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The proof of Lemma 1.8 of the article in the title is incorrect. We supply an
alternate argument for Proposition 1.10, whose proof invoked that lemma.

We are grateful to Yong Hu for pointing out to us a gap in the proof of Lemma
1.8 of our article “Patching and admissibility over two-dimensional complete local
domains”, namely, the isomorphism R/p ∼= S/q implies only that S = R + q and
not S = R+ pS, as required for this argument.

The lemma is applied for the rings

R0 = DJ∪J ′, R1 = DJ , R2 = DJ ′, R = D∅,

where J ∩ J ′ = ∅, to show that S := R1 ∩ R2 = R. Let us show this assertion
directly. In particular, this will trivially imply that for these rings q= pS.

All references are to the article in question.
Recall that I is a finite set and that v is the extension of the order function of

the ideal p := (x, y)CK [x, y] to K (x, y). For i ∈ I , let zi = y/(x−ci y) and for a
subset J ⊂ I , DJ is defined as the completion of K [z j | j ∈ J ][x, y] with respect
to v.

Lemma. Let i, j ∈ I be two distinct indices. Then D{i} ∩ D{ j} = D∅.

Proof. By Proposition 1.5, D{i} = K [zi ][[x − ci y]] and hence an element f ∈ D{i}
can be written as

∑
∞

k=0 fk(zi )(x− ci y)k for some polynomials fk , k ≥ 0. Assume
f ∈ D{i, j} can also be written as

∑
∞

k=0 gk(z j )(x−c j y)k
∈ D{ j}= K [z j ][[x−c j y]],

where gk are polynomials for k ≥ 0.
In particular,

fk(zi )(x − ci y)k
= gk(z j )(x − c j y)k (mod pk+1 D{i, j}) (1)
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for all k ≥ 0. We claim that equality (1) in fact holds in D{i, j}. Indeed, since
x − ci y =

(
1+ (c j − ci )z j

)
(x − c j y), the difference between the sides of (1) is(

fk(zi )(1+ (c j − ci )z j )
k
− gk(z j )

)
(x − c j y)k

∈ K [zi , z j ](x − c j y)k . (2)

Since p is contained in the center of the valuation v, Proposition 1.5 implies that
the difference (2) is in pk+1 D{i, j} only if it is zero, proving the claim.

By finding a common denominator, one can write an element fk(zi )(x−ci y)k as
pk(x, y)/(x − ci y)m where m ≥ 0 and pk is a homogenous polynomial of degree
k+m that is prime to (x−ci y)m . Writing gk(z j )(x−c j y)k

= qk(x, y)/(x − c j y)l

for l≥0 and qk a homogenous polynomial of degree k+l that is prime to (x−ci y)l ,
the equality

pk(x, y)

(x − ci y)m =
qk(x, y)

(x − c j y)l

implies that m = l = 0 and hence that fk(zi )(x − ci y)k
∈ K [x, y] for all k ≥ 0. It

follows that f =
∑
∞

k=0 fk(zi )(x − ci y)k
∈ K [[x, y]], as required. �

Let us complete the proof of Proposition 1.10:

Proposition. Suppose J, J ′ ⊆ I . Then DJ ∩ DJ ′ = DJ∩J ′ .

Proof. Clearly DJ∩J ′ ⊆ DJ ∩ DJ ′ . For the converse inclusion, we distinguish
between two cases. First suppose that J ∩ J ′ 6= ∅ and fix j ∈ J ∩ J ′. Then
DJ = K [zk | k ∈ J ][[x − c j y]], DJ ′ = K [zk | k ∈ J ′][[x − c j y]] and hence

DJ ∩ DJ ′ = (K [zk | k ∈ J ] ∩ K [zk | k ∈ J ′])[[x − c j y]].

By Lemma 1.9, K [zk | k ∈ J ] ∩ K [zk | k ∈ J ′] = K [zk | k ∈ J ∩ J ′].
Now suppose that J ∩ J ′ = ∅. If |J | = |J ′| = 1, then the claim follows from

the Lemma. Assume without loss of generality |J | ≥ 2. For distinct j1, j2 ∈ J ,
we have by the previous case DJ ∩ DJ ′∪{ ji } = D{ ji }, for i = 1, 2. In particular,
DJ ∩ DJ ′ ⊆ D{ j1} ∩ D{ j2}. By the Lemma, D{ j1} ∩ D{ j2} = D∅ implying that
DJ ∩ DJ ′ = D∅ as required. �
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