

Volume 5 2011

No. 2

Correction to a proof in the article Patching and admissibility over two-dimensional complete local domains

Danny Neftin and Elad Paran

Correction to a proof in the article Patching and admissibility over two-dimensional complete local domains

Danny Neftin and Elad Paran

Volume 4:6 (2010), 743-762

The proof of Lemma 1.8 of the article in the title is incorrect. We supply an alternate argument for Proposition 1.10, whose proof invoked that lemma.

We are grateful to Yong Hu for pointing out to us a gap in the proof of Lemma 1.8 of our article "Patching and admissibility over two-dimensional complete local domains", namely, the isomorphism $R/\mathfrak{p} \cong S/\mathfrak{q}$ implies only that $S = R + \mathfrak{q}$ and not $S = R + \mathfrak{p}S$, as required for this argument.

The lemma is applied for the rings

$$R_0 = D_{I \cup I'}, \quad R_1 = D_I, \quad R_2 = D_{I'}, \quad R = D_{\varnothing},$$

where $J \cap J' = \emptyset$, to show that $S := R_1 \cap R_2 = R$. Let us show this assertion directly. In particular, this will trivially imply that for these rings $\mathfrak{q} = \mathfrak{p}S$.

All references are to the article in question.

Recall that I is a finite set and that v is the extension of the order function of the ideal $\mathfrak{p}:=(x,y)\lhd K[x,y]$ to K(x,y). For $i\in I$, let $z_i=y/(x-c_iy)$ and for a subset $J\subset I$, D_J is defined as the completion of $K[z_j\mid j\in J][x,y]$ with respect to v.

Lemma. Let $i, j \in I$ be two distinct indices. Then $D_{\{i\}} \cap D_{\{j\}} = D_{\varnothing}$.

Proof. By Proposition 1.5, $D_{\{i\}} = K[z_i][[x - c_i y]]$ and hence an element $f \in D_{\{i\}}$ can be written as $\sum_{k=0}^{\infty} f_k(z_i)(x - c_i y)^k$ for some polynomials $f_k, k \ge 0$. Assume $f \in D_{\{i,j\}}$ can also be written as $\sum_{k=0}^{\infty} g_k(z_j)(x - c_j y)^k \in D_{\{j\}} = K[z_j][[x - c_j y]]$, where g_k are polynomials for $k \ge 0$.

In particular,

$$f_k(z_i)(x - c_i y)^k = g_k(z_j)(x - c_j y)^k \pmod{\mathfrak{p}^{k+1}D_{\{i,j\}}}$$
 (1)

MSC2010: primary 12F12; secondary 12E30, 12E15, 12F10.

Keywords: patching, crossed product, admissible groups, division algebras, complete local domains. for all $k \ge 0$. We claim that equality (1) in fact holds in $D_{\{i,j\}}$. Indeed, since $x - c_i y = (1 + (c_j - c_i)z_j)(x - c_j y)$, the difference between the sides of (1) is

$$(f_k(z_i)(1+(c_i-c_i)z_j)^k - g_k(z_j))(x-c_jy)^k \in K[z_i,z_j](x-c_jy)^k.$$
 (2)

Since \mathfrak{p} is contained in the center of the valuation v, Proposition 1.5 implies that the difference (2) is in $\mathfrak{p}^{k+1}D_{\{i,j\}}$ only if it is zero, proving the claim.

By finding a common denominator, one can write an element $f_k(z_i)(x-c_iy)^k$ as $p_k(x,y)/(x-c_iy)^m$ where $m \ge 0$ and p_k is a homogenous polynomial of degree k+m that is prime to $(x-c_iy)^m$. Writing $g_k(z_j)(x-c_jy)^k = q_k(x,y)/(x-c_jy)^l$ for $l \ge 0$ and q_k a homogenous polynomial of degree k+l that is prime to $(x-c_iy)^l$, the equality

$$\frac{p_k(x, y)}{(x - c_i y)^m} = \frac{q_k(x, y)}{(x - c_i y)^l}$$

implies that m = l = 0 and hence that $f_k(z_i)(x - c_i y)^k \in K[x, y]$ for all $k \ge 0$. It follows that $f = \sum_{k=0}^{\infty} f_k(z_i)(x - c_i y)^k \in K[x, y]$, as required.

Let us complete the proof of Proposition 1.10:

Proposition. Suppose $J, J' \subseteq I$. Then $D_J \cap D_{J'} = D_{J \cap J'}$.

Proof. Clearly $D_{J\cap J'}\subseteq D_J\cap D_{J'}$. For the converse inclusion, we distinguish between two cases. First suppose that $J\cap J'\neq\varnothing$ and fix $j\in J\cap J'$. Then $D_J=K[z_k\,|\,k\in J][[x-c_jy]],\,D_{J'}=K[z_k\,|\,k\in J'][[x-c_jy]]$ and hence

$$D_J \cap D_{J'} = (K[z_k \mid k \in J]) \cap K[z_k \mid k \in J']) [[x - c_j y]].$$

By Lemma 1.9, $K[z_k | k \in J] \cap K[z_k | k \in J'] = K[z_k | k \in J \cap J']$.

Now suppose that $J \cap J' = \emptyset$. If |J| = |J'| = 1, then the claim follows from the Lemma. Assume without loss of generality $|J| \ge 2$. For distinct $j_1, j_2 \in J$, we have by the previous case $D_J \cap D_{J' \cup \{j_i\}} = D_{\{j_i\}}$, for i = 1, 2. In particular, $D_J \cap D_{J'} \subseteq D_{\{j_1\}} \cap D_{\{j_2\}}$. By the Lemma, $D_{\{j_1\}} \cap D_{\{j_2\}} = D_\emptyset$ implying that $D_J \cap D_{J'} = D_\emptyset$ as required.

Communicated by Jean-Louis Colliot-Thélène

Received 2011-07-06 Revised 2011-07-13 Accepted 2011-08-10

neftin@umich.edu Department of Mathematics, University of Michigan, Ann

Arbor, 530 Church St., Ann Arbor 48109, United States

paranela@post.tau.ac.il School of Mathematical Sciences, Tel Aviv University,

Ramat Aviv, 69978 Tel Aviv, Israel http://www.tau.ac.il/~paranela/

Algebra & Number Theory

www.jant.org

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology
Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud

University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart	University of Wisconsin, Madison, USA	Shigefumi Mori	RIMS, Kyoto University, Japan
Dave Benson	University of Aberdeen, Scotland	Andrei Okounkov	Princeton University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Raman Parimala	Emory University, USA
John H. Coates	University of Cambridge, UK	Victor Reiner	University of Minnesota, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Karl Rubin	University of California, Irvine, USA
Brian D. Conrad	University of Michigan, USA	Peter Sarnak	Princeton University, USA
Hélène Esnault	Universität Duisburg-Essen, Germany	Michael Singer	North Carolina State University, USA
Hubert Flenner	Ruhr-Universität, Germany	Ronald Solomon	Ohio State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Bernd Sturmfels	University of California, Berkeley, USA
Ehud Hrushovski	Hebrew University, Israel	Richard Taylor	Harvard University, USA
Craig Huneke	University of Kansas, USA	Ravi Vakil	Stanford University, USA
Mikhail Kapranov	Yale University, USA	Michel van den Bergh	Hasselt University, Belgium
Yujiro Kawamata	University of Tokyo, Japan	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Yuri Manin	Northwestern University, USA	Andrei Zelevinsky	Northeastern University, USA
Barry Mazur	Harvard University, USA	Efim Zelmanov	University of California, San Diego, USA
Susan Montgomery	University of Southern California, USA		

PRODUCTION

contact@msp.org

Silvio Levy, Scientific Editor Andrew Levy, Production Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2011 is US \$150/year for the electronic version, and \$210/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOWTM from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers http://msp.org/

A NON-PROFIT CORPORATION

Typeset in IATEX
Copyright ©2011 by Mathematical Sciences Publishers

Algebra & Number Theory

Volume 5 No. 2 2011

131
185
197
231
287