Vol. 4, No. 6, 2010

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Generalized moonshine I: Genus-zero functions

Scott Carnahan

Vol. 4 (2010), No. 6, 649–679
Abstract

We introduce a notion of Hecke-monicity for functions on certain moduli spaces associated to torsors of finite groups over elliptic curves, and show that it implies strong invariance properties under linear fractional transformations. Specifically, if a weakly Hecke-monic function has algebraic integer coefficients and a pole at infinity, then it is either a holomorphic genus-zero function invariant under a congruence group or of a certain degenerate type. As a special case, we prove the same conclusion for replicable functions of finite order, which were introduced by Conway and Norton in the context of monstrous moonshine. As an application, we introduce a class of Lie algebras with group actions, and show that the characters derived from them are weakly Hecke-monic. When the Lie algebras come from chiral conformal field theory in a certain sense, then the characters form holomorphic genus-zero functions invariant under a congruence group.

Keywords
moonshine, replicable function, Hecke operator, generalized moonshine
Milestones
Received: 28 December 2008
Revised: 2 October 2009
Accepted: 5 January 2010
Published: 25 September 2010
Authors
Scott Carnahan
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
United States
http://math.mit.edu/~carnahan/