
Algebra &
Number
Theory

mathematical sciences publishers

Volume 5

2011
No. 5

Kazhdan–Lusztig polynomials and drift
configurations

Li Li and Alexander Yong



msp
ALGEBRA AND NUMBER THEORY 5:5(2011)

Kazhdan–Lusztig polynomials and drift
configurations

Li Li and Alexander Yong

The coefficients of the Kazhdan–Lusztig polynomials Pv,w(q) are nonnegative
integers that are upper semicontinuous relative to Bruhat order. Conjecturally,
the same properties hold for h-polynomials Hv,w(q) of local rings of Schubert
varieties. This suggests a parallel between the two families of polynomials. We
prove our conjectures for Grassmannians, and more generally, covexillary Schu-
bert varieties in complete flag varieties, by deriving a combinatorial formula for
Hv,w(q). We introduce drift configurations to formulate a new and compatible
combinatorial rule for Pv,w(q). From our rules we deduce, for these cases, the
coefficient-wise inequality Pv,w(q)� Hv,w(q).

1. Introduction

Overview. This paper studies two families of polynomials {Pv,w(q)} and {Hv,w(q)}
defined for pairs of permutations v,w in the symmetric group Sn (more generally,
any Weyl group W ). The former family consists of the celebrated Kazhdan–Lusztig
polynomials, introduced in [Kazhdan and Lusztig 1979] to study representations
of Hecke algebras. There it was conjectured that Pv,w(q) ∈ Z≥0[q]. This was later
established by the same authors [1980] by interpreting Pv,w(q) as the Poincaré
polynomial for Goresky–MacPherson’s local intersection cohomology for the torus
fixed point ev of the Schubert variety Xw in the complete flag variety Flags(Cn).

A key contribution to the theory is R. Irving’s theorem [1988] that the Pv,w(q)
are upper semicontinuous: if v′ ≤ v ≤w in Bruhat order, then Pv,w(q)� Pv′,w(q),
where “�” means that, for each i , the coefficient of q i in Pv,w(q) is weakly smaller
than the coefficient of q i in Pv′,w(q). Thus, the Kazhdan–Lusztig polynomials are
measures of the singularities of Schubert varieties whose coefficient growth tracks
the worsening pathology of singularities as one moves along torus invariant P1’s
towards the “most singular” point eid ∈ Xw. In particular, Pv,w(q)= 1 if and only
if ev ∈ Xw is a (rationally) smooth point.
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Conversely, the desire for insight into the combinatorics of Kazhdan–Lusztig
polynomials naturally leads to the basic problem of understanding where and how
the singularities of Schubert varieties worsen. In view of this converse problem,
the growth of any semicontinuous singularity measure of Schubert varieties is of
interest. One seeks concrete comparisons of different measures; see, e.g., [Woo
and Yong 2008] and the references therein.

Specifically, a well-studied semicontinuous measure is given by the Hilbert–
Samuel multiplicity multev (Xw). However, while this contains useful local data
about Xw, even more is carried by the Z-graded Hilbert series of grmev

Oev,Xw , the
associated graded ring of the local ring Oev,Xw ,

Hilb(grmev
Oev,Xw , q)=

Hv,w(q)
(1− q)`(w)

,

where `(w) = dim(Xw) is the Coxeter length of w. In particular, multev (Xw) =
Hv,w(1).

Conjecturally, each h-polynomial Hv,w(q) is also in Z≥0[q], and moreover is
upper semicontinuous, just as is the case for Kazhdan–Lusztig polynomials. These
conjectures suggest that the growth of the coefficients of the two families of poly-
nomials is somehow correlated. In this paper, we offer an examination in the
Grassmannian case, and more generally in the case of covexillary Schubert va-
rieties inside Flags(Cn). There the nonnegativity and semicontinuity conjectures
are proved by deriving a new combinatorial rule for Hv,w(q). In addition, by in-
troducing drift configurations as a model for the Kazhdan–Lusztig polynomials
in these settings (after [Lascoux and Schützenberger 1981] and [Lascoux 1995]),
we prove the inequality Pv,w(q) � Hv,w(q). This combinatorial discovery further
indicates the link between the two families; no alternative explanation via algebraic
or geometric methods seems available at present.

Summarizing, the main thesis of this paper is that there exists a parallel between
{Pv,w(q)} and {Hv,w(q)}. Our basis for this perspective comes from proofs of
compatible and positive combinatorial rules for the two families of polynomials.

Statements of the main conjecture and theorems. Recapitulating, this paper for-
mulates, and constructs supporting combinatorics for, the following conjecture:

Conjecture 1.1. The h-polynomials Hv,w(q) have nonnegative integral coefficients.
In addition, they are upper semicontinuous; i.e., if v′ ≤ v in Bruhat order then
Hv,w(q)� Hv′,w(q).

The nonnegativity claim would actually be immediate if grmev
Oev,Xw is Cohen–

Macaulay (see page 604). However, this latter assertion seems to be a folklore
conjecture. Although Oev,Xw is itself Cohen–Macaulay [Ramanathan 1985], this
property might be lost when degenerating to grmev

Oev,Xw . On the other hand, the
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results detailed in this paper and in [Li and Yong 2011] also support the Cohen–
Macaulayness conjecture. In particular, the latter would follow from that paper’s
Conjecture 8.5, a stronger claim asserting that Stanley–Reisner simplicial com-
plexes of certain Gröbner degenerations of Kazhdan–Lusztig varieties are vertex
decomposable.

The semicontinuity claim is itself a strengthening of the nonnegativity claim
since the smoothness of Xw at ew implies Hw,w(q) = 1. Furthermore, although
the betti numbers of grmev

Oev,Xw are semicontinuous, the coefficients of Hv,w(q)
are an involved, signed expression in terms of those numbers. Therefore, this
semicontinuity phenomenon seems substantive.

The natural projection map

π : Flags(Cn)� Grk(C
n) : (〈0〉 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ Fn−1 ⊂ Cn) 7→ Fk,

where Grk(C
n) is the Grassmannian of k-dimensional planes in Cn , is a fibration:

local properties of torus fixed points eµ∈ Xλ⊆Grk(C
n) for Young diagrams λ,µ⊆

k×(n−k), are equivalent to local properties of ev∈ Xw⊆Flags(Cn)where v,w∈ Sn

are maximal Coxeter length representatives of λ,µ where the latter are thought of
as cosets of Sn/(Sk×Sn−k); see, e.g., [Brion 2004, Example 1.2.3]. These v and w
are cograssmannian, i.e., they have a unique ascent, at position k: v(k) < v(k+1)
and w(k) < w(k+ 1).

Lifting Grassmannian problems to Flags(Cn) has the advantage of allowing
one to embed them within the wider class of covexillary Schubert varieties Xw,
i.e., where w is 3412-avoiding: there are no indices i1 < i2 < i3 < i4 such that
w(i1), w(i2), w(i3), w(i4) are in the same relative order as 3412. This class ap-
pears more tractable than general flag Schubert varieties since it shares many of
the same features as Grassmannian Schubert varieties. However, there is a salient
difference: Grassmannian Schubert varieties are locally defined by equations that
are homogeneous with respect to the standard grading that assigns each variable
degree one. In general, this is not true in the covexillary case. This homogeneity
means that taking associated graded of the local ring essentially does nothing, and
so grmev

Oev,Xw is automatically Cohen–Macaulay; see, e.g., [Li and Yong 2011,
Section 1] and page 604.

The covexillary condition has already attracted significant attention; see, e.g.,
[Lakshmibai and Sandhya 1990; Lascoux 1995; Manivel 2001; Knutson and Miller
2005; Knutson et al. 2008; Knutson et al. 2009; Li and Yong 2011]. In particular,
Section 2.4 of [Knutson and Miller 2005] connects the condition to ladder deter-
minantal ideals studied in commutative algebra. Our three main theorems below
concern the covexillary setting, providing our main cases of support towards both
our main thesis and Conjecture 1.1.

One of our results is to prove the following link between Hv,w(q) and Pv,w(q):
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Theorem 1.2. For w covexillary,

Pv,w(q)� Hv,w(q) and deg Pv,w(q)= deg Hv,w(q).

While the Grassmannian case per se is new and supports our thesis, the co-
vexillary generality also further highlights the amenability of covexillary Schubert
varieties. Our proof of Theorem 1.2 is based on a new formula for covexillary
Kazhdan–Lusztig polynomials. An earlier rule was given by A. Lascoux [1995],
generalizing his earlier Grassmannian rule with M.-P. Schützenberger [Lascoux
and Schützenberger 1981]. (For more recent treatments of the Grassmannian case
see [Shigechi and Zinn-Justin 2010; Jones and Woo 2010], for example.) Our
formulation of a covexillary rule is in terms of drift configurations. It is entirely
graphical and is perhaps more handy to compute.

To state our rule we use standard combinatorics of the symmetric group (see,
e.g., [Manivel 2001, Chapter 2]) as well as some terminology introduced in [Li
and Yong 2011]. (The reader may wish to compare Examples 1.5 and 1.6 below
with what follows.) Let w ∈ Sn be covexillary. Superimpose the graph G(v) of v
drawn with dots ◦ in positions (n− v( j)+ 1, j) on top of the diagram

D(w)=
{
(i, j) : i < n−w( j)+ 1 and j <w−1(n− i + 1)

}
⊂ [n]× [n].

Throughout, we use the convention that rows are indexed from bottom to top, and
columns are indexed from left to right. Move each box e of the essential set

E(w)=
{
(i, j) ∈ D(w) : (i + 1, j), (i, j + 1) /∈ D(w)

}
diagonally southwest by the number of dots of G(v) weakly southwest of e. Call
the resulting boxes {e′}, and define B(v,w) to be the smallest Young diagram that
contains {e′} and (1, 1) (we use French convention for our Young diagrams). The
shape λ(w) of w is obtained by sorting the vector counting the number of boxes in
nonempty rows of D(w) into decreasing order. Now, draw λ(w) in the southwest
corner of B(v,w).

Declare that any corner of λ(w) is 0-special. Let arm(b) (respectively, leg(b))
refer to the boxes in λ(w) strictly to the right (above) of b and in the same row
(column). Inductively, a box b ∈ λ(w) is z-special, for z ∈ N if it is maximally
northeast subject to
• |leg(b)| = |arm(b)|; and

• none of the boxes of {b} ∪ arm(b)∪ leg(b) are y-special for any y < z.

A box is special if it is z-special for some z. The continent of a special box b is the
set of x ∈ λ(w) such that b is the maximally northeast special box that is weakly
southwest of x . The union of continents is

Pangaea(v,w)⊆ λ(w)
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(the set difference being an immovable reference continent).

Definition 1.3. A drift configuration D is a nonoverlapping configuration of con-
tinents inside B(v,w), such that

• each special box is diagonally weakly northeast of its position in Pangaea(v,w),
and

• relative southwest-northeast positions of special cells are maintained.

Let drift(v,w) be the set of all such D and let wt(D) be the total distance traveled
by the continents from Pangaea(v,w). Consider the generating series

Qv,w(q)=
∑

D∈drift(v,w)

qwt(D).

Theorem 1.4. Suppose that v,w ∈ Sn and w is covexillary. Then:

(I) Pv,w(q)= Qv,w(q).

(II) If we instead take every box of λ(w) to be a separate “country”, each of
which “drifts” according to the rules of Definition 1.3, the total number of
drift configurations is multev (Xw); hence

Pv,w(1)≤multev (Xw),

as is manifest from (I).

(III) There is a vertex decomposable (thus shellable) simplicial complex KLv,w
that is homeomorphic to a ball or a sphere, and whose facets are labeled by
D ∈ drift(v,w).

Our proof of (I) is a bijection with A. Lascoux’s rule (which descends to a
bijection with the rule of [Lascoux and Schützenberger 1981] for Grassmannians).
The multiplicity rule from (II) just restates the theorem from [Li and Yong 2011]
(compare the Grassmannian rule of [Ikeda and Naruse 2009]). Although the in-
equality of (II) is a consequence of Theorem 1.2, we are emphasizing that our
rule from (I) is compatible with our multiplicity rule and makes the inequality
transparent. Actually, whether such an inequality might exist was first asked to
us (independently) by S. Billey and A. Woo. Afterwards, H. Naruse informed us
that he has a proof for all cominuscule G/P . These questions and results provided
us initial motivation for our work towards Theorem 1.4. Note that as with the
more general inequality of Theorem 1.2, this inequality is not true in general. For
example, P13425,34512(1)= 3 while multe13425(X34512)= 2.

Statement (III) is derived from [Knutson et al. 2008]. It points out a further
resemblance to the combinatorics of multev (Xw) in [Li and Yong 2011], where a
similar complex also appears.
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Example 1.5. The left diagram depicts Pangaea(v,w), where v = id and

w = 20 19 18 11 10 9 8 12 17 16 7 6 15 14 13 5 4 3 2 1.

It has six continents, shown in different colors. The right diagram shows a partic-
ular drift D ∈ drift(v,w); its weight is 14.

Pangaea(v,w) D

Example 1.6. Let w = 10 954382761, v = 23465178910. Here λ(w) = (4, 4, 3).
The left figure shows D(w), with G(w) overlaid as black dots and G(v) as open
circles.

e1

e′1

e2

e′2 H⇒

B(v,w)

λ(w)

Starting from D(w) and the overlaid ◦’s of G(v), we derive B(v,w), shown on
the right. The special boxes are marked by +’s. We have E(w) = {e1, e2} (being
the maximally northeast boxes of each connected component of D(w)) move to
{e′1, e

′

2}, as determined by the ◦’s of G(v). These are the five drift configurations:

We can write Qv,w(q)= 1+ 2q + q2
+ q3. �

Our proof of Theorem 1.2 also depends on a new (and the first manifestly pos-
itive) combinatorial rule for covexillary Hv,w(q). It additionally implies special
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cases of the nonnegativity and upper semicontinuity conjectures. Identify a parti-
tion λ= (λ1 ≥ · · · ≥ λ` > 0) with its Young diagram (in French notation). Recall
that a Young tableau T of shape λ is semistandard if it is weakly increasing along
rows and strictly increasing up columns. Given a vector b= (b1, . . . , b`), we say
T is flagged by b if each entry in row i is at most bi . Let SSYT(λ, b) denote the
set of semistandard Young tableaux flagged by b. A (nonempty) set-valued filling
is semistandard if each tableau obtained by choosing a singleton from each set is
semistandard [Buch 2002]. Similarly, we define flagged set-valued semistandard
tableaux, and the set SetSSYT(λ, b) [Knutson et al. 2008].

Define U ∈ SetSSYT(λ, b) to be lower saturated if no smaller number can be
added to any box U (i, j) while maintaining semistandardness. In symbols, each
U (i, j) is of the form

[α, β] := {α, α+1, . . . , β−1, β},

for some α, β (depending on i, j), where

α =max
{
max U (i, j−1), 1+max U (i−1, j)

}
.

Our convention for lower saturated tableaux is that U (i, 0) = 1 for all i > 0 and
U (0, j)= 0 for all j > 0. Let

Lower(λ, b)⊆ SetSSYT(λ, b)

denote this subset of lower saturated tableaux.
Define the saturation sat(T ) ∈ Lower(λ, b) of T ∈ SSYT(λ, b) to be

sat(T )(i, j)=
[
max{T (i, j−1), 1+T (i−1, j)}, T (i, j)

]
.

For U ∈ SetSSYT(λ, b), let

ex(U )= |U |−|λ|,

where |U | refers to the number of entries of U and |λ| = λ1+ λ2+ · · · .
Finally, if T ∈ SSYT(λ, b) set

depth(T ) := ex(sat(T ))= |sat(T )| − |T |. (1-1)

If λ(w)= (λ(w)1 ≥ · · · ≥ λ(w)` > 0), define

b= b(2v,w)= (b1, . . . , b`) (1-2a)

by
bi =max

{
m : B(v,w)m ≥ λ(w)i +m− i

}
. (1-2b)

This is the maximum distance that the rightmost box in row i can drift diagonally
northeast within B(v,w) (ignoring the presence of other boxes).
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Theorem 1.7. Let w ∈ Sn be covexillary. Then

Hv,w(q)=
∑

T∈SSYT(λ(w),b(2v,w))

qdepth(T )
=

∑
U∈Lower(λ(w),b(2v,w))

qex(U ).

Moreover, Conjecture 1.1 is true under the hypothesis.

Example 1.8. For n = 5, w = 52341, v = 12345. There are five semistandard
tableaux of shape (2, 1) and flagged by (2, 3):

2

1 1

3

1 1

2

1 2

3

1 2

3

2 2

Their saturations are

2

1 1

2,3

1 1

2

1 1,2

2, 3

1 1,2

3

1,2 2

The corresponding ex values are

0, 1, 1, 2, 1.

Thus by Theorem 1.7, Hv,w(q)= 1+ 3q + q2. �

Example 1.9. Continuing Example 1.8, there are four drift configurations of the
two continents:

The Kazhdan–Lusztig polynomial is Pv,w(q) = 1 + 2q + q2. We see that
Pv,w(q)� Hv,w(q), in agreement with Theorem 1.2. �

Organization and contents. In Section 2, we state some preliminaries and further
discuss Conjecture 1.1. We then prove Theorem 1.7. In Section 3, we briefly recall,
for comparison, basics about Kazhdan–Lusztig theory. We then prove Theorem 1.2
while temporarily assuming Theorem 1.4(I). Section 4 is devoted to the construc-
tion of the simplicial complex of Theorem 1.4(II) and proof of its asserted proper-
ties. We furthermore define polynomials generalizing Qv,w(q) that naturally arise
from this complex. In Section 5 we prove Theorem 1.4(I). We end that section
with two comments (Remarks 5.5 and 5.6) about further properties of Pv,w(q) that
can be deduced from the rule. In Section 6, we give a formula for a different “q-
analogue” of multev (Xw) than Hv,w(q). In Section 7, we offer some final remarks.
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2. Hilbert series of the local ring Oev,Xw

2.1. Preliminaries. We use the usual identification Flags(Cn)=GLn/B where B
is the Borel subgroup consisting of invertible upper triangular matrices. Thus GLn

acts on Flags(Cn) by left multiplication, as does B, and the torus T of invertible
diagonal matrices. For each v ∈ Sn , let ev denote the associated T -fixed point.
The Schubert cell is X◦w := Bew, while its Zariski closure is the Schubert variety
Xw = X◦w, an irreducible variety of dimension `(w). We have that ev ∈ Xw if
and only if v ≤ w in Bruhat order. A neighborhood of each point p ∈ Xw is
isomorphic to a neighborhood of some ev, by the action of B. Hence, it suffices
to restrict attention to T -fixed points. Let B− be the opposite Borel subgroup of
invertible lower triangular matrices. If we set �◦v = B−vB/B to be the opposite
Schubert cell, then up to crossing by affine space, a local neighborhood of ev ∈ Xw
is given by the Kazhdan–Lusztig variety Nv,w = Xw ∩�◦v [Kazhdan and Lusztig
1979, Lemma A.4].

Suppose p is a point on a scheme Y . Let grmp
Op,Y denote the associated graded

ring of the local ring Op,Y with respect to its maximal ideal mp, i.e.,

grmp
Op,Y =

⊕
i≥0

mi
p/mi+1

p .

Since grmp
Op,Y picks up a Z-grading, it now makes sense to discuss its Hilbert

series. One can always express this series in the form

Hilb(grmp
Op,Y , q)=

Hp,Y (q)
(1− q)dim Y

where Hp,Y (q) ∈ Z[q] is the h-polynomial associated to p ∈ Y . It follows from
standard facts that Hp,Y (1) = multp(Y ); see, e.g., [Kreuzer and Robbiano 2005,
Theorem 5.4.15]. Hence Hp,Y (q)= 1 if and only if Y is smooth at p. In addition,
note Hp,Y (0)= 1, since this is the dimension of the zero graded piece of grmp

Op,Y ,
i.e., the dimension of the field Op,Y /mp.

Now, for any v,w ∈ Sn , we define Hv,w(q) ∈ Z[q] to be the h-polynomial
associated to ev ∈ Xw. At present, there is no purely combinatorial formula (even
nonpositive or recursive) for computing Hv,w(q). However, instead one can uti-
lize the explicit coordinates and equations for the ideal Iv,w to define Nv,w =

Spec
(
C[z(v)]/Iv,w

)
, as done in [Woo and Yong 2008, Section 3.2]. Then one

can Gröbner degenerate Nv,w to a scheme theoretic union of coordinate subspaces
N′v,w, using any of the term orders ≺v,w,π from [Li and Yong 2011, Section 3].
As explained in Theorem 3.1 (and its proof) of that reference, the stated Gröb-
ner degenerations degenerate not only Nv,w but also its projectivized tangent cone
Proj(grmev

Oev,Xw). Therefore the h-polynomial of N′v,w equals Hv,w(q).
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2.2. Conjectures. Let us now return to the discussion of Conjecture 1.1. Using the
method for computing Hv,w(q) summarized above, we obtained exhaustive checks
for n ≤ 7 of the following claim, restated from the introduction:

Nonnegativity conjecture. Hv,w(q) ∈ Z≥0[q].

In [Li and Yong 2011, Conjecture 8.5] we conjectured that within the family of
term orders ≺v,w,π , at least one gives a Gröbner limit scheme N′v,w that is reduced,
equidimensional and whose Stanley–Reisner simplicial complex 1v,w is a vertex-
decomposable ball or sphere. This implies in particular that 1v,w is shellable and
thus Cohen–Macaulay. If this conjecture were true, it would follow that grmev

Oev,Xw
is Cohen–Macaulay. Thus the nonnegativity conjecture would hold by, e.g., [Bruns
and Herzog 1993, Corollary 4.1.10].

In the case that Iv,w is a homogeneous ideal, with respect to the standard grading
that assigns each variable degree 1, since Oev,Xw is Cohen–Macaulay [Ramanathan
1985], it follows that the associated graded ring is Cohen–Macaulay; see [Bruns
and Herzog 1993, Exercise 2.1.27(c)], for example. Hence nonnegativity follows
in this case. A. Knutson [2009, p. 25] has shown that this homogeneity occurs
whenever w is 321-avoiding. Moreover, in [Woo and Yong 2009, Section 5] it was
explained how “parabolic moving” reduces a large percentage of cases (for n≤ 10)
to the homogeneous case. However, not every case can be so reduced, including
those in the covexillary class. Thus, these cases provide further support for the
nonnegativity conjecture, separate from Theorem 1.7.

Upper semicontinuity conjecture. If v′ ≤ v ≤ w in Bruhat order, then

Hv,w(q)� Hv′,w(q).

Unfortunately, even if we knew grmev
Oev,Xw to be Cohen–Macaulay, we do not

know any way to express these coefficients in homological terms that would make
the upper semicontinuity conjecture transparent. It should be noted that the proof of
this property for Kazhdan–Lusztig polynomials in [Irving 1988] was not achieved
using the geometry of Schubert varieties. However, see the geometric argument
for the more general result [Braden and MacPherson 2001, Theorem 3.6].

Although any proof of the above conjectures is desired, ideally one would also
like combinatorial explanations of the properties.

Let us pause to collect some further facts for small n in the following com-
putational result. For (D) below we refer the reader to [Woo and Yong 2008,
Section 2.1] for the definition of interval pattern avoidance of [x, y] ∈ S∞× S∞.
There we explain that the existence of an interval pattern embedding guarantees
Nx,y∼=Nw̃,w, where [x, y]∼=[w̃, w] is an isomorphism of posets of Bruhat intervals
in S∞. Thus, if the inequality Px,y(q)� Hx,y(q) fails, so must Pw̃,w(q)� Hw̃,w(q).

Proposition 2.1. (A) deg Hv,w(q)≤ deg Pv,w(q) for v ≤ w ∈ Sn and n ≤ 6.
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(B) deg Hv,w(q)≤ 1
2(`(w)− `(v)− 1) for v < w ∈ Sn and n ≤ 7.

(C) The coefficients of Hv,w(q) form a unimodal sequence for v,w∈ Sn and n≤7.

(D) Pv,w(q)� Hv,w(q) holds for all v≤w∈ Sn and n≤ 6, if and only ifw interval
pattern avoids

[14235, 45123], [31524, 53412], [14325, 45312],

[13425, 34512], [24153, 45231], [154326, 564312].

(Note that the first and fourth intervals, and the second and fifth intervals are
related by taking inverses. For all n ≥ 1, the inequality fails whenever w
contains one of these intervals.)

Proof and discussion. Each of the assertions were verified using Macaulay 2. For
(A) and (B) note that deg Pv,w(q) ≤ 1

2(`(w)− `(v)− 1) is a standard fact about
Kazhdan–Lusztig polynomials; see item (iii) on page 608.

For (D), computation shows that Pv,w(q)= Hv,w(q) for n ≤ 4, so the inequality
holds in that situation. We checked that each of the intervals [x, y] listed corre-
sponds to a failure of the inequality for n ≤ 5. For n = 6 we computationally
verified the claim (there are 36 cases w ∈ S6 where the inequality fails for some
v≤w, and of those only one cannot be blamed on the n= 5 cases). The n> 6 case
follows from general properties of interval pattern embeddings recalled above. �

One might conjecture that both (A) and its weak form (B) hold for all n. How-
ever with (A), experience has shown that data for n ≤ 6 is soft evidence for any
conjecture that involves Kazhdan–Lusztig polynomials. Note that if (A) is true,
one cannot have Pv,w(q) � Hv,w(q) unless deg Hv,w(q) = deg Pv,w(q), which is
indeed what we show when w is covexillary.

In view of (C), it is also natural to guess that unimodality is true in general. One
warning however is that the stronger assertion that the coefficients of Hv,w(q) are
log-concave is false, as the example below shows:

Example 2.2. Letw= 5671234 and v= 1352476. Computation using Macaulay 2
shows there is a choice of ≺v,w,π such that N′v,w is Cohen–Macaulay (but not
Gorenstein), and that H1352476,5671234(q) = 1+ 2q + q2

+ q3, which is not log-
concave. �

By contrast, see the related work [Rubey 2005], which shows log-concavity
holds in a special ladder determinantal case (note that w is not covexillary in our
counterexample).

Even knowing Cohen–Macaulayness of grmev
Oev,Xw does not, in and of itself,

prove unimodality. In fact, R. Stanley [1989, Conjecture 4(a)] had conjectured
unimodality for a general graded Cohen–Macaulay domain R over a field which is
generated by R1. Actually, he even conjectured the stronger claim of log-concavity,
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although counterexamples to the stronger claim were later found by G. Niesi and
L. Robbiano; see [Brenti 1994, Section 5]. (Example 2.2 gives a different coun-
terexample to Stanley’s log-concavity conjecture.)

It should also be mentioned that in contrast, the Kazhdan–Lusztig polynomials
are not in general unimodal and in fact P. Polo [1999] proved that every nonnegative
integral polynomial with constant coefficient 1 is some Pv,w(q).

While Theorem 1.7 allows us to prove the nonnegativity, upper semicontinuity
and degree properties for covexillary Xw, a solution to the following problem has
eluded us:

Problem 2.3. Give a combinatorial proof (e.g., using Theorem 1.7) for the uni-
modality conjecture, when w is covexillary (or even cograssmannian) by establish-
ing a sequence of explicit injections and surjections of the relevant Young tableaux.

Concerning (D), we do not expect the characterization to be valid for all n.
Instead, one aims to expand this list into a (human-readable) classification, via a
finite list of families of patterns to avoid, as is the case for many other properties
studied in [Woo and Yong 2008].

Using the analogy with Kazhdan–Lusztig theory, numerous further problems,
which had been previously considered for Pv,w(q) but not Hv,w(q), make sense. To
name a few: Is Hv,w(q) determined by the poset isomorphism class of the interval
[v,w] in Bruhat order? (This is an analogue of a conjecture of G. Lusztig.) Can
one give a combinatorial algorithm for computing Hv,w(q)? Better yet, can one
find a positive combinatorial rule for Hv,w(q), thus establishing the nonnegativity
conjecture?

2.3. Proof of Theorem 1.7. Continuing the definitions before the statement of
Theorem 1.7, set

sup : SetSSYT(λ, b)→ SSYT(λ, b)

by sending U to T where T (i, j)=max U (i, j). The following is clear:

Lemma 2.4. The maps

sat :SSYT(λ, b)→Lower(λ, b) and sup |Lower(λ,b) :Lower(λ, b)→SSYT(λ, b)

are mutually inverse bijections.

Let us recall some definitions and terminology utilized in [Li and Yong 2011].
Define rwb = rw(i, j) to be the number of • of G(w) weakly southwest of the box
b = (i, j). Given v ≤ w and w covexillary, 2v,w ∈ Sn is defined there to be the
unique permutation such that λ(w)= λ(2v,w) and

E(2v,w)=
{e′ : e′ is obtained by moving each e in

E(w) diagonally southwest by rve units.

}



Kazhdan–Lusztig polynomials and drift configurations 607

The permutation 2v,w was proved to be itself covexillary.
Define B(w) to be the smallest Young diagram with southwest corner in position

(1, 1) that contains all of E(w). Set

B(v,w)= B(2v,w).

If λ(w)= (λ(w)1 ≥ · · · ≥ λ(w)` > 0), define b= b(w)= (b1, . . . , b`) by

bi =max{m : B(w)m ≥ λ(w)i +m− i}.

This agrees with, and slightly reformulates, the definitions of B(v,w) and b from
the introduction.

In [Li and Yong 2011, Theorem 6.6] we proved that

Hilb(grmev
Oev,Xw , q)= Gλ(w)(q)/(1− q)(

n
2),

where

Gλ(w)(q)=
∑

k≥|λ(w)|

(−1)k−|λ(w)|(1− q)k × #SetSSYT(λ(w), b, k)

and #SetSSYT(λ(w),b,k) is the number of flagged set-valued semistandard Young
tableaux of shape λ(w) with flag b= b(2v,w) which use exactly k entries.

Since the local ring Oev,Xw is of dimension `(w)=
(n

2

)
− |λ(w)|, we rewrite

Hilb(grmev
Oev,Xw , q)=

Hv,w(q)
(1− q)`(w)

,

where
Hv,w(q)=

∑
U∈SetSSYT(λ(w),b)

(q − 1)ex(U ).

We need to show that∑
U∈SetSSYT(λ(w),b)

(q − 1)ex(U )
=

∑
T∈SSYT(λ(w),b)

qdepth(T ) (2-1)

by proving that, for every T ∈ SSYT(λ(w), b),∑
U∈sup−1(T )

(q − 1)ex(U )
= qdepth(T ).

There are depth(T ) elements in sat(T ) but not in T . We can delete any subset of
those elements from sat(T ) and obtain T ′ ∈ sup−1(T ) (so # sup−1(T )= 2depth(T )).
Hence the left-hand side is equal to

(1+ (q − 1))depth(T )
= qdepth(T ),

and therefore the equality (2-1) follows. Thus, the first equality of the theorem
holds and the second is clear from Lemma 2.4.
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The nonnegativity claim is manifest from the combinatorial rule; however, let us
also give a geometric proof. In [Li and Yong 2011] we proved that for covexillary
w, Nv,w degenerates, under a choice of ≺v,w,π to a Cohen–Macaulay limit scheme
N′v,w. Hence, nonnegativity of Hv,w(q) follows from [Bruns and Herzog 1993,
Corollary 4.1.10] and the discussion on page 603.

For the upper semicontinuity claim, fixw∈ Sn and suppose v′≤v≤w. Consider
an essential box e ∈ E(w). In the construction of E(2v,w), the essential box e is
moved diagonally southwest by rve units. Since v′ ≤ v, a standard characterization
of Bruhat order shows rv

′

e ≤ rve . Thus, each essential box e moves further southwest
in to its position in E(2v,w) than it does for E(2v′,w). Therefore,

B(v,w)⊆ B(v′, w),

and hence,

b(2v,w)= (b1, . . . , b`)≤ b(2v′,w)= (b′1, . . . , b′`),

in the sense that bi ≤ b′i for every i . Consequently, SSYT(λ, b) ⊆ SSYT(λ, b′),
which clearly implies Hv,w(q)� Hv′,w(q), as desired. �

3. Kazhdan–Lusztig theory

The Hecke algebra. Let R = Z[q
1
2 , q−

1
2 ] be the ring of Laurent polynomials over

Z in the indeterminate q
1
2 . The Hecke algebra Hn−1 of Sn is the algebra over R

with basis {Tw : w ∈ Sn} and relations

Tsi Tw = Tsiw if `(siw) > `(w),

T 2
si
= (q − 1)Tsi + qTid.

There is an involution ι :Hn−1→Hn−1 defined by ι(q
1
2 )= q−

1
2 and ι(Tw)= T−1

w−1 .
It was proved in [Kazhdan and Lusztig 1979] that there exists a basis {C′w} of

Hn−1 that is uniquely determined by the conditions

ι(C′w)= C′w and C ′w = (q
−

1
2 )`(w)

∑
v≤w

Pv,w(q)Tv,

where

(i) Pw,w(q)= 1,

(ii) Pv,w(q)= 0 if v 6≤ w, and

(iii) Pv,w(q) ∈ Z[q] is of degree at most 1
2(`(w)− `(v)− 1) if v < w.

The existence of this basis was established by an explicit recursion for the
Kazhdan–Lusztig polynomials Pv,w(q), which we omit. Our source for these facts
is [Billey and Lakshmibai 2000, Chapter 6], to which we refer the reader to for
further details.
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Conditions (i) and (ii) also hold for the Hv,w(q), while (iii) conjecturally holds
(compare Proposition 2.1 and the discussion thereafter). It is mildly tempting to
think about another basis of the Hecke algebra defined by replacing Pv,w(q) by
Hv,w(q) in the above definition of C ′w. While this other basis has a unimodular
transition matrix with the Kazhdan–Lusztig basis, it doesn’t possess any of the
other nice properties, such as positive structure constants or invariance under the
involution ι.

Proof of Theorem 1.2. Recall that in what follows, we are assuming the formula
for Pv,w(q) from Theorem 1.4 that we prove in Section 5.

Given any box (i, j) ∈ λ(w), let ( î, j) be the topmost box in column j .
Let b= b(2v,w) be defined by Equations (1-2) (or see the proof of Theorem 1.7,

page 606). Define
9 : drift(v,w)→ SSYT(λ(w), b)

by sending a drift configuration D to the semistandard tableau T , as follows. For
each special box (i, j) ∈ λ(w) we fill ( î, j) with the entry ( î + d), where d is
the distance moved in D by the continent associated to (i, j), from Pangaea(v,w).
Note that the value of this entry is the height of the box ( î, j) after drifting in the
drift configuration D. Now fill in the remaining empty boxes of λ(w) by working
down columns, from right to left, according to the prescription

T (i, j)=min
{
T (i+1, j)−1, T (i−1, j+1)+1

}
. (3-1)

By convention, set

T (i, j)=
{
∞ if i > 0 and (i, j) /∈ λ(w), or if j > m,
0 if i = 0 and j ≤ m,

(3-2)

where m is the number of columns in λ(w).

Example 3.1. For the five drift configurations D in Example 1.6, the corresponding
9(D) are as follows, where the boxes ( î, j) corresponding to special boxes are
underlined.

3 3 3

2 2 2 2

1 1 1 1

3 3 4

2 2 2 2

1 1 1 1

3 3 3

2 2 2 3

1 1 1 2

3 3 4

2 2 3 3

1 1 1 2

3 4 4

2 2 3 3

1 1 1 2

We will also need the sat(9(D)), which here are

3 3 3

2 2 2 2

1 1 1 1

3 3 3,4

2 2 2 2

1 1 1 1

3 3 3

2 2 2 3

1 1 1 1,2

3 3 4

2 2 2,3 3

1 1 1 1,2

3 3,4 4

2 2 2,3 3

1 1 1 1,2
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Lemma 3.2. Suppose D ∈ drift(v,w) and T =9(D). Then:
(i) T is a semistandard Young tableau (i.e., 9 is well-defined).

(ii) 9 is an injection.
(iii) If the j-th column of λ(w) has no special box, then T (i, j)= i for all 1≤ i ≤ î .
(iv) wt(D)= ex(sat(T ))= depth(T ).

Proof. (i) Since each corner of λ(w) is special, it is assigned a finite number. Hence
(3-1) assigns each box of λ(w) a finite number. The column semistandardness
conditions are immediate from (3-1). We now establish the row semistandardness
condition T (i, j)≤ T (i, j + 1), considering the two cases that can occur.
Case 1: (i, j) is atop a special box. That is, there is a special box (i0, j)with i= î0.
Then if (i, j+1) is in λ(w), it is atop another special box: Suppose not. Then let
the arm and leg length of (i, j) be L. Note that since λ(w) is a Young diagram,
(i−L+1, j+L+1) 6∈ λ(w). Thus there is a smallest integer k such that 1≤ k ≤L

and (i−k+1, j+k+1) 6∈ λ(w). For this k note that (i−k+1, j+1) has equal arm
and leg length equal, no other special boxes are above it (by assumption) and no
boxes to strictly to its right can be special (their leg lengths are strictly longer than
their arm lengths). Hence (i−k+1, j+1) is special, but this is a contradiction.

Now that we know that both (i, j) and (i, j+1) are atop special boxes, hence
T (i, j) and T (i, j+1) are the heights of the boxes (i, j) and (i, j+1) in the drift
configuration D. From this interpretation, it is clear that T (i, j)≤ T (i, j+1).
Case 2: (i, j) is not atop a special box. In this situation, by (3-1),

T (i, j)≤ T (i−1, j+1)+1≤ T (i, j+1).

(ii) This is immediate since different drift configurations will lead to different
initial fillings, of the boxes ( î, j) where (i, j) is a special box.

(iii) First note that ( î, j+1), ( î−1, j+2), ( î−2, j+3), . . . , (1, j+ î) must lie
in λ(w). Otherwise suppose k ∈ Z≥0 is the smallest integer that ( î−k, j+k+1) is
not in λ(w). Since the j-th column does not contain a special box, ( î, j) is not a
corner, so ( î, j+1) must lie in λ(w), and we have k ≥ 1. Since k is the smallest
integer where the failure occurs, ( î−k+1, j+k) must lie in λ(w), and therefore
( î−k, j+k) lies in λ(w). The conclusion that ( î−k, j) is deduced is a similar
manner as in Case 1 of (i).

Now applying (3-1) repeatedly, we have

T ( î, j)≤ T ( î−1, j+1)+1≤ T ( î−2, j+2)+2≤ · · · ≤ T (1, j+ î−1)+ î−1,

and each of the boxes being considered actually lie in λ(w), because of what we
just argued. Since T (1, j+ î−1) = 1 (which holds because (1, j+ î) ∈ λ(w) so
(3-1) is assigned using the boundary value T (0, j+ î)= 0), we have T ( î, j) ≤ î ,
which forces by the fact T is semistandard that T (i, j)= i for 1≤ i ≤ î .
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(iv) The second equality here is just the definition; see (1-1). We establish the
first equality. Consider the j-th column of λ(w).

Case 1: this column contains a special box (i, j). The column contains î boxes
and so each of the numbers 1, 2, . . . , î+d appears exactly once in this column of
sat(T ), by the definition of sat and 9. Hence the number of extra entries of sat(T )
in column j is equal to ( î+d)− î = d , which is the same as the distance moved
by the continent of (i, j).

Case 2: the column contains no special box. By (iii), there are no extra entries in
this column.

Summing up the number of extra entries in each column j of sat(T ), we conclude
that ex(sat(T )) is equal to wt(D), as desired. �

Therefore,

Pv,w(q)=
∑

D∈drift(v,w)

qwt(D)
=

∑
D∈drift(v,w)

qdepth(9(D))
�

∑
T∈SSYT(λ(w),b)

qdepth(T )
=Hv,w(q).

Here the first equality holds by Theorem 1.4(I), the second equality is by (iv), the
“�” is by (ii), and the final equality is by Theorem 1.7.

It remains to prove that

deg Hv,w(q)= deg Pv,w(q).

Since we have already proved that Pv,w(q)�Hv,w(q)which implies deg Pv,w(q)≤
deg Hv,w(q), we need only to prove that deg Hv,w(q)≤ deg Pv,w(q). To do so, we
will need the following lemma.

Lemma 3.3. An element T ∈ SSYT(λ(w), b) is in the image of 9 : drift(v,w)→
SSYT(λ(w), b) if and only if both of the following conditions are true:

(a) For any box (i, j) that is not equal to ( î ′, j) for a special box (i ′, j), (3-1)
holds under the convention (3-2).

(b) If (i, j) and (i ′, j ′) are any two special boxes with (i, j) weakly southwest of
(i ′, j ′), then

T ( î, j)− î ≤ T ( î ′, j ′)− î ′.

Proof. Let D∈ drift(v,w). We show that 9(D) satisfies (a) and (b). The condition
(a) holds by the definition of 9. The condition (b) follows since T ( î, j)− î equals
the distance drifted by the continent containing (i, j), T ( î ′, j ′) − î ′ equals the
distance drifted by the continent containing (i ′, j ′), and the continent associated to
(i, j) cannot move further northeast than the continent associated to (i ′, j ′).

Conversely, we now show that every T ∈ SSYT(λ(w), b) satisfying (a) and
(b) is in the image of 9. Consider the (putative) drift configuration D defined as
follows. To each continent of D associated to a special box (i, j), shift it northeast
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by T ( î, j)− î units. We first prove that each continent fits inside B(v,w): Consider
the continent with special box (i, j). If part of the continent is shifted out of the
boundary B(v,w), then by (b) there is some northeast corner of λ(w) (i.e., a 1×1
continent) that has been pushed out of B(v,w) by that part of the continent. Hence
the corresponding T is not in SSYT(λ(w), b), a contradiction.

Now, condition (b) guarantees that D can in fact be obtained without continents
overlapping. Hence D ∈ drift(v,w). Finally, by (a), we have 9(D)= T . �

Given T ∈ SSYT(λ(w), b), consider this condition:

Some box (i, j) in λ(w) is not a northeast
corner and is such that (3-1) does not hold.

(3-3)

Suppose (3-3) holds for T = T0. Suppose also that (i, j) is chosen such that j is
smallest, with ties broken by taking i smallest.

A brief outline of the remainder of the proof follows. Starting from T0, we
construct a sequence T1, T2, . . . ∈ SSYT(λ(w), b) with increasing depth until we
arrive at a Tk that fails (3-3). This Tk is proved to be in the image of 9. Then we
show that D := 9−1(Tk) ∈ drift(v,w) satisfies wt(D) ≥ depth(T0). From this the
result follows; see (3-8).

So let T1 ∈ SSYT(λ(w), b) be the augmentation of T0 obtained by setting

T1(i, j)=min{T0(i+1, j)− 1, T0(i−1, j+1)+ 1} (3-4)

and letting all other entries in T1 be the same as in T0.
Now we show that T1 ∈ SSYT(λ(w), b). To do this, we need to check the

semistandardness conditions

T1(i, j−1)≤ T1(i, j)≤ T1(i, j+1), (3-5)

T1(i−1, j) < T1(i, j) < T1(i+1, j). (3-6)

We first check (3-5). The second inequality is trivial from (3-4). For the first
inequality, we have

T0(i, j−1)≤ T0(i+1, j−1)− 1≤ T0(i+1, j)− 1,

T0(i, j−1)≤ T0(i−1, j)+ 1≤ T0(i−1, j+1)+ 1.

(The second of those lines uses the minimality of our choice of (i, j).) Hence

T1(i, j−1)= T0(i, j−1)≤min
{
T0(i+1, j)− 1, T0(i−1, j+1)+ 1

}
= T1(i, j).

Similarly for (3-6): the second inequality is trivial from (3-4), whereas for the first
inequality, we have

T0(i−1, j) < T0(i, j)≤ T0(i+1, j)− 1,

T0(i−1, j)≤ T0(i−1, j+1) < T0(i−1, j+1)+ 1,
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and hence

T1(i−1, j)= T0(i−1, j) <min
{
T0(i+1, j)− 1, T0(i−1, j+1)+ 1

}
= T1(i, j).

Next, we claim that
depth(T1)≥ depth(T0).

The difference in depth between T1 and T0 can only be blamed on the boxes in
positions (i, j), (i, j+1) and (i+1, j). Without loss of generality, let us assume
that each of the latter two boxes actually lie in λ(w) (at least one of (i, j+1) or
(i+1, j) is in λ(w) since (i, j) is assumed to not be a northeast corner; analyzing
the resulting cases is similar and easier). Taking this into account leads to

depth(T1)− depth(T0)=

T1(i, j)−T0(i, j)+min
{
T1(i, j+1)−T1(i, j), T1(i, j+1)−T1(i−1, j+1)−1

}
−min

{
T0(i, j+1)−T0(i, j), T0(i, j+1)−T0(i−1, j+1)−1

}
+min

{
T1(i+1, j)−T1(i+1, j−1), T1(i+1, j)−T1(i, j)−1

}
−min

{
T0(i+1, j)−T0(i+1, j−1), T0(i+1, j)−T0(i, j)−1

}
.

Recall that T0 and T1 coincide outside of (i, j). For simplicity, set

y := Tr (i+1, j), z := Tr (i, j+1), u := Tr (i+1, j−1), v := Tr (i−1, j+1),

for r = 0, 1. Also let

x := T0(i, j), x ′ := T1(i, j)=min(y−1, v+1).

Using min(a, b)= 1
2(a+b−|a−b|), this gives

depth(T1)− depth(T0)

= x ′−x +min(z−x ′, z−v−1)−min(z−x, z−v−1)

+min(y−x ′−1, y−u)−min(y−x−1, y−u)

= x ′−x + 1
2(2z−x ′−v−1−|x ′−v−1|)− 1

2(2z−x−v−1−|x−v−1|)

+
1
2(2y−x ′−u−1−|x ′−u+1|)− 1

2(2y−x−u−1−|x−u+1|)

=
1
2

(
(|x−u+1|+|x−v−1|)− (|x ′−u+1|+|x ′−v−1|)

)
=

1
2

(
f (x)− f (x ′)

)
,

where
f (a) := |a−u+1|+|a−v−1|.

It is elementary that f (a) takes the minimal value throughout the (real) interval

[min(v+1, u−1), max(v+1, u−1)].
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Notice that x ′ is in this interval: x ′ ≥ min(v+1, u−1) since y ≥ u. On the other
hand, x ′ ≤ v+1 ≤ max(v+1, u−1). Since f attains its minimum at x ′, we have
f (x)− f (x ′)≥ 0, so depth(T1)≥ depth(T0) as required.

Repeating this procedure so long as the undesirable property (3-3) still holds,
we obtain successively T0, T1, T2, T3, . . . . We claim that after a finite number of
iterations (3-3) finally fails for some Tk , k ≥ 0. To see this, let the vector

u(T )= (u1, u2, . . . , u|λ(w)|)

measure how far T ∈ SSYT(λ(w), b) is from failing (3-3): Order the boxes in
λ(w) from left to right, and in each column from bottom up. For example, in
Example 1.6, the order is

3 6 9

2 5 8 11

1 4 7 10

For each 1 ≤ i ≤ |λ(w)|, define ui to be 0 if the i-th box is a northeast corner or
if (3-1) holds; otherwise let ui = 1. Then u(T )= (0, 0, . . . , 0) means that we are
in the good case that (3-3) fails. We define a pure reverse lex order on {0, 1}|λ(w)|:
given u, u′ ∈ {0, 1}|λ(w)|, we say that u > u′ if

u|λ(w)| = u′
|λ(w)|, u|λ(w)|−1 = u′

|λ(w)|−1, . . . , ui+1 = u′i+1, ui > u′i ,

for some i . It is straightforward to check that u(Tt) > u(Tt+1) at each step t , so
the procedure must eventually terminate, say at step k, with u(Tk)= (0, 0, . . . , 0),
as desired.

Let T = Tk be the output of the procedure above. We want to apply Lemma 3.3
to conclude that Tk(i, j) is in the image of 9. We must verify conditions (a) and
(b) of the lemma.

Since (3-3) fails, every box that is not a northeast corner has (3-1) holding. In
particular, this includes every box described by (a), and so (a) holds.

To check (b), let L := î−i be the leg length of (i, j). Since (i, j) is special, L=

|arm(i, j)|; moreover, we can apply the argument in the proof of Lemma 3.2(iii)
to the subset of the Young diagram λ(w) consisting of those boxes strictly above
row i and weakly to the right of column j , and conclude that the following boxes
lie in λ(w):

( î, j+1), ( î−1, j+2), . . . , ( î−L+1, j+L).

In particular, the boxes

( î, j), ( î−1, j+1), ( î−2, j+2), . . . , ( î−L, j+L)
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are not the northeast corners of λ(w); hence (3-1) holds for them by the construc-
tion of T = Tk . By (3-1), we have

T ( î−m, j+m)≥ T ( î, j)− m, for m = 0, 1, . . . ,L. (3-7)

Since ( î ′, j ′) is to the right of ( î ′, j+( î− î ′)), we have

T ( î ′, j ′)≥ T ( î ′, j+( î− î ′))= T ( î−( î− î ′), j+( î− î ′))≥ T ( î, j)− ( î− î ′),

where the last inequality holds because of (3-7) for m = î− î ′, and since the hy-
pothesis that (i, j) is weakly southwest of (i ′, j ′) implies î− î ′ ≤ L−1. Thus,

T ( î, j)− î ≤ T ( î ′, j ′)− î ′.

Therefore condition (b) holds.
Concluding, there exists D ∈ drift(v,w) such that 9(D) = Tk and wt(D) =

depth(Tk). Then

wt(D)= depth(Tk)≥ depth(Tk−1)≥ · · · ≥ depth(T0) (3-8)

and so deg Pv,w(q)≥ deg Hv,w(q), as was to be shown. �

4. A ball of drift configurations

Construction of KLv,w. In order to emphasize the combinatorial relations of drift
configurations to Young tableaux, consider an equivalent formulation of drift con-
figurations: A semistandard (ordinary) drift tableau T bijectively associated to D

is a filling of each continent C of Pangaea(v,w) by the distance C has moved from
Pangaea(v,w).

Similarly, a set-valued drift tableau is a filling of each continent by some non-
empty set of nonnegative integers; it is semistandard if any ordinary drift tableau
it contains (in the obvious sense) is semistandard. It is limit semistandard if it
contains at least one semistandard (ordinary) drift tableau. The empty-face drift
tableau Ev,w is the set-valued drift tableau that is the union of all semistandard
ordinary ones.

Define KLv,w to be the simplicial complex whose faces are indexed by limit
semistandard drift tableau and where face containment is by reverse containment of
drift tableau. In particular, the vertices are labeled by limit semistandard tableaux
(b 6 7→ y) obtained by removing precisely one entry y from a set Ev,w(b) of the
box b ∈ λ(w), provided |Ev,w(b)| > 1. (It will be convenient to also consider
phantom vertices which are those (b 6 7→ y) where |Ev,w(b)| = 1; these become
honest vertices after coning over KLv,w.)

This gives an example of a tableau complex in the sense of [Knutson et al. 2008].
We illustrate the case discussed in Example 1.6, showing the interior faces of the
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2-dimensional complex KL23465178910,10954382761:

The claims in Theorem 1.4 about the structure of KLv,w then follow immediately
from [Knutson et al. 2008, Theorem 2.8]. We conclude that the interior faces
of KLv,w are labeled by semistandard set-valued drift tableaux while the exterior
faces are labeled by nonsemistandard but limit semistandard tableaux. Also the
codimension of a face D is |D| − #continents, the number of “extra” entries of D.

K-polynomials of KLv,w. Let us take this opportunity to formalize a connection
between the K -polynomials of KLv,w and Pv,w(q). We will utilize facts collected
about general tableau complexes from [Knutson et al. 2008, Section 4]. Let V be
the set of vertices of a simplicial complex1 and set R=k[1] to be the polynomial
ring in variables xv for v ∈ V . This is the ambient ring for the Stanley–Reisner
ideal I1=

〈∏
v∈F xv : F is not a face of 1

〉
of1, and R/I1 is the Stanley–Reisner

ring. We use the alphabet tv = {tv : v ∈ V } for the finely graded Hilbert series
Hilb(R/I1; t) and K -polynomials K(R/I1, t).

Let us define a family of polynomials for v ≤ w, where w is covexillary. We
will see this is a hybrid of the K -polynomial of KLv,w and the Kazhdan–Lusztig
polynomial Pv,w(q):

Pv,w(β; t)=
∑

D∈SVDT(v,w)

β |D|−#continents(v,w)
∏

b∈λ(w)

∏
y∈D(b)

(1− t(b 6 7→y)), (4-1)

where SVDT(v,w) is the set of set-valued drift tableaux associated to drift con-
figurations in drift(v,w), |D| is the number of entries in D, and #continents(v,w)
is the number of continents in Pangaea(v,w). There are a number of interesting
specializations of this polynomial. Here we do not assume |Ev,w(b)| > 1, i.e.,
(b 6 7→ y) might be a phantom vertex.

By the ballness/sphereness claim of KLv,w from Theorem 1.4, together with
[Knutson et al. 2008, Theorem 4.3], it follows that
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Pv,w(−1; t)= K(R/IKLv,w; t). (4-2)

One can consider a vertex decomposition of any complex 1 at a vertex v. This
is given by 1 = delv(1) ∪ starv(1), where delv(1) = {F ∈ 1 : v 6∈ F} is the
deletion of v and starv(1)= {F ∈1 : F ∪{v} ∈1} is the star of v. Automatically
one has, for v= (b 6 7→ y),

K(R/IKLv,w ; t)
= t(b 6 7→y)K(R/Idel(b 6 7→y)(KLv,w); t)+ (1− t(b 6 7→y))K(R/Istar(b 6 7→y)(KLv,w); t). (4-3)

By tracing the specializations below, one should eventually interpret recursions
from [Lascoux and Schützenberger 1981] for Pv,w(q) using (4-3) and thus vertex
decompositions of KLv,w. We do not pursue this here.

Consider

Pv,w(−1; t(b 6 7→y) 7→ 1− xy)=
∑

D∈SVDT(v,w)

(−1)|D|−#continents(v,w)xD, (4-4)

where
xD
=

∏
i≥0

x#i’s appearing in D

i .

Another specialization is given by

Pv,w(0; t(b 6 7→y) 7→ 1− xy)=
∑

D∈SSDT(v,w)

xD, (4-5)

where SSDT(v,w) is the set of ordinary, semistandard drift tableau associated to
v,w. (In setting β = 0 we take the convention that 00

= 1 in (4-1).)
Finally, by considering the principal specialization of (4-5) we have

Pv,w(0; t(b 6 7→y) 7→ 1− q y)= Pv,w(q).

5. The proof of Theorem 1.4(I)

Proof that Qv,w(q) = Pv,w(q). We give a weight-preserving bijection between
drift(v,w) and the trees weight-enumerated by Lascoux’s rule [1995] for Pv,w(q).
We mostly follow the presentation of his rule found in [Billey and Lakshmibai
2000, 6.3.29].

Given D∈ drift(v,w), construct a rooted, edge-labeled tree T as follows. Asso-
ciate to each continent C a non-root vertex of T. Moreover if the special box b of C
is southwest of the special box b′ of an adjacent continent C ′, then we draw an edge
between the corresponding vertices. If there is no special box strictly southwest of
b, then the corresponding vertex is joined to the root of T.

Thus, each 1×1 continent C ={(h, λ(w)h)} (equivalently, those that come from
northeast corners of λ(w)) corresponds to a leaf p of T. Now we bound the edge
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incident to p by bh − h, where

bh =max{m : B(v,w)m ≥ λ(w)h +m− h}.

Let DL(T) be the set of all edge labelings of T by nonnegative integers such that
the labels weakly increase from root to leaf. For any edge labeled tree G let |G| be
the sum of the edge labels of G.

As an example, here are the edge-labeled trees for the drift configurations in
Example 1.6. (The framed number below each leaf is the bound for that leaf.)

Lemma 5.1. There is a bijection 8 : drift(v,w)→ DL(T) such that

wt(D)= |8(D)|.

Proof. Define 8(D) to be the edge labeling of T such that the edge associated to a
continent C (i.e., the edge whose child end is the vertex associated to C) is labeled
by the distance that C has drifted in D. That the labels are weakly increasing in
8(D) is implied by the condition that the continents do not overlap in D. Note
that if C is a 1× 1 continent then bh − h is the largest distance that C can drift
inside B(v,w); this accounts for the leaf bound. (For an example, see diagram
immediately above.) It is then easy to check that 8 is the desired bijection. �

Lascoux’s rule constructs a tree T′ as follows: For the partition λ(w), the
parenthesis-word is a word using “(” and “)” and obtained by walking with east
and south steps along the northeast border of λ(w). We record a “(” for each east
step and a “)” for each south step. Now pair left and right parentheses starting from
the closest pairs “( )”. Each pair corresponds to a vertex of the tree; the closest
pairs are associated to leaves and a pair encloses its children. Unpaired parentheses
do not contribute to the tree. This process results in a directed forest. Finally, we
introduce an additional root and attach an edge to the root of each tree in the forest.

Lemma 5.2. There is a graph isomorphism δ : T→ T′. Under this isomorphism,
if v corresponds to a 1× 1 continent associated to a corner c of λ(w), then δ(v)
corresponds to a closest parenthesis pair associated to the same corner c.

Proof. Each leaf of T corresponds to a corner c of λ(w). On the other hand, this
corner gives rise to a closest pair “( )” in Lascoux’s construction, which corre-
sponds to a leaf of T′. Thus we can construct a bijection between the leaves of the
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two trees, which we now argue extends to the bijection δ between the two trees
themselves.

A continent C is a z-continent if it is defined by a z-special box b. Fix a vertex
v ∈ T associated to such a continent. By construction, each child of v is a vertex
{v′} associated to a y-continent C ′ adjacent and northeast of C in Pangaea(v,w),
where y< z. Since b∈C is a special box, by using the fact that |arm(b)| = |leg(b)|
we have that the column b is in corresponds to a “(” and the row b is in corresponds
to a “)”, where these two parentheses are paired with one another in the parenthesis
word. Clearly, this pair gives a vertex v′ ∈T′, and all vertices of T′ arise this way.
That is, there is a bijection at the level of vertices δ : T→ T′. Moreover, that the
children of δ(v) are exactly {δ(v′)} (for children v′ of v) is also immediate from
the constructions of T and T′ �

Lascoux’s rule similarly defines increasing edge labelings EL(T) on T as we
did for DL(T). It remains to check that these labelings are the same as the ones
in DL(T). For this, we only need to show that the bound attached to the leaves
are the same. In [Billey and Lakshmibai 2000, 6.3.29, Step 2], for each given
leaf, a bigrassmannian permutation is determined in three substeps, from which
Lascoux’s leaf bounds are determined. We now explain these steps. (For readers
comparing what follows with that reference, note that Billey and Lakshmibai’s x
is our w̃ = w−1w0, while their w is our ṽ = v−1w0.)

The reader may find the following diagram useful for the description of Las-
coux’s labeling process:

e′

λ(w)

B(v,w)

e= ( j, w̃k)

e′′ =(h, λ(w)h)h
6

?

bh − h
6

?

rve

6

?

rwe

6

?

j

6

?

Substep (1): leaves p of T correspond to distinct numbers in the code of w̃. The
code (c1, . . . , cn) of w̃ is given by

ci = #{ j > i | w̃ j < w̃i } = #{boxes of D(w) in row i}.

Recall λ(w) is the result of sorting this code into decreasing order. A leaf p of
T corresponds to a corner e′′ = (h, λ(w)h) of λ(w). Associate λ(w)h to p. This
λ(w)h is equal to ci for some i . Clearly a different ci is assigned to each p.



620 Li Li and Alexander Yong

Substep (2): λ(w)h gives a crossing of w̃. By definition, a crossing of w̃ is a 4-tuple
(i, j, j + 1, k) satisfying

w̃ j+1 ≤ w̃k < w̃i ≤ w̃ j , w̃i = w̃k + 1 for i ≤ j < k; (5-1)

see [Lascoux and Schützenberger 1996]. Now given the e′′ associated to p, there is
a unique essential box e in D(w) that is diagonally northeast of e′′. We define j and
k by declaring that the coordinates of e are ( j, w̃k). Let i be such that w̃i = w̃k+1.

We claim that (i, j, j + 1, k) forms a crossing. Let us first check the weak
inequalities of w̃ j+1≤ w̃k <w̃i ≤ w̃ j (the strict inequality being true by definition).
For the rightmost inequality, we have w̃ j = w

−1w0( j)= w−1
n− j+1, which in words

is the column position of the • of G(w) that necessarily must be to the right of
e, which itself is in column w̃k . In other words w̃k ≤ w̃ j . Now, for the leftmost
inequality, note w̃ j+1=w

−1w0( j+1)=w−1(n− j) which is the column position
of the • of G(w) in row j+1. Since e is an essential box, that • must be weakly to
the left, i.e., w̃ j+1 ≤ w̃k , as desired. It remains to check i ≤ j and j < k. For the
former inequality, we compute ww̃i = n − i + 1 which is the row position of the
• of G(w) in column w̃i . Since e is an essential box, the • is weakly below the e,
i.e., i ≤ j . Similarly, for the latter inequality, we consider ww̃k = n−k+1, which
is the position of the • of G(w) in column w̃k . This must be strictly above the e,
i.e., j < k.

Now associate the crossing (i, j, j + 1, k) to p (and hence λ(w)h). Actually,
the description in [Billey and Lakshmibai 2000] gives a different way to assign a
crossing to p. However, it is straightforward to check that their crossing is same
as the one described above.

Substep (3): each crossing gives a maximal bigrassmannian [a, b, c, d] below w̃.
Here [a, b, c, d] denotes

(1, . . . , a, a+ c+ 1, . . . , a+ c+ b, a+ 1, . . . , a+ c,

a+ c+ b+ 1, . . . , a+ b+ c+ d) ∈ Sn.

Lascoux’s rule associates to (i, j, j + 1, k) a maximal bigrassmannian

[z, j − z, w̃k − z, n− w̃k − j + z],

where
z = #{p < j : w̃p < w̃k}.

Notice that z is the number of •’s in G(w) weakly southwest of e= ( j, w̃k), i.e.,

z = rwe . (5-2)

This concludes substep (3) of step 2 of [Billey and Lakshmibai 2000].
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Lascoux’s rule then assigns to p the leaf bound

distance([z, j − z, w̃k − z, n− w̃k − j + z], ṽ),

where

distance([a, b, c, d], ṽ)=max{r ≥ 0|[a− r, b+ r, c+ r, d − r ] ≤ ṽ },

and where “≤” refers to Bruhat order on Sn . This completes the description of
Lascoux’s algorithm.

Recall that rv(a+b,a+c) equals the number of dots of G(v) weakly southwest of
(a+b, a+c). The proof of the following fact is straightforward to argue (and also
follows from the deeper developments in [Lascoux and Schützenberger 1996]):

Lemma 5.3. For any bigrassmannian permutation [a, b, c, d] and permutation ṽ
in Sn , the inequality [a, b, c, d] ≤ ṽ is equivalent to rv(a+b,a+c) ≤ a, where v =
w0ṽ

−1. �

Proposition 5.4. The leaf bounds on DL(T) and EL(T) are the same.

Proof. By Lemma 5.3,

[z− r, j − z+ r, w̃k − z+ r, n− w̃k − j + z− r ] ≤ ṽ ⇐⇒

rv(z−r)+( j−z+r),(z−r)+(w̃k−z+r) ≤ z− r ⇐⇒

rv( j,w̃k)
≤ z− r ⇐⇒

rve ≤ z− r.

(5-3)

Hence, the maximal r such that any of the inequalities (5-3) hold is

r = z− rve = rwe − rve ,

where we have used (5-2).
In terms of drift configurations, r is the largest distance that a corner e′′ =

(h, λ(w)h) can be moved diagonally northeast and remain in B(v,w) (see [Li and
Yong 2011, Lemma 5.7]). By the definition of B(v,w), bh = j−rve . It is also easy
to check that j = h+ rwe (again by the same lemma). Then

bh − h = j − rve − h = ( j − h)− rve = rwe − rve = r.

This completes the proof of the proposition. �

By Lascoux’s rule,

Pw0ṽ,w0w̃(q)(= Pw0v−1w0,w0w−1w0(q)= Pv,w(q))=
∑

q |T |,

where the sum is over EL(T ) and |T | is the total sum of the edge labels. Since
we have established the desired weight-preserving bijection, the claim Qv,q(q) =
Pv,w(q) then follows.
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Remark 5.5. There are two basic symmetries of Kazhdan–Lusztig polynomials:
Pv,w(q)= Pw0v−1w0,w0w−1w0(q) and Pv,w(q)= Pv−1,w−1(q). The first symmetry is
manifest in our rule and drift(w0v

−1w0, w0w
−1w0) is obtained by transposing the

drift configurations of drift(v,w). For the second, it is an exercise to prove that
λ(w)= λ(w−1) and B(v,w)= B(v−1, w−1), so drift(v−1, w−1)= drift(v,w).

Remark 5.6. From Theorem 1.4(I) it is not hard to show the following. Forw, v ∈
Sn where w is covexillary and v≤w, let k be the number of special boxes of λ(w)
and let m=b n−k+1

2 c. If [m]q = 1+q+· · ·+qm−1, then [q i
]Pv,w(q)≤ [q i

]([m]q)k

for all i . In particular, Pv,w(1)≤ mk .

6. Another q-analogue of multiplicity

We can think of Hv,w(q) as a q-analogue of Hilbert–Samuel multiplicity, in the
sense that Hv,w(1) = multev (Xw). Let us point out that in the covexillary setting,
there is another q-analogue available. As in Theorem 1.4(II), regard each box of
λ(w) as a separate country; the “drift configurations” are precisely the pipe dreams
P ∈ Pipes(v,w) in [Li and Yong 2011]. Now let

w̃t(P)= qd ,

where d is the total of the distance drifted by the countries, and set

H̃v,w(q)=
∑

P∈Pipes(v,w)

w̃t(P).

In the following theorem we use the standard q-notation:

[a]q = 1+ q + · · ·+ qa−1 and
(

a
b

)
q
=
[a]q [a− 1]q · · · [a− b+ 1]q

[b]q · · · [1]q
.

Theorem 6.1. H̃v,w(q)= q−
∑

i≥1(i−1)λi det

((
bi+λi−i+ j−1

λi−i+ j

)
q

)
1≤i, j≤`(λ)

,

where `(λ) is the number of nonzero parts of λ and b= b(2v,w).

Proof. For brevity, we refer the reader to the setup of [Li and Yong 2011, Sec-
tions 5.2 and 6.2]. Notice that

sλ,b(1, q, q2, q3, . . .)= det

((
bi+λi−i+ j−1

λi−i+ j

)
q

)
1≤i, j≤`(λ)

where the left-hand side of the equality is the principal specialization of the (single)
flagged Schur polynomial for shape λ(w) with flag b= b(2v,w).
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Given a pipe dream P ∈ Pipes(v,w) that corresponds to a flagged semistandard
Young tableau T , write

wtx(P) := wtx(T )

to mean the usual multivariate weight assigned to T (that is, the one such that
sλ,b(x1, x2, x3, . . .) =

∑
T wtx(T )). Let wt′q(P) be the principal specialization of

wtx(P) given by xi 7→ q i−1 and finally set

wtq(P)= q−
∑

i≥1(i−1)λi×wt′q(P).

It remains to show that wtq(P)= w̃t(P) for each P . To do this, let us induct on
w̃t(P)≥ 0. The base case that w̃t(P)= 0, i.e., where P is the starting configuration
holds since wt′q(P)= q

∑
i≥1(i−1)λi .

Now suppose w̃t(P) > 0. Then there is a P ′ such that a move of the form

· ·

+ ·
7→

· +

· ·

in some 2×2 subsquare of [n]×[n] brought us to P (and no other + in P ′ has
changed). Thus, we can compare wtx(P ′) and wtx(P): the latter only differs from
the former in that some factor of xi changed to xi+1 (where i and i+1 are the rows
changed by the move above). Hence applying induction we have

wtq(P)= wtq(P ′)×q = w̃t(P ′)×q = w̃t(P),

as desired. �

It is clear from Theorem 1.4 that

Pv,w(q)� H̃v,w(q).

With the same proof that we used for Hv,w(q), one shows that H̃v,w(q) is upper
semicontinuous. However, in general H̃v,w(q) 6= Hv,w(q). Moreover, we do not
know any algebraic/geometric measure for general Schubert varieties that special-
izes to H̃v,w(q).

7. Concluding remarks

We are presently unaware of any geometric proof of the inequality of Theorem 1.2.
For general Y , let us assume, for simplicity of our discussion, that all odd local
intersection cohomology groups vanish, and set

Pp,Y (q)=
∑
i≥0

dim(H2i
p (Y ))q

i .

Question 7.1. Under what assumptions is either the inequality Pp,Y (q)� Hp,Y (q)
and/or the weaker inequality Pp,Y (1)≤ Hp,Y (1)(=multp(Y )) true?
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Our results on Hv,w(q) are based on the degeneration, flat over Spec(Z), given
in [Li and Yong 2011]. Hence Theorem 1.7 is valid over a field k of arbitrary
characteristic and Conjecture 1.1 seems similarly valid. However, the arguments of
[Li and Yong 2011] also prove that the projectivized tangent cones of the Kazhdan–
Lusztig varieties Nv,w are isomorphic to those for Nid,2v,w . It is then not hard to
construct some cograssmannian v′, w′ with the same property. We do not know
if Nv,w and any such Nv′,w′ are actually isomorphic, although a number of useful
implications would be a consequence of this fact.

A number of formulae have been obtained for Pv,w(q). For example, general,
nonpositive formulae have been obtained in [Billera and Brenti 2011] and [Brenti
1998]. Beyond the covexillary case, few positive formulae are known; see, e.g.,
[Billey and Warrington 2001] (which treats the 321-hexagon avoiding case) and
the references therein. It would be interesting to try to extend our main theorems
to these other contexts as well.

Finally, we believe many of the ideas of this paper can be extended to other Lie
groups. In particular, we expect Theorems 1.2, 1.4 and 1.7 to have analogues for
(co)minuscule G/P; cf. [Boe 1988]. However, this requires sufficient technicalities
that it is better left to a separate treatment.
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567Mutation classes of Ãn-quivers and derived equivalence classification of cluster tilted
algebras of type Ãn
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