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Introduction

Let K be an infinite field that is finitely generated over its prime field. Let K be
an algebraic closure of K . We denote by K sep the separable closure, and by K perf

the perfection, of K in K . Let GK
def
= Gal(K sep/K ) be the absolute Galois group

of K . (Observe that GK = GK perf .) The ultimate aim of Grothendieck’s birational
anabelian conjectures is to reconstruct the field structure of K from the topological
group structure of GK . More precisely, these conjectures can be formulated as
follows.
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Birational anabelian conjectures. There exists a group-theoretic recipe for re-
covering finitely generated infinite fields (or their perfections) from their absolute
Galois groups GK . In particular, if for such fields K and L one has GK

∼
→ GL , then

Lperf ∼
→ K perf. Moreover, given two such fields K and L , one has the following.

Isom-form. Every isomorphism σ : GK
∼
→ GL is defined by a field isomorphism

γ : L ∼
→ K . This isomorphism is unique if the characteristic is 0, and unique

up to Frobenius twists if the characteristic is positive. In particular, γ induces an
isomorphism Lperf ∼

→ K perf.

Hom-form. Every open homomorphism σ : GK → GL is defined by a field em-
bedding γ : L ↪→ K . This embedding is unique if the characteristic is 0, and unique
up to Frobenius twists if the characteristic is positive. In particular, γ induces a
field embedding Lperf ↪→ K perf.

Thus, the Hom-form is stronger than the Isom-form. The first results concerning
these conjectures were obtained by Neukirch and Uchida in the case of global
fields.

Theorem (Neukirch, Uchida). Let K and L be global fields. Then the natural map

Isom(L , K )→ Isom(GK ,GL)/ Inn(GL)

is a bijection.

More precisely, this is due to Neukirch [1969a; 1969b] and Uchida [1976] for
number fields, and due to Uchida [1977] for function fields of curves over finite
fields. Later, Pop generalized their results to the case of finitely generated fields
of higher transcendence degree ([Pop 1994; 2002]; see also [Szamuely 2004] for
a survey on Pop’s results).

In characteristic 0, Mochizuki proved the following relative version of the Hom-
form of the birational conjectures.

Theorem [Mochizuki 1999]. Let K and L be two finitely generated, regular ex-
tensions of a field k. Assume that k is a sub-p-adic field (that is, k can be embedded
in a finitely generated extension of Qp) for some prime number p. Then the natural
map

Homk(L , K )→ Homopen
Gk

(GK ,GL)/ Inn(Ker(GL → Gk))

is a bijection. Here, Homk denotes the set of k-embeddings, and Homopen
Gk

denotes
the set of open Gk-homomorphisms.

However, almost nothing is known about the absolute version (that is, not rel-
ative with respect to a fixed base field k) of the Hom-form, except for Uchida’s
result [1981] for K =Q and [L :Q]<∞.

A major obstacle in proving the Hom-form of the birational anabelian conjec-
tures is that one of the main common ingredients in the proofs of Neukirch, Uchida,
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and Pop, which is the so-called local theory (or Galois characterization of the
decomposition subgroups), and which is used in order to establish a one-to-one
correspondence between divisorial valuations, is not available in the case of open
homomorphisms between Galois groups. More precisely, the main result of local
theory available so far, Proposition 1.5, gives very little information on the image of
the decomposition subgroups in this case, though one can still prove some partial
results (Proposition 2.2, Lemmas 2.6 and 2.9). It seems quite difficult, for the
moment, to establish a satisfactory local theory that is suitable to the Hom-form of
the above conjecture. Also, the methods used in the proof of Mochizuki’s theorem
above are quite different, and do not rely on local theory. Instead, Mochizuki
proves his result as an application of his fundamental anabelian result that relative
open homomorphisms between arithmetic fundamental groups of curves over sub-
p-adic fields arise from morphisms between corresponding curves, the proof of
which relies on p-adic Hodge theory. It is not clear how to adapt Mochizuki’s
method to the case of positive characteristics.

In this paper we investigate the Hom-form of the birational anabelian conjectures
for function fields of curves over finite fields. For i = 1, 2, let ki be a finite field.
Let X i be a proper, smooth, geometrically connected algebraic curve over ki . Let
Ki be the function field of X i and fix an algebraic closure K i of Ki . Let K sep

i and
K perf

i be the separable closure and the perfection of Ki in K i , and ki the algebraic
closure of ki in K i . Write Gi

def
= G Ki

def
= Gal(K sep

i /Ki ) for the absolute Galois
group of Ki , and Gki

def
= Gal(ki/ki ) for the absolute Galois group of ki . We have

the natural exact sequence of profinite groups

1→ Gi → Gi
pri
→ Gki → 1,

where Gi is the absolute Galois group Gal(K sep
i /Ki ki ) of Ki ki , and pri is the

canonical projection.
Further, let pi be the characteristic of ki , and let G

p′i
i be the maximal prime-to-

pi quotient of Gi . The push-forward of this sequence with respect to the natural
surjection Gi → G

p′i
i gives rise to the natural exact sequence

1→ G
p′i
i → G

(p′i )
i

pri
→ Gki → 1.

Set Gi
def
= Gi , i = 1, 2 (which we call the profinite case) or Gi

def
= G

(p′i )
i , i = 1, 2

(the prime-to-characteristic case). We investigate two classes of continuous, open
homomorphisms — rigid and proper homomorphisms — between G1 and G2.

First, we investigate a class of continuous, open homomorphisms σ :G1→G2,
which we call rigid. More precisely, we say that σ is strictly rigid if the image of
each decomposition subgroup of G1 coincides with a decomposition subgroup of
G2, and we say that σ is rigid if there exist open subgroups H1⊂G1, H2⊂G2, such
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that σ(H1) ⊂ H2 and that H1
σ
→ H2 is strictly rigid. Thus, isomorphisms between

G1 and G2 are (strictly) rigid by the main result of local theory for the Isom-form.
Let Hom(G1,G2)

rig be the set of rigid homomorphisms between G1 and G2.
We say that a homomorphism γ : K2→ K1 of fields (which defines an extension

K1/K2 of fields) is admissible if the extension K1/K2 appears in the extensions
of K2 corresponding to the open subgroups of G2. An equivalent condition in the
profinite case is that the extension K1/K2 is finite separable; and in the prime-
to-characteristic case, that the extension K1/K2 is finite separable and the Galois
closure of the extension K1k1/K2k2 is of degree prime to p def

= p1= p2. We define
Hom(K2, K1)

adm
⊂ Hom(K2, K1) to be the set of admissible homomorphisms

K2→ K1.
Now, our first main result is the following (see Theorem 3.4).

Theorem A. The natural map Hom(K2, K1)→ Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
adm ∼
→ Hom(G1,G2)

rig/ Inn(G2).

Our method of proving Theorem A is as follows. First, we prove, using a cer-
tain weight argument based on the Weil conjecture for curves, that a strictly rigid
homomorphism σ : G1→ G2 induces a bijection 6X1

∼
→6X2 between the set of

closed points of X1 and X2 (see Lemma 3.8). With this we can reduce the Hom-
form in this case to the Isom-form, which has been established in [Uchida 1977]
(profinite case) and [Saïdi and Tamagawa 2009] (prime-to-characteristic case).

Next we consider a class of continuous, open homomorphisms σ : G1 → G2,
which we call proper. These are homomorphisms with the property that the im-
age of each decomposition subgroup of G1 coincides with an open subgroup of
a decomposition subgroup of G2, such that each decomposition subgroup of G2

contains images of only finitely many conjugacy classes of decomposition sub-
groups of G1. We also consider a certain rigidity condition, which we call inertia-
rigidity, on the various identifications between the modules of the roots of unity
(Definition 4.5). Unfortunately, we are not able to prove that this condition auto-
matically holds for proper homomorphisms. Let Hom(G1,G2)

pr,inrig be the set of
proper and inertia-rigid homomorphisms between G1 and G2. Our second main
result is the following (see Theorem 4.8).

Theorem B. The natural map Hom(K2, K1)→ Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
sep ∼
→ Hom(G1,G2)

pr,inrig/ Inn(G2).

Here, we define Hom(K2, K1)
sep
⊂Hom(K2, K1) to be the set of separable homo-

morphisms K2→ K1.

To prove Theorem B, we first show, using a weight argument, that a homomor-
phism σ :G1→G2 as above induces a surjective map6X1→6X2 between the sets
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of closed points of X1 and X2, which has finite fibers (Lemma 2.9). Second, using
Kummer theory, we reconstruct functorially an embedding K×2 ↪→ (K perf

1 )× be-
tween multiplicative groups (Lemma 4.13). Finally, we show that this embedding
K×2 ↪→ (K perf

1 )× is additive.

Recovering the additive structure is one of the main steps in the proof. This
problem was treated by Uchida in the case of a bijective identification K×2

∼
→ K×1

between multiplicative groups, which is order-preserving and value-preserving. In
fact, one needs only to restore the additivity between constants. For this one has to
show identities of the form γ ( f2+ 1) = γ ( f2)+ 1 for some specific nonconstant
function f2 ∈ K2. Uchida succeeded in his case by choosing f2 to be a function
with a minimal pole divisor (he called such a function a minimal element.) His
argument fails in the case of an embedding between multiplicative groups that is
not surjective, because the image of a minimal element is not necessarily minimal in
this case. Roughly speaking, we extend his arguments by using, instead, a function
that has a unique pole. This one-pole argument turns out to be very efficient, and
leads to the recovery of the additive structure under quite general assumptions
(Proposition 5.3).

Although rigid homomorphisms are a special case of proper homomorphisms,
we choose to treat them separately for several reasons. First, the important condi-
tion of inertia-rigidity is automatically satisfied in the case of rigid homomorphisms
(Remark 4.9(i)). Second, in the case of (strictly) rigid homomorphisms we can
reduce directly to the Isom-form, the proof of which can be based on class field
theory. This is not possible for proper homomorphisms, in general. In fact, in the
case of proper homomorphisms, class field theory reconstructs only the norm map
between the multiplicative groups of function fields.

This paper is organized as follows. In Section 1, we review well-known facts
concerning Galois theory of function fields of curves over finite fields, including
the main results of local theory. In Section 2, we investigate some basic properties
of homomorphisms between absolute Galois groups of function fields of curves
over finite fields, as well as homomorphisms between decomposition subgroups.
In Section 3, we investigate rigid homomorphisms between (geometrically prime-
to-characteristic quotients of) absolute Galois groups, and prove Theorem A. In
Section 4, we investigate proper homomorphisms between (geometrically prime-
to-characteristic quotients of) absolute Galois groups, and prove Theorem B. In
Section 5, we investigate the problem of recovering the additive structure of func-
tion fields. Using the above one-pole argument, we prove Proposition 5.3, which
is used in the proof of Theorem B in Section 4.

We hope very much that this paper is a first step towards proving the Hom-form
of Grothendieck’s anabelian conjecture concerning arithmetic fundamental groups
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of hyperbolic curves over finite fields, whose Isom-form was proven by Tamagawa
[1997] for affine curves and Mochizuki [2007] for proper curves.

1. Generalities on Galois groups of function fields of curves

1A. Notations on profinite groups and fields. Let C be a full class of finite groups
(C is closed under taking subgroups, quotients, finite products, and extensions).
For a profinite group H , denote by H C the maximal pro-C quotient of H , and set
H (C) def
= H/Ker(H � H C), where H is a closed normal subgroup of H . Note that

H (C) coincides with H C if and only if the quotient A def
= H/H is a pro-C group.

By definition, we have the commutative diagram

1 � H � H � A � 1

1 � H C
g
� H (C)
g

� A

id
g

� 1,

where the rows are exact and the columns are surjective.
If l is a prime number, we write H l and H (l) instead of H C and H (C) when C is

the class of finite l-groups, and we write H l ′ and H (l ′) when C is the class of finite
l ′-groups (finite groups of order prime to l).

For a profinite group H , we write H ab for the maximal abelian quotient of H ;
Sub(H) for the set of closed subgroups of H ; Aut(H) for the group of (continuous)
automorphisms of H ; and Inn(H) for the group of inner automorphisms of H .

For a profinite group H and a prime number l, denote by cd(H) and cd l(H)
the cohomological and l-cohomological dimensions of H . It is well-known that if
cd(H) <∞, then H is torsion-free.

Let κ be a field and κsep a separable closure of κ . Denote the absolute Galois
group Gal(κsep/κ) by Gκ . We write

Mκsep
def
= Hom(Q/Z, (κsep)×).

Thus, Mκsep is a free Ẑ†-module of rank one, where Ẑ† is defined as Ẑ if char κ = 0
and as Ẑp′ if char κ = p > 0. Further, Mκsep has a natural structure of Gκ -module,
which is isomorphic to the Tate twist Ẑ†(1); that is, Gκ acts on Mκsep via the
cyclotomic character χκ : Gκ→ (Ẑ†)×.

1B. Galois groups of local fields of positive characteristic. Let p be a prime num-
ber. Let L be a local field of characteristic p, that is, a complete discrete valuation
field of equal characteristic p, with finite residue field `. We denote the ring of
integers of L by OL . Also, fix a separable closure Lsep of L . We shall denote the
residue field of Lsep by ¯̀, since it is an algebraic closure of `. Note that ` and
¯̀ can also be regarded naturally as subfields of L and Lsep, respectively. Write
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D def
= Gal(Lsep/L) for the corresponding absolute Galois group of L , and define

the inertia group of L by

I def
= {γ ∈ D | γ acts trivially on ¯̀}.

We have a canonical exact sequence

1→ I → D→ G`
def
= Gal( ¯̀/`)→ 1,

and, for a full class C of finite groups, we get a canonical exact sequence

1→ I C
→ D(C)

→ G`→ 1.

The inertia subgroup I possesses a unique p-Sylow subgroup I w. The quotient
I t def
= I/I w is isomorphic to Ẑp′ , and is naturally identified with the Galois group

Gal(L t/Lur), where L t and Lur are the maximal tamely ramified and maximal un-
ramified extensions of L contained in Lsep. We have a natural exact sequence

1→ I t
→ Dt

→ G`→ 1,

where Dt def
= Gal(L t/L). (Observe that I t

= I p′ and Dt
= D(p′).) In particular, I t

has a natural structure of G`-module. Further, there exists a natural identification
I t ∼
→ M ¯̀ of G`-modules. These follow from well-known facts in ramification

theory. See [Serre 1968, chapitre IV] for more details.
Let l be a prime number. Denote by Dl an l-Sylow subgroup of D. Then the

intersection Il
def
= I ∩Dl is an l-Sylow subgroup of I . Thus, Ip = I w and, for l 6= p,

Il is isomorphic to Zl . The image G`,l of Dl in G` is the unique l-Sylow subgroup
of G` ' Ẑ, and hence G`,l ' Zl . We have a canonical exact sequence

1→ Il→ Dl→ G`,l→ 1.

In particular, Il has a natural structure of G`,l-module, and, if l 6= p, there exists a
natural identification Il

∼
→ M ¯̀,l of G`,l-modules, where M ¯̀,l stands for the l-Sylow

subgroup of the profinite abelian group M ¯̀.
It is well-known that cd l(D)= cd(Dl)= 2 for any prime number l 6= p, and that

cd p(D)= cd(Dp)= 1. Thus, cd(D)= 2<∞. In particular, D is torsion-free.

Proposition 1.1. Let D be a quotient of D, let I be the image of I in D, and let
G`

def
= D/I. For each prime number l, let Dl , Il and G`,l be the images of Dl , Il

and G`,l in D, I and G`, respectively, which are each l-Sylow subgroups of D, I

and G`, respectively. Let l be a prime number 6= p.

(i) One of the following cases occurs.

Case 0: cd l(D)= 0, Dl = {1}, Il = {1}, and G`,l = {1}.
Case 1: cd l(D)= 1, Dl ' G`, Il = {1}, and G`,l ' G`.
Case 2: cd l(D)= 2, Dl ' Dl , Il ' Il , and G`,l ' G`.
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Case∞: cd l(D)=∞, and Il is a finite group.

(ii) Assume that Case 2 occurs. Let D′ be an open subgroup of D, L ′ the (finite,
separable) extension of L corresponding to D′⊂D, and D′ the inverse image
of D′ in D. (Thus, D′ = GL ′ .) Then, for each finite l-primary D′-module M
and each k ≥ 0, one has H k(D′,M) ∼→ H k(D′,M).

Proof. (i) Since Il is a quotient of Il 'Zl , one of the following occurs: (a) Il ={1},
(b) Il ' Z/ lmZ for an integer m > 0, and (c) Il ' Zl . If (a), Dl is a quotient of
Dl/Il =G`'Zl . Thus, it is easy to see that one of Cases 0, 1, or∞ occurs. If (b),
Case∞ occurs. If (c), we have G`,l ' G`,l . This follows from the fact that Il is
isomorphic to M ¯̀,l on which G`,l acts via the l-adic cyclotomic character, and that
the l-adic cyclotomic charter χl : G`,l → Z×l is injective. Thus, it is easy to see
that Case 2 occurs.

(ii) Replacing L by L ′, we may assume that L ′= L . (Observe that Case 2 occurs
also for the quotient GL ′ = D′�D′.)

Denote by N the kernel of the surjection D�D. By the assumption that Case 2
occurs, Dl is injectively mapped into D, and hence Dl ∩ N , which is an l-Sylow
subgroup of N , is trivial. Since N is of order prime to l, we have H k(D,M) =
H k(D, H 0(N ,M))= H k(D,M), as desired. �

1C. Galois groups of function fields of curves. Let k be a finite field of charac-
teristic p > 0. Let X be a proper, smooth, geometrically connected curve over
k. Let K = K X be the function field of X and fix an algebraic closure K of
K . Write K sep and k = ksep for the separable closures of K and k in K . Write
G =GK

def
= Gal(K sep/K ) and Gk

def
= Gal(k/k) for the absolute Galois groups of K

and k, respectively. We have the exact sequence of profinite groups

1→ G→ G
pr
→ Gk→ 1, (1.1)

where G is the absolute Galois group G K k = Gal(K sep/K k) of K k, and pr is the
canonical projection. Here, it is well-known that the right term Gk is a profinite
free group of rank 1 that is (topologically) generated by the Frobenius element,
while the left term G is a profinite free group of countably infinite rank [Pop
1995; Harbater 1995]. However, the structure of the extension (1.1) itself is not
understood well. From (1.1) above, we also obtain the exact sequence

1→ GC
→ G(C) pr

→ Gk→ 1

for each full class C of finite groups.
In the rest of this section, let N be a closed normal subgroup of G and set

G
def
= G/N . Let K̃ denote the Galois extension of K corresponding to N, that is,

K̃ def
= (K sep)N. Let G be the image of G in G, and set Gk

def
= G/G, which is a

quotient of Gk .
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For a scheme T , denote by 6T the set of closed points of T . Write ˜̃X for
the integral closure of X in K sep. The absolute Galois group G acts naturally on
the set 6 ˜̃X , and the quotient 6 ˜̃X/G is naturally identified with 6X . For a point
˜̃x ∈6 ˜̃X , with residue field k( ˜̃x) (which is naturally identified with k), we define its
decomposition group D ˜̃x and inertia group I ˜̃x by

D ˜̃x
def
= {γ ∈ G | γ ( ˜̃x)= ˜̃x}

and
I ˜̃x

def
= {γ ∈ D ˜̃x | γ acts trivially on k( ˜̃x)},

respectively. We have a canonical exact sequence

1→ I ˜̃x → D ˜̃x → Gk(x)→ 1,

where x stands for the image of ˜̃x in 6X .
More generally, write X̃ for the integral closure of X in K̃ . The Galois group

G acts naturally on the set 6X̃ , and the quotient 6X̃/G is naturally identified with
6X . For a point x̃ ∈6X̃ , with residue field k(x̃) (which is naturally identified with
a subfield of k), we define its decomposition group Dx̃ and inertia group Ix̃ by

Dx̃
def
= {γ ∈G | γ (x̃)= x̃}

and
Ix̃

def
= {γ ∈Dx̃ | γ acts trivially on k(x̃)},

respectively. (For any g ∈ G, one has Dgx̃ = gDx̃ g−1 and Igx̃ = gIx̃ g−1.) Set
Gk(x)

def
= Dx̃/Ix̃ . Thus, if we take a point ˜̃x ∈ 6 ˜̃X above x̃ ∈ 6X̃ , then Dx̃ , Ix̃ ,

and Gk(x) are quotients of D ˜̃x , I ˜̃x and Gk(x), respectively, where x stands for the
image of ˜̃x in 6X . We have a canonical exact sequence

1→ Ix̃ →Dx̃ →Gk(x)→ 1.

For each closed subgroup H⊂G, denote by x̃H the image of x̃ in XH. Define

K̃ x̃
def
=

⋃
H⊂G

(KH)x̃H,

where H runs over all open subgroups of G, and (KH)x̃H means the x̃H-adic com-
pletion of KH

def
= (K̃ )H. Then the Galois group Gal(K̃ x̃/Kx) is naturally identified

with Dx̃ , where x def
= x̃G ∈6X .

In the rest of this subsection, we fix a prime number l 6= p, and make two
assumptions: (1) N l

= N , or, equivalently, K̃ admits no l-cyclic extension; and (2)
K̃ contains a primitive l-th root of unity.

Remark 1.2. Let C be a full class of finite groups.

(i) If Fl ∈ C, then the quotient G(C) of G satisfies these two assumptions.
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(ii) If Fl ∈ C and Gal(K (ζl)/K ) ∈ C, then the quotient GC of G satisfies these
two assumptions.

Lemma 1.3. Let x̃ ∈ 6X̃ and take ˜̃x ∈ 6 ˜̃X above x̃ . Let D ˜̃x,l be an l-Sylow sub-
group of D ˜̃x and Dx̃,l the image of D ˜̃x,l under the natural surjection D ˜̃x � Dx̃ ,
which is an l-Sylow subgroup of Dx̃ . Then the natural surjection D ˜̃x,l �Dx̃,l is
an isomorphism.

Proof. Take t ∈ K such that t is a uniformizer at x def
= x̃G ∈ 6X . Then by the

two assumptions (and by Kummer theory), any ln-th root t1/ ln
of t is contained in

K̃ . From this, it follows that I ˜̃x,l
def
= D ˜̃x,l ∩ I ˜̃x is injectively mapped into Dx̃ . Now,

applying Proposition 1.1(i) to the quotient G Kx = D ˜̃x�Dx̃ , we conclude that only
Case 2 from that proposition can occur, as desired. �

Lemma 1.4. Let G′ be an open subgroup of G, K ′ the (finite, separable) extension
of K corresponding to G′ ⊂ G, and G ′ the inverse image of G′ in G. (Thus,
G ′ = G K ′ .) Then, for each finite l-primary G′-module M and each k ≥ 0, one has
H k(G′,M) ∼→ H k(G ′,M).

Proof. Replacing K by K ′, we may assume that K ′ = K . (Observe that the two
assumptions also hold for the quotient G ′ def

= G K ′ �G′ = G ′/N .) By Lemma 1.3,
one has cd l(N )≤ 1. (See [Serre 1994, chapitre II, proposition 9], which only treats
the number field case but whose proof works as it is in our function field case.)
Next, by the assumption that N l

= N , one has H 1(N ,M) = Hom(N ,M) = 0.
Thus, we have H k(G,M)= H k(G, H 0(N ,M))= H k(G,M), as desired. �

Proposition 1.5 (Galois characterization of decomposition subgroups).
(i) Let x̃ 6= x̃ ′ be two elements of 6X̃ . Then Dx̃ ∩Dx̃ ′ is of order prime to l, and

hence, in particular, is open neither in Dx̃ nor in Dx̃ ′ .
(ii) Let Decl(G)⊂ Sub(G) be the set of closed subgroups D of G satisfying the

following property: There exists an open subgroup D0 of D such that for any open
subgroup D′ ⊂ D0, dimFl H 2(D′, Fl) = 1. Define Decmax

l (G) ⊂ Decl(G) to be
the set of maximal elements of Decl(G). Then the map 6X̃ → Sub(G), x̃ 7→ Dx̃

induces a bijection 6X̃
∼
→ Decmax

l (G), and, in particular, is injective.

Proof. (i) As in [Uchida 1977], this follows from the approximation theorem
[Neukirch 1969b, Lemma 8]. More precisely, let Dl be an l-Sylow subgroup of
Dx̃ ∩Dx̃ ′ , and suppose that Dl 6= 1. Since Dl ⊂ Dx̃,l is torsion-free, Dl is an
infinite group. Thus, one may replace G by any open subgroup, and assume that
ζl ∈ K , that the images x and x ′ in 6X of x̃ and x̃ ′ are distinct, and that the image
of Dl in Gab/(Gab)l is nontrivial. In particular, this implies that the natural map

Dab
x̃ /(D

ab
x̃ )

l
×Dab

x̃ ′ /(D
ab
x̃ ′ )

l
→Gab/(Gab)l
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is not injective. By Kummer theory, this last condition is equivalent to saying that
the natural map

K×/(K×)l→ K×x /(K
×

x )
l
× K×x ′ /(K

×

x ′ )
l

is not surjective. This contradicts the approximation theorem. (Note that (K×x )
l

and (K×x ′ )
l are open in K×x and K×x ′ , respectively.)

(ii) By Proposition 1.1(i) and Lemmas 1.3 and 1.4, the proof of Uchida [1977]
(which is essentially due to Neukirch, [1969a; 1969b]) works as it is. See [Uchida
1977, Lemmas 1–3] for more details. �

Remark 1.6. For other characterizations of decomposition groups — applicable
to much more general situations — see, for example, Theorem 1.16 of [Pop 1994],
Theorem 2 of [Koenigsmann 2003], or the results in [Engler and Koenigsmann
1998; Engler and Nogueira 1994].

1D. Fundamental groups of curves. Write

I def
= 〈I ˜̃x 〉 ˜̃x∈6 ˜̃X

for the closed subgroup of G generated by the inertia subgroups I ˜̃x for all ˜̃x ∈
6 ˜̃X

, and call it the inertia subgroup of G. Then I is normal in G. The quotient
G/I is canonically identified with the fundamental group π1(X) of X with base
point Spec(K )→ X [Grothendieck and Raynaud 1971]. We have a natural exact
sequence

1→ π1(X)→ π1(X)
pr
→ Gk→ 1,

where π1(X) is the fundamental group of X def
= X×kk with base point Spec(K )→ X

and pr is the canonical projection. We have the exact sequence

1→ π1(X)ab,tor
→ π1(X)ab pr

→ Gk→ 1,

where π1(X)ab,tor is the torsion subgroup of π1(X)ab, and pr is the canonical projec-
tion. Moreover, π1(X)ab,tor is a finite abelian group that is canonically isomorphic
to the group JX (k) of k-rational points of the Jacobian variety JX of X .

More generally, write I
def
= 〈Ix̃ 〉x̃∈6X̃

for the closed subgroup of G generated by
the inertia subgroups Ix̃ for all x̃ ∈6X̃ , and call it the inertia subgroup of G. Then
I is normal in G. Set 5X

def
= G/I, which is a quotient of π1(X). Define 5X to be

the image of π1(X) in 5X . Then we have a natural exact sequence

1→5X →5X
pr
→Gk→ 1.

When G= G(C) for a full class C of finite groups, we have 5X = π1(X)(C). In
this case, we have the exact sequence:

1→5
ab,tor
X →5ab

X
pr
→ Gk→ 1,
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where 5ab,tor
X is the torsion subgroup of 5ab

X . Moreover, 5ab,tor
X is a finite abelian

group that is canonically isomorphic to the maximal (pro-)C-quotient JX (k)C of
the finite group JX (k).

2. Basic properties of homomorphisms between Galois groups

In this section we investigate some basic properties of homomorphisms between
Galois groups of function fields of curves over finite fields. First, we shall inves-
tigate a class of homomorphisms between decomposition subgroups, which arise
naturally from the class of homomorphisms between (quotients of) Galois groups
that we consider in Sections 3 and 4.

2A. Homomorphisms between Galois groups of local fields of positive charac-
teristics. For i ∈{1, 2}, let pi >0 be a prime number. Let L i be a complete discrete
valuation field of equal characteristic pi , with finite residue field `i . Let OL i be the
ring of integers of L i . Also, fix a separable closure Lsep

i of L i . We shall denote the
residue field of Lsep

i by ¯̀i , since it is an algebraic closure of `i . Note that `i and
¯̀i can also be regarded naturally as subfields of L i and Lsep

i , respectively. Write
Di

def
= Gal(Lsep

i /L i ) for the corresponding absolute Galois group of L i , and call
Ii ⊂ Di the inertia subgroup. For each prime number l, let Di,l be an l-Sylow
subgroup of Di .

By local class field theory [Serre 1967], we have a natural isomorphism

(L×i )
∧ ∼
→ Dab

i ,

where (L×i )
∧ def
= lim
←−

n
L×i /(L

×

i )
n . In particular, Dab

i fits into an exact sequence

0→ O×L i
→ Dab

i → Ẑ→ 0

(arising from a similar exact sequence for (L×i )
∧), where O×L i

is the group of mul-
tiplicative units in OL i . Moreover, we obtain natural inclusions

`×i ×U 1
i = O×L i

⊂ L×i ↪→ Dab
i ,

where U 1
i is the group of principal units in O×L i

, and

L×i /O
×

L i

∼
→ Z ↪→ Dab

i / Im(O×L i
)

(where ∼→ is the isomorphism induced by the valuation), by considering the Frobe-
nius element.

Let Di be a quotient of Di , Ii the image of Ii in Di , and G`i

def
= Di/Ii . For each

prime number l, let Di,l be the image of Di,l in Di , which is an l-Sylow subgroup
of Di . Write

Im(`×i ), Im(U 1
i )⊂ Im(O×L i

)⊂ Im(L×i )⊂Dab
i
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for the images of `×i , U 1
i , O×L i

and L×i in Dab
i , respectively. In the rest of this

subsection, we assume that either Di = Di , i = 1, 2 or Di = Dt
i = D

(p′i )
i , i =

1, 2, and refer to the former and the latter cases as the profinite and the tame
cases, respectively. Thus, we have Dab

i = (L
×

i )
∧, Im(L×i ) = L×i , Im(O×L i

) = O×L i
,

Im(`×i ) = `
×

i and Im(U 1
i ) = U 1

i in the profinite case, and Dab
i = (L

×

i )
∧/U 1

i ,
Im(L×i )= L×i /U 1

i , Im(O×L i
)= O×L i

/U 1
i = Im(`×i )= `

×

i and Im(U 1
i )= {1} in the

tame case.
Let

τ :D1�D2

be a surjective homomorphism between profinite groups. Write τ ab
: Dab

1 � Dab
2

for the induced surjective homomorphism between the maximal abelian quotients.
For each prime number l, τ(D1,l) is an l-Sylow subgroup of D2, and we shall
assume that τ(D1,l)=D2,l .

Proposition 2.1 (invariants of arbitrary surjective homomorphisms between de-
composition groups). (i) The equality p1 = p2 holds. Set p

def
= p1 = p2.

(ii) Let l 6= p be a prime number. We have D1,l ∩Ker τ = {1}. In particular, Ker τ
is pro-p. In the tame case, τ is an isomorphism.

(iii) The homomorphism τ induces a natural bijection `×1
∼
→ `×2 between the mul-

tiplicative groups of residue fields. In particular, `1 and `2 have the same
cardinality.

(iv) τ induces naturally an isomorphism M ¯̀1
∼
→ M ¯̀2 , which is Galois-equivariant

with respect to τ . In particular, τ commutes with the cyclotomic characters
χi :Di → (Ẑp′)× of Di , that is, the following diagram is commutative:

(Ẑp′)× == (Ẑp′)×

D1

χ1

f

τ
� D2.

χ2

f

(v) We have τ(I1)= I2.

(vi) The homomorphism τ ab
: Dab

1 → Dab
2 preserves Im(L×i ), Im(O×L i

), Im(`×i )

and Im(U 1
i ). Further, the isomorphism Dab

1 /Im(O×L1
)→ Dab

2 /Im(O×L2
) in-

duced by τ preserves the respective Frobenius elements.

Proof. Property (i) follows by considering the q-Sylow subgroups of Di for var-
ious prime numbers q . Indeed, for i ∈ {1, 2}, Di,pi is not (topologically) finitely
generated (resp. is cyclic) in the profinite (resp. tame) case, while Di,l for a prime
number l 6= pi is (topologically) finitely generated and noncyclic. Accordingly,
the surjection D1,p2 � D2,p2 (resp. D1,p1 � D2,p1) cannot exist in the profinite
(resp. tame) case, unless p1 = p2. Thus, we must have p1 = p2.
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The first assertion of (ii) follows from Proposition 1.1(i), applied to the quotient
D1�D1

τ
�D2. The second assertion follows from the first. The third assertion

follows from the second, together with the fact (which can be checked easily) that
Dt

1 admits no nontrivial normal pro-p subgroup.
Next, we prove (iii). By local class field theory, the torsion subgroup Dab,tor

i
of Dab

i is naturally identified with `i
× (both in the profinite and the tame cases),

and hence, in particular, is finite of order prime to p. By (ii), the kernel of the
surjective homomorphism τ ab

:Dab
1 →Dab

2 is pro-p. Thus, τ ab induces a natural
isomorphism Dab,tor

1
∼
→ Dab,tor

2 , which is naturally identified with `×1
∼
→ `×2 , as

desired.
By applying the above argument to open subgroups of Di (which correspond to

each other via τ ), with i = 1, 2, and passing to the projective limit with respect to
the norm maps, we obtain a natural isomorphism M ¯̀1

∼
→ M ¯̀2 between the modules

of roots of unity. Here, we use the fact that if L ′i is a finite extension of L i cor-
responding to an open subgroup D′i of Di , then the following diagram commutes:

(L ′i
×
)∧ � D′i

ab

(L i
×)∧

Norm
g

� Dab
i ,

g

where the horizontal maps are the natural surjective homomorphisms from local
class field theory, and the map D′i

ab
→ Dab

i is induced by the natural inclusion
D′i ⊂ Di . Further, this identification is (by construction) Galois-compatible with
respect to the homomorphism τ . This completes the proof of (iv).

Property (v) follows from property (iv), since Ii coincides with the kernel of χi

for i = 1, 2.
Next, we prove (vi). First, τ ab preserves the image Im(O×L i

) by (v), since this
image coincides with the image of the inertia subgroup Ii . Since Im(`×i ) (resp.
Im(U 1

i )) is the maximal prime-to-p (resp. pro-p) subgroup of Im(O×L i
), property

(vi) for Im(`×i ) (resp. Im(U 1
i )) follows. Further, by (iii) and (iv), the homo-

morphism Dab
1 /Im(O×L1

)→ Dab
2 /Im(O×L2

) induced by τ preserves the respective
Frobenius elements, since such an element is characterized as the unique element
whose image under χi is ](`i ). Finally, since Im(L×i ) is the inverse image in Dab

i
of the subgroup generated by the Frobenius element in Dab

i /Im(O×L i
) for i = 1, 2,

they are preserved by τ ab. �

2B. Homomorphisms between Galois groups of function fields of curves over
finite fields. Next, we shall investigate some basic properties of homomorphisms
between Galois groups of function fields of curves over finite fields. We follow the
notations in Section 1, especially subsections 1A and 1B. Moreover:
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Notation. (i) For i ∈ {1, 2}, let ki be a finite field of characteristic pi > 0. Let X i

be a smooth, proper, geometrically connected curve of genus gi ≥ 0 over ki . Let
Ki = K X i be the function field of X i and fix an algebraic closure K i of Ki . Let
K sep

i be the separable closure of Ki in K i , and ki the algebraic closure of ki in K i .
Following the notations in Section 1, we will write Gi

def
= G Ki = Gal(K sep

i /Ki )

for the absolute Galois group of Ki , and Gi
def
= G Ki ki

= Gal(K sep
i /Ki ki ) for the

absolute Galois group of Ki ki .

(ii) Let Ni be a normal closed subgroup of Gi and set Gi
def
= Gi/Ni . Let K̃i

denote the Galois extension of Ki corresponding to Ni , that is, K̃i
def
= (K sep

i )Ni .
Let Gi be the image of Gi in Gi, and set Gki

def
= Gi/Gi , which is a quotient of

Gki =Gal(ki/ki ). For i = 1, 2, let us denote by ϕki the image in Gki of the ](ki )-th
power Frobenius element of Gki .

(iii) Write X̃ i for the integral closure of X i in K̃i . The Galois group Gi acts
naturally on the set 6X̃ i

, and the quotient 6X̃ i
/Gi is naturally identified with 6X i .

Denote the natural quotient map 6X̃ i
→6X i by qi . For a point x̃i ∈6X̃ i

, with
residue field ki (x̃i ) (which is naturally identified with a subfield of ki ), we define
its decomposition group Dx̃i and inertia group Ix̃i by

Dx̃i

def
= {γ ∈Gi | γ (x̃i )= x̃i }

and
Ix̃i

def
= {γ ∈Dx̃i | γ acts trivially on ki (x̃i )},

respectively. Set Gki (xi )
def
= Dx̃i /Ix̃i , where xi stands for the image of x̃i in 6X i .

Write Ii
def
= 〈Ix̃i 〉x̃i∈6X̃i

for the closed subgroup of Gi generated by the inertia
subgroups Ix̃i for all x̃i ∈ 6X̃ i

, and call it the inertia subgroup of Gi . Then Ii is
normal in Gi .

(iv) Let σ :G1→G2 be a continuous homomorphism between profinite groups.

Proposition 2.2 (image of a decomposition subgroup). Let l 6= p1, p2 be a prime
number, and assume that (1) N l

2 = N2, or, equivalently, K̃2 admits no l-cyclic
extension; and (2) K̃2 contains a primitive l-th root of unity. For each x̃1 ∈6X̃1

, fix
an l-Sylow subgroup Dx̃1,l of Dx̃1 and set Ix̃1,l

def
= Ix̃1 ∩Dx̃1,l , which is an l-Sylow

subgroup of Ix̃1 . Let 6X̃1,σ,l be the set of x̃1 ∈ 6X̃1
such that cd l(σ (Dx̃1)) = 2.

Then:

(i) There exists a unique map φ̃= φ̃σ,l :6X̃1,σ,l→6X̃2
such that σ(Dx̃1)⊂Dφ̃(x̃1)

for each x̃1 ∈6X̃1,σ,l .

(ii) For each x̃1 ∈6X̃1,σ,l , there exists an l-Sylow subgroup Dφ̃(x̃1),l of Dφ̃(x̃1)
such

that σ(Dx̃1,l)⊂Dφ̃(x̃1),l . Moreover, we have σ(Ix̃1,l)⊂ Iφ̃(x̃1),l , where we set

Iφ̃(x̃1),l
def
= Iφ̃(x̃1)

∩Dφ̃(x̃1),l,
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which is an l-Sylow subgroup of Iφ̃(x̃1)
.

(iii) The subset 6X̃1,σ,l ⊂6X̃1
is G1-stable, or, equivalently,

6X̃1,σ,l = q−1
1 (6X1,σ,l),

where 6X1,σ,l
def
= q1(6X̃1,σ,l). The map φ̃ is Galois-compatible with respect to

σ : we have
φ̃(g1 x̃1)= σ(g1)φ̃(x̃1)

for any x̃1 ∈ 6X̃1,σ,l and any g1 ∈ G1. In particular, φ̃ induces naturally a
map φ = φσ,l :6X1,σ,l→6X2 .

(iv) For any x̃1 ∈6X̃1
r6X̃1,σ,l , we have σ(Ix̃1,l)= {1}.

(v) For two primes l = l1, l2 satisfying the assumptions, φ̃σ,l1 and φ̃σ,l2 coincide
with each other on the intersection 6X̃1,σ,l1

∩6X̃1,σ,l2
.

Proof.

(i) Take x̃1 ∈ 6X̃1,σ,l . Applying Proposition 1.1(i)(ii) to D = σ(Dx̃1), we have
σ(Dx̃1) ∈Decl(G2) in the notation of the result in part (ii) of Proposition 1.5.
Thus, by this same result, there exists x̃2 ∈ 6X̃2

such that σ(Dx̃1) ⊂Dx̃2 . By
Proposition 1.5(i), such x̃2 is unique. So, set

φ̃(x̃1)= x̃2,

which has the desired properties.

(ii) The existence of Dφ̃(x̃1),l follows from the fact that σ(Dx̃1,l)⊂σ(Dx̃1)⊂Dφ̃(x̃1)

and that σ(Dx̃1,l) is pro-l. Finally, consider the composite map of

Dx̃1

σ
→Dφ̃(x̃1)

�Dφ̃(x̃1)
/Iφ̃(x̃1)

=Gk2(q2(φ̃(x̃1)))
.

Then, since cd l(Gk2(q2(φ̃(x̃1)))
)= 1, the image of Ix̃1,l in Gk2(q2(φ̃(x̃1)))

must be
trivial by Proposition 1.1(i), as desired.

(iii) Immediate from the definitions.

(iv) We have cd l(σ (Dx̃1))≤cd l(G2)≤2<∞, where the second inequality follows
from Lemma 1.4. Now, the assertion follows from Proposition 1.1(i).

(v) This follows from the fact that the defining property σ(Dx̃1)⊂Dφ̃(x̃1)
of φ̃ is

independent of l. �

We shall consider the following conditions:

Condition 1. Either Gi = Gi , i = 1, 2 or Gi = G
(p′i )
i , i = 1, 2. We refer to the

former and the latter cases as the profinite and the prime-to-characteristic cases,
respectively. (Observe that conditions (1) and (2) in Proposition 2.2 are then sat-
isfied for any prime number l 6= p1, p2.) In particular, we have Gki = Gki in both
cases.
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Condition 2. The map σ :G1→G2 commutes with the projections pr1, pr2, that
is, it inserts into the commutative diagram

1 � G1 � G1
pr1
� Gk1 � 1

1 � G2

σ̄g
� G2

σ
g pr2

� Gk2

σ0
g

� 1,

where the rows are exact.

Condition 3. The map σ :G1→G2 is an open homomorphism.

In the rest of this section, we assume that Condition 1 holds.

Lemma 2.3. In the prime-to-characteristic case, Condition 2 automatically holds.
In the profinite case, if σ(I1)⊆ I2, then Condition 2 holds.

Proof. In the prime-to-characteristic case, the quotient pri : Gi � Gki coincides
with Gab

i modulo the closure of the torsion subgroup. Thus, σ commutes with the
projections pr1, pr2.

In the profinite case, assume that σ(I1) ⊆ I2. Then σ induces naturally, by
passing to the quotients Gi/Ii , a homomorphism π1(X1)→ π1(X2) between fun-
damental groups. The quotient pri : Gi � π1(X i )� Gki coincides with π1(X i )

ab

modulo the torsion subgroup. Thus, σ commutes with the projections pr1, pr2. �

In the rest of this section, we assume, moreover, that Condition 3 holds. Then
note that, if Condition 2 also holds and if σ0 : Gk1 → Gk2 and σ̄ : G1 → G2 are
homomorphisms induced by σ , then automatically σ0 is open and injective and σ̄
is open.

Lemma 2.4 (invariance of the characteristics). The equality p1 = p2 holds.

Proof. By replacing G2 by the open subgroup σ(G1) ⊂ G2, we may and shall
assume that σ is surjective.

In the profinite case, the assertion follows by considering the (pro-)q-parts of
Gab

i for various prime numbers q . More precisely, for i ∈ {1, 2}, consider the
filtration Gab

i = F0
i ⊃ F1

i ⊃ F2
i , where F1

i is the image of Gi = Ker(Gi → Gki )

and F2
i is the image of Ker(Gi → π1(X i )). Then, by global class field theory,

F0
i /F1

i = Gki (' Ẑ), F1
i /F2

i = JX i (ki ) (finite), and

F2
i =

( ∏
xi∈6Xi

Ô×X i ,xi

)/
k×i ,

where Ô×X i ,xi
is the multiplicative group of the completed local ring of X i at xi .

Further, we have a natural decomposition Ô×X i ,xi
= k(xi )

×
×U 1

xi
, where k(xi )

× is
the multiplicative group of the residue field of X i at xi (and hence finite) and U 1

xi
is
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the group of principal units in Ô×X i ,xi
(and hence isomorphic to a direct product of

countably infinite copies of Zpi ). Therefore, the pi -part of Gab
i modulo the closure

of the torsion subgroup is not finitely generated, while the l-part of Gab
i modulo

the closure of the torsion subgroup, for a prime number l 6= pi , is finitely generated
(and even cyclic). (Note, however, that the l-torsion subgroup of Gab

i is infinite.)
Thus, G2 being a quotient of G1 (via σ ) we must have p1 = p2.

In the prime-to-characteristic case, the assertion follows by considering the q-
Sylow subgroups Gi,q of Gi for various prime numbers q. As σ is assumed to be
surjective, we may and shall take G2,q = σ(G1,q). Indeed, for i ∈ {1, 2}, Gi,pi

is cyclic, while Gi,l for a prime number l 6= pi is noncyclic. Accordingly, the
surjection G1,p1 �G2,p1 cannot exist, unless p1 = p2. Thus p1 = p2. �

So, from now on, set p def
= p1 = p2.

Remark 2.5. The same argument used in the proof of (the prime-to-characteristic
case of) Lemma 2.3 shows that an open homomorphism σ :G1→G2 between profi-
nite groups automatically commutes with the natural projections pr′i :Gi → G p′

ki
,

induced by pri , for i = 1, 2. Thus, we have the commutative diagram

G1
pr′1
� G p′

k1

G2

σ
g pr′2
� G p′

k2
,

σ ′0g

where the right column is automatically open and injective. The authors do not
know, at least at the time of writing, whether or not Condition 2 follows from
Conditions 1 and 3 in general (that is, even in the profinite case).

In the rest of this subsection we assume that Condition 2 holds.

Lemma 2.6. The map σ induces a natural open homomorphism σ ′ :G(p′)
1 →G(p′)

2 ,
which commutes with the canonical projections

G(p′)
i → Gki ; i = 1, 2.

For i = 1, 2, let I′i be the image of Ii ⊂ Gi in G(p′)
i . Then σ ′(I′1) ⊂ I′2. Thus, σ

induces a natural open homomorphism τ ′ : π1(X1)
(p′)
→ π1(X2)

(p′), which com-
mutes with the canonical projections π1(X i )

(p′)
→ Gki ; i = 1, 2. In particular, we

have g1 ≥ g2.

Proof. The first assertion is clear. The second follows from Proposition 2.2(ii)(iv).
The third assertion follows from the second. Now, τ ′ : π1(X1)

(p′)
→ π1(X2)

(p′)

induces an open homomorphism π1(X1)
p′
→ π1(X2)

p′ , and hence an open homo-
morphism π1(X1)

p′,ab
→ π1(X2)

p′,ab. Since π1(X i )
p′,ab is a free Ẑp′-module of

rank 2gi for i = 1, 2, this implies the last assertion. �



The Hom-form of Grothendieck’s birational anabelian conjecture 149

Lemma 2.7. For a prime number l 6= p, the map φ=φσ,l :6X1,σ,l→6X2 is almost
surjective, that is, 6X2 r φ(6X1,σ,l) is finite. In particular, 6X1,σ,l is infinite (and
hence, a fortiori, nonempty).

Proof. Assume that the set S def
= 6X2 rφ(6X1,σ,l) is infinite. Set U2

def
= X2 r S.

As in (the third assertion of) Lemma 2.6, then σ induces an open homomor-
phism τ

(l)
1 : π1(X1)

(l)
→ π1(U2)

(l), which is a lifting of the homomorphism τ (l) :

π1(X1)
(l)
→ π1(X2)

(l) induced by τ ′ : π1(X1)
(p′)
→ π1(X2)

(p′). We have a com-
mutative diagram

1 � π1(X1)
l
� π1(X1)

(l) pr1
� Gk1 � 1

1 � π1(U 2)
l

τ̄ l
1g

� π1(U2)
(l)

τ
(l)
1 g

pr2
� Gk2

σ0
g

� 1,

where U 2
def
=U2×k2 k2. Since τ (l)1 :π1(X1)

(l)
→π1(U2)

(l) is open and σ0 :Gk1→Gk2

is (open and) injective, we see that τ̄ l
1 : π1(X1)

l
→ π1(U 2)

l is open. This is a
contradiction, since π1(X1)

l is (topologically) finitely generated, while π1(U 2)
l

(and hence τ̄ l
1(π1(X1)

l) also) is not (topologically) finitely generated, since S is
infinite. �

Lemma 2.8. Let σ0 : Gk1 → Gk2 be the (open, injective) homomorphism induced
by σ . Set d0

def
= [Gk2 : σ0(Gk1)].

(i) The following diagram is commutative:

(Ẑp′)× == (Ẑp′)×

Gk1

χk1

f

σ0
� Gk2

χk2

f

G1

pr1

f

σ
� G2,

pr2

f

where χki is the cyclotomic character of Gki for i = 1, 2.

(ii) We have ](k1)= ](k2)
d0 and σ0(ϕk1)= ϕ

d0
k2

.

Proof. (i) Since the bottom square is commutative by the definition of σ0, we
only have to prove that the top square is commutative. As Gk2 is (topologically)
generated by ϕk2 , we may write σ0(ϕk1) = ϕ

α
k2

, where α ∈ Ẑ. Now, the desired
commutativity χk2 ◦ σ0 = χk1 is equivalent to saying that χk2(σ0(ϕk1)) = χk1(ϕk1)

(as Gk1 is (topologically) generated by ϕk1). Since χk1(ϕk1)= ](k1)= p[k1:Fp] and

χk2(σ0(ϕk1))= χk2(ϕ
α
k2
)= χk2(ϕk2)

α
= ](k2)

α
= pα[k2:Fp],
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the desired commutativity is thus equivalent to the equality α[k2 : Fp] = [k1 : Fp]

in Ẑ. (The homomorphism Ẑ→ (Ẑp′)×, β 7→ pβ is injective by [Chevalley 1951,
théorème 1].) In particular, it suffices to prove the desired commutativity on an
open subgroup H ⊂ Gk1 . Indeed, set m def

= [Gk1 : H ]. Then, since ϕm
k1

is the
Frobenius element for H , the commutativity on H is equivalent to the equality
mα[k2 :Fp]=m[k1 :Fp] in Ẑ, which implies α[k2 :Fp]= [k1 :Fp], as desired. Thus,
by replacing G1 and G2 by suitable open subgroups, we may and shall assume that
g2 > 0.

Next, for each prime number l 6= p and i ∈ {1, 2}, let χki ,l :Gki →Z×l denote the
l-adic cyclotomic character. Thus, corresponding to the decomposition (Ẑp′)× =∏

l 6=p Z×l , we have χki = (χki ,l)l 6=p. We have to prove that χk2 ◦σ0 = χk1 , which is
equivalent to saying that χk2,l ◦ σ0 = χk1,l for all l 6= p.

We shall first prove that the last equality holds up to torsion. More precisely,
denote by χ̄ki ,l the composite of

Gki

χki ,l
→ Z×l � Z×l /(Z

×

l )
tor.

By Lemma 2.7, we can take x̃1 ∈ 6X̃1,σ,l 6= ∅. Set x̃2
def
= φ̃(x̃1). Let xi denote the

image of x̃i in 6X i for i = 1, 2. By Proposition 2.2(ii), we have σ :Dx̃1,l→Dx̃2,l

and σ : Ix̃1,l → Ix̃2,l , which are injective by Proposition 1.1(i). This implies that
χk2,l ◦σ0 = χk1,l holds on the image of Dx̃1,l in Gk1 , which is an open subgroup of
the l-Sylow subgroup Gk1,l of Gk1 . As Z×l /(Z

×

l )
tor
' Zl is torsion-free and pro-l,

this implies that χ̄k2,l ◦ σ0 = χ̄k1,l .
In particular, we have χ̄k2,l(σ0(ϕk1)) = χ̄k1,l(ϕk1). This implies the equality

](k2)
α
= ](k1) in Z×l /(Z

×

l )
tor
' Zl . Since p ∈ Z×l is not torsion, this last equality

shows that αl[k2 : Fp] = [k1 : Fp] in Zl . Here, corresponding to the decomposition
Ẑ=

∏
l: prime Zl , we write α = (αl)l: prime. Or, equivalently, we have

α[k2 : Fp] = [k1 : Fp] + ιp(ε)

in Ẑ, where ιp :Zp ↪→ Ẑ is the natural injection and ε def
= αp[k2 :Fp]−[k1 :Fp] ∈Zp.

On the other hand, by Lemma 2.6, we get an open homomorphism π1(X1)
p′
→

π1(X2)
p′ , and hence a surjection π1(X1)

p′,ab
⊗Z Q� π1(X2)

p′,ab
⊗Z Q, which is

Galois-compatible with respect to

σ0 : Gk1 → Gk2 .

For each i = 1, 2, let Pi (T ) be the characteristic polynomial of ϕ[ki ′ :Fp]

ki
on the free

Ẑp′-module π1(X i )
p′,ab (of rank 2gi ), where i ′ is defined by {i, i ′} = {1, 2}. Then

it is known that Pi (T ) ∈ Z[T ].
Write ρi for the natural representation Gki → Aut

Ẑp′ (π1(X i )
p′,ab). Let RQ be

the (commutative) Q-subalgebra of End
Ẑp′⊗ZQ

(π1(X2)
p′,ab
⊗Z Q) generated by
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ρ2(Gk2). We have
P2(ρ2(ϕ

[k1:Fp]

k2
))= 0

in RQ. By the Galois-compatibility, we also have

P1(ρ2(σ0(ϕ
[k2:Fp]

k1
)))= 0

in RQ. These identities imply that both of ρ2(ϕ
[k1:Fp]

k2
), ρ2(σ0(ϕ

[k2:Fp]

k2
)) ∈ RQ are

algebraic over Q, and hence so is the ratio

ρ2(σ0(ϕ
[k2:Fp]

k1
)(ϕ
[k1:Fp]

k2
)−1)= ρ2(ϕ

α[k2:Fp]−[k1:Fp]

k2
)= ρ2(ϕ

ιp(ε)

k2
)

def
= η

in RQ. So, take a monic polynomial Q(T ) ∈Q[T ] satisfying Q(η)= 0 in RQ. Set
b def
= deg(Q).
Let l 6= p be a prime number, and let Rl,Q be the image of RQ in

EndQl (π1(X2)
l,ab
⊗Z Q).

Then observe that the image ηl of η in Rl,Q ⊂ EndQl (π1(X2)
l,ab
⊗Z Q) is a pro-p

element of EndZl (π1(X2)
l,ab)×, and hence a torsion element of p-power order. So,

let pal be the order of ηl . As Q(ηl) = 0 in the commutative Q-algebra Rl,Q, we
conclude: ((p−1)/p)pal ≤ ϕ(pal )≤ b, where ϕ stands for Euler’s function. (Use
Q ↪→ Rl,Q, which follows from g2 > 0.) Thus, al is bounded: there exists a ≥ 0
such that al ≤ a for all l 6= p. Namely, (ηl)

pa
= 1 for all l 6= p.

Set ζl
def
= det(ηl), where the determinant is taken as an element of

EndQl (π1(X2)
l,ab
⊗Z Q).

Since det is a multiplicative homomorphism, we have (ζl)
pa
= 1 for all l 6= p. Set

ζ
def
= (ζl)l 6=p in (Ẑp′)× =

∏
l 6=p Z×l . Now, by construction, we have

ζ = χ
g2
k2
(ϕ
ιp(ε)

k2
)= ](k2)

g2ιp(ε),

and hence ](k2)
pa g2ιp(ε) = 1 in (Ẑp′)×. Since the homomorphism Ẑ → (Ẑp′)×,

β 7→ pβ is injective, this last equality forces [k2 : Fp]pag2ιp(ε) = 0 in Ẑ. As
[k2 : Fp]pag2 > 0, this implies ιp(ε) = 0. Namely, we have α[k2 : Fp] = [k1 : Fp]

in Ẑ, as desired.

(ii) As in the proof of (i), set σ0(ϕk1)=ϕ
α
k2

. Since Gk2 ' Ẑ and [Gk2 :σ0(Gk1)]=

d0, we must have α=d0u, where u ∈ Ẑ×. Now, since α[k2 :Fp]=[k1 :Fp] by (i), we
get d0u[k2 : Fp] = [k1 : Fp], and thus u = [k1 : Fp]/(d0[k2 : Fp])∈Q>0 (⊂ Ẑ⊗Z Q).
Since Ẑ× ∩ Q>0 = {1}, we conclude u = 1. Thus, d0[k2 : Fp] = [k1 : Fp] and
σ0(ϕk1)= ϕ

d0
k2

, as desired. �

Lemma 2.9. For each prime number l 6= p, the map φ̃σ,l : 6X̃1,σ,l → 6X̃2
is

surjective. In particular, the map φσ,l :6X1,σ,l→6X2 is surjective.
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Proof. As in the proof of Lemma 2.7, set

S def
= 6X2 rφ(6X1,σ,l) and U2

def
= X2 r S.

By Lemma 2.7, S is a finite set. Let r <∞ be the cardinality of S(k2). Then σ
induces an open homomorphism τ

(l)
1 : π1(X1)

(l)
→ π1(U2)

(l), which is a lifting
of the homomorphism τ (l) : π1(X1)

(l)
→ π1(X2)

(l) induced by τ ′ : π1(X1)
(p′)
→

π1(X2)
(p′) in Lemma 2.6. We have a commutative diagram

1 � π1(X1)
l
� π1(X1)

(l) pr1
� Gk1 � 1

1 � π1(U 2)
l

τ̄ l
1g

� π1(U2)
(l)

τ
(l)
1 g

pr2
� Gk2

σ0
g

� 1,

where U 2
def
=U2×k2 k2. Since τ (l)1 :π1(X1)

(l)
→π1(U2)

(l) is open and σ0 :Gk1→Gk2

is (open and) injective, we see that τ̄ l
1 : π1(X1)

l
→ π1(U 2)

l is open. The open
homomorphism τ̄ l

1 : π1(X1)
l
→ π1(U 2)

l induces an open homomorphism τ̄
l,ab
1 :

π1(X1)
l,ab
→ π1(U 2)

l,ab. This last homomorphism is, by construction, Galois-
compatible with respect to σ0 :Gk1→Gk2 . In other words, if we regard π1(U 2)

l,ab

as a Gk1-module via σ0, then τ̄ l,ab
1 is a homomorphism as Gk1-modules.

The absolute values of eigenvalues of ϕk1 ∈ Gk1 in π1(X1)
l,ab are all ](k1)

1/2,
with multiplicity 2g1. On the other hand, by Lemma 2.8(ii), the absolute values of
eigenvalues of ϕk1 in π1(U 2)

l,ab are the same as those of ϕd0
k2

, which are ](k2)
d0/2

with multiplicity 2g2 and ](k2)
d0 with multiplicity max(r−1, 0). By Lemma 2.8(i),

they coincide with ](k1)
1/2 and ](k1), respectively. Thus, we conclude r ≤ 1.

However, if r 6= 0, by replacing G1,G2 with suitable open subgroups, we may
assume that r > 1, a contradiction. So, we have established r = 0.

To prove the surjectivity of φ̃σ,l , we may freely replace G1,G2 by open sub-
groups H1,H2, respectively, such that σ(H1)⊂ H2. (Indeed, the map

φ̃σ,l :6X̃1,σ,l→6X̃2

remains unchanged.) In particular, we may assume that σ :G1→G2 is surjective.
Then the surjectivity of φ̃σ,l : 6X̃1,σ,l → 6X̃2

is equivalent to the surjectivity of
φσ,l :6X1,σ,l→6X2 , which is then equivalent to r = 0. �

3. Rigid homomorphisms between Galois groups

In this section we investigate a class of homomorphisms between (geometrically
prime-to-characteristic quotients of) absolute Galois groups of function fields of
curves over finite fields, which we call rigid. We follow the notations in Sections
1 and 2. In particular, we follow the Notation at the beginning of subsection 2B.
We assume that Condition 3 holds.
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Definition 3.1 (rigid homomorphisms). (i) We say that σ : G1→ G2 is strictly
rigid if there exists a map

φ̃ :6X̃1
→6X̃2

,

such that
σ(Dx̃1)=Dφ̃(x̃1)

for each x̃1 ∈6X̃1
.

(ii) We say that σ : G1 → G2 is rigid if there exist open subgroups H1 ⊂ G1,
H2 ⊂ G2, such that σ(H1) ⊂ H2 and that H1

σ
→ H2 is strictly rigid. (Here,

Hi is considered as a quotient of the absolute Galois group that is the inverse
image in Gi of Hi ⊂Gi .)

(iii) Define Hom(G1,G2)
rig
⊂ Hom(G1,G2) to be the set of rigid (and hence

continuous and open) homomorphisms G1→G2.

Remark 3.2. (i) Consider a commutative diagram of maps between profinite
groups

G1
σ
� G2

G′1

g
σ ′

� G′2,
g

where the vertical arrows are surjective. Then if σ :G1→G2 is strictly rigid
(resp. rigid), σ ′ :G′1→G′2 is strictly rigid (resp. rigid).

(ii) Let H2 be an open subgroup of G2 and H1
def
= σ−1(H2). Then if σ :G1→G2

is strictly rigid (resp. rigid), the natural homomorphism H1→H2 induced by
σ is strictly rigid (resp. rigid).

(iii) Assume that σ : G1 → G2 is strictly rigid with respect to φ̃ :6X̃1
→6X̃2

.
Then if φ̃ is surjective, σ is surjective. Indeed, this follows immediately from
the fact, by Chebotarev’s density theorem, that G2 is (topologically) generated
by its decomposition subgroups.

(iv) As in Proposition 2.2, let l 6= p1, p2 be a prime number, and assume that
(1) N l

2 = N2, or, equivalently, K̃2 admits no l-cyclic extension; and (2) K̃2

contains a primitive l-th roots of unity.
If σ is strictly rigid with respect to φ̃ :6X̃1

→6X̃2
, then we must have

6X̃1,σ,l = 6X̃1
and φ̃ = φ̃σ,l . In particular, then φ̃ is unique and Galois-

equivariant with respect to σ , and hence naturally induces a map φ (= φσ,l) :
6X1 →6X2 .

If σ is rigid, then we must have 6X̃1,σ,l = 6X̃1
, and, if we set φ̃ def

= φ̃σ,l ,
then

σ(Dx̃1) ⊂open
Dφ̃(x̃1)
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for each x̃1 ∈6X̃1
. The map φ̃ is uniquely characterized by this property, and

Galois-equivariant with respect to σ , and hence naturally induces a map

φ (= φσ,l) :6X1 →6X2 .

In the rest of this section, we assume that Condition 1 holds.

Definition 3.3. (i) Let γ : K2 → K1 be a homomorphism of fields defining an
extension K1/K2 of fields. Set p def

= p1 = p2. Then we say that γ is admissible
if the extension K1/K2 appears in the extensions of K2 corresponding to the open
subgroups of G2. More precisely, in the profinite case, we say that γ is admissible
if the extension K1/K2 is finite separable; in the prime-to-characteristic case, we
say that γ is admissible if the extension K1/K2 is finite separable and the Galois
closure of the extension K1k1/K2k2 is of degree prime to p.

Equivalently, γ : K2→ K1 is admissible if and only if it extends to an isomor-
phism γ̃ : K̃2

∼
→ K̃1.

(ii) Define Hom(K2, K1)
adm
⊂Hom(K2, K1) to be the set of admissible homo-

morphisms K2→ K1.

Our aim in this section is to prove the following.

Theorem 3.4. The natural map Hom(K2, K1)→Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
adm ∼
→ Hom(G1,G2)

rig/ Inn(G2).

More precisely,

(i) If γ : K2 → K1 is an admissible homomorphism between fields, then the
homomorphism G1→G2 induced by γ (up to inner automorphisms) is rigid.

(ii) If σ :G1→G2 is a rigid homomorphism between profinite groups, then there
exists a unique isomorphism γ̃ : K̃2→ K̃1 of fields, such that γ̃ ◦σ(g1)= g1◦γ̃

for all g1 ∈G1, which induces an admissible homomorphism K2→ K1.

Remark 3.5. (i) By local theory for the Isom-form, any isomorphism G1
∼
→ G2

is strictly rigid. In particular, we have Isom(G1,G2) ⊂ Hom(G1,G2)
rig. Thus,

Theorem 3.4 can be viewed as a generalization of the Isom-form:

Isom(K2, K1)
∼
→ Isom(G1,G2)/ Inn(G2),

which is the main theorem of [Uchida 1977] in the profinite case, and the main
theorem of [Saïdi and Tamagawa 2009] in the prime-to-characteristic case.

(ii) Let
γ : K perf

2 → K perf
1

be a homomorphism of fields defining an extension K perf
1 /K perf

2 of fields. Set
p def
= p1 = p2. We say that γ is admissible if the extension K perf

1 /K perf
2 appears
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in the extensions of K perf
2 corresponding to the open subgroups of G2, which is

regarded as a quotient of the absolute Galois group G K perf
2
= G K2 . More precisely,

in the profinite case γ is always admissible, and in the prime-to-characteristic case
γ is admissible if and only if the extension the Galois closure of the extension
K perf

1 k1/K perf
2 k2 is of degree prime to p. Define

Hom
(
K perf

2 , K perf
1

)adm
⊂ Hom

(
K perf

2 , K perf
1

)
to be the set of admissible homomorphisms K perf

2 → K perf
1 . Then the natural map

Hom
(
K perf

2 , K perf
1

)
→ Hom

(
G1,G2)/ Inn(G2

)
induces a bijection

Hom
(
K perf

2 , K perf
1

)adm/FrobZ ∼
→ Hom

(
G1,G2)

rig/ Inn(G2).

Indeed, this follows from Theorem 3.4, since the natural map Hom(K2, K1)→

Hom
(
K perf

2 , K perf
1

)
induces

Hom(K2, K1)
adm ∼
→ Hom

(
K perf

2 , K perf
1

)adm/FrobZ .

The rest of this section is devoted to the proof of Theorem 3.4.
First, to prove 3.4(i), let γ : K2→ K1 be an admissible homomorphism. Then,

by the definition of admissibility, the extension K1/K2 is isomorphic to some ex-
tension L/K2 that corresponds to an open subgroup H2 of G2. Set H1

def
= G1. Now

let σ : G1→ G2 be the homomorphism induced by γ (up to conjugacy). Then it
is easy to see that σ restricts to an isomorphism H1

∼
→ H2 (corresponding to the

isomorphism L ∼→ K1), which is strictly rigid. Thus, σ is rigid, as desired.
Next, to prove 3.4(ii), let σ : G1 → G2 be a rigid homomorphism. By def-

inition, there exist open subgroups H1 ⊂ G1, H2 ⊂ G2, such that σ(H1) ⊂ H2

and that H1
σ
→ H2 is strictly rigid with respect to, say, φ̃ :6X̃1

→6X̃2
. Then, by

Remark 3.2(iv), φ̃ is Galois-equivariant with respect to σ : G1→ G2 (that is, not
only with respect to σ :H1→H2), and, for each x̃1∈6X̃1

, we have σ(Dx̃1) ⊂open
Dφ̃(x̃1)

and σ(Dx̃1 ∩H1)=Dφ̃(x̃1)
∩H2.

Lemma 3.6. Condition 2 holds for σ :G1→G2.

Proof. By Proposition 2.1(v), we have σ(Ix̃1) ⊂ Iφ̃(x̃1)
for each x̃1 ∈ 6X̃1

. In
particular, we have σ(I1)⊂ I2. Now, the assertion follows from Lemma 2.3. �

Thus, we may apply Lemmas 2.6–2.9 to σ .

Lemma 3.7. We have σ(H1)= H2 and H1 = σ
−1(H2).

Proof. By Lemma 2.9, φ̃ is surjective, and hence, by Remark 3.2(iii), σ :H1→H2

is surjective, that is, σ(H1)= H2.
Next, let X1,H1 → X1,σ−1(H2) → X1 and X2,H2 → X2 be (finite, generically

étale) covers corresponding to open subgroups H1 ⊂ σ
−1(H2)⊂G1 and H2 ⊂G2,
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respectively. Suppose that H1 ( σ−1(H2). Then, by Chebotarev’s density theorem,
there exists x̃1 ∈6X̃1

such that

k(x1,H1)) k(x1,σ−1(H2)),

where x1,H1 and x1,σ−1(H2) denote the images of x̃1 in 61,H1 and 61,σ−1(H2), respec-
tively. Set x̃2

def
= φ̃(x̃1) ∈6X̃2

. We have σ(Dx̃1)⊂Dx̃2 , and hence

σ(Dx̃1 ∩H1)⊂ σ(Dx̃1 ∩ σ
−1(H2))⊂Dx̃2 ∩H2.

Now, since H1
σ
→ H2 is strictly rigid, we must have

σ(Dx̃1 ∩H1)= σ(Dx̃1 ∩ σ
−1(H2))=Dx̃2 ∩H2.

By Proposition 2.1(iii), this implies that ](k(x1,H1))=](k(x2,H2))=](k(x1,σ−1(H2)),
where x2,H2 denotes the image of x̃2 in 6X2,H2

. This contradicts

k(x1,H1)) k(x1,σ−1(H2)). �

We treat the special case where σ : G1 → G2 is strictly rigid (and hence, in
particular, surjective).

Lemma 3.8. Assume that σ :G1→G2 is strictly rigid.

(i) We have g1 = g2.

(ii) The map φ :6X1 →6X2 is bijective.

Proof. By Lemma 2.6, the homomorphism σ naturally induces a commutative
diagram

1 � π1(X1)
p′,ab

� 51 � Gk1 � 1

1 � π1(X2)
p′,ab

g
� 52

g
� Gk2

g
� 1,

where 5i is the quotient π1(X i )
(p′)/Ker(π1(X i )

p′ � π1(X i )
p′,ab), and the maps

5i → Gki are the natural projections; i = 1, 2. The vertical maps are surjec-
tive. In particular, the representation Gk1 → Gk2 → Aut(π1(X2)

p′,ab), where
Gk2 → Aut(π1(X2)

p′,ab) is the natural representation and Gk1 → Gk2 is the right
vertical map in the above diagram, is a quotient representation of the natural repre-
sentation Gk1 → Aut(π1(X1)

p′,ab). For i ∈ {1, 2}, let Ei be the set of eigenvalues,
counted with multiplicities, of the Frobenius element ϕki acting on π1(X i )

p′,ab.
Then E2 ⊂ E1, since the map Gk1→Gk2 maps ϕk1 to ϕk2 (see Lemma 2.8(ii)). We
will show that E1 = E2.

For an integer n ≥ 1, let ki,n be the unique extension of ki of degree n; i = 1, 2.
Then, by the Lefschetz trace formula, ]X i (ki,n) = 1 −

∑
αi∈Ei

αn
i + qn , where

q def
= ](ki ) (see Lemma 2.8(ii) for the equality ](k1) = ](k2)). Recall that the
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map φ : 6X1 → 6X2 is surjective (see Lemma 2.9), and if x2 = φ(x1), then the
residue fields k(x1) and k(x2) have the same cardinality (see Proposition 2.1(iii)).
In particular, ](X1(k1,n))≥ ](X2(k2,n)) for all n. Thus,

∑r
j=1 β

n
j ≤ 0 for any n≥1,

where
E def
= E1 r E2

def
= {β1, . . . , βr }

(r = 2g1−2g2 ≥ 0). Write β j = ρ j eiθ j (ρ j ∈R>0, θ j ∈ [0, 2π)), for j ∈ {1, . . . , r}
(note that ρ j = q1/2 by the Riemann hypothesis for curves). Let T be the set
consisting of the 4 quadrants of C=R2. More precisely, T= {Tk | k ∈ {1, 2, 3, 4}},
where

Tk
def
=

{
ρeiθ

∣∣ ρ ∈ R>0, θ ∈
[
(k−1)π

2
,

kπ
2

)}
.

Thus, each α ∈ C× belongs to a unique element of T, which we shall denote by
T (α). Consider the map µ : N→ Tr that maps an integer n to {T (βn

j )}
r
j=1. Then

there must exist integers m1 < m2 such that µ(m1) = µ(m2), since ](Tr ) = 4r is
finite. This implies that eim1θ j and eim2θ j belong to the same quadrant of C=R2 for
all j ∈ {1, . . . , r}. In particular, Re(βn

j )= ρ
n
j cos nθ j > 0, where n def

= m2−m1 ≥ 1.
Suppose that r > 0; then this implies that

Re
( r∑

j=1
βn

j

)
=

r∑
j=1

Reβn
j > 0,

which contradicts the above fact that
∑r

j=1 β
n
j ≤ 0, for all n. Thus, r = 0, that is,

E = E1 r E2 must be empty, and E1 = E2.
In particular, the Ẑp′-ranks of π1(X i )

p′,ab, which equal 2gi , are equal; i = 1, 2.
This completes the proof of Lemma 3.8(i).

Finally, we can conclude that φ is injective. For otherwise, there would exist
an integer n ≥ 1 such that ](X1(kn)) > ](X2(kn)), and hence, E 6= ∅, which is a
contradiction. This completes the proof of Lemma 3.8(ii). �

Lemma 3.9. Assume that σ :G1→G2 is strictly rigid. Then σ (p
′)
:G

(p′)
1 →G

(p′)
2

is an isomorphism. (In particular, in the prime-to-characteristic case, σ is an
isomorphism.)

Proof. By Lemma 3.8(ii), the map φ :6X1→6X2 induced by σ is bijective. For a
finite subset S2 of 6X2 , let S1

def
= φ−1(S2). Then σ naturally induces a continuous,

surjective homomorphism τ ′S1,S2
: π1(U1)

(p′)� π1(U2)
(p′), where π1(Ui )

(p′) is the
maximal geometrically prime-to-p quotient of the fundamental group π1(Ui ) of
Ui

def
= X i − Si ; i = 1, 2. Further, we have the commutative diagram

1 � π1(U 1)
p′
� π1(U1)

(p′)
� Gk1 � 1

1 � π1(U 2)
p′

g
� π1(U2)

(p′)

τ ′S1,S2g
� Gk2

g
� 1.
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The surjective homomorphism π1(U 1)
p′ � π1(U 2)

p′ must be an isomorphism by
[Fried and Jarden 1986, Proposition 15.4], since X i−Si have the same topological
type (gi , ](Si )), where Si denotes the inverse image of Si in 6X i

; i = 1, 2, by
Lemma 3.8. (For the bijectivity S̄1

∼
→ S̄2, apply Lemma 3.8(ii) to various open

subgroups of G1,G2 corresponding to constant field extensions.) Thus, the map
τ ′S1,S2

is an isomorphism (note that the surjective map Gk1 → Gk2 is an isomor-
phism). Also,

G
(p′)
i = lim

←−
Si

π1(X i − Si )
(p′),

where the projective limit is taken over all finite subsets Si of6X i ; i=1, 2. Further,

σ (p
′)
= lim
←−
{S1,S2}

τ ′S1,S2
,

where the projective limit is taken over all finite subsets S1 and S2 corresponding
to each other via φ. Thus, σ (p

′) must be an isomorphism. �

Now, return to the general case. As above, let H1 ⊂ G1, H2 ⊂ G2 be open
subgroups such that σ(H1) ⊂ H2 and the map σH1,H2 : H1 → H2 obtained by
restricting σ : G1 → G2 is strictly rigid with respect to φ̃ : 6X̃1

→ 6X̃2
. By

Remark 3.2(iv), φ̃ is Galois-equivariant with respect to σ : G1→ G2 (that is, not
only with respect to σH1,H2 : H1→ H2), and, for each x̃1 ∈6X̃1

, we have

σ(Dx̃1) ⊂open
Dφ̃(x̃1)

, σ (Dx̃1 ∩H1)=Dφ̃(x̃1)
∩H2.

Moreover, by Lemma 3.9, the map (σH1,H2)
(p′)
: H

(p′)
1 → H

(p′)
2 induced by σH1,H2

is an isomorphism.
Now, let us denote the finite separable extension of Ki corresponding to Hi ⊂Gi

by Ki,Hi , and the (infinite) Galois extension of Ki,Hi corresponding to Hi � H
(p′)
i

by K̃ (p′)
i,Hi

. By applying the Isom-form proved in [Saïdi and Tamagawa 2009], we
see that

(σH1,H2)
(p′)
: H

(p′)
1

∼
→ H

(p′)
2

arises from a unique field isomorphism γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
that induces an

isomorphism K2,H2
∼
→ K1,H1 .

Lemma 3.10. Let H′i ⊂Hi , i = 1, 2 be open subgroups, such that σ(H′1)⊂H′2 and
that σH′1,H

′

2
: H′1→ H′2 is strictly rigid. Then the field isomorphism

γ(H′1)
(p′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1

restricts to γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
.
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Proof. This follows formally from the statement of the Isom-form proved in [Saïdi
and Tamagawa 2009], as follows, without recalling any construction in that paper.

Take an open subgroup H′′2 of H′2 that is normal in H2. Then, by Lemma 3.7,

H′′1
def
= σ−1(H′′2)⊂ σ

−1(H′2)= H′1,

and hence, by Remark 3.2(ii), H′′1
σ
→ H′′2 is strictly rigid. Assume that

γ(H′′1)
(p′),(H′′2)

(p′) : K̃
(p′)
2,H′′2

∼
→ K̃ (p′)

1,H′′1

restricts to γ(H′1)(p
′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1
and to γ

H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
. Then

γ(H′1)
(p′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1

restricts to
γ

H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
,

as desired. So, it suffices to prove the desired property in the case where H′i ⊂ Hi

is normal for i = 1, 2, and σ naturally induces an isomorphism H1/H
′

1
∼
→ H2/H

′

2
between finite groups.

For i =1, 2, let J′i be the image of H′i in H
(p′)
i , which is an open normal subgroup

of H
(p′)
i . Let Ji ⊂ Hi be the inverse image of J′i in Hi . Thus, we have the natural

identification J
(p′)
i = J′i and the commutative diagram

H′i ⊂ Ji ⊂ Hi ⊂ Gi

(H′i )
(p′)
g

�� J
(p′)
i

g
⊂ � H

(p′)
i

g

� G
(p′)
i ,

g

in which the vertical arrows are natural surjective maps.
Since the isomorphism (σH′1,H

′

2
)(p
′)
: (H′1)

(p′) ∼
→ (H′2)

(p′) is compatible with the
natural (conjugate) actions of H1 and H2 with respect to H1

σ
�H2, the correspond-

ing field isomorphism

γ(H′1)
(p′),(H′2)

(p′) : K̃
(p′)
2,H′2

∼
→ K̃ (p′)

1,H′1

is also compatible with the natural actions of H1 and H2 with respect to H1
σ
� H2.

In particular, γ(H′1)(p
′),(H′2)

(p′) restricts to K2,H2
∼
→ K1,H1 , and hence induces an iso-

morphism
α : K (p′)

2,H2

∼
→ K (p′)

1,H1

that is compatible with σ :H1�H2, and hence with σ
H
(p′)
1 ,H

(p′)
2
: H

(p′)
1

∼
→ H

(p′)
2 . On

the other hand, the isomorphism

γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
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is also compatible with

σ
H
(p′)
1 ,H

(p′)
2
: H

(p′)
1

∼
→ H

(p′)
2 .

Thus, we conclude that, as desired,

α = σ
H
(p′)
1 ,H

(p′)
2
,

by the uniqueness of such a Galois-compatible isomorphism. (This is included in
the statement of the Isom-form proved in [Saïdi and Tamagawa 2009].) �

Now, consider the set S (⊂ Sub(G1)×Sub(G2)) of all pairs of open subgroups
H1⊂G1, H2⊂G2 such that σ(H1)⊂H2, that H1

σ
→ H2 is strictly rigid, and that H2

is normal in G2. Then, as in the proof of Lemma 3.10, it follows from Lemma 3.7
and Remark 3.2(ii) that (H1,H2)∈S implies that σ(H1)=H2, that H1= σ

−1(H2),
and that the image of S in Sub(G2) is cofinal in the set of open subgroups of G2.

For each pair (H1,H2) ∈ S, we get an isomorphism

σ
H
(p′)
1 ,H

(p′)
2
: H

(p′)
1

∼
→ H

(p′)
2

by Lemma 3.9, which is Galois-compatible with respect to σ : G1→ G2. By the
Isom-form proved in [Saïdi and Tamagawa 2009], σ

H
(p′)
1 ,H

(p′)
2

induces an isomor-
phism

γ
H
(p′)
1 ,H

(p′)
2
: K̃ (p′)

2,H2

∼
→ K̃ (p′)

1,H1
,

which is Galois-compatible with respect to σ : G1 → G2. By Lemma 3.10,
γ

H
(p′)
1 ,H

(p′)
2

can be patched together and define an isomorphism

γ̃ : K̃2
∼
→ (K̃1)

N,

where
N

def
= Ker(σ :G1→G2),

which is Galois-compatible with respect to σ :G1→G2.
In the profinite (resp. prime-to-characteristic) case, K̃2 admits no nontrivial fi-

nite separable (resp. geometrically prime-to-p) extension, and hence neither does
(K̃1)

N (' K̃2). This implies that (K̃1)
N
= K̃1, that is, N = {1}. Thus, we obtain

γ̃ : K̃2
∼
→ K̃1, which is Galois-compatible with respect to σ :G1→G2, as desired.

Finally, the uniqueness of such γ̃ follows formally from the uniqueness in the
statement of the Isom-form, proved in [Uchida 1977; Saïdi and Tamagawa 2009].
This finishes the proof of Theorem 3.4. �

Remark 3.11. We have proved Theorem 3.4 by reducing it to the statement of the
Isom-form, by means of Lemma 3.9. Instead, we could mimic the proof of the
Isom-form.
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4. Proper homomorphisms between Galois groups

In this section we investigate a class of homomorphisms between (geometrically
prime-to-characteristic quotients of) absolute Galois groups of function fields of
curves over finite fields, which we call proper. We follow the notations in Sections
1–3, and in particular, the Notation at the beginning of subsection 2B. We assume
that Condition 3 holds.

Definition 4.1 (well-behaved homomorphisms). We say that σ :G1→G2 is well-
behaved if there exists a map

φ̃ :6X̃1
→6X̃2

such that σ(Dx̃1) ⊂open
Dφ̃(x̃1)

for each x̃1 ∈6X̃1
.

Remark 4.2. (i) Given a commutative diagram of maps between profinite groups

G1 � G2

G′1

g
� G′2,
g

where the vertical arrows are surjective and the map G1 → G2 is well-behaved,
then the map G′1→G′2 is well-behaved.

(ii) Let H1 ⊂ G1, H2 ⊂ G2 be open subgroups such that σ(H1) ⊂ H2. Then if
σ :G1→G2 is well-behaved, the natural homomorphism H1→H2 induced by σ
is well-behaved. (Here, Hi is considered as a quotient of the absolute Galois group
that is the inverse image in Gi of Hi ⊂Gi .)

(iii) If σ :G1→G2 is strictly rigid (Definition 3.1), then it is well-behaved.

(iv) As in Proposition 2.2, let l 6= p1, p2 be a prime number, and assume that (1)
N l

2 = N2, or, equivalently, K̃2 admits no l-cyclic extension; and (2) K̃2 contains a
primitive l-th roots of unity. Then, first, if σ : G1 → G2 is rigid, then it is well-
behaved by Remark 3.2(iv). Second, if σ :G1→G2 is well-behaved with respect
to φ̃ :6X̃1

→6X̃2
, then we must have

6X̃1,σ,l =6X̃1
and φ̃ = φ̃σ,l .

In particular, then φ̃ is unique and Galois-equivariant with respect to σ , and hence
naturally induces a map φ (= φσ,l) :6X1 →6X2 .

Definition 4.3 (proper homomorphisms). We say that σ :G1→G2 is proper if σ
is well-behaved with respect to φ̃ : 6X̃1

→ 6X̃2
, such that φ̃ is Galois-equivariant

with respect to σ , and the map φ :6X1 →6X2 induced by φ̃ has finite fibers, that
is, for each x2 ∈6X2 , the fiber φ−1(x2) is a (possibly empty) finite set.
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Remark 4.4. (i) Given a commutative diagram of maps between profinite groups

G1 � G2

G′1

g
� G′2,
g

where the vertical arrows are surjective and the map G1→ G2 is proper, the
map G′1→G′2 is proper.

(ii) Let H1 ⊂ G1, H2 ⊂ G2 be open subgroups such that σ(H1) ⊂ H2. Then if
σ : G1→ G2 is proper, the natural homomorphism H1→ H2 induced by σ
is proper. (Here, Hi is considered as a quotient of the absolute Galois group
that is the inverse image in Gi of Hi ⊂Gi .)

In the rest of this section, we assume that Condition 1 holds. Assume also that
the continuous open homomorphism σ : G1 → G2 is well-behaved with respect
to φ̃ : 6X̃1

→ 6X̃2
. By Lemma 2.4, we have p def

= p1 = p2. Let x̃1 ∈ 6X̃1
and

set x̃2
def
= φ̃(x̃1). Denote by x1 and x2 the image of x̃1 and x̃2 in 6X1 and 6X2 ,

respectively. Then
Dx̃1

σ
� σ(Dx̃1) ⊂open

Dx̃2 .

By this and Proposition 2.1(v), we have

Ix̃1

σ
� σ(Ix̃1) ⊂open

Ix̃2 .

In particular, σ induces an open injective homomorphism τ t
x̃1
:It

x̃1
↪→It

x̃2
, where

It
x̃1

(resp. It
x̃2

) denotes the inertia subgroup of Dt
x̃1

(resp. of Dt
x̃2

). We have natural
identifications

M1
∼
→ Mk(x1)sep

∼
→ It

x̃1
, M2

∼
→ Mk(x2)sep

∼
→ It

x̃2
,

where Mi
def
= MK sep

i
is the (global) module of roots of unity for i = 1, 2.

We introduce the following important concept of rigidity of inertia.

Definition 4.5 (inertia-rigid homomorphisms). We say that the well-behaved ho-
momorphism σ :G1→G2 is inertia-rigid if there exists an isomorphism

τ : M1
∼
→ M2

of Ẑp′-modules such that for each x̃1 ∈6X̃1
, there exists a positive integer ex̃1 such

that the following diagram commutes:

M1
∼
� Mk(x1)sep

∼
� It

x̃1

M2

ex̃1 ·τg
∼
� Mk(x2)sep

∼
� It

x̃2
,

τ t
x̃1g

(4.1)
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where x̃2
def
= φ̃(x̃1); x1 and x2 are the images of x̃1 and x̃2 in 6X1 and 6X2 , respec-

tively; and the isomorphisms are the canonical identifications.

Remark 4.6. (i) Given a commutative diagram of maps between profinite groups

G1 � G2

G(p′)
1

g

� G(p′)
2 ,

g

where the vertical arrows are natural surjective maps and the map G1→ G2

is inertia-rigid, the map G(p′)
1 → G(p′)

2 is inertia-rigid.

(ii) Let H1 ⊂ G1, H2 ⊂ G2 be open subgroups such that σ(H1) ⊂ H2. Then if
σ :G1→G2 is inertia-rigid, the natural homomorphism H1→H2 induced by
σ is inertia-rigid. (Here, Hi is considered as a quotient of the absolute Galois
group that is the inverse image in Gi of Hi ⊂Gi .)

Remark 4.7. (i) Set

ex̃1

def
= [Ix̃2 : σ(Ix̃1)], et

x̃1

def
= [It

x̃2
: τ t

x̃1
(It

x̃1
)].

Note that p - et
x̃1

and there exists an integer bx̃1 ≥ 0 such that ex̃1 = pbx̃1 et
x̃1

.
(In the prime-to-characteristic case, we have ex̃1 = et

x̃1
and bx̃1 = 0.) Now, in

Definition 4.5, there must exist an integer ax̃1 ≥ 0 such that ex̃1 = pax̃1 et
x̃1

, or,
equivalently, ex̃1 = pcx̃1 ex̃1 , where cx̃1

def
= ax̃1 − bx̃1 ∈ Z. Moreover, set

a def
= min{ax̃1 | x̃1 ∈6X̃1

}.

Replacing τ by paτ and ex̃1 by p−aex̃1 = pax̃1−aet
x̃1

, we may assume that a = 0.
Assume, moreover, that σ is proper and that we are in the profinite case. Then, in

fact, we have cx̃1 = 0 for every x̃1 ∈ X̃1 eventually, if we choose τ with a= 0. (This
follows from Theorem 4.8 below and its proof.) Thus, in the profinite case, we may
assume ex̃1=ex̃1 in Definition 4.5 from the beginning. In the prime-to-characteristic
case, however, it seems difficult to specify the value of ex̃1 a priori. (If we assumed
ex̃1 = ex̃1 in the prime-to-characteristic case, then inertia-rigid homomorphisms
would cover only tame homomorphisms K2→ K1.)

(ii) In the situation of Definition 4.5, we have

Dx̃1

σ
� Ex̃1

def
= σ(Dx̃1)⊂Dx̃2 .

The subgroup Ex̃1⊂Dx̃2 corresponds to a finite extension L x1/(K2)x2 of the x2-adic
completion (K2)x2 of K2. Thus, the residue field `x1 of L x1 is a finite extension of
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the residue field k(x2) at x2. We have the commutative diagram

Dx̃1 � Ex̃1

Dt
x̃1

g
� Et

x̃1
,

g

where the vertical maps are the canonical surjections onto the maximal tame quo-
tients, and the horizontal maps are naturally induced by σ . Further, the lower
horizontal map, which is surjective, naturally induces an isomorphism It

x̃1

∼
→ Jt

x̃1

by Proposition 2.1(v). Here, It
x̃1

and Jt
x̃1

denote the inertia subgroups of Dt
x̃1

and
Et

x̃1
, respectively. We have a natural identification Jt

x̃1

∼
→ It

x̃2
, where It

x̃2
is the

inertia subgroup of Dt
x̃2

, obtained via the natural identifications

M(K2)
sep
x2

∼
→ It

x̃2
, MLsep

x1

∼
→ Jt

x̃1
, (K2)

sep
x2
= Lsep

x1
,

which, composed with the natural map Jt
x̃1
→ It

x̃2
induced by the inclusion

Ex̃1 →Dx̃2,

is the ex̃1-th power map [ex̃1] : I
t
x̃2
→ It

x̃2
, as is easily verified. We define

τ t
x̃1,x̃2
: It

x̃1

∼
→ It

x̃2

to be the natural isomorphism obtained by composing the natural isomorphism

It
x1

∼
→ Jt

x̃1

induced by σ (see Proposition 2.1(v)) with the natural identification Jt
x̃1

∼
→ It

x̃2
.

The inertia-rigidity is equivalent to requiring the commutativity of the diagram

M1
∼
� M(K1)

sep
x1

∼
� It

x̃1

M2

p
cx̃1 ·τ
g

∼
� M(K2)

sep
x2

∼
� It

x̃2
,

τ t
x̃1,x̃2g

in which both vertical arrows are isomorphisms.

Define Hom(K2, K1)
sep
⊂ Hom(K2, K1) to be the set of separable homomor-

phisms K2 → K1. Define Hom(G1,G2)
pr,inrig

⊂ Hom(G1,G2) to be the set of
proper (and hence continuous and open) inertia-rigid homomorphisms G1→ G2.
Our aim in this section is to prove the following.

Theorem 4.8. The natural map Hom(K2, K1)→Hom(G1,G2)/ Inn(G2) induces
a bijection

Hom(K2, K1)
sep ∼
→ Hom(G1,G2)

pr,inrig/ Inn(G2).



The Hom-form of Grothendieck’s birational anabelian conjecture 165

More precisely:

(i) If γ : K2→ K1 is a separable homomorphism between fields, then the homo-
morphism G1→G2 induced by γ (up to inner automorphisms) is proper and
inertia-rigid.

(ii) If σ : G1 → G2 is a proper, inertia-rigid homomorphism between profinite
groups, then there exists a unique homomorphism γ̃ : K̃2 → K̃1 of fields,
such that γ̃ ◦ σ(g1) = g1 ◦ γ̃ , for all g1 ∈ G1, which induces a separable
homomorphism K2→ K1.

Remark 4.9. (i) Assume that σ : G1 → G2 is a rigid homomorphism. Then
it follows from Lemma 3.8(ii) that σ is proper. Further, σ is inertia-rigid.
This can be reduced to the case where σ is strictly rigid, and then deduced
from class field theory as in the arguments preceding Lemma 4.12. (Note that
then φ is bijective by Lemma 3.8(ii).) Thus, Theorem 4.8 can be viewed as a
generalization of Theorem 3.4.

(ii) The natural map Hom(K perf
2 , K perf

1 )→ Hom(G1,G2)/ Inn(G2) induces a bi-
jection

Hom(K perf
2 , K perf

1 )/FrobZ ∼
→ Hom(G1,G2)

pr,inrig/ Inn(G2).

Indeed, this follows from Theorem 4.8, since the natural map Hom(K2, K1)→

Hom(K perf
2 , K perf

1 ) induces

Hom(K2, K1)
sep ∼
→ Hom(K perf

2 , K perf
1 )/FrobZ .

The rest of this section is devoted to the proof of Theorem 4.8.
First, to prove (i), let γ : K2 → K1 be a separable homomorphism. Then γ

induces naturally an open injective homomorphism G1 ↪→ G2 (up to Inn(G2))
and then an open homomorphism σ : G1 → G2 (up to Inn(G2)). The map σ is
well-behaved with respect to the map φ : 6X1 → 6X2 that arises from a finite
morphism X1→ X2 of schemes corresponding to γ : K2→ K1. Thus, each fiber
of φ is finite, and hence σ is proper. Next, if we define τ : M1

∼
→ M2 to be the

identification MK sep
1

∼
→ MK sep

2
(with respect to a suitable extension K sep

2
∼
→ K sep

1 of
γ : K2→ K1), then diagram (4.1) commutes with ex̃1 defined to be the ramification
index of K1/K2 at x̃1. Thus, σ is inertia-rigid.

Next, to prove (ii), let σ :G1→G2 be a proper, inertia-rigid homomorphism.

Lemma 4.10. Condition 2 holds for σ :G1→G2.

Proof. Same as that of Lemma 3.6. �

Thus, we may apply Lemmas 2.6–2.9 to σ .
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Next, let τ :M1
∼
→M2 be the isomorphism appearing in the definition of inertia-

rigid homomorphism, so that diagram (4.1) commutes for each x̃1 ∈ 6X̃1
and for

some ex̃1 ∈ Z>0.

Lemma 4.11. (i) The isomorphism τ : M1
∼
→ M2 is Galois-equivariant with

respect to σ .

(ii) The positive integers ex̃1 , ex̃1 and et
x̃1

depend only on the image x1 ∈6X1 of x̃1.

Proof. (i) For each x̃1 ∈ 6X̃1
, the commutativity of diagram (4.1), together with

Proposition 2.1(iv), implies that τ is Galois-equivariant with respect to

Dx̃1

σ
→Dφ̃(x̃1)

.

Our assertion then follows, since G1 is generated by the decomposition subgroups
Dx̃1 for all x̃1 ∈6X̃1

, as follows from Chebotarev’s density theorem.

(ii) Take another x̃ ′1 ∈6X̃1
above x1 ∈6X1 and set x̃ ′2

def
= φ̃(x̃ ′1). Fix γ ∈G1 such

that x̃ ′1= γ x̃1. By the Galois-equivariance property of φ̃ (Remark 4.2(iv)), we have
then x̃ ′2 = σ(γ )x̃2. Denote by [γ ] and [σ(γ )] the inner automorphisms of G1 and
G2 induced by γ and σ(γ ), respectively. We have the commutative diagram

Ix̃1

[γ ]
� Ix̃ ′1

Ix̃2

σ
g
[σ(γ )]
� Ix̃ ′2,

σ
g

in which both rows are isomorphisms. It follows that ex̃ ′1 = ex̃1 . This commutative
diagram induces the commutative diagram

It
x̃1

[γ ]
� It

x̃ ′1

It
x̃2

τ t
x̃1g

[σ(γ )]
� It

x̃ ′2
,

τ t
x̃ ′1g

in which both rows are isomorphisms. It follows that et
x̃ ′1
= et

x̃1
. With (i), this last

commutative diagram also implies that ex̃ ′1 = ex̃1 . �

From now on, we shall write ex1 , ex1 and et
x1

for ex̃1 , ex̃1 and et
x̃1

, respectively.
Further, according to this, we shall write ax1 , bx1 and cx1 for the invariants ax̃1 , bx̃1

and cx̃1 in Remark 4.7(i), respectively. We may and shall also assume that

a (=min{ax1 | x1 ∈6X1})= 0;

see Remark 4.7(i).
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We have the commutative diagram of exact sequences

1 � k×1 �

∏
x2∈6X2

( ∏
x1∈φ−1(x2)

k(x1)
×

)
� G1

(p′),ab

1 � k×2

g
�

∏
x2∈6X2

k(x2)
×

g

� G2
(p′),ab
g

from global class field theory. Here, the map G1
(p′),ab � G2

(p′),ab is naturally
induced by σ . The right horizontal maps are induced by Artin’s reciprocity map,
and the map ∏

x2∈6X2

( ∏
x1∈φ−1(x2)

k(x1)
×

)
→

∏
x2∈6X2

k(x2)
×

maps each component k(x1)
× to k(x2)

× as follows. First, k(x1)
× maps isomorphi-

cally onto `×x1
via the natural identification induced by σ ; see Remark 4.7(ii) and

Proposition 2.1(iii). Then `×x1
maps to k(x2)

× by the ex1-th power of the norm map.
The above diagram induces, for each x2 ∈6X2 , the commutative diagram

k×1 �

∏
x1∈φ−1(x2)

k(x1)
× ∼
→

∏
x1∈φ−1(x2)

`×x1

k×2

g
� k(x2)

×,

g

where the map k×2 → k(x2)
× is the natural embedding, the map

k×1 →
∏

x1∈φ−1(x2)

k(x1)
×

is the natural diagonal embedding, and the isomorphism∏
x1∈φ−1(x2)

k(x1)
× ∼
→

∏
x1∈φ−1(x2)

`×x1

and the map ∏
x1∈φ−1(x2)

`×x1
→ k(x2)

×

are as above. By passing to various open subgroups corresponding to extensions
of the constant fields, and to the projective limit via the norm maps, we obtain the
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commutative diagram

Mksep
1
�
⊕

x̄1∈φ̄−1(x̄2)
Mk(x1)sep

⊕
x̄1∈φ̄

−1(x̄2)
ρx1

∼
−→

⊕
x̄1∈φ̄−1(x̄2)

M`
sep
x1

Mksep
2

g
� Mk(x2)sep,

g

where
ρx1 : Mk(x1)sep

∼
→ M`

sep
x1

is the natural isomorphism induced by σ ; see Remark 4.7(ii) and Proposition 2.1(v).
Here, x̄2∈6X2

is any point above x2 and φ̄ :6X1
→6X2

is obtained as the inductive
limit of φ’s for various open subgroups corresponding to extensions of the constant
fields. Observe that φ̄ :6X1

→6X2
has finite fibers, since φ :6X1 →6X2 has

finite fibers, the projection6X1
→6X1 has finite fibers, and φ̄ is compatible with φ.

This can be rewritten as

M1 �
⊕

x̄1∈φ̄−1(x̄2)
M1

⊕
x̄1∈φ̄

−1(x̄2)
ρx1

∼
−→

⊕
x̄1∈φ̄−1(x̄2)

M2

M2

g
=================== M2

g
(4.2)

via the natural identifications Mk(x1)sep
∼
→ M1 and M`

sep
x1

∼
→ M2 for x1 ∈ φ

−1(x2);
Mk(x2)sep

∼
→ M2; and Mksep

i

∼
→ Mi , i = 1, 2. Thus, in diagram (4.2) the map M1→

⊕x̄1∈φ̄−1(x̄2)
M1 is the natural diagonal embedding, and the map ⊕x̄1∈φ̄−1(x̄2)

M2→

M2 is the map ⊕x̄1∈φ̄−1(x̄2)
[ex1]. We shall denote by τ ′ : M1→ M2 the homomor-

phism that is the left vertical arrow in diagram (4.2) (note that τ ′ is independent of
the choice of x2 ∈6X2).

Lemma 4.12 (product formula). The sum
∑

x̄1∈φ̄−1(x̄2)
ex1 is independent of the

choice of x2 ∈6X2 . Set n
def
=
∑

x̄1∈φ̄−1(x̄2)
ex1 > 0. Then we have τ ′ = [n] ◦ τ, where

[n] : M2→ M2 denotes the map of elevation to the power n in M2.

Proof. This follows from the commutativity of diagram (4.2), by observing that the
homomorphism σ being inertia-rigid means that the isomorphism ρx1 in diagram
(4.2) equals pcx1 τ for all x̄1 ∈ φ̄

−1(x̄2). �

For the rest of this section, all cohomology groups will be continuous Galois
cohomology groups unless otherwise specified.

The Galois-equivariant identification τ−1
: M2

∼
→ M1 induces naturally an in-

jective homomorphism H 1(G2,M2)→ H 1(G1,M1) between Galois cohomology
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groups. Indeed, this homomorphism fits into the commutative diagram

0 � H 1(Gk2,M2) � H 1(G2,M2) � H 1(G2,M2)

0 � H 1(Gk1,M1)

g
� H 1(G1,M1)

g
� H 1(G1,M1),

g

where both rows are exact and vertical maps are natural maps induced by (σ, τ−1).
Here, the left vertical arrow is injective by H 0(Hk1,M2)= 0, where Hk1 stands for
the (isomorphic) image of Gk1 in Gk2 , and the right vertical arrow is injective since
M2 is torsion-free and [G2 : σ(G1)]<∞. Therefore, the middle vertical arrow is
also injective.

Further, for each x2 ∈6X2 , the following diagram is commutative:

H 1(G1,M1) �
⊕

x̄1∈φ̄−1(x̄2)
H 1(Ix̃1,M1)

∼
→
⊕

x̄1∈φ̄−1(x̄2)
H 1(Jx̃1,M2)

H 1(G2,M2)

f

� H 1(Ix̃2,M2),

f

where the horizontal maps are the natural restriction maps, the left vertical map is
the above map, the map

H 1(Ix̃2,M2)→
⊕

x̄1∈φ̄−1(x̄2)

H 1(Jx̃1,M2)

is the natural map induced by the inclusion Jx̃1 ⊂ Ix̃2 for x̄1 ∈ φ̄
−1(x̄2), and the

isomorphism H 1(Ix̃1,M1)
∼
→ H 1(Jx̃1,M2) is naturally induced by the natural sur-

jective map Ix̃1 � Jx̃1 , which is induced by (σ, τ−1).
We have natural identifications

H 1(Ix̃1,M1)
∼
→ Hom(Ix̃1,M1)

∼
→ Hom(It

x̃1
,M1)

∼
→ Hom(M1,M1)

∼
→ Ẑp′,

H 1(Jx̃1,M2)
∼
→ Hom(Jx̃1,M2)

∼
→ Hom(Jt

x̃1
,M2)

∼
→ Hom(M2,M2)

∼
→ Ẑp′,

H 1(Ix̃2,M2)
∼
→ Hom(Ix̃2,M2)

∼
→ Hom(It

x̃2
,M2)

∼
→ Hom(M2,M2)

∼
→ Ẑp′ .

In light of these identifications, the above diagram can be rewritten as

H 1(G1,M1) �
⊕

x̄1∈φ̄−1(x̄2)
Ẑp′

H 1(G2,M2)

f

� Ẑp′,

⊕x̄1∈φ̄
−1(x̄2)

[ex1 ]
f

where the vertical map Ẑp′
→
⊕

x̄1∈φ̄−1(x̄2)
Ẑp′ is the map

⊕
x̄1∈φ−1(x̄2)

[ex1], and
[ex1] denotes the map of multiplication by ex1 in Ẑp′ . By considering all x2 ∈6X2 ,
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we obtain the following commutative diagram:

H 1(G1,M1) � D̂ivX1

def
=

∏ ′

x̄1∈6X1

Ẑp′ ∼
→

∏ ′

x̄2∈6X2

(⊕
x̄1∈φ−1(x̄2)

Ẑp′
)

H 1(G2,M2)

f

� D̂ivX2

def
=

∏ ′

x̄2∈6X2

Ẑp′ .

f

Here, given an index set 3, we define
∏
′

λ∈3 Ẑp′ def
= lim
←−
p-n

(⊕
λ∈3 Z/nZ

)
. (Accord-

ingly, one has ⊕
λ∈3

Ẑp′
⊂

∏ ′

λ∈3

Ẑp′
⊂

∏
λ∈3

Ẑp′,

and the equalities hold if and only if ](3) <∞.) Thus, the map D̂ivX2
→ D̂ivX1

maps x̄2 to
∑

x̄1∈φ−1(x̄2)
ex1 x̄1. In particular, the subgroup D̂ivX2 of D̂ivX2

maps into
the subgroup D̂ivX1 of D̂ivX1

. Here, for i = 1, 2,

D̂ivX i

def
=

∏ ′

x1∈6Xi

Ẑp′

is naturally embedded into D̂ivX i
and is regarded as a subgroup of D̂ivX i

. It follows
from various constructions that, for i = 1, 2, the image of the map H 1(Gi ,Mi )→

D̂ivX i
is contained in D̂ivX i . Thus, we obtain the commutative diagram

H 1(G1,M1) � D̂ivX1

H 1(G2,M2)

f

� D̂ivX2 .

f
(4.3)

For i = 1, 2, set DivX i

def
=
⊕

xi∈6Xi
Z, which is the group of divisors on X i . Then

the subgroup DivX2 of D̂ivX2 maps into the subgroup

DivX1 =

⊕
x2∈6X2

( ⊕
x1∈φ−1(x2)

Z
)

of D̂ivX1 . Thus, we have a natural map

DivX2 → DivX1 .

We denote by PriX i the subgroup of DivX i which consists of principal divisors.
Note that we have a natural map K×i → DivX i , which maps a function fi to its
divisor div( fi ) of zeros and poles. Further, Let JX i be the Jacobian variety of X i .
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Let Div0
X i
⊂DivX i be the group of degree-zero divisors on X i . Then there exists a

natural isomorphism
Div0

X i
/PriX i = JX i (ki ).

Write DX i for the kernel of the natural homomorphism Div0
X i
→ JX i (ki )

p′ , with
JX i (ki )

p′ standing for the maximal prime-to-p quotient JX i (ki )/(JX i (ki ){p}) of
JX i (ki ), where, for an abelian group M , M{p} stands for the subgroup of torsion
elements a of M of p-power order. Then DX i sits naturally in the exact sequence

0→ PriX i → DX i → JX i (ki ){p} → 0.

For i ∈ {1, 2}, and a positive integer n prime to p, the Kummer exact sequence

1→ µn→ Gm
[n]
−→ Gm→ 1

induces a natural isomorphism

K×i /(K
×

i )
n ∼
→ H 1(Gi , µn(K

sep
i ));

see Lemma 1.4. By passing to the projective limit over all integers n prime to p,
we obtain a natural isomorphism

(K×i )
∧p′ ∼
→ H 1(Gi ,Mi ),

where
(K×i )

∧p′ def
= lim
←−
p-n

K×i /(K
×

i )
n.

Since we have a natural embedding K×i ↪→ (K×i )
∧p′ , we get a natural embedding

K×i ↪→ H 1(Gi ,Mi ).

In what follows we will identify K×i with its image in H 1(Gi ,Mi ); i = 1, 2. The
natural maps K×i → DivX i and H 1(Gi ,Mi )→ D̂ivX i are compatible with each
other, and hence the image of K×i in D̂ivX i , via the map H 1(Gi ,Mi )→ D̂ivX i in
diagram (4.3), coincides with the subgroup PriX i of principal divisors.

Lemma 4.13 (recovering the multiplicative group). (i) The homomorphism

D̂ivX2 → D̂ivX1

in diagram (4.3) maps DX2 into DX1 .

(ii) The above map H 1(G2,M2)→ H 1(G1,M1) induces a natural injective
(multiplicative) homomorphism

γ : K×2 ↪→ (K×1 )
p−n
= (K p−n

1 )×,

where pn is the exponent of the p-primary finite abelian group JX1(k1){p}. We
have [γ (K×2 ) : γ (K

×

2 )∩ K×1 ]<∞ and [γ (K×2 ) : γ (K
×

2 )∩ (K
×

1 )
p
]> 1.
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Moreover, this injective homomorphism is functorial in the following sense: Let
H1 ⊂G1, H2 ⊂G2 be open subgroups such that σ(H1)⊂ H2, and, for i = 1, 2, let
L i/Ki be the finite separable extension corresponding to Hi ⊂ Gi , Yi the integral
closure of X i in L i , and `i the constant field of L i (that is, the algebraic closure of
ki in L i ). Then we have a commutative diagram

L×2 � (L×1 )
p−m

K×2

f

� (K×1 )
p−n
,

f

where pm
≥ pn is the exponent of the p-primary finite abelian group JY1(`1){p},

and the vertical arrows are the natural embeddings.

Proof. (i) We have the diagram of maps

DivX1 � H 2(π1(X1)
(p′),M1)

DivX2

f

� H 2(π1(X2)
(p′),M2),

f

where the map DivX2 → DivX1 is the one induced by the map D̂ivX2 → D̂ivX1

in diagram (4.3). For i ∈ {1, 2}, the group H 2(π1(X i )
(p′),Mi ) denotes the sec-

ond cohomology group of the profinite group π1(X i )
(p′) with coefficients in the

(continuous) π1(X i )
(p′)-module Mi .

First, we shall treat the special case that (g1≥)g2>0. In this case, we have a nat-
ural isomorphism H 2(π1(X i )

(p′),Mi )
∼
→ H 2

et(X i ,Mi ) ([Mochizuki 2007, Propo-
sition 1.1]), where H 2

et(X i ,Mi ) denotes the second étale cohomology group of
X i with coefficients in Mi . We will identify the groups H 2(π1(X i )

(p′),Mi ) and
H 2

et(X i ,Mi ) via the above identifications. Further, the map H 2(π1(X2)
(p′),M2)→

H 2(π1(X1)
(p′),M1) is the map induced by the natural map π1(X1)

(p′)
→π1(X2)

(p′)

between fundamental groups, which is induced by σ (see Lemma 2.6), and the
Galois-equivariant identification τ−1

: M2
∼
→ M1. The map

DivX i → H 2(π1(X i )
(p′),Mi )

maps a divisor D to its first arithmetic (étale) Chern class c1(D), and is naturally
induced by the Kummer exact sequence

1→ µn→ Gm
[n]
−→ Gm→ 1

in étale topology (see [Mochizuki 2003, 4.1]). In particular, the map DivX i →

H 2(π1(X i )
(p′),Mi ) factors as

DivX i → Pic(X i )/(JX i (ki ){p}) ↪→ H 2(π1(X i )
(p′),Mi ),
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where Pic(X i )
def
= H 1

et(X i ,Gm) is the Picard group of X i . Note that the kernel of
the above map DivX i → H 2(π1(X i )

(p′),Mi ) coincides with DX i . We claim that
the above diagram is commutative. Thus, it induces a natural map DX2→ DX1 , as
desired (in the case that g2 > 0).

To prove this claim, let x2 ∈ 6X2 . We shall investigate the images of x2 ∈

DivX2 in H 2(π1(X1)
(p′),M1) under the two (composite) maps in the above di-

agram. First, consider the special case where x2 ∈ 6X2 is k2-rational and each
point of φ−1(x2) ⊂ 6X1 is k1-rational. Then the image c1(x2) of the divisor
x2 ∈ DivX2 in H 2(π1(X2)

(p′),M2) coincides with the class of the extension 1→
M2→π1(L

×
x2
)(p
′)
→π1(X2)

(p′)
→ 1, where π1(L

×
x2
)(p
′) is the geometrically prime-

to-p fundamental group of the line bundle Lx2 corresponding to the invertible sheaf
OX2(x2) with the zero section removed [Mochizuki 2005, Lemma 4.2; Mochizuki
2003, 4.1]. Further, π1(L

×
x2
)(p
′) is naturally identified with the maximal cuspidally

central quotient π1(X2 r {x2})
(p′),c-cn of π1(X2 r {x2})

(p′). Here, for a nonempty
open subscheme Ui ⊂ X i , we define the maximal (geometrically prime-to-p) cus-
pidally central quotient π1(Ui )

(p′),c-cn to be the maximal quotient of π1(Ui )
(p′)

in which the image of Ker(π1(U i )→ π1(X i )) lies in the center of the image of
π1(U i ) [Mochizuki 2005, Lemma 4.2(iii)]. Similarly, the maximal cuspidally cen-
tral quotient π1(X1 rφ−1(x2))

(p′),c-cn of π1(X1 rφ−1(x2))
(p′) gives the extension

of π1(X1)
(p′) by

⊕
x1∈φ−1(x2)

M1 that corresponds to

(c1(x1))x1∈φ−1(x2) ∈

⊕
x1∈φ−1(x2)

H 2(π1(X1)
(p′),M1)= H 2

(
π1(X1)

(p′),
⊕

x1∈φ−1(x2)

M1

)
.

Being well-behaved (with respect to φ̃), σ induces naturally a homomorphism
π1(X1 r φ−1(x2))

(p′)
→ π1(X2 r {x2})

(p′), which is a lifting of π1(X1)
(p′)
→

π1(X2)
(p′) and which further induces a homomorphism π1(X1rφ−1(x2))

(p′),c-cn
→

π1(X2 r {x2})
(p′),c-cn. These homomorphisms fit into the commutative diagram

1 �
⊕

x1∈φ−1(x2)
M1 � π1(X1 rφ−1(x2))

(p′),c-cn
� π1(X1)

(p′)
� 1

1 � M2

g
� π1(X2 r {x2})

(p′),c-cn
g

� π1(X2)
(p′)

g
� 1,

in which both rows are exact and the left vertical arrow is
⊕

x1∈φ−1(x2)
ex1τ , by

the inertia-rigidity of σ . The commutativity of this last diagram implies that
the image of the extension class of the top row (that is, (c1(x1))x1∈φ−1(x2)) un-
der the map H 2(π1(X1)

(p′),
⊕

x1∈φ−1(x2)
M1)→ H 2(π1(X1)

(p′),M1) induced by⊕
x1∈φ−1(x2)

[ex1] coincides with the image of the extension class of the bottom
row (that is, c1(x2)) under the map H 2(π1(X2)

(p′),M2)→ H 2(π1(X1)
(p′),M1)

induced by σ and τ−1. In other words, the image of c1(x2) in H 2(π1(X1)
(p′),M1)
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coincides with
∑

x1∈φ−1(x2)
ex1c1(x1). From this follows the claim (in the special

case), since the divisor x2 maps to
∑

x1∈φ−1(x2)
ex1 x1 via the above map DivX1 →

DivX2 . Finally, consider the general case where x2 may not be k2-rational and
each point of φ−1(x2) may not be k1-rational. But this is reduced to the spe-
cial case by considering suitable open subgroups of Gi , i = 1, 2, corresponding
to constant field extensions k ′i of ki . (Here, use the fact that the natural map
H 2(π1(X i )

(p′),Mi )→ H 2(π1(X i ×ki k ′i )
(p′),Mi ) is injective, which follows from

the injectivity of the natural map JX i (ki )→ JX i (k
′

i )= JX i×ki k′i (k
′

i ).) Thus, the claim
follows.

Next, to treat the general case that we may possibly have g2 = 0, consider any
open subgroup H2 of G2 and set H1

def
= σ−1(H2), which is an open subgroup of G1.

For each i = 1, 2, let Yi be the cover of X i corresponding to the open subgroup
Hi ⊂ Gi , and `i the constant field of Yi (that is, the algebraic closure of ki in the
function field of Yi ). Now, assume that the genus of Y2 is positive. Then it follows
from the preceding argument that the homomorphism DivY1 → DivY2 maps DY1

into DY2 . In particular, by functoriality, the image of DX1 in DivX2 is mapped into
DY2 ⊂DivY2 under the natural map DivX2→DivY2 . Or, equivalently, the image of
DX1 in DivX2 /DX2 lies in the kernel of DivX2 /DX2→ DivY2 /DY2 . This last map
is identified with the natural map

PicX2 /(JX2(k2){p})→ PicY2 /(JY2(`2){p})

induced by the pull-back of line bundles. Thus, by considering the norm map,
we see that the kernel in question is killed by the degree [G2 : H2] of the cover
Y2→ X2, and hence so is the image of DX1 in DivX2 /DX2 .

Observe that the greatest common divisor of [G2 : H2], where H2 runs over all
open subgroups of G2 such that the corresponding cover has positive genus, is 1.
(Indeed, if g2 > 0, this is trivial, and, if g2 = 0, this follows, for example, from
Kummer theory.) Thus, the image of DX1 in DivX2 /DX2 must be trivial, as desired.

(ii) For i = 1, 2, let D̃X i denote the inverse image of DX i ⊂DivX i (⊂ D̂ivX i ) in
H 1(Gi ,Mi ). It follows from (i) and the commutativity of diagram (4.3) that the
natural injective homomorphism H 1(G2,M2) ↪→ H 1(G1,M1) induces a natural
injective homomorphism D̃X2 ↪→ D̃X1 . Since K×i is the inverse image of PriX i ⊂

DivX i in H 1(Gi ,Mi ) [Mochizuki 2007, Proposition 2.1(ii)], we have

D̃X i /K×i
∼
→ DX i /PriX i

∼
→ JX i (ki ){p}.

Thus, the injective homomorphism D̃X2 ↪→ D̃X1 induces (K×2 )
pn
↪→ K×1 , or, equiv-

alently, K×2 ↪→ (K×1 )
p−n

.
Since γ (K×2 )/(γ (K

×

2 )∩K×1 ) is injectively mapped into D̃X1/K×1
∼
→ JX1(k1){p},

which is finite, γ (K×2 ) ∩ K×1 is of finite index in γ (K×2 ). Next, suppose that
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γ (K×2 )= γ (K
×

2 )∩ (K
×

1 )
p, or, equivalently, γ (K×2 )⊂ (K

×

1 )
p. By the assumption

that a = 0, there exists an x1 ∈ 6X1 such that ex1 = et
x1

. In particular, ex1 is prime
to p. Set x2

def
= φ(x1) ∈ 6X2 and take any g ∈ K×2 such that ordx2(g) = 1. Then,

by the commutativity of diagram (4.3), we have ordx1(γ (g))= ex1 ordx2(g)= ex1 ,
which is prime to p. On the other hand, since γ (g) ∈ (K×1 )

p, ordx1(γ (g)) must be
divisible by p, which is absurd.

Finally, the desired commutativity of diagram follows easily from the functori-
ality of Kummer theory. �

Next, let x1 ∈6X1 and set x2
def
= φ(x1)∈6X2 . Then (by choosing x̃1 ∈6X̃1

above
x1 and x̃2 ∈6X̃2

above x2 such that φ̃(x̃1)= x̃2) we have the natural commutative
diagram

H 1(G1,M1) � H 1(Dx̃1,M1) � H 1(Ix̃1,M1)

H 1(G2,M2)

f

� H 1(Dx̃2,M2)

f

� H 1(Ix̃2,M2),

f

where the horizontal arrows are natural restriction maps and the vertical arrows are
induced by (σ, τ−1). By Kummer theory, this diagram can be identified with the
natural commutative diagram

(K×1 )
∧p′

� ((K1)
∧

x1
)∧p′ ordx1

� Ẑp′

(K×2 )
∧p′

f

� ((K2)
×

x2
)∧p′

f

ordx2
� Ẑp′,

f
(4.4)

where the left horizontal arrows in the two rows arise from natural field homo-
morphisms K1→ (K1)x1 and K2→ (K2)x2 and the vertical arrows are induced by
(σ, τ−1). Further, the kernels of

((K1)
×

x1
)∧p′ ordx1
−→ Ẑp′ and ((K2)

×

x2
)∧p′ ordx2
−→ Ẑp′

are naturally identified with

H 1(Gk(x1),M1)= (k(x1)
×)∧p′
=k(x1)

× and H 1(Gk(x2),M2)= (k(x2)
×)∧p′
=k(x2)

×,

respectively. Thus, in particular, the homomorphism ((K2)
×
x2
)∧p′
→ ((K1)

×
x1
)∧p′

naturally induces a homomorphism ιx1 : k(x2)
×
→ k(x1)

× that is identified with
the homomorphism H 1(Gk(x2),M2)→H 1(Gk(x1),M1) induced by (σ, τ−1). Here,
the last homomorphism is injective by the fact H 0(Hk(x1),M2) = 0, where Hk(x1)

stands for the (isomorphic) image of Gk(x1) in Gk(x2), which is open in Gk(x2).
We have two natural field homomorphisms K1→ K p−n

1 : the first one is a natural
embedding i : K1 ↪→ K p−n

1 of degree pn and the second one is the isomorphism
j : K1

∼
→ K p−n

1 induced by the p−n-th power map. According to these, we obtain
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two scheme morphisms X p−n

1 → X1, where X p−n

1 stands for the integral closure of
X1 in K p−n

1 . First, for closed points, these two morphisms give the same bijection

π :6
X p−n

1

∼
→6X1 .

Let x1 ∈ 6X1 and set x p−n

1
def
= π−1(x1). The two field homomorphisms i and j

induce two isomorphisms k(x1)→ k(x p−n

1 ) of residue fields, which we shall denote
by ī(x1) and j̄(x1), respectively. Then we have ī(x1)= Fn

◦ j̄(x1), where F stands
for the pth power Frobenius map. Now, for valuations of functions, we have

ord
x p−n

1
◦ i = pn ordx1, ord

x p−n
1
◦ j = ordx1 .

Finally, for values of functions, we have

i( f )(x p−n

1 )= ī(x1)( f (x1)), j ( f )(x p−n

1 )= j̄(x1)( f (x1))

for each f ∈K×1 with ordx1( f )≥0. Thus, in particular, i( f )(x p−n

1 )= j ( f )(x p−n

1 )pn
.

Lemma 4.14. Let γ : K×2 ↪→ (K×1 )
p−n

be the injective homomorphism in Lemma
4.13. Let x1 ∈6X1 and set x2

def
= φ(x1) ∈6X2 . Then:

(i) For each g ∈ K×2 , we have

ord
x p−n

1
(γ (g))= pnex1 ordx2(g).

(Namely, γ is order-preserving with respect π−1
◦φ. See Definition 5.1.)

(ii) For each g∈K×2 with ordx2(g)=0, we have (γ (g))(x p−n

1 )= i(x1)(ιx1(g(x2))).
(Namely, γ is value-preserving with respect π−1

◦φ and

{i(x1) ◦ ιx1}x p−n
1 ∈6

X p−n
1

.

See Definition 5.2.)

Proof. (i) and (ii) follow immediately from the commutativity of diagrams (4.3)
and (4.4). �

Fix a prime number l 6= p. For each i = 1, 2, let kl
i be the (unique) Zl-

extension of ki , set K l
i

def
= Ki kl

i , and write X l
i for the normalization of X i in

K l
i . (Thus, X l

i = X i ×ki kl
i .) Then the p-primary abelian subgroup JX i (k

l
i ){p}

of JX i (k
l
i ) is finite for i = 1, 2. (See, for example, [Rosen 2002, Theorem 11.6]

or [Saïdi and Tamagawa 2009, proof of Theorem 3.7].) So, write pn0 for the
exponent of JX1(k

l
1){p}. By passing to the limit over the finite extensions of ki

contained in kl
i for i = 1, 2 (see Lemma 4.13(ii)), we get a natural embedding

(K l
2)
× ↪→ ((K l

1)
×)p−n0 . Now we apply a result from Section 5. (Observe that there

are no vicious circles since the discussion of Section 5 does not depend on the con-
tents of earlier sections.) More specifically, by Lemma 4.14 and Proposition 5.3,
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the embedding (K l
2)
× ↪→ ((K l

1)
×)p−n0 above arises from a (uniquely determined)

embedding K l
2 ↪→ (K l

1)
p−n0 of fields. This embedding of fields restricts to the

original embedding of multiplicative groups K×2 ↪→ (K×1 )
p−n

. Thus, we conclude
that this original embedding also arises from a (uniquely determined) embedding
K2 ↪→ K p−n

1 of fields.
Define the subfields K2 ⊃ K ′2 ⊃ K ′′2 to be the inverse images of the subfields

K p−n

1 ⊃ K1 ⊃ K p
1 in K2. By Lemma 4.13(ii), there exists a finite subset S ⊂ K2

such that K2 =
⋃
α∈S K ′2α. Since K2 is an infinite field, this implies that K ′2 is

also an infinite field and that K2 must be of dimension 1 as a K ′2-vector space.
Namely, K2 = K ′2, or, equivalently, the above field homomorphism K2 ↪→ K p−n

1
induces a field homomorphism γ : K2 ↪→ K1. Next, again by Lemma 4.13(ii), we
have [K×2 : (K

′′

2 )
×
] > 1, that is, K2 ) K ′′2 . Equivalently, the field homomorphism

K2 ↪→ K1 is separable.
Passing to the open subgroups H1⊂G1, H2⊂G2 with σ(H1)⊂H2 and applying

the above arguments to H1
σ
→ H2, we obtain naturally a (separable) field homomor-

phism γ̃ : K̃2→ K̃1 which restricts to the above (separable) field homomorphism
K2→ K1.

Lemma 4.15 (compatibility with the Galois action). Let g1 ∈ G1, and let g2
def
=

σ(g1) ∈G2. Then the following diagram is commutative:

K̃2
γ̃
� K̃1

K̃2

g2

f

γ̃
� K̃1.

g1

f

Proof. Let H2 ⊂G2 be an open normal subgroup and set

H1
def
= σ−1(H2),

which is an open normal subgroup of G1. For i = 1, 2, let Fi/Ki be the finite
Galois subextension of K̃i/Ki corresponding to Hi ⊂ Gi , and denote by Yi the
integral closure of X i in Fi . We have commutative diagrams

H 1(H2,M2) � H 1(H1,M1)

H 1(H2,M2)

g2

f

� H 1(H1,M1),

g1

f

where gi : H 1(Hi ,Mi )→ H 1(Hi ,Mi ) denotes the automorphism induced by the
action of gi on Hi , and the horizontal maps are naturally induced by (σ, τ−1) (see
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Lemma 4.11(i)), and
D̂ivY2 � D̂ivY1

D̂ivY2

g2
f

� D̂ivY1,

g1
f

where the map gi : D̂ivYi → D̂ivYi is the automorphism naturally induced by the
action of gi on Yi (see Remark 4.2(iv)). Further, the above diagrams commute with
each other, via the maps H 1(Hi ,Mi )→ D̂ivYi in diagram (4.3) for i = 1, 2. Note
that in the above diagrams the map gi : H 1(Hi ,Mi )→ H 1(Hi ,Mi ) restricted to
F×i coincides with the automorphism gi : F×i → F×i . Therefore, we deduce this
commutative diagram, from which the assertion follows:

F×2
γ̃
� F×1

F×2

g2
f

γ̃
� F×1 .

g1
f

�

Finally, we shall prove the uniqueness of the field homomorphism γ̃ : K̃2→ K̃1

that is Galois-compatible with respect to σ and restricts to a separable homomor-
phism K2→ K1. In the profinite case, this uniqueness follows formally from the
uniqueness in the assertion of the Isom-form proved in [Uchida 1977], as in the
case of rigid homomorphisms in Section 3. (Observe that γ̃ : K̃2 → K̃1 is then
an isomorphism.) In general, however, we need some arguments which are not
entirely formal, as follows.

So, let γ̃ ′ : K̃2→ K̃1 be another such field homomorphism. The field homomor-
phisms γ̃ and γ̃ ′ induce field isomorphisms k2

∼
→ k1, say, γ̄ and γ̄ ′, respectively,

which are Galois-compatible with respect to σ . We may write γ ′ = ϕα1 ◦ γ for
some α ∈ Ẑ, where ϕ1 ∈ Gal(k1/Fp) stands for the pth power Frobenius element.
Further, the isomorphisms γ̄ and γ̄ ′ induce Ẑp′-module isomorphisms M2

∼
→ M1,

say, τ−1 and (τ ′)−1, respectively, which are Galois-compatible with respect to σ .
Thus, we have (τ ′)−1

= [pα] ◦ τ−1. By Kummer theory, we have the commutative
diagrams

K×1 ⊂ � H 1(G1,M1)

K×2

γ
f

⊂ � H 1(G2,M2),

(σ,τ−1)
f

and

K×1 ⊂ � H 1(G1,M1)

K×2

γ ′
f

⊂ � H 1(G2,M2).

(σ,(τ ′)−1)
f

Thus, for each g ∈ K×2 , we have γ ′(g)= γ (g)pα in (K×1 )
∧p′ . Since both γ and γ ′

are field homomorphisms, we deduce that pα ∈ Q>0, by taking a nonconstant
function g and considering valuations at suitable points. Thus, α∈Z, by [Chevalley
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1951, théorème 1]. Exchanging γ and γ ′ if necessary, we may assume that α ≥ 0.
Thus, γ ′ = Fα ◦ γ , where F stands for the pth power Frobenius map. Since γ ′ is
separable, we conclude α = 0, and hence γ ′ = γ . Passing to the open subgroups
H1 ⊂G1, H2 ⊂G2 with σ(H1)⊂ H2, we conclude that γ̃ : K̃2→ K̃1 is unique.

Thus, the proof of Theorem 4.8 is completed. �

5. Recovering the additive structure

This section is devoted to the proof of Proposition 5.3, which was used in the proof
of Theorem 4.8. We shall first axiomatize the set-up. We will use the following
notations. For i ∈ {1, 2}, let X i be a proper, smooth, geometrically connected curve
over a field ki of characteristic pi ≥ 0. Let Ki = K X i be the function field of X i ,
and 6X i the set of closed points of X i . Let

ι : K×2 ↪→ K×1

be an embedding between multiplicative groups, which we extend to an embedding
ι : K2 ↪→ K1 between multiplicative monoids by setting ι(0)= 0. We assume that
we are given a map

φ :6X1 →6X2

that has finite fibers, that is, for any x2 ∈ X2, the inverse image φ−1(x2) ⊂ 6X1 is
a finite set.

Definition 5.1 (order-preserving maps). The map ι : K2 → K1 is called order-
preserving with respect to the map φ if, for any x2 ∈ 6X2 and any x1 ∈ φ

−1(x2),
there exists a positive integer ex1x2 > 0 such that the following diagram commutes:

K1
ordx1
� Z∪ {∞}

K2

ι
f

ordx2
� Z∪ {∞}.

[ex1x2 ]
f

Here, [ex1x2] denotes the map of multiplication by ex1x2 in Z, which we extend
naturally to Z∪ {∞} by mapping∞ to∞.

Next, we assume that the map ι : K2→ K1 is order-preserving with respect to
the map φ :6X1 →6X2 . Further, we assume that we are given an embedding

ιx1x2 : k(x2)
× ↪→ k(x1)

×

between multiplicative groups for any x2 ∈6X2 and any x1 ∈ φ
−1(x2).

Definition 5.2 (value-preserving maps). The map ι : K2 ↪→ K1 is called value-
preserving with respect to the map φ and the embeddings {ιx1x2}(x1,x2), where
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(x1, x2) runs over all pairs of points x2 ∈6X2 and x1 ∈ φ
−1(x2) if, for any f2 ∈ K×2

and any point x2 ∈6X2 such that x2 ∩Supp div( f2)=∅, we have

ιx1,x2( f2(x2))= ι( f2)(x1),

where f2(x2) denotes the value of f2 at x2 and ι( f2)(x1) the value of ι( f2) at x1.

If ι : K2 ↪→ K1 is value-preserving, it particularly fits into the commutative
diagram

k(x2)
×

ιx1x2
� k(x1)

×

k×2

f

ι
� k×1 ,

f

where the vertical maps are the natural embeddings. (Observe that ι maps k2 into
k1, by the order-preserving assumption.)

Proposition 5.3 (recovering the additive structure). Assume that the embedding
ι : K2 ↪→ K1 is order-preserving with respect to the map φ, and value-preserving
with respect to the map φ and the embeddings {ιx1x2}(x1,x2), where the pair (x1, x2)

runs over all points x2 ∈ 6X2 and x1 ∈ φ
−1(x2). Assume further that X2(k2) is an

infinite set. Then the map ι is additive (and hence, a homomorphism of fields).

Proof. First, we shall prove that ι−1(k1)= k2. (Namely, f ∈ K2 is constant if and
only if ι( f ) ∈ K1 is constant.) Indeed, set F2

def
= ι−1(k1). Note that k×i coincides

with the set of functions in K×i with neither zeroes nor poles (or, equivalently, with
no poles) anywhere in 6X i . Now, by the order-preserving property of ι, F2 r {0}
coincides with the set of functions in K×2 with neither zeroes nor poles (or, equiva-
lently, with no poles) in φ(6X1)⊂6X2 . It follows easily from this characterization
that F2 is a subfield of K2 containing k2. Since K2 is a function field of one variable
over k2 and since k2 is algebraically closed in K2, we have either F2 = k2 or that
F2 is also a function field of one variable over k2. Suppose the latter, and let W2 be
the (proper, smooth, geometrically connected) curve over k2 with function field F2.
Take any point x1 ∈6X1 and let w ∈6W2 be the image of x1 under the composite
map

6X1

φ
→6X2 →6W2,

where the second map arises from the cover X2→W2 corresponding to the exten-
sion L2/F2. Now, by the Riemann–Roch theorem, there exists a function f ∈ F2

having a pole at w. By the order-preserving property of ι, the function ι( f ) ∈ K1

must have a pole at x1. This contradicts the definition of F2. Therefore, we must
have F2 = k2, as desired.

We prove that φ : 6X1 → 6X2 is surjective. Suppose otherwise and take x2 ∈

6X2 r φ(6X1) 6= ∅. By the Riemann–Roch theorem, there exists a nonconstant
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function f ∈ K2 such that the pole divisor of f is supported on x2 ∈ 6X2 . Then,
by the order-preserving property of ι, the function ι( f ) ∈ K1 admits no poles, and
hence ι( f ) ∈ k1. As ι−1(k1)= k2, we thus have f ∈ k2, which is absurd.

The rest of the proof is similar to the proof of [Saïdi and Tamagawa 2009,
Proposition 4.4], where φ is a bijection. We first prove that ι restricted to k2 is
additive. Again by the Riemann–Roch theorem, there exists a nonconstant function
f ∈ K2 such that the pole divisor div( f )∞ of f is supported on a unique point
x2 ∈ 6X2 : div( f )∞ = nx2, with n > 0. For a nonzero constant α ∈ k2 we analyze
the divisor of the function ι( f +α)− ι( f ). We claim that

Supp div(ι( f +α)− ι( f ))⊂ φ−1(x2).

Indeed, if y1 ∈ 6X1 is such that y2
def
= φ(y1) 6= x2, then ordy1(ι( f + α)) ≥ 0, and

ordy1(ι( f )) ≥ 0. Moreover, ι( f + α)(y1) 6= ι( f )(y1), as follows from the value-
preserving assumption, since ( f +α)(y1) 6= f (y1). Thus,

y1 /∈ Supp div(ι( f +α)− ι( f ))

and our claim follows. Further, if x1 ∈ φ
−1(x2) is a pole of ι( f + α)− ι( f ), we

have |ordx1(ι( f + α)− ι( f ))| ≤ nex1x2 . We deduce easily from this that there are
only finitely many possibilities for the divisor div(ι( f + α)− ι( f )). Since k2 is
infinite (X2(k2) being infinite), there exists an infinite subset A ⊂ k×2 such that
div(ι( f +α)− ι( f )) is constant, for all α ∈ A.

Let α 6= β be elements of A. Then div(ι( f +α)− ι( f ))= div(ι( f +β)− ι( f )),
which implies

ι( f +β)− ι( f )
ι( f +α)− ι( f )

= c ∈ k×1 .

Observe that ι( f + α)− ι( f ) 6= 0, by the injectivity of ι. Further, c = ι(β)/ι(α),
as is easily seen by evaluating the function

ι( f +β)− ι( f )
ι( f +α)− ι( f )

at a zero of the nonconstant function ι( f ). Thus, we have ι(β)(ι( f +α)− ι( f ))=
ι(α)(ι( f +β)− ι( f )), which is equivalent to

ι( f )(ι(α)− ι(β))= ι(α)ι( f +β)− ι(β)ι( f +α).

Let
g def
=
β( f +α)
(α−β) f

=
β(1+α f −1)

(α−β)
.

Note that g is a nonconstant function, since f is nonconstant. We have

g+ 1=
β( f +α)
(α−β) f

+
(α−β) f
(α−β) f

=
βα+α f
α f −β f

=
α(β + f )
(α−β) f

.
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Dividing this equality by ι(α−β)ι( f ) 6= 0, we obtain

ι(α)− ι(β)

ι(α−β)
=
ι(α)ι( f +β)− ι(β)ι(α+ f )

ι(α−β)ι( f )
.

Thus,
ι(α)− ι(β)

ι(α−β)
=
ι(α)ι( f +β)
ι(α−β)ι( f )

−
ι(β)ι(α+ f )
ι(α−β)ι( f )

,

which equals ι(g+ 1)− ι(g). Further,

ι(α)− ι(β)

ι(α−β)
= 1,

as follows by evaluating the function ι(g+ 1)− ι(g) at a zero of the nonconstant
function ι(g). Thus,

ι(g+ 1)= ι(g)+ 1.

Take any ζ ∈ k2. Then, evaluating this equation at a zero of ι(g− ζ ), we obtain
ι(ζ +1)= ι(ζ )+1. Now, for any ξ, η ∈ k2, we have ι(ξ+η)= ι(ξ)+ ι(η). Indeed,
if η = 0, this follows from ι(0)= 0. If η 6= 0, we have

ι(ξ + η)= ι
(
ξ

η
+ 1

)
ι(η)=

(
ι
(
ξ

η

)
+ 1

)
ι(η)= ι(ξ)+ ι(η).

Thus, ι|k2 is additive.
From this it follows easily that ι itself is additive. Indeed, let h and l be any

elements of K2, and let us prove ι(h+l)= ι(h)+ ι(l). Take any x2 ∈ X2(k2) which
is neither a pole of h nor a pole of l. Then, evaluating at any x1 ∈ φ

−1(x2), we
obtain

(ι(h+ l))(x1)= ιx1x2((h+ l)(x2))

= ιx1x2(h(x2)+ l(x2))

= ι(h(x2)+ l(x2))

= ι(h(x2))+ ι(l(x2))

= ιx1x2(h(x2))+ ιx1x2(l(x2))

= (ι(h))(x1)+ (ι(l))(x1)

= (ι(h)+ ι(l))(x1),

where the first and the sixth equalities follow from the value-preserving property,
the second and the last equalities follow from the additivity of the evaluation maps,
the third and the fifth equalities follow from the value-preserving property and the
fact that h(x2), l(x2)∈ k2 (since x2 ∈ X2(k2)), and the fourth equality follows from
the additivity of ι|k2 . Now, since there are infinitely many such x1 by assumption,
the equality ι(h+ l)= ι(h)+ ι(l) must hold. Thus, Proposition 5.3 is proved. �
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