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surface without punctures

Thomas Brüstle and Jie Zhang

We study the cluster category C(S,M) of a marked surface (S,M) without punc-
tures. We explicitly describe the objects in C(S,M) as direct sums of homotopy
classes of curves in (S,M) and one-parameter families related to noncontractible
closed curves in (S,M). Moreover, we describe the Auslander–Reiten structure
of the category C(S,M) in geometric terms and show that the objects without self-
extensions in C(S,M) correspond to curves in (S,M) without self-intersections.
As a consequence, we establish that every rigid indecomposable object is reach-
able from an initial triangulation.

1. Introduction

We study the cluster category of a marked surface without punctures: Consider
a compact connected oriented 2-dimensional bordered Riemann surface S and a
finite set of marked points M lying on the boundary ∂S of S with at least one
marked point on each boundary component. The condition M ⊂ ∂S means that
we do not allow the marked surface (S,M) to have punctures. (While some of
the background results we need are valid in the more general context of punctured
surfaces, the main result we need from [Assem et al. 2010] works only without
punctures.) In [Fomin et al. 2008] a cluster algebra A(S,M) is associated to the
marked surface (S,M). The initial seed of A(S,M) corresponds to a triangulation
0 of (S,M), and the mutation of a cluster variable corresponds to the flip of an arc
in the triangulation (see [Fomin and Zelevinsky 2002] for the definition of a cluster
algebra). The cluster algebra, defined by iterated mutations, is thus independent of
the chosen triangulation 0 of (S,M).

The cluster category C(S,M) providing a categorification of the algebra A(S,M)
was defined in [Amiot 2009]. In fact, in [Labardini-Fragoso 2009a; Assem et al.
2010] a quiver with potential (Q0,W0) has been defined for each triangulation 0
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of (S,M). Since the Jacobian algebra J (Q0,W0) is finite-dimensional, one can
use [Amiot 2009] to define the cluster category C0 associated to 0. By [Keller and
Yang 2009; Fomin et al. 2008; Labardini-Fragoso 2009a], this category C0 does
not depend on the triangulation 0 of (S,M) and is just denoted by C(S,M) (more
precisely, C0 is triangle equivalent to C0′ if 0′ is another triangulation of (S,M)).

Cluster categories associated to quivers are object of intense investigation (see
for example [Geiss et al. 2005; Caldero et al. 2006; Buan et al. 2006; 2008; Caldero
and Chapoton 2006; Geiß et al. 2006; Assem et al. 2008]) and are understood
explicitly in terms of representations of the quiver. The category C(S,M), defined by
a quiver with potential, is however quite difficult to compute and only a few cases
of surfaces allow direct calculations. The aim of this paper is to provide an explicit
description of the objects and the irreducible morphisms in the category C(S,M) in
terms of the surface (S,M), independent of the choice of a triangulation. In fact,
the category C(S,M) is closely related to module categories of string algebras, and
a well-know classification theorem [Butler and Ringel 1987] describes all modules
over a string algebra by listing the indecomposable modules in a list of string
modules and a collection of band modules. Similarly, the indecomposable objects
of C(S,M) can be described as belonging to two classes which we call string objects
and band objects. The cluster categories C(S,M) are k-categories, where k denotes
a fixed algebraically closed field. Moreover they are Krull–Schmidt; thus it is
sufficient to classify indecomposable objects up to isomorphism.

Theorem 1.1. A parametrization of the isoclasses of indecomposable objects in
C(S,M) is given by “string objects” and “band objects”, where

(1) the string objects are indexed by the homotopy classes of noncontractible
curves in (S,M) which are not homotopic to a boundary segment of (S,M),
subject to the equivalence relation γ ∼ γ−1;

(2) the band objects are indexed by k∗ ×5∗1(S,M)/∼ , where k∗ = k \ {0} and
5∗1(S,M)/∼ is given by the nonzero elements of the fundamental group of
(S,M) subject to the equivalence relation generated by a ∼ a−1 and cyclic
permutation.

Remark 1.2. The curves we consider in Theorem 1.1 are allowed to have self-
intersections.

The boundary of the surface S consists of a collection of disjoint circles, each
one inheriting an orientation from the orientation of S. Given any curve γ in
(S,M), we denote by sγ the curve obtained from γ by moving its starting point
clockwise to the next marked point on the boundary. Likewise, moving the ending
point of γ clockwise along the boundary to the next marked point, one obtains a
curve γe from γ . These moves establish the irreducible morphisms between string
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objects, as explained in the following theorem. Note that in the special case where
S is a disc, this description of irreducible morphisms has been given in [Caldero
et al. 2006], establishing one of the first categorifications of a cluster algebra (of
type A).

In the next few statements, we use the abbreviation AR to refer to the Auslander–
Reiten structure.

Theorem 1.3. Let γ be a noncontractible curve in (S,M) that is not homotopic to
a boundary segment of (S,M). Then there is an AR-triangle in C(S,M) as follows,
where sγ or γe are zero objects in C(S,M) if they are boundary segments:

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].

Moreover, all AR-triangles between string objects in C(S,M) are of this form.

We obtain also the AR-translation in the cluster category C(S,M):

Proposition 1.4. The AR-translation in C(S,M) is given by the simultaneous coun-
terclockwise rotation of the starting and ending points of a curve to the next marked
points at the boundary.

Moreover, from Theorem 1.3 one can deduce the shape of the AR-components
in the category C(S,M). In fact, each boundary component of S with t marked
points gives rise to a tube of rank t in C(S,M). All other components formed by
string objects are composed of meshes with exactly two middle terms.

We also study the effect of a change of the triangulation. It is well-known
that any two triangulations of (S,M) can be transformed into each other by a
sequence of flips fi (0) which locally change one arc in 0. On the other hand,
each triangulation yields a cluster-tilting object T in C(S,M), and there one can
apply mutations µi (T ) locally changing one summand. We show that these two
operations are compatible:

Theorem 1.5. Each triangulation 0 of (S,M) yields a cluster-tilting object T0 in
C(S,M), and

µi (T0)= T fi (0).

We then study the relation between extensions in the category C(S,M) and in-
tersections of the corresponding curves. Given any two curves in (S,M) with
intersections, we explicitly construct one or two new curves, sometimes resolving
the intersection, and sometimes increasing the winding number. These new curves
serve as middle term of certain nonsplit short exact sequences which allow to prove
the following theorem and corollary:

Theorem 1.6. Curves in (S,M) without self-intersections correspond to the inde-
composable objects without self-extensions in C(S,M).
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Corollary 1.7. There is a bijection between triangulations of (S,M) and cluster-
tilting objects of C(S,M). In particular, each indecomposable object without self-
extension is reachable from the cluster-tilting object T0 (the initial cluster-tilting
object).

This paper is organized as follows: we first describe in Section 2 the indecom-
posable objects in C(S,M), using the description of modules over a string algebra.
In Section 3 we describe the irreducible morphisms in C(S,M) and study the shape
of its AR-components. Section 4 is devoted to compare the effect of a flip of an arc
in the triangulation and a mutation of the corresponding cluster-tilting object. We
also compare it to results obtained for decorated representations of quivers with
potential. Finally, in Section 5 we prove that curves without self-intersections cor-
respond to objects without self-extensions in C(S,M) and we establish the bijection
between triangulations and cluster-tilting objects.

2. Indecomposable objects in C(S,M)

In this section, we choose a triangulation 0 of (S,M), and by studying the corre-
sponding Jacobian algebra, we give a geometric characterization of the indecom-
posable objects in C(S,M). By a curve in (S,M), we mean a continuous function
γ : [0, 1] → S with γ (0), γ (1) ∈ M . A closed curve is one with γ (0)= γ (1), and
a simple curve is one where γ is injective, except possibly at the endpoints. For
a curve γ , we denote by γ−1 the inverse curve γ−1

: [0, 1] → S, t 7→ γ (1− t).
We always consider curves up to homotopy, and for any collection of curves we
implicitly assume that their mutual intersections are minimal possible in their re-
spective homotopy classes. We recall from [Fomin et al. 2008] the definition of a
triangulation:

Definition 2.1. An arc δ in (S,M) is a simple noncontractible curve in (S,M). The
boundary of S is a disjoint union of circles, which are subdivided by the points in M
into boundary segments. We call an arc δ a boundary arc if it is homotopic to such
a boundary segment. Otherwise, δ is said to be an internal arc. A triangulation
of (S,M) is a maximal collection 0 of arcs that do not intersect except at their
endpoints. We call a triangle 4 in 0 an internal triangle if all edges of 4 are
internal arcs.

Proposition 2.2 [Fomin et al. 2008]. In each triangulation of (S,M), the number
of internal arcs is

n = 6g+ 3b+ c− 6

where g is the genus of S, b is the number of boundary components, and c = |M |
is the number of marked points.
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The quiver with potential ( Q0,W0). We recall from [Assem et al. 2010; Labardini-
Fragoso 2009a] that each triangulation 0 of (S,M) yields a quiver Q0 with po-
tential W0:

(1) Q0 = (Q0, Q1), where the set of vertices Q0 is given by the internal arcs of
0, and the set of arrows Q1 is defined as follows: whenever there is a triangle
4 in 0 containing two internal arcs a and b, there is an arrow ρ : a→ b in
Q1 if a is a predecessor of b with respect to clockwise orientation at the joint
vertex of a and b in 4.

(2) Every internal triangle 4 in 0 gives rise to an oriented cycle α4β4γ4 in Q,
unique up to cyclic permutation of the factors α4 , β4 , γ4 . We define

W0 =

∑
4

α4β4γ4

where the sum runs over all internal triangles 4 of 0.

Unless we compare two different triangulations, we omit the subscript and de-
note the quiver with potential defined by 0 just with (Q,W ). We refer to [Derksen
et al. 2008] for more details on quivers with potentials, such as the definition of
the Jacobian algebra J (Q,W ) associated to (Q,W ). From [Assem et al. 2010]
we know that J (Q,W ) is a finite-dimensional string algebra provided (Q,W ) is
defined by a triangulation of a marked surface as above.

Moreover, we denote by 3(Q,W ) the corresponding Ginzburg dg-algebra (see
[Ginzburg 2006] for more details), and denote by D(3(Q,W )) its derived category
[Keller 2006]. The cluster category C0 = C(Q,W ) associated to (Q,W ) is defined
in [Amiot 2009] as the quotient of triangulated categories Per3(Q,W )/Db(3(Q,W ))

where Per3(Q,W ) is the thick subcategory of D(3(Q,W )) generated by 3(Q,W )

and Db(3(Q,W )) is the full subcategory of D(3(Q,W )) of the dg-modules whose
homology is of finite total dimension.

Theorem 2.3 [Amiot 2009; Koenig and Zhu 2008]. Suppose (Q,W ) is a quiver
with potential whose Jacobian algebra J (Q,W ) is finite-dimensional.

(1) C0 is 2-Calabi–Yau, Hom-finite and the image T0 of the free module 3(Q,W )

in the quotient Per3(Q,W )/Db(3(Q,W )) is a cluster-tilting object.

(2) C0/T0 is equivalent to mod J (Q,W ), the category of finite dimensional mod-
ules over J (Q,W ). Moreover, the projection functor C0→mod J (Q,W ) is
given by Ext1C0 (T0,−).

As explained in the introduction, the category C0 is (up to triangle equivalence)
independent of the choice of a triangulation of (S,M), and is therefore denoted by
C(S,M). Moreover, it is a Krull–Schmidt category, so it is sufficient to describe all
indecomposable objects up to isomorphism in order to describe its objects. From
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Theorem 2.3(2), the indecomposable objects in C(S,M) are either indecomposable
modules over the Jacobian algebra J (Q,W ) or one of the |Q0|= 6g+3b+|M |−6
summands of T0. In order to give a description of all indecomposable objects in
C(S.M), we first study the Jacobian algebra J (Q,W ).

The string algebra J( Q, W). We now recall some basic definitions related to
string algebras and prove Theorem 1.1. Recall from [Butler and Ringel 1987] that
a finite-dimensional algebra A is a string algebra if there is a quiver Q and an
admissible ideal I such that A = k Q/I and the following conditions hold:

(S1) At each vertex of Q start at most two arrows and stop at most two arrows.

(S2) For each arrow α there is at most one arrow β and at most one arrow δ such
that αβ 6∈ I and δα 6∈ I .

Given an arrow β ∈ Q1, let s(β) be its starting point and e(β) its ending point.
We denote β−1 the formal inverse of β with s(β−1) = e(β) and e(β−1) = s(β).
A word w = αnαn−1 · · ·α1 of arrows and their formal inverses is called a string if
αi+1 6= α

−1
i , e(αi )= s(αi+1) for all 1 ≤ i ≤ n− 1, and no subword nor its inverse

belongs to I . Thus a string w can be viewed as a walk in the quiver Q avoiding
the zero relations defining the ideal I :

w : x1
α1 x2

α2
· · · xn−1

αn−1 xn
αn xn+1

where xi are vertices of Q and αi are arrows in either direction. We denote by
s(w) = s(α1) and e(w) = e(αn) the starting point and the ending point of w,
respectively. For technical reasons, we also consider the empty string which we
also call zero string. A string w is called cyclic if the first vertex x1 and the last
vertex xn+1 coincide. A band b= αnαn−1 · · ·α2α1 is defined to be a cyclic string b
such that each power bm is a string, but b itself is not a proper power of any string.
Thus b can be viewed as a cyclic walk:

b W x1

xn x7

x2 x3
˛2 ˛3

˛6

˛1

˛n

˛4

˛5

x4

x6

x5

We recall from [Butler and Ringel 1987] that each string w in A defines a string
module M(w) in mod A. The underlying vector space of M(w) is obtained by
replacing each xi in w by a copy of the field k. The action of an arrow α of Q
on M(w) is induced by the relevant identity morphisms if α lies on w, and is zero
otherwise. For the zero string 0, we let M(0) be the zero module. Each band
b defines a family of band modules M(b, n, φ) with n ∈ N and φ ∈ Aut(kn) by
replacing each xi in b a copy of the vector space kn , and the action of an arrow α



On the cluster category of a marked surface without punctures 535

on M(b, n, φ) is induced by identity morphisms if α = α j for j = 1, 2 . . . n − 1
and by φ if α = αn (see [Butler and Ringel 1987]).

Let 0 be a triangulation of the marked surface (S,M), and denote by (Q,W ) the
corresponding quiver with potential. In [Assem et al. 2010] the strings and bands
of J (Q,W ) are related to the noncontractible curves and simple noncontractible
closed curves respectively in (S,M): For two curves γ ′, γ in (S,M) we denote by
I (γ ′, γ ) the minimal intersection number of two representatives of the homotopic
classes of γ ′ and γ . For each curve γ in (S,M) with

d =
∑
γ ′∈0

I (γ ′, γ )

we fix an orientation of γ , and let x1, x2, . . . , xd be the internal arcs of 0 that
intersect γ in the fixed orientation of γ , as in the figure:

s

s

s

s
s

s

s
ss. / e. /

s

s

s

s

s s s

s s

x1 xdx2 xd�1x3

x0 M1

M0

M2

Md�1

M3

Md

Here we denote by s(γ ) = γ (0) the starting point of γ and by e(γ ) = γ (1) its
endpoint. Both points lie on the boundary, indicated by the circles in the preceding
figure. Along its way, the curve γ is passing through (not necessarily distinct)
triangles 40,41, . . . ,4d . Thus we obtain a string w(γ ) in J (Q,W ):

w(γ ) : x1
α1 x2

α2
· · · xd−2

αd−2 xd−1
αd−1 xd .

We recall the following result concerning the map γ 7→ w(γ ):

Theorem 2.4 [Assem et al. 2010]. Given a triangulation 0 of a marked surface
(S,M), the map γ 7→w(γ ) is a bijection between the homotopy classes of noncon-
tractible curves in (S,M) not homotopic to an arc in 0 and the strings of J (Q,W ).

Similarly, each noncontractible closed curve b in S defines a cyclic walk in
J (Q,W ). If b is not a proper power of any element in 5∗1(S,M), then it defines a
band w(b).

Remark 2.5. It will be convenient later to assume that each element b∈5∗1(S,M)
is given by a noncontractible closed curve b with endpoints b(0)= b(1) lying on a
marked point. Remark that as an element in 5∗1(S,M), b does not depend on the
choice of the marked point.



536 Thomas Brüstle and Jie Zhang

Example 2.6. We consider an annulus with two marked points on each boundary
and a triangulation 0 with internal arcs 1, 2, 3, 4, 5 as follows:

s
s

s

s

s 5
1

4 2

3


The associated quiver Q0 is cluster-tilted of type Ã4 with potential W0 = αβθ :

s
s

s
s

s1

42

3 5

˛

�

ˇ

From the diagram at the top of the page we read off

w(γ ) : 3−→ 4←− 2←− 1−→ 3−→ 4

where γ is the curve in red, and

w(b) :W 1

2

3

4

where b is a simple closed curve representing a generator of the fundamental group
of the annulus.

Proof of Theorem 1.1. Let 0 be a triangulation of (S,M). As explained on
page 533, the indecomposable objects in C(S,M) are either given by indecomposable
modules over the Jacobian algebra J (Q,W ), or they correspond to the indecom-
posable summands of T0, thus to the internal arcs in 0. The (finite-dimensional)
indecomposable modules over a string algebra A are classified in [Butler and
Ringel 1987]: Each indecomposable A-module is (isomorphic to) a string or a
band module. The string module M(w) is isomorphic to the string module M(w−1)

defined by the inverse string w−1, and the band module M(b, n, φ) is isomorphic
to M(b′, n, φ) whenever b′ is obtained from b by inversion or cyclic permutation.
Apart from that, there are no isomorphisms between string or band modules.

Thus each noncontractible curve γ that is not homotopic to a boundary segment
of (S,M) corresponds to an indecomposable object in C(S,M). If γ is not an internal
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arc in0, it corresponds to the string module M(w(γ )). From Theorem 2.4 and what
we have discussed above we conclude that two such curves γ, δ are isomorphic as
objects in C(S,M) precisely when γ is homotopic to δ or to its inverse δ−1. We refer
to these objects as the string objects or curves in (S,M), as described in part (1)
of Theorem 1.1.

The remaining indecomposable objects in C(S,M) correspond to the band mod-
ules M(b, n, φ) over J (Q,W ); we refer to them as band objects. They are param-
etrized by a positive integer n, an automorphism φ of kn which is given by an
element of k∗ since k is algebraically closed, and a band b of J (Q,W ). The
fundamental group 51(S,M) is a free group with a finite number of generators
which are given by simple noncontractible closed curves in S (see [Küçük 2005]).
In order to avoid counting curves with opposite orientation twice we consider the
elements in 51(S,M) up to the equivalence relation a ∼ a−1.

Moreover, to comply with the definition of a band module, we write each ele-
ment a in 51(S,M) as a = bn (multiplicatively written) for some b ∈ 51(S,M)
which itself is not a proper power of an element in 51(S,M). Furthermore, we
consider the elements of 51(S,M) up to cyclic permutation of their factors. Then
it is clear that the band modules M(b, n, φ) over J (Q,W ) correspond bijectively
to k∗ ×5∗1(S,M)/∼ , where 5∗1(S,M)/∼ is given by the nonzero elements of
the fundamental group of (S,M) subject to the equivalence relation generated by
a ∼ a−1 and cyclic permutation. This is the description of the band objects in
C(S,M) given in part (2) of Theorem 1.1. �

3. Irreducible morphisms in C(S,M)

Based on the geometric characterization of the indecomposable objects in C(S,M) in
the previous section, we study in this section the irreducible morphisms in C(S,M).

The AR-quiver of a string algebra. We first recall some basic definitions from
[Butler and Ringel 1987]. Let A = k Q/I be a finite-dimensional string algebra
with Q = (Q0, Q1) and S the set of all strings in A. A string w starts (or ends)
on a peak if there is no arrow α ∈ Q1 with wα ∈ S (or α−1w ∈ S); likewise, a
string w starts (or ends) in a deap if there is no arrow β ∈ Q1 with wβ−1

∈ S (or
βw ∈ S).

A string w = α1α2 · · ·αn with all αi ∈ Q1 is called direct string, and a string of
the form w−1 where w is a direct string is called inverse string. Strings of length
zero are both direct and inverse. For each arrow α ∈ Q1, let Nα = UααVα be the
unique string such that Uα and Vα are inverse strings and Nα starts in a deep and
ends on a peak. (See figure.)

s s s ss s s ss s˛V˛ U˛
N˛ W
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If the string w does not start on a peak, we define wh = wαVα and say that wh

is obtained from w by adding a hook on the starting point s(w). Dually, if w does
not end on a peak, we define hw= Vα−1α−1w and say that hw is obtained from w

by adding a hook on the ending point e(w). (See figure.)
wh : hw:

sssss
s.w/ e.w/

s

s
s

W
˛

V˛

w

e.w/s.w/
s s s s s

s

s
s

W
˛

V �1
˛

w

Suppose now that the string w starts on a peak. If w is not a direct string, we
can write w = wcβ

−1γ1γ2 · · · γr = wcβ
−1U−1

β for some β ∈ Q1 and r ≥ 0. We
say in this case that wc is obtained from w by deleting a cohook on s(w). If w is
a direct string, we define wc = 0. Dually, assume that w ends on a peak. Then,
if w is not an inverse string, we can write w = γ−1

r · · · γ
−1
2 γ−1

1 βcw = Uββcw for
some β ∈ Q1 and r ≥ 0. We say that cw is obtained from w by deleting a cohook
on e(w), and if w is an inverse string, we define cw = 0. (See figure.)

w: w:

s.w/

e.w/sssss
s

s
s

ˇ

U �1
ˇ

wc

e.w/

s.w/s s s s s
s

s
s

ˇ

Uˇ

cw

Theorem 3.1 [Butler and Ringel 1987]. For a string algebra A, let w be a string
such that M(w) is not an injective A-module. Then the AR-sequence starting in
M(w) is given,

(1) if w neither starts nor ends on a peak, by

0−→ M(w)−→ M(wh)⊕M(hw)−→ M(hwh)−→ 0;

(2) if w does not start but ends on a peak, by

0−→ M(w)−→ M(wh)⊕M(cw)−→ M(cwh)−→ 0;

(3) if w starts but does not end on a peak, by

0−→ M(w)−→ M(wc)⊕M(hw)−→ M(hwc)−→ 0;

(4) if w both starts and ends on a peak, by

0−→ M(w)−→ M(wc)⊕M(cw)−→ M(cwc)−→ 0.
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Remarks 3.2. (1) Each arrow α ∈ Q1 defines a string Nα =UααVα that starts in
a deep and ends on a peak. Then w = Uα does not start but ends on a peak,
hence we have an AR-sequence by Theorem 3.1:

0−→ M(w)−→ M(wh)⊕M(cw)−→ M(cwh)−→ 0.

Here M(cw)=0 sincew is an inverse string, andwh= Nα and cwh= c(Nα)=
Vα by definition. Hence, for each α ∈ Q1, there is an AR-sequence with an
indecomposable middle term in mod A:

0−→ M(Uα)−→ M(Nα)−→ M(Vα)−→ 0.

In fact, the AR-sequences between string modules which admit only one direct
summand in the middle term are indexed by the arrows in Q (see [Butler and
Ringel 1987]).

(2) If the string module M(w) is injective, then w both starts and ends on a peak.
Thus we can write

w = γ−1
r γ−1

r−1 · · · γ
−1
1 β1β2 · · ·βs−1βs or

w =Uβ1β1β2 · · ·βs−1βs = γ
−1
r γ−1

r−1 · · · γ
−1
1 U−1

γ1
,

where r + s ≥ 1; hence cw = γ−1
r γ−1

r−1 · · · γ
−1
2 , wc = β2 · · ·βs−1βs , and

M(w)�Soc(M(w)) = M(cw)⊕ M(wc) which yields two irreducible mor-
phisms M(w)→M(cw) and M(w)→M(wc). Moreover, cwc= c(wc)= (cw)c

is the empty string, hence M(cwc) is the zero module. Thus one might say that
the case where M(w) is injective is contained in the case (4) of Theorem 3.1:

(3) The number of indecomposable summands in the middle term of an AR-
sequence between string modules is at most two.

Irreducible morphisms in J( Q,W). We now fix a triangulation 0={τ1, τ2, . . . τn,

τn+1, . . . , τn+m} of the marked surface (S,M), where τ1, . . . , τn are internal arcs
and τn+1, . . . , τn+m are boundary arcs. The aim of this subsection is to describe the
AR-quiver of the string algebra J (Q,W ) in terms of objects in C(S,M), which we
identified with noncontractible curves and noncontractible closed curves in (S,M).
A curve γ in (S,M) defines a string w(γ ) in J (Q,W ) (which is empty if γ is con-
tractible or homotopic to an arc in 0), and consequently a string module M(w(γ ))
in mod J (Q,W ) (which is zero if γ is contractible or homotopic to an arc in 0).
We use the notation M(γ ) for M(w(γ )) and from the discussion in Section 2 we
know that the string module M(γ ) is the image of γ under the projection functor
Ext1C0 (T0,−) : C(S,M)→mod J (Q,W ).

To define elementary moves on curves in (S,M) we use the fact that the orienta-
tion of S induces an orientation on each boundary component of S: For any curve
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γ in (S,M) we denote by sγ the pivot elementary move of γ on its starting point,
meaning that the curve sγ is obtained from γ by moving the starting point s(γ )
clockwise to the next marked point b on the same boundary (note that b = s(γ ) if
there is only one marked point lying on the same boundary). Similarly, we denote
by γe the pivot elementary move of γ on its ending point. (See figure.)
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e
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Iterated pivot elementary moves are denoted sγe = s(γe) = (sγ )e, s2γ = s(sγ )

and γe2 = (γe)e, respectively.

Remark 3.3. If c = dn is a noncontractible closed curve, where n ≥ 1 and d is a
simple closed curve, we view c as a closed curve in (S,M) with endpoints on the
boundary as in Remark 2.5. By the definition of pivot elementary moves we obtain
that sce is again a closed curve whose endpoints are moved to the next point on
the boundary; thus sce = dn

= c as elements in 5∗1(S,M). See the picture for an
example.

s

s

s

s

s

s

s

s
÷c sce

Lemma 3.4. Let 0 be a triangulation of a marked surface (S,M), and let γ be a
curve in (S,M) such that the string w(γ ) of J (Q,W ) is nonempty.

(1) If w(γ ) does not start on a peak, then w(sγ ) is obtained by adding a hook
on s(w(γ )). Thus w(sγ ) = w(γ )h and there is an irreducible morphism in
mod J (Q,W ) : M(γ )−→ M(sγ ).

(2) If w(γ ) does not end on a peak, then w(γe) is obtained by adding a hook
on e(w(γ )). Thus w(γe) = hw(γ ) and there is an irreducible morphism in
mod J (Q,W ) : M(γ )−→ M(γe).

Proof. We only prove (1), since (2) is obtained dually.
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As shown in the figure above, we denote by τi1, τi2, . . . , τid the internal arcs of
0 that intersect γ . Let b be the marked point lying clockwise next to s(γ ) on the
same boundary component. Since γ does not start on a peak, there exits an arrow
α : τi0 → τi1 in Q such that w(γ )α is a string in J (Q,W ), for some internal arc
τi0 ∈0. Let τ j1, τ j2, . . . , τ jr be all internal arcs in 0 which intersect τi0 in the vertex
s(γ ) and which are successors of τi0 with respect to clockwise orientation at the
common vertex s(γ ). We denote by β1, β2, . . . , βr the arrows of Q induced by the
internal arcs τi0, τ j1, . . . , τ jr . Then

w(sγ )= w(γ )αβ
−1
1 β−1

2 · · ·β
−1
r = w(γ )αVα,

where
Vα = β−1

1 β−1
2 · · ·β

−1
r .

This means that w(sγ ) is obtained from w(γ ) by adding a hook on s(w(γ )). By
Theorem 3.1 there is an irreducible morphism M(γ )→ M(sγ ) in mod J (Q,W ).

�

Lemma 3.5. Let 0 be a triangulation of a marked surface (S,M), and let γ be a
curve in (S,M) such that the string w(γ ) of J (Q,W ) is nonempty.

(1) If w(γ ) starts on a peak, then w(sγ ) is obtained by deleting a cohook on
s(w(γ )). Thus w(sγ ) = w(γ )c and if w(γ )c is nonempty there is an irre-
ducible morphism in mod J (Q,W ) : M(γ )−→ M(sγ ).

(2) If w(γ ) ends on a peak, then w(γe) is obtained by deleting a cohook on
e(w(γ )). Thus w(γe) = cw(γ ) and if cw(γ ) is nonempty there is an irre-
ducible morphism in mod J (Q,W ) : M(γ )−→ M(γe).

Proof. As before we only prove part (1) of the lemma.
We denote by b the marked point lying clockwise next to s(γ ) on the same

boundary. We further denote by τi1, τi2, . . . , τid the internal arcs that intersect γ
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in the order indicated in the figure above. Since w(γ ) starts on a peak, there is
an r ≥ 1 such that the arcs τi1, τi2, . . . , τir+1 intersect in the vertex b and induce
arrows β1, β2, . . . , βr in Q1 as shown in the figure. We choose r to be maximal
and distinguish two cases:

(i) If r + 1 = d then w(γ ) is a direct string and w(sγ ) = w(γ )c is the empty
string.

(ii) If r+1<d then by maximality of r there is an arrow α in Q1 from τir+2 to τir+1 .
Since γ starts on a deep, τi0 is a boundary arc which implies U−1

α = βrβr−1

· · ·β1. Moreover, we know w(γ )=w0α
−1βrβr−1 · · ·β1 =w0α

−1U−1
α . Thus

w(sγ ) = w0 which means that w(sγ ) is obtained by deleting a cohook on
s(w(γ )). If w(sγ ) is nonempty, we obtain by Theorem 3.1 that there is an
irreducible morphism in mod J (Q,W ) : M(γ )−→ M(sγ ). �

Theorem 3.6. Let 0 be a triangulation of a marked surface (S,M), and let γ be
a curve in (S,M). Then each irreducible morphism in mod J (Q,W ) starting in
M(γ ) is obtained by pivot elementary moves on endpoints of γ . Moreover, all
AR-sequences between string modules in mod J (Q,W ) are of the form

0−→ M(γ )−→ M(sγ )⊕M(γe)−→ M(sγe)−→ 0

for some curve γ in (S,M).

Proof. The irreducible morphisms and AR-sequences between string modules are
described in Theorem 3.1. Among the four cases listed there, we only consider
the second case here, the others being similar: Suppose w(γ ) does not start but
ends on a peak. Then we get from Lemma 3.4 and Lemma 3.5 two irreducible
morphisms, M(γ )→ M(sγ ) and M(γ )→ M(γe). Moreover, the construction of
sγ does not change any information of γ on e(γ ), that isw(sγ ) also ends on a peak
if it is nonempty. By Lemma 3.5 again we get an irreducible morphism M(sγ )→
M(sγe) in casew(sγe) is nonempty, and similarly, there is an irreducible morphism
M(γe)→ M(sγe) induced by γe. This completes the proof since the number of
summands in the middle term of an AR-sequence between string modules is at
most two. �
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To complete the description of irreducible morphisms in mod J (Q,W ), we re-
call from [Butler and Ringel 1987] that each band in J (Q,W ) yields a k∗-family
of homogeneous tubes in the AR-quiver of J (Q,W ), given by an embedding
mod k[t, t−1

] →mod J (Q,W ).

Corollary 3.7. The AR-translation in mod J (Q,W ) is given by simultaneous coun-
terclockwise rotation of starting and ending point of a curve to the next marked
points at the boundary, that is

τ−1(M(γ ))= M(sγe)

if M(γ ) is not an injective J (Q,W )-module.

Proof. For string modules this is shown in Theorem 3.6 above. For any band
b in J (Q,W ) we have b = sbe as elements in 51(S,M). Moreover, the cor-
responding band modules M(b, n, φ) lie on homogeneous tubes and thus satisfy
τ−1(M(b, n, φ))= M(b, n, φ). �

Example 3.8. We reconsider the curve γ from Example 2.6. From the diagram
defining 0 it is easy to obtain the following descriptions:

Mγ =

1
3 2 3

4 4
M(sγ )=

1 1
2 3 2 3

4 4 4

M(γe)=
1

3 2 3 2
4 4

M(sγe)=
1 1

2 3 2 3 2
4 4 4

Hence, we have an AR-sequence:

0−→ M(γ )−→ M(sγ )⊕M(γe)−→ M(sγe)−→ 0.

Remark 3.9. If M(γ ) is an injective J (Q,W )-module, it follows from the descrip-
tion in Remark 3.2(2) that sγe is an internal arc in 0 which implies M(sγe) = 0.
Dually, if γ ∈0 is an internal arc, M(sγe) is a projective module in mod J (Q,W ).

Irreducible morphisms in C(S,M). Recall that C := C0 is a triangulated Hom-
finite k-category which is 2-Calabi–Yau. We know that C has a cluster-tilting
object T0 = τ1⊕ τ2⊕ · · · ⊕ τn , where τ1, . . . τn are the internal arcs in 0. Denote
by [1] the suspension functor of the triangulated category C. Moreover, since C is
2-Calabi–Yau, C has AR-triangles and the AR-translation is given by τ = [1] (see
[Reiten and Van den Bergh 2002]).

Curves in (S,M) which are noncontractible and not homotopic to a boundary
arc give a parametrization of the isoclasses of string objects in C, we refer to them
as non-boundary curves. We identify contractible curves and boundary arcs with
the zero object in C. We further say that a curve γ is not in 0 and write γ 6∈ 0 if
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it is noncontractible and not homotopic to an arc in the triangulation 0. Since the
non-boundary arcs in 0 yield the cluster-tilting object T0, the string module M(γ )
is nonzero if γ 6∈ 0. The following lemma will be used frequently:

Lemma 3.10 [Keller and Reiten 2007; Koenig and Zhu 2008]. Let γ be a curve in
(S,M) such that γ 6∈ 0.

(1) M(γ ) is projective in mod J (Q,W ) if and only if γ [1] ∈ 0.

(2) M(γ ) is injective in mod J (Q,W ) if and only if γ [−1] ∈ 0.

From [Koenig and Zhu 2008], we know that any sink (or source) map in C is
again a sink (or source) map in mod J (Q,W ), therefore each AR-triangle in C

γ ′ −→
⊕
γi −→ γ ′′ −→ γ ′[1]

with γ ′ 6∈ 0 and γ ′[−1] 6∈ 0 yields an AR-sequence in mod J (Q,W ):

0−→ M(γ ′)−→
⊕

M(γi )−→ M(γ ′′)−→ 0.

Moreover, all AR-sequences in mod J (Q,W ) are obtained in this way and the
AR-translation in mod J (Q,W ) is induced by that in C. Combining this with
Corollary 3.7 and Remark 3.9, we can easily get this:

Proposition 3.11. The AR-translation in C(S,M) is given by simultaneous counter-
clockwise rotation of starting and ending point of a curve to the next marked points
at the boundary. That is γ [−1] = sγe if γ is a string object and (λ, bn)[−1] =
(λ, sbn

e ) if (λ, bn) is a band object in C(S,M).

Proof. Assume γ is a string object. If γ is a non-boundary curve in (S,M) such
that M(γ ) is not injective, then M(γ [−1])=M(τ−1(γ ))= τ−1(M(γ ))=M(sγe),
which implies γ [−1] = sγe. If M(γ ) is injective, then Remark 3.9 shows that
sγe ∈ 0 is an internal arc, and by Lemma 3.10 and the discussion in Section 2 we
obtain γ [−1] = sγe. Similarly, if γ ∈ 0 is an internal arc, then γ [−1] = sγe.

Assume (λ, bn) is a band object, where λ ∈ k∗, bn
∈ 5∗1(S,M) with n ≥ 1

and b a noncontractible closed curve. Then M((λ, bn)[−1]) = M(τ−1(λ, bn)) =

τ−1(M((λ, bn)))= τ−1(M(w(b), n, φλ))=M(w(b), n, φλ)=M(w(sbe), n, φλ)=
M((λ, sbn

e )), where φλ ∈ Aut(kn) is induced by λ. Hence (λ, bn)[−1] = (λ, sbn
e )

as a band object in C(S,M). �

Lemma 3.12. Let γ 6∈ 0 be a curve in (S,M) such that M(γe) is a nonzero pro-
jective-injective module in mod J (Q,W ). There is a source map in mod J (Q,W ):

M(sγe)−→ M(s2γe).
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Proof. Assume M(γe) is a projective-injective module. Then w(γe) must be an
inverse (or a direct) string which both starts and ends on a peak and also both starts
and ends in a deep. Without loss of generality, assume w(γe) = β

−1
1 · · ·β

−1
r β−1

r+1,
where r ≥ 0.

s s
s s

ss ss
ˇ1ˇr

ˇrC1

b D e. /

c D e.e/

da D s. /

e

f



e

Let a = s(γ ) = s(γe), b = e(γ ), c = e(γe), and let d, e, f be marked points
as in the figure above. Since w(γe) both starts and ends in a deep, bc and da are
boundary arcs. Similarly, ae and dc are boundary arcs since γe both starts and ends
on a peak, therefore b, c, d, a, e lie consecutively on the same boundary.

(1) If M(sγe) is an injective module, that is w(sγe) = β
−1
1 · · ·β

−1
r both starts

and ends on a peak, then e f is a boundary arc. Then the definition of pivot
elementary move implies that

M(s2γ e)= M(β−1
1 · · ·β

−1
r−1)= M(sγe)/Soc(M(sγe))

and sγe2 = de ∈0 is an internal arc. Hence by Remark 3.2(2) there is a source
map: M(sγe)→ M(s2γe).

(2) If M(sγe) is not an injective module, that is w(sγe) = β
−1
1 · · ·β

−1
r does not

start on a peak, then there exists α ∈ Q1 such that w(sγe)α is a string. By
Theorem 3.6, there is an AR-sequence:

0−→ M(sγe)−→ M(s2γe)⊕M(sγe2)−→ M(s2γe2)−→ 0,

where w(sγe)= β
−1
1 · · ·β

−1
r =Uα, w(s2γ e)= w(sγe)h = Nα by Lemma 3.4,

and sγe2=de∈0 is an internal arc in0. Thus there is a source map: M(sγe)→

M(s2γe) in mod J (Q,W ). �

Proposition 3.13. Let γ be a non-boundary curve and

0−→ M(γ )−→ M(sγ )⊕M(γe)−→ M(sγe)−→ 0 (3-1)

an AR-sequence in mod J (Q,W ) with M(sγ ) 6= 0 6= M(γe). Then there is an
AR-triangle with two middle terms in C as follows:

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].
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Proof. Since AR-sequences in mod J (Q,W ) are induced by AR-triangles in C,
we assume that

γ −→ sγ ⊕ γe⊕ σ −→ sγe −→ γ [1] (3-2)

is an AR-triangle in C with M(σ )= 0. It suffices to prove that σ = 0.
Otherwise, σ contains a direct summand ρ which is an internal arc in 0. Then

sγ [1] ∈ 0 or γe[1] ∈ 0 since M(ρ[1]) 6= 0 in mod J (Q,W ) by Lemma 3.10 and
since the number of summands in the middle term of an AR-sequence in J (Q,W )

is at most two. Similarly, we conclude sγ [−1] ∈0 or γe[−1] ∈0. Hence there are
four cases; we consider only two of them, since the others are similar.

(1) Assume sγ [1] ∈ 0 and γe[−1] ∈ 0. Then Lemma 3.10 implies that M(sγ )
is projective and M(γe) is injective. Hence M(γ ) must be a direct summand
of rad M(sγ ) and M(sγe) must be a direct summand of M(γe)/Soc M(γe).
This yields a contradiction by comparing the dimensions in (3-1).

(2) Assume γe[1] ∈ 0 and γe[−1] ∈ 0. Then Lemma 3.10 implies that M(γe) is
a projective-injective module, and so by Lemma 3.12 there is a source map

M(sγe)−→ M(s2γe) (3-3)

in mod J (Q,W ). But after shifting (3-2) by [−1], there is an AR-sequence
in mod J (Q,W ):

0−→ M(sγe)−→ M(s2γe)⊕M(sρe)−→ M(s2γe2)−→ 0.

with M(sρe)= M(ρ[−1]) 6= 0 a projective module. This contradicts the fact
that the source map (3-3) ends with just one indecomposable module. �

Since neither injective modules nor projective modules occur in homogeneous
tubes, the following corollary related to band objects can be obtained similarly.

Corollary 3.14. Let (λ, bn) be a band object in C, where λ ∈ k∗, bn
∈ 5∗1(S,M)

with n ≥ 1 and b itself is not a proper power of an element in 5∗1(S,M). Then
there is an AR-triangle in C:

(λ, bn)−→ (λ, bn+1)⊕ (λ, bn−1)−→ (λ, bn)−→ (λ, bn)[1],

where (λ, b0) is the zero object in C.

Therefore, the band objects are closed under irreducible morphisms and the
corresponding AR-components in C are homogeneous tubes. It remains to consider
the string objects in C.

Lemma 3.15. If γ is an internal arc in 0, the AR-triangle in C starting in γ is of
the form

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].
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Proof. Suppose γ is an internal arc in0. Then M(sγe) is projective in mod J (Q,W )

by Lemma 3.10. We consider γ [−1] = sγe.

(1) If M(sγe) is not injective, then Theorem 3.6 induces an AR-sequence in
mod J (Q,W ):

0−→ M(sγe)−→ M(s2γe)⊕M(sγe2)−→ M(s2γe2)−→ 0. (3-4)

The definition of a cluster-tilting object guarantees that s2γe and sγe2 cannot
be internal arcs in 0. If neither s2γe nor sγe2 is boundary arc (thus M(s2γe) 6=

0 6= M(sγe2)), then Proposition 3.13 induces an AR-triangle

sγe −→ s2γe⊕ sγ e2 −→ s2γ e2 −→ sγe[1]

which yields the AR-triangle

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].

Assume now that one of s2γe and sγe2 is a boundary arc. Without loss of
generality, let s2γe be a boundary arc, then by definition of a cluster-tilting
object, HomC(sγe, σ )= 0 for any σ ∈ 0, hence (3-4) induces an AR-triangle
of the form

sγe −→ s2γe⊕ sγ e2 −→ s2γ e2 −→ sγe[1]

with s2γe = 0. The definition of a pivot elementary move implies that γe is
also a boundary arc, hence there is an AR-triangle of the form

γ −→ sγ ⊕ γe −→ sγe −→ γ [1]

where γe = 0 is a boundary arc in C.

(2) If M(sγe)=M(γ [−1]) is injective, then M(sγe) is a projective-injective mod-
ule by Lemma 3.10. By definition of a cluster-tilting object and Remark 3.2(3)
we can assume that the AR-triangle starting in γ is of the form

γ −→ δ1⊕ δ2 −→ sγe −→ γ [1]

where neither δ1 nor δ2 are internal arcs in 0. Since M(sγe) is a projective-
injective module in mod J (Q,W ), one of δ1 and δ2 must be a boundary arc.
Without loss of generality, assume δ2 is a boundary arc; then Lemma 3.12
implies

M(δ1)= rad M(sγe)= M(sγ );

that is, δ1 = sγ and δ2 = γe is a boundary arc. Therefore the AR-triangle is of
the form

γ −→ sγ ⊕ γe −→ sγe −→ γ [1]

where γe = 0 is a boundary arc. �
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As shown in Remark 3.2(3), the middle terms of AR-sequences in mod J (Q,W )

contain at most two indecomposable summands. The following proposition estab-
lishes the same result for AR-triangles in C.

Proposition 3.16. The number of indecomposable summands in the middle term
of an AR-triangle in C(S,M) is at most two.

Proof. We only need to consider string objects in C. Let therefore γ be a non-
boundary curve, and let

γ −→
r⊕

i=1
δi ⊕

s⊕
j=1
τ j −→ γ [−1] −→ γ [1] (3-5)

be an AR-triangle in C starting in γ with δi 6∈ 0 and where τ j are internal arcs
in 0. Remark 3.2(3) implies r ≤ 2 and s ≤ 2. If γ ∈ 0 or γ [−1] ∈ 0, then by
Lemma 3.15, there is nothing to prove. We suppose now γ 6∈ 0 and γ [−1] 6∈ 0.
If r = 2, Proposition 3.13 implies s = 0. If r = 1 and s = 2, then (3-5) induces an
AR-sequence with one middle term in mod J (Q,W ):

0−→ M(γ )−→ M(δ1)−→ M(γ [−1])−→ 0,

hence there exists α ∈ Q1 such that w(δ1) = Nα by Remark 3.2(1). On the other
hand, if we shift (3-5) by [1] and [−1], then Remark 3.2(3) implies that δ1[1] and
δ1[−1] must be the internal arcs in 0, since

M(τ1[1]) 6= 0 6= M(τ2[1]) and M(τ1[−1]) 6= 0 6= M(τ2[−1])

in mod J (Q,W ) by Lemma 3.10. Thus M(δ1) = M(Nα) is a projective-injective
module in mod J (Q,W ). The definition of Nα implies that the quiver Q is of type
A2. But this is impossible, since the cluster category of type A2 is well-known,
and there is no AR-triangle with more than two summands in the middle term. �

Now we consider the AR-sequences with just one middle term in mod J (Q,W ).

Lemma 3.17. Let γ be a non-boundary curve in (S,M) such that w(γ )=Uα, for
some α ∈ Q. Then w(sγ )= Nα and w(γe)= 0 is a zero string, and the AR-triangle
in C starting in γ is of the form

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].

Proof. Since w(γ )=Uα does not start but ends on a peak, we know by Lemma 3.4
that w(sγ )= w(γ )h = Nα and by Lemma 3.5 that

w(γe)= cw(γ )= cUα = 0

is a zero string. Hence γe might be an internal arc in 0 or a boundary arc in (S,M),
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as in the figure:

u u

u u

ss s s sss
˛

a D e. /

cb D s. /

d

e



Let b = s(γ ) and a = e(γ ) be the endpoints of γ and let d be the marked point
lying clockwise next to b on the same boundary. Since Uα ends on a peak, ac
is a boundary arc. The definition of pivot elementary move implies c = e(γe),
hence there is an AR-sequence with one middle term in mod J (Q,W ) (see Remark
3.2(1)):

0−→ M(γ )−→ M(sγ )−→ M(sγe)−→ 0. (3-6)

(1) If γe ∈ 0, Lemma 3.10 implies that M(γe[1]) is an injective module. Remark
3.2(2) induces an irreducible morphism M(γe[1])→ M(γ ) in mod J (Q,W );
hence there are two irreducible morphisms in C:

γe[1] → γ and γ → γe[1][−1] = γe.

Combining this with (3-6) and Proposition 3.16, we get the AR-triangle in C:

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].

(2) If γe is a boundary arc, then w(γ ) starts in a deep and ends on a peak which
implies M(γ ) = M(Uα) is projective in mod J (Q,W ); thus γ [1] ∈ 0 by
Lemma 3.10. By (3-6) and the definition of a cluster-tilting object, the AR-
triangle starting in γ is of the form

γ −→ sγ ⊕ γe −→ sγe −→ γ [1]

where γe = 0 in C. �

By the following theorem we finally obtain the results formulated in Theorem 1.3
in the introduction:

Theorem 3.18. Let (S,M) be a marked surface without punctures, and let γ be a
non-boundary curve in (S,M). Then each irreducible morphism in C(S,M) starting
in γ is obtained by pivot elementary moves on endpoints of γ . The AR-triangle
starting in γ is of the form

γ −→ sγ ⊕ γe −→ sγe −→ γ [1].
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Proof. Lemma 3.15 implies the case when γ or γ [−1] = sγe is an internal arc in
0. Proposition 3.13 and Lemma 3.17 yield the remaining case. �

AR-components in C(S,M). The aim of this subsection is to describe the AR-
components in C(S,M). From Corollary 3.14 we know that all band objects of
C(S,M) lie in homogeneous tubes, so we focus on string objects from now on. It
follows from Theorem 3.18 that each string object γ in C(S,M) is starting point of
a mesh with two middle terms in the AR-quiver of C(S,M) except when one of sγ

or γe is a boundary arc. The situation where one of sγ or γe is a boundary arc is
explicitly described in the following corollary.

Corollary 3.19. Let C be a boundary component of S with t marked points. If
we choose a numbering and an orientation of the boundary arcs δ1, . . . , δt such
that all δi are clockwise oriented and e(δi )= s(δi+1) for all i , then the objects δi

e j

with i = 1, . . . , t and j ≥ 1 form a tube of rank t in C(S,M). Moreover, there is a
bijection between the boundary components of S and the tubes in C(S,M) which are
not formed by band objects.

Proof. The proof follows easily from the description of the AR-triangles given in
Theorem 3.18 once the orientation of the boundary arcs is chosen. We illustrate
the situation where t = 3:

C

ı2

ı3 ı1

ı1
e2

ı3
e

ı3
e2ı2

e2

ı1
eı2

e

u

u u

Note that δi
et−1 is a noncontractible closed curve for all surfaces except a disc,

where all closed curves are contractible. Thus, for a disc the objects δi
et−1 are zero,

and the remaining objects δi
e j with j > t −1 have to be identified accordingly, see

the description in [Caldero et al. 2006]. �
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The preceding corollary yields a description of all AR-components (formed by
string objects) which contain some meshes with only one middle term. The re-
maining AR-components in C(S,M) are formed by meshes with exactly two middle
terms. If 3 is one such component, one can choose one object γ in 3 and then the
component is formed by all siγe j with i, j ≥ 1. In case there are no identifications
of the objects, one obtains thus components of the form ZA∞

∞
. If S is neither a

disc nor an annulus, then the Jacobian algebra associated to a triangulation will in
general be of nonpolynomial growth (see [Assem et al. 2010]), and there are plenty
of components of the form ZA∞

∞
in the AR-quiver of C(S,M). If S is an annulus, the

cluster category C(S,M) is of type Ã and there is no component of the form ZA∞
∞

.

4. Flips and mutations

In the previous sections we fixed one triangulation 0 of (S,M) and studied the
irreducible morphisms and AR-components of the cluster category C0 defined by
the quiver with potential (Q0,W0). The aim of this section is to study the effect
of a change in the triangulation on the cluster category C0.

If τi is an internal arc in 0, then there exists exactly one internal arc τ ′i 6= τi in
(S,M) such that fτi (0) := (0\{τi })∪{τ

′

i } is also a triangulation of (S,M). In fact,
the internal arc τi is a diagonal in the quadrilateral formed by the two triangles of
0 containing τi , and τ ′i is the other diagonal in that quadrilateral, see [Fomin et al.
2008]. We denote τ ′i by f0(τi ) and say that fτi (0) is obtained from 0 by applying
a flip along τi . In fact, by applying iterated flips one can obtain all triangulations
of (S,M):

Theorem 4.1 [Fomin et al. 2008]. For any two triangulations of (S,M) there is a
sequence of flips which transforms one triangulation into the other.

As shown in Theorem 1.1, we can view the non-boundary curves in (S,M) as
objects in C0. If we denote all internal arcs of 0 by τ1, . . . , τn , their direct sum
T0 = τ1⊕ τ2⊕ · · ·⊕ τn is a cluster-tilting object in C0. The following theorem is
adapted from its source to our setup.

Theorem 4.2 [Iyama and Yoshino 2008]. If τi ∈ 0 is an internal arc, there is a
curve τ ∗i in (S,M) (unique up to homotopy) which is not homotopic to τi such that
the object µτi (T0) obtained from T0 by replacing τi with τ ∗i is also a cluster-tilting
object in C0.

The object µτi (T0) is called the mutation of T0 in τi , and (τi , τ
∗

i ) is called an
exchange pair in C0. As shown in [Iyama and Yoshino 2008], any exchange pair
(τi , τ

∗

i ) induces the following nonsplit triangles (unique up to isomorphism) which
are referred to as exchange triangles:

τi
f
−→ τ −→ τ ∗i −→ τi [1] and τ ∗i −→ τ

g
−→ τi −→ τ ∗i [1]
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Here f is a minimal left add(T0 \ {τi })-approximation and g is a minimal right
add(T0 \ {τi })-approximation. Since

End(T0, T0)∼= End(T0[1], T0[1])∼= J (Q0,W0),

we know that the quiver of the endomorphism algebra of T0 in C0 does not contain
loops at any vertex. Hence we obtain the following lemma which is a special case
of Lemma 7.5 in [Keller 2010].

Lemma 4.3. If τi is an internal arc of 0, the exchange triangles are given by

τi
f
−→

⊕
τ j→τi

τ j −→ τ ∗i −→ τi [1] and τ ∗i −→
⊕
τi→τk

τk
g
−→ τi −→ τ ∗i [1],

where f is a minimal left add(T0 \ τi )-approximation and g is a minimal right
add(T0 \ τi )-approximation.

For an internal arc τi ∈ 0, we discussed the definition of the flip f0(τi ) above.
On the other hand, if we view τi as an indecomposable rigid object in C0, also
the mutation µ0(τi ) := τ

∗

i of τi is defined. The following theorem shows that flip
and mutation of an internal arc are compatible (viewed as objects in the cluster
category C0):

Theorem 4.4. If 0 is a triangulation of (S,M) and τi ∈ 0 is an internal arc, then

µ0(τi )= f0(τi ).

Proof. The internal arc τi is a diagonal of a quadrilateral formed by the internal
arcs τ j1, τ j2, τk1, τk2 , as follows:

s
s s

s

s

ı

ˇ

˛

"

�k2

�j1

�k1 �j2

�i

s

The triangles of 0 containing τi induce arrows α, β, δ, ε in Q0 as indicated
above. By Lemma 4.3 there is a nonsplit triangle in C0:

τi
f
−→ τ j1 ⊕ τ j2 −→ τ ∗i −→ τi [1]
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where f is a minimal left add(T0 \ τi )-approximation. We obtain the following
right exact sequence in mod J (Q0,W0) by applying M(−) ∼= Ext1C0 (T0,−) to
this triangle:

M(τi [−1])−→ M(τ j1[−1])⊕M(τ j2[−1])−→ M(τ ∗i [−1])−→ 0.

This sequence is in fact a minimal projective resolution in mod J (Q0,W0) whose
projective modules can be described by strings as follows:

M(τi [−1])= M(Vα−1Vε),

M(τ j1[−1])= M(Vα−1βVβ),

M(τ j2[−1])= M(Vδ−1δ−1Vε).

Hence M(τ ∗i [−1]) ∼= M(V−1
δ δ−1βVβ), which implies w(s(τ ∗i )e) = V−1

δ δ−1βVβ
and thus µ0(τi )= τ

∗

i = f0(τi ). �

For any curve γ in (S,M), the definition of the string w(γ ) depends on the
Jacobian algebra J (Q0,W0). In order to compare string modules in two Jacobian
algebras arising from different triangulations of (S,M), we denote in the following
by w(0, γ ) and M(0, γ ) the string and the string module in the Jacobian algebra
J (Q0,W0). Similarly, the band in J (Q0,W0) given by a noncontractible closed
curve b is denoted by w(0, b). If γ = τi ∈0, we denote by M(0, τi ) the associated
simple decorated representation of (Q0,W0); see more details in [Derksen et al.
2008; Labardini-Fragoso 2009b]. It is shown in this latter reference that the flips
of triangulations are compatible with the mutations of decorated representations.

On the other hand, let 0′ = fτi (0) be the triangulation of (S,M) obtained by a
flip along τi ; then [Keller and Yang 2009] establishes an equivalence µ̄i :C0→C0′

for each 1≤ i ≤ n. Viewing the indecomposable objects in C0 as noncontractible
curves and noncontractible closed curves in (S,M), or as indecomposable deco-
rated representation of (Q0,W0), then [Plamondon 2010] shows the compatibil-
ity between the equivalence µ̄i and the mutation of decorated representations of
(Q0,W0). Therefore, we get following lemma.

Lemma 4.5. Let0′= fτi (0) be the triangulation of (S,M) obtained by a flip along
τi and let T0′ be the corresponding cluster-tilting object in C0′ . If µ̄i : C0 −→ C0′

denotes the equivalence just discussed, then

Ext1C0′ (T0′, µ̄i (γ ))= M(0′, γ )

for any non-boundary curve γ in (S,M).

Proof. Let IndsC0 be the set of all indecomposable string objects in C0 which is
indexed by non-boundary curves in (S,M), and

D0 = {M(0, γ )| γ curve in (S,M)}.
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Then by Proposition 4.1 in [Plamondon 2010], we have the commutative diagram

IndsC0
Ext1C0 (T0,−)- D0

IndsC0′

µi

? Ext1C0′ (T0′,−)- D0′

µ̄i

?

where µi is the mutation of decorated representations. Therefore, for each curve
γ in (S,M) we have

Ext1C0′ (T0′, µ̄i (γ ))= µi (Ext1C0 (T0, γ ))
∼= µi (M(0, γ ))∼= M( fτi (0), γ )= M(0′, γ ),

where the last isomorphism is given by the main result in [Labardini-Fragoso
2009b]. This completes the proof. �

Since µ̄i : C0 → C0′ is an equivalence, the objects µ̄i (γ ) in C0′ can also be
described by curves in (S,M) and we denote µ̄i (γ ) again by γ in C0′ .

Corollary 4.6. Each triangulation of (S,M) yields a cluster-tilting object in C(S,M)
and Ext1C(γ, γ )= 0 if γ is an internal arc in (S,M).

Proof. Let 0 be the triangulation of (S,M) that we studied before, and 0′ be
another triangulation. By Theorem 4.1, there exists a sequence of flips which
transform 0 to 0′:

0 = 00
fi1 01

fi2 02
fi3
· · ·

fin 0n = 0
′,

where 0 j is a triangulation of (S,M) and fi j is a flip for 1≤ j ≤ n. We know that
0 induces a cluster-tilting object T0 which is the direct sum of all internal arcs in
0, and Theorem 4.4 implies that 01 also induces a cluster-tilting object T01 given
by all internal arcs in 01. Lemma 4.5 allows us to keep doing this until 0n = 0

′,
which completes the proof. �

Let 0 be a triangulation of (S,M) and let γ and δ be two non-boundary curves
in (S,M). From Theorem 2.3 we know that the morphism space HomC(γ, δ) in
C= C0 can be decomposed as k-vector space as follows:

HomJ (Q0,W0)

(
M(0, γ ),M(0, δ)

)
⊕
{

f ∈ HomC(γ, δ)| f factors through T0
}
.

Moreover, by Lemma 3.3 in [Palu 2008], the morphisms factoring through T0
can be replaced by the morphisms of two other related objects in mod J (Q0,W0),
so HomC(γ, δ) is given by

HomJ (Q0,W0)(M(0, γ ),M(0, δ))⊕ D HomJ (Q0,W0)(τ
−1 M(0, δ), τM(0, γ )).
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In [Crawley-Boevey 1989] a basis of the Hom-space between string modules is
explicitly described using factor strings and substrings. Using Theorem 2.4, one
can translate this into a description using curves and the triangulation 0 of (S,M);
thus one could give a basis of HomC(γ, δ) combinatorially in terms of 0.

Another possibility is to choose a triangulation 0′ such that a given morphism
in C factoring through T0 can be described by a morphism in

HomJ (Q0′ ,W0′ )

(
M(0′, γ ),M(0′, δ)

)
.

This is illustrated in the following example.

Example 4.7. We consider the following two curves γ , δ from Example 2.6:

s
s

s

s

s
5

1

ı

4 2

3



(the solid red line represents δ, and the dotted line γ ). It is easy to see that

M(0, δ)=
1

3 2
4

5

and M(0, γ )=
5 1

3 2
4

Hence HomJ (Q0,W0)(M(0, γ ),M(0, δ)) is one-dimensional with a basis ele-
ment f mapping the factor string 5 of w(0, γ ) to the substring 5 of w(0, δ). From
Corollary 3.19 one obtains that γ and δ lie in a tube of rank 3 in C as follows:

s �5
s s

ss ı

ss s

ss s
s ss s



556 Thomas Brüstle and Jie Zhang

Thus there is, besides the morphism f induced from mod J (Q0,W0), another
nonzero morphism g ∈ HomC(γ, δ) factoring through τ5. Obviously, g cannot
be described by morphisms in mod J (Q0,W0) since M(0, τ5) = 0, but we can
realize g in another module category: Applying a flip along τ5 we obtain a new
triangulation 0′ whose associated quiver with potential is Q0′ = Ã4, W0′ = 0.
Denote by 5∗ = M(0′, τ5) the simple Ã4-module concentrated in 5; then

M(0′, δ)=
1

3 2
5∗ 4

M(0′, γ )=
1

3 2 5∗
4

M(0′, τ5)= 5∗

Hence Hom Ã4
(M(0′, γ ),M(0′, δ)) is also one-dimensional, given by a basis

element g′ mapping the factor string 5∗ of w(0′, γ ) to the substring 5∗ of w(0′, δ),
which factors through M(0′, τ5). Therefore g ∈ HomC(γ, δ) can be described
by g′ ∈ Hom Ã4

(M(0′, γ ),M(0′, δ)). Moreover, since Ã4 is hereditary, we can
conclude that

HomC(γ, δ) ∼= HomC( Ã4)
(M(0′, γ ),M(0′, δ))

= Hom Ã4
(M(0′, γ ),M(0′, δ))⊕Ext1

Ã4
(M(0′, γ ),M(0′, γ ))

is two-dimensional. Hence

HomC(γ, δ)∼= HomJ (Q0,W0)(M(0, γ ),M(0, δ))⊕Hom Ã4
(M(0′, γ ),M(0′, δ))

as k-vector spaces.

Using Lemma 3.3 in [Palu 2008], we have

τM(0, γ )= M(0, δ)=
1

3 2
4

5

and τ−1 M(0, δ)= M(0, γ )=
5 1

3 2
4

Hence, HomC(γ, δ) is given by

HomJ (Q0,W0)(M(0, γ ),M(0, δ))⊕ D HomJ (Q0,W0)(M(0, γ ),M(0, δ))

as k-vector space.

5. Extensions and intersections

Next we study the relation between extensions in the category C = C(S,M) and
intersections of curves in (S,M). Given any curve in (S,M) with self-inter-
sections, we explicitly construct one or two new curves, sometimes resolving the
self-intersection, and sometimes increasing the winding number. These curves
serve as middle term of certain nonsplit short exact sequences which allow to prove
the following theorem:

Theorem 5.1. Ext1C(γ, γ )= 0 if and only if γ is an internal arc in (S,M).
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Proof. Let γ be a curve in (S,M) and fix a triangulation 0 of (S,M). We denote
by τi1, τi2, . . . , τid the internal arcs of 0 that intersect γ , as indicated here:

s s

s s s s s s

s s s s s s

s. / e. /

�k1
�ksC1

�k0

�k�1

�ks
�ksCn

�kd

�kdC1

�i1
�i2

�is
�isC1

�isCn
�isCnC1

�id

�isC2

M0

M1

Ms

MsC1

MsCn

Md



Along its way, the curve γ passes through (not necessarily distinct) triangles
40,41, . . . ,4d . For 1≤ l ≤ d − 1, the triangle 4l is formed by the internal arcs
τil and τil+1 and a third arc which is denoted by τkl . In the first triangle 40, we
denote the arcs clockwise by τi1 , τk0 and τk−1 . Similarly, 4d is formed by τid , τkd

and τkd+1 , as shown in the figure.
By Corollary 4.6 we only need to prove one direction of the theorem, namely

that Ext1C(γ, γ ) 6= 0 in case the curve γ has self-intersections. To do so, it is
enough to prove Ext1J (Q0′ ,W0′ )

(M(0′, γ ),M(0′, γ )) 6= 0 for some triangulation 0′.
In some cases one can choose 0′=0, but sometimes it will be necessary to change
0 to 0′ by a sequence of flips in order to realize the extension over some algebra
J (Q0′,W0′).

We therefore assume that the curve γ has self-intersections. Thus there are
0< r < r ′ < 1 such that γ (r)= γ (r ′). We choose r and r ′ in such a way that the
restriction b= γ |[r,r ′] is a simple noncontractible closed curve. Hence the subword
w(0, γ |[r,r ′]) of w(0, γ ) defines a band w(0, b) in mod J (Q0,W0) as follows:

w(0, b) : W �isC1

�isCn

�isC2

�

�isC3

�isC5

�isC4

The difference between the string w(0, γ |[r,r ′]) and the band w(0, b) is the arrow
between the endpoints. Up to duality, we may assume that this arrow θ (which is
induced by the triangle 4is ), is oriented from τis+1 towards τis+n . We distinguish
several cases of how the band w(0, b) is embedded in the string w(0, γ ):

Case I: w(0, γ ) contains the band w(0, b).

In this case, w(0, γ ) contains the string w(0, γ |[r,r ′]) and the arrow θ and thus
m ≥ 1 consecutive copies of w(0, b). We extend the subword of w(0, γ ) which is
induced by b to maximal length, that is, we choose j ≤ s and l ≥ s+n such that all
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arrows between τi j+1 and τil belong to w(0, b), but the arrows τi j
α τi j+1 induced

by 4i j and τil
β
τil+1 induced by 4il are not induced by b.

Without loss of generality, assume α is oriented as τi j → τi j+1 . Then β has
orientation τil→ τil+1 since γ intersects itself. Therefore the arrows α′ : τi j+1→ τk j

induced by 4i j and the arrow β ′ : τkl → τil induced by 4il belong to w(0, b). We
assume τi j+t = τil , τi j+t+1 = τkl with 1 ≤ t ≤ n. If m = 1, the situation is depicted
as follows:

s

s
s

s

s
s

˛

˛0
ˇ

ˇ0
�ij C1

�ij

�kj

�ij Ct
D �il

�ilC1

�kl
D �ij CtC1

Here, the boundaries are indicated by the circles, and τi j = τk0 when j = 0 (also
note that τi j might be a boundary arc). We rewrite the figure from the preceding
page accordingly:

A B C B D

m copies of w.�; b/

s. / e./

�kj

�kj Ct

�i1
�ij

�ij C1

�ij

�ij Ct

�id

�ij CtC1
�ij Cn

�ij C1

�il
�ij Cn

�ij C1

�kl

�ilC1
s s

s s s s s s s s s

s s s s s s s s s s

˛ ˇ0
˛0 ˇ



Thus w(0, γ ) is given by

w(0, γ )= A τi j

α
−→τi j+1 B τil

β ′

←−τkl C τi j+n

α′

←−τi j+1 B τil

β
−→τil+1 D.

Consider the following two strings in mod J (Q0, Q0):

w(0, γ ′ )= A τi j

α
−→τi j+1 B τil

β ′

←−τkl C τi j+n

α′

←−τi j+1 B τil

β ′

←−τkl

C τi j+n

α′

←−τi j+1 B τil

β
−→τil+1 D,

w(0, γ ′′)= A τi j

α
−→τi j+1 B τil

β
−→τil+1 D,
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where γ ′ and γ ′′ are the corresponding curves in (S,M). If m = 1, then γ ′, γ ′′ can
be visualized as follows, where γ ′ is given by the full curve and γ ′′ is described
by the dotted curve:

s

s
s

s

s
s 0

�ij C1

�ij

�kj

�il

�ilC1

�kl

 00

We easily construct a nonsplit exact sequence in mod J (Q0,W0):

0−→ M(0, γ )

[
f
g

]
−→ M(0, γ ′)⊕M(0, γ ′′)−→ M(0, γ )−→ 0,

where f identifies the factor string

A τi j

α
−→τi j+1 B τil

β ′

←−τkl C τi j+n

α′

←−τi j+1 B τil

of w(0, γ ) with a substring of w(0, γ ′) and g sends the factor string

τi j+1 B τil

β
−→τil+1 D

of w(0, γ ) to the same substring of w(0, γ ′′).

Case II: w(0, γ ) does not contain the band w(0, b).

In this case, w(0, γ ) does not contain θ but it contains w(0, γ |[r,r ′]) as a sub-
word. We distinguish a number of subcases:

(II.1) 0= s < s+ n = d . Here τis equals τk0 and the subword w(0, γ |[r,r ′]) equals
w(0, γ ) (see figure):

s
s

s 

�i1

�in

�k0 �
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Since w(0, b) is a band we know that there exists a string of the form

w(0, γ ′)= τi1 ! τin

θ
←− τi1 ! τin

in mod J (Q0,W0), where γ ′ can be visualized as follows:

s
s

s  0
�i1

�in

�k0 �

It is easy to see that there is a nonsplit exact sequence in mod J (Q0,W0):

0−→ M(0, γ )
f
−→ M(0, γ ′)−→ M(0, γ )−→ 0

where f is induced by the embedding of the string w(0, γ ) as a substring of
w(0, γ ′).

(II.2) 0= s < s+ n < d . Here τis = τi0 = τk0 and the subword w(0, γ |[r,r ′]) is a
proper subword of w(0, γ ) which ends before reaching the endpoint e(γ ) of γ :

s
s

s

s

s s


�i1

�k�1

�k0

�

Since γ intersects itself, τk−1 = τin and τin+1 = τk0 . We rewrite the diagram from
page 557 accordingly:

s s

s s s s s s

s

s

s s s

s. / e. /

�k0

�k�1

�kn

�i1

�in
�inC1

�inCm
�inCmC1

�id



where τin+2, τin+3 . . . τin+m with m ≥ 1 are all internal arcs lying clockwise before
τin+1 . After applying flips along τin+1, τin+2 . . . τin+m , we get a new triangulation
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0′ and a new band w(0′, b) in mod J (Q0′,W0′) related to same noncontractible
closed curve b:

w(0′, b) : W ��
inCm

�in

�i1

��
inCm�1

��
inC1

If d = n+m, the subword w(0′, b) is equal to

w(0′, γ )= τ ∗in+m
τ ∗in+m−1

! τin

in mod J (Q0′,W0′), and this is the same case as in II.1 when mod J (Q0′,W0′) is
considered. If d > n+m, then

w(0′, γ )= τ ∗in+m
τ ∗in+m−1

! τin τ ∗in+m
· · · ;

hence w(0′, γ ) contains the band w(0′, b) as subword — the same case as in I.

(II.3) 0< s < s+ n < d. Here the subword w(0, γ |[r,r ′]) is a proper subword of
w(0, γ ) that starts after τi1 and ends before reaching the endpoint e(γ ) of γ . Since
γ intersects itself, there must exist 1 ≤ t ≤ s such that τis+n+l = τis+1−l for 1 ≤ l ≤
s− t + 1 and τis+n+t+1 = τkt−1 . The situation is this:

s
ss

s
s s



�isC1

�isCn

�it

�it�1

�kt�1

�is �
˛

ˇ

˛0
ˇ0

where α and β are arrows induced by the triangle 4is , and α′ and β ′ are induced
by the triangle 4it−1 . We rewrite the diagram from page 557 accordingly:

s s s s s s s s

s s

s s s s s s s s

s. / e. /

E F G F�1 H


�kt�1

�i1
�it�1

�it
�is

�isC1
�isCn

�is
�it

�kt�1

�it�1

�idˇ0
˛0˛ ˇ

Hence w(0, γ ) can be given as

E τit−1

β ′

←−τit F τis

α
−→τis+1 G τis+n

β
−→τis F−1 τit

α′

←−τkt−1 H.
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We consider the two curves in (S,M) marked γ ′ (solid line) and γ ′′ (dotted line)
in the figure:

s
ss

s
s s 00

 0

�isC1

�isCn

�it

�it�1

�kt�1

�is �
˛

ˇ

˛0
ˇ0

Then w(0, γ ′) is given by

E τit−1

β ′

←−τit F τis

α
−→τis+1 G τis+n

β
−→τis F−1 τit

β ′

−→τit−1 E−1

and w(0, γ ′′) by

H−1 τkt−1

α′

−→τit F τis

α
−→τis+1 G−1 τis+n

β
−→τis F−1 τit

α′

←−τkt−1 H.

Hence there is a nonsplit exact sequence in mod J (Q0,W0)

0−→ M(0, γ )

[
f
g

]
−→ M(0, γ ′)⊕M(0, γ ′′)−→ M(0, γ )−→ 0,

where f sends the factor string w0 = E τit−1

β ′

←−τit F τis of w(0, γ ) to w−1
0

as a substring of w(0, γ ′) and g identifies the factor string

w1 = τit F τis

α
−→τis+1 G τis+n

β
−→τis F−1 τit

α′

←−τkt−1 H

with w−1
1 as a substring of w(0, γ ′′).

(II.4) 0< s < s+ n = d. Here the subword w(0, γ |[r,r ′]) is a proper subword of
w(0, γ ) which ends at the endpoint e(γ ) of γ . This subcase is dual to II.2. �

Remark 5.2. Ext1C(γ, γ )= 0 implies Ext1J (Q0,W0)
(M(0, γ ),M(0, γ ))= 0 for any

triangulation 0 of (S,M). But Ext1J (Q0,W0)
(M(0, γ ),M(0, γ ))= 0 for one trian-

gulation 0 of (S,M) does not imply Ext1C(γ, γ ) = 0 in general. We reconsider δ
in Example 4.7. It is easy to see that

M(0, δ)=
1

3 2
4

5

and M(0, δ[1])=
1

2 3
4

Hence Ext1J (Q0,W0)
(M(0, δ),M(0, δ)) = 0 by the Auslander–Reiten formula in

mod J (Q0,W0), since the nonzero morphism from M(0, δ) to τ(M(0, δ)) =
M(0, δ[1]) factors through the injective module I5. But after applying a flip
along 5, we get Ext1

Ã4
(M(0′, δ),M(0′, δ)) 6= 0, which implies that Ext1C(δ, δ) 6= 0.



On the cluster category of a marked surface without punctures 563

Similarly as in Theorem 5.1, we can study the extensions of two different curves
by their intersections in (S,M).

Proposition 5.3. Let γ , δ be distinct curves in (S,M) and suppose I (γ, δ) 6= 0.
Then Ext1C(γ, δ) 6= 0 6= Ext1C(δ, γ ).

Proof. We only consider one of the intersections of γ and δ. After some flips (if
needed), there is a triangulation0′ such thatw(0′, γ ) andw(0′, δ) share a common
subword (associated to the intersection) w = τ j1 · · · τ js with s ≥ 1, as shown:

s
ss

s
s s

A

BC

D

ı

�jsC1

�jsC2

�j1

�j�1

�j0

�js

˛

ˇ0

˛0
ˇ

Here either τ j0 or τ j−1 might be a boundary arc, and one of τ js+1 and τ js+2 can
also be a boundary arc. Hence w(0′, γ ) and w(0′, δ) are of the form

w(0′, γ )= A τ j−1

β ′

←−τ j1! τ js
α
−→τ js+1 B,

w(0′, δ)= C τ j0
α′

−→τ j1! τ js
β
←−τ js+2 D.

Consider the strings

(0′, γ ′)= C τ j0
α′

−→τ j1 ! τ js
α
−→τ js+1 B,

w(0′, γ ′′)= A τ j−1

β ′

←−τ j1! τ js
β
←−τ js+2 D,

where γ ′ and γ ′′ are given in the picture:

s
ss

s
s s

 00

 0

C B

A D

�jsC1

�jsC2

�j1

�j�1

�j0

�js

˛˛0
ˇˇ0

Then there is a nonsplit exact sequence in mod J (Q0′,W0′)

0−→ M(0′, γ )

[
f
g

]
−→ M(0′, γ ′)⊕M(0′, γ ′′)−→ M(0′, δ)−→ 0,

where f sends the factor string

w0 = τ j1! τ js
α
−→τ js+1 B
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of w(0′, γ ) to w0 as a substring of w(0′, γ ′) and g identifies the factor string
w1 = A τ j−1

β ′

←−τ j1 ! τ js as a substring of w(0′, γ ′′). Therefore

Ext1J (Q0′ ,W0′ )
(M(0′, δ),M(0′, γ )) 6= 0,

which implies that Ext1C(δ, γ ) 6= 0. Then, since C is 2-Calabi–Yau, we obtain

Ext1C(γ, δ)∼= D Ext1C(δ, γ ) 6= 0. �

Proposition 5.3 and Corollary 4.6 imply:

Corollary 5.4. Let γ , δ be distinct internal arcs in (S,M). Then Ext1C(γ, δ) = 0
if and only if I (γ, δ)= 0.

Corollary 5.5. There is a bijection between triangulations of (S,M) and cluster-
tilting objects of C(S,M). In particular, each indecomposable object without self-
extensions is reachable from the cluster-tilting object T0 (the initial cluster-tilting
object).

Proof. Corollary 4.6 implies that each triangulation of (S,M) yields a cluster-
tilting object in C(S,M). Hence it suffices to prove that each cluster tilting object
T = T1⊕· · ·⊕Tn gives a triangulation of (S,M). By Theorem 5.1, we can assume
T = τ1⊕· · ·⊕τn where each τi is an internal arc in (S,M) corresponding to Ti . The
definition of a triangulation and the above corollary yield a unique triangulation
0T = {τ1, · · · , τn, τn+1, · · · , τn+m} where τn+1, · · · , τn+m are boundary arcs in
(S,M). �
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