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On the Hom-form of Grothendieck’s
birational anabelian conjecture
in positive characteristic

Mohamed Saidi and Akio Tamagawa
We prove that a certain class of open homomorphisms between Galois groups of

function fields of curves over finite fields arises from embeddings between the
function fields.
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Introduction

Let K be an infinite field that is finitely generated over its prime field. Let K be
an algebraic closure of K. We denote by K*P the separable closure, and by KP°*
the perfection, of K in K. Let Gg o Gal(K*P/K) be the absolute Galois group
of K. (Observe that Gx = Ggperr.) The ultimate aim of Grothendieck’s birational
anabelian conjectures is to reconstruct the field structure of K from the topological
group structure of Gg. More precisely, these conjectures can be formulated as
follows.
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Birational anabelian conjectures. There exists a group-theoretic recipe for re-
covering finitely generated infinite fields (or their perfections) from their absolute
Galois groups Gg. In particular, if for such fields K and L one has Gx = G, then
Lrerf = grerf Moreover, given two such fields K and L, one has the following.

Isom-form. Every isomorphism o : Gy — G is defined by a field isomorphism
y : L = K. This isomorphism is unique if the characteristic is 0, and unique
up to Frobenius twists if the characteristic is positive. In particular, ¥ induces an
isomorphism LPeT = gperf,

Hom-form. Every open homomorphism o : Gg — G is defined by a field em-
bedding 7 : L < K. This embedding is unique if the characteristic is 0, and unique
up to Frobenius twists if the characteristic is positive. In particular, ¥ induces a
field embedding LPeT —s KPerf,

Thus, the Hom-form is stronger than the Isom-form. The first results concerning
these conjectures were obtained by Neukirch and Uchida in the case of global
fields.

Theorem (Neukirch, Uchida). Let K and L be global fields. Then the natural map
Isom(L, K) — Isom(Gg, G)/Inn(Gyp)

is a bijection.

More precisely, this is due to Neukirch [1969a; 1969b] and Uchida [1976] for
number fields, and due to Uchida [1977] for function fields of curves over finite
fields. Later, Pop generalized their results to the case of finitely generated fields
of higher transcendence degree ([Pop 1994; 2002]; see also [Szamuely 2004] for
a survey on Pop’s results).

In characteristic 0, Mochizuki proved the following relative version of the Hom-
form of the birational conjectures.

Theorem [Mochizuki 1999]. Let K and L be two finitely generated, regular ex-
tensions of a field k. Assume that k is a sub- p-adic field (that is, k can be embedded
in a finitely generated extension of Q) for some prime number p. Then the natural

map open
Homy (L, K) — HomGk (Gg, Gp)/Inn(Ker(Gp — Gy))

is a bijection. Here, Homy, denotes the set of k-embeddings, and Hom(gfn denotes

the set of open Gy-homomorphisms.

However, almost nothing is known about the absolute version (that is, not rel-
ative with respect to a fixed base field k) of the Hom-form, except for Uchida’s
result [1981] for K = Q and [L : Q] < .

A major obstacle in proving the Hom-form of the birational anabelian conjec-
tures is that one of the main common ingredients in the proofs of Neukirch, Uchida,
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and Pop, which is the so-called local theory (or Galois characterization of the
decomposition subgroups), and which is used in order to establish a one-to-one
correspondence between divisorial valuations, is not available in the case of open
homomorphisms between Galois groups. More precisely, the main result of local
theory available so far, Proposition 1.5, gives very little information on the image of
the decomposition subgroups in this case, though one can still prove some partial
results (Proposition 2.2, Lemmas 2.6 and 2.9). It seems quite difficult, for the
moment, to establish a satisfactory local theory that is suitable to the Hom-form of
the above conjecture. Also, the methods used in the proof of Mochizuki’s theorem
above are quite different, and do not rely on local theory. Instead, Mochizuki
proves his result as an application of his fundamental anabelian result that relative
open homomorphisms between arithmetic fundamental groups of curves over sub-
p-adic fields arise from morphisms between corresponding curves, the proof of
which relies on p-adic Hodge theory. It is not clear how to adapt Mochizuki’s
method to the case of positive characteristics.

In this paper we investigate the Hom-form of the birational anabelian conjectures
for function fields of curves over finite fields. For i = 1, 2, let k; be a finite field.
Let X; be a proper, smooth, geometrically connected algebraic curve over k;. Let
K; be the function field of X; and fix an algebraic closure K; of K;. Let K; >P and
K; Perl be the separable closure and the perfectlon of K; in K;, and k; the algebraic
closure of k; in K;. erte Gl = G K = G I(K; >ep /K;) for the absolute Galois
group of K;, and Gk = Gal(k / ki) for the absolute Galois group of k;. We have
the natural exact sequence of profinite groups

1—>(_},-—>G,~E§Gki—>1,

where G; is the absolute Galois group Gal(KiSep/ Kk;) of K;k;, and pr; is the
canonical projection.

Further, let p; be the characteristic of k;, and let G be the maximal prime-to-
pi quotient of G;. The push-forward of this sequence with respect to the natural
surjection G; — G gives rise to the natural exact sequence

1G>G NG 1.

Set &; def G;, i = 1,2 (which we call the profinite case) or &; &ef G(p’ [ =1,2
(the prime-to-characteristic case). We investigate two classes of continuous, open
homomorphisms —rigid and proper homomorphisms — between &; and &;.
First, we investigate a class of continuous, open homomorphisms o : &1 — &5,
which we call rigid. More precisely, we say that o is strictly rigid if the image of
each decomposition subgroup of &; coincides with a decomposition subgroup of
®,, and we say that o is rigid if there exist open subgroups ; C &1, H, C &,, such
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that o (1) C $» and that H; 2 9o is strictly rigid. Thus, isomorphisms between
B and &, are (strictly) rigid by the main result of local theory for the Isom-form.
Let Hom (&, $,)"¢ be the set of rigid homomorphisms between & and &».

We say that a homomorphism y : K, — K of fields (which defines an extension
K1/K, of fields) is admissible if the extension K;/K, appears in the extensions
of K, corresponding to the open subgroups of &,. An equivalent condition in the
profinite case is that the extension K;/K, is finite separable; and in the prime-
to-characteristic case, that the extension K/K> is finite separable and the Galois
closure of the extension Kk / K>k is of degree prime to p def p1 = p2. We define
Hom(K», K1)*™ < Hom(K>, K;) to be the set of admissible homomorphisms
K2 — K1.

Now, our first main result is the following (see Theorem 3.4).

Theorem A. The natural map Hom(K;, K1) — Hom(&, &,)/ Inn(®,) induces
a bijection .
Hom(K», K1)™™ = Hom(®, ,)"¢/ Inn(&5).

Our method of proving Theorem A is as follows. First, we prove, using a cer-
tain weight argument based on the Weil conjecture for curves, that a strictly rigid
homomorphism o : &; — &, induces a bijection Xy, 5% x, between the set of
closed points of X| and X, (see Lemma 3.8). With this we can reduce the Hom-
form in this case to the Isom-form, which has been established in [Uchida 1977]
(profinite case) and [Saidi and Tamagawa 2009] (prime-to-characteristic case).

Next we consider a class of continuous, open homomorphisms o : &; — &,,
which we call proper. These are homomorphisms with the property that the im-
age of each decomposition subgroup of &; coincides with an open subgroup of
a decomposition subgroup of &,, such that each decomposition subgroup of &,
contains images of only finitely many conjugacy classes of decomposition sub-
groups of &1. We also consider a certain rigidity condition, which we call inertia-
rigidity, on the various identifications between the modules of the roots of unity
(Definition 4.5). Unfortunately, we are not able to prove that this condition auto-
matically holds for proper homomorphisms. Let Hom(®, ;)P be the set of
proper and inertia-rigid homomorphisms between &; and &;. Our second main
result is the following (see Theorem 4.8).

Theorem B. The natural map Hom(K;, K1) — Hom(&, &)/ Inn(&,) induces

a bijection - o
Hom(K>, K1)*P = Hom(®, &,)P""""¢/ Inn(&5,).

Here, we define Hom(K,, K1) C Hom(K>, K) to be the set of separable homo-
morphisms K, — K.

To prove Theorem B, we first show, using a weight argument, that a homomor-
phism o : & — &, as above induces a surjective map Xx, — X, between the sets
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of closed points of X and X,, which has finite fibers (Lemma 2.9). Second, using
Kummer theory, we reconstruct functorially an embedding K,* < (K ferf)x be-
tween multiplicative groups (Lemma 4.13). Finally, we show that this embedding
K} <> (KM% is additive.

Recovering the additive structure is one of the main steps in the proof. This
problem was treated by Uchida in the case of a bijective identification K, = K *
between multiplicative groups, which is order-preserving and value-preserving. In
fact, one needs only to restore the additivity between constants. For this one has to
show identities of the form y(f> + 1) = y(f2) + 1 for some specific nonconstant
function f, € K,. Uchida succeeded in his case by choosing f> to be a function
with a minimal pole divisor (he called such a function a minimal element.) His
argument fails in the case of an embedding between multiplicative groups that is
not surjective, because the image of a minimal element is not necessarily minimal in
this case. Roughly speaking, we extend his arguments by using, instead, a function
that has a unique pole. This one-pole argument turns out to be very efficient, and
leads to the recovery of the additive structure under quite general assumptions
(Proposition 5.3).

Although rigid homomorphisms are a special case of proper homomorphisms,
we choose to treat them separately for several reasons. First, the important condi-
tion of inertia-rigidity is automatically satisfied in the case of rigid homomorphisms
(Remark 4.9(i)). Second, in the case of (strictly) rigid homomorphisms we can
reduce directly to the Isom-form, the proof of which can be based on class field
theory. This is not possible for proper homomorphisms, in general. In fact, in the
case of proper homomorphisms, class field theory reconstructs only the norm map
between the multiplicative groups of function fields.

This paper is organized as follows. In Section 1, we review well-known facts
concerning Galois theory of function fields of curves over finite fields, including
the main results of local theory. In Section 2, we investigate some basic properties
of homomorphisms between absolute Galois groups of function fields of curves
over finite fields, as well as homomorphisms between decomposition subgroups.
In Section 3, we investigate rigid homomorphisms between (geometrically prime-
to-characteristic quotients of) absolute Galois groups, and prove Theorem A. In
Section 4, we investigate proper homomorphisms between (geometrically prime-
to-characteristic quotients of) absolute Galois groups, and prove Theorem B. In
Section 5, we investigate the problem of recovering the additive structure of func-
tion fields. Using the above one-pole argument, we prove Proposition 5.3, which
is used in the proof of Theorem B in Section 4.

We hope very much that this paper is a first step towards proving the Hom-form
of Grothendieck’s anabelian conjecture concerning arithmetic fundamental groups
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of hyperbolic curves over finite fields, whose Isom-form was proven by Tamagawa
[1997] for affine curves and Mochizuki [2007] for proper curves.

1. Generalities on Galois groups of function fields of curves

1A. Notations on profinite groups and fields. Let € be a full class of finite groups
(€ is closed under taking subgroups, quotients, finite products, and extensions).
For a (Proﬁnite group H, denote by H the maximal pro-¢ quotient of H, and set
H® ¥ 1/ Ker(H — H®), where H is a closed normal subgroup of H. Note that
H® coincides with H® if and only if the quotient A & H/H is a pro-¢ group.
By definition, we have the commutative diagram

1 H H A 1

ol

I%E%%H((@)%A%l,

where the rows are exact and the columns are surjective.

If / is a prime number, we write H' and H") instead of H* and H® when € is
the class of finite /-groups, and we write H and H!") when % is the class of finite
!’-groups (finite groups of order prime to [).

For a profinite group H, we write H®® for the maximal abelian quotient of H;
Sub(H) for the set of closed subgroups of H; Aut(H) for the group of (continuous)
automorphisms of H; and Inn(H) for the group of inner automorphisms of H.

For a profinite group H and a prime number /, denote by cd(H) and cd;(H)
the cohomological and /-cohomological dimensions of H. It is well-known that if
cd(H) < oo, then H is torsion-free.

Let « be a field and «*P a separable closure of x. Denote the absolute Galois
group Gal(k*°P /k) by G,. We write

Mo & Hom(Q/Z, (159)%).

Thus, M, is a free 7" -module of rank one, where 77 is defined as Z if chark =0
and as 77" if chark = p > 0. Further, M, has a natural structure of G,-module,
which is isomorphic to the Tate twist 2*(1); that is, G, acts on M,sp via the
cyclotomic character y, : G, — (ZT)X.

1B. Galois groups of local fields of positive characteristic. Let p be a prime num-
ber. Let L be a local field of characteristic p, that is, a complete discrete valuation
field of equal characteristic p, with finite residue field £. We denote the ring of
integers of L by Op. Also, fix a separable closure L5 of L. We shall denote the
residue field of L*P by ¢, since it is an algebraic closure of £. Note that £ and
¢ can also be regarded naturally as subfields of L and L*P, respectively. Write
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D ¥ Ga 1(L5°P/L) for the corresponding absolute Galois group of L, and define
the inertia group of L by
1Y {y € D |y acts trivially on ¢}.
We have a canonical exact sequence
1> 1—D— G ¥Gal@/e) — 1,
and, for a full class €€ of finite groups, we get a canonical exact sequence

1—>I(€—>D((€)—>G(—>1.

The inertia subgroup / possesses a unique p-Sylow subgroup /%. The quotient
=N /1Y is isomorphic to 7", and is naturally identified with the Galois group
Gal(L'/L"), where L' and L"" are the maximal tamely ramified and maximal un-
ramified extensions of L contained in L5P. We have a natural exact sequence

1> 1'"->D'—- G,— 1,

where D' & Gal(L'/L). (Observe that I' = I?" and D' = D)) In particular, I'
has a natural structure of G,-module. Further, there exists a natural identification
'S M ; of Gg-modules. These follow from well-known facts in ramification
theory. See [Serre 1968, chapitre IV] for more details.

Let/ be a prlme number. Denote by D; an [-Sylow subgroup of D. Then the
intersection I; ey N Dy is an [-Sylow subgroup of /. Thus, I, = IV and, for [ # p,
1 is isomorphic to Z;. The image G ; of D; in Gy is the unique /-Sylow subgroup
of Gy~ Z and hence G¢; >~ Z;. We have a canonical exact sequence

l—>11—>D[—>Gg,1—>1.

In particular, /; has a natural structure of G¢;-module, and, if [ # p, there exists a
natural identification /; = Mg, of G, ;-modules, where M stands for the /-Sylow
subgroup of the profinite abelian group M;.

It is well-known that cd; (D) = cd(D;) = 2 for any prime number / # p, and that
cd,(D) =cd(D,) = 1. Thus, cd(D) =2 < oco. In particular, D is torsion-free.

Proyosntlon 1.1. Let © be a quotient of D, let J be the image of I in®, and let
G, = @/J For each prime number 1, let ®;, 3 and &, ; be the images of Dy, I
and G in ®, J and &, respectively, which are each [-Sylow subgroups of ©,J
and &g, respectively. Let | be a prime number % p.

(i) One of the following cases occurs.
Case 0: cd;(®)=0,9D;={1}, 3 = {1}, and &, ; = {1}.
Case 1: cd;(®)=1,9, =Gy, T ={1},and &;; = G,
Case 2: Cdl(g) =2, ©l ~ Dy, jl ~ 1, and @g’l ~ Gy.
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Case oo: ¢d;(®D) = 0o, and J; is a finite group.

(ii) Assume that Case 2 occurs. Let ©' be an open subgroup of ©, L' the (finite,
separable) extension of L corresponding to ®' C D, and D’ the inverse image
of ©" in D. (Thus, D' = Gp..) Then, for each finite |-primary ©'-module M
and each k > 0, one has H (D', M) = HX(D', M).
Proof. (1) Since J; is a quotient of /; >~ Z;, one of the following occurs: (a) J; = {1},
(b) 3y =~ Z/I"Z for an integer m > 0, and (c) J; =~ Z;. If (a), ®; is a quotient of
Dy/I; =Gy~ 7. Thus, it is easy to see that one of Cases 0, 1, or co occurs. If (b),
Case oo occurs. If (c), we have &, ; >~ G, ;. This follows from the fact that /; is
isomorphic to M, 7,00 which G ; acts via the [-adic cyclotomic character, and that
the /-adic cyclotomic charter x; : G,; — ZZX is injective. Thus, it is easy to see
that Case 2 occurs.

(ii) Replacing L by L', we may assume that L’ = L. (Observe that Case 2 occurs
also for the quotient G, = D" — ©’.)

Denote by N the kernel of the surjection D — ®. By the assumption that Case 2
occurs, Dj is injectively mapped into ®, and hence D; N N, which is an /-Sylow
subgroup of N, is trivial. Since N is of order prime to /, we have H*(D, M) =
H*®, HY(N, M)) = H*(D, M), as desired. O

1C. Galois groups of function fields of curves. Let k be a finite field of charac-
teristic p > 0. Let X be a proper, smooth, geometrically connected curve over
k. Let K = Kx be the function field of X and fix an algebraic closure K of
K. Write K%P and k = kP for the separable closures of K and k in K. Write
G =0Gg o Gal(K*P/K) and Gy o Gal(k/ k) for the absolute Galois groups of K
and k, respectively. We have the exact sequence of profinite groups

1-G6-G6G2 G- 1, .1

where G is the absolute Galois group G x5 = Gal(K*? /K k) of Kk, and pr is the
canonical projection. Here, it is well-known that the right term Gy is a profinite
free group of rank 1 that is (topologically) generated by the Frobenius element,
while the left term G is a profinite free group of countably infinite rank [Pop
1995; Harbater 1995]. However, the structure of the extension (1.1) itself is not
understood well. From (1.1) above, we also obtain the exact sequence

1-G“> G988 G -1

for each full class 6 of finite groups.

In the rest of this section, let N be a closed normal subgroup of G and set
e /N. Let K denote the Galois extension of K corresponding to N, that is,
kY (K*P)N. Let & be the image of G in &, and set & & ®/®, which is a

quotient of Gy.
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For a scheme T, denote by X7 the set of closed points of 7. Write X for
the integral closure of X in K*P. The absolute Galois group G acts naturally on
the set E :, and the quotient X / G is naturally identified with Xx. For a point
X e 2 w1th residue field k(x) (Wthh is naturally identified with k), we define its
decomposmon group D: and inertia group I; by

D; =y eGly® =5
and ; _
.- {y € D: | y acts trivially on k(x)},

respectively. We have a canonical exact sequence
1—>I;—>D;—>Gk(x)—>1,

where x stands for the image of Xin Ty.

More generally, write X for the integral closure of X in K. The Galois group
& acts naturally on the set ¥ 3, and the quotient ¥ /& is naturally identified with
X x. For a point X € X ¢, with residue field k(x) (which is naturally identified with
a subfield of k), we define its decomposition group D and inertia group J;z by

D: Yy ed |y =5
and

Jz def = {y € ®; | y acts trivially on k(x)},

respectlvely (For any g € &, one has D,z = gDzg ™" and Joz = gJzg™'.) Set
6k(x) ’D #/J5. Thus, if we take a point X € E}:{ above x € X3, then D3, J;,
and &y (y) are quotients of Dz, Iz and Gy(x), respectively, where x stands for the
image of X in X x. We have a canonical exact sequence

1—)3;—)@;—)@5/{@)—)1.
For each closed subgroup $) C &, denote by X the image of X in X . Define

K: S | Koz,
HCS

where ) runs over all open subgroups of &, and (K 55))% means the X g-adic com-
pletion of K 5 (K 9. Then the Galois group Gal(Kz/K,) is naturally identified
with 3, where x & Xe € Xyx.

In the rest of this subsection, we fix a prime number [ # p, and make two
assumptlons (1) N' = N, or, equivalently, K admits no /-cyclic extension; and (2)
K contains a primitive /-th root of unity.

Remark 1.2. Let € be a full class of finite groups.

(i) If [, € 6, then the quotient G® of G satisfies these two assumptions.
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(i) If F; € € and Gal(K(¢;)/K) € €, then the quotient G of G satisfies these
two assumptions.

Lemma 1.3. Let x € X and take X Xe E above x. Let Dz, be an [-Sylow sub-
group of Dz and D3 the image of Dz , under the natural surjectlon D: — Dy,
which is an l Sylow subgroup of ®z. Then the natural surjection Dz, — Di is
an isomorphism.

Proof. Take t € K such that ¢ is a uniformizer at x & Xe € Xx. Then by the
two assumptions (and by Kummer theory) any ["-th root t'/"" of ¢ is contained in
K. From this, it follows that Iz, = D ;N I3 is injectively mapped into D3. Now,
applying Proposition 1.1(i) to the quotlent G k. = Dz - D3, we conclude that only
Case 2 from that proposition can occur, as desired. U

Lemma 1.4. Let &' be an open subgroup of &, K’ the (finite, separable) extension
of K corresponding to &' C &, and G’ the inverse image of & in G. (Thus,
G’ = Gg.) Then, for each finite l-primary & -module M and each k > 0, one has
HX®', M) = HYG', M).

Proof. Replacing K by K’, we may assume that K’ = K. (Observe that the two
assumptions also hold for the quotient G'Y GK/ —» ®'=G'/N.) By Lemma 1.3,
one has cd;(N) < 1. (See [Serre 1994, chapitre II, proposition 9], which only treats
the number field case but whose proof works as it is in our function field case.)
Next, by the assumption that N! = N, one has HI(N, M) = Hom(N, M) = 0.
Thus, we have H*(G, M) = H*(&, H'(N, M)) = H*(®, M), as desired. O

Proposition 1.5 (Galois characterization of decomposition subgroups).

(i) Let X # X' be two elements of X 3. Then Dz N Dy is of order prime to I, and
hence, in particular, is open neither in D3 nor in Dz

(i1) Let Dec;(®) C Sub(®) be the set of closed subgroups © of & satisfying the
following property: There exists an open subgroup D¢ of ® such that for any open
subgroup ®' C ®y, dimg, H*(®',F)) = 1. Define Dec;"(®) C Dec;(®) to be
the set of maximal elements of Dec;(&). Then the map X3 — Sub(®), X — D;
induces a bijection ¥ ; = Dec™(®), and, in particular, is injective.

Proof. (i) As in [Uchida 1977], this follows from the approximation theorem
[Neukirch 1969b, Lemma 8]. More precisely, let ©; be an /-Sylow subgroup of
D5z N Dy, and suppose that ©D; £ 1. Since D; C Dy is torsion-free, D; is an
infinite group. Thus, one may replace & by any open subgroup, and assume that
1 € K, that the images x and x" in £x of X and X’ are distinct, and that the image
of ®; in % /(&®)/ is nontrivial. In particular, this implies that the natural map

DP/@P) x DL /@) — &/ (&™)
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is not injective. By Kummer theory, this last condition is equivalent to saying that
the natural map
KXJ(K™) — KK < K3 /(KD)!

is not surjective. This contradicts the approximation theorem. (Note that (K xx)’
and (Kxx,)’ are open in K and K, respectively.)

(i1) By Proposition 1.1(i) and Lemmas 1.3 and 1.4, the proof of Uchida [1977]
(which is essentially due to Neukirch, [1969a; 1969b]) works as it is. See [Uchida
1977, Lemmas 1-3] for more details. O

Remark 1.6. For other characterizations of decomposition groups— applicable
to much more general situations — see, for example, Theorem 1.16 of [Pop 1994],
Theorem 2 of [Koenigsmann 2003], or the results in [Engler and Koenigsmann
1998; Engler and Nogueira 1994].

1D. Fundamental groups of curves. Write

1= s,
X

for the closed subgroup of G generated by the inertia subgroups /: for all Xe
Z}:{, and call it the inertia subgroup of G. Then [ is normal in G. The quotient
G/I is canonically identified with the fundamental group 7 (X) of X with base
point Spec(K) — X [Grothendieck and Raynaud 1971]. We have a natural exact
sequence _ or

1 - m(X) = 7 (X) = Gy — 1,

where 71 (X) is the fundamental group of X & X x4k with base point Spec(K) — X
and pr is the canonical projection. We have the exact sequence

1= 1 X)®r 5 7 (x)* % 6> 1,

where 71 (X)2°" is the torsion subgroup of 71 (X ab and pr is the canonical projec-
tion. Moreover, 71 (X)2" is a finite abelian group that is canonically isomorphic
to the group Jx (k) of k-rational points of the Jacobian variety Jx of X.

More generally, write J = & (Jz)sex, for the closed subgroup of & generated by
the inertia subgroups J; for all X € X ¢, and call it the inertia subgroup of &. Then
Jis normal in &. Set Iy def /7, which is a quotient of 71 (X). Define Iy to be
the image of (X) in ITx. Then we have a natural exact sequence

1—>l'1y(—>1'[x£r>®k—>1.

When & = G for a full class € of finite groups, we have Iy = m (X YO In
this case, we have the exact sequence:

pr
1> 1'[;1?’“”—> 1'[3‘}’—> Gy — 1,
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ab,tor . ab,tor -

is the torsion subgroup of Hab Moreover, Ty is a finite abelian
group that is canonically isomorphic to the maximal (pro- )(6 -quotient Jx (k)® of

the finite group Jx (k).

where ITy

2. Basic properties of homomorphisms between Galois groups

In this section we investigate some basic properties of homomorphisms between
Galois groups of function fields of curves over finite fields. First, we shall inves-
tigate a class of homomorphisms between decomposition subgroups, which arise
naturally from the class of homomorphisms between (quotients of) Galois groups
that we consider in Sections 3 and 4.

2A. Homomorphisms between Galois groups of local fields of positive charac-
teristics. Fori e{l,2},let p; > 0be a prime number. Let L; be a complete discrete
valuation field of equal characteristic p;, with finite residue field ¢;. Let Oy, be the
ring of integers of L;. Also, fix a separable closure L?ep of L;. We shall denote the
residue field of LSep by ¢;, since it is an algebraic closure of ¢;. Note that ¢; and
¢ can also be regarded naturally as subfields of L; and L P respectively. Write
D ¥ Ga 1(L;P/L;) for the corresponding absolute Galois group of L;, and call
I; C D; the inertia subgroup. For each prime number /, let D;; be an /-Sylow
subgroup of D;.
By local class field theory [Serre 1967], we have a natural isomorphism

(LY = D,

where (L;)" & 11 m L /(L)". In particular, Df‘b fits into an exact sequence

n

O—>@Zi—>D?b—>Z—>O

(arising from a similar exact sequence for (L;)"), where @Zi is the group of mul-
tiplicative units in Oz,. Moreover, we obtain natural inclusions

e xU! = 0, CL D,

where Ul.1 is the group of principal units in @Xi, and
L} /0; = Z < D¥/Im(0})
(where = is the isomorphism induced by the valuation), by considering the Frobe-
nius element.
Let ©; be a quotient of D;, J; the image of /; in ®;, and &y, déf’}Dl-/TJ,-. For each
prime number /, let ®; ; be the image of D;; in ®;, which is an /-Sylow subgroup
of ;. Write

Im(eS), ImU) C Im(0]) C Im(L;) CDP
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for the images of ¢, U}, 07, and L in D respectively. In the rest of this
subsection, we assume that either ®; = D;, i = 1,2 or D; = D} = Dl.(p"), i =
1, 2, and refer to the former and the latter cases as the profinite and the tame
cases, respectively. Thus, we have ”D?b = (L), Im(L) =L}, ’Jm(@zi) = @Zi,
Jm(¢) = £ and ’Jm(Ul.l) = Ul.1 in the profinite case, and CD?b = (LI.X)A/Ul.l,
Jm(L;) =L} /U}, Im(0F ) =05 /U =Tm(€)) = ¢ and Im(U}') = {1} in the
tame case.
Let
T:9; >

be a surjective homomorphism between profinite groups. Write 72° : ’D?b —» ’ng
for the induced surjective homomorphism between the maximal abelian quotients.
For each prime number /, 7(®;) is an /-Sylow subgroup of ©,, and we shall
assume that (D) =97 .

Proposition 2.1 (invariants of arbitrary surjective homomorphisn(}s between de-
composition groups). (i) The equality p; = p» holds. Set p = pP1 = pa.

(ii) Let ! # p be a prime number. We have ©1,;NKer v ={1}. In particular, Ker t
is pro-p. In the tame case, T is an isomorphism.

(iii) The homomorphism t induces a natural bijection £; = € between the mul-
tiplicative groups of residue fields. In particular, £1 and £, have the same
cardinality.

(iv) 7 induces naturally an isomorphism M, >M i,» Which is Galois-equivariant
with respect to t. In particular, T commutes with the cyclotomic characters
Xi 1 Di — (ZP)* of ©;, that is, the following diagram is commutative:

2Py = @")*

4

@1 %@2

(v) We have t(J1) = J5.

(vi) The homomorphism T : ’D?b — ’ng preserves Jm(L[), Jm(@zi), Jm(e)
and Jm(Ul-l). Further, the isomorphism ’D?b/jm(@zl) — ”ng/jm(@zz) in-
duced by t preserves the respective Frobenius elements.

Proof. Property (i) follows by considering the g-Sylow subgroups of ®; for var-
ious prime numbers q. Indeed, for i € {1, 2}, ©, ,, is not (topologically) finitely
generated (resp. is cyclic) in the profinite (resp. tame) case, while ©; ; for a prime
number / # p; is (topologically) finitely generated and noncyclic. Accordingly,
the surjection Dy ,, — D3 ,, (resp. Dy p, — D3 ;) cannot exist in the profinite
(resp. tame) case, unless p; = py. Thus, we must have p; = p».
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The ﬁrstrassertion of (i1) follows from Proposition 1.1(i), applied to the quotient
Dy —» 31 — 3. The second assertion follows from the first. The third assertion
follows from the second, together with the fact (which can be checked easily) that
D} admits no nontrivial normal pro-p subgroup.

Next, we prove (iii). By local class field theory, the torsion subgroup D"
of @?b is naturally identified with ¢; (both in the profinite and the tame cases),
and hence, in particular, is finite of order prime to p. By (ii), the kernel of the
surjective homomorphism 72 : D‘l‘b — ng is pro-p. Thus, 7 induces a natural
isomorphism D" = 3™ which is naturally identified with £ = £, as
desired.

By applying the above argument to open subgroups of ©; (which correspond to
each other via 1), with i = 1, 2, and passing to the projective limit with respect to
the norm maps, we obtain a natural isomorphism M; = M;, between the modules
of roots of unity. Here, we use the fact that if L] is a finite extension of L; cor-
responding to an open subgroup D; of ©;, then the following diagram commutes:

b
(LY — D°

w

(L) — D,

where the horizontal maps are the natural surjective homomorphisms from local
class field theory, and the map ’D;ab — ’D?b is induced by the natural inclusion
CD; C ®;. Further, this identification is (by construction) Galois-compatible with
respect to the homomorphism . This completes the proof of (iv).

Property (v) follows from property (iv), since J; coincides with the kernel of x;
fori =1,2.

Next, we prove (vi). First, 7% preserves the image Jm(@,j_) by (v), since this
image coincides with the image of the inertia subgroup J;. Since Jm({;) (resp.
Jm(Ul.l)) is the maximal prime-to-p (resp. pro-p) subgroup of ’Jm(@ii), property
(vi) for Jm(¢) (resp. Jm(Uil)) follows. Further, by (iii) and (iv), the homo-
morphism ’D?b /’Jm(@zl) — CD;b /’Jm(@zz) induced by t preserves the respective
Frobenius elements, since such an element is characterized as the unique element
whose image under y; is f(¢;). Finally, since Jm(L L.X) is the inverse image in ’D?b
of the subgroup generated by the Frobenius element in @;‘i‘b / jm(@z’_) fori =1,2,
they are preserved by t2°. U

2B. Homomorphisms between Galois groups of function fields of curves over
finite fields. Next, we shall investigate some basic properties of homomorphisms
between Galois groups of function fields of curves over finite fields. We follow the
notations in Section 1, especially subsections 1A and 1B. Moreover:
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Notation. (i) Fori € {1, 2}, let k; be a finite field of characteristic p; > 0. Let X;
be a smooth, proper, geometrically connected curve of genus g; > 0 over k;. Let
K; = K. be the function field of X; and fix an algebraic closure K; of K;. Let
K; >P be the separable closure of K; in K;, and k; the algebralc closure of k; in K ;.
Followmg the notations in Section 1, we Wlll erte G, = G k; = Gal(K; >ep /K;)
for the absolute Galois group of K;, and G, = G Kk = = Gal(K; >ep /K; k;) for the
absolute Galois group of K;k;.

(i1) Let N; be a normal closed subgroup of G; and set (‘51 = G /N;. Let K;
denote the Galois extension of K; correspondlng to N;, that is, K; = (KN,
Let G; be the i image of G; in &, and set QSk = Qﬁ,/@,, which is a quotient of
Gy, = Gal(k,/k,). Fori =1, 2, let us denote by ¢y, the image in &, of the #(k;)-th
power Frobenius element of Gy, .

(ii1) Write X ; for the integral closure of X; in I%,'. The Galois group &; acts
naturally on the set X3 , and the quotient X /®; is naturally identified with Xy;,.
Denote the natural quotient map X3 — E x;, by gi. For a point X; € 3 %,» With
residue field k; (x;) (which is naturally identified with a subfield of k;), we define
its decomposition group Dy, and inertia group J;, by

def
Qi, ={yeb;| V(xt)—xl}
and

T, def {y € Dy, | y acts trivially on k; (X;)},

respectively. Set &y, (x,) oo ’D % /7%, where x; stands for the image of X; in Xy, .
Write J; o (It )zex, for the closed subgroup of &; generated by the inertia

subgroups Jz, for all X; €X; &, and call it the inertia subgroup of &;. Then J; is
normal in &;.

(iv) Let o : & — &, be a continuous homomorphism between profinite groups.

Proposition 2.2 (image of a decomposition subgroup). Let [ # pi, p2 be a prime
number, and assume that (1) Nl N», or, equivalently, 122 admits no [-cyclic
extension; and (2) K, contains a primitive I-th root of unity. For each %) € £ %, Jix
an [-Sylow subgroup Dz, 1 of Dz, and set Jz, | dszxl N5z, 1, which is an [-Sylow
subgroup of Jz,. Let EX|,(7,Z be the set of X| € EX] such that cd;(oc (D)) = 2.
Then:

(i) There exists a unique map ¢ :(130’1 1 X%,.00 > Bg, suchthat o (Dz,) CDy 5
foreachx, € 3 .

(ii) Foreach X, € X} . there exists an [-Sylow subgroup ’le) ! Ofg&(i.) such
that o (D5, 1) C Qtﬁ(il) ;- Moreover, we have o (Jz, 1) C j&)(il) ;» Where we set

def ~

Iaint = Jain N5

d(x1),0
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which is an [-Sylow subgroup of 35z ).
(i11) The subset Efﬁ o1 C Ef(l is &-stable, or, equivalently,

—1
X3 00=9 (Exi00),

where ¥x, 0.1 dzefql (23,.0.0)- The map ¢ is Galois-compatible with respect to
o: we have
$(g1%1) = 0 (1)
for any x1 € X%, .00 and any g1 € ®1. In particular, ¢ induces naturally a
map ¢ = ¢t Xx, .01 > XX,
(iv) Forany x| € T, N Zg, 000 WE have o (Jz, 1) = {1}.
(v) For two primes | = 11, I, satisfying the assumptions, qgg,;l and ¢~)U,lz coincide
with each other on the intersection X FOPTRAR
Proof.
(i) Take x; € £y, ;- Applying Proposition 1.1(i)(ii) to ® = o (Dy,), we have
0 (D3,) € Dec;(®,) in the notation of the result in part (ii) of Proposition 1.5.

Thus, by this same result, there exists X, € X %, such that 0(Dy,) C D5,. By
Proposition 1.5(i), such x, is unique. So, set

$(F1) = %o,
which has the desired properties.

(ii) The existence of :Dé(;a ) follows from the fact that 0 (D, 1) Co (D) C ’D(Z,@])
and that o (Dx, ;) is pro-/. Finally, consider the composite map of

o ~ _ B
Dz = D) ™ Dan /I = Cra@@iny-
Then, since Cdl(@]cz(qz(é(il)))) = 1,.the image of Jz, ; in Q5k2(q2(¢3(i1))) must be
trivial by Proposition 1.1(i), as desired.
(i11) Immediate from the definitions.

(iv) We have cd; (0 (D5,)) <cd;(&2) <2 < 0o, where the second inequality follows
from Lemma 1.4. Now, the assertion follows from Proposition 1.1(i).

(v) This follows from the fact that the defining property o (D3, ) C D B of (/3 is
independent of /. U

We shall consider the following conditions:

Condition 1. Either &; = G, i = 1,2 or &; = G", i = 1,2. We refer to the
former and the latter cases as the profinite and the prime-to-characteristic cases,
respectively. (Observe that conditions (1) and (2) in Proposition 2.2 are then sat-
isfied for any prime number / # p;, p».) In particular, we have &;, = Gy, in both
cases.
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Condition 2. The map o : &; — &; commutes with the projections pr;, pr,, that
is, it inserts into the commutative diagram

1—>61—>(’51&>le—>1

b

1—>@2—>(‘52£§sz—>1,

where the rows are exact.
Condition 3. The map o : &; — &, is an open homomorphism.
In the rest of this section, we assume that Condition 1 holds.

Lemma 2.3. In the prime-to-characteristic case, Condition 2 automatically holds.
In the profinite case, if 0 (J1) C Jo, then Condition 2 holds.

Proof. In the prime-to-characteristic case, the quotient pr; : &; — Gy, coincides
with Q5f‘b modulo the closure of the torsion subgroup. Thus, o commutes with the
projections pry, pr,.

In the profinite case, assume that o (J;) € J,. Then o induces naturally, by
passing to the quotients &, /J;, a homomorphism 7 (X;) — m1(X;) between fun-
damental groups. The quotient pr; : &; — m1(X;) — Gy, coincides with 71 (X )2
modulo the torsion subgroup. Thus, o commutes with the projections pr;, pr,. U

In the rest of this section, we assume, moreover, that Condition 3 holds. Then
note that, if Condition 2 also holds and if oy : Gy, = Gy, and 0 : & — &, are
homomorphisms induced by o, then automatically oy is open and injective and o
is open.

Lemma 2.4 (invariance of the characteristics). The equality p; = p; holds.

Proof. By replacing &; by the open subgroup o (&) C &,, we may and shall
assume that o is surjective.

In the profinite case, the assertion follows by considering the (pro-)g-parts of
(’5?" for various prime numbers g. More precisely, for i € {1, 2}, consider the
filtration @;‘-‘b = Fi0 D) Fi1 ) Fl.z, where Fi1 is the image of 6,- = Ker(6; — Gy,)
and Fi2 is the image of Ker(®; — m1(X;)). Then, by global class field theory,
FY/F! = Gy, (= 2), F!/F? = Jx, (k;) (finite), and

Fi2 = < 1_[ @§i,Xi>/kiX’
xiEEXI.

where @)X(i,x; is the multiplicative group of the completed local ring of X; at x;.
Further, we have a natural decomposition @;i’ N = k(x))* xU xl,»’ where k(x;)* is
the multiplicative group of the residue field of X; at x; (and hence finite) and U xl[ is
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the group of principal units in @;i’xi (and hence isomorphic to a direct product of
countably infinite copies of Z,). Therefore, the p;-part of (’5?" modulo the closure
of the torsion subgroup is not finitely generated, while the /-part of Q’S?b modulo
the closure of the torsion subgroup, for a prime number / # p;, is finitely generated
(and even cyclic). (Note, however, that the /-torsion subgroup of @?b is infinite.)
Thus, &, being a quotient of &, (via o) we must have p; = p».

In the prime-to-characteristic case, the assertion follows by considering the g-
Sylow subgroups &; , of &; for various prime numbers g. As o is assumed to be
surjective, we may and shall take &, , = 0 (&1 ,). Indeed, fori € {1, 2}, &; ),
is cyclic, while &;; for a prime number / # p; is noncyclic. Accordingly, the
surjection & , — &, ,, cannot exist, unless p; = p>. Thus p; = p». O

def
So, from now on, set p = p; = ps.

Remark 2.5. The same argument used in the proof of (the prime-to-characteristic
case of) Lemma 2.3 shows that an open homomorphism o : & — &, between proﬁ—
nite groups automatically commutes with the natural projections pr} : &; — G,’; ,
induced by pr;, for i =1, 2. Thus, we have the commutative diagram

where the right column is automatically open and injective. The authors do not
know, at least at the time of writing, whether or not Condition 2 follows from
Conditions 1 and 3 in general (that is, even in the profinite case).

In the rest of this subsection we assume that Condition 2 holds.

Lemma 2.6. The map o induces a natural open homomorphism o' Ggp ) Ggp ),
which commutes with the canonical projections

G > G: i=1,2.

Fori = 1,2, let 3} be the image of J; C &; in Ggp,). Then o' (3}) C J,. Thus, o
induces a natural open homomorphism t’ : 7 (Xl)(l’/) — T (Xg)(l’/), which com-
mutes with the canonical projections ﬂ](Xi)(p/) — Gy;5 i =1, 2. In particular, we
have g = g».

Proof. The first assertion is clear. The second follows from Proposition 2.2(ii)(iv).
The third assertion follows from the second. Now, 7’ : nl(Xl)(P/) — m(Xz)(P/)
induces an open homomorphism 7 (X I)P/ — (X 2)”/, and hence an open homo-
morphism (X 1)P* = 71 (X,)P . Since 71 (X;)” P is a free 7P -module of

rank 2g; for i =1, 2, this implies the last assertion. U
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Lemma 2.7. For a prime number |l # p,the map ¢ =5 : Xx, 61 = Zx, Is almost
surjective, that is, Lx, \ ¢ (Zx, o.1) Is finite. In particular, Xx, 5 is infinite (and
hence, a fortiori, nonempty).

Proof. Assume that the set S def Yx, N ¢(Xx, ) 1s infinite. Set Us def Xo N\ S.

As in (the third assertion of) Lemma 2.6, then o induces an open homomor-
phism rl(l) (X )D — 7 (U2)P, which is a lifting of the homomorphism @
T (XD® — 71(X2)® induced by 7’ : 71 (X1)?) — 71(X»)P). We have a com-
mutative diagram

1 —>m X)) —m&XD? 2 G, — 1

f{\L TIG)\L Uoi

1 —> m(Uy) — mU)? 2% G, — 1,

where U> = U, X1,k2. Since rl(l) 1 (X1)® — 7 (Uy)? is open and 0y : Gy, — Gy,
is (open and) injective, we see that ff : 711()_(1)1 — 11 (U,) is open. This is a
contradiction, since 71(X )’ is (topologically) finitely generated, while 11 (U»)!
(and hence f]l (m1 (XY also) is not (topologically) finitely generated, since S is
infinite. O

Lemma 2.8.dlfet 00 : Gi, = Gy, be the (open, injective) homomorphism induced
e
by o. Set dy = [Gy, : 00(Gg,)].

(1) The following diagram is commutative:

@ry = @~

ol wl

O
Gy, — G,

of of

@1 HJ- 052,

where xy, is the cyclotomic character of Gy, fori =1, 2.
(ii) We have 4(k1) = 2(ka)® and oy(¢x,) = ¢},

Proof. (i) Since the bottom square is commutative by the definition of gy, we
only have to prove that the top square is commutative. As Gy, is (topologically)
generated by ¢,, we may write oo(¢x,) = ¢, where a € Z. Now, the desired
commutativity xx, o 0o = Xk, is equivalent to saying that xx, (oo(@x,)) = Xk, (¢x,)

(as Gy, is (topologically) generated by ¢y, ). Since xi, (¢r,) = (k1) = p*Frl and

X2 (00(01)) = Xy (95) = Xy (01,)* = 8(k2)® = p*H2Fr),
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the desired commutativity is thus equivalent to the equality a[k; : F,] = [k : F)]
in Z. (The homomorphism 7 — (2”/)X B +— p? is injective by [Chevalley 1951,
théoreme 1].) In particular, it suffices to prove the desired commutativity on an
open subgroup H C Gy,. Indeed, set m def [Gk, : H]. Then, since (pkl is the
Frobenius element for H, the commutativity on H is equivalent to the equality
malky:Fpl=mlk;:F,]in Z which implies a[ky : ] =[k; : F,], as desired. Thus,
by replacing &; and &, by suitable open subgroups, we may and shall assume that
g2 >0.

Next, for each prime number [ # p and i € {1, 2}, let x4, ; : G, — Z;° denote the
[-adic cyclotomic character. Thus, corresponding to the decomposition 2r'y* =
]—[l#p Z;, we have xi, = (xi;,1)1:£p. We have to prove that xx, o 09 = xx,, which is
equivalent to saying that x, ;o o9 = x,.; for all [ # p.

We shall first prove that the last equality holds up to torsion. More precisely,
denote by xx,; the composite of

G, = 27— 27 /@)
By Lemma 2.7, we can take X| € 25(1,071 #+ . Set X éf&(il). Let x; denote the
image of X; in Xy, for i = 1, 2. By Proposition 2.2(ii), we have o : D3, | — D53,
and o : Jg, ; — Jz,,1, which are injective by Proposition 1.1(i). This implies that
Xky.1 ©00 = Xk, .1 holds on the image of D3, ; in Gy,, which is an open subgroup of
the [-Sylow subgroup Gy, ; of Gy,. As Z] /(Z[)"*" ~ 7, is torsion-free and pro-/,
this implies that x, ; 0 00 = X,.1-

In particular, we have Xk, ;(00(¢k,)) = Xk,.1(¢r,). This implies the equality
B(ko)* = (k1) in Z] /(Z])*" ~ 7. Since p € Z;* is not torsion, this last equality
shows that o;[k> : F,] = [k; : F,] in Z;. Here, corresponding to the decomposition
7= I prime Z1, W€ Write & = (1);: prime- Or, equivalently, we have

alky :Fpl =Tk :Fpl+p(e)

in 2, where (), : 7, — 7 is the natural injection and € défoz,,[kz Fpl—lki:Fplel,.

On the other hand, by Lemma 2.6, we get an open homomorphism 71 (X)? —
71(X2)”', and hence a surjection 771 (X )" ®7 Q — 71 (X,)? * ®7 Q, which is
Galois-compatible with respect to

oo . le —> sz.

p]

For eachi =1, 2, let P;(T) be the characteristic polynomial of <pk on the free
7P -module T (X; )p - (of rank 2g;), where i’ is defined by {i,i'} = {1, 2}. Then
it is known that P;(T) € Z[T].

Write p; for the natural representation Gy, — Auty,, (m (X i)”/’ab). Let Rg be
the (commutative) Q-subalgebra of Endy, ®Z@(n1()_( )P @5 @) generated by
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02(Gi,). We have ]
Py(p2(gy, ")) =0

in Rg. By the Galois-compatibility, we also have
[ 2: p]

Pi(p2(o0(gy, ")) =0
in Rg. These identities imply that both of ,02((,0[ v 1’]) pz(ao(go[ 2Fy ])) € Rg are
algebraic over Q, and hence so is the ratio
Foly, TheFpl, ko:Fp)—I[ky: def
ool g ™ = pale T = b Sy
in R@ So, take a monic polynomial Q(T') € Q[T] satisfying Q(n) =01in Rg. Set
b= deg(Q).

Let ! # p be a prime number, and let R; g be the image of Rg in
Endg, (m1 (X2)"** ®7 Q).

Then observe that the image n; of n in R; g C Endg, (M (X)) ®7,Q) is a pro-p
element of Endz, (7 (X»)"#)* and hence a torsion element of p-power order. So,
let p“ be the order of n;. As Q(n;) = 0 in the commutative Q-algebra R; g, we
conclude: ((p —1)/p)p* < p(p*) < b, where ¢ stands for Euler’s function. (Use
Q — Ry q, which follows from g, > 0.) Thus, g, is bounded: there exists a > 0
such that al <a forall [ # p. Namely, (i,)?" =1 for all [ # p.

Set ;l = det(m) where the determinant is taken as an element of

Endg, (71(X2)"** ®7 Q).

Smce detis a multlphcatlve homomorphism, we have (¢)?" =1 for all [ # p. Set
{ = (51)17&[, in (Z" )< = ]_[l#p Zl . Now, by construction, we have

= X2 @) = k)@,

and hence ji(kz)”agz‘ﬂ@ =1in (Zp )*. Since the homomorphism 7 — (Z”/)X,
B +— pP is injective, this last equality forces [k : Fplp®gatp(€) =0 in 7. As
[k2 : F1p“g2 > 0, this implies ¢, (¢) = 0. Namely, we have afky : F,] = [k : )]
in Z, as desired.

(i1) As in the proof of (i), set ao(wk]A) = (p,‘g‘z. Since Gy, =~ 7 and [G, : 00(Gi,)]=
dy, we must havea:dou where u € Z*. Now, since a[ky : F,]1=[k; :F,] by (i), we
get doulks : F ] =[k1 : Fp], and thus u = [ky : F, 1/ (dolk2 : F 1) € Q=0 (CZ®7 Q).
Since Z* N Qo = {1}, we conclude u = 1. Thus, dylks : F,] = [k; : F,] and
oo(gr,) = (p,il;’, as desired. O

Lemma 2.9. For each prime number | # p, the map (ﬁo,l DX o0 > X, IS
surjective. In particular, the map ¢q1 : x, o1 = XX, IS surjective.
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Proof. As in the proof of Lemma 2.7, set

SE Sy Sy, and U X, S.
By Lemma 2.7, S is a finite set. Let r < 0o be the cardinality of S(k3). Then o
induces an open homomorphism ‘cl(l) s (XDY = 7 (Uy)D, which is a lifting
of the homomorphism @ (XD — 71(X2)® induced by 7" : m(Xl)(P/) —
T (Xg)(”/) in Lemma 2.6. We have a commutative diagram

11— X)) -=mx)? 2 G, —1

Wl )

1 —> 1 (Us) — mU)? 22 G, —> 1,

where U, % U, X1,k2. Since rl(l) 1 (X1)® — 7 (Uy)? is open and 0y : Gy, — Gy,
is (open and) injective, we see that ‘Ef (X)) = (UL s open. The open
homomorphism fll :m1(X1)! — 71 (U»)! induces an open homomorphism fll ab.
71(X1)*® — 7(Uy)H®. This last homomorphism is, by construction, Galois-
compatible with respect to og : Gx, — Gy,. In other words, if we regard (U,)h2d
as a Gy,-module via op, then ff 4 a homomorphism as G, -modules.

The absolute values of eigenvalues of ¢, € Gy, in 71 (X Dh® are all f(k;)"/?,
with multiplicity 2g;. On the other hand, by Lemma 2.8(ii), the absolute values of
eigenvalues of ¢, in 71 (U,)"? are the same as those of (p,‘i’ which are f(k,)%/?
with multiplicity 2g, and t(k2)% with multiplicity max(r—1, 0). By Lemma 2.8(i),
they coincide with 8(k1)'/? and t(k;), respectively. Thus, we conclude r < 1.
However, if r # 0, by replacing &, &, with suitable open subgroups, we may
assume that r > 1, a contradiction. So, we have established r = 0.

To prove the surjectivity of qNS(,J, we may freely replace &1, &, by open sub-
groups 91, £, respectively, such that o (9) C $,. (Indeed, the map

¢a,l . 25(1,6,1 — 25(2

remains unchanged.) In particular, we may assume that o : &; — &5 is surjective.
Then the surjectivity of ¢, : £y ., — Ty, is equivalent to the surjectivity of
0.1 1 Xx,.0.1 — Xx,, Which is then equivalent to r = 0. U

3. Rigid homomorphisms between Galois groups

In this section we investigate a class of homomorphisms between (geometrically
prime-to-characteristic quotients of) absolute Galois groups of function fields of
curves over finite fields, which we call rigid. We follow the notations in Sections
1 and 2. In particular, we follow the Notation at the beginning of subsection 2B.
We assume that Condition 3 holds.
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Definition 3.1 (rigid homomorphisms). (i) We say that o : & — &, is strictly
rigid if there exists a map

such that

for each x; € E;(I.

(il)) We say that o : & — &, is rigid if there exist open subgroups 9H; C &y,
£y C &y, such that o (H1) C H7 and that $H; 4 $), is strictly rigid. (Here,
9, is considered as a quotient of the absolute Galois group that is the inverse
image in G; of 9; C &;.)

(iii) Define Hom(®1, &,)""¢ C Hom(®, &,) to be the set of rigid (and hence
continuous and open) homomorphisms &; — &,.

Remark 3.2. (i) Consider a commutative diagram of maps between profinite
groups 5
@1 —> @2

I

&) = &),
where the vertical arrows are surjective. Then if o : &1 — &3 is strictly rigid
(resp. rigid), o’ : & — &), is strictly rigid (resp. rigid).

(i) Let $, be an open subgroup of &, and $; défa”(j@). Thenifo : &) — &,
is strictly rigid (resp. rigid), the natural homomorphism $; — $); induced by
o is strictly rigid (resp. rigid).

(iii) Assume that o : &; — & is strictly rigid with respect to ¢ : Xz, — Xy,
Then if ¢ is surjective, o is surjective. Indeed, this follows 1mmedlately from
the fact, by Chebotarev’s density theorem, that &, is (topologically) generated
by its decomposition subgroups.

(iv) As in Proposition 2.2, let [ # p1, p2 be a prime number, and assume that
(D) N = N, or, equivalently, K2 admits no /-cyclic extension; and (2) Kz
contains a primitive /-th roots of unity.

If o is strictly rigid with respect to ¢ : X3 — Xy , then we must have
Xi00 = Bx, and ¢ = ¢,;. In particular, then ¢ is unique and Galois-
equivariant with respect to o, and hence naturally induces a map ¢ (= ¢4 ) :
EX] — sz

If o is rigid, then we must have X% 00 = Zg,» and, if we set ¢ qb(,;,
then

G(gil) opCen qu(fl)
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foreach x; € %,- The map ¢ is uniquely characterized by this property, and
Galois-equivariant with respect to o, and hence naturally induces a map

¢ (=ds1) 1 Xx, = Zx,.
In the rest of this section, we assume that Condition 1 holds.

Definition 3.3. (i) Let y : K» — K i be a homomorphism of fields defining an
extension K/K» of fields. Set p = p1 = po. Then we say that y is admissible
if the extension K /K, appears in the extensions of K, corresponding to the open
subgroups of &,. More precisely, in the profinite case, we say that y is admissible
if the extension K;/K> is finite separable; in the prime-to-characteristic case, we
say that y is admissible if the extension K/K> is finite separable and the Galois
closure of the extension Kk / K>k, is of degree prime to p.

Equlvalently, Y K> — K, is admissible if and only if it extends to an isomor-
phism y : K2 5K 1.

(ii) Define Hom(K>, K1)*™ c Hom(K>, K;) to be the set of admissible homo-
morphisms K, — K.

Our aim in this section is to prove the following.

Theorem 3.4. The natural map Hom(K;, K1) - Hom(®, 8,)/ Inn(®,) induces
a bijection

~

Hom(K>, K1)™™ = Hom(®;, ,)"¢/ Inn(&,).
More precisely,
() If y : Ko — K is an admissible homomorphism between fields, then the
homomorphism & — &, induced by y (up to inner automorphisms) is rigid.

(i) Ifo : &1 — &, is a rigid homomorphism between profinite groups, then there
exists a unique isomorphismy : K, — K of fields, such that y oo (g1) = g0y
for all g\ € &, which induces an admissible homomorphism K, — K.

Remark 3.5. (i) By local theory for the Isom-form, any isomorphism &; = &,
is strictly rigid. In particular, we have Isom(&;, &,) C Hom(&/, ®,)"€. Thus,
Theorem 3.4 can be viewed as a generalization of the Isom-form:

Isom(K», K1) = Isom(&, &,)/Inn(®,),

which is the main theorem of [Uchida 1977] in the profinite case, and the main
theorem of [Saidi and Tamagawa 2009] in the prime-to-characteristic case.
(ii) Let
Vv errf N errf
be a homomorphism of fields defining an extension K perlC/ K5 Perl of fields. Set
p &ef p1 = p2. We say that y is admissible if the extension K perf/ K, pert appears



The Hom-form of Grothendieck's birational anabelian conjecture 155

in the extensions of ngrf corresponding to the open subgroups of &;, which is
regarded as a quotient of the absolute Galois group G Ko = Gk,. More precisely,
in the profinite case y is always admissible, and in the prime-to-characteristic case
y is admissible if and only if the extension the Galois closure of the extension
K f erflzl / ngrfl_cz is of degree prime to p. Define

Hom ( ngrf’ Ki)erf) adm C Hom ( ngrf ’ K{)erf)

to be the set of admissible homomorphisms ngrf — K ferf. Then the natural map
Hom (ngrf, Kferf) — Hom ((’51, By)/ Inn((’ﬁz) induces a bijection

Hom (K2, kP)*™ / Frob? = Hom (&, ,)"¢/ Inn(&,).

Indeed, this follows from Theorem 3.4, since the natural map Hom(K», K{) —
Hom (ngrf, K fenc) induces

Hom(K>, K1)™™ = Hom (K2*", KP")*™ / Frob? .

The rest of this section is devoted to the proof of Theorem 3.4.

First, to prove 3.4(i), let y : K — K| be an admissible homomorphism. Then,
by the definition of admissibility, the extension K;/K, is isomorphic to some ex-
tension L /K> that corresponds to an open subgroup ), of &,. Set ﬁl (’51 Now
let o : & — &, be the homomorphism induced by y (up to conjugacy). Then it
is easy to see that o restricts to an isomorphism §; — §), (corresponding to the
isomorphism L => K), which is strictly rigid. Thus, o is rigid, as desired.

Next, to prove 3.4(ii), let o : &; — &, be a rigid homomorphism. By def-
inition, there exist open subgroups 91 C &, H C 62, such that o (1) C H»
and that ; > 5“32 is strictly rigid with respect to, say, ¢ : Y — Xg,. Then, by
Remark 3.2(iv), ¢ is Galois-equivariant with respect to o : & — 62 (that is, not
only with respect to o : §)1 — $)2), and, for each x| € ZX , we have o(@x,) C ®¢(x )
and0(©x1 mfjl)— (xl)mf)Z pen

Lemma 3.6. Condition 2 holds for o : | — &,.

Proof. By Proposition 2.1(v), we have o(Jz,) C j&(il) for each x; € X%,- In
particular, we have o (J;) C J,. Now, the assertion follows from Lemma 2.3. [

Thus, we may apply Lemmas 2.6-2.9 to o.
Lemma 3.7. We have o (1) = $3 and $, = o~ (92).

Proof. By Lemma 2.9, (;3 is surjective, and hence, by Remark 3.2(iii), o : 1 — 92
is surjective, that is, o (1) = 9.

Next, let X o, = X ,-1(5,) = X1 and X5 5, — X, be (finite, generically
étale) covers corresponding to open subgroups $; C o1 ($,) C & and H, C By,
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respectively. Suppose that $; C o ~!($),). Then, by Chebotarev’s density theorem,
there exists X € & % such that

k(x1,5,) 2 k(X1 6-1(6))s

where x| g, and X1.0-1(%) denote the images of X1 in X g, and X} ,-1(g,), TESpec-
tively. Set X, = def d(F)) € g, We have o (D3,) C Dx,, and hence

oDz, NH1) Co@z Na~ () C Ds, NH.
Now, since $; 5 $, is strictly rigid, we must have
oDz, NH1) =@z, No " 1(H)) =Dz, NH.

By Proposition 2.1(iii), this implies that £(k(x1,g,)) =(k(x2,,)) =8(k(X] 5-1(5,))»
where x2 g, denotes the image of X in X, 9y This contradicts

k(XLle) Qk(xl’g—l(y)z)). O

We treat the special case where o : & — &, is strictly rigid (and hence, in
particular, surjective).

Lemma 3.8. Assume that o : &1 — &, is strictly rigid.
(i) We have g1 = g».
(i1) The map ¢ : Xx, — X, is bijective.

Proof. By Lemma 2.6, the homomorphism o naturally induces a commutative
diagram
I —> m(X)P® — T —> Gg, —> 1

oo

1 —> 1 (X2)"® — M —> Gy, — 1,

where I1; is the quotient nl(Xl-)(p/)/ Ker(m()_(i)p/ —» T ()_(,-)P/’ab), and the maps
I1; — Gy, are the natural projections; i = 1,2. The vertical maps are surjec-
tive. In particular, the representation Gy, — Gk, — Aut(m (X,)P20), where
G, — Aut((X2)? %) is the natural representation and Gy, — Gy, is the right
vertical map in the above diagram, is a quotient representation of the natural repre-
sentation Gy, — Aut(ry (X 1)?*). For i € {1, 2}, let E; be the set of eigenvalues,
counted with multiplicities, of the Frobenius element ¢y, acting on 7 (X i)l’/’ab.
Then E; C Ej, since the map Gy, — Gy, maps ¢, to ¢, (see Lemma 2.8(i1)). We
will show that E| = E>.

For an integer n > 1, let k; , be the unique extension of k; of degree n; i =1, 2.
Then by the Lefschetz trace formula, §X;(k;,) =1 — Za cE, a! + gq", where

= tﬁ(k ) (see Lemma 2.8(ii) for the equality f(k;) = f(kp)). Recall that the



The Hom-form of Grothendieck's birational anabelian conjecture 157

map ¢ : Xy, — Xy, is surjective (see Lemma 2.9), and if xo = ¢ (x;), then the
residue fields k(x;) and k(x,) have the same cardinality (see Proposition 2.1(iii)).
In particular, (X (k1 ,)) > (X2 (k2,,)) for all n. Thus, Z;:l ;3;7 <Oforanyn=>1,

where

def def
E;E]\Ezé{ﬂl,---»ﬁr}

(r=2g1—2g>>0). Write B; = p;e'% (p; € R=, 0; €0, 27)), for j e {1,...,r}
(note that p; = g'/? by the Riemann hypothesis for curves). Let J be the set
consisting of the 4 quadrants of C = R%. More precisely, T = {T} | k € {1, 2, 3, 4}},

where i1 '
Ty déf{pei@ |peRog, 0 € [( _2 )77’ 7”)}

Thus, each o € C* belongs to a unique element of J, which we shall denote by
T (o). Consider the map u : N — J” that maps an integer n to {T(,B;?)};.Zl. Then
there must exist integers m| < my such that u(m;) = u(my), since §(J") =4" is
finite. This implies that ¢/”1% and /"% belong to the same quadrant of C = R for
all je{l,...,r}. Inparticular, Re(,B;’) = ,0? cosné; >0, where n défmz—ml > 1.
Suppose that r > 0; then this implies that

Re<]é:1 ﬂ;’): ]é Re g} > 0,

which contradicts the above fact that Z;:l ,8;? <0, for all n. Thus, r =0, that is,
E = E; \ E, must be empty, and E; = Ej.

In particular, the 7P -ranks of (X ,-)p/’ab, which equal 2g;, are equal; i =1, 2.
This completes the proof of Lemma 3.8(i).

Finally, we can conclude that ¢ is injective. For otherwise, there would exist
an integer n > 1 such that (X, (k,)) > #(X»(k,)), and hence, E # &, which is a
contradiction. This completes the proof of Lemma 3.8(ii). (Il

Lemma 3.9. Assume that o : &1 — &, is strictly rigid. Then o) Qigp) — @;p)
is an isomorphism. (In particular, in the prime-to-characteristic case, o is an
isomorphism.)

Proof. By Lemma 3.8(ii), the map ¢ : £x, — X, induced by o is bijective. For a
finite subset S, of Xy,, let S = »~1(S>). Then o naturally induces a continuous,
surjective homomorphism g ¢ : 7 (U)P) = 71(U2) P, where 71 (U;)P" is the
maximal geometrically prime-to-p quotient of the fundamental group 7;(U;) of
U; def X; — §;; i =1, 2. Further, we have the commutative diagram

] — m(UI)I’/ — m(Ul)(p/) — Gy, —> 1

/
i rSrSzi

1] — m(Uz)I’/ — m(Uz)(p/) — Gy, — 1.
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The surjective homomorphism 771 (U)?" — 71 (U,)?" must be an isomorphism by
[Fried and Jarden 1986, Proposition 15.4], since X; —S; have the same topological
type (gi, tI(S’,-)), where S; denotes the inverse image of §; in EYI-; i=1,2, by
Lemma 3.8. (For the bijectivity S; = S,, apply Lemma 3.8(ii) to various open
subgroups of &, &, corresponding to constant field extensions.) Thus, the map
Tél, S, is an isomorphism (note that the surjective map Gy, — Gy, is an isomor-
phism). Also,
&) =limm (X; - $)7,

Si

where the projective limit is taken over all finite subsets S; of Xx,; i =1, 2. Further,

/
. ’
G(p) = I(El TS],SZ’
{81