)-line and \(B(c_l) \) is a disc of radius 1 with center \(c_l \) for each \(l \in J \) [Fresnel and van der Put 2004, §2.2]. Moreover, each element \(f \in D_J[t^{-1}] \) can be uniquely presented as in (1), where \(f_0 \in F \) and \(\{ f_{kn} \}_{n=1}^\infty \) is a null sequence in \(F \) (with respect to \(v_t \)) for each \(l \in J \). Thus, in the rigid-geometric language, \(D_J \) is the ring of holomorphic functions on \(U \) having no pole at \(t \). Its elements are of the form (1), where the coefficients are now in \(T \) (and \(\{ f_{kn} \}_{n=1}^\infty \) is a null sequence for each \(k \in J \)). In particular, \(T[z_l \mid l \in J] \) is dense in \(D_J \).

Let \(\hat{X} \) be the projective \(s \)-line over \(T \), and let \(X \) be its closed fibre. Put

\[U = X \setminus \{ c_l \mid l \in J \}. \]

Then \(R_U = T[1/(s - c_l) \mid l \in J] \) is the set of functions on \(\hat{X} \) which are regular on \(U \). Since \(R_U \) is \(t \)-adically dense in \(D_J = K[1/(s - c_l) \mid l \in J][t] \),
D_J is the t-adic completion of R_U. In formal-geometric language, this means that $D_J = \hat{R}_U$ is the ring of regular functions on the t-adic thickening of U [Harbater and Hartmann 2007, Notation 4.3].

Corollary 1.13. Let $J \subseteq I$, $j \in J$.

(a) For each $0 \neq g \in D_J$,

$$D_J[(X - c_j Y)^{-1}] = K((X - c_j Y))[z_k \mid k \in J] + g D_J[(X - c_j Y)^{-1}].$$

(b) For each $f \in D_J$ there are $h \in K\llbracket X - c_j Y \rrbracket[z_j]$ and $u \in D_J^x$ such that $f = hu$.

(c) The ring Q_J is a field.

Proof. In the notation of Remark 1.12, each element $f \in D_J[t^{-1}]$ can be written in the form $u \cdot h$ with $u \in D_J[t^{-1}]^\times$ and $h \in F[z_j]$ by [Haran and Jarden 1998, Lemma 3.7]. If $f \in D_J$ then we can multiply u and h by a power of t to assume that $u \in D_J^x$ and $h \in K\llbracket t\rrbracket[z_j]$. This proves (b). Part (a) is given by [Haran and Jarden 1998, Corollary 3.8]. By [Harbater and Hartmann 2007, Corollary 4.8] (now viewing the rings D_J in the formal-geometric context) Quot D_J is the compositum of $K((t))(X/Y)$ and D_J. Since $K((t))(X/Y) \subseteq E$, we have Quot $D_J = ED_J$. Applying this argument for $J \setminus \{j\}$ instead of J we have $Q_j = \text{Quot}(D_{I\setminus\{j\}}) = ED_{I\setminus\{j\}}$; hence Quot $Q_j = \text{Quot}(ED_{I\setminus\{j\}}) = E \text{Quot}(D_{I\setminus\{j\}}) = ED_{I\setminus\{j\}} = Q_j$ is a field. □

The proof of the following proposition is based on that of Corollary 4.4 of [Haran and Jarden 1998]. (We cannot use that corollary as it is, since condition (e') of that claim does not hold for D_I itself.)

Proposition 1.14. Let $i \in I$, $n \in \mathbb{N}$, and $b \in \text{GL}_n(Q)$. There exist $b_1 \in \text{GL}_n(Q_i)$ and $b_2 \in \text{GL}_n(Q'_i)$ such that $b = b_1 \cdot b_2$.

Proof. Denote by $| \cdot |$ the absolute value on Q that corresponds to ν. Each of the rings $A = D_I$, $A_1 = D_{I\setminus\{i\}}$, and $A_2 = D_{\{i\}}$ is complete with respect to $| \cdot |$ and Proposition 1.7 asserts that condition (d') of Example 4.3 of [Haran and Jarden 1998] holds for these rings. We extend $| \cdot |$ to the maximum norm $\| \cdot \|$ on $M_n(Q)$, as in the same example. Then $M_n(A)$, $M_n(A_1)$, and $M_n(A_2)$ are complete with respect to $\| \cdot \|$ and condition (d) of [Haran and Jarden 1998, §4] holds. By Cartan’s lemma [Haran and Jarden 1998, Lemma 4.2], for each $a \in \text{GL}_n(A)$ with $|a - 1| < 1$ there exist $a_1 \in \text{GL}_1(A_1)$ and $a_2 \in \text{GL}_1(A_2)$ such that $a = a_1 \cdot a_2$.

Let $E_1 = \text{Quot} A_1 = Q_i$ and $E_2 = \text{Quot} A_2 = Q'_i$. In order to factor b (which need not be in $\text{GL}_n(A)$), let $t = X - c_i Y$, $T = k[t]$. By Remark 1.12 (for $J = I$) $A_0 = T[z_k \mid k \in I]$ is a dense subring of A, and by Corollary 1.13(b) there exists $h \in A_0$ such that $h b \in M_n(A)$. If $h b = b_1 b'_2$ with $b_1 \in \text{GL}_n(E_1)$ and $b'_2 \in \text{GL}_n(E_2)$, then $b = b_1 b_2$ with $b_2 = b'_2/h \in \text{GL}_n(E_2)$. So we may assume that $b \in M_n(A)$.
Let \(0 \neq d = \det(b) \in A \). By Corollary 1.13(b) there are \(0 \neq g \in A_0 \) and \(u \in A^x \) such that \(d = gu \). Let \(b'' \in M_n(A) \) be the adjoint matrix of \(b \), so that \(bb'' = d1 \).

Let \(b' = u^{-1}b'' \). Then \(b' \in M_n(A) \) and \(bb' = g1 \). Put

\[
V = \{ a' \in M_n(A[t^{-1}]) \mid ba' \in gM_n(A[t^{-1}]) \}, \quad V_0 = V \cap M_n(A_0[t^{-1}]).
\]

\(V \) is an additive subgroup of \(M_n(A[t^{-1}]) \) and \(gM_n(A[t^{-1}]) \leq V \). By Corollary 1.13(a), \(M_n(A[t^{-1}]) = M_n(A_0[t^{-1}]) + gM_n(A[t^{-1}]) \); hence \(V = V_0 + gM_n(A[t^{-1}]) \).

Since \(A_0 \) is dense in \(A \), \(gM_n(A_0[t^{-1}]) \) is dense in \(gM_n(A[t^{-1}]) \). It follows that \(V_0 = V_0 + gM_n(A_0[t^{-1}]) \) is dense in \(V \). As \(b' \in V_0 \), there exists \(a_0 \in V_0 \) such that \(\|b' - a_0\| < |g|/\|b\| \). Put \(a = a_0/g \in M_n(Q) \). Then \(ba \in M_n(A[t^{-1}]) \) and \(\|1 - ba\| = (1/g)(b'(b' - a_0)) \leq (1/|g|)|b| \cdot \|b' - a_0\| < 1 \).

Hence \(\|ba\| = 1 \), so each entry in \(ba \) has a nonnegative value at \(v \). By Remark 1.12, \(v \) coincides with the \(r \)-adic valuation on \(A \); hence all the entries of \(ba \) belong to \(A \). Thus \(ba \in M_n(A) \), and since \(\|1 - ba\| < 1 \) and \(M_n(A) \) is complete, \(ba \in GL_n(A) \).

In particular, \(\det a \neq 0 \) and hence \(a \in GL_n(\text{Quot} \ A_0) \subseteq GL_n(E_2) \). By the first paragraph of this proof, there exist \(b_1 \in GL_n(A_1) \subseteq GL_n(E_1) \) and \(b_2 \in GL_n(A_2) \) such that \(ba = b_1 b' \). Then \(b_2 = b_2 a^{-1} \in GL_n(E_2) \) satisfies \(b = b_1 b_2 \). \(\square \)

Corollary 1.15. Suppose \(G \) is a finite group. For each \(i \in I \) let \(F_i \) be a Galois extension of \(E \) with group \(G_i \) contained in \(G \), such that \(F_i \subseteq Q_i \). If \(G = \{ G_i \mid i \in I \} \) then \(\mathcal{C} = (E, F_i, Q_i, Q; G_i, G)_{i \in I} \) is a patching datum [Haran and Jarden 1998, Definition 1.1]. In particular, \(G \) occurs as a Galois group over \(E \).

Proof. By Corollary 1.13(c), \(Q_i \) is a field for each \(i \in I \). Conditions (2a), (2b), and (2d) of [Haran and Jarden 1998, Definition 1.1] are given in the hypothesis. Conditions (2c) and (2e) are given by Propositions 1.11 and 1.14, respectively. Thus \(\mathcal{C} \) is a patching datum. By [Haran and Jarden 1998, Lemma 1.3(a)], there exists a Galois extension \(F \) of \(E \) with group \(G \). \(\square \)

2. \(p \)-groups

Fix the notation of Section 1, including that of Construction 1.1, and let \(p \) denote a prime number. In this section we realize \(p \)-groups of rank at most 2 by adequate extensions of \(E \), and embed these extensions into the analytic fields.

Lemma 2.1. Let \(J \subseteq I \), \(j \in J \), and \(t = X - c_j Y \).

(a) Suppose \(f = \sum_{l=0}^d f_l z_j^l \in K[[t]][z_j] \) is a polynomial such that \(v(f_1) = 0 \) and \(v(f_l) > 0 \) for each \(l > 1 \). Then \(f \) is prime in \(D_J[t^{-1}] \).

(b) The ring \(D_J[t^{-1}] \) is a unique factorization domain.

(c) For each \(a, b, c \in K^x \) with \(a \neq -b \) and \(2 \leq m \in \mathbb{N} \), the elements \(1 + az_j + t^{m-1}z_j^m, 1 + bz_j - t^{m-1}z_j^m, 1 + cz_j \) are nonassociate primes of \(D_J[t^{-1}] \).
Proof. Set $F = K((t))$. Then $D_J[t^{-1}] = F[z_k \mid k \in J]$ (see Remark 1.12). Viewed as an element of $F[z_j], f$ is regular of pseudodegree 1; see Definition 1.4 of [Haran and Völklein 1996]. Hence, by Corollary 1.7 of the same work, we have $f = u \cdot q_0 + z_j \in F[z_j]$ is a linear polynomial with $v(q_0) \geq 0$. Thus to prove (a), it suffices to show that q is prime in $D_J[t^{-1}]$. Without loss of generality $q_0 \neq 0$, and we set $c = c_j - 1/q_0$. Then $q = z_j - 1/(c - c_j)$; hence, by [Paran 2008, Lemma 6.4(a)] (with D, r, and 1 there replaced by F, 1, and j here), q generates the kernel of an epimorphism from $D_J[t^{-1}]$ onto a domain (actually a field here); hence q is prime. This proves (a).

Since $D_J[t^{-1}]$ is a principal ideal domain by [Haran and Jarden 1998, Proposition 3.9], part (b) follows.

By part (a), $r = 1 + az_j + t^{m-1}z_j^m, r' = 1 + bz_j - t^{m-1}z_j^m, s = 1 + cz_j$ are primes of $D_J[t^{-1}]$. If $s \mid r$, then $-1/c$ is a root of r, a contradiction. Thus r and s (and similarly, r' and s) are nonassociates.

If $r \mid r'$ then $r \mid r + r'$. By the argument of the preceding paragraph, $r + r' = 2 + (a + b)z_j$ is a prime, nonassociate to r, a contradiction. This proves (c).

Lemma 2.2. Let K be a field that contains a primitive q-th root of unity, for some $q \in \mathbb{N}$. Let v be a discrete valuation on K which is trivial on the prime field of K, and let $a \in K$ with $v(a) = 0$. Suppose $L = K(a^{1/q})$ is a Kummer extension of K, and that L/K is unramified at v. Then $v(x^a) = v(x)$ for each $x \in L$ and $\sigma \in \text{Gal}(L/K)$.

Proof. Extend v arbitrarily to L, let O be the valuation ring of v in $K,$ and O' the valuation ring of v in L. Since K contains a primitive q-th root of unity, q is not divisible by $p = \text{char } K$. Thus $d = \text{disc}(T^q - a, K) = ka^{q-1}$, where $k \in \mathbb{Z}$ is not divisible by p. Hence $v(d) = 0$, and by [Fried and Jarden 2005, Lemma 6.1.2] we have $O' = O[a^{1/q})$. Put $a = a^{1/q}$ and let $x = \sum_{i=0}^{q-1} b_i a^i \in K$, with $b_0, \ldots, b_{q-1} \in K$. We claim that $v(x) = \min_i v(b_i)$. Indeed, since L/K is unramified at v, we may multiply x by a power of a uniformizer of v in K, to assume that $v(x) = 0$. Since $O' = O[a], v(b_i) \geq 0$ for each $0 \leq i \leq q - 1$. On the other hand $v(x) \geq \min_i v(b_i a^i) = \min_i v(b_i)$, since $v(a) = (1/n)v(a) = 0$. Thus $v(b_i) = 0$ for some $0 \leq i \leq q - 1$; hence $v(x) = \min_i v(b_i)$.

Now, let $\sigma \in \text{Gal}(L/K)$ and let $x = \sum_{i=0}^{q-1} b_i a^i \in K$, with $b_0, \ldots, b_{q-1} \in K$, be an arbitrary element. We have $a^\sigma = \zeta a$, where ζ is some q-th root of unity. Then $v(x^\sigma) = v(\sum_{i=0}^{q-1} b_i \zeta^i a^i) = \min_i v(b_i \zeta^i) = \min_i v(b_i) = v(x)$.

Recall that given a field K, any K-central simple algebra A is of the form $M_n(D)$ for some K-division algebra D. The index of A is defined to be $\text{ind } A = \sqrt{\dim_K D}$. So, A is a division algebra if and only if $\text{ind } A = \sqrt{\dim_K A}$. Let us denote Brauer equivalence by \sim and the exponent of A (its order in the Brauer group) by $\exp A$. A subfield F of A is a maximal subfield of A if and only if $\dim_K A = [F : K]^2$.

Furthermore, a field \(F \) is a maximal subfield of \(A \) if and only if \(\dim_K A = [F : K]^2 \) and \(F \) splits \(A \) [Reiner 1975, Theorem 28.4 and Corollary 28.11].

The proof of the next proposition is partially based on that of [Harbater et al. 2009, Proposition 4.4].

Proposition 2.3. Fix \(i \in I \), and let \(H \) be an abelian \(p \)-group of rank at most 2, where \(p \neq \text{char } K \). Suppose \(K \) contains an \(|H| \)-th primitive root of unity. Let \(E' \) be a finite extension of \(E \). Then there exists an \(H \)-Galois extension \(F_i / E \) such that \(F_i \subseteq Q_i' \), \(F_i \) is contained as a maximal subfield in an \(E \)-division algebra \(D_i' \), and \(D_i' \otimes_E E' Q_i \) remains a division algebra (where \(E' Q_i \) is the compositum of \(E' \) and \(Q_i \) in an algebraic closure of \(Q \)).

Proof. Let us start by constructing \(F_i \). Write \(H = C_q \times C_q' \), where \(q \) and \(q' \) are powers of \(p \). For each \(k \in \mathbb{N} \), the elements \(X - c_i Y + Y^k \) and \(X + c_i Y - Y^k \) are irreducible and hence prime in the unique factorization domain \(K[[X, Y]] \). Only finitely many primes of \(K[[X, Y]] \) are ramified at \(E'/E \); hence for a sufficiently large \(2 \leq k \in \mathbb{N} \), \(f = X - c_i Y + Y^k \), and \(g = X + c_i Y - Y^k \) are unramified at \(E'/E \). That is, the corresponding valuations \(v_f \) and \(v_g \) are unramified. Let \(a = f/(X - c_i Y) \) and \(b = g/(X - c_i Y) \). Clearly \(v_f(X - c_i Y) = v_f(g) = 0 \); hence \(v_f(a) = 1 \) and \(v_f(b) = 0 \). Similarly, \(v_g(a) = 0 \) and \(v_g(b) = 1 \). Consider the polynomial \(h(U) = U^q - a \) over \(D_{(i)} = K[z_i][X - c_i Y] \). Note that \(a = 1 + z_i^k(X - c_i Y)^k - 1 \), hence \(h(1) \in (X - c_i Y)D_{(i)} \) and \(h'(1) = q \in K^\times \subseteq D_{(i)} \). By the ring version of Hensel’s lemma (for the ideal \((X - c_i Y)D_{(i)} \)) \(h(U) \) has a root \(s \in D_{(i)} \). Note that \(v_f(s) = 1/q \notin \mathbb{Z} \); hence \(s \notin E \). Since \(K \) contains a primitive \(|H| \)-th root of unity, it contains a primitive \(q \)-th root of unity. By Kummer theory \(E(s)/E \) is a Galois extension with group \(C_q \). Similarly, there exists \(s' \in D_{(i)} \) satisfying \((s')^q = b \), and \(E(s')/E \) is Galois with group \(C_{q'} \). Let \(F_i = E(s, s') \subseteq Q_i' \).

Since \(v_f(a) = 1 \), \(h(U) \) is irreducible over \(E \), by Eisenstein’s criterion. Denoting the reduction modulo \(g \) by \(\bar{X} \), \(\bar{h}(U) = U^q - \bar{a} \) is separable, since \(\bar{a} \neq 0 \). Thus by [Fried and Jarden 2005, Lemma 2.3.4], \(E(s)/E \) is unramified at \(v_g \). Clearly, \(E(s')/E \) is totally ramified at \(v_g \). Thus \(E(s) \) and \(E(s') \) are linearly disjoint over \(E \); hence \(\text{Gal}(F_i/E) = H \).

Let \(D_i' \) be the quaternion algebra \((a, b)_{qq'} \) [Pierce 1982, Section 15.4]. Note that \(D_i' \) can be also viewed as the cyclic algebra \((E(a^{1/qq'})/E, \sigma, b) \), for some generator \(\sigma \) of \(\text{Gal}(E(a^{1/qq'})/E) \). We claim that \(F_i \) splits \(D_i' \). By [Reiner 1975, Theorem 30.8], we have

\[
D_i' \otimes_E E(s) \sim (E(s^{1/q'})/E(s), \sigma^q, b);
\]

thus \(D_i' \otimes_E F_i \sim (F_i(s^{1/q'})/F_i, \sigma^q, b) \). The cyclic algebra \((F_i(s^{1/q'})/F_i, \sigma^q, b) \) is split if and only if \(b \) is a norm from \(F_i(s^{1/q'}) \) (see for example [Reiner 1975, Theorem 30.4]), i.e., if and only if \(b \in N_{F_i(s^{1/q'})/F_i}(F_i(s^{1/q'})) \). This holds since
Similarly, every $v \in \mathcal{V}$ valued. Choose r of the E for all E. Thus D' splits D'_i. As $[F_i : E] = qq'$, F_i is a maximal subfield of the E-central simple algebra D'_i. We shall show that $D'_i \otimes_E E' Q_i$ is a division algebra and from this it will follow that D'_i is a division algebra.

In order to show that $D'_i \otimes_E E' Q_i$ is a division algebra we construct auxiliary valuations. Choose $j \in I \setminus \{i\}$, and let

$$t = X - c_j Y, \quad r = 1 + (c_j + c_i)z_j - t^{k-1}z_j^k, \quad r' = 1 + (c_j - c_i)z_j + t^{k-1}z_j^k.$$

By Lemma 2.1(c) r and r' are nonassociate prime elements in $D_{I \setminus \{i\}}[t^{-1}]$, so they define discrete valuations v_r and $v_{r'}$ on $Q_i = \text{Quot}(D_{I \setminus \{i\}}) = \text{Quot}(D_{I \setminus \{i\}}[t^{-1}])$ such that $v_r(r') = v_{r'}(r) = 0$. By Lemma 2.1(c) we also have

$$v_{r'}(1 + (c_j - c_i)z_j) = v_r(1 + (c_j - c_i)z_j) = 0.$$

Note that

$$b = \frac{X - c_j Y + (c_j + c_i)Y - Y^k}{X - c_j Y + (c_j - c_i)Y} = \frac{t + (c_j + c_i)tz_j - t^jz_j^k}{t + (c_j - c_i)tz_j} = \frac{r}{1 + (c_j - c_i)z_j}.$$

Similarly, $a = r'/(1 + (c_j - c_i)z_j)$. Thus $v_r(b) = 1$, $v_r(b) = 0$, $v_r(a) = 0$, and $v_{r'}(a) = 1$. Then the polynomial $U^q - a$ is irreducible over $D_{I \setminus \{i\}}$, by Eisenstein’s criterion (using $v_{r'}$). Thus $Q_i(a^{1/qq'})/Q_i$ is unramified at v_r (again by [Fried and Jarden 2005, Lemma 2.3.4]); hence so is $E' Q_i(a^{1/qq'})/E' Q_i$.

Only finitely many primes of the unique factorization domain $D_{I \setminus \{i\}}[t^{-1}]$ (see Lemma 2.1(b)) are ramified at the finite extension $E' Q_i/Q_i$; hence, without loss of generality, we may assume that $E' Q_i/Q_i$ is unramified at $v_{r'}$ (by possibly choosing an even larger k beforehand). On the other hand, $Q_i(a^{1/qq'})/Q_i$ is totally ramified at $v_{r'}$; hence

$$[E' Q_i(a^{1/qq'}) : E' Q_i] = [Q_i(a^{1/qq'}) : Q_i] = qq'.$$

We can now show that $D'_i \otimes_E E' Q_i$ is a division algebra. A sufficient condition for this to hold is that $\exp(D'_i \otimes_E E' Q_i) = qq'$. This happens if and only if for every $1 \leq m \leq qq' - 1$ the algebra $E' Q_i(a^{1/qq'})/E' Q_i, \sigma, b^m \sim (D'_i \otimes_E E' Q_i)^m$ does not split. Let N denote the norm $N_{E' Q_i(a^{1/qq'})/E' Q_i}$. For any $1 \leq m \leq qq' - 1$, the algebra $(D'_i \otimes_E E' Q_i)^m$ splits if and only if $b^m \in N(E' Q_i(a^{1/qq'})^\times)$ [Reiner 1975, Theorem 30.4].

Since $E' Q_i(a^{1/qq'})/E' Q_i$ is unramified at v_r, we have $v_r(x) = v_r(x^\sigma)$ for each $x \in E' Q_i(a^{1/qq'})$, by Lemma 2.2. Hence

$$v_r(N(x)) = \sum_{l=0}^{qq'-1} v_r(x^{\sigma^l}) = qq' v_r(x)$$

for all $x \in E' Q_i(a^{1/qq'})$. Since $v_r(b) = 1$, $b^m \notin N(E' Q_i(a^{1/qq'})^\times)$ for all $1 \leq m \leq qq' - 1$. Thus, $\exp(D'_i \otimes_E E' Q_i) = qq'$ and $D'_i \otimes_E E' Q_i$ is a division algebra. □
3. Patching and admissibility

We have established the patching machinery needed to prove our Main Theorem. We first recall some general properties of induced algebras and Frobenius algebras.

Remark 3.1 (induced algebras). Let G be a finite group and $H \leq G$. Let P/Q be a finite field extension with $H = \text{Gal}(P/Q)$. Let

$$N = \text{Ind}_H^G P = \{ \sum_{\theta \in G} a_\theta \theta \mid a_\theta \in P, \ a_\theta^\tau = a_\theta \tau \text{ for all } \theta \in G, \ \tau \in H \}$$

be a ring with respect to point-wise addition and multiplication. Then P can be embedded as a subring of N by choosing representatives $\theta_1 = 1, \ldots, \theta_k$ of $H \setminus G$ and sending an element $x \in P$ to $\sum_{i=1}^k \theta_i x^\tau \theta_i$. Furthermore, by choosing different representatives N can be presented as a direct sum of copies of P.

If P splits a central simple Q-algebra A then

$$\text{Ind}_H^G P \otimes_Q A \cong \text{Ind}_H^G P \otimes_P (P \otimes_Q A) \sim \text{Ind}_H^G P \otimes_P P \cong \text{Ind}_H^G P;$$

hence A splits over $\text{Ind}_H^G P$. For a definition of a split separable (Azumaya) algebra over a ring, see [DeMeyer and Ingraham 1971, §5].

The next definition, remark, and proposition appear in Section 2.1 of [Jacobson 1996].

Definition 3.2 (Frobenius algebras). Let F be a field. An F-algebra A is a Frobenius algebra if A contains a hyperplane that does not contain any nonzero one sided ideal of A.

Remark 3.3. An algebra $A_1 \oplus \cdots \oplus A_s$ is Frobenius if and only if A_i is Frobenius for each $1 \leq i \leq s$. Any algebra $F[a]$ (with a single generator) is Frobenius. Let L/K be an H-extension. By Remark 3.1, $\text{Ind}_H^G L$ can be decomposed into a sum of copies of L and it follows that $\text{Ind}_H^G L$ is a Frobenius algebra.

Proposition 3.4 [Jacobson 1996, Theorem 2.2.3]. Let A be an F-central simple algebra and K a commutative Frobenius subalgebra of A such that $\dim_F A = [K : F]^2$. Then any embedding of K into A can be extended to an inner automorphism of A.

Lemma 3.5. Let R be an equicharacteristic complete local domain of dimension r. Suppose that the residue field of R contains a primitive root of unity of order k, for each $k \in \mathbb{N}$ with $\text{char } R \nmid k$. Then R is a finite module over a subring of the form $K[[X_1, \ldots, X_r]]$, where K is a field containing a primitive root of unity of order k, for each $k \in \mathbb{N}$ with $\text{char } K \nmid k$.

Proof. By Cohen’s structure theorem [Matsumura 1986, §29], R is finitely generated over a subring of the form $B = K_0[[X_1, \ldots, X_n]]$, for some field K_0. Since $\dim B = \dim R = r$, we have $n = r$.
Let K be the field obtained by adjoining all primitive roots of unity of order not divisible by char R to K_0. By our assumptions, K is contained in the residue field of R; hence K/K_0 is a finite (separable) extension. By Hensel’s lemma, R contains K. Since $[K : K_0]$ is finite, $K(K_0[[X_1, \ldots, X_r]]) = K[[X_1, \ldots, X_r]]$. Thus R is finite over $K[[X_1, \ldots, X_r]]$ (since it is finite over $K_0[[X_1, \ldots, X_r]]$).

The final ingredient we need in order to prove our Main Theorem is patching of central simple algebras. The content of the next proposition is essentially given in [Harbater et al. 2009], but for specific fields Q_i, while here we present it for general fields satisfying a matrix factorization property. We note that [Harbater et al. 2009, Theorem 4.1] uses the terminology of categories and equivalence of categories. Here we prefer a more explicit presentation, working with vector spaces and bases, as in [Haran and Jarden 1998]. The proof of the proposition combines the proof of [Haran and Jarden 1998, Lemma 1.2] (where a more restricted assertion is made for specific types of algebras), and the proof of [Harbater and Hartmann 2007, Theorem 7.1(vi)] (where the assertion is made for specific types of fields).

Proposition 3.6. Let I be a finite set. For each $i \in I$ let Q_i be a field contained in a Q_i-algebra A_i. Let Q be a field containing Q_i for each $i \in I$, and contained in a Q-algebra A_Q which contains A_i for each $i \in I$. Moreover, suppose that $A_i Q = A_Q$ and $\dim_{Q_i} A_i = \dim_Q A_Q$ for each $i \in I$. Finally, suppose that (*) for each $B \in \text{GL}_n(Q)$ there exist $B_i \in \text{GL}_n(Q_i)$ and $B'_i \in \text{GL}_n(Q)\cap \text{span}_Q(Q_i)$ such that $B = B_i B'_i$.

Then, letting $E = \bigcap_{i \in I} Q_i$, $A = \bigcap_{i \in I} A_i$ is an E-algebra satisfying $A Q_i = A_i$ for each $i \in I$. Moreover, if each A_i is central simple, then so is A.

Proof. For each $i \in I$, let \mathcal{C}_i be a basis for A_i over Q_i. Since $A_i Q = A_Q$, $\text{Span}_{Q_i}(\mathcal{C}_i) = A_Q$, and since $\dim_{Q_i} A_i = \dim_Q A_Q$, \mathcal{C}_i is a basis for A_Q over Q, for each $i \in I$. We now construct a basis \mathcal{C} for A_Q over Q, which is also a basis for A_i over Q_i, for all $i \in I$.

For each subset J of I we find, by induction on $|J|$, a basis \mathcal{V}_J for A_Q over Q which is also a basis for A_j over Q_j, for each $j \in J$. Then for $I = J$ we will get the basis \mathcal{C}.

If $J = \emptyset$ there is nothing to prove. Suppose that $|J| \geq 1$, choose $k \in J$ and let $J' = J \setminus \{k\}$. By assumption there is a basis \mathcal{V}_J for A_Q over Q which is a basis for A_i over Q_i for each $i \in J'$. Since \mathcal{C}_i is a common basis for A_Q and A_i, there is a matrix $B \in \text{GL}_n(Q)$ such that $\mathcal{C}_K B = \mathcal{V}_{J'}$. By condition (*) in the statement of the proposition, there exist $B_k \in \text{GL}_n(Q_k)$ and $M \in \text{GL}_n(Q)\cap \text{span}_Q(Q_k)\cap \bigcap_{j \in J'} \text{GL}_n(Q_j)$ such that $B = B_k M$. Put $\mathcal{V}_J = \mathcal{V}_{J'} M^{-1}$. Then \mathcal{V}_J is a basis for A_Q over Q which is also a basis for A_j over Q_j for each $j \in J'$. Moreover, \mathcal{V}_J is also a basis for A_k over Q_k, since $\mathcal{V}_J = \mathcal{V}_k B M^{-1} = \mathcal{V}_k B_k$. This completes the induction.
The existence of the common basis C implies that $AQ_i = A_i$ for each $i \in I$. As A_i is a Q_i-central simple algebra for each $i \in I$ (a single i suffices), A is an E-central simple algebra. This follows, for example, from [Saltman 1999, Theorem 2.2.c].

Proposition 3.7. Let R be an equicharacteristic complete local domain of dimension 2, with residue field containing a primitive root of unity of order k for each $k \in \mathbb{N}$ with $\text{char } R \not| k$. Let G be a finite group of order not divisible by $\text{char } R$, whose Sylow subgroups are abelian of rank at most 2. Then G is admissible over Quot R.

Proof. By Lemma 3.5, R is a finite module over a subring of the form $B = K[[X, Y]]$, where K contains a primitive root of unity of order k for each $k \in \mathbb{N}$ not divisible by $p = \text{char } R$. Let $E = \text{Quot } B = K((X, Y))$ and $E' = \text{Quot } R$. Then E' is a finite extension of E.

Part A: A patching datum. Let $(p_i)_{i \in I}$ be the prime factors of $n = |G|$, for some index set I. For each $i \in I$, let G_i be a p_i-Sylow subgroup of G. Apply Construction 1.1 to obtain rings Q_i, $i \in I$, contained in the common field Q. For each $i \in I$, we may apply Proposition 2.3 to obtain a Galois extension F_i / E with group G_i, such that $F_i \subseteq Q_i'$ and F_i is contained as a maximal subfield in a division E-algebra D_i'. Moreover, $D_i' \otimes_E E' Q_i$ remains a division algebra. Thus $D_i := D_i' \otimes_E Q_i$ is also a division algebra. By Corollary 1.13(c), Q_i is a field for each $i \in I$. Let $P_i = F_i Q_i$. Since F_i splits D_i', P_i splits D_i, and since $[P_i : Q_i] = [F_i : E] = \text{ind}(D_i') = \text{ind}(D_i)$, P_i is a maximal subfield of D_i. Let $\mathcal{E} = (E, F_i, Q_i, Q; G_i, G)_{i \in I}$. By Corollary 1.15, \mathcal{E} is a patching datum.

Part B: Induced algebras [Haran and Jarden 1998, §1]. Consider the induced algebra $N = \text{Ind}_1^G Q$ of dimension n over Q, and the Q_i-subalgebra $N_i = \text{Ind}_{G_i}^{G} P_i$ for each $i \in I$ (see Remark 3.1). Then G acts on N by $(\sum_{\theta \in G} a_{\theta \theta})^\sigma = \sum_{\theta \in G} a_{\sigma \sigma^{-1} \theta} = \sum_{\theta \in G} a_{\sigma \theta \theta}$ for each $\sigma \in G$. The field Q is embedded diagonally in N, which induces an embedding of Q_i in N_i, for each $i \in I$. We view these embeddings as containments. By Lemma 1.2 of [Haran and Jarden 1998] there is a basis for N over Q, which is also a basis for N_i over Q_i, for each $i \in I$. In particular, we have $N_i Q = N$ for each $i \in I$. By Lemma 1.3 of the same paper, $F = \bigcap_{i \in I} N_i$ is a Galois field extension of E with group G, and there exists an E-embedding of F into Q. Denote the image of F under this embedding by F'.

Part C: Division algebras. It remains to prove that the extension F'/E is adequate. Let $A_Q = M_n(Q)$, and for each $i \in I$ let $n_i = |G : G_i|$. As A_Q is split of dimension n^2 and N is of dimension n over Q, we also have an embedding of N into A_Q. We view N as a subalgebra of A_Q via this embedding.

Fix $i \in I$. Since $P_i = F_i Q_i$ splits D_i, it follows by Remark 3.1 that N_i also splits D_i. Moreover, by [DeMeyer and Ingraham 1971, Theorem 5.5] there is a central
simple Q_i-algebra A_i which is Brauer equivalent to D_i, in which N_i embeds as a maximal commutative separable Q_i-subalgebra so that $\dim_{Q_i}(A_i) = \dim_{Q_i}(N_i)^2 = n^2$. We view N_i as contained in A_i via this embedding.

Since P_i splits D_i, we have

$$D_i \otimes_{Q_i} Q \cong (D_i \otimes_{Q_i} P_i) \otimes_{P_i} Q \cong M_{n/n_i}(P_i) \otimes_{P_i} Q \cong M_{n/n_i}(Q).$$

Since $\text{ind}(D_i) = n/n_i$ and $\dim_Q A_Q = n^2$ we get that $A_i \cong M_{n_i}(D_i)$. Thus we have $A_i \otimes_{Q_i} Q \cong M_{n_i}(D_i) \otimes_{Q_i} Q \cong M_{n_i}(Q) = A_Q$, and we denote the induced Q-algebras isomorphism $A_i \otimes_{Q_i} Q \rightarrow A_Q$ by ψ_i. We cannot identify these two algebras via this isomorphism, since it might not be compatible with the containments $N_i \subseteq A_i$ and $N \subseteq A_Q$. This compatibility problem can be settled similarly to [Harbater et al. 2009, Lemma 4.2]:

By Part B we have $N = N_i Q$ and $\dim_Q N_i = \dim_Q N = n$. Thus we have an isomorphism $\delta_i : N = N_i Q \rightarrow N_i \otimes_{Q_i} Q$ for which the following diagram commutes:

$$\begin{array}{ccc}
A_i & \overset{id \otimes_{Q_i} Q}{\longrightarrow} & A_i \otimes_{Q_i} Q \\
\downarrow & & \downarrow \\
N_i & \overset{\delta_i}{\longrightarrow} & N_i \otimes_{Q_i} Q.
\end{array} \quad (2)$$

By Remark 3.3, $N = \text{Ind}^G_1 Q$ is a Frobenius (commutative) subalgebra of A_Q. By Proposition 3.4, the embedding $\psi_i(id \otimes Q, Q) \delta_i : N \rightarrow A_Q$ extends to an inner automorphism α_i of A_Q. Let $\psi'_i = \alpha_{i}^{-1} \psi_i$. Then $\alpha_{i}^{-1} \psi_i(id \otimes Q, Q) \delta_i$ is the identity map on $N = N_i Q$, so we have the commutative diagram

$$\begin{array}{ccc}
A_i \otimes_{Q_i} Q & \overset{\psi'_i}{\longrightarrow} & A_Q \\
\downarrow^{(id \otimes_{Q_i} Q) \delta_i} & & \downarrow \\
N_i Q & \longrightarrow & N.
\end{array} \quad (3)$$

Combining (2) and (3), we get the following commutative diagram:

$$\begin{array}{ccc}
A_i & \overset{\psi'_i}{\longrightarrow} & A_Q \\
\downarrow^{(id \otimes_{Q_i} Q) \delta_i} & & \downarrow \\
N_i Q & \longrightarrow & N.
\end{array}$$

This diagram gives an embedding $A_i \rightarrow A_Q$ which is compatible with the containments $N_i \subseteq A_i$ and $N \subseteq A_Q$, so we may now identify A_i as a subring of A_Q, via this embedding. Moreover, since ψ'_i is an isomorphism, we have $A_i \otimes_{Q_i} Q = A_i Q = A_Q$.
by this identification. The following diagram explains the containment relations:

Let \(A = \bigcap_{i \in I} A_i \). By Proposition 3.6, \(A \) is a central simple \(E \)-algebra for which \(AQ_i = A_i \) for each \(i \in I \). In particular, \(A = M_k(D) \) for some division algebra \(D \) of index \(n/k \).

Now, \(D \otimes_E Q_i \) is Brauer equivalent to \(A \otimes_E Q_i \cong A_i \), which is Brauer equivalent to \(D_i \). Thus, \(n/n_i = \text{ind}(D_i) \mid \text{ind} D \) for each \(i \in I \) and \(n = \text{lcm}_i(n/n_i) \mid \text{ind} D \). It follows that \(k = 1 \) and \(A \) is a division algebra. Naturally, \(F \) is a subfield of \(A \) and \(\text{ind} A = [F : E] \). It follows that \(F \) is a maximal subfield of the division algebra \(A \).

By choosing a basis for \(A/F \) and considering the corresponding structure constants one can form an \(E \)-division algebra \(A' \) which is \(E \)-isomorphic to \(A \) such that \(F' \) is a maximal subfield of \(A' \).

We will show that \(A' \otimes_E E' \) is an \(E' \)-division algebra, but first let us show that this implies that \(F'/E' \) is an adequate \(G \)-extension (and hence \(G \) is \(E' \)-admissible). Indeed, if \(A' \otimes_E E' \) is a division algebra, then \(F' \otimes_E E' \) is a field. It follows that \(F' \otimes_E E' \cong F'/E' \), since \(F' \otimes_E E' \) is \(G \)-Galois over \(E' \) [Saltman 1999, Theorem 6.3]. Thus, \([F'/E'] = [F' : E] \) and \(F' \cap E' = E \). Since \(F'E' \) splits \(A' \otimes_E E' \) and as \(\text{ind}(A' \otimes_E E') = [F'E' : E'] \), \(F'E' \) is a maximal subfield of \(A' \otimes_E E' \) and hence an adequate \(G \)-extension.

In order to show that \(A' \otimes_E E' \) is an \(E' \)-division algebra, we first note that for each \(i \in I \), \(P_i = F_iQ_i = F'Q_i \), by [Haran and Völklein 1996, Lemma 3.6(b)]. Thus, we have the diagram

As mentioned above, \(A' \otimes_E Q_i \) is Brauer equivalent to \(D_i = D'_i \otimes_E Q_i \). Thus \(A' \otimes_E Q_i E' \) is Brauer equivalent to \(D'_i \otimes_Q Q_i E' \), which by the choice of \(D'_i \) is a
division algebra. Then, for all \(i \in I \),

\[
\frac{n}{n_i} = \text{ind}(D'_i) = \text{ind}(D'_i \otimes Q_i, Q_i E') | \text{ind}(A' \otimes E Q_i Q_i E') | \text{ind}(A' \otimes E E') .
\]

It follows that \(n = \text{lcm}_{i \in I} (n/n_i) | \text{ind}(A' \otimes E E') \). Hence \(n = \text{ind}(A' \otimes E E') \), which shows that \(A' \otimes E E' \) is a division algebra. □

As a corollary, we get our Main Theorem, which we restate for convenience:

Theorem 3.8. Let \(R \) be an equicharacteristic complete local domain of dimension 2, with a separably closed residue field. Let \(E = \text{Quot } R \) and let \(G \) be a finite group of order not divisible by \(\text{char } E \). Then \(G \) is \(E \)-admissible if and only if all the Sylow subgroups of \(G \) are abelian of rank at most 2.

Proof. By Proposition 3.7, if the Sylow subgroups of \(G \) are abelian of rank at most 2 then \(G \) is \(E \)-admissible. For the converse, assume \(G \) is \(E \)-admissible. For a prime \(\nu \) of \(E \), let \(\text{ram}_\nu \) denote the ramification map \(\text{ram}_\nu : \text{Br } E \to H^1(G_{E_\nu}, Q / Z) \) [Saltman 1999]. Following [Harbater et al. 2009], we say that an \(\alpha \in \text{Br } E \) is determined by ramification with respect to a set of primes \(\Omega \) if there is a prime \(\nu \in \Omega \) for which \(\text{exp}(\alpha) = \text{exp} (\text{ram}_\nu (\alpha)) \). Let \(D \) be an \(E \)-division algebra with maximal subfield \(L \) that has Galois group \(G = \text{Gal}(L/E) \). Let \(p = \text{char } E \) (possibly \(p = 0 \)). By [Harbater et al. 2009, Theorem 3.3], if \(D \) satisfies:

1. the order of \(D \) is prime to \(p \) and \(\text{ind } D = \text{exp } D \), and
2. \(D \) is determined by ramification with respect to some set of discrete valuations whose residue characteristic is prime to \(|G| \),

then \(G \) has Sylow subgroups that are abelian of rank at most 2. Condition (1) is satisfied for any \(\alpha \) of order prime to \(p \) by Theorem 2.1 of [Colliot-Thélène et al. 2002], while condition (2) is satisfied by Corollary 1.9(c) of the same paper with respect to the set of codimension 1 primes of \(R \). □

Remark 3.9. Let \(E \) be as above. By [Colliot-Thélène et al. 2002, Theorem 2.1], any Brauer class \(\alpha \in \text{Br } E \) of order prime to \(\text{char } E \) has \(\text{ind}(\alpha) = \text{exp}(\alpha) \). Thus by [Schacher 1968, Proposition 2.2], a subfield of an \(E \)-division algebra is also a maximal subfield of some \(E \)-division algebra.

Acknowledgements

The authors wish to thank David Harbater for useful comments, and the referee, for many comments and corrections that significantly improved the presentation of this work.
References

Communicated by Jean-Louis Colliot-Thélène
Received 2009-10-09 Revised 2010-02-15 Accepted 2010-03-21

neftind@tx.technion.ac.il Department of Mathematics, Technion – Institute of Technology, Haifa 32000, Israel

paranela@post.tau.ac.il Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

http://www.tau.ac.il/~paranela/
Generalized moonshine I: Genus-zero functions
SCOTT CARNAHAN

Integral trace forms associated to cubic extensions
GUILLERMO MANTILLA-SOLER

Parabolic induction and Hecke modules in characteristic p for p-adic GL_n
RACHEL OLLIVIER

Patching and admissibility over two-dimensional complete local domains
DANNY NEFTIN and ELAD PARAN

Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves
JOHN E. CREMONA, TOM A. FISHER and MICHAEL STOLL

649 681 701 743 763