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We give a concrete description of the category of étale algebras over the ring
of Witt vectors of a given finite length with entries in an arbitrary ring. We do
this not only for the classical p-typical and big Witt vector functors but also
for certain analogues over arbitrary local and global fields. The basic theory of
these generalized Witt vectors is developed from the point of view of commuting
Frobenius lifts and their universal properties, which is a new approach even for
classical Witt vectors. Our larger purpose is to provide the affine foundations for
the algebraic geometry of generalized Witt schemes and arithmetic jet spaces, so
the basics are developed in some detail, with an eye toward future applications.
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Introduction

Witt vector functors are certain functors from the category of (commutative) rings
to itself. The most common are the p-typical Witt vector functors W , for each
prime number p. Given a ring A, one traditionally defines W (A) as a set to be AN

and then gives it the unique ring structure which is functorial in A and such that
the set maps

W (A)
w
−→ AN

(x0, x1, . . . ) 7−→ 〈x0, x p
0 + px1, x p2

0 + px p
1 + p2x2, . . . 〉

are ring homomorphisms for all rings A, where the target has the ring structure
with componentwise operations. For example, we have

(x0, x1, . . . )+ (y0, y1, . . . )=
(
x0+ y0, x1+ y1−

p−1∑
i=1

1
p

(p
i

)
x i

0 y p−i
0 , . . .

)
(x0, x1, . . . ) · (y0, y1, . . . )= (x0 y0, x p

0 y1+ x1 y p
0 + px1 y1, . . . ).

Observe that the four polynomials in x0, y0, x1, y1 displayed on the right-hand side
have integer coefficients, as they must if they are to define operations on W (A) for
all rings A. Conversely, to prove that the desired functorial ring structure on W
exists, it is enough to prove that the polynomials sitting in the higher components
have integer coefficients too. This is Witt’s theorem.

On the other hand, the polynomials at the component of index n depend only
on the variables x0, y0, . . . , xn, yn . This is clear by induction. It follows that the
quotient set A[0,n] = {(x0, . . . , xn)} of W (A) = AN is a quotient ring, which we
denote by Wn(A). (It is traditionally denoted Wn+1(A). The shift in indexing is
preferable for reasons discussed in 2.5.)

In some cases, the rings W (A) and Wn(A) are isomorphic to familiar rings. For
example, W (Z/pZ) is isomorphic to the ring Zp of p-adic integers, and Wn(Z/pZ)

is isomorphic to Z/pn+1Z. If p is invertible in A, then w is a bijection and so the
Witt vector rings become product rings: Wn(A)∼= A[0,n] and W (A)∼= AN. But in
most cases, W (A) is not a familiar ring.

While this traditional approach to Witt vectors is adequate for many purposes,
it has two shortcomings. The first is that it is not clear how we should think about
the affine scheme Spec Wn(A) geometrically. Indeed, I am not aware of a truly
geometric description of Spec Wn(A) in any nontrivial case in the literature. If we
want to fully incorporate Witt vectors into arithmetic algebraic geometry (and we
do), it is important to have a thorough understanding of their geometry. The main
point here and in the companion paper [Borger 2010] is to set up a framework for
that. The geometry in this paper is however limited to the basic results in the affine
case needed for the general treatment in [Borger 2010].
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The second shortcoming of the traditional approach is that it does not explain
what the defining purpose of Witt vectors is. The answer, at least for this paper, is
that they control Frobenius lifts—ring endomorphisms which reduce to the Frobe-
nius map modulo p. Here we are following Borger and Wieland [2005, §12.3–4],
who in turn followed Joyal [1985a; 1985b]. Motivated by this perspective, we will
define Witt vector functors relative to primes in any global or local field. This
generality includes not only the p-typical functors above but also the so-called big
Witt vector functor and less common variants of the p-typical ones due to Drin-
feld [1976, Proposition 1.1] and to Hazewinkel [1978, (18.6.13)]. It also includes
many variants unstudied till now. We will work with these generalized functors
throughout the paper. In fact, this will take no more effort once we establish some
basic reduction results.

Let us now discuss the contents in more detail.
Section 1 introduces our generalized Witt vectors. Given a Dedekind domain

R and a set E of maximal ideals of R with finite residue fields, we will define a
functor WR,E from the category RingR of R-algebras to itself:

WR,E : RingR→ RingR.

(In fact, we will work with slightly more general R and E .) We call WR,E the E-
typical Witt vector functor. When R = Z and E consists of a single maximal ideal
pZ, our functor will agree with the p-typical Witt vector functor above; when E
consists of all maximal ideals of Z, our functor will agree with the big Witt vector
functor. The definition of WR,E is in two steps. First we define a functor

W fl
R,E : Ringfl

R→ Ringfl
R,

where Ringfl
R is the full subcategory of RingR consisting of R-algebras which are

m-torsion free for all ideals m ∈ E . We call such algebras E-flat. Then we define
WR,E to be a certain natural extension of W fl

R,E to all of RingR .
Let N(E) denote the commutative monoid

⊕
E N, where N is {0, 1, . . . } under

addition. Given an action of N(E) on an R-algebra B, let ψm denote the endomor-
phism of B given by the m-th element of the standard basis of N(E). Let us say
that such an action is a 3R,E -structure if for each m ∈ E , the map ψm reduces
to the Frobenius endomorphism x 7→ x [R:m] on B/mB. Now, for any R-algebra
A, the monoid N(E) acts on AN(E)

through its translation action on itself in the
exponent. When A is E-flat, we define W fl

R,E(A) to be the largest of the sub-R-
algebras B ⊆ AN(E)

having the properties that B is stable under the action of N(E)

and that the induced action on B is a3R,E -structure. It is elementary to check that
a maximal such subalgebra W fl

R,E(A) exists.
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This definition can be expressed as a universal property. Let Ringfl
3R,E

denote
the following category: the objects are E-flat R-algebras equipped with a 3R,E -
structure, and the morphisms are N(E)-equivariant R-algebra maps. Then W fl

R,E ,
viewed as a functor Ringfl

R→ Ringfl
3R,E

, is the right adjoint of the evident forgetful
functor.

One then defines WR,E to be the left Kan extension of W fl
R,E , now viewed as a

functor Ringfl
R→ RingR . This amounts to the following. It is not hard to show that

the functor W fl
R,E is representable, that is, there exists an E-flat R-algebra 3R,E

and an isomorphism W fl
R,E(−)= Hom(3R,E ,−), as set-valued functors. Because

W fl
R,E takes values in R-algebras, 3R,E carries the structure of a co-R-algebra

object in Ringfl
R . Because such a structure is described using maps between certain

coproducts of 3R,E with itself, and because Ringfl
R is a full subcategory of RingR

closed under coproducts,3R,E continues to be a co-R-algebra object when viewed
as an object of RingR . Therefore it represents an R-algebra-valued functor, and this
functor is what WR,E is defined to be.

Since the definition of WR,E in terms of W fl
R,E is of a purely category-theoretic

nature, one should view the E-flat case as the central one. This is in contrast to the
common point of view that the purpose of Witt vector functors is to lift rings from
positive characteristic to characteristic zero.

As in the E-flat setting, WR,E is the right adjoint of the forgetful functor

Ring3R,E
→ RingR,

but to make sense of this, it is necessary to know the what a 3R,E -structure on a
general R-algebra is. Unfortunately, it is not easy to state the definition, and so
we will leave it to the body of the paper. In the E-flat setting, it is equivalent to a
commuting family of Frobenius lifts indexed by E , as above; but in general, it is
a slightly stronger structure that is better behaved. When R is Z and E consists of
all maximal ideals of Z, a 3R,E -structure is equivalent to a λ-ring structure in the
sense of Grothendieck’s Riemann–Roch theory, but this does not admit a simple
definition either.

In addition to the right adjoint WR,E , the forgetful functor Ring3R,E
→ RingR

has a left adjoint, which we denote by A 7→ 3R,E � A. It has a smaller presence
in this paper, but it is very important—even in the p-typical case, as the work of
Buium [1996; 2005] makes clear.

Section 2 defines functors WR,E,n , which are truncations of WR,E in the same
way that the functors Wn above are truncations of W . For any A ∈ Ringfl

R and
n ∈N(E), let W fl

R,E,n(A) denote the image of the subring W fl
R,E(A)⊆ AN under the

canonical projection

AN(E)
→ A[0,n],
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where
[0, n] = {i ∈ N(E)

| im 6 nm for all m ∈ E}.

Then W fl
R,E,n is a functor Ringfl

R→Ringfl
R . It is representable by an E-flat R-algebra

3R,E,n , and we extend it to a functor

WR,E,n : RingR→ RingR

by taking its left Kan extension, as above. These truncated functors are related to
the original one by the formula

WR,E(A)= lim
n

WR,E,n(A).

Even in the p-typical case, this approach to defining the Witt vectors has the
advantage over the traditional one that universal properties are emphasized and the
particulars of explicit constructions are played down. But this comes at a cost. For
instance, it is not obvious that WR,E,n preserves surjectivity of maps. To prove
this and other basic facts, it appears necessary to bring back the Witt components
(x0, x1, . . . ) above, at least in some form. To define them, the ideals of E must be
principal; the purpose of section 3 is to define them in the minimal case we will
need, which is when E consists of a single principal ideal m. A version of the proof
of Witt’s theorem then shows there is a unique functorial bijection AN

→WR,E(A)
such that when A is E-flat, the composition AN

→WR,E(A)⊆ AN satisfies

(x0, x1, x2, . . . ) 7→ 〈x0, xq
0 +πx1, xq2

0 +πxq
1 +π

2x2, . . . 〉

where q = [R : m] and π is a fixed generator of m. We can similarly identify
WR,E,n(A) with the quotient A[0,n] consisting of vectors (x0, . . . , xn). Let me em-
phasize that the components (x0, x1, . . . ) depend on the choice of generator π ∈m

in a complex, non-multilinear way. But we can use them to define Verschiebung
operators

V j
m : m

j
⊗R WR,E,n(A)→WR,E,n+ j (A)

π j
⊗ (x0, . . . , xn) 7→ (0, . . . , 0, x0, . . . , xn),

which are independent of the choice of the generator π . Making that so is the
purpose the tensor factor m j .

When E consists of a single ideal m (possibly nonprincipal), section 4 describes
WR,E,n in terms of the case where m is principal, which is covered by section 3.
This is done by working Zariski locally on R. Using the same technique, we will
show that the Verschiebung maps as above can be defined when m is not assumed to
be principal. In fact, there is a unique functorial family of such maps agreeing with
the maps defined above. The image of V j

m is the kernel of the canonical projection
WR,E,n+ j (A)→WR,E, j (A).
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Similarly, section 5 gives a description of WR,E,n when E is general in terms
of the case where E consists of a single ideal, which is covered by section 4: if
m1, . . . ,mr are the ideals in the support of n, there is a natural isomorphism

WR,E,n
∼
−→WR,mr ,nmr

◦ · · · ◦WR,m1,nm1
. (0-0-1)

Such a description also holds for WR,E , though some care must be taken when E is
infinite. It is also possible to describe the functor3R,E�−, as well as its truncated
variants 3R,E,n �−, in terms of the case where E consists of a single ideal.

Section 6 gives several ring-theoretic facts about WR,E,n which we will need
later. For example, this is where we prove that WR,E,n preserves surjectivity.
Most of the arguments there appear to require the use of Witt components and
the reduction techniques of sections 4 and 5.

Sections 7–9 prove the main results, which relate Witt vector functors and étale
maps. Suppose E consists of a single ideal m. For any ring A and any integer
n > 1, we have a diagram

WR,E,n(A)
αn

// WR,E,n−1(A)× A
s◦pr1

//

t◦pr2

// A/mn A. (0-0-2)

When m is principal, the maps αn , s, and t can be defined in terms of the Witt
components relative to a fixed generator π ∈m as follows:

αn : (a0, . . . , an) 7→
(
(a0, . . . , an−1), aqn

0 +πaqn−1

1 · · · +πnan
)

s : (a0, . . . , an−1) 7→ (aqn

0 + · · ·+π
n−1aq

n−1) mod mn A

t : a 7→ a mod mn A.

If A is m-torsion free, (0-0-2) is an equalizer diagram. Figure 1 shows the induced
diagram of schemes in the p-typical case when n = 1.

Now let C denote the following category: an object is a pair (B, ϕ), where B is
an étale (WR,E,n−1(A)× A)-algebra and ϕ is an isomorphism of A/mn A-algebras

A/mn A⊗t◦pr2
B

ϕ
−→ A/mn A⊗s◦pr1

B

and where a morphism (B1, ϕ1)→ (B2, ϕ2) is a (WR,E,n−1(A)× A)-algebra map
f : B1→ B2 such that

ϕ2 ◦ (A/mn A⊗t◦pr2
f )= (A/mn A⊗s◦pr1

f ) ◦ϕ1.

In other words, C is the category of algebras equipped with gluing data relative to
the diagram (0-0-2), or equivalently C is the (weak) fiber product of the category
of étale Wn−1(A)-algebras and the category étale A-algebras over the category of
étale A/mn A-algebras via the evident functors.
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Frobenius

identity

Spec W1(A) Spec(A× A) Spec A/p A

Figure 1. As a topological space, Spec W1(A) (traditionally writ-
ten W2(A)) is two copies of Spec A glued along Spec A/p A. This
is also true as schemes if we assume that A is p-torsion free and we
glue transversely and with a Frobenius twist, as indicated. There is
a similar description of Spec Wn(A) as Spec Wn−1(A) glued with
Spec A along Spec A/pn A. See the diagram (0-0-2).

Theorem A. The base-change functor from the category of étale WR,E,n(A)-alge-
bras to C is an equivalence. If A is m-torsion free, then a quasi-inverse is given by
sending (B, ϕ) to the equalizer of the two maps

B
1⊗idB

//

ϕ◦(1⊗idB)

// A/mn A⊗s◦pr1
B.

The first statement can be expressed succinctly in geometric terms; it says that
the map αn satisfies effective descent for étale algebras and that descent data is
equivalent to gluing data with respect to the diagram (0-0-2). Using theorem A and
induction on n, it is in principle possible to reduce questions about étale Wn(A)-
algebras to questions about étale A-algebras. This is still true when E consists of
more than one ideal, but now by (0-0-1) and induction on r .

Section 9 generalizes van der Kallen’s theorem [1986, (2.4)] to any R and E :

Theorem B. Let f : A→ B be an étale morphism of R-algebras. Then the map
WR,E,n( f ) : WR,E,n(A)→WR,E,n(B) of R-algebras is étale.

This result is fundamental in extending Witt constructions beyond affine schemes
and will be used often in [Borger 2010]. Van der Kallen’s argument, which has
an infinitesimal flavor, could be extended to our setting with only minor modifi-
cations.1 Instead we deduce theorem B from theorem A, so our argument has a
globally geometric flavor.

1Until recently, [van der Kallen 1986] had escaped the notice of many workers in de Rham–Witt
theory, to whom theorem B was unknown even for the p-typical Witt vectors.
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1. Generalized Witt vectors and 3-rings

The purpose of this section is to define our generalized Witt vectors and 3-rings.
It is largely an expansion in more concrete terms of the portion of [Borger and
Wieland 2005] dealing with Witt vectors and 3-rings. The approach here will
allow us to avoid much of the abstract language of operations on rings, as first
introduced in [Tall and Wraith 1970].

For the traditional way of defining 3-rings and Witt vectors, see [Bourbaki
1983, XI, §1] and especially the exercises for that section. One can also see Witt’s
original paper [1937] on p-typical Witt vectors and his notes on big Witt vectors
[Witt 1998, pp. 157–163].

1.1. Supramaximal ideals. Let us say that an ideal m of a ring R is supramaximal
if either

(a) R/m is a finite field, Rm is a discrete valuation ring, and m is finitely presented
as an R-module, or

(b) m is the unit ideal.

By far the most important example is a maximal ideal with finite residue field in a
Dedekind domain. (In fact, all phenomena in this paper occur already over R = Z,
and this case covers the classical Witt vectors and λ-rings.) The reason we allow
the unit ideal is only so that a supramaximal ideal remains supramaximal after any
localization.

Note that a supramaximal ideal m is invertible as an R-module. Indeed, locally
at m it is the maximal ideal of a discrete valuation ring, and away from m it is the
unit ideal.

1.2. General notation. Fix a ring R and a family (mα)α∈E of pairwise coprime
supramaximal ideals of R indexed by a set E . Note that because the unit ideal is
coprime to itself, it can be repeated any number of times; otherwise the ideals mα

are distinct. For each α ∈ E , let qα denote the cardinality of R/mα. We will often
abusively speak of mα rather than α as being an element of E , especially when mα

is maximal, in which case it comes from a unique α ∈ E .
Let R[1/E] denote the R-algebra whose spectrum is the complement of E in

Spec R. It is the universal R-algebra in which every mα becomes the unit ideal. It
also has the more concrete description

R[1/E] =
⊗
α∈E

R[1/mα],

where the tensor product is over R and R[1/mα] is defined to be the coequalizer
of the maps

Sym(R) //
// Sym(m−1

α )
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of symmetric algebras, where m−1
α is the dual of mα, one of the maps is Sym

applied to the canonical map R→ m−1
α , and the other is the map induced by the

R-module map R→ Sym(m−1
α ) that sends 1 ∈ R to the element 1 ∈ Sym(m−1

α ) in
degree zero.

Finally, we write N for the monoid {0, 1, 2, . . . } under addition and write RingR
for the category of R-algebras.

1.3. E-flat R-modules. Let us say that an R-module M is E-flat if for all maximal
ideals m in E , the following equivalent conditions are satisfied:

(a) Rm⊗R M is a flat Rm-module,

(b) the map m⊗R M→ M is injective.

The equivalence of these two can be seen as follows. Condition (b) is equivalent
to the statement TorR

1 (R/m,M)= 0, which is equivalent to

TorRm
1 (R/m, Rm⊗R M)= 0.

Since Rm is a discrete valuation ring, this is equivalent to the Rm-module Rm⊗R M
being torsion free and hence flat.

We say an R-algebra is E-flat if its underlying R-module is. Let Ringfl
R denote

the full subcategory of RingR consisting of the E-flat R-algebras.

1.4. Proposition. Any product of E-flat R-modules is E-flat, and any sub-R-
module of an E-flat R-module is E-flat.

Proof. We will use condition (b) above. Let (Mi )i∈I be a family of E-flat R-
modules. We want to show that for each maximal ideal m in E , the composition

m⊗
∏

i Mi //
∏

i m⊗Mi //
∏

i Mi

is injective. Because each Mi is E-flat, the right-hand map is injective, and so it is
enough to show the left-hand map is injective.

Since m is assumed to be finitely presented as an R-module, we can express it as
a cokernel of a map N ′→ N of finite free R-modules. Then we have the following
diagram with exact rows:

N ′⊗R
∏

i Mi //

∼

��

N ⊗R
∏

i Mi //

∼

��

m⊗R
∏

i Mi //

��

0

∏
i N ′⊗R Mi //

∏
i N ⊗R Mi //

∏
i m⊗R Mi // 0.

The left two vertical maps are isomorphisms because N ′ and N are finite free.
Therefore the rightmost vertical map is an injection (and even an isomorphism).
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Now suppose M ′ is a sub-R-module of an E-flat R-module M . Since m is an
invertible R-module, m⊗R M ′ maps injectively to m⊗R M . Since M is E-flat,
m⊗R M ′ further maps injectively to M , and hence to M ′. �

1.5. 9-rings. Let A be an R-algebra. Let us define a 9R,E -action, or a 9R,E -ring
structure, on A to be a commuting family of R-algebra endomorphismsψα indexed
by α ∈ E . This is the same as an action of the monoid N(E)

=
⊕

E N on A. For
any element n ∈ N(E), we will also write ψn for the endomorphism of A induced
by n. A morphism of 9R,E -rings is defined to be an N(E)-equivariant morphism
of rings.

The free 9R,E -ring on one generator e is 9R,E = R[e]⊗RN(E)
, where N(E) acts

on 9R,E through its action on itself in the exponent. In particular, 9R,E is freely
generated as an R-algebra by the elementsψn(e), where n∈N(E). Then it is natural
to write ψn = ψn(e) ∈ 9R,E and ψα = ψbα ∈ 9R,E , where bα ∈ N(E) denotes the
α-th standard basis vector, and e = ψ0 ∈9R,E for the identity operator.

For any 9R,E -ring A, there is a unique set map

9R,E × A
◦
−→ A (1-5-1)

with the property that for all α ∈ E , r ∈ R, f1, f2 ∈9R,E , a ∈ A we have

ψα ◦ a = ψα(a) (1-5-2)

and

r◦a=r, ( f1+ f2)◦a= ( f1◦a)+( f2◦a), ( f1 f2)◦a= ( f1◦a)( f2◦a). (1-5-3)

Taking A = 9R,E , we get a binary operation ◦ on 9R,E called composition or
plethysm. One can check that this makes 9R,E a monoid (noncommutative unless
R = 0) with identity e and that (1-5-1) is a monoid action.

In the language of plethystic algebra [Borger and Wieland 2005], we can inter-
pret 9R,E as the free R-plethory R〈ψα|α ∈ E〉 on the R-algebra endomorphisms
ψα. Then a 9R,E -action in the sense above is the same as a 9R,E -action in the
sense of abstract plethystic algebra. In particular, 9R,E can be viewed as the ring
of natural unary operations on 9R,E -rings, and the composition operation ◦ above
agrees with the usual composition of unary operations. (Compare with 1.18 below.)

1.6. E-flat3-rings. Let A be an R-algebra which is E-flat. Define a 3R,E -action,
or a 3R,E -ring structure, on A to be a 9R,E -action with the following Frobenius
lift property: for all α ∈ E , the endomorphism id⊗ψα of R/mα⊗R A agrees with
the Frobenius map x 7→ xqα . A morphism of E-flat 3R,E -rings is simply defined
to be a morphism of the underlying 9R,E -rings. Let us denote this category by
Ringfl

3R,E
.



The basic geometry of Witt vectors, I 241

1.7. The ghost ring. Since an action of 9R,E on an R-algebra A is the same as
an action (in the category of R-algebras) of the monoid N(E), the forgetful functor
from the category of 9R,E -rings to that of R-algebras has a right adjoint given by

A 7→
∏
N(E)

A = AN(E)
,

where N(E) acts on AN(E)
through its action on itself in the exponent. (This is a

general fact about monoid actions in any category with products.) For a ∈ AN(E)

and n, n′ ∈ N(E), the n-th component of ψn′(a) is the (n+ n′)-th component of a.
One might call AN(E)

the cofree 9R,E -ring on the R-algebra A. It has tradition-
ally been called the ring of ghost components or ghost vectors. By 1.4, it is E-flat
if A is.

When |E | = 1, there is the possibility of confusing the ghost ring AN, which
has the product ring structure, with the usual ring AN of Witt components (see
3.5), which has an exotic ring structure. To prevent this, we will use angle brackets
〈a0, a1, . . . 〉 for elements of the ghost ring.

1.8. Witt vectors of E-flat rings. Let us now construct the functor W fl
R,E . We will

show in 1.9 that it is the right adjoint of the forgetful functor from the category
of E-flat 3R,E -rings to that of E-flat R-algebras. (Further, the flatness will be
removed in 1.12.)

Let A be a E-flat R-algebra. Let U0(A) denote the cofree 9R,E -ring AN(E)
. For

any i > 0, let

Ui+1(A)= {b ∈Ui (A) | ψα(b)− bqα ∈mαUi (A) for all α ∈ E}.

This is a sub-R-algebra of AN(E)
. Indeed, it is the intersection over α ∈ E of the

equalizers of pairs of R-algebra maps

Ui (A)
//
// R/mα ⊗R Ui (A)

given by x 7→ 1⊗ψα(x) and by x 7→ (1⊗ x)qα .
Now define

W fl
R,E(A)=

⋂
i>0

Ui (A). (1-8-1)

This is the ring of E-typical Witt vectors with entries in A. It is a sub-R-algebra
of AN(E)

. Observe that W fl
R,E(A)= AN(E)

if A is an R[1/E]-algebra.

1.9. Proposition. (a) W fl
R,E(A) is a sub-9R,E -ring of AN(E)

.

(b) This 9R,E -ring structure on W fl
R,E(A) is a 3R,E -ring structure.

(c) The induced functor A 7→ W fl
R,E(A) from E-flat R-algebras to E-flat 3R,E -

rings is the right adjoint of the forgetful functor.
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Proof. (a) Let us first show by induction that each Ui (A) is a sub-9R,E -ring of
AN(E)

. For i = 0, we have U0(A) = AN(E)
, and so it is clear. For i > 1, we use

the description of Ui+1(A) as the intersection of the equalizers of the pairs of ring
maps

Ui (A)
//
// R/mα ⊗R Ui (A)

given in 1.8. Observe that both these ring maps become9R,E -ring maps if we give
R/mα⊗R Ui (A) a 9R,E -action by defining ψβ : a⊗ x 7→ a⊗ψβ(x), for all β ∈ E .
Since limits of 9R,E -rings exist and their underlying rings agree with the limits
taken in the category of rings, Ui+1(A) is a sub-9R,E -ring of AN(E)

. Therefore
W fl

R,E(A), the intersection of the Ui (A), is also a sub-9R,E -ring of AN(E)
.

(b) It is enough to verify

ψα(x)− xqα ∈mαW fl
R,E(A)=mα

⋂
i>0

Ui (A),

for all α ∈ E and x ∈W fl
R,E(A). For any i > 0, we know

ψα(x)− xqα ∈mαUi (A),

because x ∈W fl
R,E(A)⊆Ui+1(A). Therefore we know

ψα(x)− xqα ∈
⋂
i>0

mαUi (A).

So, it is enough to show

mα

⋂
i>0

Ui (A)=
⋂
i>0

mαUi (A). (1-9-1)

Since mα is finitely generated, it is a quotient of a finite free R-module N . Consider
the induced diagram

mα ⊗R limi Ui (A)
h

// limi mα ⊗R Ui (A)

N ⊗R limi Ui (A)
f

//

OO

limi N ⊗R Ui (A)

g

OO

Since N is finite free, f is an isomorphism; since mα is projective, the map N→mα

has a section and hence so does g. Therefore g ◦ f is surjective and hence so is h,
which implies (1-9-1).

(c) Let A be an E-flat R-algebra, let B be an E-flat 3R,E -ring, and let γ̄ : B→ A
be an R-algebra map. By the cofree property of AN(E)

, there is a unique 9R,E -ring
map γ : B → AN(E)

lifting γ̄ . We now only need to show that the image of γ is
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contained in W fl
R,E(A). By induction, it is enough to show that if im(γ )⊆Ui (A),

then im(γ )⊆Ui+1(A).
Let b be an element of B. Then for each α ∈ E , we have

ψα
(
γ (b)

)
− γ (b)qα = γ

(
ψα(b)− bqα

)
∈ γ (mαB)⊆mα im(γ )⊆mαUi (A).

Therefore, by definition of Ui+1(A), the element γ (b) lies in Ui+1(A). �

1.10. Exercises. Let R = Z. If E consists of the single ideal pZ, then W fl(Z)

agrees with the subring of the ghost ring ZN consisting of vectors a = 〈a0, a1, . . . 〉

that satisfy
an ≡ an+1 mod pn+1

for all n > 0. In particular, the elements are p-adic Cauchy sequences and the rule
a 7→ limn→∞ an defines a surjective ring map W fl(Z)→ Zp.

We can go a step further with W fl(Zp). Let I denote the ideal pZp× p2Zp×· · ·

in ZN
p . Then W fl(Zp) is isomorphic to the ring Zp⊕ I with multiplication defined

by the formula (x, y)(x ′, y′)= (xx ′, xy′+ yx ′+ yy′).
Now suppose that E consists of all the maximal ideals of Z, and identify N(E)

with the set of positive integers, by unique factorization. Then W fl(Z) consists of
the ghost vectors 〈a1, a2, . . . 〉 that satisfy

a j ≡ apj mod p1+ordp( j)

for all j > 1 and all primes p.

1.11. Representing W fl. Let us construct a flat R-algebra 3R,E representing the
functor W fl

R,E . First we will construct objects 3i
R,E representing the functors Ui .

For i = 0, it is clear: U0 is represented by 30
R,E = 9R,E . Now assume 3i

R,E has
been constructed and that it is a sub-R-algebra of R[1/E]⊗R 9R,E satisfying

R[1/E]⊗R 3
i
R,E = R[1/E]⊗R 9R,E .

Then let 3i+1
R,E denote the sub-3i

R,E -algebra of R[1/E] ⊗R 9R,E generated by all
elements π∗⊗ (ψα( f )− f qα ), where π∗ ∈m−1

α ⊆ R[1/E], f ∈3i
R,E , and α ∈ E .

Then 3i
R,E is flat over R. Indeed, it is E-flat because it is a sub-R-algebra of

R[1/E]⊗R9R,E , and it is flat away from E because R[1/E]⊗R3R,E agrees with
the free R[1/E]-algebra R[1/E]⊗R 9R,E . It also clearly represents Ui .

Finally, we set

3R,E =
⋃
i>0

3i
R,E ⊆ R[1/E]⊗R 9R,E . (1-11-1)

It is flat over R because it is a colimit of flat R-algebras, and it represents W fl
R,E

because each 3i
R,E represents Ui . As an example, if E = E ′ q E ′′, where E ′′
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consists of only copies of the unit ideal, then3R,E agrees with the monoid algebra
3R,E ′[N

(E ′′)
]. We will often use the shortened forms 3E or, when E = {m}, 3m.

Since 3R,E represents W fl, which takes values in R-algebras, 3R,E carries the
structure of a co-R-algebra object in Ringfl

R . Because Ringfl
R is closed under co-

products (the tensor product of flat modules being flat), a co-ring structure consists
in morphisms

1+,1× : 3R,E −→3R,E ⊗R 3R,E , ε+, ε× : 3R,E −→ R (1-11-2)

corresponding to addition, multiplication, the additive identity, and the multiplica-
tive identity on the functor W fl

R,E . The R-linear structure on W fl
R,E corresponds to

a morphism
β : 3R,E → R R

=

∏
R

R. (1-11-3)

All these structure maps satisfy the opposite of the R-algebra axioms. (In the
language of schemes, one would say this makes Spec3R,E an R-algebra scheme
over R; or in the language of [Borger and Wieland 2005], it makes 3R,E an R-R-
biring.)

1.12. Definition of W in general. We can view3R,E as an object of RingR , instead
of Ringfl

R . Then define WR,E as a set-valued functor on RingR by

WR,E(A)= HomRingR (3R,E , A). (1-12-1)

The structure maps (1-11-2)–(1-11-3) give WR,E the structure of a functor with
values in R-algebras:

WR,E : RingR −→RingR. (1-12-2)

(Note that here we really use the fact that the coproduct in Ringfl
R agrees with that

in RingR . In 1.11, it was used only to justify the symbol ⊗ for the coproduct.)
For any A ∈ RingR , let us call the WR,E(A) the R-algebra of E-typical Witt

vectors with entries in A. Its restriction to Ringfl
R agrees with W fl

R,E because Ringfl
R

is a full subcategory of RingR .
We will often write WE or W for WR,E when there is no risk of confusion. When

E consists of a single ideal m, we will also write WR,m or Wm.

1.13. Remark: Kan extensions. In categorical terms, WR,E is the left Kan exten-
sion of i ◦W fl

R,E along the inclusion functor i :

Ringfl
R

i
// RingR

Ringfl
R

W fl
R,E

OO

i
// RingR.

WR,E

OO�
�
�

(1-13-1)
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(See [Borceux 1994a, 3.7], for example, for the general theory of Kan extensions.)
I mention this only to emphasize that the passage from the E-flat case to the general
case is by a purely category-theoretic process, and hence the heart of the theory lies
in the E-flat case. This is in contrast to the common point of view that the purpose
of Witt vector functors is to lift rings from positive characteristic to characteristic
zero.

1.14. Ghost map w. The ghost map

w : WR,E(A)−→
∏
N(E)

A

is the natural map induced by the universal property of Kan extensions applied to
the inclusion maps W fl

R,E(A)→
∏

N(E) A, which are functorial in A. Equivalently,
it is the morphism of functors induced by the map

9R,E =3
0
R,E −→3R,E

of representing objects. When A is E-flat, it is harmless to identify w with the
inclusion map.

1.15. Example: p-typical and big Witt vectors. Suppose R is Z. If E consists of
the single ideal pZ, then W agrees with the classical p-typical Witt vector functor
[Witt 1937]. Indeed, for p-torsion free rings A, this follows from Cartier’s lemma,
which says that the traditionally defined p-typical Witt vector functor restricted to
the category of p-torsion-free rings has the same universal property as W fl. (See
[Bourbaki 1983, IX.44, exercice 14] or [Lazard 1975, VII§4].) Therefore, they are
isomorphic functors. For A general, one just observes that the traditional functor is
represented by the ring Z[x0, x1, . . . ], which is p-torsion free, and so it is the left
Kan extension of its restriction to the category of p-torsion-free rings. Therefore
it agrees with W as defined here.

Another proof of this is given in 3.5. It makes a direct connection with the
traditional Witt components, rather than going through the universal property.

Suppose instead that E is the family of all maximal ideals of Z. Then W agrees
with the classical big Witt vector functor. As above, this can be shown by reducing
to the torsion-free case and then citing the analogue of Cartier’s lemma. (Which
version of Cartier’s lemma depends on how we define the classical big Witt vector
functor. If we use generalized Witt polynomials, we need [Bourbaki 1983, IX.55,
exercise 41b]. If it is defined as the cofree λ-ring functor, as in [Grothendieck
1958], then we need Wilkerson’s theorem [1982, Proposition 1.2].)

Finally, we will see in 3.5 that when R is a complete discrete valuation ring and
E consists of the maximal ideal of R, then W agrees with Hazewinkel’s ramified
Witt vector functor [Hazewinkel 1978, (18.6.13)].
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1.16. Comonad structure on W . The functor W fl
: Ringfl

R → Ringfl
R is naturally

a comonad, being the composition of a functor (the forgetful one) with its right
adjoint, and this comonad structure prolongs naturally to WR,E . The reason for
this can be expressed in two ways—in terms of Kan extensions or in terms of
representing objects.

The first way is to invoke the general fact that WR,E , as the Kan extension of
the comonad W fl

R,E , has a natural comonad structure. This uses the commutativity
of (1-13-1) and the fullness and faithfulness of i . The other way is to translate
the structure on W fl of being a comonad into a structure on its representing object
3R,E . One then observes that this is exactly the structure for the underlying R-
algebra i(3R,E) to represent a comonad on RingR . (This is called an R-plethory
structure in [Borger and Wieland 2005].)

1.17. 3-rings. The category Ring3R,E
of 3R,E -rings is by definition the category

of coalgebras for the comonad WR,E , that is, the category of R-algebras equipped
with a coaction of the comonad WR,E . Since WR,E extends W fl

R,E , a 3R,E -ring
structure on an E-flat R-algebra A is the same as a commuting family of Frobenius
lifts ψα.

When R = Z and E is the family of all maximal ideals of Z, then a 3-ring is
the same as a λ-ring in the sense of [Grothendieck 1958] (and originally called a
“special λ-ring”). In the E-flat case, this is Wilkerson’s theorem [1982, Proposition
1.2]. The proof is an exercise in symmetric functions, but the deeper meaning
eludes me. The general case follows from the E-flat case by category theory, as in
1.15.

1.18. Free3-rings and3�−. Since WR,E is a representable comonad on RingR ,
the forgetful functor from the category of3R,E -rings to the category of R-algebras
has a left adjoint denoted 3R,E �−. This follows either from the adjoint functor
theorem in category theory [Borceux 1994a, 3.3.3], or by simply writing down the
adjoint in terms of generators and relations, as in [Borger and Wieland 2005, 1.3].
The second approach involves the R-plethory structure on 3R,E , and is similar to
the description of tensor products, free differential rings, and so on in terms of
generators and relations.

The functor3R,E�−, viewed as an endofunctor on the category of R-algebras,
is naturally a monad, simply because it is the left adjoint of the comonad WR,E .
Further, the category of algebras for this monad is naturally equivalent to Ring3R,E

.
This can be proved using Beck’s theorem [Borceux 1994b, 4.4.4], and is the same
as the fact that the category of K -modules, for any ring K , can be defined as
the category of algebras for the monad K ⊗ − or coalgebras for the comonad
Hom(K ,−).
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We can interpret elements of3R,E as natural operations on3R,E -rings. Indeed,
a 3R,E -ring structure on a ring A is by definition a (type of) map A→WR,E(A).
It therefore induces a set map

3R,E × A−→3R,E ×WR,E(A)=3R,E ×HomR(3R,E , A)−→ A,

which is functorial in A. In particular, if we take A =3R,E , we get a set map

3R,E ×3R,E
◦
−→3R,E . (1-18-1)

It agrees with the restriction of the composition map ◦ on 9R[1/E],E = R[1/E]⊗R

9R,E given in 1.5. In particular, it is associative with identity e.
In fact, all natural operations on 3R,E -rings come from 3R,E in this way. See

[Borger and Wieland 2005] for an abstract account from this point of view.

1.19. Remark: identity-based approaches. It is possible to set up the theory of
3R,E -rings more concretely using universal identities rather than category theory.
(See [Buium 1996; Buium and Simanca 2009; Joyal 1985a; 1985b], for example.)
In this subsection, I will say something about that point of view and its relation to
the category-theoretic one, but it will not be used elsewhere in this paper.

First suppose that for each α ∈ E , the ideal mα is generated by a single element
πα. For any3R,E -ring A and any element a ∈ A, there exists an element δα(a)∈ A
such that

ψα(a)= aqα +παδα(a).

If we now assume that A is E-flat, the element δα(a) is uniquely determined by
this equation, and therefore δα defines an operator on A:

δα(a)=
ψα(a)− aqα

πα
.

Observe that if the integer qα maps to 0 in R, for example when R is a ring of
integers in a function field, then δα is additive; but otherwise it essentially never
is. (Also note that δα is the same as the operator θπα,1 defined in 3.1 below.)

Conversely, if A is an E-flat R-algebra, equipped with operators δα, there is
at most one 3R,E -ring structure on A whose δα-operators are the given ones. To
say when such a 3R,E -ring structure exists, we only need to express in terms
of the operators δα the condition that the operators ψα be commuting R-algebra
homomorphisms. After dividing by any accumulated factors of πα, this gives the
identities of Buium–Simanca [2009, Definition 2.1]:

δα(r)=
r−rqα

πα
, for r ∈ R, (1-19-1)

δα(a+ b)= δα(a)+ δα(b)+Cα(a, b), (1-19-2)

δα(ab)= δα(a)bqα + aqαδα(b)+παδα(a)δα(b), (1-19-3)
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δα ◦ δα′(a)= δα′ ◦ δα(a)+Cα,α′
(
a, δα(a), δα′(a)

)
, (1-19-4)

where

Cα(x, y)=
xqα + yqα − (x + y)qα

πα
=−

qα−1∑
i=1

1
πα

(
qα
i

)
xqα−i yi (1-19-5)

and

Cα,α′(x, y, z)

=
Cα′(xqα , πα y)

πα
−

Cα(xqα′ , πα′z)
πα′

−
δα(πα′)

πα′
zqα +

δα′(πα)

πα
yqα′ . (1-19-6)

One can easily check that the coefficients of these polynomials are elements of R.
For any R-algebra A, let us define a δR,E -structure on A to be a family of op-

erators δα satisfying the axioms above. Thus, if A is an E-flat R-algebra, then
a 3R,E -structure—by definition a commuting family of Frobenius lifts indexed
by E—is equivalent to a δR,E -structure. The point of all this, then, is that if
we no longer require A to be E-flat, a δR,E -structure is generally stronger than
having a commuting family of Frobenius lifts, but it is still equivalent to having
a 3R,E -structure. This offers another point of view on the difference between a
3R,E -structure and a commuting family of Frobenius lifts: A δR,E -structure is
well behaved from the point of view of universal algebra (and hence so is a 3R,E -
structure) because it is given by operators δα whose effect on the ring structure is
described by universal identities, as above; but the structure of a commuting family
of Frobenius lifts does not have this property because of the existential quantifier
hidden in the word lift.

The equivalence between δR,E -structures and 3R,E -structures can be seen as
follows. For E-flat R-algebras A, it was explained above. For general A, the
equivalence can be shown by checking that the cofree δR,E -ring functor is repre-
sented by an E-flat R-algebra (in fact, a free one). It therefore agrees with the left
Kan extension of its restriction to the category of E-flat algebras, and hence agrees
with WR,E .

We could extend the identity-based approach to the case where the ideals mα

are not principal, but then we would need operators

δα,π∗α (x)= π
∗

α(ψα(x)− xqα ) (1-19-7)

for every element π∗α ∈m−1
α , or at least for those in a chosen generating set of m−1

α ,
and we would need additional axioms relating them. A particularly convenient
generating set of m−1

α is one of the form {1, π∗α}, which always exists. Further, for
each α ∈ E , it is enough to use the operators ψα and δα,π∗α instead of δα,1 and δα,π∗α ,
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because δα,1 can be expressed in terms of ψα, by (1-19-7). Therefore if we fix ele-
ments π∗α ∈m−1

α which are R-module generators modulo 1, the relations needed for
the generating set

⋃
α∈E {ψα, δα,π∗α } of operators are those in (1-19-1)–(1-19-6) but

one needs to make the following changes: for each α ∈ E , replace each occurrence
of π−1

α with π∗α , and add axioms that ψα is an R-algebra homomorphism, that ψα
commutes with all ψα′ and all δα′,π∗

α′
, and that (1-19-7) holds.

When R is an Fp-algebra for some prime number p, the polynomials Cα(x, y)
are zero and the axioms above simplify considerably. In particular, the operators
δα are additive, and so it is possible to describe a3R,E -structure using a cocommu-
tative twisted bialgebra, the additive bialgebra of the plethory 3R,E . See [Borger
and Wieland 2005, sections 2 and 10].

1.20. Localization of the ring R of scalars. Let R′ be an E-flat R-algebra such
that the structure map R→ R′ is an epimorphism of rings. (For example, the map
Spec R′→Spec R could be an open immersion.) Then the family (mα)α∈E induces
a family (m′α)α∈E of ideals of R′, where m′α = mαR′. By the assumptions on R′,
each m′α is supramaximal. Let us write E ′ = E and use the notation E ′ for the
index set of the m′α.

Let us construct an isomorphism:

R′⊗R 3R,E
∼
−→3R′,E ′ . (1-20-1)

The category Ringfl
3R′,E ′

(see 1.6) is a subcategory of the category of Ringfl
3R,E

.
Indeed, any object A′ ∈ Ringfl

3R′,E ′
is an R-algebra with endomorphisms ψmα

, for
each α ∈ E . These endomorphisms are again commuting Frobenius lifts, simply
because A′/m′αA′ = A′/mαA′. Since A′ is E ′-flat (and by the assumptions on R′),
A′ is E-flat. Therefore, it can be viewed as a 3R,E -ring.

Further, Ringfl
3R′,E ′

agrees with the subcategory of Ringfl
3R,E

consisting of objects
A whose structure map R→ A factors through R′, necessarily uniquely. Now con-
sider the underlying-set functor on this category. From the definition of Ringfl

3R′,E ′
,

this functor is represented by the right-hand side of (1-20-1), and from the second
description, it is represented by the left-hand side. Let (1-20-1) be the induced
isomorphism on representing objects. It sends an element r ′⊗ f to r ′ f .

The isomorphism of represented functors which is induced by (1-20-1) gives
natural maps

WR′,E ′(A′)
∼
−→WR,E(A′), (1-20-2)

for R′-algebras A′.
Finally, let us show that for any R′-algebra B ′, the canonical map

3R,E � B ′
∼
−→3R′,E ′ � B ′ (1-20-3)
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is an isomorphism. It is enough to show that for any R′-algebra A′, the induced
map

HomR′(3R′,E ′ � B ′, A′)−→HomR′(3R,E � B ′, A′)

is a bijection. Since RingR′ is a full subcategory of RingR , the right-hand side
agrees with HomR(3R,E � B ′, A′), and so the map above is an isomorphism by
(1-20-2).

1.21. Teichmüller lifts. Let A be an R-algebra, let A◦ denote the commutative
monoid of all elements of A under multiplication, and let R[A◦] denote the monoid
algebra on A◦. Then for each α ∈ E , the monoid endomorphism a 7→ aqα of
A◦ induces an R-algebra endomorphism ψα of R[A◦] which reduces to the qα-
th power map modulo mα. Since R[A◦] is free as an R-module, it is flat. And
since the various ψα commute with each other, they provide R[A◦] with a 3R,E -
structure. Combined with the R-algebra map R[A◦]→ A given by the counit of the
evident adjunction, this gives, by the right-adjoint property of WR,E , a 3R,E -ring
map t : R[A◦] →WR,E(A). We write the composite monoid map

A◦
unit
−→ R[A◦]◦

t◦
−→WR,E(A)◦

as simply a 7→ [a]. It is a section of the R-algebra map w0 : WR,E(A)→ A and
is easily seen to be functorial in A. The element [a] is called the Teichmüller lift
of a.

2. Grading and truncations

2.1. Ordering on Z(E). For two elements n′, n ∈ Z(E) =
⊕

E Z, write n′ 6 n if we
have n′α 6 nα for all α ∈ E . Also put

[0, n] = {n′ ∈ N(E)
| n′ 6 n}.

2.2. Truncations. We have the following decomposition of 9R,E :

9R,E =
⊗
α∈E

⊗
i∈N

R[ψ◦iα ] =
⊗

n∈N(E)

R[ψn] = R[ψn|n ∈ N(E)
].

(Thus, 9R,E is an N(E)-indexed coproduct in the category of R-algebras, much
like graded rings are monoid-indexed coproducts in the category of modules. One
might say that 9R,E is an N(E)-graded plethory. This point of view will not be
used below.) For each n ∈ Z(E), put

9R,E,n =
⊗
α∈E

⊗
06i6nα

R[ψ◦iα ] =
⊗

n′∈[0,n]

R[ψn′] = R
[
ψn′ |n′ ∈ [0, n]

]
.

Then 9R,E,n represents the RingR-valued functor that sends A to the product ring
A[0,n], which is naturally a quotient of AN(E)

.
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Define a similar filtration on 3R,E by

3R,E,n =3R,E ∩
(
R[1/E]⊗R 9R,E,n

)
. (2-2-1)

We will often use the shortened forms 3E,n , 9E,n , 3m,n , 9m,n , and so on.

2.3. Proposition. (a) For each n ∈ N(E), the R-scheme Spec3R,E,n admits a
unique structure of an R-algebra object in the category of R-schemes such
that the map Spec3R,E → Spec3R,E,n induced by the inclusion 3R,E,n ⊆

3R,E is a homomorphism of R-algebra schemes over R.

(b) For each m, n ∈ N(E), we have

3R,E,m ◦3R,E,n ⊆3R,E,m+n, (2-3-1)

where ◦ denotes the composition map of (1-18-1).

Proof. (a) Write 3 = 3R,E , 3n = 3R,E,n , and so on. First observe that, for any
integer i > 0, all the maps in the diagram

R[1/E]⊗R 9
⊗R i
n

ai
// R[1/E]⊗R 9

⊗R i

3⊗R i
n

bi
//

OO

3⊗R i

ci

OO

are injective. Indeed, ai clearly is; the vertical maps are because they become
isomorphisms after base change to R[1/E] and because 3n and 3 are E-flat; and
it follows formally that bi is injective. Then the uniqueness of the desired R-algebra
scheme structure on Spec3n , follows from the injectivity of b2.

Now consider existence. Let

1 : R[1/E]⊗R 9 −→ R[1/E]⊗R 9⊗R 9

denote the ring map that induces the addition (resp. multiplication) map on the ring
scheme Spec R[1/E]⊗R9R . To show that the desired addition and multiplication
maps on Spec3n exist, it is enough to show

1(3n)⊆3n ⊗R 3n. (2-3-2)

In fact, once we do this, we will be done: because each ci ◦ bi is injective, the
ring axioms (associativity, distributivity, and so on) will follow from those on
Spec R[1/E]⊗R 9.

The map 1 sends ψα to ψα ⊗ 1+ 1⊗ψα (resp. ψα ⊗ψα). Therefore we have

1(R[1/E]⊗R 9n)⊆ R[1/E]⊗R 9n ⊗R 9n,
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and hence
1(3n)⊆3

⊗R2
∩
(
R[1/E]⊗R 9

⊗R2
n

)
=3⊗R2

n .

This establishes (2-3-2) and hence completes the proof of (a).

(b) Combine the definition (2-2-1) with the inclusion

(R[1/E]⊗R 9m) ◦ (R[1/E]⊗R 9n)⊆ (R[1/E]⊗R 9m+n)

and the inclusion 3m ◦3n ⊆3. �

2.4. Witt vectors of finite length. Let WR,E,n denote the functor RingR → RingR
represented by 3R,E,n:

WR,E,n(A)= HomR(3R,E,n, A). (2-4-1)

We call WR,E,n the E-typical Witt vector functor of length n. As in 1.12, we will
often write WE,n or Wn; when E = {m}, we will also write WR,m,n or Wm,n . We
then have

WR,E(A)= limn WR,E,n(A). (2-4-2)

(Note that it is often better to view WR,E(A) as a pro-ring than to actually take the
limit. If we preferred topological rings to pro-rings, we could take the limit and
endow it with the natural pro-discrete topology.) It follows from 4.4 and (5-4-2)
below that the maps in this projective system are surjective.

The (truncated) ghost map

w6n : WR,E,n(A)−→ A[0,n], (2-4-3)

is the one induced by the inclusion 9R,E,n ⊆ 3R,E,n of representing objects. For
any i ∈ [0, n], the composition w6n with the projection onto the i-th factor gives
another natural map

wi : WR,E,n(A)−→ A. (2-4-4)

Also the containment (2-3-1) induces an R-algebra map

WR,E,m+n(A)−→WR,E,n
(
WR,E,m(A)

)
(2-4-5)

which sends an element a : 3R,E,m+n → A of WR,E,m+n(A) to the map γ 7→
[β 7→ a(β ◦ γ )], for variables γ ∈ 3R,E,n and β ∈ 3R,E,m . We will call (2-4-5)
co-plethysm. It agrees with the map of functors induced by the map

3R,E,m �3R,E,n −→3R,E,m+n, β� γ 7→ β ◦ γ (2-4-6)

on representing objects, where β� γ is defined as in [Borger and Wieland 2005].
Finally, observe that for any element f ∈3R,E,n the natural3R,E -ring operation

f : WR,E(A)→WR,E(A)
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(a map of sets) descends to a map

f : WR,E,m+n(A)→WR,E,m(A).

Indeed, it is the composition

WR,E,m+n(A)
(2-4-5)
−→ WR,E,n

(
WR,E,m(A)

)
= Hom(3R,E,n,WR,E,m(A))

−( f )
−→WR,E,m(A), (2-4-7)

where −( f ) denotes the map that evaluates at f . Particularly important is the
example f = ψn , where the induced map

ψn : WR,E,m+n(A)→WR,E,m(A) (2-4-8)

is a ring homomorphism.

2.5. Remark: traditional versus normalized indexing. Consider the p-typical Witt
vectors, where R is Z and E consists of the single ideal pZ. Let W ′n denote Witt’s
functor, as defined in [Witt 1937]. So, for example,

W ′n(Fp)= Z/pnZ.

In 3.5, we will construct an isomorphism W ′n+1
∼=Wn . Thus, up to a normalization

of indices, our truncated Witt functors agree with Witt’s.
The reason for this normalization is to make the indexing behave well under

plethysm. By (2-3-1) and (2-4-5), the index set has the structure of a commutative
monoid, and so it is preferable to use an index set with a familiar monoid structure.
If we were to insist on agreement with Witt’s indexing, we would have to replace
the sum m + n in (2-3-1) and (2-4-5) with m + n − (1, 1, . . . ), where this would
be computed in the product group ZE . The reason why this has not come up in
earlier work is that the plethysm structure has traditionally been used only through
the Frobenius maps ψα. In other words, only the shift operator on the indexing set
was used. Thus the distinction between N and Z>1 was not so important because
the shift operator n 7→ n + 1 is written the same way on both. But making the
identification of N and Z>1 a monoid isomorphism would involve the unwelcome
addition law m+ n− 1 on Z>1.

It is different with the big Witt vectors, where R is Z and E consists of all
maximal ideals 1.15. They are also traditionally indexed by the positive integers
[Hazewinkel 1978, (17.4.4)], but here the positive integers are used multiplicatively
rather than additively. In particular, the monoid structure that is required is the
obvious one; so the traditional indexing is in agreement with the normalized one:
the big Witt ring Wpn (A) (using traditional multiplicative indexing) is naturally
isomorphic to our p-typical ring Wn(A) and to Witt’s W ′n+1(A).
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2.6. Localization of the ring R of scalars. Let R′ be an E-flat R-algebra such that
the structure map R→ R′ is an epimorphism of rings, as in 1.20.

Then for each n ∈ N(E), we have

R′⊗R 3R,E,n = R′⊗R
(
3R,E ∩ (R[1/E]⊗R 9R,E,n)

)
∼
→
(
R′⊗R 3R,E

)
∩ (R′[1/E]⊗R′ 9R′,E ′,n).

(We only need to check that the displayed map is an isomorphism along E , in which
case it is true because R′ is E-flat over R.) By (1-20-1), this gives an isomorphism
of R′-algebras

R′⊗R 3R,E,n
∼
−→3R′,E ′,n. (2-6-1)

The induced isomorphism of represented functors gives natural maps

WR′,E ′,n(A′)
∼
−→WR,E,n(A′), (2-6-2)

for R′-algebras A′. If A is an R-algebra, the inverse of this map induces a map

R′⊗R WR,E,n(A)−→WR′,E ′,n(R′⊗R A) (2-6-3)

We will see in 6.1 that this is an isomorphism.
As with (1-20-3), the map (2-6-2) induces an isomorphism

3R,E,n � B ′
∼
−→3R′,E ′,n � B ′, (2-6-4)

for any R′-algebra B ′,

2.7. Proposition. Let A be an E-flat R-algebra. Then the ghost map

w6n : WR,E,n(A)−→ A[0,n]

is injective. If A is an R[1/E]-algebra, it is an isomorphism.

Recall that the analogous facts for infinite-length Witt vectors are also true,
either by construction 1.8 or by the universal property 1.9.

Proof. If every ideal in E is the unit ideal, then 3R,E =9R,E , and hence we have
3R,E,n=9R,E,n . The statement about R[1/E]-algebras then follows from (2-6-1).
The statement about E-flat R-algebras follows by considering the injection

A→ R[1/E]⊗R A

and applying the previous case to R[1/E]⊗R A. �
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3. Principal single-prime case

For this section, we will restrict to the case where E consists of one ideal m gen-
erated by an element π . Our purpose is to extend the classical components of
Witt vectors from the p-typical context (where R is Z and E consists of the single
ideal pZ) to this slightly more general one. The reason for this is that the Witt
components are well-suited to calculation. In the following sections, we will see
how to use them, together with 4.1, 5.4, and 6.1, to draw conclusions when E is
general.

In fact, the usual arguments and definitions in the classical theory of Witt vectors
carry over as long as one modifies the usual Witt polynomials by replacing every
p in an exponent with qm, and every p in a coefficient with π . Some things, such
as the Verschiebung operator, depend on the choice of π , and others do not, such
as the Verschiebung filtration.

Let n denote an element of N. Let us abbreviate

3m =3R,E , 3m,n =3R,E,n , Wm =WR,E , q = qm, ψ = ψm,

and so on.

3.1. θ operators. Define elements θπ,0, θπ,1, . . . of

R[1/π ]⊗R 3m = R[1/π ]⊗R 9m

recursively by the generalized Witt polynomials

ψ◦n = θ
qn

π,0+πθ
qn−1

π,1 + · · ·+π
nθπ,n. (3-1-1)

(Note that the exponent on the left side means iterated composition, while the
exponents on the right mean usual exponentiation, iterated multiplication.) As in
1.5, we can view the elements θπ,i as natural operators on9R[1/π ],m-rings. We will
often write θi = θπ,i when π is clear.

3.2. Lemma. We have

ψ ◦ θπ,n = θ
q
π,n +πθπ,n+1+π P(θπ,0, . . . , θπ,n−1), (3-2-1)

for some polynomial P(θπ,0, . . . , θπ,n−1) with coefficients in R.

Proof. It is clear for n = 0. For n > 1, we will use induction. Recall the general
implication

x ≡ y mod m H⇒ xq j
≡ yq j

mod m j+1,
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for j > 1, which itself is easily proved by induction. Together with the formula
(3-2-1) for ψ ◦ θπ,i with i < n, this implies

ψ ◦ψ◦n =

n∑
i=0

π i (ψ ◦ θi )
qn−i

≡ πnψ ◦ θn +

n−1∑
i=0

π i (θ
q
i )

qn−i
mod mn+1 R[θ0, . . . , θn−1]

When this is combined with the defining formula (3-1-1) for ψ◦(n+1), we have

πnψ ◦ θn ≡ π
nθq

n +π
n+1θn+1 mod mn+1 R[θ0, . . . , θn−1].

Dividing by πn completes the proof. �

3.3. Proposition. The elements θπ,0, θπ,1, . . . of R[1/π ] ⊗R 3m lie in 3m, and
they generate 3m freely as an R-algebra. Further, the elements θπ,0, . . . , θπ,n lie
in 3m,n , and they generate 3m,n freely as an R-algebra.

This is essentially [Witt 1937, Theorem 1].

Proof. By induction, the elements θ0, . . . , θn generate the same sub-R[1/π ]-alge-
bra of R[1/π ] ⊗R 3m as ψ◦0, . . . , ψ◦n , and are hence algebraically independent
over R[1/π ]. Since R ⊆ R[1/π ], they are also algebraically independent over R.

Let Bn be the sub-R-algebra of R[1/π ]⊗R3m generated by θ0, . . . , θn , and let
B =

⋃
n Bn . To show 3m ⊇ B, we may assume by induction that 3m ⊇ Bn and

then show 3m ⊇ Bn+1. By 3.2 and because 3m is a 3m-ring, we have

πθn+1 ∈
(
ψ ◦ θn − θ

q
n
)
+m3m,n ⊆m3m.

Dividing by π , we have θn+1 ∈3m, and hence 3m ⊇ Bn[θn+1] = Bn+1.
On the other hand, by 3.2 again, we have

ψ ◦ θn ≡ θ
q
n mod mBn+1

for all n. Hence B, being generated by the θn , is a sub-3m-ring of R[1/π]⊗R3m.
It follows that B ⊇3m ◦ e =3m, and therefore B =3m.

Last, the equality 3m,n = Bn follows immediately from the above:

3m,n =3m ∩
(
R[1/π ]⊗R 9m,n

)
= B ∩

(
R[1/π ]⊗R 9m,n

)
= R[θ0, . . . ] ∩ R[1/π ][θ0, . . . , θn]

= R[θ0, . . . , θn] = Bn. �
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3.4. Example: Presentations of 3m,n � A. Using 3.3, we can turn a presentation
of an R-algebra A into a presentation of 3m,n � A. We have

3m,n � R[x] ∼=3m,n = R[θ0, . . . , θn],

where θk is short for θπ,k , which corresponds to the element θπ,k(x)= θπ,k � x .
Because the functor 3m,n�− preserves coproducts and coequalizers, we have

3m,n �
(
R[x1, . . . , xr ]/( f1, . . . , fs)

)
= R[θi (x j )]/(θi ( fk)), (3-4-1)

where 0 6 i 6 n, 1 6 j 6 r , and 1 6 k 6 s. Here each expression θi (x j ) is a
single free variable, and θi ( fk) is understood to be the polynomial in the variables
θi (x j ) that results from expanding θi ( fk) using the sum and product laws for θi .
Because 3m,n �− preserves filtered colimits, we can give a similar presentation
of 3m,n� A for any R-algebra A. Similarly, we can take the colimit over n to get
a presentation for 3m� A.

In the E-typical case, where E is finite, one can write down a presentation of
3R,E � A by iterating (3-4-1), according to 5.3 below. We can pass from the case
where E is finite to the case where it is arbitrary by taking colimits, as in 5.1.

The method above is not particular to the θ operators—it works for any subset
of 3m,n that generates it freely as an R-algebra. For example, we can use the δ
operators of 1.19. Let δi

∈ 3m denote the i-th iterate of δπ . Then the elements
δ0, . . . , δn lie in3m,n and freely generate it as an R-algebra. (As in 3.3, this follows
by induction, but in this case, there are no subtle congruences to check.) Therefore
we have

3m,n �
(
R[x1, . . . , xr ]/( f1, . . . , fs)

)
= R[δi (x j )]/(δ

i ( fk)), (3-4-2)

where 0 6 i 6 n, 1 6 j 6 r , and 1 6 k 6 s. We interpret the expressions δi (x j )

and δi ( fk) as above. The general E-typical case can be handled as above. (See
[Buium and Simanca 2009, proof of Proposition 2.12].)

3.5. Witt components. It follows from 3.3 that, given π , we have a bijection

Wm(A)
∼
−→ A× A× · · · , (3-5-1)

which sends a map f : 3m→ A to the sequence ( f (θπ,0), f (θπ,1), . . . ). To make
the dependence on π explicit, we will often write (x0, x1, . . . )π for the image of
(x0, x1, . . . ) under the inverse of this map. If R=Z and π = p, then this identifies
Wm(A) with the ring of p-typical Witt vectors as defined traditionally. Similarly,
when R is a complete discrete valuation ring, we get an identification of Wm(A)
with Hazewinkel’s ring of ramified Witt vectors W R

q,∞(A). (See [Hazewinkel 1978,
(18.6.13), (25.3.17), and (25.3.26)(i)].) We call the xi the Witt components (relative
to π ) of the element (x0, . . . )π ∈W (A).
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Similarly, using the free generating set θπ,0, . . . , θπ,n of 3m,n , we have a bijec-
tion

Wm,n(A)
∼
−→ A[0,n]. (3-5-2)

As above, we will write (x0, . . . , xn)π for the image of (x0, . . . , xn) under the
inverse of this map. This identifies Wm,n(A) with the traditionally defined ring of
p-typical Witt vectors of length n+ 1. (For remarks on the +1 shift, see 2.5.)

Note that the Witt components do not depend on the choice of π in a simple,
multilinear way. For example, if u is an invertible element of R and we have

(x0, x1, . . . )π = (y0, y1, . . . )uπ ,

then we have

x0 = y0, x1 = uy1, x2 = u2 y2+π
−1(u− uq)yq

1 , . . . .

As in 3.4, we could use the free generating set δ0, δ1, . . . of 3m instead of
θ0, θ1, . . . . This would give a different bijection between Wm(A) and the set AN,
and hence an R-algebra structure on the set AN which is isomorphic to Witt’s but
not equal to it. The truncated versions agree up to A× A, but differ after that. This
is simply because δ0

= θ0 and δ1
= θ1, but δ2

6= θ2. (See [Joyal 1985b, p. 179].)

3.6. The ghost principle. It follows from the descriptions (3-5-1) and (3-5-2) that
Wm and Wm,n preserve surjectivity. On the other hand, every R-algebra is a quo-
tient of an m-flat R-algebra (even a free one). Therefore to prove any functorial
identity involving rings of Witt vectors when m is principal, it is enough to restrict
to the m-flat case. Further, any m-flat R-algebra A is contained in an R[1/m]-
algebra, such as R[1/m]⊗R A. Since Wm and Wm,n , being representable functors,
preserve injectivity, it is even enough to check functorial identities on R[1/m]-
algebras A, in which case rings of Witt vectors agree with the much more tractable
rings of ghost components. An example with details is given in 3.7.

3.7. Verschiebung. For any R-algebra A define an operator Vπ , called the Ver-
schiebung (relative to π ), on Wm(A) by

Vπ
(
(y0, y1, . . . )π

)
= (0, y0, y1, . . . )π . (3-7-1)

This is clearly functorial in A. Define another, identically denoted operator on the
ghost ring AN by the formula

Vπ
(
〈z0, z1, . . . 〉

)
= 〈0, π z0, π z1, . . . 〉. (3-7-2)

These operators are compatible in that we have w(Vπ (y)) = Vπ (w(y)) for all
y ∈Wm(A), and the operator Vπ on the ghost ring is clearly R-linear. It follows by
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the ghost principle that the operator Vπ on Wm(A) is R-linear. Here is the argument
in some detail.

We need to check the identities r Vπ (y)=Vπ (r y) and Vπ (x+y)=Vπ (x)+Vπ (y),
for r ∈ R, x, y ∈Wm(A). Write x = (x0, x1, . . . )π and y = (y0, y1, . . . )π . If A is a
E-flat, the ghost map w : Wm(A)→ AN is injective. Therefore Vπ is R-linear on
Wm(A), by the R-linearity of Vπ on the ghost ring.

The general case then follows from E-flat case. Fix an E-flat R-algebra Ã with
a surjective R-algebra map Ã→ A. For each i , let ỹi be a pre-image of yi , and set
ỹ = (ỹ0, . . . )π ∈ Wm(A). The induced map f : Wm( Ã)→ Wm(A) then satisfies
f (ỹ)= y. Therefore we have

Vπ (r y)= Vπ (r f (ỹ))= Vπ ( f (r ỹ))= f (Vπ (r ỹ))

= f (r Vπ (ỹ))= r f (Vπ (ỹ))= r Vπ ( f (ỹ))= r Vπ (y).

The additivity axiom follows similarly.

3.8. Example. WR,m,n(R) has a presentation

R[x1, . . . , xn]/(xi x j −π
i x j | 16 i 6 j 6 n),

where the element xi corresponds to V i
π (1).

3.9. Teichmüller lifts. Under the composition

A
a 7→[a]

// W (A)
w

// A× A× · · ·

(see 1.21), the image of a is 〈a, aq , aq2
, . . . 〉. It follows from the ghost principle

that
[a] = (a, 0, 0, . . . )π ∈W (A).

Multiplication by Teichmüller lifts also has a simple description in terms of Witt
components:

[a](. . . , bi , . . . )π = (. . . , aq i
bi , . . . )π . (3-9-1)

Again, this follows from the ghost principle.

4. General single-prime case

Assume E consists of a single ideal m, possibly not principal. Let n be an element
of N. Let us write WR,m,n =WR,E,n and so on.

Let Km denote Rm[1/m]. If m is the unit ideal, we understand Rm, and hence
Km, to be the zero ring. Otherwise, Rm is a discrete valuation ring and Km is its
fraction field. In particular, m becomes principal in R[1/m], Rm, and Km. The
following proposition then allows us to describe WR,m,n(A) in terms of the case
where m is principal, and hence in terms of Witt components.
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4.1. Proposition. For R′= R[1/m], Rm, Km, write WR′,m,n =WR′,mR′,n . Then for
any R-algebra A, the ring WR,m,n(A) is the equalizer of the two maps

WR[1/m],m,n
(
R[1/m]⊗R A

)
×WRm,m,n

(
Rm⊗R A

) //
// WKm,m,n(Km⊗R A)

induced by projection onto the two factors and the bifunctoriality of W−,m,n(−).

Proof. The diagram

R // R[1/m]× Rm

pr1
//

pr2

// Km

is an equalizer diagram. Since Km is m-flat, so is any sub-R-module of Km. It
follows that for any R-algebra A, the induced diagram

A //

(
R[1/m]× Rm

)
⊗R A //

// Km⊗R A

is an equalizer diagram. Since WR,m,n is representable, it preserves equalizers, and
so the induced diagram (writing Wn =WR,m,n)

Wn(A) // Wn
(
R[1/m]⊗R A

)
×Wn

(
Rm⊗R A

) //
// Wn(Km⊗R A)

is also an equalizer diagram. Then (2-6-2) completes the proof. �

4.2. Verschiebung in general. We can define Verschiebung maps

V j
: m j
⊗R WR,m(A)−→WR,m(A). (4-2-1)

To do this, it is enough, by 4.1, to restrict to the case where m is principal, as long
as our construction is functorial in A and R. So, choose a generator π ∈ m and
define

V j (π j
⊗ y)= V j

π (y), (4-2-2)

for all y ∈WR,m(A). On ghost components it satisfies

V j (x ⊗〈z0, z1, . . . 〉)= 〈0, . . . , 0, xz0, xz1, . . . 〉,

where the number of leading zeros is j . In particular, it is independent of the choice
of π , by the ghost principle.

If we write WR,m(A)( j) for WR,m(A), viewed as a WR,m(A)-algebra by way of
the map ψ j : WR,m(A)→WR,m(A), then the map

V j
: m j
⊗R WR,m(A)( j)−→WR,m(A), (4-2-3)

is WR,m(A)-linear, as is easily checked using the ghost principle. Expressed as a
formula, it says

V j (x ⊗ yψ j (z))= V j (x ⊗ y)z. (4-2-4)
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In particular, the image V j WR,m(A) of V j is an ideal of WR,m(A).
Let us also record the identities

ψ j
(
V j (x ⊗ y)

)
= xy (4-2-5)

and
V j (x ⊗ y)V j (x ′⊗ y′)= xV j (x ′⊗ yy′) ∈m j V j WR,m(A). (4-2-6)

Again, one checks these using the ghost principle.
Finally, for any n ∈ N, the map V j descends to a map

V j
: m j
⊗R WR,m,n(A)( j)−→WR,m,n+ j (A), (4-2-7)

and the obvious analogues of the identities above hold here.

4.3. Remark. We can define Verschiebung maps even if we no longer assume there
is only one ideal in E . For any j ∈N(E), let J denote the ideal

∏
α m

jα
α of R. Then

V j would be a map J ⊗R WR,E(A)→ WR,E(A). The identities above, suitably
interpreted, continue to hold. We will not need this multiple-prime version.

4.4. Proposition. The sequence

0−→m j
⊗R WR,m,n(A)( j)

V j

−→WR,m,n+ j (A)−→WR,m, j (A)−→ 0 (4-4-1)

is exact.

Proof. Write WR′,n = WR′,mR′,n when R′ is an R-algebra such that the ideal mR′

is supramaximal.
First consider the case where m is principal. Let π ∈ m be a generator. Using

(3-7-1), it is clear that V j is injective and that its image is the set of Witt vectors
whose Witt components (relative π ) are 0 in positions 0 to j − 1. By 3.5, the pre-
image of 0 under the map WR,n+ j (A)→WR, j (A) is the same subset, and the map
WR,n+ j (A)→WR, j (A) is surjective.

Now consider the general case. Augment the diagram (4-4-1) by expressing
each term of (4-4-1) as an equalizer as in 4.1. Here we use that m is R-flat. It then
follows from the principal case and the snake lemma that (4-4-1) is left exact.

It remains to prove that the map WR,n+ j (A)→ WR, j (A) is surjective. By in-
duction, we can assume n = 1. By 4.1, for any i ∈ N we have

WR,i (A)=WRm,i (Rm⊗R A)×WKm,i (Km⊗R A) WR[1/m],i (R[1/m]⊗R A).

Now let π denote a generator of the maximal ideal of Rm, and suppose two ele-
ments

y = (y0, . . . , y j )π ∈WRm, j (Rm⊗R A),

z = 〈z0, . . . , z j 〉 ∈ (R[1/m]⊗R A) j+1
=WR[1/m], j (R[1/m]⊗R A)
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have the same image in WKm, j (Km ⊗R A). To lift the corresponding element of
W j (A) to W j+1(A), we need to find elements

y j+1 ∈ Rm⊗R A and z j+1 ∈ R[1/m]⊗R A

such that in Km⊗R A, we have

yq j+1

0 + · · ·+π j+1 y j+1 = z j+1. (4-4-2)

So, choose an element z j+1 ∈ A whose image under the surjection

A−→ A/(mA) j+1
= Rm/(mRm)

j+1
⊗R A

agrees with the image of yq j+1

0 + · · ·+π j y j . It follows that the element

yq j+1

0 + · · ·+π j yq
j − 1⊗ z j+1 ∈ Rm⊗R A

lies in π j+1(Rm⊗R A). It thus equals π j+1 y j+1 for some element y j+1 ∈ Rm⊗R A.
And so y j+1 and z j+1 satisfy (4-4-2). �

4.5. Corollary. For any R-algebra A, we have⊕
i∈[0,n]

mi
⊗R A(i)

∼
−→ grV WR,m,n(A), (4-5-1)

where A(i) denotes A viewed as a Wn(A)-module via the ring map wi : Wn(A)→
A.

4.6. Reduced ghost components. We can define infinitely many ghost components
for Witt vectors of finite length n if we are willing to settle for answers modulo
mn+1.

First assume m is generated by some element π . By examining the Witt poly-
nomials (3-1-1), we can see that for any i > 0, the composition

WR,m(A)
wi
−→ A−→ A/mn+1 A

vanishes on V n+1WR,m(A). It therefore factors through WR,m,n(A), giving a map
w̄i from WR,m,n(A) to A/mn+1 A.

When m is not assumed to be principal, we define w̄i by localizing at m:

WR,m,n(A)→WRm,mRm,n(Rm⊗R A)
w̄i
−→ (Rm⊗R A)/mn+1(Rm⊗R A)= A/mn+1 A,

where the middle map is w̄i as constructed above in the principal case. We call the
composition

WR,m,n(A)
w̄i
−→ A/mn+1 A (4-6-1)

the i-th reduced ghost component map.
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5. Multiple-prime case

The purpose of this section is to give some results on reducing the family E (of
1.2) to simpler families. The first reduces from the case where E is arbitrary to the
case where it is finite, and the second reduces from the case where it is finite to the
case where it has a single element. We will often write WE =WR,E , 3E =3R,E ,
and so on, for short.

5.1. Proposition. The canonical maps

colimE ′ 3R,E ′ −→3R,E , (5-1-1)

colimE ′ 3R,E ′,n′ −→3R,E,n (5-1-2)

are isomorphisms. Here E ′ runs over the finite subfamilies of E , and n′ is the
restriction to E ′ of a given element n ∈ N(E).

Proof. Consider (5-1-1) first. Since each map 3E ′→3E is an injection, (5-1-1) is
an injection. Therefore, since 3E is freely generated as a 3E -ring by the element
e=ψ0, it is enough to show the sub-9E -ring colimE ′ 3E ′ of3E is a sub-3E -ring.
Since it is flat, we only need to check the Frobenius lift property. So, suppose
m ∈ E . For any element x of the colimit, there is a finite family E ′′ such that
x ∈ 3E ′′ and m ∈ E ′′. But 3E ′′ is a 3E ′′-ring. So we have ψm(x) ≡ xqm modulo
m3E ′′ , and hence modulo m(colimE ′ 3E ′). Therefore the Frobenius lift property
holds for the colimit ring.

Then (5-1-2) follows:

3E,n = (R[1/E]⊗R 9E,n)∩3E = (colimE ′ R[1/E]⊗R 9E ′,n′)∩ colimE ′ 3E ′

= colimE ′
(
(R[1/E]⊗R 9E ′,n′)∩3E ′

)
= colimE ′ 3E ′,n′ . �

5.2. Corollary. For any R-algebra A, the canonical maps

WR,E(A)−→ lim
E ′

WR,E ′(A), (5-2-1)

WR,E,n(A)−→ lim
E ′

WR,E ′,n′(A) (5-2-2)

are isomorphisms, where E ′, n, and n′ are as in 5.1.

5.3. Proposition. Let E ′ q E ′′ be a partition of E. Then the canonical maps

3R,E ′ �R 3R,E ′′ −→3R,E , (5-3-1)

3R,E ′,n′ �R 3R,E ′′,n′′ −→3R,E,n (5-3-2)

are isomorphisms, where n′ and n′′ denote the restrictions to E ′ and E ′′ of a given
element n ∈ N(E).
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Proof. It is enough to show each map becomes an isomorphism after base change
to R[1/E ′] and R[1/E ′′]. So, by (1-20-1), we can assume every element in either
E ′ or E ′′ is the unit ideal.

In the second case, we have

3E ′ �R 3E ′′ =3E ′ �R R[N(E ′′)
] =3E ′[N

(E ′′)
] =3E

The argument for (5-3-2) is the same, but we replace the generating set N(E ′′) with
[0, n′′].

Now suppose every element in E ′ is the unit ideal. Then a 3E ′-ring is the same
as a 9E ′-ring. So we have

3E ′ �R 3E ′′ =3E ′′[N
(E ′)
] =3E .

For (5-3-2), replace N(E ′) with [0, n′], as above. �

5.4. Corollary. Let E ′ q E ′′ be a partition of E. Then for any R-algebra A, the
canonical maps

WR,E(A)−→WR,E ′′
(
WR,E ′(A)

)
, (5-4-1)

WR,E,n(A)−→WR,E ′′,n′′
(
WR,E ′,n′(A)

)
(5-4-2)

are isomorphisms, where n, n′, n′′ are as in 5.3.

5.5. Remark. By the results above, it is safe to say that expressions such as

3m1 �R · · · �R 3mr and Wmr ◦ · · · ◦Wm1(A) (5-5-1)

are independent of the ordering of the mi , assuming the mi are pairwise coprime.
(Note that it is not generally true that P � P ′ ∼= P ′� P for plethories P and P ′.
See [Borger and Wieland 2005, 2.8].)

If we ask that the expressions in (5-5-1) be independent only up to isomor-
phism, then it is not even necessary that the mα ∈ E be pairwise coprime 1.2. But
invariance up to isomorphism is not a such a useful property, and most of the time
coprimality really is necessary. For example, we could look at rings with more than
one Frobenius lift at a single maximal ideal, but we would not be able to reduce to
the case of a single Frobenius lift. Indeed, if E consists of a single maximal ideal
m, the two endomorphisms ψW W (A) and W (ψW (A)) of W W (A) commute, and the
first is clearly a Frobenius lift, but the second is generally not. Therefore W W (A)
cannot be the cofree ring with two commuting Frobenius lifts at m.

In fact, I believe this is the only place where we use the coprimality assumption
directly. The rest of our results depend on it only through 5.3. Although I know of
no applications, it would be interesting to know whether the abstract setup of this
paper, and then the main results, hold when we allow more than one Frobenius lift
at each maximal ideal.
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6. Basic affine properties

This section provides some basic results about the commutative algebra of Witt
vectors. They are just the ones needed to be able to prove the main theorems in
sections 8 and 9 and to set up the global theory in the companion paper [Borger
2010]. There are other basic results that could have been included here, but which
I have put off to the other paper, where they will be proved for all algebraic spaces.

We continue with the notation of 1.2. Fix an element n ∈ N(E). We will often
write Wn = WE,n = WR,E,n and so on, for short. By 5.2, we may assume that E
agrees with the support of n, and in particular that it is finite.

6.1. Proposition. Let R′ be an E-flat R-algebra such that the structure map R→
R′ is a ring epimorphism (as in 1.20). Then the composition

R′⊗R WR,E,n(A)
(2-6-3)

// WR,E,n(R′⊗R A)
∼

(2-6-2)−1
// WR′,E ′,n(R′⊗R A)

is an isomorphism, where E ′ is as in 1.20.

Proof. We may assume by 5.4 that E consists of a single ideal m. Using 4.1 and
the flatness of R′ over R, we are reduced to showing that the functors WR[1/m],m,n ,
WRm,m,n , and WKm,m,n commute with the functor R′ ⊗R −. Therefore we may
assume that the ideal m is principal.

Write Wn = WR,m,n . The result is clear for n = 0, because W0 is the identity
functor. So assume n > 1. By 4.4, we have the map of exact sequences

0 // R′⊗R m⊗R Wn−1(A)
idR′⊗V 1

//

��

R′⊗R Wn(A) //

��

R′⊗R A // 0

0 // m⊗R Wn−1(R′⊗R A)
V 1

// Wn(R′⊗R A) // R′⊗R A // 0

where the vertical maps are given by (2-6-3). By induction the leftmost vertical
arrow is an isomorphism. Therefore the inner one is, too. �

6.2. Proposition. For any ideal I in an R-algebra A, let WR,E,n(I ) denote the
kernel of the canonical map WR,E,n(A)→WR,E,n(A/I ). Then we have

WR,E,n(I )WR,E,n(J )⊆WR,E,n(I J )

for any ideals I , J in A.

Proof. We first show that we may assume E consists of a single ideal m. In
doing this, it will be convenient to prove an equivalent form of the statement:
if I J ⊆ K , where K is an ideal in A, then Wn(I )Wn(J ) ⊆ Wn(K ). Suppose
E = E ′ q {m}. Let n′ be the restriction of n to E . Let I ′ = WE ′,n′(I ), J ′ =
WE ′,n′(J ), and K ′ = WE ′,n′(K ). By 5.4, we have WE,n = Wm,nm ◦ WE ′,n′ , and
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hence WE,n(I )=Wm,nm(I
′) and so on. By induction, we have I ′ J ′⊆ K ′, and then

applying the result in the single-ideal case gives

WE,n(I )WE,n(J )=Wm,nm(I
′)Wm,nm(J

′)=Wm,nm(K
′)=WE,n(K ).

So we will assume E = {m} and drop E from the notation.
By 6.1, the statement is Zariski local on R, and so we may assume the ideal m is

generated by some element π . We will work with Witt components relative to π .
We need to show that for any elements x = (x0, . . . , xn)π ∈ Wn(I ) and y =

(y0, . . . , yn)π ∈Wn(J ), the product xy is in Wn(I J ). So it is sufficient to show this
in the universal case, where A is the free polynomial algebra R[x0, y0, . . . , xn, yn],
I is the ideal (x0, . . . , xn), and J is the ideal (y0, . . . , yn).

Consider the commutative diagram

Wn(A)
w6n

//

��

A[0,n]

��

Wn(A/I J )
w6n

// (A/I J )[0,n].

We want to show that the image of xy in Wn(A/I J ) is zero. Since A/I J is flat
(even free) over R, the lower map w6n is injective, and so it is enough to show the
image of xy in (A/I J )[0,n] is zero. But by the naturality of the ghost map, we have
w6n(x) ∈ I [0,n] and w6n(y) ∈ J [0,n]. Therefore w6n(xy) lies in (I J )[0,n], which
maps to zero in (A/I J )[0,n]. �

6.3. Remark. Although the proof of 6.2 given above uses some properties specific
to Witt vector functors, the result is true for any representable ring-valued functor.
See [Borger and Wieland 2005, 5.5].

6.4. Corollary. If I is an ideal in an R-algebra A and I m
=0, then WR,E,n(I )m=0.

6.5. Proposition. Let ϕ : A→ B be a map of R-algebras. If it is surjective, then
so is the map WR,E,n(ϕ) : WR,E,n(A)→WR,E,n(B).

Proof. By 5.4, we may assume E consists of one ideal m. Since surjectivity can be
checked Zariski locally on R, it is enough by 6.1 to assume m is principal. Then
using the Witt components, we can identify the set map underlying WR,E,n(ϕ)with
the map ϕ[0,n] : A[0,n]→ B[0,n], which is clearly surjective. �

6.6. Corollary. If ϕ : A→ B is surjective, then

WR,E,n(A×B A)
Wn(pr1)

//

Wn(pr2)
// WR,E,n(A)

Wn(ϕ)
// WR,E,n(B)

is a coequalizer diagram.
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Proof. The functor Wn is representable, and hence commutes with limits. (See 2.4.)
Therefore Wn(A×B A) agrees with Wn(A)×Wn(B)Wn(A), which is an equivalence
relation on Wn(A), the quotient by which is the image of Wn(ϕ). By 6.5, this is all
of Wn(B). �

6.7. Remark. This result is particularly appealing when A is E-flat and B is not.
Then we can describe Wn(B) in terms of Wn(A) and Wn(A ×B A), which are
directly accessible because A and A×B A are E-flat.

6.8. Proposition. Suppose E consists of one ideal m, and let A be an R-algebra.
For any i > 0, the map Spec(id⊗ w̄i ) of schemes induced by the ring map

id⊗ w̄i : R/m⊗R WR,E,n(A)−→ R/m⊗R A/mn+1

is a universal homeomorphism. For i = 0, it is a closed immersion defined by a
square-zero ideal.

Proof. Write Wn =WR,E,n and so on. Consider the diagram

R/m⊗R Wn(A)
id⊗w̄i

//

id⊗w0

��

R/m⊗R A/mn+1 A

∼r⊗a 7→ra
��

A/mA x 7→xqi
// A/mA.

To show it commutes, it is enough to assume m is principal, generated by π . Then
commutativity follows from the obvious congruence

wi (a)= aq i

0 +πaq i−1

1 + · · ·+π i ai ≡ aq i

0 mod mA,

for any element a = (a0, a1, . . . )π ∈W (A).
Therefore, id⊗ w̄i is the composition of a map whose kernel is a nil ideal and

a power of the Frobenius map. The scheme maps induced by both of these are
universal homeomorphisms.

Now let us show that id⊗w0 (which equals id⊗w̄0) is a surjection with square-
zero kernel. The map id⊗w0 is surjective by 1.21 (or 4.4). So let us show the
square of its kernel is zero. By 4.4, the kernel of the map Wn(A)→ R/m⊗R A is the
ideal V 1Wn(A)+mWn(A). Hence it is enough to show

(
V 1Wn(A)

)2
⊆mWn(A).

This follows from (4-2-6). �

6.9. Proposition. Let (Bi )i∈I be a family of A-algebras such that the induced map∐
i Spec Bi → Spec A is surjective. Then the induced map∐

i

Spec WR,E,n(Bi )→ Spec WR,E,n(A)

is surjective.
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Proof. By 5.4, it is enough to assume E consists of one ideal m. Further, it is
enough to show surjectivity after base change to R[1/m] and to R/m. For R[1/m],
it follows from 6.1 and the equality Wn(C)=C [0,n], when m is the unit ideal. Now
consider base change to R/m. By 6.8, the ring Wn(A)/mWn(A) is a nilpotent
extension of A/mA, and likewise for each Bi , and so we are reduced to showing
that ∐

i
Spec Bi/mBi → Spec A/mA

is surjective. This is true since base change distributes over disjoint unions and
preserves surjectivity. �

6.10. Proposition. The R-algebra 3R,E,n is finitely presented, and the functor
WR,E,n preserves filtered colimits of R-algebras.

Proof. Since WR,E,n is represented by 3R,E,n , the two statements to be proved are
equivalent. By 5.4, we may assume E consists of a single ideal m. By [EGA 6,
2.7.1], the first statement can be verified fpqc locally on R, and in particular after
base change to R[1/m] and to Rm. Therefore by (2-6-1), we can assume m is
generated by a single element π . But by 3.3, the R-algebra 3R,E,n is generated by
the finite set θπ,0, . . . , θπ,n . �

7. Some general descent

The purpose of this section is to record some facts about descent of étale algebras
which we will use to prove our main result, Theorem 9.2. The results mention
nothing about Witt vectors or anything else in this paper. So it would be reasonable
to skip this section and refer back to it only as needed.

More precisely, we do the following. First, we set up some language and no-
tation for descent, essentially repeating parts of Grothendieck’s TDTE I [1966].
(It could not be otherwise.) Second, we prove an abstract result (7.10) relating
gluing data and descent data for certain simple gluing constructions. Third, we
recall Grothendieck’s theorem (7.11) on integral descent of étale maps. Finally, we
prove 7.12, which provides the plan of the proof of 9.2. Aside from the language
of descent, only these three results will be used outside this section.

Language

7.1. Fibered categories. Let C be a category with fibered products. Let E be a
category fibered over C. (See [Grothendieck 1966, A.1.1] or [SGA 1, VI.6.1].) For
any object S of C, let ES denote the fiber of E over S. Let us say that a map
q : T→ S in C is an E-equivalence if q∗ : ES→ ET is an equivalence of categories,
and let us say that q is a universal E-equivalence if for any map S′→ S in C, the
base change q ′ : S′×S T → S′ is an E-equivalence.
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For the applications in the next section, the reader can take

C= the category of affine schemes,

E= the fibered category over C where ES is the category of affine
étale S-schemes and the functors q∗ are given by base change.

(7-1-1)

Then any closed immersion defined by a nil ideal is a universal E-equivalence
[EGA 8, 18.1.2].

7.2. Composition notation. Let S be an object of C, and let CS×S denote the cat-
egory of objects over S × S. That is, an object of CS×S is a pair (T, πT ), where
T is an object of C and πT is a map T → S × S, called its structure map; a
morphism is a morphism in C commuting with the maps to S × S. For such an
object, let πT,1, πT,2 denote the composition of the structure map T → S× S with
the projections pr1, pr2 : S× S→ S. (πT,1 is the “source” and πT,2 is the “target”.)
We will often abusively leave πT implicit and say that T is an object of C.

Let 1S denote the object (S,1) of CS×S , where 1 : S→ S× S is the diagonal
map.

Given two objects T,U ∈ CS×S , define T U ∈ CS×S as follows. As an object of
C, it is the fibered product

T U
pr1

//

pr2

��

T
πT,2

��

U
πT,1

// S.

(7-2-1)

We give T U the structure of an object of CS×S with the map

T U = T ×S U
(πT,1◦pr1,πU,2◦pr2)

// S× S. (7-2-2)

7.3. Category objects and equivalence relations. A category object over S is an
object R ∈ CS×S together with maps

eR : 1S→ R,

cR : R R→ R
(7-3-1)

in CS×S (called identity and composition) satisfying the usual identity and asso-
ciativity axioms in the definition of a category. A morphism f : R→ R′ of such
category objects is defined to be a morphism in CS×S satisfying the functor axioms,
that is, such that

f ◦ eR = eR ◦ f and cR′ ◦ ff= f ◦ cR,

where ff denotes the map R R→ R′R′ induced by f .
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A category-object structure on a subobject R ⊆ S× S is a property of R in that
when it exists, it is unique. One might say that R is a reflexive transitive relation
on S. We say R is an equivalence relation on S if, in addition, the endomorphism
(pr2, pr1) of S× S that switches the two factors restricts to a map

s : R→ R

(which is of course unique when it exists).

7.4. Pre-actions (gluing data). Let T be an object of CS×S . A pre-action of T on
an object X ∈ ES is defined to be an isomorphism

ϕ : π∗T,2(X)
∼
−→π∗T,1(X) (7-4-1)

in ET . A pre-action is also called a gluing datum on X relative to the pair of maps
(πT,1, πT,2). (Actually, Grothendieck [1966, A.1.4] calls ϕ−1 the gluing datum.)
Let

PreAct(T, X)

denote the set of pre-actions of T on X . Any map T → T ′ in CS×S naturally
induces a map

PreAct(T ′, X)→ PreAct(T, X).

If f : X→ X ′ is a morphism in ES between objects X, X ′ with pre-actions ϕ, ϕ′,
then we say f is T -equivariant if the diagram

π∗T,2(X)
π∗T,2( f )

//

ϕ

��

π∗T,2(X
′)

ϕ′

��

π∗T,1(X)
π∗T,1( f )

// π∗T,1(X
′)

commutes.
In this way, the objects of ES equipped with a pre-action of T form a category.

7.5. Actions. Now let R be a category object over S. An action of R on X is
defined to be a pre-action ϕ of R on X such that the diagram

e∗π∗R,2(X)
e∗(ϕ)

// e∗π∗R,1(X)

id∗S(X)
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and the diagram

c∗π∗R,2(X)
c∗(ϕ)

// c∗π∗R,1(X)

pr∗2π
∗

R,2(X)

pr∗2(ϕ)

&&

pr∗1π
∗

R,1(X)

pr∗2π
∗

R,1(X) pr∗1π
∗

R,2(X),

pr∗1(ϕ)
88

commute. Here, pr1 and pr2 denote the projections R R → R onto the first and
second factors, and the morphisms represented by equality signs are the isomor-
phisms induced by the canonical structure maps (g ◦ f )∗ ∼→ f ∗ ◦ g∗ (denoted by
c f,g in [Grothendieck 1966, A.1.1(ii)]) of the fibered category E corresponding to
the equalities

πR,2 ◦ e = idS = πR,1 ◦ e

and
πR,2 ◦ c = πR,2 ◦ pr2,

πR,1 ◦ pr2 = πR,2 ◦ pr1,

πR,1 ◦ c = πR,1 ◦ pr1.

We will often use the following more succinct, if slightly abusive, expressions of
the commutativity of the diagrams above:

e∗(ϕ)= idX , c∗(ϕ)= (pr∗1ϕ) ◦ (pr∗2ϕ). (7-5-1)

Let Act(R, X) denote the set of actions of R on X . A morphism R → R′ of
category objects induces a map

Act(R′, X)−→Act(R, X)

in the obvious way.
Last, note that if R is an equivalence relation, the diagram

s∗π∗R,2(X)
s∗(ϕ)

// s∗π∗R,1(X)

π∗R,1(X)
ϕ−1

// π∗R,2.

commutes. This follows immediately from (7-5-1). The abbreviated version is

s∗(ϕ)= ϕ−1. (7-5-2)
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7.6. Descent data. Let q : S′→ S be a map in C, and put

R(S′/S)= S′×S S′.

View R(S′/S) as an object in CS′×S′ by taking πR(S′/S) to be the evident monomor-
phism

R(S′/S)= S′×S S′−→ S′× S′

Then R(S′/S) is an equivalence relation on S′. An action ϕ of R(S′/S) on an
object X ′ of ES′ is also called a descent datum on X ′ from S′ to S. (Again, it is
actually ϕ−1 that is called the descent datum in [Grothendieck 1966].) We might
call R(S′/S) the descent, or Galois, groupoid of the map q : S′→ S.

Because the two compositions R(S′/S)= S′×S S′⇒ S′→ S are equal, for any
object X ∈ES , the object q∗(X) of ES′ has a canonical pre-action of R(S′/S), and it
is easy to check that this is an action. We say that q is a descent map for the fibered
category E if the functor from ES to the category of objects of ES′ with an R-action
is fully faithful. We say it is an effective descent map if it is an equivalence.

7.7. When gluing data is descent data. Now suppose we have a diagram

S′′ //
// S′ // S (7-7-1)

in C such that the two compositions S′′⇒ S are equal. The universal property of
products gives a map

S′′−→ S′×S S′ = R(S′/S).

For any object X ′ ∈ ES′ , this map induces a function

Act(R(S′/S), X ′)−→ PreAct(S′′, X ′).

Let us say that gluing data on X ′ is descent data relative to the diagram (7-7-1)
when this map is a bijection.

Gluing two objects

Here we spell out in (perhaps excessive) detail some basic facts about equivalence
relations on disjoint unions that are E-trivial, but not necessarily trivial, on each
factor.

From now on, let C denote the category of affine schemes, schemes, or algebraic
spaces. (We only need some weak hypotheses on coproducts in C, but let us not
bother to determine which ones we need.)

7.8. Equivalence relations on a disjoint union. Suppose S is a coproduct Sa + Sb

of two objects Sa, Sb ∈ C. (We use the symbols a, b to index the summands only
to emphasize their distinction from the symbols 1, 2 that index the factors in the
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product S× S.) Let R be an equivalence relation on S, and let Ri j denote R×S×S

(Si × S j ), for any i, j ∈ {a, b}. Let πRi j ,1 denote the evident composition

Ri j = R×S×S (Si × S j )
pr1
−→ Si

and πRi j ,2 the analogous map Ri j → S j . We will sometimes view Ri j as an object
of CS×S using the induced map Ri j → Si × S j → S× S.

Let ei : Si→ Ri i and ci jk : Ri j R jk→ Rik and si j : Ri j→ R j i denote the evident
restrictions of e and c and s.

7.9. Actions over a disjoint union. For any object X over S, write Xa = Sa ×S X
and Xb = Sb×S X .

For any pre-action
ϕ : π∗R,2 X −→π∗R,1 X, (7-9-1)

of R on X , let us write ϕi j for the restriction of ϕ to Ri j . In order for this pre-action
to be an action, it is necessary and sufficient that for all i, j, k ∈ {a, b} we have

e∗i (ϕi i )= idX i , (7-9-2)

c∗i jk(ϕik)= pr∗1(ϕi j ) ◦ pr∗2(ϕ jk). (7-9-3)

This is just a restatement of (7-5-1), summand by summand. In that case, (7-5-2)
becomes

s∗i j (ϕ j i )= ϕ
−1
i j . (7-9-4)

7.10. Proposition. Let R be an equivalence relation on S = Sa + Sb such that for
i = a, b, the map ei : Si → Ri i is a universal E-equivalence. Then for any object
X ∈ ES , the map

Act(R, X)
ϕ 7→ϕba

// PreAct(Rba, X)

is a bijection.

Proof. Let us first show injectivity. Let ϕ and ϕ′ be actions of R on X such that
ϕba=ϕ

′

ba . We need to show that this implies ϕi j =ϕ
′

i j for all i, j ∈{a, b}. Consider
each case separately. For i j = ba, it is true by assumption. When i j = ab, (7-9-4)
and the given equality ϕba = ϕ

′

ba imply

ϕab = s∗ba(ϕab)
−1
= s∗ba(ϕ

′

ab)
−1
= ϕ′ab.

When i = j , since ei is an E-equivalence, it is enough to show e∗i (ϕi i ) = e∗i (ϕ
′

i i ).
But by (7-9-2), we have

e∗i (ϕi i )= idX i = e∗i (ϕ
′

i i ).

Therefore ϕ = ϕ′, which proves injectivity.
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Now consider surjectivity. Let ϕba be a pre-action of Rba on X . Define

ϕab = s∗ab(ϕba)
−1 (7-10-1)

and for i = a, b define ϕi i to be the map such that

e∗i (ϕi i )= idX i , (7-10-2)

which exists and is unique because ei is an E-equivalence. We need to check that
the pre-action ϕ = ϕaa + ϕab + ϕba + ϕbb of R on X is actually an action. To do
this, we will verify the relations (7-9-2) and (7-9-3).

The identity axiom (7-9-2) holds because it is the defining property (7-10-2) of
ϕi i .

Now consider the associativity axiom (7-9-3) for the various possibilities for
i jk. Since i, j, k ∈ {a, b}, two of i, j, k must be equal.

If i = j , the composition f

R jk
pr−1

2

∼
// S j j R jk

e j×id
// R j j R jk

is an E-equivalence, because it is a base change of the universal E-equivalence e j .
Therefore it is enough to show

f ∗c∗j jk(ϕ jk)= f ∗pr∗1(ϕ j j ) ◦ f ∗pr∗2(ϕ jk). (7-10-3)

By the equality pr1 ◦ f = e j ◦πR jk ,1 and (7-10-2), we have

f ∗pr∗1(ϕ j j )= π
∗

R jk ,1e∗j (ϕ j j )= π
∗

R jk ,1(idX j )= id.

On the other hand, by c j jk◦ f = idR jk =pr2◦ f , we have f ∗c∗j jk(ϕ jk)= f ∗pr∗2(ϕ jk).
Equation (7-10-3) then follows.

The case j = k is similar to the case i = j . (Or apply s to the case i = j .)
Last, suppose i = k. The following diagram is easily checked to be cartesian:

Ri j
(idRi j ,si j )

//

πRi j ,1

��

Ri j R j i

ci j i

��

Si
ei

// Ri i .

(7-10-4)

(This is just another expression of the existence and uniqueness of inverses in a
groupoid.) Since ei is a universal E-equivalence, (idRi j , si j ) is an E-equivalence.
So it is enough to show axiom (7-9-3) after applying (idRi j , si j )

∗, that is, to show

(idRi j , si j )
∗c∗i j i (ϕi i )= (idRi j , si j )

∗pr∗1(ϕi j ) ◦ (idRi j , si j )
∗pr∗2(ϕ j i ). (7-10-5)
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By the commutativity of (7-10-4) and (7-10-2), we have

(idRi j , si j )
∗c∗i j i (ϕi i )= π

∗

Ri j ,1e∗i (ϕi i )= π
∗

Ri j ,1(idX i )= id.

Combining this with the equation ϕ j i = s∗j i (ϕi j )
−1, (7-10-5) reduces to

(idRi j , si j )
∗pr∗1(ϕi j )= (idRi j , si j )

∗pr∗2s∗j i (ϕi j ).

But this holds because we have

pr1 ◦ (idRi j , si j )= idRi j = s j i ◦ si j = s j i ◦ pr2 ◦ (idRi j , si j ).

Therefore the equations in (7-9-3) hold for all i, j, k, and so the pre-action is an
action. �

Grothendieck’s theorem

Recall that a map Spec B→ Spec A of affine schemes is said to be integral if the
corresponding ring map A→ B is integral (and not necessarily injective).

7.11. Theorem. Every surjective integral map Y → X of affine schemes is an
effective descent map for the fibered category E over C of (7-1-1).

This theorem is proven in [SGA 1, IX 4.7] up to two details. First, the argument
given there covers only morphisms Y → X which are finite and of finite presen-
tation; and second, the statement there has no affineness in the assumptions or in
the conclusion. The first point can be handled by a standard limiting argument
(or one can apply [Rydh 2010, Theorem 5.17 plus Remark 2.5(1b)]). The second
point can be handled with Chevalley’s theorem; the form most convenient here
would the final one [Rydh 2009, Theorem 8.1], which is free of noetherianness,
separatedness, finiteness, and scheme-theoretic assumptions.

Gluing and descent of étale algebras

7.12. Proposition. Consider a diagram of rings

B
d

// B ′
h1

//

h2

// B ′′

A
f

//

e

OO

A′
g1

//

g2
//

e′

OO

A′′

e′′

OO

(7-12-1)

such that hi ◦ e′ = e′′ ◦ gi , for i = 1, 2. Also assume that

(a) the two parallel right-hand squares are cocartesian,

(b) both rows are equalizer diagrams,

(c) relative to the lower row, gluing data on any étale A′-algebra is descent data,
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(d) f satisfies effective descent for the fibered category of étale algebras, and

(e) e′ is étale.

Then e is étale and the left-hand square is cocartesian.

Note that when we use the language of descent in the category of rings (as in
(c) and (d)), we understand that it refers to the corresponding statements in the
opposite category.

Proof. Property (a) equips the étale A′-algebra B ′ with gluing data ϕ relative to
(g1, g2). Indeed, take ϕ to be the composition

A′′⊗g1,A′ B ′
∼
−→ B ′′

∼
−→ A′′⊗g2,A′ B ′.

By property (c), this gluing data comes from unique descent data relative to f .
Therefore by (d) and (e), the A′-algebra B ′ descends to an étale A-algebra C .

Now apply the functor C ⊗A − to the lower row of diagram (7-12-1). By (a)
and the definition of descent, the result can be identified with the sequence

C // B ′
h1

//

h2

// B ′′.

This sequence is also an equalizer diagram, because the lower row of (7-12-1) is
an equalizer diagram, by (b), and because C is étale over A and hence flat. Again
by (b), the upper row of (7-12-1) is an equalizer diagram, and so we have C = B.
Therefore, B is an étale A-algebra and the left-hand square is cocartesian. �

8. Ghost descent in the single-prime case

We return to the notation of 1.2. Suppose E consists of a single maximal ideal m,
and fix an integer n > 1. Write Wn = WR,m,n , and so on. Let A be an R-algebra,
and let αn denote the map

Wn(A)
αn
−→Wn−1(A)× A (8-0-2)

given by the canonical projection on the factor Wn−1(A) and the n-th ghost com-
ponent wn on the factor A. Let In(A) denote the kernel of αn . For example, if m

is generated by π , then in terms of the Witt components, we have

In(A)= {(0, . . . , 0, a)π ∈ A[0,n] | πna = 0}. (8-0-3)

8.1. Proposition. (a) αn is an integral ring homomorphism.

(b) The kernel In(A) of αn is a square-zero ideal.

(c) If A is m-flat, then αn is injective.
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(d) The diagram

Wn−1(A)
w̄n

// A/mn A

Wn(A)
wn

//

OOOO

A,

OOOO

where the vertical maps are the canonical ones, is cocartesian.

(e) View A as a Wn(A)-algebra by the mapwn : Wn(A)→ A. Then every element
in the kernel of the multiplication map A⊗Wn(A) A−→ A is nilpotent.

(f) In the diagram

Wn(A)
αn

// Wn−1(A)× A
w̄n◦pr1

//

pr2

// A/mn A, (8-1-1)

where pr2 denotes the reduction of pr2 modulo mn , the image of αn agrees with
the equalizer of w̄n ◦ pr1 and pr2.

Proof. (a): It is enough to show that each factor of Wn−1(A)× A is integral over
Wn(A). The first factor is a quotient ring, and hence integral. Now consider an
element a ∈ A. Then aqn

is the image in A of the Teichmüller lift [a] ∈ Wn(A).
(See 1.21.) Therefore the second factor is also integral over Wn(A).

(b) It suffices to show this after base change to R[1/m] × Rm. Therefore, by 6.1,
we may assume m is generated by a single element π . Then an element of the
kernel of αn will be of the form V n

π [a] = (0, . . . , 0, a)π , where πna = 0. On the
other hand, by (4-2-6) we have

(V n
π [a])(V

n
π [b])= π

nV n
π [ab] = (0, . . . , 0, πnab)π = 0.

(c) We have (w6n−1× idA)◦αn =w6n . Since A is m-flat, the map w6n is injective
2.7, and hence so is αn .

(d) As above, it is enough by 6.1 to assume m is generated by a single element π .
Then we have

A⊗Wn(A) Wn−1(A)= A⊗Wn(A) Wn(A)/V nWn(A)= A/wn(V nWn(A))A.

Examining the Witt polynomials (3-1-1) shows wn(V nWn(A))= πn A.

(e) Again, by 6.1 we may assume m is generated by a single element π . To show
every element x ∈ I is nilpotent, it is enough to restrict x to a set of generators.
Therefore it is enough to show (1⊗ a− a⊗ 1)q

n
= 0 for every element a ∈ A.

Now suppose that, for j = 0, . . . , qn , we could show( qn

j

)
a j
∈ im(wn). (8-1-2)
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Then we would have

(1⊗ a− a⊗ 1)q
n
=

∑
j

(−1) j
( qn

j

)
a j
⊗ aqn

− j
=

∑
j

(−1) j
⊗

( qn

j

)
a j aqn

− j

= (1⊗ a− 1⊗ a)q
n
= 0,

which would complete the proof. So let us show (8-1-2).
Let f = ordp(q) and i = ordp( j). Then we have

ordp

( qn

j

)
= ordp(qn j−1)+ ordp

( qn
− 1

j − 1

)
> n f − i.

It follows that
( qn

j

)
a j is an R-linear multiple of πn f−i a j . Since wn is an R-

algebra map, it is therefore enough to show

πn f−i a j
∈ im(wn). (8-1-3)

Now, for b∈ A and s=0, . . . , n, we have πn−sbqs
=wn(V n−s

π [b]), and therefore
πn−sbqs

is in the image of wn . So to show (8-1-3), it is enough to find an integer
s and an element b ∈ A such that πn−sbqs

is an R-linear divisor of πn f−i a j . In
particular, it is sufficient for b and s to satisfy bqs

= a j and n− s 6 n f − i .
Take s to be the greatest integer at most i f −1. Then we have qs

| j ; so if we
set b = a j/qs

∈ A, we have bqs
= a j . It remains to show n − s 6 n f − i . This is

equivalent to n−i f −16n f −i , which is in turn equivalent to (1− f )(n−i f −1)60.
And this holds because 1− f 6 0 and n − i f −1 > 0. (Recall that j 6 qn .) This
completes the proof of (e).

(f) As above, we may assume that m can be generated by a single element π . For
any element a = (a0, . . . , an)π ∈Wn(A), we have

αn(a)=
(
(a0, . . . , an−1), aqn

0 + · · ·+π
n−1aq

n−1+π
nan

)
.

Therefore an element
(
(a0, . . . , an−1), b

)
∈ Wn−1(A)× A lies in the image of αn

if and only if
aqn

0 + · · ·+π
n−1aq

n−1 ≡ b mod mn A,

which is exactly what we needed to show. �

8.2. Corollary. For any R-algebra A, the ghost map

w6n : Wn(A)−→ A[0,n]

is integral, and its kernel J satisfies J 2n
= 0.

Proof. By 8.1 and induction on n. �

8.3. Theorem. (a) The map αn is an effective descent map for the fibered cate-
gory of étale algebras.
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(b) Relative to the diagram

Wn(A)
αn

// Wn−1(A)× A
w̄n◦pr1

//

pr2

// A/mn A, (8-3-1)

gluing data on any étale Wn−1(A)× A-algebra is descent data (7.7).

(c) If A is m-flat, then for any A′-algebra B ′ equipped with gluing data ϕ, the
descended A-algebra is the subring B of B ′ on which the following diagram
commutes:

A/mn A⊗w̄n◦pr1
B ′

B ′

1⊗idB′
77

1⊗idB′ ''

A/mn A⊗pr2
B ′.

ϕ

OO

Proof. (a) This follows from Grothendieck’s Theorem 7.11 and 8.1(a)–(b).

(b) We will use 7.10, where C and E are as in (7-1-1). In the notation of 7.8, put

Sa = Spec Wn(A) and Sb = Spec A.

Let 0 be the equivalence relation S×Spec Wn(A) S on S. By 8.1(d), we have 0ba =

Spec A/mn A. The map ea is an isomorphism because Wn−1(A) is a quotient ring
of Wn(A). The map eb is a nil immersion, by 8.1(e), and hence is an E-equivalence.
Thus we can apply 7.10, which says that a 0-action is the same as a 0ba pre-action.
In other words, gluing data is descent data.

(c) This will follow from 7.12 once we verify the hypotheses. 7.12(a)–(b) are clear;
7.12(c) follows from (b) above; 7.12(d) follows from (a) above; and 7.12(e) follows
from the definition of B, for the top row of (7-12-1), and from 8.1(c) and (f), for
the bottom row. �

8.4. Remark. For any ring C , let EtAlgC denote the category of étale C-algebras.
Then another way of expressing part (b) of this theorem is that the induced functor

EtAlgWn(A)−→EtAlgWn−1(A)×EtAlgA/mn A EtAlgA

is an equivalence. (Of course, the fibered product of categories is taken in the weak
sense.) In particular, we can prove things about étale Wn(A)-algebras by induction
on n. This is the main technique in the proof of 9.2. But it also seems interesting
in its own right and will probably have applications beyond the present paper.
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8.5. Remark. If we let W̄n(A) denote the image of αn , the induced diagram

W̄n(A) // Wn−1(A)× A
w̄n◦pr1

//

pr2

// A/mn A.

satisfies all the conclusions of the theorem above, regardless of whether A is m-flat.
Indeed, it is an equalizer diagram by 8.1(f) and the definition of W̄n(A); it is

an effective descent map by 8.3 and 8.1(b). Last, because W̄n(A) is the image of
αn , gluing (resp. descent) data relative to W̄n(A) agrees with gluing (resp. descent)
data relative to Wn(A). In particular, gluing data relative to W̄n(A) is descent data.

9. W and étale morphisms

We return to the general context of 1.2. In particular, E is no longer required to
consist of one ideal.

9.1. Lemma. Consider a commutative square of affine schemes (or any schemes)

X

f
��

X ′

f ′

��

g
oo

Y Y ′,
h

oo

and let U be an open subscheme of Y . Suppose that

(a) f and f ′ are étale,

(b) the square above becomes cartesian after the base change U ×Y −, and

(c) g and h become surjective and universally injective after the base change
(Y −U )×Y −.

Then the square above is cartesian.

Proof. Let e denote the induced map (g, f ′) : X ′→ X×Y Y ′. It is enough to show
e is étale, surjective, and universally injective [EGA 8, 17.9.1]. The composition
of e with pr2 : X ×Y Y ′→ Y ′ is f ′. Because f is étale, so is its base change pr2.
Combining this with the étaleness of f ′ implies that e is étale [EGA 8, 17.3.4].

The surjectivity and universal injectivity of e can be checked after base change
over Y to U and to Y −U . By assumption e becomes an isomorphism after base
change to U . In particular, it becomes surjective and universally injective.

Let ē, ḡ, h̄ denote the maps e, g, h pulled back from Y to Y −U . Let h̄′ denote
the base change of h̄ from Y to X . Then, as above, we have ḡ = h̄′ ◦ ē. Since h̄
is universally injective, so is h̄′. Combining this with the fact that ḡ is universally
injective, implies that ē is as well [EGA 1, 3.5.6–7]. Finally ē is surjective since h̄′

is injective and ḡ is surjective. �
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9.2. Theorem. For any étale map ϕ : A → B and any element n ∈ N(E), the
induced map WR,E,n(ϕ) : WR,E,n(A)→WR,E,n(B) is étale.

Proof. By 5.4, it is enough to assume E consists of a single maximal ideal m. Also,
it will simplify notation if we assume m is principal, generated by an element π .
We may do this by 6.1 and because it is enough to show étaleness after applying
Rm⊗R − and R[1/m]⊗R −. Let us write Wn =WR,E,n .

We will reason by induction on n, the case n = 0 being clear because W0 is the
identity functor. So from now on, assume n > 1.

Let W̄n(A) denote the image of αn : Wn(A)→ Wn−1(A)× A, and let ᾱn de-
note the induced injection W̄n(A)→ Wn−1(A)× A. Define W̄n(B) and ᾱn for B
similarly.

Step 1: W̄n(B) is étale over W̄n(A). To show this, it suffices to verify conditions
(a)–(e) of 7.12 for the diagram

W̄n(B)
ᾱn

// Wn−1(B)× B
w̄n◦pr1

//

pr2

// B/mn B

W̄n(A)
ᾱn

//

OO

Wn−1(A)× A
w̄n◦pr1

//

pr2

//

OO

A/mn A,

OO

where the vertical maps are induced by ϕ and functoriality. We know 7.12(a) holds
by induction. Conditions 7.12(c)–(d) hold by 8.3 (or 8.5). Condition 7.12(e) was
shown already in 8.1(f). Now consider 7.12(b). It is clear that the square of pr2
maps is cocartesian. So, all that remains is to check that the square of w̄n ◦ pr1
maps is cocartesian. By induction, Wn−1(B) is étale over Wn−1(A), and so this
follows from 9.1, which we can apply by 6.1 and 6.8.

Step 2: Wn(B) is étale over Wn(A). We know from 8.1(b) that the kernel In(A) of
the map αn : Wn(A)→ W̄n(A) has square zero. Therefore by [EGA 8, 18.1.2], there
is an étale Wn(A)-algebra C and an isomorphism f : C ⊗Wn(A) W̄n(A)→ W̄n(B).
Now consider the square

C //

d

%%JJJJJJ W̄n(B)

Wn(A)

OO

// Wn(B),

OOOO

where the upper map is the one induced by f and where d will soon be defined.
By 8.1(b), the kernel In(B) of the right-hand map has square zero. Therefore since
C is étale over Wn(A), there exists a unique map d making the diagram commute.
Let us now show that d is an isomorphism.
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Because C is étale and hence flat over Wn(A), we have a commutative diagram
with exact rows:

0 // In(B) // Wn(B) // W̄n(B) // 0

0 // C ⊗Wn(A) In(A) //

e

OO

C //

d

OO

C ⊗Wn(A) W̄n(A) //

∼f

OO

0.

So to show d is an isomorphism, it is enough to show e is an isomorphism. Because
In(A) is a square-zero ideal, the action of Wn(A) on it factors through W̄n(A).
Therefore, e factors as follows:

C ⊗Wn(A) In(A)= C ⊗Wn(A) W̄n(A)⊗W̄n(A) In(A)
f⊗id
−→ W̄n(B)⊗W̄n(A) In(A)

g
−→ In(B),

Since f is an isomorphism, it is enough to show g is an isomorphism.
Using the description (8-0-3) of In , the map g can be extended to the following

commutative diagram with exact rows:

0 // In(B) // B
·πn

// πn B // 0

0 // W̄n(B)⊗ In(A) //

g

OO

W̄n(B)⊗ A
·πn

//

(pr2◦ᾱn)·ϕ

OO

W̄n(B)⊗πn A,

(pr2◦ᾱn)·ϕ

OO

// 0

where ⊗ denotes ⊗W̄n(A), for short. Therefore it is enough to show the right two
vertical maps are isomorphisms, and to do this, it is enough to show the right-hand
square in the diagram

Wn(B) // // W̄n(B)
pr2◦ᾱn

// B

Wn(A) // //

OO

W̄n(A)

OO

pr2◦ᾱn
// A

OO

is cocartesian. We will do this by applying 9.1, with U = Spec R[1/m]⊗R W̄n(A).
By step 1, condition 9.1(a) holds. Now consider conditions 9.1(b)–(c). By

8.3(b), the horizontal maps in the left-hand square have square-zero kernel. In par-
ticular, the scheme maps they induce are universal homeomorphisms. And by 6.1,
they become isomorphisms after applying R[1/m]⊗R−. Therefore it is enough to
show 9.1(b)–(c) hold for the perimeter of the diagram above. In this case, 9.1(b)
follows from 6.1, and 9.1(c) follows from 6.8. �
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9.3. Remark. Observe that when A is E-flat, the proof terminates after step 1,
which is just an application of 7.12. Thus in the central case, the argument is not
much more than 8.1 and some general descent theory.

9.4. Corollary. Let B an étale A-algebra, and let C be any A-algebra. Then for
any n ∈ N(E), the induced diagram

WR,E,n(B) // WR,E,n(B⊗A C)

WR,E,n(A) //

OO

WR,E,n(C)

OO

is cocartesian.

Proof. By 5.4, we can assume E consists of a single ideal m. The proof will be
completed by 9.1, once we check its hypotheses are satisfied. Condition (a) of 9.1
holds by 9.2, condition (b) holds by 6.1 and 2.7, and condition (c) holds by 6.8. �

9.5. Wn does not generally commute with coproducts. Almost anything is an ex-
ample. For instance, with the p-typical Witt vectors, W1(A⊗Z A) is not isomorphic
to W1(A)⊗W1(Z) W1(A), when A is Fp[x] or Z[x].

9.6. W does not generally preserve étale maps. Let W denote p-typical Witt func-
tor (non-truncated), and let ϕ denote the evident inclusion Q[x]→Q[x±1

], which
is étale. While W (ϕ) is best viewed as a map of pro-rings, it is possible to view
it as a map of ordinary rings, and ask whether it is étale. It is not: W (ϕ) can be
identified with ϕN

: Q[x]N→Q[x±1
]
N, which is not étale because Q[x±1

]
N is not

finitely generated as an Q[x]N-algebra. This is an elementary exercise.

9.7. Other truncation sets for the big Witt vectors. Some writers have considered
more general systems of truncations for the big Witt functor 1.15. See [Hesselholt
and Madsen 1997, §4.1], for example. Given a finite set T of positive integers
closed under extraction of divisors, they define an endofunctor WT of the category
of rings. When T consists of all the divisors of some integer d > 1, then WT agrees
with our WZ,E,n , where E consists of the maximal ideals m⊂Z that contain d and
where nm = ordm(d). Thus the two systems of truncations are cofinal with respect
to each other.

The functors WT also preserve étale maps. Indeed, it is enough to show that the
base change to Z[1/T ] and to Z(p), for each prime p ∈ T , is étale. (See [EGA 8,
17.7.2(ii)].) Applying the identity WT (A)[1/p] = WT (A[1/p]), which can be
established by looking at the graded pieces of the Verschiebung filtration, it is
enough to consider Z[1/T ]-algebras and Z(p)-algebras. In the either case, WT (A)
is simply a product of p-typical Witt rings Wn(A) for various primes p and lengths
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n (see [Hesselholt and Madsen 1997, (4.1.10)]), in which case the result follows
from 9.2, or van der Kallen’s original theorem [1986, (2.4)].
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