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We prove vanishing of the higher direct images of the structure (and the canon-
ical) sheaf for a proper birational morphism with source a smooth variety and
target the quotient of a smooth variety by a finite group of order prime to the
characteristic of the ground field. We also show that for smooth projective vari-
eties the cohomology of the structure sheaf is a birational invariant. These results
are well known in characteristic zero.
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Introduction

In characteristic zero it is a well-known and frequently used fact that the higher
direct images Ri f∗OX of a projective birational morphism f : X −→ Y between
smooth schemes vanish for i > 0. This statement was proved as a corollary of
Hironaka’s resolution of singularities by resolving the indeterminacies of f −1 by
successively blowing up smooth subvarieties of Y . In this article we consider the
situation over an arbitrary field k and prove this and related results.

In the following all schemes are assumed to be separated and of finite type
over k, and all morphisms are assumed to be k-morphisms. The two main results
of this paper are as follows.
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Theorem 1. Assume k is perfect. Let S be an arbitrary scheme and let X and
Y be integral S-schemes. Assume that X and Y are smooth over k and properly
birational over S, that is, there exists an integral scheme Z and a commutative
diagram

Z
τX

~~
τY

��
X

f   

Y

g��
S

such that τX and τY are proper and birational ( f and g being the fixed morphisms
to S). Then for all i , there are isomorphisms of OS-modules

Ri f∗OX ∼= Ri g∗OY and Ri f∗ωX ∼= Ri g∗ωY .

Theorem 2. Consider a diagram
Y

f
��

X̃ π // X,

where Y and X̃ are connected smooth schemes, X is integral and normal, f is
surjective and finite such that deg( f )∈ k∗, and π is birational and proper. Then X
is Cohen–Macaulay and

Rπ∗OX̃ = OX and Rπ∗ωX̃ = ωX ,

where ωX is the dualizing sheaf of X.

By duality, the two identities in Theorem 2 imply each other.
Both theorems are known in characteristic zero: Theorem 1 follows from Hiro-

naka’s resolution of singularities; for Theorem 2, see [Viehweg 1977] (which also
uses resolution of singularities). If resolution of singularities is available in positive
characteristic then it easily yields Theorem 1.

Recall from [Kempf et al. 1973, I, Section 3, page 50] that a rational resolution of
an integral normal scheme X is a resolution (that is, a proper birational morphism
g : X̃ −→ X with X̃ smooth) that satisfies Ri g∗(OX̃ )= 0= Ri g∗(ωX̃ ) for all i > 0.
Thus Theorem 1 implies that if an integral normal scheme over a perfect field has a
rational resolution, then any resolution of X is a rational resolution. For a smooth
scheme X we obtain Ri g∗(OX̃ ) = 0 = Ri g∗(ωX̃ ) for i > 0 and any resolution g
(Corollary 3.2.10). Theorem 2 asserts that π : X̃ −→ X is a rational resolution; this
includes the important special case where X is the quotient of Y by a finite group
of order prime to the characteristic of k.

Since resolution of singularities is not yet available in positive characteristic, we
develop a different approach based on algebraic correspondences. To get an idea
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of the methods involved, let us sketch the proof of Theorem 1 for S = Spec k and
X and Y projective (see Section 3 for the details and a rigorous proof).

For a scheme X we write H(X)=
⊕

i, j H i (X, � j
X ) and CH(X)=

⊕
i CHi (X),

with CHi (X) the Chow group of codimension i cycles on X . Given smooth pro-
jective schemes X, Y, Z , there is a composition of correspondences:

CH(X × Y )⊗Z CH(Y × Z)→ CH(X × Z),

H(X × Y )⊗k H(Y × Z)→ H(X × Z).

Moreover a ∈ CH(X × Y ) and ∈ H(X × Y ) define maps on the cohomologies
CH(X)−→ CH(Y ) and H(X)−→ H(Y ), respectively, by c 7→ pr2∗(pr∗1(c)∪a), and
composition of correspondences corresponds to the composition of maps. Further-
more, there is a cycle map cl : CH→ H , which is compatible with composition.

Now, the proof proceeds as follows. By assumption there exists a closed integral
subscheme Z ⊂ X × Y projecting birational to X and Y . Let Z ′ ⊂ Y × X be its
transpose. By using the refined intersection product of Fulton we will see that

[Z ′] ◦ [Z ] = idX +E in CH
(
pr13((Z × X)∩ (X × Z ′))

)
,

with E a cycle on X × X that projects on both sides to subsets of codimension at
least one in X . We will show that the map defined by cl(E) ∈ H(X × X) acts as
zero on H∗(X,OX )⊕H∗(X, ωX ). A similar argument applies for [Z ] ◦ [Z ′]. Thus
the maps defined by cl([Z ]) and cl([Z ′]) are inverse to each other (when restricted
to H∗(X,OX )⊕ H∗(X, ωX )). This proves Theorem 1 in the case S = Spec k and
X and Y projective.

It is not hard to deduce the general statement of Theorem 1 once we know it
in the case S = Spec k. Therefore we have to generalize the argument above to
the case of smooth but not necessarily proper k-schemes. The problem is that in
general a push-forward on CH or H does not exist. However, the variety Z ⊂ X×Y
is proper over X and Y , and by working with cohomology (or Chow groups) with
support we can conclude as outlined above.

One of the main points in this paper is the construction of a cycle map, or
natural transformation between cohomology theories with support, CH−→ H. For
this, we first give a definition for (weak) cohomology theories with support. We
introduce two categories V ∗ and V∗. The objects in both categories are (X,8),
where X is smooth and8 is a family of supports on X (see Definition 1.1.1 for the
definition of a family with supports). A morphism f : X→ Y induces a morphism
(X,8)→ (Y, 9) in V∗ if and only if f |8 is proper and f (8) ⊂ 9; f induces a
morphism in V ∗ if and only if f −1(9)⊂8.

Then we consider the data (F∗, F∗, T, e), where

F∗ : V∗→GrAb and F∗ : (V ∗)op
→GrAb,
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are functors to graded abelian groups with F∗(X,8) = F∗(X,8) =: F(X,8) as
abelian groups, T gives for all (X,8) and (Y, 9) a morphism of abelian groups

T(X,8),(Y,9) : F(X,8)⊗Z F(Y, 9)→ F(X × Y,8×9),

and e : Z→ F(Spec k) is a morphism of abelian groups.
These data define a weak cohomology theory with support if the following con-

ditions are satisfied.

(1) The map T is functorial for F∗ and F∗.

(2) For all diagrams
(X ′,8′)

f ′ //

gX

��

(Y ′, 9 ′)

gY

��
(X,8)

f // (Y, 9),

in which the underlying diagram of schemes is cartesian and transversal, with
gX , gY ∈ V ∗ and f, f ′ ∈ V∗, we have

F∗(gY ) ◦ F∗( f )= F∗( f ′) ◦ F∗(gX ).

(3) Some more (very natural) conditions.

The conditions allow us to obtain a calculus with correspondences. One key ex-
ample of a weak cohomology theory with supports is the Chow group

CH(X,8) := lim
−→

W∈8

CH(W ),

with CH∗ the (proper) push forward for cycles and CH∗ the refined Gysin homo-
morphism. Another example is the Hodge cohomology

H(X,8) :=
⊕
i, j

H i
8(X, �

j
X ).

Here, the definition of H∗ is straightforward, but for H∗ we use Grothendieck
duality for singular schemes since smooth compactifications are not available in
characteristic p. That the Hodge cohomology defines a (weak) cohomology theory
with supports is a nontrivial fact, the proof of which occupies Section 2.

In Theorem 1.2.3 we give necessary and sufficient conditions for a (weak)
cohomology theory with supports F to be target of a morphism from CH. Un-
fortunately, we can do this only with an additional semipurity assumption on F
(see Definition 1.2.1). As an application we prove the existence of a cycle map
CH −→ H . We hope that Theorem 1.2.3 will turn out to be useful for proving
similar results for the Witt vector cohomology.

Let us give a short overview of the content of each section.



Higher direct images of the structure sheaf 697

In Section 1 we define weak cohomology theories with supports and prove basic
properties. We show that CH is an example and prove Theorem 1.2.3. Moreover,
we explain the calculus of correspondences attached to a cohomology theory.

In Section 2 we show that the Hodge cohomology is another example for a
cohomology theory with supports. The hard part is the definition of push-forward
maps. We use Grothendieck’s duality theory for singular schemes as developed in
[Hartshorne 1966; Conrad 2000], and make extensive use of the results given in
these references. There are also other approaches to duality theory that are more
elegant (see for example [Lipman and Hashimoto 2009]). But since we use at sev-
eral places the explicit description of duality theory as developed by Grothendieck
and since it is not clear to the authors how this classical approach compares to the
one, for example, in [Lipman and Hashimoto 2009], we will solely stick to the
references [Hartshorne 1966; Conrad 2000].

In Section 3 we show the existence of a cycle map CH −→ H . We also prove a
vanishing statement Proposition 3.2.2, enabling us to prove Theorem 1 and 2.

In Section 4 we generalize Theorem 1 to the case where X and Y are tame
quotients (see Theorem 4.3.1). This theorem also implies Theorem 2.

We finish with some open questions.
In the appendix we describe the trace morphism for closed embeddings between

smooth schemes and for finite and surjective morphisms between smooth schemes;
this is well known but needed in Section 2.

1. Chow groups with support

1.1. Cohomology theories with support. Let k be a field. We assume all schemes
are of finite type and separated over k. We begin by recalling basic definitions and
notation concerning families of supports.

Definition 1.1.1. A family of supports8 on X is a nonempty set of closed subsets
of X such that the following holds:

(i) The union of two elements in 8 is contained in 8.

(ii) Every closed subset of an element in 8 is contained in 8.

Let A be any set of closed subsets of X . The smallest family of supports 8A

that contains A is given by

8A :=
{⋃n

i=1 Z ′i ; Z ′i ⊂closed
Zi ∈ A

}
. (1.1.2)

For a closed subset Z ⊂ X we write 8Z for 8{Z}.

Notation 1.1.3. Let f : X −→ Y be a morphism of schemes and let 8 and 9 be
families of supports of X and Y , respectively.
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(1) We denote by f −1(9) the smallest family of supports on X that contains
{ f −1(Z) : Z ∈9}.

(2) We say that f |8 is proper if f |Z is proper for every Z ∈8. If f |8 is proper,
then f (8) is a family of supports on Y .

(3) If81 and82 are two families of supports, then81∩82 is a family of supports.

(4) If 8 and 9 are families of supports of X and Y , respectively, then we denote
by 8×9 the smallest family of supports on X ×k Y that contains

{Z1× Z2; Z1 ∈8, Z2 ∈9}.

When working with cohomology theories with support, it is convenient to define
the following two categories V∗ and V ∗, where for the morphisms in V∗ a “push-
forward” map can be expected and for the morphisms in V ∗ a “pull-back” map can
be expected.

Definition 1.1.4. We denote by V∗ the category with objects (X,8), where X is a
smooth scheme and 8 is a family of supports of X , and morphisms

HomV∗((X,8), (Y, 9))= { f ∈ Homk(X, Y ); f |8 is proper and f (8)⊂9}.

We denote by V ∗ the category with objects (X,8), where X is a smooth scheme
and 8 is a family of supports of X (ob(V∗)= ob(V ∗)), and morphisms

HomV ∗((X,8), (Y, 9))= { f ∈ Homk(X, Y ); f −1(9)⊂8}.

The composition and the identity comes in both cases from the category of
schemes (over k).

1.1.5. Let X be a smooth scheme. For a closed subscheme W ⊂ X we write
(X,W ) := (X,8W ) in V ∗ and V∗, respectively. We simply write X for (X, X).

We respectively have forgetful functors V∗ −→ Schk and V ∗ −→ Schk to the
category of schemes, and we often denote the morphism of schemes induced by a
morphism in V∗ and V ∗, respectively, by the same letter.

For a morphism f in V∗ we will say that f is an immersion, flat, . . . , if the
corresponding morphism of schemes has this property, and similarly for morphisms
in V ∗. We say that a diagram

(X ′,8′)
f ′ //

gX

��

(Y ′, 9 ′)

gY

��
(X,8)

f // (Y, 9)

(1.1.6)

is cartesian if the diagram of the corresponding schemes is cartesian.
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1.1.7. Coproducts and “products”. For both categories V ∗ and V∗, finite coprod-
ucts exist:

(X,8)
∐
(Y, 9)= (X

∐
Y,8∪9).

For (X,8), let X =
∐

i X i be the decomposition into connected components; then

(X,8)=
∐

i

(X i ,8∩8X i ).

In general products don’t exist, and we define

(X,8)⊗ (Y, 9) := (X × Y,8×9),

which together with the unit object 1 = Spec(k) and the obvious isomorphism
(X,8)⊗ (Y, 9)−→ (Y, 9)⊗ (X,8) makes V∗ and V ∗ into a symmetric monoidal
category; see [Mac Lane 1998, VII.1].

1.1.8. Consider the following data (F∗, F∗, T, e):

(1) Two functors F∗ : V∗ −→ GrAb and F∗ : (V ∗)op
−→ GrAb to the symmetric

monoidal category of graded abelian groups, such that F∗(X) = F∗(X) as
ungraded groups for every object X ∈ ob(V∗)= ob(V ∗). We will simply write
F(X) := F∗(X) = F∗(X). We use lower indexes for the grading on F∗(X),
that is, F∗(X)=⊕i Fi (X), and upper indexes for F∗(X).

(2) For every two objects X, Y ∈ ob(V∗)= ob(V ∗), a morphism of graded abelian
groups (for both gradings):

TX,Y : F(X)⊗Z F(Y )−→ F(X ⊗ Y ).

(3) A morphism of abelian groups e : Z−→ F(Spec(k)). For all smooth schemes
π : X −→ Spec(k) we denote by 1X the image of 1 ∈ Z via the map

Z
e
−→ F∗(Spec(k))

F∗(π)
−−−→ F∗(X).

1.1.9. The data (F∗, F∗, T, e) is called a weak cohomology theory with supports
if the following conditions are satisfied:

(1) The functor F∗ preserves coproducts and F∗ maps coproducts to products,
and for (X,81), (X,82) ∈ ob(V∗) with 81 ∩82 = {∅}, the map

F∗(1)+ F∗(2) : F∗(X,81)⊕ F∗(X,82)−→ F∗(X,81 ∪82),

with 1 : (X,81∪82)−→ (X,81) and 2 : (X,81∪82)−→ (X,82) in V ∗, is
an isomorphism.

(2) The data (F∗, T, e) and (F∗, T, e) respectively define a (right-lax) symmetric
monoidal functor (see below).
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(3) Grading: For (X,8) such that X is connected, we have

Fi (X,8)= F2 dim X−i (X,8) for all i .

(4) For all cartesian diagrams (1.1.6) with gX , gY ∈ V ∗ and f, f ′ ∈ V∗ such that
either gY is smooth or gY is a closed immersion and f is transversal to gY ,
we have

F∗(gY ) ◦ F∗( f )= F∗( f ′) ◦ F∗(gX ).

Recall that f is transversal to gY if ( f ′)∗NY ′/Y = NX ′/X , where N denotes the
normal bundle. The case X ′=∅ is also admissible; in this case the equality 1.1.9(4)
reads F∗(gY ) ◦ F∗( f ) = 0. The condition 1.1.9(4) implies the projection formula
(see Proposition 1.1.16) and will be needed for a calculus with correspondences.

Recall that (F∗, T, e) is called a right-lax symmetric monoidal functor if

• T is associative, that is, for X, Y, Z ∈ ob(V∗), the diagram

F(X)⊗ F(Y )⊗ F(Z)
id⊗T //

T⊗id
��

F(X)⊗ F(Y ⊗ Z)

T
��

F(X ⊗ Y )⊗ F(Z) T // F(X ⊗ Y ⊗ Z)

is commutative;

• T is commutative, that is, for X, Y ∈ ob(V∗), the diagram

F(X)⊗ F(Y ) T //

��

F(X ⊗ Y )

��
F(Y )⊗ F(X) T // F(Y ⊗ X)

is commutative. Here, for two graded abelian groups A and B, the morphism
A⊗ B −→ B⊗ A maps a⊗ b 7→ (−1)deg(a) deg(b)b⊗ a;

• the map e : Z−→ F(Spec(k)) renders commutative the diagrams

F(X)⊗Z Z
id⊗e //

=
))

F(X)⊗ F(Spec(k)) T // F(X ⊗Spec(k))

=
uu

F(X),

Z⊗Z F(X)
e⊗id //

=
))

F(Spec(k))⊗ F(X) T // F(Spec(k)⊗ X)

=
uu

F(X);
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• T is a natural transformation

T : (V∗× V∗
F∗×F∗
−−−→GrAb×GrAb ⊗−→GrAb)−→ (V∗× V∗

⊗
−→ V∗

F∗
−→GrAb).

Example 1.1.10. The Chow group

(X,8) 7→ lim
−→W∈8

CH∗(W )

satisfies these conditions (see Proposition 1.1.34). The push-forward V∗ −→GrAb
is defined in the usual way. To define the pull-back (V ∗)op

−→GrAb, we use Ful-
ton’s refined Gysin homomorphism. However, in order to get a symmetric functor
we have to put the Chow group CHd(W ) in degree = 2d .

It will be shown in Section 2 that the Hodge cohomology with support

(X,8) 7→
⊕
i, j

H i
8(X, �

j
X )

is another example. The push-forward is an application of Grothendieck’s duality
theory.

An example not further considered in this paper is the étale cohomology with
support

(X,8) 7→ H∗8(X × k̄,Q`).

Definition 1.1.11. Let (F∗, F∗, T, e) and (G∗,G∗,U, ε) be as in 1.1.8 and satisfy
the conditions 1.1.9. By a morphism

(F∗, F∗, T, e)−→ (G∗,G∗,U, ε), (1.1.12)

we mean a morphism of graded abelian groups (for both gradings)

φ : F(X)−→ G(X) for every X ∈ ob(V∗)= ob(V ∗),

such that φ induces a natural transformation of (right-lax) symmetric monoidal
functors

φ : (F∗, T, e)−→ (G∗,U, ε) and φ : (F∗, T, e)−→ (G∗,U, ε),

that is, φ induces natural transformations F∗ −→ G∗, F∗ −→ G∗, and

φ ◦ T =U ◦ (φ⊗φ), φ ◦ e = ε. (1.1.13)

We denote by T the category of weak cohomology theories with supports, that is,
it is the category consisting of objects (F∗, F∗, T, e) as in 1.1.8, and satisfying the
properties 1.1.9, together with morphisms (1.1.12).
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1.1.14. Cup product. Let (F∗, F∗, T, e) ∈ T. For all (X,8) ∈ ob(V ∗) we obtain
a cup product

∪ : F(X,81)⊗ F(X,82)
T
−→ F(X × X,81×82)

F∗(1X )
−−−−→ F(X,81 ∩82),

where1X : (X,81∩82)−→ (X×X,81×82) is induced by the diagonal immersion.
The cup product is associative and graded commutative.

By functoriality we obtain

F∗( f1)(a)∪ F∗( f2)(b)= F∗( f3)(a ∪ b) (1.1.15)

for all morphisms f1 : (X ′,8′1) −→ (X,81), f2 : (X ′,8′2) −→ (X,82) in V ∗ with
f1 = f2 := f as morphisms of schemes; f3 : (X ′,8′1∩8

′

2)−→ (X,81∩82) in V ∗

is induced by f .

Proposition 1.1.16 (projection formula). Let (F∗, F∗, T, e)∈T and let f : X −→ Y
be a morphism between smooth schemes, inducing morphisms

f1 : (X,81)−→ (Y,82) in V∗,

f2 : (X, f −1(9))−→ (Y, 9) in V ∗.

Then f also induces a morphism

f3 : (X,81 ∩ f −1(9))−→ (Y,82 ∩9) in V∗

and for all a ∈ F(X,81) and b ∈ F(Y, 9) we have in F(Y,82 ∩9)

F∗( f3)(a ∪ F∗( f2)(b))= F∗( f1)(a)∪ b,

F∗( f3)(F∗( f2)(b)∪ a)= b∪ F∗( f1)(a).

Proof. We prove the first equality of the statement; the second is proved in the
same way. The diagram

(X,81 ∩ f −1(9))
f3 //

1X
��

(Y,82 ∩9)

1Y

��

(X × X,81× f −1(9))

id× f2

��
(X × Y,81×9)

f1×id // (Y × Y,82×9)

is cartesian and f × id is transversal to 1Y . Thus by 1.1.9(4) we get

F∗( f3)(a ∪ F∗( f2)(b))= F∗( f3)F∗(1X )F∗(id× f2)(T (a⊗ b))

= F∗(1Y )F∗( f1× id)(T (a⊗ b))= F∗( f1)(a)∪ b. �

The proof of the following lemma is straightforward.
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Lemma 1.1.17. (1) For all (X,8) and a ∈ F(X,8) the equality

1X ∪ a = a = a ∪ 1X

holds. In particular F∗(X) is a (graded) ring.

(2) For smooth schemes X and Y , we have

T (1X ⊗ 1Y )= 1X×Y .

1.1.18. Definition of Chow groups with support. In the following we define a first
example of an object (CH∗,CH∗,×, e) ∈ T.

Definition 1.1.19 (Chow groups with support). Let8 be a family of supports on X .
We define

Z8(X) := abelian group freely generated by irreducible closed subsets Z ∈8;

Rat8(X) := subgroup of Z8(X) generated by div( f ), where f ∈ k(W )∗ is a
nonzero rational function and W ∈8 is irreducible;

CH(X,8) := Z8(X)/Rat8(X).

For (X,8) and (Y, 9) we obtain

CH((X
∐

Y,8∪9))= CH(X,8)⊕CH(Y, 9). (1.1.20)

1.1.21. Grading. The groups Z8(X) and Rat8(X) can be graded by dimension:

CH∗(X,8)=
⊕
d≥0

CHd(X,8)[2d],

where the bracket [2d] means that CHd(X,8) is considered to be in degree 2d .
There is also a grading by codimension. Let X =

∐
i X i be the decomposition

into connected components. Then CH∗(X,8)=
⊕

i CH∗(X i ,8∩8X i ) and

CH∗(X i ,8∩8X i )=
⊕
d≥0

CHd(X i ,8∩8X i )[2d],

where CHd(X i ,8) is generated by cycles [Z ] with Z ∈ 8 ∩8X , Z irreducible,
and codimX i (Z)= d.

1.1.22. Examples. If W ⊂ X is a closed subset, then we get

CH(X,8W )= CH(X,W )= CH(W ),

the usual Chow group of W .
If X is proper, U is affine, and 8 := {Z ′ ; Z ′ ⊂U }, then

CH(X,8)= Z8(X)= freely generated by closed points of U .
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1.1.23. Push forward for Chow groups. Let 8 be a family of supports on X as
in Definition 1.1.1. If W ⊂ X is a closed subscheme with W ∈ 8, then Z(W ) =

Z8W (X) ⊂ Z8(X), Rat (W ) = Rat8W (X) ⊂ Rat8(X) (with 8W as defined in
(1.1.2)), and we obtain a map

CH(W )= CH(X,W )−→ CH(X,8). (1.1.24)

Obviously, CH(X,8) is the largest quotient of Z8(X) such that there are push-
forward maps (1.1.24) for every W ∈8.

1.1.25. In general, let f : (X,8)−→ (Y, 9) be a morphism in V∗. There is a push
forward of cycles

f∗ : Z8(X)−→ Z9(Y ) and f∗([Z ])= deg(Z/ f (Z)) · [ f (Z)],

for Z ∈ 8 irreducible (deg(Z/ f (Z)) = 0 if dim( f (Z)) < dim(Z)). Push forward
is functorial [Fulton 1998, Section 1.4].

Lemma 1.1.26. With the assumption of 1.1.25, we get f∗(Rat8(X))⊂ Rat9(Y ).

Proof. Indeed, Rat8(X) is generated by the images of Rat (W ) where W ∈ 8.
The restriction f |W is proper and [Fulton 1998, Proposition 1.4] yields

f∗(Rat(W ))⊂ Rat( f (W )). �

Thus we get an induced map

f∗ : CH(X,8)−→ CH(Y, 9) (1.1.27)

and a functor

CH∗ : V∗ −→GrAb, CH∗(X,8) := CH(X,8), CH∗( f ) := f∗. (1.1.28)

Proposition 1.1.29. Let 8 be a family of supports of X. The map

lim
−→W∈8

CH(X,W )−→ CH(X,8)

is an isomorphism.

Proof. This is straightforward. �

1.1.30. Pull-back for Chow groups. To define a functor

CH∗ : (V ∗)op
−→GrAb

we recall Fulton’s work on refined Gysin morphisms [Fulton 1998, Section 6.6].
Let f : X −→ Y be a morphism between smooth schemes and let V ⊂ Y be a

closed subscheme. There is a morphism

f ! : CH(V )−→ CH( f −1(V ))
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of abelian groups (where f −1(V )= X ×Y V ) with the following properties:

(1) For a closed subscheme V ′ ⊂ Y with V ⊂ V ′ (denote the immersion by ı and
the immersion f −1(V )⊂ f −1(V ′) by  ), we have the equality

f !ı∗ = ∗ f !

(as maps CH(V )−→ CH( f −1(V ′))).

(2) If g : Y −→ Z is another morphism between smooth schemes and S ⊂ Z a
closed subscheme, then

f ! ◦ g! = (g ◦ f )!

as maps CH(S)−→ CH((g ◦ f )−1(S)).

(3) If f : X −→ Y is flat, then f ! = f ∗ where f ∗ is the usual pull-back map for
flat morphisms.

(4) Let

X ′
f ′ //

gX

��

Y ′

gY

��
X

f // Y

be a cartesian diagram of smooth schemes and W ⊂ X a closed subscheme
such that f |W is proper. Assume that either gY is flat or gY is a closed im-
mersion and f is transversal to gY . Then

g!Y f∗ = f ′
∗
g!X

as maps CH(W ) −→ CH( f ′(g−1
X W )) = CH(g−1

Y f (W )). This statement is
proved in [Fulton 1998, Proposition 1.7] for flat morphisms and in [Fulton
1998, Theorem 6.2(a),(c)] for the case of a closed immersion.

Remark 1.1.31. Note that CH(W )= CH(Wred) for every scheme W .

1.1.32. Definition of the pull-back map. Let f : X −→ Y be a morphism between
smooth schemes and let V ⊂ Y be a closed subscheme; thus f : (X, f −1(V )) −→
(Y, V ) is a morphism in V ∗. We define

CH∗( f ) := f ! : CH(Y, V )= CH(V )−→ CH( f −1(V ))= CH(X, f −1(V )).

For the general case, let f : (X,8) −→ (Y, 9) be any morphism in V ∗. For every
V ∈9 the map f induces (X, f −1(V ))−→ (Y, V ) in V ∗. Because of 1.1.30(1) and
Proposition 1.1.29, we obtain

CH∗( f ) : CH(Y, 9)= lim
−→V∈9

CH(Y, V )−→ lim
−→W∈8

CH(X,W )= CH(X,8).
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The assignment

CH∗ : (V ∗)op
−→GrAb, CH∗(X,8)= CH(X,8), f 7→ CH∗( f ), (1.1.33)

defines a functor by 1.1.30(1) and (2).

Proposition 1.1.34. With the exterior product × (see [Fulton 1998, Section 1.10])
and the obvious unit 1 : Z−→ CH(Spec(k)), we obtain an object

(CH∗,CH∗,×, e) ∈ T.

Proof. The formula 1.1.9(4) follows from 1.1.30(1) and (4). �

1.2. Chow groups with support as initial object. Given (CH∗,CH∗,×, 1) we are
interested in objects (F∗, F∗, T, e)∈T that admit a morphism (CH∗,CH∗,×, 1)−→
(F∗, F∗, T, e). Such morphisms should be viewed as a kind of cycle map, which
is compatible with push-forward and pull-back. Unfortunately, we can only give
a satisfactory answer under an additional hypothesis on (F∗, F∗, T, e), which we
call semipurity.

Definition 1.2.1 (semipurity). We say that (F∗, F∗, T, e) satisfies the semipurity
condition if the following holds:

• For all smooth schemes X and irreducible closed subsets W ⊂ X , the groups
Fi (X,W ) vanish if i > 2 dim W .

• For all smooth schemes X , closed subsets W ⊂ X , and open sets U ⊂ X such
that U contains the generic point of every irreducible component of W , we
require the map

F∗() : F2 dim W (X,W )−→ F2 dim W (U,W ∩U ),

induced by  : (U,W ∩U )−→ (X,W ) in V ∗, to be injective.

Remark 1.2.2. For (CH∗,CH∗,×, 1) the condition is satisfied since

CH2 dim W (X,W )= Z · [W ] and CHi (X,W )= 0 for i > 2 dim W.

Let c be the codimension of W in X , so that F2 dim W = F2c. Whenever there
are exact sequences

F2c(X,W \U )−→ F2c(X,W )−→ F2c(U,U ∩W ),

the conditions in 1.2.1 follow from F i (X,W )= 0 for i < 2c (and all pairs (X,W ));
this is known as semipurity in the literature.

Theorem 1.2.3. Suppose k is a perfect field and assume (F∗, F∗, T, e) ∈ T satis-
fies the semipurity condition 1.2.1. Then HomT((CH∗,CH∗,×, 1), (F∗, F∗, T, e))
is either empty or contains only one element; it is nonempty if and only if the
following conditions hold:
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(1) If f : X −→Y is a finite morphism between smooth connected schemes of equal
dimension, then

F∗( f )(1X )= deg( f ) · 1Y .

(2) For the 0-point ı0 : Spec(k) −→ P1 and the ∞-point ı∞ : Spec(k) −→ P1 the
following equality holds:

F∗(ı0) ◦ e = F∗(ı∞) ◦ e.

(3) For a closed immersion ı : X −→ Y between smooth schemes and an effective
smooth divisor D ⊂ Y such that
• D meets X properly and thus D ∩ X := D×Y X is a divisor on X,
• D′ := (D ∩ X)red is smooth and connected and thus D ∩ X = n · D′ as

divisors (for some n ∈ Z, n ≥ 1),

we denote by ıX : X −→ (Y, X) and ıD′ : D′ −→ (D, D′) the morphisms in
V∗ induced by ı , and we define g : (D, D′) −→ (Y, X) in V ∗ by the inclusion
D ⊂ Y . Then the following equality is required to hold:

F∗(g)(F∗(ıX )(1X ))= n · F∗(ıD′)(1D′).

(4) If W ⊂ X is an irreducible closed subset, then there is an element cl(X,W ) ∈

F2 dim W (X,W ) with

F∗()(cl(X,W ))= F∗(ı)(1U∩W )

for all open sets U ⊂ X such that U ∩ W 6= ∅ is smooth, and where  :
(U,W ∩U )−→ (X,W ) in V ∗ and ı :W ∩U −→ (U,W ∩U ) in V∗.

We will give the proof after the proof of the following proposition.

Proposition 1.2.4. Let k be a perfect field and let F := (F∗, F∗, T, e) ∈ T sat-
isfy the semipurity condition 1.2.1. We also assume that the conditions (1)–(4)
of Theorem 1.2.3 hold for F. Then there is a unique natural transformation of
(right-lax) symmetric monoidal functors

φ : (CH∗,×, 1)−→ (F∗, T, e)

such that φ(1X )= 1X for every smooth scheme X.

Proof. Uniqueness: In view of the semipurity condition 1.2.1,

φ([W ])= cl(X,W ) (1.2.5)

is the only choice for an irreducible closed subset W of X , [W ]∈CH∗(X,W ). For a
general family of supports8 of X , the group CH∗(X,8) is generated by the images
of [W ] via CH∗(X,W )−→CH∗(X,8), where W runs through all irreducible closed
subsets W ∈8.
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Existence: For every smooth scheme X and a family of supports8 of X , we define
a homomorphism of abelian groups

φ′(X,8) : Z8(X)−→ F(X,8) (1.2.6)

by φ′(X,8)([W ])= F∗(ıW )(cl(X,W )) for every irreducible closed subset W ∈8 and
ıW : (X,W )−→ (X,8) in V∗ induced by idX .

1st step: For every morphism f : (X,8) −→ (Y, 9) in V∗ the push-forward f∗ :
Z8(X)−→ Z9(Y ) is well defined by 1.1.25. We claim that

φ′(Y,9) ◦ f∗ = F∗( f ) ◦φ′(X,8) (1.2.7)

for every f : (X,8)−→ (Y, 9) in V∗.
Let W ∈8 be irreducible. If dim( f (W ))<dim(W ), then F2 dim W (Y, f (W ))=0

by semipurity 1.2.1; thus (1.2.7) holds in this case.
In the case dim f (W )= dim W =: d , the map W −→ f (W ) is generically finite,

so that we may find an open U ⊂Y such that U∩ f (W ) 6=∅, U∩ f (W ) is smooth,
f −1(U )∩W is smooth, and f ′ : f −1(U )∩W −→U ∩ f (W ) induced by f is finite.
Consider the commutative diagram

F2d(X,W )

F∗( f )
��

F∗( ′) // F2d( f −1(U ),W ∩ f −1(U ))

F∗( f )
��

F2d(W ∩ f −1(U ))
F∗(ı ′)oo

F∗( f ′)
��

F2d(Y, f (W ))
F∗() // F2d(U, f (W )∩U ) F2d( f (W )∩U ),

F∗(ı)oo

where  : (U, f (W )∩U )−→ (Y, f (W )) and  ′ : ( f −1(U ),W ∩ f −1(U ))−→ (X,W )

in V ∗ are induced by the obvious open immersions; the obvious closed immersions
respectively induce ı : f (W ) ∩ U −→ (U, f (W ) ∩ U ) and ı ′ : W ∩ f −1(U ) −→
( f −1(U ),W∩ f −1(U )) in V∗. From the diagram and condition 1.2.3(1), we obtain

F∗()F∗( f )(cl(X,W ))= deg(W/ f (W )) · F∗(ı)(1 f (W )∩U ).

Now, semipurity 1.2.1 implies

F∗( f )(cl(X,W ))= deg(W/ f (W )) · cl(Y, f (W )),

which proves the claim (1.2.7).

2nd step: Let X be a smooth scheme, W ⊂ X an irreducible closed subset, and
D ⊂ X a smooth divisor intersecting W properly, so that W ∩ D :=W ×X D is an
effective Cartier divisor on W . We denote by [W ∩ D] the associated Weil divisor
and claim that

F∗(ıD)(φ
′

(X,W )([W ]))= φ
′

(D,W∩D)([W ∩ D]), (1.2.8)

where ıD : (D,W ∩ D)−→ (X,W ) is induced by D ⊂ X .
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Note that by semipurity we may replace X by an open subset that contains the
generic points of (W ∩ D)red. In particular, we may assume that the irreducible
components of (W ∩D)red are disjoint. Letting V1, . . . , Vr be the irreducible com-
ponents of (W ∩ D)red, we obtain

r⊕
i=1

F(D, Vi )
∼=
−→ F(D,W ∩ D)

from 1.1.9(1); thus we may assume that r = 1. If W is regular (that is, smooth)
in codimension one (for example, W is normal), then we can find an open U ⊂ X
such that W ∩U and V1 ∩U 6=∅ is smooth; thus (1.2.8) follows from 1.2.3(3).

Now, let W be not necessarily normal. Since we may assume that X is affine
we can find a closed immersion W̃ −→ W ×Pn (over W ) of the normalization W̃
of W . Setting

X̃ := X ×Pn, D̃ := D×Pn, ı̃ : (D̃, Ṽ ∩ D̃)−→ (X̃ , Ṽ ),

we obtain

F∗(ı)(φ′(X,W )[W ])= F∗(ı)F∗(pr1)(φ
′

(X̃ ,W̃ )
([W̃ ])) by (1.2.7)

= F∗(pr1|D̃)F
∗(ı̃)(φ′

(X̃ ,W̃ )
([W̃ ])) by 1.1.9(4)

= F∗(pr1|D̃)(φ
′

(D̃,W̃∩D̃)
([W̃ ∩ D̃]))

= φ′(D,W∩D)(pr1∗([W̃ ∩ D̃]))) by (1.2.7)

= φ′(D,W∩D)([W ∩ D]).

3rd step: For all (X,8) we claim that the map φ′(X,8) satisfies

φ′(X,8)(Rat8(X))= 0; (1.2.9)

and thus induces a natural transformation φ : CH∗ −→ F∗.
Let W ⊂ X×P1 be irreducible such that pr1(W )∈8 and W −→P1 is dominant.

By using the 2nd step’s (1.2.8), we obtain

F∗(ıε)(φ′(X×P1,W )
([W ]))= φ′(X,pr1(W ))([W ∩ (X ×{ε})])

for ε ∈ {0,∞}, ıε : (X ×{ε}, pr1(W ))−→ (X ×P1,W ).
Thus F∗(ı0)= F∗(ı∞) will prove the claim (1.2.9). It is not difficult to see that

this follows from the projection formula and

F∗(ı ′0)(1X )= F∗(ı ′∞)(1X ) (1.2.10)

in F(X ×P1), where ı ′ε : X ×{ε}
⊂
−→ X ×P1.

In view of 1.1.9(4) the equality (1.2.10) is implied by 1.2.3(2).
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4th step: The only assertion left to prove is

φ ◦× = T ◦ (φ⊗φ), φ ◦ 1= e.

The second equality holds by definition. For the first it suffices to show

φ′(X×Y,W×V )([W ]× [V ])= T (φ′(X,W )([W ])⊗φ
′

(Y,V )([V ]))

for smooth schemes X, Y and irreducible closed subsets W ⊂ X, V ⊂ Y . Again by
semipurity we may assume that W and V are smooth, in which case the statement
follows from Lemma 1.1.17. �

Proof of Theorem 1.2.3. Set CH := (CH∗,CH∗,×, 1) and F := (F∗, F∗, T, e). For
φ ∈ HomT(CH, F), we get

φ(1X )= 1X

for all smooth schemes X ; thus Proposition 1.2.4 implies that HomT(CH, F) is
either empty or contains only one element.

Obviously the conditions (1)–(4) of 1.2.3 are necessary for HomT(CH, F) to
be nonempty. So let us assume that the conditions are satisfied. Proposition 1.2.4
yields a natural transformation of right-lax symmetric monoidal functors

φ : (CH∗,×, 1)−→ (F∗, T, e).

We need to prove that φ induces a natural transformation φ : CH∗ −→ F∗.

1st step: Assume that f : (X,8)−→ (Y, 9) in V ∗ is smooth. We claim diagram

CH(Y, 9)
CH∗( f )//

φ

��

CH(X,8)

φ

��
F(Y, 9)

F∗( f ) // F(X,8)

commutes. It suffices to prove

F∗( f )(φ(Y,V )([V ]))= φ(X, f −1(V ))( f ∗[V ])

for all irreducible closed subsets V ⊂ Y . By using semipurity we may replace Y
by an open set and thus assume that V is smooth. We obtain

F∗( f )(φ(Y,V )([V ]))= F∗( f )F∗(ıV )(1V )

= F∗(ı f −1(V ))F
∗( f | f −1(V ))(1V ) by 1.1.9(4)

= F∗(ı f −1(V ))(1 f −1(V ))

= φ(X, f −1(V ))([ f
−1(V )]),

where ıV : V −→ (Y, V ) and ı f −1(V ) : f −1(V )−→ (X, f −1(V )).
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2nd step: Let p : E −→ X be a vector bundle and let s : X −→ E be the zero
section. We claim that for every closed subscheme W ⊂ X the following diagram
is commutative:

CH(E, p−1(W ))

φ

��

CH∗(s)// CH(X,W )

φ

��
F(E, p−1(W ))

F∗(s) // F(X,W ).

Indeed, by homotopy invariance we may write any a ∈ CH(p−1(W )) as a =
CH∗(p)(b) with b ∈ CH(W ). Thus by the 1st step,

F∗(s)(φ(a))= F∗(s)F∗(p)(φ(b))= φ(b)= φ(CH∗(s)(a)).

3rd step: For every closed subscheme W ⊂ X , denote by

ı0 : (X,W )−→ (X ×P1,W ×P1) and ı∞ : (X,W )−→ (X ×P1,W ×P1),

the morphisms in V ∗ and V∗ induced by the inclusions X × {0} ⊂ X × P1 and
X ×{∞} ⊂ X ×P1, respectively. We claim that

F∗(ı0)= F∗(ı∞).

Indeed, if p : (X ×P1,W ×P1)−→ (X,W ) is the first projection, then

F∗(ıε)(a)= F∗(p)F∗(ıε)(φ([X ])∪ F∗(ıε)(a))= F∗(p)(F∗(ıε)(φ([X ]))∪ a)

for ε ∈ {0,∞}. Since F∗(ıε)(φ([X ])) = φ([X × {ε}]) the claim follows from
[X ×{0}] = [X ×{∞}] in CH1(X ×P1).

4th step: Let f : X −→ Y be a closed immersion and V ⊂ Y a closed subscheme;
set W := f −1(V )= V ×Y X . Then f induces f : (X,W )−→ (Y, V ) in V ∗ and we
claim that

CH(Y, V )
CH∗( f )//

φ

��

CH(X,W )

φ

��
F(Y, V )

F∗( f ) // F(X,W )

is a commutative diagram.
Again, it is sufficient to prove

F∗( f )(φ([V ]))= φ(CH∗( f ))

for V integral.
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For the proof we use deformation to the normal cone [Fulton 1998, Section 5].
Let

M0
:= BlX×{∞}(Y ×P1) \BlX×{∞}(Y ×{∞}),

M̃0
:= BlW×{∞}(V ×P1) \BlW×{∞}(V ×{∞});

then M̃0
⊂ M0 is closed, and M0 and M̃0 are flat over P1. We have closed im-

mersions ıX : X ×P1
−→ M0 and ıW : W ×P1

−→ M̃0 that deform the immersions
X ⊂ Y and W ⊂ V , respectively, over P1

\ {∞} to the zero section of the normal
cone over∞.

Since W ×P1
= M̃0

∩ (X ×P1) we obtain morphisms

ıε : (X ×{ε},W ×{ε})−→ (M0, M̃0)

in V ∗ for ε ∈ {0,∞}. By the 3rd step we know that F∗(ı0)= F∗(ı∞).
Consider the projection p : (Y × (P1

\ {∞}), V × (P1
\ {∞}))−→ (Y, V ) in V ∗.

Note that M̃0 is the closure of V × (P1
\ {∞}) in M0, and thus

CH∗(p)([V ])= CH∗()([M̃0
])

with  : (Y × (P1
\ {∞}), V × (P1

\ {∞}))−→ (M0, M̃0) the open immersion. By
using the 1st step we get F∗(p)(φ([V ]))= F∗()(φ([M̃0

])) and thus

F∗( f )(φ([V ]))= F∗(ı0)(φ([M̃0
]))= F∗(ı∞)(φ([M̃0

])).

Now, let us compute F∗(ı∞). The morphism ı∞ has a factorization

ı∞ : (X,W )
s
−→ (NY/X ,CV/W )

t
−→ (M0, M̃0),

where NY/X is the normal bundle and CV/W is the normal cone. Note that NY/X is
a smooth divisor in M0, which intersects M̃0 properly (being the fiber of M0

−→P1

over∞), so that we may apply (1.2.8) to t . Moreover s is the zero section of the
normal bundle. The zero section also induces a morphism

s ′ : (X,W )−→ (NY/X , NY/X ×X W ) in V ∗;

denote by τ : (NY/X ,CV/W )−→ (NY/X , NY/X ×X W ) the morphism in V∗ induced
by the identity map. Then 1.1.9(4) yields

F∗(s)= F∗(s ′) ◦ F∗(τ ).

Thus we get

F∗(ı∞)(φ([M̃0
]))= F∗(s ′)F∗(τ )F∗(t)(φ([M̃0

]))

= F∗(s ′)F∗(τ )(φ(CH∗(t)([M̃0
]))) by (1.2.8)

= φ(CH∗(ı∞)([M̃0
])) by the 2nd step

= φ(CH∗(ı0)([M̃0
]))= φ(CH∗( f )([V ])).
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5th step: Let f : (X,8)−→ (Y, 9) be any morphism in V ∗. We have to prove that

φ ◦CH∗( f )= F∗( f ) ◦φ.

Indeed, f factors through

f : (X,8)
(id, f )
−−−→ (X × Y, pr−1

2 (9))
pr2
−−→ (Y, 9).

By the 1st step we may reduce to the case of the closed immersion (id, f ), and by
using Proposition 1.1.29 the statement follows from the 4th step. �

1.3. Correspondences. Let (F∗, F∗, T, e) ∈ T. Let X i for i = 1, 2, 3 be smooth
varieties and 8i j for i j = 12, 23, 13 be families of supports on X i × X j . Denote
by pi j : X1× X2× X3 −→ X i × X j the projection. Suppose that{

p13|p−1
12 (812)∩p−1

23 (823)
is proper,

p13(p−1
12 (812)∩ p−1

23 (823))⊂813.
(1.3.1)

Then we define

F(X1× X2,812)⊗ F(X2× X3,823)−→ F(X1× X3,813), a⊗ b 7→ b ◦ a

to be the composition

F(X1× X2,812)⊗ F(X2× X3,823)

F∗(p12)⊗F∗(p23)
−−−−−−−−−→ F(X1× X2× X3, p−1

12 (812))⊗ F(X1× X2× X3, p−1
23 (823))

∪
−→ F(X1× X2× X3, p−1

12 (812)∩ p−1
23 (823))

F∗(p13)
−−−−→ F(X1× X3,813). (1.3.2)

1.3.3. Let 8′i j for i j = 12, 23, 13 be families of supports on X i × X j . Suppose
that {

p13|p−1
12 (8

′

12)∩p−1
23 (8

′

23)
is proper,

p13(p−1
12 (8

′

12)∩ p−1
23 (8

′

23))⊂8
′

13,

and 8′i j ⊂8i j for i j = 12, 23, 13. Obviously, the diagram

F(X1× X2,8
′

12)⊗ F(X2× X3,8
′

23)

��

◦ // F(X1× X3,8
′

13)

��
F(X1× X2,812)⊗ F(X2× X3,823)

◦ // F(X1× X3,813)

is commutative.
The most important case for us will be (CH∗,CH∗,×, 1). For later use we

record the following particular case of the discussion above.
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Lemma 1.3.4. Let X i for i =1, 2, 3 be smooth schemes and8i j for i j =12, 23, 13
be families of supports on X i × X j that satisfy (1.3.1). For a ∈ Z812(X1× X2) and
b ∈ Z823(X2× X3), we define

supp(a, b) := p13(p−1
12 (supp(a))∩ p−1

23 (supp(b))), (1.3.5)

which is a closed subset contained in 813. The families of supports

8′12 =8supp(a), 8′23 =8supp(b), 8′13 =8supp(a,b)

satisfy (1.3.1). The cycles a and b define in the obvious way classes

ã ∈ CH(supp(a)), b̃ ∈ CH(supp(b)),

a ∈ CH(X1× X2,812), b ∈ CH(X2× X3,823).

Then b◦a is the image of b̃◦ ã via the map CH(supp(a, b))−→CH(X1× X3,813).

Lemma 1.3.4 helps to understand the composition of two cycles a and b via the
purely set-theoretic computation of supp(a, b). Frequently we are able to compute
the composition over suitable good open subsets; this is the motivation for the next
lemma.

Lemma 1.3.6. Let X i for i = 1, 2, 3 be smooth schemes. Let a ∈ Z(X1× X2) and
b ∈ Z(X2× X3) be algebraic cycles such that

p13|p−1
12 supp(a)∩p−1

23 supp(b) is proper.

Let X ′1 ⊂ X1, X ′3 ⊂ X3 be open subsets; define a′ ∈ Z(X ′1× X2), b′ ∈ Z(X2× X ′3)
as the restrictions of a, b. We denote by p′i j the projections from X ′1× X2× X ′3.

(1) The restriction of p′13 to p′−1
12 supp(a′)∩ p′−1

23 supp(b′) is proper.

(2) The equality

supp(a′, b′)= supp(a, b)∩ (X ′1× X ′3)

holds, where supp(a, b) is defined in (1.3.5).

(3) The composition b′ ◦ a′ is the image of b ◦ a via the localization map

CH(supp(a, b))−→ CH(supp(a′, b′)).

(Here supp(a′, b′)⊂ supp(a, b) is an open subset by (2)).

Proof. By definition we obtain

supp(a′)= supp(a)∩ (X ′1× X2), supp(b′)= supp(b)∩ (X2× X ′3).

For (1): Let Z12 ⊂ X1× X2, Z23 ⊂ X2× X3 be closed subsets such that

p13|p−1
12 Z12∩p−1

23 Z23
is proper.
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Set Z ′12 = Z12 ∩ (X ′1× X2) and Z ′23 = Z23 ∩ (X2× X ′3). Obviously,

p′−1
12 Z ′12 ∩ p′−1

23 Z ′23 = (p
−1
12 Z12 ∩ p−1

23 Z23)∩ (X ′1× X2× X ′3).

Thus, if p−1
12 Z12∩ p−1

23 Z23 is proper over X1×X3, then p′−1
12 Z ′12∩ p′−1

23 Z ′23 is proper
over X ′1× X ′3.

Statement (2) is a straightforward computation. For (3): By using the definition
of ◦ in (1.3.2) it is straightforward to show that the diagram

CH(X1×X2, supp(a))⊗CH(X2×X3, supp(b))

��

◦ // CH(X1×X3, supp(a, b))

��
CH(X ′1×X2, supp(a′))⊗CH(X2×X ′3, supp(b′)) ◦ // CH(X ′1×X ′3, supp(a′, b′))

is commutative. �

1.3.7. For two smooth schemes X and Y and families 8 and 9 of supports of X
and Y , respectively, we define a family of supports P(8,9) on the product by

P(8,9) := {Z ⊂ X × Y ; Z is closed, pr2|Z is proper,

Z ∩ pr−1
1 (W ) ∈ pr−1

2 (9) for every W ∈8}. (1.3.8)

Let X i for i = 1, 2, 3 be smooth schemes and let 8i be a family of supports
on X i for i = 1, 2, 3. It is easy to see that 8i j := P(8i ,8 j ) satisfy the condition
(1.3.1) and therefore

F(X1× X2, P(81,82))⊗ F(X2× X3, P(82,83))

−→ F(X1× X3, P(81,83)), (1.3.9)

where a⊗ b 7→ b ◦ a, is well defined.

Proposition 1.3.10. (1) Let X i for i = 1, . . . , 4 be a smooth scheme and let 8i

for i = 1, . . . , 4 be a family of supports of X i . We have

a34 ◦ (a23 ◦ a12)= (a34 ◦ a23) ◦ a12 for all ai j ∈ F(X i × X j , P(8i ,8 j )).

(2) For any (X,8), the diagonal immersion induces a morphism

ı : X −→ (X × X, P(8,8)) in V∗.

We set 1(X,8) := F∗(ı)(1X ). The equality 1(X,8) ◦ g = g holds for all (Y, 9)
and g ∈ F(Y × X, P(9,8)), and g ◦1(X,8) = g holds for all (Y, 9) and
g ∈ F(X × Y, P(8,9)).

Proof. The proof of the first statement is as in [Fulton 1998, Proposition 16.1.1]
but one has to keep track of the supports, which is straightforward.

The second statement is an easy computation. �
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1.3.11. Grading. For (X,8) and (Y, 9), F∗ and F∗ give rise to two different
gradings on F(X×Y, P(8,9)). Unfortunately, neither are compatible with the ◦
from (1.3.9). We define a new grading by

F(X × Y, P(8,9))i =
⊕

X ′
F2 dim(X ′)+i (X ′× Y, P(8,9)),

where X ′ runs through the connected components of X . With this grading, ◦ be-
comes a morphism of graded abelian groups.

By the definition of the grading there are choices. We could also define a grading

F(X × Y, P(8,9))i =
⊕

X ′
F2 dim(X ′)+i (X ′× Y, P(8,9)).

Definition 1.3.12. To an object F = (F∗, F∗, T, e) ∈ T, we attach the graded
additive symmetric monoidal category CorF with objects ob(CorF ) = ob(V∗) =
ob(V ∗) and morphisms

HomCorF ((X,8), (Y, 9))= F(X × Y, P(8,9))

with composition law a⊗ b 7→ b ◦ a (1.3.9). The identity is 1(X,8).
The product ⊗ on CorF is defined by

(X,8)⊗ (Y, 9) := (X × Y,8×9),

and for two morphisms f ∈ F(X × X ′, P(8,8′)) and g ∈ F(Y × Y ′, P(9,9 ′)),
we define

f ⊗ g ∈ HomCorF ((X,8)⊗ (Y, 9), (X
′,8′)⊗ (Y ′, 9 ′)),

f ⊗ g := F∗(idX ×µX ′,Y × idY ′)(T ( f ⊗ g)),

where µX ′,Y is the permutation of the factors (X ′,8′) and (Y, 9).

1.3.13. Given two objects F,G ∈ T and a morphism φ : F −→ G in T, we obtain
a functor of graded additive symmetric monoidal categories

Cor(φ) : CorF −→ CorG

that is given by

φ : F(X × Y, P(8,9))−→ G(X × Y, P(8,9))

for all (X,8) and (Y, 9). This provides a functor

Cor : T−→ CatGrAb,⊗, F 7→ CorF , φ 7→ Cor(φ).

Here, CatGrAb,⊗ is the category of graded additive symmetric monoidal categories.
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1.3.14. In order to state the properties of Cor, it is convenient to introduce the
category V with objects ob(V )=ob(V∗)=ob(V ∗) and only morphisms the identity
idX (for every X ∈ ob(V )). There are obvious functors V −→ V∗, V −→ V ∗, and
V −→ CorF for all F ∈ T. We define CatV/GrAb,⊗ to be the category with functors
V −→ X as objects (X ∈ CatGrAb,⊗) and commutative diagrams

X
f // Y,

V

??__
(1.3.15)

with f ∈ HomCatGrAb,⊗(X, Y ), as morphisms. In general a functor f is said to be
under V if the diagram (1.3.15) is commutative.

Proposition 1.3.16. The functor Cor : T−→ CatV/GrAb,⊗ is fully faithful.

Proof. Given F,G ∈ T and φ : F −→ G, we can recover φ : F(X) −→ G(X) for
X ∈ ob(V ) from the map Cor(φ):

HomCorF (Spec(k), X)−→ HomCorG (Spec(k), X). (1.3.17)

On the other hand, given ψ : CorF −→ CorG in CatV/GrAb,⊗, the map (1.3.17)
defines a morphism F −→ G in T. �

1.3.18. For all F ∈ T, there is a functor

ρF : CorF −→GrAb

defined by

ρF (X,8)= F(X,8)

ρF (γ )= (a 7→ F∗(pr2)(F
∗(pr1)(a)∪ γ )) for γ ∈ F(X × Y, P(8,9)).

The map ρF (γ ) : F(X,8) −→ F(Y, 9) is well defined since pr2 restricted to
pr−1

1 (8) ∩ P(8,9) is proper and pr−1
1 (8) ∩ P(8,9) ⊂ pr−1

2 (9) by definition
of P(8,9). Functoriality is again a straightforward computation.

Moreover, there are functors

τ F
∗
: V∗ −→ CorF and τ ∗F : (V

∗)op
−→ CorF ,

(under V ) such that

ρF ◦ τ
F
∗
= F∗ and ρF ◦ τ

∗

F = F∗.

The functor τ F
∗
:V∗−→CorF is defined by mapping a morphism f : (X,8)−→ (Y, 9)

to F∗(id, f )(1X ), where (id, f ) : X −→ (X × Y, P(8,9)) is in V∗. Similarly, the
functor τ ∗F : V

∗
−→ CorF is defined by mapping a morphism f : (X,8)−→ (Y, 9)
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to F∗( f, id)(1X ) with ( f, id) : X −→ (Y × X, P(9,8)) in V∗. Then the equalities
ρF ◦ τ

F
∗
= F∗ and ρF ◦ τ

∗

F = F∗ follow easily from the projection formula.

Lemma 1.3.19. If φ : F −→ G is a morphism in T, then

Cor(φ) ◦ τ F
∗
= τG
∗

and Cor(φ) ◦ τ ∗F = τ
∗

G .

Proof. For the first equality, let f : (X,8)−→ (Y, 9) be a morphism in V∗. We get

Cor(φ)(τ F
∗
( f ))= Cor(φ)(F∗(id, f )(1X ))= φ(F∗(id, f )(1X ))

= G∗(id, f )(φ(1X ))= G∗(id, f )(1X )= τ
G
∗
( f ).

The second equality is proved in the same way. �

2. Hodge cohomology with support

For a smooth scheme X and a family of supports 8 of X , we define

H(X,8) :=
⊕
i, j

H i
8(X, �

j
X ),

and call this k-vector space the Hodge cohomology of X with support in 8. We
denote by H∗(X,8) the graded abelian group, which in degree n equals

H n(X,8)=
⊕

i+ j=n

H i
8(X, �

j
X ). (2.0.1)

We denote by H∗(X,8) the graded abelian group, which in degree n equals

Hn(X,8)=
⊕

r

H 2 dim Xr−n(Xr ,8), (2.0.2)

where X =
∐

r Xr is the decomposition into connected components. We define

e : Z→ H(Spec k)= k (2.0.3)

to be the natural map sending 1 to 1.
The goal of this section is to provide the object functions H∗ and H∗ with the

structure of functors

H∗ : V∗ −→GrAb and H∗ : (V ∗)op
−→GrAb

and to define for each (X,8), (Y, 9) ∈ ob(V∗)= ob(V ∗) a morphism

T(X,8),(Y,9) : H(X,8)⊗ H(Y, 9)−→ H(X × Y,8×9)

of graded abelian groups (for both gradings) such that (H∗, H∗, T, e) is an object
in T, that is, it is a datum as in 1.1.8 and satisfies the properties 1.1.9.

2.1. Pullback.
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2.1.1. We work in the bounded derived category of quasicoherent sheaves Db(X)
on a scheme X . (The bounded derived category of coherent sheaves will be denoted
by Db

c (X).) Let f : X −→ Y be a morphism of schemes; let 8 and 9 be families
of supports of X and Y , respectively. There is an isomorphism of functors

R0 f −1(9)

∼=
−→ R09R f∗. (2.1.2)

If 9 ⊂9 ′ for another family of supports 9 ′, then the diagram

R0 f −1(9 ′)

(2.1.2) // R09 ′R f∗

R0 f −1(9)

(2.1.2) //

OO

R09R f∗

OO

(2.1.3)

is commutative. Moreover, if g : Z −→ X is another morphism of schemes then the
following diagram is commutative:

R0( f ◦g)−1(9)

(2.1.2) for f ◦ g //

(2.1.2) for g
��

R09R( f ◦ g)∗

R0 f −1(9)Rg∗.
(2.1.2) for f

44

(2.1.4)

2.1.5. For a morphism f : X −→ Y of schemes, we have

id−→ R f∗L f ∗,

and thus we obtain a morphism of functors

R09 −→ R0 f −1(9)L f ∗; (2.1.6)

it easily follows from (2.1.3) that the diagram

R09 ′
(2.1.6) // R0 f −1(9 ′)L f ∗

R09
(2.1.6) //

OO

R0 f −1(9)L f ∗

OO
(2.1.7)

commutes for 9 ⊂ 9 ′. From (2.1.7) and (2.1.4) it follows that for another mor-
phism g : Z −→ X of schemes the following diagram is commutative:

R09
(2.1.6) for f //

(2.1.6) for f ◦ g
��

R0 f −1(9)L f ∗

(2.1.6) for guu
R0( f ◦g)−1(9)L( f ◦ g)∗.

(2.1.8)
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For a morphism f : (X,8)−→ (Y, 9) in V ∗ (that is, f −1(9)⊂8), the morphism

R09�d
Y −→ R0 f −1(9)L f ∗�d

Y = R0 f −1(9) f ∗�d
Y −→ R0 f −1(9)�

d
X −→ R08�d

X

(for d ≥ 0) gives a morphism

H∗( f ) : H(Y, 9)−→ H(X,8). (2.1.9)

By a straightforward computation, f 7→ H∗( f ) defines a functor (V ∗)op
−→GrAb.

2.2. Push-forward in the derived category. We recall the following notations from
duality theory [Hartshorne 1966; Conrad 2000]: Let X be a separated k-scheme of
finite type with structure map π : X→ Spec k. We have π !k ∈ Db

c (X). (In fact if X
has dimension d, then π !k has nonzero cohomology only in the interval [−d, 0].
This follows from [Hartshorne 1966, Chapter V, Proposition 7.3 and its proof] and
[Conrad 2000, (3.1.25)].) We denote

DX := R HomX ( · , π
!k) : Db

c (X)→ Db
c (X). (2.2.1)

If f : X→ Y is a proper morphism between k-schemes, we have the trace map

Tr f : R f∗ f ! −→ id, (2.2.2)

which is a natural transformation of functors on D+c (Y ). For maps f : X→ Y and
g : Y → Z , we have the canonical isomorphisms

c f,g : (g f )! '−→ f !g! in D+c (X). (2.2.3)

Notation 2.2.4. Given a bounded complex C in D(X) and a morphism of com-
plexes ϕ : A→ B in D(X), we will often denote the morphism R HomX (C, ϕ) :
R HomX (C, A)→ R HomX (C, B) simply by ϕ and the morphism R HomX (ϕ,C) :
R HomX (B,C)→ R HomX (A,C) by ϕ∨. It will always be clear from the context
what C is in the particular situation.

Definition 2.2.5. Let f : X → Y be a proper k-morphism. Let πX and πY denote
the structure maps of X and Y respectively. Then we define

f∗ : R f∗DX (�
q
X )→ DY (�

q
Y ) for q ≥ 0,

to be the composition

R f∗R HomX (�
q
X , π

!

X k)
c f,πY
−−→ R f∗R HomX (�

q
X , f !π !Y k)

nat.
−→ R HomY (R f∗�

q
X , R f∗ f !π !Y k)

Tr f
−−→ R HomY (R f∗�

q
X , π

!

Y k)
( f ∗)∨
−−−→ R HomY (�

q
Y , π

!

Y k).
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Remark 2.2.6. (1) Notice that the composition of the middle two arrows in the
composition above is just the standard Grothendieck duality isomorphism (see
for example [Conrad 2000, (3.4.10)])

R f∗R HomX ( · , f !( · )) '−→ R HomY (R f∗( · ), · ).

(2) It is straightforward to check that the push-forward above also equals the com-
position

R f∗DX (�
q
X )

(a f ∗)∨
−−−→ R f∗DX (L f ∗�q

Y )
c f,πY
−−→ R f∗R HomX (L f ∗�q

Y , f !π !Y k)
adj.
−→ R HomY (�

q
Y , R f∗ f !π !Y k)

Tr f
−−→ DY (�

q
Y ).

Here adj. denotes the isomorphism

R f∗R HomX (L f ∗( · ), · )∼= R HomY ( · , R f∗( · )) on D−c (Y )× D+(X)

(see [Hartshorne 1966, Chapter II, Proposition 5.10]) and a f ∗ : L f ∗�q
Y→�

q
X

is the morphism corresponding to �q
Y → R f∗�

q
X under H 0(Y, · ) applied to

the isomorphism above.

Proposition 2.2.7. (1) id∗ = id.

(2) Let f : X → Y and g : Y → Z be two proper maps with X and Y of pure
dimension dX and dY , respectively. Then

(g ◦ f )∗ = g∗ ◦ Rg∗( f∗) : Rg∗R f∗DX (�
q
X )→ DZ (�

q
Z ).

(3) Let

X ′ u′ //

f ′

��

X

f
��

Y ′ u // Y

be a cartesian diagram with f proper, u étale and X of pure dimension d.
Then the diagram

u∗R f∗DX (�
q
X )

'

��

u∗( f∗) // u∗DY (�
q
Y )

'

��
R f ′∗DX (�

q
X ′)

f ′∗ // DY ′(�
q
Y ′)

(2.2.8)

commutes, where the vertical maps are the natural isomorphisms (in the proof
we will make these isomorphisms precise).
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Proof. (1) is clear. By [Conrad 2000, Lemma 3.4.3, (TRA1) and p. 139, (VAR1)],
we have

Trg◦ f = Trg ◦Rg∗(Tr f ) ◦ R(g ◦ f )∗(c f,g) : Rg∗R f∗(g ◦ f )! '−→ id . (2.2.9)

and
c f,g ◦ cg◦ f,h = f !(cg,h) ◦ c f,h◦g : (h ◦ g ◦ f )!→ f !g!h!, (2.2.10)

where h : Z→W is a third map. This implies (2).
Now to make the vertical maps in (3) precise we need some further notation:

Let
α : u∗R f∗

'
−→ R f∗u′

∗
, eu : u∗

'
−→ u!,

βu : u∗R Hom( · , · ) '−→ R Hom(u∗( · ), u∗( · ))

be the natural isomorphisms. Then the vertical map on the left of (2.2.8) is given
by c−1

u′,πX
◦ eu′ ◦ βu′ ◦ α and the vertical map on the right of (2.2.8) is given by

c−1
u,πY
◦ eu ◦βu . Thus we have to prove

c−1
u,πY
◦ eu ◦βu ◦ u∗( f∗)= f ′

∗
◦ c−1

u′,πX
◦ eu′ ◦βu′ ◦α. (2.2.11)

Denote by bu, f : u′
∗ f ! '−→ f ′!u∗ the isomorphism of [Hartshorne 1966, Chapter

VII, Corollary 3.4(a)(5)]; see also [Conrad 2000, (3.3.24)]. Then it is easy (but
tedious) to check that (2.2.11) follows from

u∗(Tr f )= Tr f ′ ◦R f ′∗(bu, f ) ◦α : u∗R f∗ f !→ R f ′∗ f ′!u∗

(see [Conrad 2000, Lemma 3.4.3, (TRA4)]) and the following lemma. �

Lemma 2.2.12. Let
X ′ u′ //

f ′
��

h

  

X

f
��

Y ′ u // Y

be a cartesian diagram with u étale. Then the following diagram commutes (with
notation as above):

u′∗ f !
bu, f //

eu′

��

f ′!u∗

f ′ !(eu)
��

u′! f ! h!
cu′, foo

c f ′,u // f ′!u!.

Proof. We extensively use the notation of [Hartshorne 1966; Conrad 2000]. All
maps and functors involved in the statement are defined, for example, in [Conrad
2000, (3.3.6), (3.3.15), (3.3.21), (3.3.25)]. Using these definitions for the residual
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complex K = π1Y k on Y together with the identity u∗K = u1K and the commu-
tativity of

u∗DK Du∗K Du∗K
η //

βu

��

u∗DK

βu

��
Du∗K u∗DK DK

η // Du∗K u∗,

one checks that one is reduced to proving the commutativity of the diagram

u′∗ f 1K

ϕ−1
u′ ��

f ′1u∗K

f ′ !(ϕ−1
u )

��

du, foo

u′1 f 1K h1K
cu′, foo

c f ′,u // f ′1u1K .

(2.2.13)

Here the maps are the analogs in the category of residual complexes of the maps
in the lemma; see [Hartshorne 1966, Chapter IV, Theorems 3.1 and 5.5]. Since
we work with actual complexes now, the commutativity of the diagram above is a
local question. Thus take U ⊂ X open such that f |U factors as U

i
−→P

p
−→Y with i a

closed immersion and p smooth. Then f ′|U ′ also factors as U ′
i ′
−→P ′

p′
−→Y ′. By the

construction of f 1 in the proof of [Hartshorne 1966, Chapter VI, Theorem 3.1(a)]
we have f 1= i y pz and also f ′1= i ′y p′z . Now by [Hartshorne 1966, Chapter VI,
Theorem 5.5(2)], we have

cp,i ◦ du, f = du P ,i ◦ i ′1(du,p) ◦ cp′,i ′,

with u P being the base change of u by p : P→ Y . This equality implies that it is
sufficient to prove the commutativity of (2.2.13) for i and p separately. Thus we
are reduced to consider the two cases f is finite or f is smooth. The latter case
smooth is immediate, while the first follows from [Conrad 2000, Theorems 3.3.1,
2.(VAR4)]. �

Remark 2.2.14. (1) Let π : X → Spec k be smooth of pure dimension d . Then
there is a canonical isomorphism π !k ∼=�d

X [d] =:ωX [d]. More generally, for
any j ≥ 0 and n ∈ Z we have the isomorphism

�
j
X [n]

'
−→ DX (�

d− j
X )[n− d], (2.2.15)

which is defined to be the composition of

�
j
X [n]

'
−→HomX (�

d− j
X , �d

X )[n], α 7→ (β 7→ α∧β)

(notice that we make the choice of a sign here) with

HomX (�
d− j
X , �d

X )[n]=Hom•(�d− j
X , �d

X [d])[n−d]∼= R Hom(�d− j
X , π !k)[n−d].
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(2) Let X be a k-scheme of pure dimension d and U ⊂ X a smooth open sub-
scheme; then we have for all j ≥ 0

�
j
U 'Hom•U (�

d− j
U , �d

U [d])[−d] ' DX (�
d− j
X )|U [−d],

where the first isomorphism is as in (1) and the second is given by restriction
(or to be more precise, first use the isomorphism �d

U [d] ' π
!

U k and then the
vertical isomorphism on the right in (2.2.8) with U ↪→ X instead of u :Y ′→Y ).

Lemma 2.2.16. Let πX : X → Spec k be proper of pure dimension dX and let
πY : Y → Spec k be smooth of pure dimension dY . We denote by pr2 : X × Y → Y
the projection (it is proper) and set d := dim(X × Y ). Then for all j ≥ 0, there is
a morphism in D+c (X × Y )

γ : pr!2(OY )⊗ (pr∗2 �
j−dX
Y [dY ])→ DX×Y (pr∗2 �

d− j
Y )

satisfying the following conditions:

(1) For U ⊂ X open and smooth denote by p2 :U × X→ Y the restriction of pr2.
Then γ |U×Y is the composition

( pr!2(OY )⊗ pr∗2 �
j−dX
Y [dY ])|U×Y

'
−→�

dX
U×Y/Y [dX ]⊗ p∗2�

j−dX
Y [dY ]

'
−→�

dX
U×Y/Y [dX ]⊗ p∗2 R HomY (�

d− j
Y , �

dY
Y [dY ])

' nat.
−−−→ DU×Y (p∗2�

d− j
Y ).

Here the last isomorphism is induced by the composition of the canonical
isomorphisms

�
dX
U×Y/Y [dX ]⊗ p∗2�

dY
Y [dY ] ∼=�

d
U×Y [d] ∼= π

!

U×Y (k).

(2) The following diagram commutes:

R pr2∗(pr!2(OY )⊗ pr∗2 �
j−dX
Y [dY ])

γ //

proj. formula
��

R pr2∗ DX×Y (pr∗2 �
d− j
Y )

��

R pr2∗(pr!2(OY ))⊗�
j−dX
Y [dY ]

Trpr2 ⊗ id ((

R HomY (�
d− j
Y , π !Y k)

�
j−dX
Y [dY ],

(2.2.15)
'

77

where the vertical map on the right is Trpr2
◦ adjunction ◦ cpr2,πY .

Proof. Conrad [2000, (4.3.12)] defines a map

epr2
: pr!2(OY )⊗

L pr∗2 π
!

Y k −→ pr!2 π
!

Y k
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such that

(pr!2(OY )⊗
L pr∗2 π

!

Y k)|U×Y
epr2 |U×Y // (pr!2 π

!

Y k)|U×Y

�
dX
U×Y/Y [dX ]⊗ p∗2�

dY
Y [dY ]

'

OO

' // �d
U×Y [d]

'

OO
(2.2.17)

commutes, where the vertical map on the left is the composition of the canonical
isomorphism �d

U×Y [d] ∼= π
!

U×Y (k) with cp2,πY : π
!

U×Y
∼= p!2π

!

Y . Furthermore by
[Conrad 2000, Theorem 4.4.1] the following diagram commutes:

R pr2∗(pr!2 OY ⊗
L pr∗2 π

!

Y k)
epr2 //

proj. formula
��

R pr2∗ pr!2(π
!

Y k)

Trpr2
��

R pr2∗(pr!2 OY )⊗
L π !Y k

Trpr2 ⊗ id
// π !Y k.

(2.2.18)

We define γ to be the composition

pr!2(OY )⊗ pr∗2 �
j−dX
Y [dY ]

id⊗(2.2.15)
−−−−−−→ pr!2(OY )⊗ pr∗2 R HomY (�

d− j
Y , π !Y k)

nat.
−→ R Hom(pr∗2 �

d− j
Y , pr!2(OY )⊗

L pr∗2 π
!

Y k)
c−1

pr2,πY
◦epr2

−−−−−−→ DX×Y (pr∗2 �
d− j
Y ).

It follows from (2.2.17) and (2.2.18) that γ satisfies (1) and (2). �

Proposition 2.2.19. Let i : X ↪→ Y be a closed immersion of pure codimension c
between smooth k-schemes of pure dimension dX and dY , respectively. Then

R0X�
q
Y [c] ∼=Hc

X (�
q
Y ) in Db

qc(OY ) for all q ≥ 0.

Suppose further the ideal sheaf of X in OY is generated by a sequence t = t1, . . . , tc
of global sections of OY . Define a morphism ıq

X by

ıq
X : i∗�

q
X →Hc

X (�
c+q
Y ), α 7→ (−1)c

[
dt α̃

t

]
,
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where α̃ ∈�q
Y is any lift of α and dt = dt1∧· · ·∧dtc. (Here we use the notation of

Section A.1.) Then the following diagram commutes in Db
qc(OY ):

i∗DX (�
dX−q
X )[−dX ]

i∗ // DY (�
dX−q
Y )[−dX ]

(2.2.15)
��

i∗�
q
X

(2.2.15)

OO

ıq
X
��

�
c+q
Y [c]

Hc
X (�

c+q
Y )

' // R0X (�
c+q
Y )[c].

OO
(2.2.20)

Proof. The first statement is well known; see also Lemma A.2.5. It remains to
prove the commutativity of (2.2.20). Let πX : X → Spec k and πY : Y → Spec k
be the structure maps. By Definition 2.2.5, the top row in (2.2.20) is given by the
following composition in Db

qc(OY ):

i∗�
q
X
(2.2.15)
−−−−→ i∗R Hom(�dX−q

X , π !X k)[−dX ]

ci,πY
−−→ i∗R Hom(�dX−q

X , i !π !Y k)[−dX ]

nat.
−→ R Hom(i∗�

dX−q
X , i∗i !π !Y k)[−dX ]

Tri
−→ R Hom(i∗�

dX−q
X , π !Y k)[−dX ]

(i∗)∨
−−→ R Hom(�dX−q

Y , π !Y k)[−dX ]
(2.2.15)−1

−−−−−→�
c+q
Y [c].

We set ıX := ıdX
X . Then it follows from Lemma A.2.12 and the definition of (2.2.15)

that the composition above equals

i∗�
q
X

multipl.
−−−−→ i∗Hom(�dX−q

X , �
dX
X )

nat.
−→Hom(i∗�

dX−q
X , i∗�

dX
X )

ıX
−→Hom(i∗�

dX−q
X ,Hc

X (�
dY
Y ))

(i∗)∨
−−→Hom(�dX−q

Y ,Hc
X (�

dY
Y ))

(∗)
−→Hom•(�dX−q

Y , �
dY
Y [c])

multipl.−1

−−−−−→�
c+q
Y [c],

(2.2.21)

where (∗) is induced by Hc
X (�

dY
Y )
∼= R0X (�

dY
Y )[c] → �

dY
Y [c]. There is a natural

isomorphism

ϕ :Hc
X (�

c+q
Y )

'
−→Hom(�dX−q

Y ,Hc
X (�

dY
Y ))
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coming from the isomorphisms

Hom(�dX−q
Y ,Hc

X (�
dY
Y ))
∼= R Hom(�dX−q

Y , R0X (�
dY
Y )[c])

∼= R0X (R Hom(�dX−q
Y , �

dY
Y ))[c] ∼= R0X (�

c+q
Y )[c]

∼=Hc
X (�

c+q
Y ).

This isomorphism is explicitly given by

ϕ :Hc
X (�

c+q
Y )

'
−→Hom(�dX−q

Y ,Hc
X (�

dY
Y )),

[
α

tn

]
7→

(
β 7→

[
αβ

tn

])
.

The composition (2.2.21) equals

i∗�
q
X
ϕ−1
◦(i∗)∨◦ıX◦(nat.)◦(multipl.)

−−−−−−−−−−−−−−−−→Hc
X (�

c+q
Y )∼= R0X (�

c+q
Y )[c] →�

c+q
Y [c].

It is straightforward to check that ıq
X = ϕ

−1
◦ (i∗)∨ ◦ ıX ◦ (nat.)◦ (multipl.), and this

implies the commutativity of (2.2.20). �

Corollary 2.2.22. Assume we have a cartesian square

X ′ �
� i ′ //

gX

��

Y ′

gY

��
X � � i // Y,

in which X, X ′, Y, Y ′ are smooth of pure dimension dX , dX ′ , dY , dY ′ , i is a closed
immersion, and c := dY −dX = dY ′−dX ′ . Then for all q ≥ 0 the following diagram
commutes in Db

qc(Y ):

i∗RgX∗�
q
X ′ = RgY∗i ′∗�

q
X ′

// RgY∗�
c+q
Y ′ [c]

i∗�
q
X

//

g∗X

OO

�
c+q
Y [c],

g∗Y

OO

where the lower horizontal morphism is given by the composition

i∗�
q
X
(2.2.15)
−−−−→ i∗DX (�

dX−q
X )[−dX ]

i∗
−→ DY (�

dX−q
Y )[−dX ]

(2.2.15)
−−−−→�

c+q
Y [c]

and the upper horizontal morphism by RgY∗ applied to the analogous map for i ′.

Proof. Since R0X RgY∗ = RgY∗R0X ′ , we naturally have a commutative diagram

RgY∗H
c
X ′(�

c+q
Y ′ )

' // RgY∗R0X ′(�
c+q
Y ′ )[c] // RgY∗(�

c+q
Y ′ )[c]

Hc
X (�

c+q
Y )

g∗Y

OO

' // R0X (�
c+q
Y )[c]

g∗Y

OO

// �
c+q
Y [c],

g∗Y

OO
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where the g∗Y on the very left is defined in such a way that the left square commutes.
By Proposition 2.2.19 it thus suffices to prove the commutativity of

i∗gX∗�
q
X ′ = gY∗i ′∗�

q
X ′

ıq
X ′ // gY∗H

c
X ′(�

c+q
Y ′ )

i∗�
q
X

g∗X

OO

ıq
X // Hc

X (�
c+q
Y ).

g∗Y

OO

This is a local question, we may therefore assume that the ideal of X in Y is
generated by a sequence t1, . . . , tc of global sections of OY . Then g∗Y t1, . . . , g∗Y tc
is a sequence of global sections of OY ′ , which generate the ideal sheaf of X ′

in Y ′. Hence the assumption follows from the explicit description of ıq
X and ıq

X ′

in Proposition 2.2.19. �

Proposition 2.2.23. Let f : X → Y be a finite and surjective morphism between
smooth schemes, which are both of pure dimension n. We denote by

τ f :
⊕

q f∗�
q
X →

⊕
q�

q
Y

the composition⊕
q f∗�

q
X
(2.2.15)
−−−−→

⊕
q f∗DX (�

n−q
X )

f∗
−→

⊕
q DY (�

n−q
Y )

(2.2.15)
−−−−→

⊕
q�

q
Y .

Then we have the following:

(1) In degree 0, the map τ f equals the usual trace on the finite and locally free
OY -module f∗OX , that is, TrX/Y : f∗OX → OY .

(2) For α ∈ f∗�a
X and β ∈�b

Y , we have

τ f (α f ∗β)= τ f (α)β.

(3) The composition τ f ◦ f ∗ :
⊕

q�
q
Y →

⊕
q�

q
Y equals multiplication with the

degree of f .

Proof. All statements are local in Y . We may therefore assume that f factors as
X

i
−→P

π
−→Y , where i is a regular closed immersion of pure codimension d and π is

smooth of relative dimension d; further we may assume that the ideal sheaf of X
in P is generated by d global sections t1, . . . , td of OP . Then in degree n the map
τ f equals the trace map τ n

f : f∗ωX → ωY from Section 1.3.1 and in degree q the
map τ f thus equals the composition

f∗�
q
X
∼= f∗HomX (�

n−q
X , ωX )

nat.
−−→HomY ( f∗�

n−q
X , f∗ωX )

τ n
f
−→Hom( f∗�

n−q
X , ωY )

◦ f ∗
−−→Hom(�n−q

Y , ωY )∼=�
q
Y .
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Thus for α ∈ f∗�
q
X , Lemma A.3.3 gives the following formula for τ f (α): In

i∗�d+q
P =

⊕
r+s=d+q

i∗(�r
P/Y )⊗ f ∗�s

Y ,

write

i∗(dtd∧· · ·∧dt1∧ α̃)=
∑

r+s=d+q

∑
j

i∗γ j,r⊗ f ∗β j,s for γ j,r ∈�
r
P/Y , β j,s ∈�

s
Y ,

where α̃ ∈�q
P is a lift of α. Then

τ f (α)= (−1)d(d−1)/2
∑

j

ResP/Y

[
γ j,d

t1, . . . , td

]
β j,q ∈�

q
Y . (2.2.24)

This formula immediately implies (2). For any a ∈ OX , we have

τ f (a)= (−1)d(d−1)/2 ResP/Y

[
ãdtd ∧ · · · ∧ dt1

t1, . . . , td

]
= ResP/Y

[
ãdt1 ∧ · · · ∧ dtd

t1, . . . , td

]
,

which equals TrX/Y (a) by [Conrad 2000, page 240, (R6)]; hence (1). Finally (3)
is a direct consequence of (1) and (2). �

Remark 2.2.25. The trace map from Proposition 2.2.23 and its properties are well
known; see for example [Kunz 1986, §16], where the trace is considered in much
greater generality. There the construction is done via an ad hoc method not using
the duality formalism. Therefore the connection to the trace map above is not a
priori clear.

2.3. Push-forward for Hodge cohomology with support.

Definition 2.3.1. Let f : (X,8) → (Y, 9) be a morphism in V∗ with X equi-
dimensional. We define a compactification of f to be a factorization

f = f̄ ◦ j : (X,8) ↪→ (X ,8)→ (Y, 9),

where X is equidimensional (but possibly singular), j is an open immersion and
f̄ is proper. Notice that since f |8 is proper, 8 is also a family of supports on X .
The compactification will be denoted by ( j, f̄ ).

By Nagata’s compactification theorem (see, for example [Conrad 2007]) any f
in V∗ admits a compactification.

Definition 2.3.2 (push-forward). Let f : (X,8)→ (Y, 9) be a morphism in V∗
and assume that X and Y are of pure dimension dX and dY , respectively, and set
r := dX − dY . Let

(X,8)
j
−→ (X ,8)

f̄
−→ (Y, 9)
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be a compactification of f . We define the push-forward

H∗( f ) : H(X,8)→ H(Y, 9)

as the composition

H(X,8)'
⊕
i, j

H i
8(X , DX (�

dX− j
X

)[−dX ])
nat.
−→

⊕
i, j

H i−dX

f̄ −1(9)
(X , DX (�

dX− j
X

))

⊕ f̄ j
∗

−−→

⊕
i, j

H i−dX
9 (Y, DY (�

dX− j
Y ))

' (2.2.15)
−−−−−→

⊕
i, j

H i−r
9 (Y, � j−r

Y )= H(Y, 9),

where the first isomorphism is the composition of (2.2.15) for n = 0 with the
excision isomorphism. Notice that we obtain a morphism of graded abelian groups
H∗( f ) : H∗(X,8)→ H∗(Y, 9); see (2.0.2).

This definition is independent of the chosen compactification.
We extend the definition to the case of nonequidimensional X and Y additively.

Proof. We have to prove the independence of H∗( f ) from the chosen compactifi-
cation. Let

X
j2 //

j1
��

X2

f2
��

X1 f1

//

g
>>

Y

be a commutative diagram with d := dim X1 = dim X2 = dX , j1 and j2 open and
f1 and f2 proper. Notice that g is automatically proper. Then the diagram

H i−d
8 (DX2(�

d− j
X2
)) // H i−d

f −1
2 (9)

(DX2(�
d− j
X2
))

f2∗
**

H i
8(�

j
X )

'
66

' ((

H i−d
9 (DY (�

d− j
Y )).

H i−d
8 (DX1(�

d− j
X1
)) //

g∗

OO

H i−d
f −1
1 (9)

(DX1(�
d− j
X1
))

f1∗

44
g∗

OO

commutes. The left triangle commutes since g∗|X = id∗ by Proposition 2.2.7(3), the
square in the middle obviously commutes, and the triangle on the right commutes
by Proposition 2.2.7(2).

Two arbitrary compactifications of f always receive a map from a third one and
thus the general case follows from the case above. �

Proposition 2.3.3. (1) H∗(id)= id.

(2) Let f : (X,8)→ (Y, 9) and g : (Y, 9)→ (Z , 4) be two morphisms in V∗.
Then H∗(g ◦ f )= H∗(g) ◦ H∗( f ) : H(X,8)→ H(Z , 4).
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(3) If f : (X,8)→ (Y, 9) in V∗ is finite, then H∗( f ) is induced by the trace map
τ f from Proposition 2.2.23.

Proof. (1) follows from Proposition 2.2.7(1). Now for (2) we may assume that
X , Y and Z are connected. Let ( jX , f1) and ( jY , g1) be compactifications of f
and g, respectively. Let ( jX1, f2) be a compactification of jY ◦ f1. Thus we have a
commutative diagram

X2
f2

  
X1

jX1

OO

f1

  

Y1
g1

  
X

jX

OO

f
// Y

jY

OO

g
// Z ,

with vertical arrows open immersions and diagonal arrows proper. By replacing
X1 by f −1

2 (Y ), we may assume that the parallelogram is cartesian. Then by
Proposition 2.2.7(3) the diagram

H i
f −1
2 (9)

(DX2(�
j
X2
))

f2∗ //

'

��

H i
9(DY1(�

j
Y1
))

'

��

H i
f −1
1 (9)

(DX1(�
j
X1
))

f1∗ // H i
9(DY (�

j
Y ))

commutes. Thus (2) follows from Proposition 2.2.7(2). Finally (3) follows imme-
diately from the definitions. �

Lemma 2.3.4. Consider a cartesian diagram

(X × Y ′,8′)
f ′ //

gX×Y

��

(Y ′, 9 ′)

gY

��
(X × Y,8)

f // (Y, 9),

such that f is induced by the projection to Y , with f, f ′ ∈ V∗ and gX×Y , gY ∈ V ∗.
Then H∗(gY ) ◦ H∗( f )= H∗( f ′) ◦ H∗(gX×Y ).

Furthermore, H∗( f ) : H(X × Y,8)→ H(Y, 9) factors over the projection

H(X × Y,8)→
⊕
i, j

H i
8(X × Y, pr∗1 �

dX
X ⊗ pr∗2 �

j
Y ).

Proof. We may assume X and Y are of pure dimension dX and dY , respectively,
and we set d := dX +dY . We embed X as an open in a proper k-scheme X of pure
dimension dX . Then

(X × Y,8)
j
−→ (X × Y,8)

pr2
−→ (Y, 9)
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is a compactification of f , where j is the open embedding and pr2 is induced by
the projection to Y . Similarly we obtain a compactification for f ′, in which case
we write pr′2 for the projection to Y ′. The second statement of the lemma follows
from Definition 2.3.2, Remark 2.2.6(2) and the commutative diagram

�
j
X×Y

' //

projection
��

DX×Y (�
d− j
X×Y )[−d]

(pr∗2)
∨

��

pr∗1 �
dX
X ⊗ pr∗2 �

j−dX
Y

' // DX×Y (pr∗2 �
d− j
Y )[−d].

Now we come to the first statement of the lemma. Consider the diagram (we
use a shortened notation)

H i−d
pr−1

2 (9)
(DX×Y (�

j−d
X×Y

))

(pr∗2)
∨

��

pr2∗

))

H i
8(�

j
X×Y )

55

//

))

H i−d
pr−1

2 (9)
(DX×Y (pr∗2 �

j−d
Y )) // H i−dX

9 (�
j−dX
Y ),

H i−d
pr−1

2 (9)
(pr!2(OY )⊗ pr∗2 �

j−dX
Y [dY ])

γ

OO 55

where we use the notation of Lemma 2.2.16, the upper map on the left is induced
by excision, the middle and the lower map on the left are induced by projection
and excision, and the middle and the lower map on the right are induced by the
corresponding maps from Lemma 2.2.16(2). It follows from Lemma 2.2.16 and
Remark 2.2.6(2) that all the triangles in this diagram commute. Replacing Y by Y ′

and pr2 by pr′2, we obtain a similar commutative diagram. Thus it remains to show
that the diagram

H i
8(�

j
X×Y )

H∗(gX×Y )

��

proj. // H i−d
pr−1

2 (9)
(pr!2(OY )⊗pr∗2 �

j−dX
Y [dY ])

Trpr2 ⊗ id
// H i−dX

9 (�
j−dX
Y )

H∗(gY )

��

H i
8′(�

j
X×Y ′)

proj. // H i−d ′

pr′2
−1
(9 ′)
(pr′2

!
(OY ′)⊗pr′2

∗
�

j−dX
Y ′ [dY ′])

Trpr′2
⊗ id
// H i−dX

9 ′ (�
j−dX
Y ′ )

(2.3.5)
is commutative, where d ′ = dX + dY ′ . To this end we define the map

τ f : R f∗R08(ωX×Y/Y [dX ])→ R09OY ,
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to be the composition

R f∗R08(ωX×Y/Y [dX ])
excision '
−−−−−→ R pr2∗ R08(pr!2 OY )

nat.
−→ R pr2∗ R0pr−1

2 (9)(pr!2 OY )
'
−→ R09R pr2∗ pr!2 OY

Trpr2
−−→ R09OY .

Then the upper horizontal line in diagram (2.3.5) equals H i−d(Y, · ) applied to the
composition

R f∗R08�
j
X×Y [d]

projection
−−−−−→ R f∗R08(ωX×Y/Y [dX ]⊗ f ∗� j−dX

Y [dY ])

'
−→ R f∗R08(ωX×Y/Y [dX ])⊗�

j−dX
Y [dY ]

τ f⊗id
−−−→ R09(�

j−dX
Y )[dY ].

(That there is no intervention of signs in the definition of the projection map is
compatible with the fact that the isomorphism ωX×Y [d]∼=ωX×Y/Y [dX ]⊗ f ∗ωY [dY ]

is defined without a sign; see [Conrad 2000, (2.2.6)].) The lower horizontal line in
the diagram (2.3.5) equals H i−d ′(Y ′, · ) applied to the analog composition for f ′.
Then it is straightforward to check that the commutativity of diagram (2.3.5) is
implied by the commutativity of

R f∗R08(ωX×Y/Y [dX ])
τ f //

g∗X×Y
��

R09OY

g∗Y
��

RgY∗R f ′
∗

R08′(ωX×Y ′/Y ′[dX ])
τ f ′ // RgY∗R09 ′OY ′ .

(2.3.6)

To prove the commutativity of this last diagram, we can clearly assume (by
definition of the pull-back and τ f ) that 8′ = g−1

X×Y (8) and 9 ′ = g−1
Y (9). We

define the map

α : R pr2∗ pr!2 OY → RgY∗R pr′2∗(pr′2)
!OY ′

to be the composition

R pr2∗ pr!2(π
∗

Y k)
b−1
πY ,πX
−−−→ R pr2∗ pr∗1(π

!

X
k)

−→ RgY∗R pr′2∗(pr′1)
∗(π !

X
k)

bπY ′ ,πX
−−−−→ RgY∗R pr′2∗(pr′2)

!(π∗Y ′k)= RgY∗R pr′2∗(pr′2)
!OY ′,

where bπY ,πX
: pr∗1 π

!

X
' pr!2 π

∗

Y is the isomorphism from [Hartshorne 1966, Chapter
VII, Corollaries 3.4(a)(5)] and the middle map is the composition of the natural
maps

R pr2∗ pr∗1→ RgY∗Lg∗Y R pr2∗ pr∗1→ RgY∗R pr′2∗ Lg∗X×Y pr∗1 ∼= RgY∗R pr′2∗(pr′1)
∗.
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Now the commutativity of diagram (2.3.6) follows from the commutativity of

R f∗R08(ωX×Y/Y [dX ]) //

g∗X×Y

��

R09R pr2∗ pr!2 OY

α

��
RgY∗R f ′

∗
R08′(ωX×Y ′/Y ′[dX ]) // R09RgY∗R pr′2∗(pr′2)

!OY ′,

which is clear by the explicit description of the isomorphisms b( · , · ) in the smooth
case (see [Hartshorne 1966, Chapter VII, Corollary 3.4(a), Var 6]), and from the
commutativity of the diagram

R09R pr2∗ pr!2 OY

α

��

Trpr2 // R09(OY )

g∗Y
��

R09RgY∗R pr′2∗(pr′2)
!OY ′

Trpr′2 // R09RgY∗(OY ′),

which follows from [Hartshorne 1966, Chapter VII, Corollary 3.4(b), TRA 4].
Hence the statement. �

Proposition 2.3.7. Let

(X ′,8′)
f ′ //

gX

��

(Y ′, 9 ′)

gY

��
(X,8)

f // (Y, 9),

be a cartesian square with f, f ′ ∈ V∗ and gX , gY ∈ V ∗. Assume either that gY is
flat or gY is a closed immersion and f is transversal to Y ′. Then

H∗(gY ) ◦ H∗( f )= H∗( f ′) ◦ H∗(gX ).

Proof. After embedding X in X × Y via the graph morphism, the diagram above
splits as

(X ′,8′) � � //

gX

��

(X × Y ′,8′)
pr2 //

id×gY

��

(Y ′, 9 ′)

gY

��
(X,8) � � // (X × Y,8)

pr2 // (Y, 9).

Both squares are cartesian, the projections pr2 are smooth and the inclusions are
closed. If gY is a closed immersion and f is transversal to Y ′, then id×gY :

X × Y ′→ X × Y is transversal to X ↪→ X × Y . Thus the statement follows from
Proposition 2.3.3(2), Corollary 2.2.22 and Lemma 2.3.4. �

Lemma 2.3.8. Let X be smooth and ı : D ↪→ X the inclusion of a smooth divisor.
Let8 be a family of supports on D and denote by ı1 : (D,8)→ (X,8) the map in



Higher direct images of the structure sheaf 735

V∗ induced by ı . Then H∗(ı1) : H i
8(D, �

j
D)→ H i+1

8 (X, � j+1
X ) is the connecting

homomorphism of the long exact cohomology sequence associated to the exact
sequence

0→�
j+1
X →�

j+1
X (log D)

Res
−−→ ı∗�

j
D→ 0, (2.3.9)

where Res(dt
t α) = ı∗(α) for t ∈ OX a regular element defining D and α ∈ � j

X .
In particular, if 8 ⊂ X is supported in codimension ≥ i + 1 in X , then H∗(ı1) is
injective on H i

8.

Proof. By Remark 2.2.14(1), the map ı∗ from Definition 2.2.5 induces a map (also
denoted by ı∗)

ı∗ : ı∗�
j
D→�

j+1
X [1].

It suffices to show that this map coincides with the edge homomorphism coming
from the distinguished triangle (2.3.9), which we denote by ∂Res. The diagram

Hom(�n−( j+1)
X , ı∗ωD) // Hom(�n−( j+1)

X , ωX [1])

ı∗�
j−1
D

//

OO

�
j
X [1],

'

OO

where n = dim X and the vertical maps are induced by multiplication from the
left, is commutative for both ı∗ and ∂Res. Thus we only need to consider the case
j = n− 1.

Let K • be the complex OX (−D)→ OX in degree [−1, 0]. Then K •→ ı∗OD is
a locally free resolution. We denote by Tr′ı the composition

ı∗ωD/X [−1]
ηı
−→ ı∗ı !OX

Trı
−→ OX ,

where ηı is the fundamental local isomorphism (see (A.2.1)). Then Tr′ı is given by

Tr′ı : ı∗ωD/X [−1]
'
←−Hom•(K •,OX )→ OX .

Here the first map is in degree 1 given by (see (A.2.2))

Hom(OX (−D),OX )= OX (D)→ ı∗ωD/X , 1/t 7→ −t∨,

where t is a regular parameter defining D, and the second map (in degree 0) by
Hom(OX ,OX )= OX . (See the proof of Lemma A.2.5 and in particular (A.2.8).)

It thus follows from the commutative diagram (A.2.14) that ı∗ : ı∗ωD → ωX

equals the composition

ı∗ωD→ ı∗ωD/X ⊗ωX
Tr′ı [1]⊗id
−−−−−→ ωX [1],
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where the first map is given by α 7→ t∨ ⊗ (dt ∧ α̃), with α̃ a lift. Obviously the
following diagram commutes:

0 // ωX // ωX (log D)

��

−Res // ı∗ωD

��

// 0

0 // Hom(OX ,OX )⊗ωX // OX (D)⊗ωX
−1 // ı∗ωD/X ⊗ωX // 0.

Now, by the above (and the sign conventions from [Conrad 2000, 1.3]), the map
ı∗ωD/X⊗ωX→Hom(OX ,OX )[1]⊗ωX induced by the lower exact sequence equals
−(Tr′ı ⊗ id). (Here we need that Hom•(K •,OX )[1] = Hom(K−(•+1),OX ).) Thus
the commutativity of the diagram above yields i∗ =−∂−Res = ∂Res. �

2.4. The Künneth morphism. For (X,8) and (Y, 9) ∈ ob(V∗) = ob(V ∗), the
Künneth morphism

× : H i
8(X, �

p
X )× H j

9(Y, �
q
Y )→ H i+ j

8×9(X × Y, �p+q
X×Y ) (2.4.1)

is defined as the composition of the cartesian product with multiplication. Choose
flasque resolutions �p

X→ I • and �q
Y → J • and write K i

8=Ker(08 I i
→08 I i+1)

and K j
9 = Ker(09 J j

→ 09 J j+1). Then pr−1
1 I • ⊗k pr−1

2 J • is a resolution of
pr−1

1 �
p
X⊗k pr−1

2 �
q
Y and (2.4.1) is induced by the composition of the natural maps

K i
8⊗k K j

9→ H i+ j
8×9(pr−1

1 I •⊗k pr−1
2 J •)

→ H i+ j
8×9(X × Y, pr−1

1 �
p
X ⊗k pr−1

2 �
q
Y )→ H i+ j

8×9(X × Y, �p+q
X×Y ).

We define

T : H(X,8)⊗ H(Y, 9)−→ H(X × Y,8×9) (2.4.2)

by the formula

T (αi,p⊗β j,q)= (−1)(i+p)· j (αi,p×β j,q),

where αi,p ∈ H i
8(X, �

p
X ), β j,q ∈ H j

9(Y, �
q
Y ), and × is the map in (2.4.1).

Proposition 2.4.3. The triples (H∗, T, e) and (H∗, T, e) define right-lax symmet-
ric monoidal functors (see Section 1.1.9).

Lemma 2.4.4. Let f : X → Y be a morphism. Assume Y to be smooth and X of
pure dimension d. Then for any p, q ≥ 0, there is a morphism

µ : DX (�
d−p
X )⊗ f ∗�q

Y −→ DX (�
d−(p+q)
X ),

such that
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(1) if U ⊂ X is a smooth open subset, then the diagram

DU (�
d−p
U )[−d]⊗ f |U ∗�

q
Y
µ|U [−d]//

'(2.2.15)
��

DU (�
d−(q+p)
U )[−d]

'(2.2.15)
��

�
p
U ⊗ f |U ∗�

q
Y

// �
p+q
U

commutes, where the lower horizontal map is given by α⊗β 7→ α∧ f ∗(β);

(2) if f is proper, then the diagram

R f∗DX (�
d−p
X )⊗�

q
Y

' //

f∗⊗id **

R f∗(DX (�
d−p
X )⊗ f ∗�q

Y )
µ // R f∗DX (�

d−(p+q)
X )

f∗
��

DY (�
d−p
Y )⊗�

q
Y

// DY (�
d−(p+q)
Y )

commutes, where the lower horizontal map is induced by

Hom(�d−p
Y , �

dY
Y )⊗�

q
Y →Hom(�d−(q+p)

Y , �
dY
Y ), ϕ⊗α 7→ ϕ(α∧ ( · )).

Proof. We denote by πX and πY the structure maps of X and Y , respectively. Since
π !X k and π !Y k are dualizing complexes, they are represented by bounded complexes
of injectives I •X and I •Y , and Tr f : f∗π !X k ∼= f∗ f !π !Y k→ π !Y k is thus represented by
a morphism of complexes Tr f : f∗ I •X → I •Y . Now the map

µ :HomX (�
d−p
X , I •X )⊗ f ∗�q

Y →HomX (�
d−(p+q)
X , I •Y )

is in degree n given by

HomX (�
d−p
X , I n

X )⊗ f ∗�q
Y →HomX (�

d−(p+q)
X , I n

Y ), θ ⊗α 7→ θ( f ∗(α)∧ · ).

It is immediate that this defines a map of complexes that satisfies (1). For (2) we
observe that it suffices to check the commutativity of

HomX ( f∗�
d−p
X , f∗ I •X )⊗�

q
Y

Tr f ◦( · )◦ f ∗

��

µ // HomX ( f∗�
d−(p+q)
X , f∗ I •X )

Tr f ◦( · )◦ f ∗

��

HomY (�
d−p
Y , I •Y )⊗�

q
Y

// Hom(�d−(p+q)
Y , I •Y ),

which is straightforward. �

Proof of Proposition 2.4.3. Recall that H∗(X,8) is graded by (2.0.1) and H∗(X,8)
is graded by (2.0.2). The morphism T respects the grading for both gradings. In
the following, we will work with the upper grading H∗, but all arguments will also
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work for the lower grading H∗ because the difference between lower and upper
grading is an even integer.

By using the associativity of × (defined in (2.4.1)) it is straightforward to prove
the associativity of T . Let us prove the commutativity of T , that is, that the diagram

H(X,8)⊗ H(Y, 9) T //

��

H(X × Y,8×9)

��
H(Y, 9)⊗ H(X,8) T // H(Y × X, 9 ×8)

(2.4.5)

is commutative. The left vertical map is defined by a⊗b 7→ (−1)deg(a) deg(b)b⊗a,
and the right vertical map is given by H∗(ε1) and H∗(ε2), respectively, with

ε1 : (Y × X, 9 ×8)−→ (X × Y,8×9),

ε2 : (X × Y,8×9)−→ (Y × X, 9 ×8)

the obvious morphisms ε1 ∈ V ∗ and ε2 ∈ V∗. Obviously, H∗(ε1) = H∗(ε2); thus
we may work with H∗(ε1) in the following. Note that the diagram

H i
8(X, �

p
X )× H j

9(Y, �
q
Y )

(2.4.1) //

��

H i+ j
8×9(X × Y, �p+q

X×Y )

(−1)p·q H∗(ε1)

��

H j
9(Y, �

q
Y )× H i

8(X, �
p
X )

(2.4.1) // H i+ j
9×8(Y × X, �p+q

Y×X )

is commutative, where the left vertical arrow is defined by a×b 7→ (−1)i · j (b×a).
By using this diagram it is a straightforward calculation to prove the commutativity
of (2.4.5).

We still need to prove the functoriality of T for H∗ and H∗. For H∗ this fol-
lows immediately from the definitions. Let us prove the functoriality for H∗. We
will write H i

8( · ) instead of H i
8(X, · ). By using the commutativity of T (that is,

(2.4.5)) it is enough to prove that the diagram

H i
8(�

p
X )× H j

9(�
q
Y )

H∗(h)×id
��

T // H i+ j
8×9(�

p+q
X×Y )

H∗(h×id)
��

H i−r
8′ (�

p−r
X ′ )× H j

9(�
q
Y )

T // H i+ j−r
8′×9 (�

p+q−r
X ′×Y )

(2.4.6)

commutes for any (Y, 9)∈V∗, h : (X,8)→ (X ′,8′) in V∗ and r =dim X−dim X ′

(X and X ′ are assumed to be equidimensional). Equivalently, the diagram (2.4.6),
but with × instead of T as horizontal arrows, commutes. Observe that × can be
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factored as

× : H i
8(�

p
X )× H j

9(�
q
Y )

H∗(pr1)×id
−−−−−−→ H i

8×Y (�
p
X×Y )× H j

9(�
q
Y )→ H i+ j

8×9(�
p+q
X×Y ),

where the map at right is the composition of the cartesian product with the multipli-
cation map �p

X×Y ⊗k pr−1
2 �

q
Y →�

p+q
X×Y , α⊗β 7→ α∧pr∗2 β. By Proposition 2.3.7

the diagram

H i
8(�

p
X )

H(h∗)
��

H∗(pr1) // H i
8×Y (�

p
X×Y )

H∗(h×id)
��

H i−r
8′ (�

p−r
X ′ )

H∗(pr1)// H i−r
8′×Y (�

p−r
X ′×Y )

(2.4.7)

commutes. Thus it suffices to prove that

H i
8×Y (�

p
X×Y )× H j

9(�
q
Y )

H∗(h×id)×id
��

// H i+ j
8×9(�

p+q
X×Y )

H∗(h×id)
��

H i−r
8′×Y (�

p−r
X ′×Y )× H j

9(�
q
Y )

// H i+ j−r
8′×9 (�

p+q−r
X ′×Y )

commutes.
Now let h̄ : X→ X ′ be a compactification of h and set d = dim X +dim Y . We

write

ω
p
X×Y
:= DX×Y (�

d−p
X×Y

) and ω
p
X ′×Y := DX ′×Y (�

d−p
X ′×Y ).

Notice that ωp
X×Y
|X×Y ∼=�

p
X×Y [d] and ωp

X ′×Y
∼=�

p−r
X ′×Y [d− r ]. With this notation

the push-forward is a morphism

(h̄× id)∗ : R(h̄× id)∗ω
p
X×Y
→ ω

p
X ′×Y

and we have to show that the following diagram commutes:

H i
8×Y (ω

p
X×Y

)× H j
9(�

p
Y )

(h×id)∗×id
��

// H i+ j
8×9(ω

p+q
X×Y

)

(h×id)∗
��

H i
8′×Y (ω

p
X ′×Y )× H j

9(�
p
Y )

// H i+ j
8′×9(ω

p+q
X ′×Y ),

where the upper map is given by the cartesian product composed with the µ from
Lemma 2.4.4. Clearly we may assume 8= h̄−1(8′); thus

H i
8×Y (ω

p
X×Y

)= H i
8′×Y (R(h̄× id)∗ω

p
X×Y

). (2.4.8)



740 Andre Chatzistamatiou and Kay Rülling

Now it follows from Lemma 2.4.4(2) that it is enough to prove the commutativity
of the diagram

H i
8×Y (ω

p
X×Y

)× H j
9(�

q
Y )

(h̄×id)∗×id
��

// H i+ j
8′×9(R(h̄× id)∗(ω

p
X×Y

)⊗k pr−1
2 �

q
Y )

(h̄×id)∗⊗id
��

H i
8′×Y (ω

p
X ′×Y )× H j

9(�
q
Y )

// H i+ j
8′×9(ω

p
X ′×Y ⊗k pr−1

2 �
q
Y ),

where the upper horizontal map is the composition of (2.4.8) with the cartesian
product, and the diagram

H i+ j
8′×9(R(h̄×id)∗(ω

p
X×Y

)⊗kpr−1
2 �

q
Y )

(h̄×id)∗⊗id
��

// H i+ j
8′×9(R(h̄×id)∗(ω

p
X×Y

)⊗Opr∗2 �
q
Y )

(h̄×id)∗⊗id
��

H i+ j
8′×9(ω

p
X ′×Y⊗kpr−1

2 �
q
Y )

// H i+ j
8′×9(ω

p
X ′×Y⊗Opr∗2 �

q
Y ).

For this take injective resolutions ωp
X×Y
→ I • and ωp

X ′×Y → J •; then the push-
forward is given by an actual morphism (h̄× id)∗ I •→ J •. Now the commutativity
of the first diagram is easily checked by taking an injective resolution of �q

Y . For
the commutativity of the second we observe that

(h̄× id)∗ I •⊗k pr−1
2 �

q
Y and (h̄× id)∗ I •⊗O pr∗2 �

q
Y

still represent

R(h̄× id)∗ω
p
X×Y
⊗k pr−1

2 �
q
Y and R(h̄× id)∗ω

p
X×Y
⊗O pr∗2 �

q
Y ,

respectively, and similarly with (h̄ × id)∗ I • replaced by J • and (h̄ × id)∗ω
p
X×Y

by ωp
X ′×Y . Thus it is enough to check the commutativity using these complexes,

which is obvious. �

2.5. Summary. Let (H∗, H∗, T, e) be the datum defined above, that is, we define
H∗ : V∗→GrAb on objects by (2.0.2) and on morphisms by Definition 2.3.2, we
define H∗ : (V ∗)op

→ GrAb on objects by (2.0.1) and on morphisms by (2.1.9),
and we define T by (2.4.2) and e by (2.0.3).

Theorem 2.5.1. The datum (H∗, H∗, T, e) is an object in T, that is, it is a datum
as in 1.1.8 and satisfies the properties 1.1.9.

We denote by HP the pure part of H , that is,

HP(X,8) :=
⊕
n≥0

H n
8(X, �

n
X ) for (X,8) ∈ V∗, (2.5.2)
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and let HP∗(X,8) be the graded abelian group, which in degree 2n equals

HP2n(X,8)= H n
8(X, �

n
X )

and is zero in odd degrees. The graded abelian group HP∗(X,8) is defined as in
(2.0.2). Then the functors H∗ and H∗ induce functors HP∗ and HP∗, and T and e
restrict to HP.

Corollary 2.5.3. The datum (HP∗,HP∗, T, e) is an object in T. Furthermore
HP satisfies the semipurity condition from Definition 1.2.1 and the natural map
(HP∗,HP∗, T, e)→ (H∗, H∗, T, e) is a morphism in T.

Proof. The semipurity condition follows from [Grothendieck 1968, Exposé III,
Proposition 3.3]. �

3. Cycle class map to Hodge cohomology and applications

In this section k is assumed to be a perfect field (unless stated otherwise).

3.1. Cycle class.

Proposition 3.1.1 (cycle class). Let X be a smooth scheme and let W ⊂ X be an
irreducible closed subset of codimension c. There is a class cl(X,W ) = cl(W ) ∈

H c
W (X, �

c
X ) with the property that

H∗()(cl(W ))= H∗(ıU∩W )(1)

for every open subset U ⊂ X such that U ∩W is smooth (and nonempty), where
 : (U,W ∩ U ) −→ (X,W ) and ı : W ∩ U −→ (U,W ∩ U ) are induced by the
open and closed immersion, respectively, and 1 is the identity element of the ring
H 0(X,OX ).

Remark 3.1.2. The cycle class in the proposition is Grothendieck’s “fundamental
class”; see for example [Lipman 1984, page 39, (ii)]. For the convenience of the
reader and to be sure about the compatibility with the push-forward constructed in
the previous section, we give a proof of the proposition, which is standard.

Proof. 1st step: Let η be the generic point of W . We define

H c
η (X, �

c
X ) := lim

−→
η∈U

H c
U∩W (U, �

c
U ),

where the inductive limit runs over all open sets U ⊂ X with η ∈ U . Choose U
such that U ∩W 6= ∅ is smooth. The image of H∗(ıU∩W )(1) ∈ H c

U∩W (U, �
c
U ) in

H c
η (X, �

c
X ) doesn’t depend on the choice of U by Section 1.1.9(4). We denote this

class by cl(W )η.
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2nd step: A class a ∈ H c
η (X, �

c
X ) is in the image of

H c
W (X, �

c
X )−→ H c

η (X, �
c
X )

(that is, extends to a global class) if and only if for all 1-codimensional points x in
W there is an open subset U ⊂ X containing x , so that a lies in the image of

H c
W∩U (U, �

c
U )−→ H c

η (X, �
c
X ).

Indeed, the Cousin resolution yields an exact sequence

0−→ H c
W (X, �

c
X )−→ H c

η (X, �
c
X )−→

⊕
x∈W,cd(x)=1

H c+1
x (X, �c

X ), (3.1.3)

and H c
U∩W (U, �

c
U ) −→ H c

η (X, �
c
X ) −→ H c+1

x (X, �c
X ) vanishes for all x and U as

above.

3rd step: If W is normal then cl(W )η extends (uniquely) to a class in H c
W (X, �

c
X ).

Indeed, since W is regular in codimension one and we assume that k is perfect, we
may choose an open U ⊂ X such that U ∩W is smooth and U ∩W contains all
points of codimension 1 of W . So that the class extends by the 2nd step. Note that
the extension is unique because of the exact sequence (3.1.3).

4th step: We claim that the class cl(W )η extends to a class in H c
W (X, �

c
X ). In view

of the 2nd step it is sufficient to extend the class at all points x ∈W of codimension
1. Thus we may assume that X (and therefore W ) is affine. The normalization
W̃ −→ W is a finite morphism and thus projective. Choose an embedding W̃ −→
W×k Pn

k over W . The previous step yields a class cl(W̃ )∈ H n+c
W̃

(X×Pn, �n+c
X×Pn ).

Consider H∗(pr1)(cl(W̃ ))∈ H c
W (X, �

c
X ); for an open U ⊂ X such that W ∩U 6=∅

and U ∩W is smooth, we obtain

H∗()H∗(pr1)(cl(W̃ ))= H∗(pr1|U×Pn )H∗( ′)(cl(W̃ ))

= H∗(pr1|U×Pn )H∗(ı(U×Pn)∩W̃ )(1)= H∗(ıU∩W )(1),

with  ′ : (U ×Pn, (U ×Pn)∩ W̃ ) −→ (X ×Pn, W̃ ). Thus H∗(pr1)(cl(W̃ )) is the
desired lift. �

3.1.4. Explicit description of the cycle class. Let X be a smooth scheme and let
W ⊂ X be an irreducible closed subset of codimension c with generic point η ∈ X .
Denote A = OX,η. Then

H c
η (X, �

c
X )= lim

−→
f⊂mη

�c
A

( f )
,

where the limit is over all A-sequences f = ( f1, . . . , fc) of length c that are con-
tained in mη (in particular

√
( f1, . . . , fc) = mη). The class of ω ∈ �c

A under the
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composition in �c
A→�c

A/( f )→ H c
η (X, �

c
X ) is denoted by

[
ω
f

]
. See Section A.1

for details.
Now let U be an affine open subset of X such that U ∩W is smooth and the

ideal of W ∩U in OU is generated by global sections t1, . . . , tc on U . Then by
Proposition 2.2.19

cl(W )η = (−1)c
[

dt1 · · · dtc
t1, . . . , tc

]
.

Lemma 3.1.5. For a closed immersion ı : X −→ Y between smooth schemes and an
effective smooth divisor D ⊂ Y such that

• D meets X properly, and thus D ∩ X := D×Y X is a divisor on X,

• D′ := (D∩X)red is smooth and connected, and thus D∩X = n ·D′ as divisors
(for some n ∈ Z with n ≥ 1),

we denote by ıX : X −→ (Y, X) and ıD′ : D′−→ (D, D′) the morphisms in V∗ induced
by ı , and we define g2 : (D, D′)−→ (Y, X) in V ∗ by the inclusion g : D ↪→ Y . Then
the following equality holds:

H∗(g2)(H∗(ıX )(1X ))= n · H∗(ıD′)(1D′).

Proof. Let c be the codimension of X in Y and g3 : (D, D′)−→ (Y, D′) be induced
by the inclusion D ⊂ Y . Then

H∗(g3) : H c
D′(D, �

c
D)−→ H c+1

D′ (Y, �
c+1
Y )

is injective (by Lemma 2.3.8), and thus we need to prove

H∗(g3)H∗(g2)H∗(ıX )(1X )= n · H∗(g3)H∗(ıD′)(1D′).

Let g1 : D −→ (Y, D) be induced by g; then projection formula 1.1.16 gives

H∗(g3)H∗(g2)(H∗(ıX )(1X ))= H∗(g1)(1D)∪ H∗(ıX )(1X ).

Therefore it suffices to prove

H∗(g1)(1D)∪ H∗(ıX )(1X )= n · H∗(g3 ◦ ıD′)(1D′). (3.1.6)

Let η be the generic point of D′. Since H c+1
Z (Y, �c+1

Y ) = 0 for all closed subsets
Z ⊂ Y of codimension ≥ c+ 2, by [Grothendieck 1968, Exposé III, Proposition
3.3], the restriction map

H c+1
D′ (Y, �

c+1
Y )−→ H c+1

η (Y, �c+1
Y ) (3.1.7)

is injective. Thus it is sufficient to prove the equality (3.1.6) in H c+1
η (Y, �c+1

Y ).
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Since X is smooth we may find a regular sequence t1, . . . , tc∈OY,η that generates
the ideal of X . If D = div( f ) around η, then

(−1)
[

d f
f

]
∪ (−1)c

[
dt1 ∧ · · · ∧ dtc

t1, . . . , tc

]
= (−1)c+1

[
d f ∧ dt1 ∧ · · · ∧ dtc

f, t1, . . . , tc

]
is the image of H∗(g1)(1D)∪ H∗(ıX )(1X ) in H c+1

η (Y, �c+1
Y ).

Let π ∈OY,η be a lift of a generator of the maximal ideal in OX,η. By the explicit
description of the cycle class in Section 3.1.4 we get

H∗(g3 ◦ ıD′)(1D′)= (−1)c+1
[

dπ ∧ dt1 ∧ · · · ∧ dtc
π, t1, . . . , tc

]
.

Obviously f = aπn in OX,η for a unit a ∈ O∗X,η. Choose a lift ã ∈ O∗Y,η of a; thus
f = ãπn modulo (t1, . . . , tc), and we obtain[

d f ∧ dt1 ∧ · · · ∧ dtc
f, t1, . . . , tc

]
=

[
nãπn−1

· dπ ∧ dt1 ∧ · · · ∧ dtc
ãπn, t1, . . . , tc

]
= n ·

[
dπ ∧ dt1 ∧ · · · ∧ dtc

π, t1, . . . , tc

]
,

which proves (3.1.6). �

Theorem 3.1.8. There exists a morphism cl : CH−→ H = (H∗, H∗, T, e) in T.

Proof. Since there is a morphism HP= (HP∗,HP∗, T, e)−→ H in T, it suffices to
prove the existence of cl : CH−→ HP.

This follows from Theorem 1.2.3, since HP satisfies all the conditions listed
there: HP is in T and satisfies the semipurity condition 1.2.1 by Corollary 2.5.3. It
satisfies 1.2.3(1) by Proposition 2.3.3(3) and 1.2.3(3) by Lemma 3.1.5. Finally the
element cl(X,W ) from 1.2.3(4) is the cycle class constructed in Proposition 3.1.1
and 1.2.3(2) is obvious. �

3.2. Main theorems.

3.2.1. Let f : (X,8) −→ (Y, 9) be a morphism in V∗ or V ∗. By Theorem 3.1.8,
Section 1.3.18 and Lemma 1.3.19, the morphisms

H∗( f ) : H∗(X,8)−→ H∗(Y, 9) and H∗( f ) : H∗(Y, 9)−→ H∗(X,8)

are respectively given by (we write cl instead of Cor(cl))

H∗( f )= ρH ◦ cl ◦τCH
∗
( f ) and H∗( f )= ρH ◦ cl ◦τ ∗CH( f ).

Thus we may use composition of correspondences in CorCH to compute H∗( f ) ◦
H∗( f ), H∗( f ) ◦ H∗( f ), etc.
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Proposition 3.2.2. Let X, Y be smooth and connected, and let

α ∈ HomCorCH(X, Y )0 = C H dim X (X × Y, P(8X ,8Y )).

(1) If the support of α projects to an r-codimensional subset in Y , then the re-
striction of ρH ◦ cl(α) to

⊕
j<r,i H i (X, � j

X ) vanishes.

(2) If the support of α projects to an r-codimensional subscheme in X , then the
restriction of ρH ◦ cl(α) to

⊕
j≥dim X−r+1,i H i (X, � j

X ) vanishes.

Proof. (1) We may assume α = [V ] for V ⊂ X × Y a closed irreducible subset of
dimension dim(Y )=: dY , with pY (V )⊂ Y of codimension r . We set dX = dim X .

By definition of ρH (see Section 1.3.18) and Lemma 2.3.4 it is sufficient to prove
that for all 0≤ q ≤ r − 1 the image of the class cl(V ) vanishes via the map

H dX
V (�

dX
X×Y )

proj.
−−→ H dX

V (pr∗1 �
dX−q
X ⊗ pr∗2 �

q
Y ).

To prove this we may also localize at the generic point η of V [Grothendieck 1968,
Exposé III, Proposition 3.3].

We write B = OX×Y,η and A = OY,pY (η). Now A is a regular local ring of
dimension r and B is formally smooth over A. Let t1, . . . , tr ∈ A be a regular
system of parameters of A. Since B/(1⊗ t1, . . . , 1⊗ tr ) is a local regular ring
there exist elements sr+1, . . . , sdX ∈ B such that 1⊗ t1, . . . , 1⊗ tr , sr+1, . . . , sdX is
a system of regular parameters for B. Thus by the explicit description of the cycle
class in Section 3.1.4 we obtain

cl(V )η = (−1)dX

[
d(1⊗ t1)∧ · · · ∧ d(1⊗ tr )∧ dsr+1 ∧ · · · ∧ dsdX

1⊗ t1, . . . , 1⊗ tr , sr+1, . . . , sdX

]
.

This clearly implies the claim.

(2) Let α= [V ] be as in (1) and suppose pX (V ) has codimension r in X . As above
it suffices to prove that for all 0≤ q ≤ r − 1 the image of the class cl(V ) vanishes
under the projection map

H dX
V (�

dX
X×Y )

proj.
−−→ H dX

V (pr∗1 �
q
X ⊗ pr∗2 �

dX−q
Y ).

Write C = OX,pX (η). Then as in (1) we find τ1, . . . , τr ∈ C and σr+1, . . . , σdX ∈ B,
such that τ1⊗1, . . . , τr⊗1, σr+1, . . . , σdX is a system of regular parameters for B.
Thus

cl(V )η = (−1)dX

[
d(τ1⊗ 1)∧ · · · ∧ d(τr ⊗ 1)∧ dσr+1 ∧ · · · ∧ dσdX

τ1⊗ 1, . . . , τr ⊗ 1, σr+1, . . . , σdX

]
,

which implies the claim. �
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3.2.3. Let S be a k-scheme and let f : X → S and g : Y → S be two integral
S-schemes that are smooth over k. Let Z ⊂ X×S Y be a closed integral subscheme
of dimension equal to the dimension of Y and such that pr2|Z : Z → Y is proper.
For an open subset U ⊂ S, we denote by ZU ⊂ f −1(U )×U g−1(U ) the pullback
of Z over U . This gives a correspondence [ZU ] ∈ HomCorCH( f −1(U ), g−1(U ))0,
which induces a morphism of k-vector spaces

ρH ◦ cl([ZU ]) : H i ( f −1(U ),� j
f −1(U ))→ H i (g−1(U ),� j

g−1(U )) for all i, j.

Proposition 3.2.4. In the situation above, the set {ρH ◦ cl([ZU ]) | U ⊂ Z open}
induces a morphism of quasicoherent OS-modules

ρH (Z/S) : Ri f∗�
j
X → Ri g∗�

j
Y for all i, j.

Proof. We need to show the following statements:

(1) The maps ρH ◦ cl([ZU ]) are compatible with restriction to open sets.

(2) The maps ρH ◦ cl([ZU ]) are O(U )-linear.

To show (1), let us denote by

pr1,U : f −1(U )× g−1(U )→ f −1(U ) for pr1,U ∈ V ∗,

pr2,U : ( f −1(U )× g−1(U ), P(8 f −1(U ),8g−1(U ))→ g−1(U ) for pr2,U ∈ V∗,

the morphism induced by the projections (see (1.1.2) and (1.3.8) for the definition
of P(8 f −1(U ),8g−1(U ))). Let j : V ↪→U be an open immersion and denote by

j f : f −1(V )−→ f −1(U ) and jg : g−1(V )−→ g−1(U )

the morphisms in V ∗ induced by j .
We have to show that for all a ∈ H i ( f −1(U ),� j

f −1(U ))

H∗( jg)H∗(pr2,U )(H
∗(pr1,U )(a)∪ cl([ZU ]))

= H∗(pr2,V )(H
∗(pr1,V )(H

∗( j f )(a)∪ cl([ZV ])). (3.2.5)

As a first step from the left side to the right side we observe that

H∗( jg)H∗(pr2,U )= H∗(pr′2,V )H
∗(id f −1(U )× jg),

where pr′2,V : ( f −1(U )×g−1(V ),8)−→ g−1(V ) in V∗ is induced by the projection
and 8 := (id× jg)−1 P(8 f −1(U ),8g−1(U )). Denoting pr′1,U : f −1(U )× g−1(V )−→
f −1(U ) as a morphism in V ∗, we obtain the equality

H∗(id f −1(U )× jg)(H∗(pr1,U )(a)∪ cl([ZU ]))= H∗(pr′1,U )(a)∪ cl([ZV ])
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in H( f −1(U ) × g−1(V ),8); here we consider ZV ∈ 8 as a closed subset of
f −1(U )× g−1(V ). Next, consider the morphisms

j f×idg−1(V ) : f −1(V )×g−1(V )−→ f −1(U )×g−1(V ),

τ : ( f −1(V )×g−1(V ), ZV )−→ ( f −1(U )×g−1(V ),8),

id′ : ( f −1(V )×g−1(V ), ZV )−→ ( f −1(V )×g−1(V ), P(8 f −1(V ),8g−1(V ))),

with

j f × idg−1(V ) ∈ V ∗, τ ∈ V∗, id′ ∈ V∗,

and where id′ is induced by the identity. The projection formula yields

H∗(pr′1,U )(a)∪ cl([ZV ])= H∗(pr′1,U )(a)∪ cl(CH∗(τ )([ZV ]))

= H∗(τ )(H∗( j f × idg−1(V ))H
∗(pr′1,U )(a)∪ cl([ZV ])).

Now the equalities

H∗(pr′2,V )H∗(τ )= H∗(pr2,V )H∗(id
′),

H∗( j f × idg−1(V ))H
∗(pr′1,U )= H∗(pr1,V )H

∗( j f ),

imply the claim (3.2.5).
For (2), it suffices to consider the case U = S = Spec R. The ring homomor-

phisms g∗ : R−→ H 0(X,OX ) and f ∗ : R−→ H 0(Y,OY ) induce R-module structures
on H(X) and H(Y ), respectively.

We have to prove the following equality for all r ∈ R and a ∈ H i (X, � j
X ):

g∗(r)∪ H∗(pr2)(H
∗(pr1)(a)∪ cl([Z ]))= H∗(pr2)(H

∗(pr1)( f ∗(r)∪ a)∪ cl([Z ])).

For this, it is enough to show that

H∗(pr2)(g
∗(r))∪ cl([Z ])

= H∗(pr1)( f ∗(r))∪ cl([Z ]) in H d
Z (X × Y, �d

X×Y ). (3.2.6)

Choose an open set U ⊂ X × Y such that Z ∩U is nonempty and smooth. Since
the natural map H d

Z (X × Y, �d
X×Y ) → H d

Z∩U (U, �
d
U ) is injective, it suffices to

check (3.2.6) on H d
Z∩U (U, �

d
U ). We write ı1 : Z ∩U −→ (U, Z ∩U ) in V∗ and

ı2 : Z ∩U −→U in V ∗ for the obvious morphisms. By using the projection formula
and cl([Z ∩U ])= H∗(ı1)(1) we reduce to the statement

H∗(ı2)H∗(pr2)(g
∗(r))= H∗(ı2)H∗(pr1)( f ∗(r)).

This follows from g ◦ pr2 ◦ı2 = f ◦ pr1 ◦ı2. �
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Definition 3.2.7. Two integral schemes X and Y over a base S are called properly
birational over S if there is an integral scheme Z over S and morphisms over S:

Z
proper, birational

  

proper, birational

��
X Y.

Theorem 3.2.8. Let S be a scheme over a perfect field k. Let f : X −→ S and
g : Y −→ S be integral S-schemes, that are smooth over k and properly birational
over S. Let Z be an integral scheme together with proper birational morphisms
Z −→ X and Z −→ Y such that

Z

~~ ��
X

f ��

Y

g��
S

is commutative. We denote by Z0 be the image of Z in X ×S Y . Then, for all i ,
ρH (Z0/S) induces isomorphisms of OS-modules (d = dim X = dim Y )

Ri f∗OX
'
−→ Ri g∗OY and Ri f∗�d

X
'
−→ Ri g∗�d

Y .

Proof. Recall that ρH (Z0/S) is defined in Proposition 3.2.4 as the sheafication of
the maps

ρH ◦ cl([(Z0,U ]) : H i ( f −1(U ),� j
f −1(U ))→ H i (g−1(U ),� j

g−1(U )), (3.2.9)

where U runs over all open sets of S and Z0,U denotes the restriction of Z0

to f −1(U ) ×U g−1(U ). By Proposition 3.2.4, ρH (Z0/S) is a morphism of OS-
modules.

Obviously, it is sufficient to prove that (3.2.9), for j = 0 and j = d , is an
isomorphism for every open U . Thus we may suppose that U = S, f −1(U )= X
and g−1(U )= Y , Z0,U = Z , and we need to prove that

ρH ◦ cl([(Z0]) : H i (X,OX )−→ H i (Y OY ),

ρH ◦ cl([(Z0]) : H i (X, �d
X )−→ H i (Y, �d

Y ),

are isomorphisms for all i . In other words, we reduced to the case S = Spec(k).
Obviously, we may assume that Z ⊂ X×Y . Let Z ′ ⊂ Z , X ′ ⊂ X and Y ′ ⊂ Y be

nonempty open subsets such that pr−1
1 (X ′)= Z ′ and pr−1

2 (Y ′)= Z ′, and such that
pr1 : Z

′
−→ X ′ and pr2 : Z

′
−→ Y ′ are isomorphisms.

We obtain a correspondence [Z ] ∈ HomCorCH(X, Y )0, and we denote by [Z t
] ∈

HomCorCH(Y, X)0 the correspondence defined by Z considered as subset of Y × X .
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We claim that

[Z ] ◦ [Z t
] =1Y + E1 and [Z t

] ◦ [Z ] =1X + E2,

with cycles E1 and E2, supported in (Y \ Y ′)× (Y \ Y ′) and (X \ X ′)× (X \ X ′),
respectively. Indeed, in view of Lemma 1.3.4, [Z t

] ◦ [Z ] is naturally supported in

supp(Z , Z t)= {(x1, x2) ∈ X × X | (x1, y) ∈ Z , (y, x2) ∈ Z t for some y ∈ Y }.

By using Lemma 1.3.6 for the open X ′ ⊂ X , we conclude that [Z t
] ◦ [Z ] maps to

[1X ′] via the localization map

CH(supp(Z , Z t))−→ CH(supp(Z , Z t)∩ (X ′× X ′)).

Thus
[Z t
] ◦ [Z ] =1X + E2

with E2 supported in supp(Z , Z t) \ (X ′× X ′). Finally, we observe that

supp(Z , Z t)∩ ((X ′× X)∪ (X × X ′))=1X ′ = supp(Z , Z t)∩ (X ′× X ′),

and thus E2 has support in (X× X)\ ((X ′× X)∪ (X× X ′))= (X \ X ′)× (X \ X ′).
The same argument works for [Z ] ◦ [Z t

].
Now, Proposition 3.2.2 implies that ρH ◦ cl([Z ]) induce isomorphisms

H∗(X,OX )
'
−→ H∗(Y,OY ) and H∗(X, �d

X )
'
−→ H∗(Y, �d

Y ). �

Corollary 3.2.10. Let k be an arbitrary field and let f : X −→ Y be a proper
birational morphism between smooth schemes X and Y . Then

R f∗(OX )= OY and R f∗(ωX )= ωY .

Proof. By base change we may assume that k is algebraically closed. The claim
follows from Theorem 3.2.8 for S = Y and X = Z . �

3.2.11. Consider a commutative diagram

Ya
� � //

gen. fin.

&&

Y

f
����

X̃ bir.
π

// X.

Here, all morphisms are proper and all schemes are integral, X̃ and Y are smooth
of dimension dX and dY , π is birational, f is surjective, Ya −→ X is generically
finite and surjective, and Ya ↪→ Y is a closed immersion. Let η be the generic point
of X ; then Ya ×X η is finite over Spec k(η) of degree deg(Ya/X).
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Choose a nonempty open set U ⊂ X with π : π−1(U )
∼=
−→ U and such that

Y ′a := Ya ∩ f −1(U )⊂ f −1(U )
f
−→U is a finite morphism. Set

Za = Y ′a ×U π−1(U )⊂ Ya ×X X̃ ,

which gives a morphism [Za] : Y −→ X̃ in CorCH. Furthermore, set

0 = π−1(U )×U f −1(U )⊂ X̃ ×X Y,

which defines an element [0] : X̃ −→Y in CorCH. By using Lemmas 1.3.4 and 1.3.6,
we obtain

[Za] ◦ [0] = deg(Ya/X) · idX̃ +E1,

where E1 has support in π−1(X\U )×π−1(X\U ); thus ρH ◦cl(E1) acts trivially on
H∗(X̃ ,OX̃ )⊕H∗(X̃ , �dX

X̃ ) by Proposition 3.2.2. On the other hand, Lemmas 1.3.4
and 1.3.6 imply

[0] ◦ [Za] = Y ′a ×U f −1(U )+ E2,

where E2 has support in f −1(X \ U ) × f −1(X \ U ); thus ρH ◦ cl(E2) = 0 on
H∗(Y,OY )⊕ H∗(Y, �dY

Y ). Moreover, by using Lemmas 1.3.4 and 1.3.6 again,

[0] ◦ [Za] ◦ [0] ◦ [Za] = deg(Ya/X) · Y ′a ×U f −1(U )+ E3,

with a cycle E3 supported in f −1(X\U )× f −1(X\U ), and therefore ρH◦cl(E3)=0
on H∗(Y,OY )⊕ H∗(Y, �dY

Y ).
We obtain an endomorphism

P(Ya) := ρH ◦ cl([0] ◦ [Za])|H∗(Y,OY )⊕H∗(Y,�dY
Y )

of H∗(Y,OY ) ⊕ H∗(Y, �dY
Y ) such that P(Ya)

2
= deg(Ya/X) · P(Ya). Note that

P(Ya) does not depend on X̃ , because it is given by

P(Ya)= ρH (cl([Y ′a ×U f −1U ])).

Proposition 3.2.12. If deg(Ya/X) is invertible in k then

ρH ◦ cl(0) : H∗(X̃ ,OX̃ )⊕ H∗(X̃ , �dX

X̃
)−→ image

(
P(Ya)|H∗(Y,OY )⊕H∗(Y,�dY

Y )

)
is a well-defined isomorphism.

Proof. Indeed

((ρH ◦ cl(Za)) ◦ (ρH ◦ cl(0)))|H∗(X̃ ,OX̃ )⊕H∗(X̃ ,�dX
X̃
)

is multiplication by deg(Ya/X). It follows that ρH ◦cl(0) is injective and the image
is contained in the image of P(Ya). The opposite inclusion is obvious. �
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Corollary 3.2.13. Let Y , X̃ and X be as in Section 3.2.11. Let a ∈ Y be a closed
point of the generic fiber f −1(η) with degk(η)(a)∈ k∗; we denote the corresponding
closed subvariety by Ya . For i ≥ 0, the following are equivalent:

(1) Riπ∗(OX̃ )⊕ Riπ∗(�
dX

X̃
)= 0.

(2) P(Ya ∩ f −1(X ′)) vanishes on

H i ( f −1(X ′),O f −1(X ′))⊕ H i ( f −1(X ′),�dX
f −1(X ′))

for every affine open subset X ′ ⊂ X.

Proof. In view of Proposition 3.2.12 we get

H i (π−1(X ′),Oπ−1(X ′))= image
(
P(Ya ∩ f −1(X ′))|H i ( f −1(X ′),O f−1(X ′))

)
and

H i (π−1(X ′),�dX
π−1(X ′))= image

(
P(Ya ∩ f −1(X ′))|H i ( f −1(X ′),�dY

f−1(X ′)
)

)
for every open subset X ′ ⊂ X . �

Theorem 3.2.14. Let k be an arbitrary field. Consider

Y

f
��

X̃ π // X,

where Y and X̃ are smooth and connected, X is integral and normal, f is surjective
and finite with deg( f ) ∈ k∗, and finally π is birational and proper. Then X is
Cohen–Macaulay and

Rπ∗OX̃ = OX and Rπ∗ωX̃ = ωX ,

where ωX is the dualizing sheaf of X.

Proof. Choose an algebraic closure k̄ of k. We claim that X is geometrically
normal, that is,

X ×k k̄ =
r∐

i=1

X i (disjoint union) (3.2.15)

with X i integral and normal for all i . Indeed, since X is normal we obtain

OX
=
−→ π∗OX̃ ,
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and this isomorphism is stable under the base change to k̄. Because X̃ is smooth,
X̃ ×k k̄ is a disjoint union of smooth schemes

X̃ ×k k̄ =
r∐

i=1

X̃ i .

From OX×k k̄
=
−→ π∗OX̃×k k̄ we conclude that π ×k k̄ has connected fibres; thus we

obtain the equality (3.2.15) with X i := (π ×k k̄)(X̃ i ). Of course, X̃ i −→ X i is
birational, and OX i

=
−→ (π ×k k̄)∗OX̃ i

implies that X i is normal.
We denote by Yk̄, X k̄, X̃ k̄ the base change to k̄, and by σX : X k̄ −→ X the obvious

morphism. Since

σ ∗X Riπ∗OX̃ = Riπk̄∗OX̃ k̄
, and σ ∗X Riπ∗ωX̃ = Riπk̄∗ωX̃ k̄

,

and σX is faithfully flat, it is sufficient to prove

Riπk̄∗OX̃ k̄
= 0= Riπk̄∗ωX̃ k̄

for all i > 0.

Now X̃×k k̄=
∐r

i=1 X̃ i with X̃ i smooth and connected such that πk̄ |X̃ i
: X̃ i −→ X i

is birational. We define Yi := Yk̄ ∩ f −1
k̄
(X i ) and let Yi =

∐
j Yi, j be the decompo-

sition into connected (smooth) components. Since deg(Yi/X i ) ∈ k∗ is invertible,
there exists j such that deg(Yi, j/X i ) ∈ k∗. Thus we are reduced to proving the
claim for an algebraically closed field k.

Since f is affine, the statement Rπ∗OX̃ = OX follows from Corollary 3.2.13 and
X normal. Applying DX and shifting by [−dX ] (with dX = dim X ), we obtain
Rπ∗�

dX
X̃ = π

!

X k[−dX ] (with πX : X → Spec k the structure map). Now again by
Corollary 3.2.13, we obtain Riπ∗�

dX
X̃ = 0 for all i 6= 0. Thus π !X k[−dX ] = ωX is

a sheaf and hence X is Cohen–Macaulay. �

4. Generalization to tame quotients

The goal of this section is to generalize Theorem 3.2.8 by replacing the assumption
on the smoothness of X and Y with the weaker assumption that X and Y are
tame quotients (see Definition 4.2.6). We already proved in Theorem 3.2.14 that
the cohomology of the structure sheaf and the dualizing sheaf of a tame quotient
behaves like for smooth schemes. Therefore it is a natural question to extend
Theorem 3.2.8 in order to include tame quotients.

4.1. The action of finite correspondences. Let X be a smooth scheme and Z a
closed integral subscheme of pure codimension c. Then H

j
Z (�

c
X ) = 0 for j < c.

Consequently, there is a natural morphism

Hc
Z (�

c
X )[−c] → R0Z�

c
X , (4.1.1)



Higher direct images of the structure sheaf 753

which induces an isomorphism H c
Z (X, �

c
X )= H 0(X,Hc

Z (�
c
X )).

Definition 4.1.2. Let f : X→Y be a morphism between smooth k-schemes of pure
dimension dX and dY , respectively. Let Z ⊂ X be a c := dX − dY codimensional
integral subscheme such that the restriction of f to Z is finite. Then we define for
q ≥ 0 the local push-forward

fZ∗ : f∗Hc
Z (�

q
X )→�

q−c
Y

in the following way: Choose a compactification of f , that is, a proper morphism
f̄ : X→ Y and an open immersion j : X ↪→ X such that f = f̄ ◦ j , and then define
fZ∗ as the composition in D+qc(Y ) of the natural map

f∗Hc
Z (�

q
X )

(4.1.1)
−−−→ R f∗(R0Z (�

q
X )[c])

with

R f∗(R0Z (�
q
X )[c])

(2.2.15)
−−−−−→
+excision

R f̄∗R0Z (DX (�
dX−q
X

)[c− dX ])

forget support
−−−−−−−→ R f̄∗DX (�

dX−q
X

)[−dY ]

f̄∗
−→ DY (�

dX−q
Y )[−dY ]

(2.2.15)
−−−−→�

q−c
Y ,

(4.1.3)

where f̄∗ is the morphism from Definition 2.2.5.
Applying H 0(X, · ) gives a morphism

H 0(Y, f∗Hc
Z (�

q
X ))= H 0(X,Hc

Z (�X ))= H c
Z (X, �

q
X )→ H 0(Y, �q−c

Y ),

which by the definition coincides with the cohomological degree zero part of the
pushforward for f : (X, Z)→ Y ; see Definition 2.3.2. This also implies that fZ∗

is independent of the chosen compactification.

Definition 4.1.4. Let S be a k-scheme and let f : X → S and g : Y → S be
two integral S-schemes, which are smooth over k. Let Z ⊂ X ×S Y be a closed
integral subscheme such that pr2|Z : Z → Y is finite and surjective. In particular
the codimension of Z in X × Y equals dim X := c. The projections from X × Y
to X and Y are denoted by pr1 and pr2, respectively. For all q ≥ 0 we define a
morphism

ϕ
q
Z : f∗�

q
X → g∗�

q
Y

as follows: Let

cl(Z) ∈ H c
Z (X × Y, �c

X×Y )= H 0(X × Y,Hc
Z (�

c
X×Y ))

be the cycle class of Z . The cup product with cl(Z) yields a morphism

∪ cl(Z) :�q
X×Y →Hc

Z (�
c+q
X×Y ) (4.1.5)
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and hence a morphism f∗ pr1∗�
q
X×Y → f∗ pr1∗Hc

Z (�
c+q
X×Y ). We claim that it also

induces a morphism of OS-modules

f∗ pr1∗�
q
X×Y → g∗ pr2∗Hc

Z (�
q+c
X×Y ). (4.1.6)

Indeed since Hc
Z (�

q+c
X×Y ) has support in Z ⊂ X ×S Y , the two abelian sheaves

g∗ pr2∗Hc
Z (�

q+c
X×Y ) and f∗ pr1∗Hc

Z (�
q+c
X×Y )

are equal; we denote this abelian sheaf on S by A. Now there are two OS-module
structures on A: They are induced by

OS
g∗
−→ g∗OY

pr∗2
−→ g∗ pr2∗ OX×Y and OS

f ∗
−→ f∗OX

pr∗1
−→ f∗ pr1∗ OX×Y .

The claim (4.1.6) is now a consequence of the following equality in A:

pr∗2 g∗(a) · (β ∪ cl(Z))= pr∗1 f ∗(a) · (β ∪ cl(Z))

for all a ∈ OS, β ∈ f∗ pr1∗�
q
X×cl(Z))Y , which holds by (3.2.6). We can then define

the morphism ϕ
q
Z as the composition

f∗�
q
X

pr∗1
−→ f∗ pr1∗�

q
X×Y

(4.1.6)
−−−→ g∗ pr2∗Hc

Z (�
c+q
X×Y )

pr2,Z∗
−−−→ g∗�

q
Y . (4.1.7)

We write ϕZ =
⊕

qϕ
q
Z .

Let α=
∑

i ni [Zi ] be a formal sum of integral closed subschemes Zi of X×S Y ,
which are finite and surjective over Y , with coefficients ni in Z. Then we define

ϕα :=
∑

i

niϕZi :

⊕
q

f∗�
q
X →

⊕
q

g∗�
q
Y . (4.1.8)

Lemma 4.1.9. In the situation above, assume additionally that g is affine. Then
for any cycle α =

∑
i ni [Zi ], with Zi ⊂ X ×S Y integral closed subschemes, which

are finite and surjective over Y , and ni ∈ Z, we have the equality

⊕i H i (S, ϕα)= ρH (cl(ᾱ)) :
⊕
i, j

H i (X, � j
X )→

⊕
i, j

H i (Y, � j
Y ),

where ᾱ is the image of α in CHdim Y (X × Y, P(8X ,8Y )) with P(8X ,8X ) as
in (1.3.8), ρH is defined in 1.3.18 and cl is a shorthand notation for Cor(cl) with
cl : C H → H the morphism from 3.1.8.

Proof. Let π : S → Spec k be the structure map. We may assume α = [Z ] with
Z⊂ X×SY an integral closed subscheme, which is finite and surjective over Y . It is
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easy to see that ρH (cl(ᾱ)) is induced by taking the cohomology of the composition

Rπ∗ f∗�
q
X

pr∗1
−→ Rπ∗R( f pr1)∗�

q
X×Y (4.1.10)

∪ cl(Z)
−−−−→ Rπ∗R( f pr1)∗H

c
Z (�

q+c
X×Y )

Z⊂X×SY
−−−−−→ Rπ∗R(g pr2)∗H

c
Z (�

q+c
X×Y )

'
−→ Rπ∗(g pr2)∗H

c
Z (�

q+c
X×Y ) (4.1.11)

(4.1.1)
−−−→ Rπ∗R(g pr2)∗R0Z (�

q+c
X×Y )[c]

(4.1.3)
−−−→ Rπ∗g∗�

q
Y . (4.1.12)

We used for the fourth arrow the isomorphism

(g pr2)∗H
c
Z (�

q+c
X×Y )

'
−→ R(g pr2)∗H

c
Z (�

q+c
X×Y ),

because Hc
Z (�

q+c
X×Y ) is a quasicoherent OX×Y -module with support in Z , the map

Z −→ Y is finite, and g : Y −→ S is affine. For the third arrow, notice that there is no
map R( f pr1)∗H

c
Z → R(g pr2)∗H

c
Z in the derived category of OS-modules, but in

the derived category of sheaves of k-vector spaces on S these two complexes are
isomorphic and that’s all we need to define the third arrow.

We have to compare the morphism from (4.1.10) to (4.1.12) with Rπ∗ϕZ , where
ϕZ is defined in (4.1.7). Obviously, the morphism from (4.1.10) to (4.1.11) is equal
to Rπ∗((4.1.6)◦pr∗1). The morphism from (4.1.11) to (4.1.12) equals Rπ∗(pr2,Z∗),
which proves the claim. �

4.2. Tame quotients.
4.2.1. Let X be a k-scheme that is normal, Cohen–Macaulay (CM) and equidi-
mensional of pure dimension n and denote by π : X→ Spec k its structure map.

Then H i (π !k) = 0 for all i 6= −n; see [Conrad 2000, Theorem 3.5.1]. The
dualizing sheaf of X is then by definition

ωX := H−n(π !k).

We list some well-known properties:

(1) ωX [n] is canonically isomorphic to π !k in D+c (X).

(2) ωX is a dualizing complex on X , that is, ωX is coherent, has finite injective
dimension and the natural map OX → R Hom(ωX , ωX ) is an isomorphism.
(Indeed by [Hartshorne 1966, Chapter V, 10.1 and 10.2], π !k is a dualizing
complex.)

(3) ωX is CM with respect to the codimension filtration on X , that is,

depthOX,x
ωX,x = dim OX,x for all x ∈ X,
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(By [Hartshorne 1966, Chapter V, Proposition 7.3] ωX is Gorenstein, in par-
ticular CM, with respect to its associated filtration. Therefore we have to show
that the associated codimension function to ωX [Hartshorne 1966, V.7] is the
usual codimension function. By [Hartshorne 1966, Chapter V, Proposition
7.1] it suffices to show that Ext0OX,η

(k(η), ωX,η) 6= 0 for all generic points
η ∈ X . But X is normal and thus ωX,η ∼= k(η).

(4) In case X is smooth, ωX is canonically isomorphic to�n
X , via the isomorphism

ωX ∼= π
!k[−n]

eπ ,'
−−−→ π#k[−n] =�n

X ,

where eπ : π ! ∼= π# is the isomorphism from [Conrad 2000, (3.3.21)].

(5) If u : U → X is étale, then u∗ωX is canonically isomorphic to ωU via the
isomorphism

u∗ωX = u#ωX
eu ,'
−−→ u!ωX ∼= u!π !k

c−1
u,π ,'
−−−→ (π ◦ u)!k ∼= ωU ,

where cu,π : (π ◦u)!∼= u! ◦π ! is the isomorphism from [Conrad 2000, 3.3.14].

(6) Let U be an open subscheme of X that is smooth over k and contains all
1-codimensional points and denote by j : U ↪→ X the corresponding open
immersion. Then adjunction induces an isomorphism

ωX
'
−→ j∗ j∗ωX ∼= j∗ωU ∼= j∗�n

U ,

where the last two isomorphisms are induced by (4) and (5). (This follows
from (3). Indeed, let V ⊂ X be open; then 0(V, ωX )→ 0(V, j∗ j∗ωX ) =

0(V ∩U, ωX ) is the restriction. Since all points in the complement of U have
codimension ≥ 2, we obtain from (3) that depth(ωX,x)≥ 2 for all x ∈ X \U .
Therefore 0(V, ωX ) → 0(V ∩ U, ωX ) is bijective by [Grothendieck 1968,
Exposé III, Corollary 3.5].)

4.2.2. Let X be smooth and Y a normal CM scheme both of pure dimension n, and
let f : X→Y be a finite and surjective morphism. Then we have the usual pull-back
on the structure sheaves f ∗ : OY → f∗OX as well as a trace map τ 0

f : f∗OX → OY ,
which extends the usual trace over the smooth locus of Y (over which f is flat).
We define a pull-back and a trace between the dualizing sheaves as follows.

Definition 4.2.3. Let X be smooth and let Y be a normal CM scheme, both of pure
dimension n, and let f : X→ Y be a finite and surjective morphism.

(1) We define a pullback morphism

f ∗ : ωY → f∗ωX
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as follows: Choose j : U ↪→ Y open and smooth over k such that it contains
all 1-codimensional points of Y ; let j ′ :U ′ = X ×Y U→ X and f ′ :U ′→U
be the base changes of j and f . Then we define f ∗ as the composition

ωY ' j∗�n
U

f ′∗
−→ j∗ f ′

∗
�n

U ′ = f∗ j ′
∗
ωU ′ ∼= f∗ωX ;

for the last isomorphism observe that U ′ contains all 1-codimensional points
of X . It is straightforward to check that this morphism is independent of
the choice of U . (One only needs the compatibility statements (VAR1) and
(VAR3) of [Hartshorne 1966, Chapter VII, Corollary 3.4(a)].)

(2) We define the trace
τ n

f : f∗ωX → ωY

as the composition in D+c (Y )

f∗ωX ∼= f∗π !X k[−n]
c f,πY
−−→ f∗ f !π !Y k[−n]

Tr f
−−→ π !Y k[−n] ∼= ωY ,

where πX and πY are the structure maps of X and Y and Tr f is the trace
morphism [Conrad 2000, (3.3.2)].

We write f ∗ : OY ⊕ωY → f∗(OX⊕ωX ) for the sum of the usual pull-back with the
pull-back defined in (1), and write τ f := τ

0
f ⊕ τ

n
f : f∗(OX ⊕ωX )→ OY ⊕ωY .

Remark 4.2.4. By its definition, the τ f constructed above equals, when restricted
to the smooth locus of Y , the τ f from Proposition 2.2.23.

Corollary 4.2.5. Let X , Y and f be as in Definition 4.2.3. Suppose that X is
connected. Then the composition

τ f ◦ f ∗ : OY ⊕ωY → OY ⊕ωY

is equal to multiplication with the degree of f .

Proof. We have to check that the section s = τ f ◦ f ∗− deg f of

H 0(Y,HomY (OY ,OY ))⊕ H 0(Y,HomY (ωY , ωY ))

is zero. But H 0(Y,HomY (OY ,OY )) = H 0(Y,OY ) = H 0(Y,HomY (ωY , ωY )) (for
the last equality we need that ωY is a dualizing complex). Therefore it is enough to
check that s is zero over an open and dense subset U of Y . We may choose U such
that it is smooth and contains all 1-codimensional points of Y . Thus the statement
follows from Proposition 2.2.23(3). �

Definition 4.2.6. Let X be a k-scheme. We say that X is a tame quotient if X is
integral and normal and there exists a smooth and integral scheme X ′ with a finite
and surjective morphism f : X ′→ X whose degree is invertible in k.
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Remark 4.2.7. Assume X is a tame quotient. Then X is CM; see [Kollár and Mori
1998, Proposition 5.7(1)].

We may describe the cohomology of the structure sheaf and of the dualizing
sheaf of a tame quotient as a direct summand of the corresponding cohomology of
a smooth scheme as follows.

Proposition 4.2.8. Let f : X → Y be a finite and surjective morphism between
integral schemes. Assume X is smooth and Y is normal. Furthermore, we assume
that deg f is invertible in k. Set

α := [X ×Y X ] in CHdim X (X × X, P(8X ,8X ))=: HomCorCH(X, X)0,

(see (1.3.8) for the definition of P(8X ,8X )). Then, for all i , the pull-back mor-
phism

f ∗ : (H i (Y,OY )⊕ H i (Y, ωY ))→ (H i (X,OX )⊕ H i (X, ωX ))

induces an isomorphism

(H i (Y,OY )⊕ H i (Y, ωY ))∼= ρH (cl(α))(H i (X,OX )⊕ H i (X, ωX )).

(The functor ρH is defined in 1.3.18 and cl is a shorthand notation for Cor(cl) with
cl : C H → H the morphism from Theorem 3.1.8.)

Proof. Write α = [X ×Y X ] =
∑

T nT [T ], where the sum is over all irreducible
components T of X ×Y X . Notice that all the T have dimension equal to dim X
and project (via both projections) finitely and surjectively to X . Therefore

ϕα : f∗(OX ⊕ωX )→ f∗(OX ⊕ωX )

is defined, where ϕα is the morphism from Definition 4.1.4. By Lemma 4.1.9 we
have, for all i ,

H i (Y, ϕα)= ρH ◦ cl(α) : H i (X,OX ⊕ωX )→ H i (X,OX ⊕ωX ). (4.2.9)

We claim
ϕα = f ∗ ◦ τ f : f∗(OX ⊕ωX )→ f∗(OX ⊕ωX ). (4.2.10)

Let U ⊂ Y be a nonempty smooth open subscheme that contains all 1-codimen-
sional points of Y . Then f −1(U ) is smooth and contains all 1-codimensional points
of X . Hence for any open V ⊂ Y , the restriction map

H 0( f −1(V ),OX ⊕ωX )→ H 0( f −1(V )∩ f −1(U ),OX ⊕ωX )

is an isomorphism; see [Grothendieck 1968, Exposé III, Corollary 3.5]. Since
both maps in (4.2.10) are compatible with restriction to open subsets of Y , we
may therefore assume that Y is smooth. In particular f is flat and thus α equals
[0t

f ] ◦ [0 f ], where 0 f is the graph of f and 0t
f its transposed. Now the identity
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(4.2.10) follows from (4.2.9) (in the case i = 0), Proposition 2.3.3(3) and 3.2.1.
Thus applying again (4.2.9), we obtain

ρH (cl(α))(H i (X,OX )⊕ H i (X, ωX ))

= Image( f ∗ ◦ τ f : H i (X,OX ⊕ωX ))→ H i (X,OX ⊕ωX ).

Since τ f ◦ f ∗ : (H i (Y,OY )⊕ H i (Y, ωY ))→ (H i (Y,OY )⊕ H i (Y, ωY )) is multipli-
cation with the degree of f (by Corollary 4.2.5) the proposition follows. �

4.3. Main theorem for tame quotients.

Theorem 4.3.1. Let S be a scheme over a perfect field k. Let πX : X→ S and πY :

Y → S be two integral S-schemes, which are tame quotients (see Definition 4.2.6).
Furthermore, we assume that X and Y are properly birational equivalent. Then
any Z as in Definition 3.2.7 induces isomorphisms of OS-modules

RiπX∗OX ∼= RiπY∗OY and RiπX∗ωX ∼= RiπY∗ωY for all i ≥ 0.

These isomorphisms depend only on the OS,η-isomorphism k(X) ∼= k(Y ) induced
by Z , where η = πX (generic point of X)= πY (generic point of Y ).

Proof.

Claim 1. There are isomorphisms as in the statement in the case S = Spec k.

Choose integral and smooth schemes X ′ and Y ′ with finite and surjective mor-
phisms f : X ′→ X and g : Y ′→ Y whose degree is invertible in k. Choose Z as in
Definition 3.2.7. We may assume that Z ⊂ X × Y is a closed integral subscheme.
We define Z X ′ , ZY ′ and Z ′ by the cartesian diagram

Z ′

yy %%
Z X ′

∼

xx %%

ZY ′
∼

%%yy
X ′

f &&

Z
∼

xx
∼

&&

Y ′

gxx
X Y.

Here the arrows with an ∼ are proper and birational morphisms between integral
schemes, and all other morphisms are finite and surjective. We may identify Z ′

with a closed subscheme of X ′ × Y ′ whose irreducible components are proper
and surjective over both X ′ and Y ′, and all irreducible components have the same
dimension equal to d :=dim X =dim X ′=dim Y =dim Y ′ (since f and g are finite
and universally equidimensional). Therefore Z ′ and its transpose define cycles

[Z ′] ∈ CHd(X ′× Y ′, P(8X ′,8Y ′)) and [Z ′]t ∈ CHd(Y ′× X ′, P(8Y ′,8X ′)).
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Now choose nonempty smooth open subschemes Xo, Yo of X, Y such that the
morphisms Z→ X, Z→ Y induce isomorphisms Zo

'
−→ Xo, Zo

'
−→ Yo with

Zo := Xo×X Z = Z ×Y Yo.

Set X ′o = f −1(Xo) and Y ′o = g−1(Yo) and denote by fo and go the restrictions of
f and g to X ′o and Y ′o, respectively. We define Z X ′o , ZY ′o and Z ′o by the cartesian
diagram

Z ′o
yy %%

Z X ′o
'

yy %%

ZY ′o
'

$$yy
X ′o

fo %%

Zo
'

yy
'

%%

Y ′o
goyy

Xo Yo.

Here the arrows with an ' are isomorphisms, and all other arrows are finite and
surjective. We set X ′c = X ′ \ X ′o and Y ′c = Y ′ \ Y ′o; these are closed subsets of
codimension ≥ 1. Now we define

α := [X ′×X X ′] ∈ CHd(X ′× X ′, P(8X ′,8X ′)),

β := [Y ′×Y Y ′] ∈ CHd(Y ′× Y ′, P(8Y ′,8Y ′)).

We claim

deg g · ([Z ′] ◦α)− deg f · (β ◦ [Z ′]) ∈ image(CH∗(X ′c× Y ′c)), (4.3.2)

deg f · ([Z ′]t ◦β)− deg g · (α ◦ [Z ′]t) ∈ image(CH∗(Y ′c× X ′c)), (4.3.3)

([Z ′]t ◦ [Z ′] ◦α)− deg f deg g ·α ∈ image(CH∗(X ′c× X ′c)), (4.3.4)

([Z ′] ◦ [Z ′]t ◦β)− deg f deg g ·β ∈ image(CH∗(Y ′c× Y ′c)). (4.3.5)

By symmetry, it suffices to prove (4.3.2) and (4.3.4). Let us prove (4.3.2). By
using Lemma 1.3.4 we can consider

α ∈ CH(X ′×X X ′), β ∈ CH(Y ′×Y Y ′), [Z ′] ∈ CH(Z ′),

and see that [Z ′] ◦α and β ◦ [Z ′] are naturally supported in CH(Z ′).
Since Z ′ ∩ ((X ′o × Y ′) ∪ (X ′ × Y ′o)) = Z ′ ∩ (X ′o × Y ′o), Lemma 1.3.6 and the

localization sequence for Chow groups implies the claim if the equality

deg(g) · [Z ′]|X ′×Y ′o ◦α|X ′o×X ′ = deg( f ) ·β|Y ′×Y ′o ◦ [Z
′
]|X ′o×Y ′ (4.3.6)
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holds in CH(Z ′ ∩ (X ′o× Y ′o)). Here we have

α|X ′o×X ′ ∈ CH(X ′o×X X ′)= CH(X ′o×Xo X ′o),

β|Y ′×Y ′o ∈ CH(Y ′×Y Y ′o)= CH(Y ′o×Yo Y ′o),

[Z ′]|X ′o×Y ′ ∈ CH(Z ′ ∩ (X ′o× Y ′))= CH(Z ′ ∩ (X ′o× Y ′o)),

[Z ′]|X ′×Y ′o ∈ CH(Z ′ ∩ (X ′× Y ′o))= CH(Z ′ ∩ (X ′o× Y ′o)).

Obviously,
α|X ′o×X ′ = [X ′o×Xo X ′o] = [0

t
fo
] ◦ [0 fo],

β|Y ′×Y ′o = [Y
′

o×Yo Y ′o] = [0
t
go
] ◦ [0go],

[Z ′]|X ′o×Y ′ = [Z ′o] = [0
t
go
] ◦ [Zo] ◦ [0 fo],

[Z ′]|X ′×Y ′o = [Z
′

o].

(4.3.7)

Thus (4.3.6) follows from

[0 fo] ◦ [0
t
fo
] = deg( f )[1Xo],

[0go] ◦ [0
t
go
] = deg(g)[1Yo].

(4.3.8)

This finishes the proof of (4.3.2). The proof of (4.3.4) is similar. The cycles
[Z ′]t ◦ [Z ′] ◦α and α are supported in

B = {(x ′1, x ′2) ∈ X ′× X ′ | ( f (x ′1), y) ∈ Z , ( f (x ′2), y) ∈ Z for some y ∈ Y }.

We see that B∩((X ′o×X ′)∪(X ′×X ′o))= B∩(X ′o×X ′o), and by using Lemma 1.3.6
it is sufficient to prove

[Z ′o]
t
◦ [Z ′o] ◦ [X

′

o×Xo X ′o] = deg f deg g · [X ′o×Xo X ′o].

In view of (4.3.7), this follows immediately from (4.3.8).
Since deg f and deg g are invertible in k, it follows from Proposition 3.2.2 and

(4.3.2) that (deg f )−1ρH ◦ cl([Z ′]) induces a morphism

(ρH ◦ cl(α))H∗(X ′,OX ′ ⊕ωX ′)→ (ρH ◦ cl(β))H∗(Y ′,OY ′ ⊕ωY ′)

and by (4.3.3), (deg g)−1ρH ◦ cl([Z ′]t) induces a morphism

(ρH ◦ cl(β))H∗(Y ′,OY ′ ⊕ωY ′)→ (ρH ◦ cl(α))H∗(X ′,OX ′ ⊕ωX ′).

By (4.3.4) and (4.3.5) these two morphisms mutually inverse. So Proposition 4.2.8
yields isomorphisms

H i (X,OX )∼= H i (Y,OY ) and H i (X, ωX )∼= H i (Y, ωY ) for all i ≥ 0.

This proves Claim 1.
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Claim 2. The isomorphisms constructed in Claim 1 depends only on the isomor-
phism k(X)∼= k(Y ) induced by a Z.

We use the shorthand notation H i (X) = H i (X,OX ⊕ ωX ). Choose Z as in
Definition 3.2.7. Denote by Z0 the image of Z in X × Y . Choose f1 : X1 → X
and g1 : Y1→ Y finite and surjective, with X1, Y1 smooth and integral and deg f1,
deg g1 ∈ k∗. Define

α1 := ρH ◦ cl([X1×X X1]), β1 := ρH ◦ cl([Y1×Y Y1]),

γ 1(Z) := (deg f1)
−1ρH ◦ cl([X1×X Z0×Y Y1]).

Then, as seen in the proof of Claim 1 above, we obtain isomorphisms

H i (X)
f ∗1 ,'
−−−→ α1 H i (X1)

γ 1(Z),'
−−−−−→ β1 H i (Y1)

g∗1 ,'
←−−− H i (Y ).

Now choose two different Z as in Definition 3.2.7, say Z1 and Z2, which induce
the same isomorphism k(X) ∼= k(Y ). Then we can find smooth open subschemes
Xo, Yo, Z1,o, Z2,o of X , Y , Z1, Z2 such that for i = 1, 2, we have

Zi,o = Zi ×X Xo = Zi ×Y Yo,

the projections Zi,o
'
−→ Xo, Zi,o

'
−→ Yo are isomorphisms, and the induced iso-

morphisms hi : Xo
'
−→ Zo,i

'
−→ Yo for i = 1, 2 are equal. Proposition 3.2.2 implies

γ 1(Z1)= γ 1(Z2) on H i (X1). Therefore γ 1(Z) depends only on the isomorphism
k(X) ∼= k(Y ), which Z induces. From now on we fix such an isomorphism and
simply write γ 1.

Now choose f2 : X2 → X and g2 : Y2 → Y finite and surjective, with X2, Y2

smooth and integral and deg f2, deg g2 ∈ k∗. Define α2, β2 and γ 2 as above (in the
above formulas replace 1 by 2) and set

α12 := (deg f1)
−1ρH ◦ cl([X1×X X2]), α21 := (deg f2)

−1ρH ◦ cl([X2×X X1])

β12 := (deg g1)
−1ρH ◦ cl([Y1×Y Y2]), β21 := (deg g2)

−1ρH ◦ cl([Y2×Y Y1]).

Then one checks as in the proof of Claim 1 that α12 : H i (X1)→ H i (X2) induces an
isomorphism α1 H i (X1)

'
−→α2 H i (X2)with inverse α21 and β12 :H i (Y1)→H i (Y2)

induces an isomorphism β1 H i (Y1)
'
−→ β2 H i (Y2) with inverse β21. Further one

checks that β12 ◦γ1 ◦α1= γ 2 ◦α12 ◦α1. Thus we obtain the commutative diagram

α1 H i (X1)
γ 1,'

//

α12'

��

β1 H i (Y1)

β12'

��

H i (X)

f ∗1 ,' 55

f ∗2 ,'
))

H i (Y ).

g∗1 ,'ii

g∗2 ,'
uu

α2 H i (X2)
γ 2,'

// β2 H i (Y2)

(4.3.9)
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Therefore the isomorphisms of Claim 1 do not depend on the choice of f1 and g1.
This proves Claim 2 and also the theorem in the case S = Spec k.

Finally, consider the case of a general basis S. Choose Z as in Definition 3.2.7
and choose integral, smooth schemes X ′ and Y ′ with finite, surjective morphisms
f : X ′ → X and g : Y ′ → Y whose degree is invertible in k. For U ⊂ S open
denote by XU , fU , etc. the pull-backs over U . By Proposition 4.2.8, the pull-back
f ∗U realizes H i (XU ,OXU ⊕ ωXU ) as a direct summand of H i (X ′U ,OX ′U ⊕ ωX ′U ).
This is clearly compatible with restrictions along opens V ⊂ U ⊂ S and thus the
pull-back f ∗ realizes RiπX∗(OX ⊕ ωX ) as a direct summand of the OS-module
RiπX∗ f∗(OX ′ ⊕ ωX ′). In the same way, g∗ realizes RiπY∗(OY ⊕ ωY ) as a direct
summand of the OS-module RiπY∗g∗(OY ′ ⊕ωY ′). Further, by the case S = Spec k
considered above, the map

(deg f )−1ρH ◦ cl([Z ′U ]) : H
∗(X ′U ,OX ′U ⊕ωX ′U )→ H∗(Y ′U ,OY ′U ⊕ωY ′U )

induces an isomorphism between H∗(XU ,OXU ⊕ ωXU ) and H∗(YU ,OYU ⊕ ωYU ).
Write [Z ′] =

∑
T nT [T ], where the sum is over the irreducible components of

Z ′. Then the collection {(deg f )−1ρH ◦ cl([Z ′U ]) |U ⊂ S} induces a morphism of
OS-modules (by Proposition 3.2.4)

ρH (Z ′/S) :=
∑

T

nT ρH (T/S) : RiπX∗ f∗(OX ′ ⊕ωX ′)→ RiπY∗g∗(OY ′ ⊕ωY ′),

which by the above induces an isomorphism

RiπX∗(OX ⊕ωX )
'
−→ RiπY∗(OY ⊕ωY ). (4.3.10)

Claim 2 implies that (4.3.10) depends only on the OS,η-isomorphism k(X)∼= k(Y )
induced by Z . �

Remark 4.3.11. Theorem 4.3.1 implies Theorem 3.2.8 and Theorem 3.2.14.

Corollary 4.3.12. Let π : X → Y be a birational and proper morphism between
integral schemes over a perfect field k. Assume X and Y are tame quotients. Then
π∗ induces isomorphisms

Rπ∗OX ∼= OY and Rπ∗ωX ∼= ωY .

Proof. In Theorem 4.3.1 take S = Y , πX = π and πY = idY . �

4.4. Open questions. Questions in char(k)= p.

4.4.1. Do the statements in Theorem 3.2.8 and Theorem 3.2.14 hold when k is not
perfect and smooth is replaced by regular?

4.4.2. Let f : Y −→ X be a surjective projective morphism with connected fibres
between smooth varieties Y and X . Is Rdim(Y )−dim(X) f∗ωY = ωX ? In char(k) = 0
this holds by [Kollár 1986, Proposition 7.6].
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4.4.3. Let f : Y −→ X be a surjective projective morphism with connected fibres
between smooth varieties Y, X . Is Re f∗ωY = 0 for e > dim(Y ) − dim(X)? In
char(k)= 0 this holds by [Kollár 1986, Theorem 2.1(ii)].

Appendix

All schemes in this appendix are assumed to be finite-dimensional and noetherian.

A.1. Local Cohomology. Let Y =Spec B be an affine scheme and X ⊂Y a closed
subscheme of pure codimension c, defined by the ideal I ⊂ B. We assume that
there exists a B-regular sequence t = t1, . . . , tc ∈ I with

√
(t) =

√
I , where (t)

denotes the ideal (t1, . . . , tc)⊂ B. We denote by K •(t) the Koszul complex of the
sequence t , that is, K−q(t)= Kq(t)=

∧q Bc for q = 0, . . . , c, and if {e1, . . . , ec}

is the standard basis of Bc and ei1,...,iq := ei1∧· · ·∧eiq , then the differential is given
by

d−q
K • (ei1,...,iq )= d K•

q (ei1,...,iq )=

q∑
j=1

(−1) j+1ti j ei1,...,î j ,...iq
.

For any B-module M we define the complex

K •(t,M) := HomB(K−•(t),M),

and denote its n-th cohomology by H n(t,M). The map

HomB(

c∧
Bc,M)→ M/(t)M, ϕ 7→ ϕ(e1,...,c)

induces a canonical isomorphism H c(t,M)' M/(t)M .
If t and t ′ are two sequences as above with (t ′)⊂ (t), then there exists a c× c-

matrix T with coefficients in B such that t ′ = T t and T induces a morphism
of complexes K •(t ′)→ K •(t), which is the unique (up to homotopy) morphism
lifting the natural map B/(t ′)→ B/(t). Furthermore we observe that, for any pair
of sequences t and t ′ as above, there exists an N ≥ 0 such that (t N )⊂ (t ′), where
t N denotes the sequence t N

1 , . . . , t N
c . Thus the sequences t form a directed set and

H c(t,M)→ H c(t ′,M) for (t ′) ⊂ (t) becomes a direct system. It follows from
[Grothendieck 1968, Exposé II, Proposition 5] that we have an isomorphism

lim
−→

t
M/(t)M = lim

−→
t

H c(t,M)∼= H c
X (Y, M̃),

where the limit is over all B-regular sequences t = t1, . . . , tc in B with V ((t))= X
and M̃ is the sheaf associated to M . We denote by

[m
t

]
the image of m ∈ M under

the composition

M→ M/(t)M→ H c(t,M)→ H c
X (Y, M̃).
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It is a consequence of the explanations above that we have the following properties:

(1) Let t and t ′ be two sequences as above with (t ′)⊂ (t). Let T be a c×c-matrix
with t ′ = T t ; then [

det(T )m
t ′

]
=

[
m
t

]
.

(2)
[

m+m′

t

]
=

[
m
t

]
+

[
m′

t

]
and

[
ti m

t

]
= 0 for all i .

(3) If M is any B-module of finite rank, then

H c
X (Y,OY )⊗B M '

−→ H c
X (Y, M̃),

[
b
t

]
⊗m 7→

[
bm
t

]
is an isomorphism.

Remark A.1.1. Since for a B-regular sequence t as above K •(t)→ B/(t) is a free
resolution, we have an isomorphism for all n, given by

Extn(B/(t),M)' H n(Hom•B(K
•(t),M)).

We also have an isomorphism

Hom•B(K
•(t),M)' K •(t,M),

which is given by multiplication with (−1)n(n+1)/2 in degree n. We obtain an
isomorphism

ψt,M : Extc(B/(t),M) '−→ H c(t,M)= M/(t)M,

which has the sign (−1)c(c+1)/2 in it. In particular, under the composition

Extc(B/(t),M)
ψt,M
−−→ M/(t)M→ H c

X (Y, M̃),

the class of a map ϕ ∈ HomB(
∧c Bc,M) is sent to

(−1)c(c+1)/2
[
ϕ(e1,...,c)

t

]
.

Lemma A.1.2. Let Y = Spec B be as above, let M be a quasicoherent sheaf on Y ,
let c≥ 0 and let t1, . . . , tc+1 be a B-regular sequence. Set X ′ := V (t1, . . . , tc+1)⊂

X := V (t1, . . . , tc). Let ∂ : H c
X\X ′(Y \ X ′,M)→ H c+1

X ′ (Y,M) be the boundary map
of the localization long exact sequence. Then

∂

[
m/tc+1

t1, . . . , tc

]
=

[
m

t1, . . . , tc, tc+1

]
.
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Proof. Let M be the B-module of global sections of M. By [Grothendieck 1968,
Exposé II, Corollary 4] and Čech computations, we may identify

H c
X\X ′(Y \ X ′,M)=

Mt1···tctc+1∑c
i=1 Mt1···̂ti ···tctc+1

, H c+1
X ′ (Y,M)=

Mt1···tc+1∑c+1
i=1 Mt1···̂ti ···tc+1

,

and ∂ is the natural map from left to right. Under these identifications, the map
Mtc+1/(t1, . . . , tc)= H c(K •(t,M))→ H c

X\X ′(Y,M) sends the class of m/tc+1, for
m ∈ M , to the class of (m/tc+1)/(t1 · · · tc) and similarly for M/(t1, . . . , tc+1)→

H c+1
X ′ (Y,M). �

A.2. The trace for a regular closed embedding. We now explicitly describe the
trace morphism for a regular closed embedding. This is well known and appears
in various incarnations in the literature; see for example [Lipman 1984; Hübl and
Seibert 1997, Section 4]. However in all the articles we are aware of, more el-
ementary versions of duality theory are used (for example no derived categories
appear). Since the compatibility of these theories with the one we are working
with — namely the one developed in [Hartshorne 1966; Conrad 2000] — is not
evident to us, and also to be sure about the signs, we recall the description of the
trace in this situation.

Let i : X ↪→ Y be a closed immersion of pure codimension c between two
Gorenstein schemes and assume that the ideal sheaf I of X is generated by a
sequence t = (t1, . . . , tc) of global sections of OY . Then the image of t in any local
ring of Y is automatically a regular sequence. We denote by K •(t) the sheafified
Koszul complex of t and set

ωX/Y :=

c∧
HomOX (I/I

2,OX ).

The fundamental local isomorphism (see for example [Conrad 2000, 2.5]) gives an
isomorphism in Db

c (Y )

ηi : i∗ωX/Y [−c]
'
←−Hom•Y (K

•(t),OY )∼= R HomY (i∗OX ,OY )∼= i∗i !OY . (A.2.1)

The first map is induced by

Hom(
c∧

Oc
Y ,OY )=Homc(K •(t),OY )→ i∗ωX/Y ,

ϕ 7→ (−1)c(c+1)/2ϕ(e1,...,c)t∨1 ∧ · · · ∧ t∨c .
(A.2.2)

(The reason for the sign is Remark A.1.1.) Composing the morphism ηi with the
trace Tri : i∗i !OY→OY (see for example [Conrad 2000, 3.4]), we obtain a morphism
in Db

c (Y )

i∗ωX/Y [−c]
ηi
−→ i∗i !OY

Tri
−→ OY , (A.2.3)
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which factors in Db
qc(Y ) as

i∗ωX/Y [−c]
ηi
−→ i∗i !OY

Tri
−→ R0X OY . (A.2.4)

Lemma A.2.5. In the situation above there is a natural isomorphism

R0X OY ∼=Hc
X (OY )[−c] in Db

qc(Y ) (A.2.6)

and Hc((A.2.4)) is given by

i∗ωX/Y −→Hc
X (OY ), at∨1 ∧ · · · ∧ t∨c 7→ (−1)c(c+1)/2

[
ã

t1, . . . , tc

]
, (A.2.7)

where ã ∈ OY is any lift of a ∈ OX .

Proof. The first statement is equivalent to Hi
X (OY ) = 0, for i 6= c, and hence we

may assume that Y is affine. We have the vanishing for i < c since Y is CM by
[Grothendieck 1968, Exposé III, Proposition 3.3] and for i > c since the ideal
of X in Y is generated by c elements, which by a Čech argument implies that
H i (Y \ X,OY )= 0 for i > c.

We denote by E• = E•(OY ) the Cousin complex of OY ; see e.g., [Hartshorne
1966, Chapter IV, Section 2]. In particular E• is an injective resolution of OY (since
Y is Gorenstein) and if Y (c) denotes the set of points of codimension c in Y , then

Eq
=

⊕
y∈Y (c)

iy∗Hq
y (Y,OY ),

where iy : y → Y is the inclusion and Hq
y (Y,OY ) = colimy∈U Hq

ȳ∩U (Y,OY ), the
limit being over all open subsets U ⊂ Y that contain y. We write K • := K •(t).

The trace Tri : i∗i !OY → OY is now induced by the “evaluation at 1” morphism
Hom•(i∗OX , E•)→ E•. Furthermore the augmentation morphisms K • → i∗OX

and OY → E• induce quasiisomorphisms

Hom•(K •,OY )
∼
−→Hom•(K •, E•)

∼
←−Hom•(i∗OX , E•). (A.2.8)

To prove the second statement, we may assume a = 1 ∈ OX . We define α ∈
Homc(K •,OY ) = Hom(∧cOc

Y ,OY ) by α(e1,...,c) = 1 and β ∈ Homc(i∗OX , E•) =
Hom(i∗OX , Ec) by

β(1)= (βy) ∈ Ec
=

⊕
y∈Y (c)

iy∗H c
y (Y,OY ),

with

βy =

{[ 1
t1,...,tc

]
if y is a generic point of X ,

0 otherwise.
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Then

Tri (β̄)=

[
1

t1, . . . , tc

]
∈Hc

X (OY ),

where β̄ is the residue class of β in Hc(Hom•(i∗OX , E•)) and

ηi (α)= (−1)c(c+1)/2t∨1 ∧ · · · ∧ t∨c ∈ i∗ωX/Y .

Thus the second statement of the lemma follows if we can show that the images of
α and β in Homc(K •, E•) differ by an element in dc−1

Hom•(Homc−1(K •, E•)).
For j = 0, . . . , c− 1, we define

γ c−1− j
= (γ c−1− j

y ) ∈ Ec−1− j
=

⊕
y∈Y (c−1− j)

iy∗H c−1− j
y (Y,OY )

by

γ c−1− j
y :=

{[ 1/tc− j
t1,...,tc− j−1

]
if y ∈ Y (c− j−1)

∩ V (t1, . . . , tc−1− j ),

0 otherwise.

In particular γ 0
=1/t1 ∈

⊕
i H 0

ηi
(Y,OY )=⊕i k(ηi ), with ηi the generic points of Y .

Notice that (by Lemma A.1.2)

dEγ
c−1− j

= tc− j+1γ
c− j for all j ≥ 1, (A.2.9)

tiγ c−1− j
= 0 for all j ≥ 0, i ∈ {1, . . . , c− 1− j}. (A.2.10)

Further define

ψ = (ψ0, . . . , ψc−1) ∈Homc−1(K •, E•)=
c−1⊕
j=0

Hom(K j , Ec−1− j )

by

ψ j (ei1,...,i j )=

{
(−1) j (c+ j)γ c−1− j if (i1, . . . , i j )= (c+ 1− j, . . . , c),
0 otherwise.

By definition and (A.2.10) we have

tiqψ j−1(ei1,...,îq ,...,i j
) 6= 0 if q 6= 1 or (i1, . . . , i j ) 6= (c+ 1− j, . . . , c). (A.2.11)

Now we calculate the boundary of ψ ,

dc−1
Homψ = (d

c−1
E ◦ψ0, . . . , dc−1− j

E ◦ψ j + (−1)cψ j−1 ◦ d K
j , . . . , (−1)cψc−1 ◦ d K

c ).

1st Case: j = 0.

dc−1
E ◦ψ0(1)= dc−1

E γ c−1
= β(1) by (A.2.9).

2nd Case: 1≤ j ≤ c− 2. By (A.2.11) and the definition of ψ , we have

(dc−1− j
E ◦ψ j + (−1)cψ j−1 ◦ d K

j )(ei1,...,i j )= 0
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if (i1, . . . , i j ) 6= (c+ 1− j, . . . , c) and otherwise

(dc−1− j
E ◦ψ j + (−1)cψ j−1 ◦ d K

j )(ec+1− j,...,c)

= (−1) j (c+ j)dc−1− j
E γ c−1− j

+ (−1)ctc+1− jψ j−1(ec+2− j,...,c)

= (−1) j (c+ j)(dc−1− j
E γ c−1− j

− tc− j+1γ
c− j )= 0 by (A.2.9).

3rd Case: j = c− 1. By (A.2.11), we have

(−1)cψc−1(d K
c (e1,...,c))= (−1)ct1ψc−1(e2,...,c)=−1=−α(e1,...,c).

All in all we obtain

dc−1
Hom(ψ)= (β, 0, . . . , 0,−α). �

Lemma A.2.12. Let S be a Gorenstein scheme and i : X ↪→ Y a closed immersion
between smooth, separated and equidimensional S-schemes with structure maps
πX : X→ S and πY :Y→ S and denote by dX/S and dY/S their relative dimensions.
We set ωX/S := �

dX/S
X/S , ωY/S := �

dY/S
Y/S and c = dY/S − dX/S . Assume that the ideal

sheaf of X in Y is generated by a sequence t = t1, . . . , tc of global sections of OY .
Define a morphism ıX by

ıX : i∗ωX/S→Hc
X (ωY/S), α 7→ (−1)c

[
dt α̃

t

]
,

with α̃ ∈ �dX/S
Y/S any lift of α and dt = dt1 ∧ · · · ∧ dtc. Then the following diagram

in Db
qc(OY ) is commutative:

i∗π !X OS

ci,πY
// i∗i !π !Y OS

Tri
// π !Y OS

i∗ωX/S[dX/S]

'

OO

ıX
// Hc

X (ωY/S)[dX/S]
'
// R0X (ωY/S)[dY/S],

OO
(A.2.13)

where the vertical map on the left is the well-known canonical isomorphism (see
[Conrad 2000, (3.3.21)]), the vertical map on the right is the composition of the
forget supports map R0X (ωY/S)[dY/S] → ωY/S[dY/S] with the canonical isomor-
phism ωY/S[dY/S] ∼= π

!

Y OS and ci,πY : π
!

X
∼= i !π !Y is the canonical isomorphism

[Conrad 2000, (3.3.14)].

Proof. Let I⊂ OY be the ideal sheaf of X . As above we write

ωX/Y :=

c∧
HomOX (I/I

2,OX ).

Further let τY : π
!

Y OS ∼= ωY/S[dY/S] and τX : π
!

X OS ∼= ωX/S[dX/S] be the canoni-
cal isomorphisms and ηi : ωX/Y [−c] ∼= i !OY the fundamental local isomorphism
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(A.2.1). Consider the following diagram in Db
c (OY ):

i∗π !X OS
ci,πY ,' // i∗i !π !Y OS

Tri //

'

��

π !Y OS

i∗π !X OS

τX'

��

' // i∗i !OY ⊗
L π !Y OS

η−1
i ⊗τY'

��

Tri ⊗ id // π !Y OS

τY'

��
i∗ωX/S[dX/S]

' // i∗ωX/Y [−c]⊗ωY/S[dY/S]
Tr′i ⊗ id

// ωY/S[dY/S].

(A.2.14)

Here some explanations: The middle horizontal arrow on the left is defined such
that the upper left square commutes. We have a canonical identification i∗i !( · )=
R HomOY (i∗OX , ( · )) and since π !Y OS is isomorphic to a shifted locally free OY -
module, we have R HomOY (i∗OX , π

!

Y OS) = R HomOY (i∗OX ,OY ) ⊗
L π !Y OS; this

defines the upper vertical arrow in the middle. Furthermore Tri : i∗i !( · )→ ( · )

may be identified with R HomOY (i∗OX , · ) → ( · ) given by the evaluation at 1.
This shows, that in the diagram above the upper square on the right commutes.
The map Tr′i : i∗ωX/Y [−c] → OY on the right bottom is the composition (A.2.3)
and thus the lower square on the right commutes by definition. The horizontal
isomorphism on the lower left is given by (see [Conrad 2000, page 29, 30(c) and
(2.2.6)])

i∗ωX/S[dX/S] → i∗ωX/Y [−c]⊗ωY/S[dY/S],

α 7→ (t∨1 ∧ · · · ∧ t∨c )⊗ dtc ∧ · · · ∧ dt1 ∧ α̃,
(A.2.15)

with α̃ ∈ �dX/S
Y/S any lift of α. That the square on the lower left commutes follows

from [Conrad 2000, Theorem 3.3.1, (3.3.27)] and [Conrad 2000, Lemma 3.5.3].
(Notice that by [Conrad 2001, p. 5, pp. 160–164] the statement of [Conrad 2000,
Lemma 3.5.3] should be “(3.5.8) is equal to (3.5.7)” instead of “(3.5.8) is equal to
(−1)n(N−n) times (3.5.7)”.) Thus the whole diagram commutes. The upper line
equals the upper line in (A.2.13) and the lower line factors as the composition

i∗ωX/S[dX/S] → i∗ωX/Y [−c]⊗ωY/S[dY/S]

tri⊗id
−−−→Hc

X (OY )[−c]⊗ωY/S[dY/S] 'Hc
X (ωY/S)[dX/S] (A.2.16)

with the natural map

Hc
X (ωY/S)[dX/S] ' R0X (ωY/S)[dY/S] → ωY/S[dY/S].

Here tri denotes the composition of R0X (Tr′i ) with the isomorphism R0X (OY )∼=

Hc
X (OY )[−c]. Thus the lemma is proved once we know that (A.2.16) equals ıX .
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But by Lemma A.2.5 the map tri is given by

i∗ωX/Y →Hc
X (OY ), t∨1 ∧ · · · ∧ t∨c 7→ (−1)c(c+1)/2

[
1
t

]
.

Together with (A.2.15) we obtain that (A.2.16) is given by

α 7→ (t∨1 ∧ · · · ∧ t∨c )⊗ dtc ∧ · · · ∧ dt1 ∧ α̃

7→ (−1)c(c+1)/2
[

1
t

]
⊗ dtc ∧ · · · ∧ dt1 ∧ α̃ = (−1)c

[
dt α̃

t

]
,

which by definition equals ıX . This proves the lemma. �

A.3. The trace for a finite and surjective morphism.

1.3.1. Let S be a Gorenstein scheme and f : X → Y a finite and surjective mor-
phism of smooth, separated and equidimensional S-schemes, both of which have
relative dimension n. We denote by πX : X → S and πY : Y → S the respective
structure maps. Then we define the trace map

τ n
f : f∗ωX/S→ ωY/S (A.3.2)

to be the composition

f∗ωX/S ∼= R f∗π !X OS[−n]
' c f,πY
−−−−→ R f∗ f !π !Y OS[−n]

Tr f
−−→ π !Y OS[−n] ∼= ωY/S.

In the lemma below we give a well-known explicit description of this trace map,
for which we could not find an appropriate reference. There are well-studied ad
hoc definitions of this trace map not using the machinery of duality theory (see
for example [Kunz 1986, §16]), but it is a priori not clear that these construction
coincide with the one above.

Lemma A.3.3. Let f : X→ Y be as above and assume it factors as

X � � i
//

f
��

P

π��
Y,

where π is smooth and separated of pure relative dimension d and i is a closed
immersion whose ideal sheaf I ⊂ OP is generated by global sections t1, . . . , td ∈
0(P,OP). Then for any local section α ∈ f∗ωX/S , we have a formula for τ n

f (α):
Let α̃ ∈�n

P/S be any lift of α and write

i∗(dtd ∧ · · · ∧ dt1 ∧ α̃)=
∑

j

i∗γ j ⊗ f ∗β j , where γ j ∈ ωP/Y , β j ∈ ωY/S
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in i∗�n+d
P/S = i∗ωP/S = i∗(ωP/Y )⊗ f ∗ωY/S . Then

τ n
f (α)= (−1)d(d−1)/2

∑
j

ResP/Y

[
γ j

t1, . . . , td

]
β j ∈ ωY/S,

where ResP/Y
[

γ j
t1,...,td

]
∈OY is the residue symbol defined in [Conrad 2000, (A.1.4)].

Proof. The proof is a collection of compatibility statements from [Conrad 2000].
First we collect some notation.

(1) ζ ′i,πP
: ωX/S → ωX/P ⊗ i∗ωP/S is defined in [Conrad 2000, pp. 29–30, (c)]

and sends α to (t∨1 ∧ · · · ∧ t∨d )⊗ i∗(dtd ∧ · · · ∧ dt1 ∧ α̃), where we identify
ωX/P =

∧d
(I/I2)∨.

(2) ηi : Extd
P(i∗OX , · )

'
−→ ωX/P ⊗ i∗( · ) is the fundamental local isomorphism

[Conrad 2000, (2.5.1)].

(3) For a smooth and separated morphism of pure relative dimension n between
two schemes g : V→W , eg : g!

'
−→ g#

=ωV/W [n]⊗L ( · ) denotes the natural
transformation [Conrad 2000, (3.3.21)].

(4) In case g as above factors as g = h ◦ i with i : V → Z finite and h : Z → W
smooth,ψi,h :g# '

−→ i [h# is the isomorphism defined in [Conrad 2000, (2.7.5)],
where i [( · )= i−1 R HomZ (i∗OV , · )⊗i−1i∗OV OV is defined in [Conrad 2000,
(2.2.8)].

(5) d f : f ! '−→ f [ is the isomorphism defined in [Conrad 2000, (3.3.19)].

(6) Tr f : f∗ f ! → id is the trace morphism defined in [Conrad 2000, 3.4], and
Trf f : f∗ f [→ id is the finite trace morphism defined in [Conrad 2000, (2.2.9)]
and which is induced by evaluation at 1.

Consider the diagram on page 773. Let us describe the different squares and
triangles in this diagram:

(1) The vertical isomorphism on the right in square 1 is immediate from the def-
inition of π#

Y ; the left vertical isomorphism is defined such that the square
commutes.

(2) See [Conrad 2000, Theorem 3.5.1, Corollary 3.5.2] for the isomorphism in the
lower right of square 2. The square commutes by [Conrad 2000, Lem. 3.5.3].
(By [Conrad 2001, comment to pp. 160–164] the last statement of [Conrad
2000, Lemma 3.5.3] should be “. . . , then (3.5.8) is equal to (3.5.7)”.)

(3) Square 3 commutes by [Conrad 2000, (3.3.27)].

(4) The vertical isomorphism on the right of square 4 is induced by the natural
isomorphism (ππY )

# ∼= π#
Yπ

#. For the commutativity of the square, see the
discussion in [Conrad 2000, p. 83–84] (our case is point three).
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f∗ωX/S

'

��
/.-,()*+1

f∗ωX/S

'

��

ζ ′i,πP //

/.-,()*+2

f∗(ωX/P⊗i∗ωP/S)

η−1
i
��

f∗π !X OS[−n]

c f,πY
��

eπX //

/.-,()*+3

f∗π#
X OS[−n]

ψi,πP //

ψ f,πY
��

/.-,()*+4

f∗(i [π#
P OS[−n])

'

��

' //

/.-,()*+5

f∗ Extd
P(i∗OX , ωP/S)

'

��

f∗ f !π !Y OS[−n]

'

��

d f

eπY

//

/.-,()*+6

f∗ f [π#
Y OS[−n]

'

��

ψi,π//

/.-,()*+7

f∗(i [π#π#
Y OS[−n])

'

��
f∗ f !ωY/S

d f //

Tr f

��

/.-,()*+8
f∗ f [ωY/S

'

��
Trf f

ww

ψi,π //

?>=<89:;10

f∗i [π#ωY/S

'

��

' //

?>=<89:;11

f∗ Extd
P(i∗OX , ωP/Y⊗π

∗ωY/S)

'

��
ωY/S f∗ f [(OY )⊗ωY/STrf⊗id

oo
ψi,π//

/.-,()*+9
f∗(i [π#OY )⊗ωY/S

' // f∗ Extd
P(i∗OX , ωP/Y )⊗ωY/S.

(5) The isomorphism on the right of square 5 is induced by the natural isomor-
phism ωP/S ∼= ωP/Y ⊗ π

∗ωY/S . The square commutes by the functoriality
of the horizontal isomorphisms, which are just induced by taking the 0-th
cohomology (the other cohomology groups being zero).

(6) The vertical isomorphism on the right of square 6 is induced by ωY/S ∼=

π !Y OS[−n]∼=π#
Y OS[−n]. Thus the square commutes by the functoriality of d f .

(7) The vertical isomorphism on the right of square 7 is defined as above. Thus
the square commutes by the functoriality of ψi,π .

(8) Triangle 8 commutes by [Conrad 2000, Lemma 3.4.3, (TRA2)].

(9) By [Hartshorne 1966, proof of Chapter III, Proposition 6.5], we may identify
f∗ f [ωY/S with the sheaf HomY ( f∗OX , ωY/S) (since ωY/S is locally free) and
Trf f is given by evaluation at 1. The vertical map on the right of triangle 9 is
defined by the isomorphism HomY ( f∗OX , ωY/S)∼=HomY ( f∗OX ,OY )⊗ωY/S .
The triangle thus obviously commutes.

(10) By [Conrad 2000, (2.8.3) and the paragraph after this, pp. 100–101] we have
a commutative square

f [ωY/S
ψi,π //

'

��

i [π#ωY/S

'

��
f [OY ⊗ f ∗ωY/S

ψi,π // i [π#OY ⊗ f ∗ωY/S.

Applying f∗ to this diagram and using projection formula defines the com-
mutative square 10.
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(11) The horizontal maps in square 11 are induced by taking the 0-th cohomol-
ogy, the vertical maps are the natural isomorphisms (ωY/S is locally free and
projection formula). The commutativity of the diagram is clear.

(12) The isomorphism in the upper right of triangle 12 is induced by the isomor-
phism ωP/S ∼= ωP/Y ⊗π

∗ωY/S and the projection formula. The triangle com-
mutes by [Conrad 2000, Theorem 2.5.2, 1].

Thus diagram on page 773 is commutative. The composition of the vertical maps
along the left outer edge of the diagram equals τ n

f by definition. The composition
of the vertical maps along the right outer edge of the diagram is by [Conrad 2000,
Theorem 2.5.2, 1] equal to the composition

f∗(ωX/P ⊗ i∗ωP/S)
'
−→ f∗(ωX/P ⊗ i∗ωP/Y )⊗ωY/S

η−1
i ⊗id
−−−−→ f∗ Extd

P(i∗OX , ωP/Y )⊗ωY/S.

All together we see that τ n
f equals the composition

f∗ωX/S
ζ ′i,πP
−−→ f∗(ωX/P ⊗ i∗ωP)∼= f∗(ωX/P ⊗ i∗ωP/Y )⊗ωY/S

η−1
i ⊗id
−−−−→

f∗(i [π#OY )⊗ωY/S
ψ−1

i,π
−−→ f∗ f [OY ⊗ωY ∼=HomY ( f∗OX ,OY )⊗ωY/S

eval. at 1
−−−−→ ωY/S.

Hence the claim follows from the definition of ζ ′i,πP
(see (1) above) and the defi-

nition of the residue symbol in [Conrad 2000, (A.1.4)]. �
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