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We prove vanishing of the higher direct images of the structure (and the canon-
ical) sheaf for a proper birational morphism with source a smooth variety and
target the quotient of a smooth variety by a finite group of order prime to the
characteristic of the ground field. We also show that for smooth projective vari-
eties the cohomology of the structure sheaf is a birational invariant. These results
are well known in characteristic zero.
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Introduction

In characteristic zero it is a well-known and frequently used fact that the higher
direct images R’ f,Ox of a projective birational morphism f : X — Y between
smooth schemes vanish for i > 0. This statement was proved as a corollary of
Hironaka’s resolution of singularities by resolving the indeterminacies of f~! by
successively blowing up smooth subvarieties of Y. In this article we consider the
situation over an arbitrary field k£ and prove this and related results.

In the following all schemes are assumed to be separated and of finite type
over k, and all morphisms are assumed to be k-morphisms. The two main results
of this paper are as follows.
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Theorem 1. Assume k is perfect. Let S be an arbitrary scheme and let X and
Y be integral S-schemes. Assume that X and Y are smooth over k and properly
birational over S, that is, there exists an integral scheme Z and a commutative
diagram

AN
X Y
N S
S

such that tx and ty are proper and birational (f and g being the fixed morphisms
to S). Then for all i, there are isomorphisms of Os-modules

Rif*@x = Rig*(ﬁy and Rif*a)x =~ Rig*a)y.

Theorem 2. Consider a diagram

il T
_

Y
%
X?
where Y and X are connected smooth schemes, X is integral and normal, f is
surjective and finite such that deg( f) € k*, and 7 is birational and proper. Then X

is Cohen—Macaulay and
Rm,0; =0x and Rmwy; = wy,

where wy is the dualizing sheaf of X.

By duality, the two identities in Theorem 2 imply each other.

Both theorems are known in characteristic zero: Theorem 1 follows from Hiro-
naka’s resolution of singularities; for Theorem 2, see [Viehweg 1977] (which also
uses resolution of singularities). If resolution of singularities is available in positive
characteristic then it easily yields Theorem 1.

Recall from [Kempf et al. 1973, I, Section 3, page 50] that a rational resolution of
an integral normal scheme X is a resolution (that is, a proper birational morphism
g: X — X with X smooth) that satisfies R'g,(03) = 0 = R'g.(wy) for all i > 0.
Thus Theorem 1 implies that if an integral normal scheme over a perfect field has a
rational resolution, then any resolution of X is a rational resolution. For a smooth
scheme X we obtain R'g,(03) = 0 = R'g.(wy) for i > 0 and any resolution g
(Corollary 3.2.10). Theorem 2 asserts that 7 : X — X is a rational resolution; this
includes the important special case where X is the quotient of Y by a finite group
of order prime to the characteristic of k.

Since resolution of singularities is not yet available in positive characteristic, we
develop a different approach based on algebraic correspondences. To get an idea
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of the methods involved, let us sketch the proof of Theorem 1 for S = Spec k and
X and Y projective (see Section 3 for the details and a rigorous proof).

For a scheme X we write H(X) = @i’j Hi(X, Qg() and CH(X) =P, CH! (X),
with CH' (X) the Chow group of codimension i cycles on X. Given smooth pro-
jective schemes X, Y, Z, there is a composition of correspondences:

CH(X xY)®zCH(Y x Z) - CH(X x Z),
HXxY)®H(Y xZ)— H(X x Z).

Moreover a € CH(X x Y) and € H(X x Y) define maps on the cohomologies
CH(X) — CH(Y) and H(X) — H(Y), respectively, by ¢ — pr,, (prj(c) Ua), and
composition of correspondences corresponds to the composition of maps. Further-
more, there is a cycle map ¢/ : CH — H, which is compatible with composition.
Now, the proof proceeds as follows. By assumption there exists a closed integral
subscheme Z C X x Y projecting birational to X and Y. Let Z' C Y x X be its
transpose. By using the refined intersection product of Fulton we will see that

[Z']o[Z]=idx +E in CH(pr;3((Z x X)N(X x Z))),

with E a cycle on X x X that projects on both sides to subsets of codimension at
least one in X. We will show that the map defined by cl(E) € H(X x X) acts as
zeroon H*(X,0x) ® H*(X, wx). A similar argument applies for [Z]o[Z']. Thus
the maps defined by cl([Z]) and cl([Z]) are inverse to each other (when restricted
to H*(X, Ox) & H*(X, wx)). This proves Theorem 1 in the case S = Spec k and
X and Y projective.

It is not hard to deduce the general statement of Theorem 1 once we know it
in the case S = Speck. Therefore we have to generalize the argument above to
the case of smooth but not necessarily proper k-schemes. The problem is that in
general a push-forward on CH or H does not exist. However, the variety Z C X x Y
is proper over X and Y, and by working with cohomology (or Chow groups) with
support we can conclude as outlined above.

One of the main points in this paper is the construction of a cycle map, or
natural transformation between cohomology theories with support, CH — H. For
this, we first give a definition for (weak) cohomology theories with support. We
introduce two categories V* and V,. The objects in both categories are (X, ®),
where X is smooth and @ is a family of supports on X (see Definition 1.1.1 for the
definition of a family with supports). A morphism f : X — Y induces a morphism
(X, ®) — (¥, ¥) in V, if and only if f|¢ is proper and f(P) C ¥; f induces a
morphism in V* if and only if f~!(¥) C &.

Then we consider the data (Fy, F*, T, ¢), where

F,:V,— GrAb and F*:(V*)°°® = GrAb,
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are functors to graded abelian groups with Fi (X, ®) = F*(X, ®) =: F(X, ®) as
abelian groups, T gives for all (X, ®) and (¥, ¥) a morphism of abelian groups

T(x,q>),(y,\p) FX, D) Q7 FY, V) > F(X XY, ®x W),

and e : Z — F(Speck) is a morphism of abelian groups.
These data define a weak cohomology theory with support if the following con-
ditions are satisfied.

(1) The map T is functorial for F, and F*.

(2) For all diagrams
(X', &) L (7, W)

lé’x lgy
(X, d) —L = (v, W),

in which the underlying diagram of schemes is cartesian and transversal, with
gx, 8y € V*and f, f' € V,, we have

F*(gy) o Fu(f) = Fy(f) o F*(gx).
(3) Some more (very natural) conditions.

The conditions allow us to obtain a calculus with correspondences. One key ex-
ample of a weak cohomology theory with supports is the Chow group

CH(X, ®) := lim CH(W),
ﬁ
Wed
with CH, the (proper) push forward for cycles and CH* the refined Gysin homo-
morphism. Another example is the Hodge cohomology

H(X, @) := P HyH (X, Q).
iJ
Here, the definition of H* is straightforward, but for H, we use Grothendieck
duality for singular schemes since smooth compactifications are not available in
characteristic p. That the Hodge cohomology defines a (weak) cohomology theory
with supports is a nontrivial fact, the proof of which occupies Section 2.

In Theorem 1.2.3 we give necessary and sufficient conditions for a (weak)
cohomology theory with supports F to be target of a morphism from CH. Un-
fortunately, we can do this only with an additional semipurity assumption on F
(see Definition 1.2.1). As an application we prove the existence of a cycle map
CH — H. We hope that Theorem 1.2.3 will turn out to be useful for proving
similar results for the Witt vector cohomology.

Let us give a short overview of the content of each section.
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In Section 1 we define weak cohomology theories with supports and prove basic
properties. We show that CH is an example and prove Theorem 1.2.3. Moreover,
we explain the calculus of correspondences attached to a cohomology theory.

In Section 2 we show that the Hodge cohomology is another example for a
cohomology theory with supports. The hard part is the definition of push-forward
maps. We use Grothendieck’s duality theory for singular schemes as developed in
[Hartshorne 1966; Conrad 2000], and make extensive use of the results given in
these references. There are also other approaches to duality theory that are more
elegant (see for example [Lipman and Hashimoto 2009]). But since we use at sev-
eral places the explicit description of duality theory as developed by Grothendieck
and since it is not clear to the authors how this classical approach compares to the
one, for example, in [Lipman and Hashimoto 2009], we will solely stick to the
references [Hartshorne 1966; Conrad 2000].

In Section 3 we show the existence of a cycle map CH — H. We also prove a
vanishing statement Proposition 3.2.2, enabling us to prove Theorem 1 and 2.

In Section 4 we generalize Theorem 1 to the case where X and Y are tame
quotients (see Theorem 4.3.1). This theorem also implies Theorem 2.

We finish with some open questions.

In the appendix we describe the trace morphism for closed embeddings between
smooth schemes and for finite and surjective morphisms between smooth schemes;
this is well known but needed in Section 2.

1. Chow groups with support

1.1. Cohomology theories with support. Let k be a field. We assume all schemes
are of finite type and separated over k. We begin by recalling basic definitions and
notation concerning families of supports.

Definition 1.1.1. A family of supports ® on X is a nonempty set of closed subsets
of X such that the following holds:

(1) The union of two elements in ® is contained in ®.

(i) Every closed subset of an element in @ is contained in ®.

Let A be any set of closed subsets of X. The smallest family of supports ® 4
that contains A is given by

Da={U_ Z: Z, C Z €A} (1.1.2)

closed

For a closed subset Z C X we write ®7 for ®,z,.

Notation 1.1.3. Let f : X — Y be a morphism of schemes and let & and W be
families of supports of X and Y, respectively.
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(1) We denote by f~'(¥) the smallest family of supports on X that contains
(fY2):ZeW).

(2) We say that f|¢ is proper if f|z is proper for every Z € ®. If f|¢ is proper,
then f(®) is a family of supports on Y.

(3) If | and P, are two families of supports, then NP, is a family of supports.

(4) If ® and W are families of supports of X and Y, respectively, then we denote
by @ x W the smallest family of supports on X x; ¥ that contains

{Z] XZy, Z1€®, 7)€ \IJ}.

When working with cohomology theories with support, it is convenient to define
the following two categories V, and V*, where for the morphisms in V, a “push-
forward” map can be expected and for the morphisms in V* a “pull-back” map can
be expected.

Definition 1.1.4. We denote by V, the category with objects (X, ®), where X is a
smooth scheme and @ is a family of supports of X, and morphisms

Homy, (X, @), (Y, V)) ={f € Homi(X, Y); f|o is proper and f(P) C ¥}.

We denote by V* the category with objects (X, ®), where X is a smooth scheme
and @ is a family of supports of X (ob(V,) = ob(V*)), and morphisms

Homy:((X, ®), (Y, W)) = {f € Hom(X, Y); £~ (¥) C ®}.

The composition and the identity comes in both cases from the category of
schemes (over k).

1.1.5. Let X be a smooth scheme. For a closed subscheme W C X we write
(X, W) :=(X, ®w) in V* and V,, respectively. We simply write X for (X, X).

We respectively have forgetful functors V, — Sch; and V* — Schy to the
category of schemes, and we often denote the morphism of schemes induced by a
morphism in V, and V*, respectively, by the same letter.

For a morphism f in V, we will say that f is an immersion, flat, ..., if the
corresponding morphism of schemes has this property, and similarly for morphisms
in V*, We say that a diagram

(X' @) L (v 0

lgx lgy (1.1.6)
(X, d) —L~ (v, w)

is cartesian if the diagram of the corresponding schemes is cartesian.
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1.1.7. Coproducts and “products”. For both categories V* and V,, finite coprod-
ucts exist:

(X, &) [[(Y, W) = (X[[ V. DU ).
For (X, ®), let X =] [; X; be the decomposition into connected components; then
X, @) =] [(Xi, @n@y)).

In general products don’t exist, and we define
X, P)Q (Y, W) :=(X xY, P x V),

which together with the unit object 1 = Spec(k) and the obvious isomorphism
X, )@Y, ¥) = (Y, V) ® (X, &) makes V, and V* into a symmetric monoidal
category; see [Mac Lane 1998, VII.1].

1.1.8. Consider the following data (Fy, F*, T, e):

(1) Two functors Fy : V., — GrAb and F* : (V*)°° — GrAb to the symmetric
monoidal category of graded abelian groups, such that F,(X) = F*(X) as
ungraded groups for every object X € ob(V,) =ob(V*). We will simply write
F(X) := F.(X) = F*(X). We use lower indexes for the grading on F,(X),
that is, Fy(X) = &@; F; (X), and upper indexes for F*(X).

(2) For every two objects X, ¥ € ob(V,) = ob(V*), a morphism of graded abelian
groups (for both gradings):

Txy: FX)Q@zF(Y)— F(X®Y).

(3) A morphism of abelian groups e : Z — F(Spec(k)). For all smooth schemes
7w : X — Spec(k) we denote by 1x the image of 1 € Z via the map
Z % F*(Spec(h)) =% F*(x).
1.1.9. The data (Fy, F*, T, e) is called a weak cohomology theory with supports
if the following conditions are satisfied:
(1) The functor F, preserves coproducts and F* maps coproducts to products,
and for (X, @), (X, ®,) € ob(V,) with &; N P, = {T}, the map
F*()+ F*(j2) : F*(X, ®1) © F*(X, ®3) — F*(X, &1 U dy),
with J1: (X, Cbl Ucbz) —> (X, q)l) and J2 (X, q)l Uq)z) —> (X, q)z) in V*, i
an isomorphism.

(2) The data (Fy, T, e) and (F*, T, e) respectively define a (right-lax) symmetric
monoidal functor (see below).
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(3) Grading: For (X, ®) such that X is connected, we have
Fi(X, ®) = F?24mX=i(x &) foralli.

(4) For all cartesian diagrams (1.1.6) with gx, gy € V* and f, f’ € V, such that
either gy is smooth or gy is a closed immersion and f is transversal to gy,
we have

F*(gy) o Fu(f) = Fx(f") o F*(gx).

Recall that f is transversal to gy if (f/)* Ny /v = Nx//x, where N denotes the
normal bundle. The case X’ = & is also admissible; in this case the equality 1.1.9(4)
reads F*(gy) o Fyx(f) = 0. The condition 1.1.9(4) implies the projection formula
(see Proposition 1.1.16) and will be needed for a calculus with correspondences.

Recall that (Fy, T, e) is called a right-lax symmetric monoidal functor if

o T is associative, that is, for X, Y, Z € ob(V,), the diagram

F(X)®F(Y)®F(Z)id—®T>F(X)®F(Y®Z)

| e |

FIX®Y)QF(Z) F(XQY®2Z)

1S commutative;

o T is commutative, that is, for X, Y € ob(V,), the diagram

F(X)® F(Y) ——> F(X®Y)

| |

FY)®F(X) > FY ® X)

is commutative. Here, for two graded abelian groups A and B, the morphism
A®B— B®Amapsa®b > (—1)e@dee®)p g q;

o the map e : Z — F(Spec(k)) renders commutative the diagrams

F(X)®;Z 225 F(X) ® F(Spec(k)) —— F(X ® Spec(k))

F(X),

Z®7 F(X) 224 F(Spec(k)) ® F(X) — = F(Spec(k) ® X)

F(X);
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o T 1s a natural transformation

T (V, x V, 2255 GrAb x GrAb 3 GrAb) — (V, x V, 3 V, 55 GrAb).

Example 1.1.10. The Chow group
X, P)—~ h_r)nWeqb CH..(W)

satisfies these conditions (see Proposition 1.1.34). The push-forward V, — GrAb
is defined in the usual way. To define the pull-back (V*)°? — GrAb, we use Ful-
ton’s refined Gysin homomorphism. However, in order to get a symmetric functor
we have to put the Chow group CH, (W) in degree = 2d.

It will be shown in Section 2 that the Hodge cohomology with support

(X, @) > P Hi (X, @)
iJ
is another example. The push-forward is an application of Grothendieck’s duality
theory.
An example not further considered in this paper is the étale cohomology with
support

(X, D) > HE(X x k, Q).

Definition 1.1.11. Let (F,, F*, T, e) and (G4, G*, U, €) be as in 1.1.8 and satisfy
the conditions 1.1.9. By a morphism

(Fy, F¥*, T, e) — (G4, G*, U, €), (1.1.12)
we mean a morphism of graded abelian groups (for both gradings)
¢:F(X)— G(X) forevery X € ob(V,) =o0b(V"),

such that ¢ induces a natural transformation of (right-lax) symmetric monoidal
functors

¢:(Fy,T,e) > (G4, U,e¢) and ¢:(F*, T, e)— (G*,U,e),
that is, ¢ induces natural transformations F, — G,, F* — G*, and
poT =Uo(¢p®@¢), ¢Poe=c¢. (1.1.13)

We denote by T the category of weak cohomology theories with supports, that is,
it is the category consisting of objects (Fy, F*, T, e) as in 1.1.8, and satisfying the
properties 1.1.9, together with morphisms (1.1.12).
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1.1.14. Cup product. Let (Fy, F*, T, e) € T. For all (X, ®) € ob(V*) we obtain
a cup product

U: F(X, D) ® F(X, D)) 5> F(X x X, ®; x ®y) —2X (X, &, N Dy),

where Ay : (X, ®1NPy) — (X x X, & x Dy) is induced by the diagonal immersion.
The cup product is associative and graded commutative.
By functoriality we obtain

F*(f)(@ VU F*(f2)(b) = F*(f3)(aUb) (1.1.15)

for all morphisms f; : (X', ®)) — (X, ®1), fo: (X', ) = (X, P7) in V* with
fi = f>:= f as morphisms of schemes; f3: (X', ®|N®)) — (X, P;NPy) in V*
is induced by f.

Proposition 1.1.16 (projection formula). Let (Fy, F*,T,e)eTandlet f: X — Y
be a morphism between smooth schemes, inducing morphisms

fi:(X,®1) > (Y, D) inV,,
L X, ) = (v, v)  in VE
Then f also induces a morphism
fiX, NI W) — (¥, dNW) inV,
and foralla € F(X, ®1) and b € F(Y, V) we have in F(Y, P, NW)
Fi(f3)@VU F*(f2)(b)) = F.(f1)(a) Ub,
F(f3)(F*(f2)(b)Ua) =bU F(f1)(a).

Proof. We prove the first equality of the statement; the second is proved in the
same way. The diagram

X, 1N (W) — L (v, dyN W)

|

(X x X, ®; x fH(W)) Ay

mXﬁj
id
(X x ¥V, @) x W)

(Y XY, ®y x V)
is cartesian and f x id is transversal to Ay. Thus by 1.1.9(4) we get

Fu(f3)(@UF*(f2)(0)) = Fu(f3) F*(Ax) F*(id x /2)(T (a ® b))
= F*(Ay) F.(fi xid)(T(a®b)) = Fi(fi)(@)Ub. O

The proof of the following lemma is straightforward.
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Lemma 1.1.17. (1) Forall (X, ®) and a € F(X, ®) the equality
lxyUa=a=aUlyk
holds. In particular F*(X) is a (graded) ring.
(2) For smooth schemes X and Y , we have
T(lx®ly) =lxxy.

1.1.18. Definition of Chow groups with support. In the following we define a first
example of an object (CH,, CH*, x,¢) € T.

Definition 1.1.19 (Chow groups with support). Let ® be a family of supports on X.
We define

Zo(X) := abelian group freely generated by irreducible closed subsets Z € ®;

Rate (X) := subgroup of Z4¢(X) generated by div(f), where f € k(W)* is a
nonzero rational function and W € & is irreducible;

CH(X, ®) := Zo(X)/Rat & (X).
For (X, ®) and (Y, ) we obtain
CH((X[]Y, ®UW¥)) =CH(X, &) @ CH(Y, V). (1.1.20)
1.1.21. Grading. The groups Z¢(X) and Rat ®(X) can be graded by dimension:

CH,.(X, ®) = P CHy (X, ®)[2d],
d>0

where the bracket [2d] means that CH; (X, ®) is considered to be in degree 2d.
There is also a grading by codimension. Let X = [ [; X; be the decomposition
into connected components. Then CH*(X, ®) = @, CH*(X;, N dx,) and

CH*(X;, ® N ®y,) = @) CH!(X;, ® N Dy,)[2d],
d>0

where CH? (X;, ®) is generated by cycles [Z] with Z € ® N Dy, Z irreducible,
and codimy, (Z) =d.

1.1.22. Examples. If W C X is a closed subset, then we get
CH(X, &) = CH(X, W) = CH(W),

the usual Chow group of W.
If X is proper, U is affine, and ® :={Z’; Z' C U}, then

CH(X, ®) = Z¢(X) = freely generated by closed points of U.
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1.1.23. Push forward for Chow groups. Let ® be a family of supports on X as
in Definition 1.1.1. If W C X is a closed subscheme with W € ®, then Z(W) =
Zy,(X) C Zo(X), Rat (W) =Ratdw(X) C Rat ®(X) (with ®w as defined in
(1.1.2)), and we obtain a map

CH(W) = CH(X, W) — CH(X, ®). (1.1.24)

Obviously, CH(X, ®) is the largest quotient of Z¢(X) such that there are push-
forward maps (1.1.24) for every W € ®.

1.1.25. In general, let f : (X, ®) — (Y, ¥) be a morphism in V,. There is a push
forward of cycles

feiZo(X) > Zy(Y) and  fi([Z]) =deg(Z/f(2))-[f(2D)],

for Z € @ irreducible (deg(Z/f(Z)) =0 if dim(f(Z)) < dim(Z)). Push forward
is functorial [Fulton 1998, Section 1.4].

Lemma 1.1.26. With the assumption of 1.1.25, we get f,(Rat ® (X)) C Rat W (Y).

Proof. Indeed, Rat ®(X) is generated by the images of Rat (W) where W € .
The restriction f|w is proper and [Fulton 1998, Proposition 1.4] yields

f«(Rat(W)) C Rat(f(W)). u
Thus we get an induced map
f+ :CH(X, ®) - CH(Y, ¥) (1.1.27)
and a functor
CH, : V., — GrAb, CH,(X, ®):=CH(X,®), CH.(f):=fi. (1.1.28)
Proposition 1.1.29. Let ® be a family of supports of X. The map
h_r)nWeq) CH(X, W) — CH(X, ®)
is an isomorphism.
Proof. This is straightforward. ([
1.1.30. Pull-back for Chow groups. To define a functor

CH*: (V*)°® — GrAb

we recall Fulton’s work on refined Gysin morphisms [Fulton 1998, Section 6.6].
Let f : X — Y be a morphism between smooth schemes and let V C Y be a
closed subscheme. There is a morphism

f':CH(V) = CH(f~'(V))
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of abelian groups (where f~!(V) = X xy V) with the following properties:
(1) For a closed subscheme V/ C Y with V C V' (denote the immersion by ¢ and
the immersion f~'(V) c f~1(V’) by j), we have the equality
floe=f
(as maps CH(V) — CH(f~1(V"))).

(2) If g : Y — Z is another morphism between smooth schemes and S C Z a
closed subscheme, then

flog'=(gof)

as maps CH(S) — CH((g o f)_l(S)).

(3) If f: X — Y is flat, then f' = f* where f* is the usual pull-back map for
flat morphisms.

(4) Let

X/ L Y/

o o
X —f> Y
be a cartesian diagram of smooth schemes and W C X a closed subscheme

such that f|w is proper. Assume that either gy is flat or gy is a closed im-
mersion and f is transversal to gy. Then

gy fe= flgk

as maps CH(W) — CH(f/(g;(lW)) = CH(g;If(W)). This statement is
proved in [Fulton 1998, Proposition 1.7] for flat morphisms and in [Fulton
1998, Theorem 6.2(a),(c)] for the case of a closed immersion.

Remark 1.1.31. Note that CH(W) = CH(W,eq) for every scheme W.

1.1.32. Definition of the pull-back map. Let f : X — Y be a morphism between
smooth schemes and let V C Y be a closed subscheme; thus f : (X, f (V) >
(Y, V) is a morphism in V*. We define

CH*(f):= f': CH(Y, V) = CH(V) — CH(f~'(V)) = CH(X, f~1(V)).

For the general case, let f : (X, ®) — (¥, ¥) be any morphism in V*. For every
V € W the map f induces (X, f~'(V)) — (Y, V) in V*. Because of 1.1.30(1) and
Proposition 1.1.29, we obtain

CH*(f) : CH(Y, V) = li_n)lvgy CH(Y, V) — li_r)ntD CH(X, W) = CH(X, ®).
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The assignment
CH*: (V*)® - GrAb, CH*(X,®)=CH(X,®), [ CH*(f), (1.1.33)
defines a functor by 1.1.30(1) and (2).
Proposition 1.1.34. With the exterior product x (see [Fulton 1998, Section 1.10])
and the obvious unit 1 : Z — CH(Spec(k)), we obtain an object
(CH,, CH", x,e) €T.
Proof. The formula 1.1.9(4) follows from 1.1.30(1) and (4). ([l

1.2. Chow groups with support as initial object. Given (CH,, CH*, x, 1) we are
interested in objects (Fy, F*, T, e) € T that admit a morphism (CH,, CH*, x, 1) —
(Fy, F*, T, e). Such morphisms should be viewed as a kind of cycle map, which
is compatible with push-forward and pull-back. Unfortunately, we can only give
a satisfactory answer under an additional hypothesis on (Fy, F*, T, ¢), which we
call semipurity.

Definition 1.2.1 (semipurity). We say that (F, F*, T, e¢) satisfies the semipurity
condition if the following holds:

o For all smooth schemes X and irreducible closed subsets W C X, the groups
F; (X, W) vanish if i > 2dim W.

o For all smooth schemes X, closed subsets W C X, and open sets U C X such
that U contains the generic point of every irreducible component of W, we
require the map

F*()): F2dimw (X, W) = Fagimw (U, WNU),
induced by 7 : (U, WNU) — (X, W) in V*, to be injective.
Remark 1.2.2. For (CH,., CH*, x, 1) the condition is satisfied since
CHy 4imw (X, W)=2Z-[W] and CH;(X,W)=0 fori>2dimW.

Let ¢ be the codimension of W in X, so that Frgimw = F2. Whenever there
are exact sequences

F*(X,W\U) —> F*(X,W) — F*(U,UNW),
the conditions in 1.2.1 follow from Fi (X, W) =0 for i < 2¢ (and all pairs (X, W));
this is known as semipurity in the literature.

Theorem 1.2.3. Suppose k is a perfect field and assume (Fy, F*, T, e) € T satis-
fies the semipurity condition 1.2.1. Then Homt((CH,, CH*, x, 1), (Fy, F*, T, ¢))
is either empty or contains only one element; it is nonempty if and only if the
following conditions hold:
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(1) If f: X — Y is a finite morphism between smooth connected schemes of equal
dimension, then

Fo(f)(1x) =deg(f)-ly.
(2) For the 0-point 19 : Spec(k) — P! and the co-point 15 : Spec(k) — P! the
following equality holds:
F.(1p)oe=F,(i)0e.
(3) For a closed immersion 1 : X — Y between smooth schemes and an effective
smooth divisor D C Y such that

o D meets X properly and thus DN X := D xy X is a divisor on X,
e D' := (D N X)req is smooth and connected and thus DN X =n- D’ as
divisors (for somen € Z,n > 1),
we denote by i1x : X — (Y, X) and 1p : D' — (D, D') the morphisms in
Vy induced by 1, and we define g : (D, D') — (Y, X) in V* by the inclusion
D C Y. Then the following equality is required to hold:

F*(g)(Fi(x)(1x)) =n- F.(p)(1p).
4) If W C X is an irreducible closed subset, then there is an element clix w) €
Fagimw (X, W) with
F*())(clix.wy) = Fe()(lunw)

for all open sets U C X such that U N W # & is smooth, and where j :
U,wnU)—-> X,WyinV*and:1: WNU — (U, WNU) inV,.
We will give the proof after the proof of the following proposition.

Proposition 1.2.4. Let k be a perfect field and let F := (Fy, F*, T, e¢) € T sat-
isfy the semipurity condition 1.2.1. We also assume that the conditions (1)—(4)
of Theorem 1.2.3 hold for F. Then there is a unique natural transformation of
(right-lax) symmetric monoidal functors

¢ : (CH*9 X, 1) - (F*9 Ta e)
such that ¢ (1x) = 1x for every smooth scheme X.

Proof. Uniqueness: In view of the semipurity condition 1.2.1,

(W] =clix,w) (1.2.5)

is the only choice for an irreducible closed subset W of X, [W] € CH, (X, W). For a
general family of supports ® of X, the group CH,. (X, ®) is generated by the images
of [W] via CH,.(X, W) — CH,(X, ®), where W runs through all irreducible closed
subsets W € ®.
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Existence: For every smooth scheme X and a family of supports ® of X, we define
a homomorphism of abelian groups

Px.0) : Zo(X) > F(X, ) (1.2.6)
by ¢EX, @)([W]) = F.(w)(cl(x,w)) for every irreducible closed subset W € ® and
ty . (X, W) — (X, ®) in V, induced by idy.

Ist step: For every morphism f : (X, ®) — (¥, W) in V, the push-forward f, :
Zo(X) > Zy(Y) is well defined by 1.1.25. We claim that
¢£Y,\1;)°f* =F*(f)°¢£x,q>) (1.2.7)

for every f : (X, ®) — (¥, V) in V,.

Let W € @ be irreducible. If dim( f(W)) <dim(W), then F, gimw (Y, f(W))=0
by semipurity 1.2.1; thus (1.2.7) holds in this case.

In the case dim f(W) =dim W =:d, the map W — f (W) is generically finite,
so that we may find an open U C Y suchthat UN f(W) £, UN f(W) is smooth,
f~YU)NW is smooth, and f': f~'(U)NW — UN f(W) induced by f is finite.
Consider the commutative diagram

F*(]/) —1 -1 F. (") -1
Foa(X, W) —— Fp(f 7 (U), WN [T (U)) =<— F2a(WN f7(U))

lF*(f) LF*(f) lF*(f’)
Fa(Y, fW)) ——L o By, fon)nU) <22 By (W) N D),

where ; : (U, f(W)NU) — (Y, f(W)) and ;" : (f~LU), Wn f~1(U)) = (X, W)
in V* are induced by the obvious open immersions; the obvious closed immersions
respectively induce 1 : f(W)NU — (U, f(W)NU) and ' : WN f~1(U) -
(f_] ), Wﬂf_] (U)) in V... From the diagram and condition 1.2.3(1), we obtain
F*(DF(f)(clix,wy) = deg(W/f (W) - Fe(@)(1 pwynv)-

Now, semipurity 1.2.1 implies

Fo(f)(clix,wy) =deg(W/f(W)) -cliy, rwy),

which proves the claim (1.2.7).

2nd step: Let X be a smooth scheme, W C X an irreducible closed subset, and
D C X a smooth divisor intersecting W properly, so that WN D := W xx D is an
effective Cartier divisor on W. We denote by [W N D] the associated Weil divisor
and claim that

F*p)@x.wy (WD) = $( 1 wrpy (W N DY), (1.2.8)
where ip : (D, WN D) — (X, W) is induced by D C X.
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Note that by semipurity we may replace X by an open subset that contains the
generic points of (W N D)q4. In particular, we may assume that the irreducible
components of (W N D),q are disjoint. Letting V1, ..., V, be the irreducible com-
ponents of (W N D),.q, we obtain

~

@ F(D,V;) = F(D,WN D)
i=1

from 1.1.9(1); thus we may assume that »r = 1. If W is regular (that is, smooth)
in codimension one (for example, W is normal), then we can find an open U C X
such that WNU and Vi N U # @ is smooth; thus (1.2.8) follows from 1.2.3(3).

Now, let W be not necessarily normal. Since we may assume that X is affine
we can find a closed immersion W — W x P" (over W) of the normalization w
of W. Setting

X:=XxP', D:=DxP", i:(D,VND)— (X,V),

we obtain
F*@)(@(xw)[WD = F* () Fulpry) (¢ g, (WD) by (1.2.7)
= Fu(pry|p) F*@(¢(z 3, (WD) by L1.9A)
= Fu(pri| )@ i, (W N D)
= $(p.wnp) Pr1 (W N D)) by (1.2.7)

= ¢ED7W0D)([W N D]).
3rd step: For all (X, ®) we claim that the map ¢>E x.¢) Satisfies

(béx@)(Rat@(X)) =0; (1.2.9)

and thus induces a natural transformation ¢ : CH, — Fi.
Let W C X x P! be irreducible such that pry(W)edand W — P! is dominant.
By using the 2nd step’s (1.2.8), we obtain

F* ) (@ xpr .y AWD) = D (x pr, (wyy (W N (X x {eH])

for e € {0, 00}, 1c: (X x {e}, pr;(W)) = (X x P!, W).
Thus F*(19) = F*(i10) Will prove the claim (1.2.9). It is not difficult to see that
this follows from the projection formula and

F (1) (1x) = F (1) (1x) (1.2.10)

in F(X x P'), where 1/ : X x {€} S X x Pl
In view of 1.1.9(4) the equality (1.2.10) is implied by 1.2.3(2).
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4th step: The only assertion left to prove is

pox=To(pRp), dol=ec.

The second equality holds by definition. For the first it suffices to show

Dy, wxvy (WX VD) = T((x w) (WD) ® ¢y v, [V])

for smooth schemes X, Y and irreducible closed subsets W C X, V C Y. Again by
semipurity we may assume that W and V' are smooth, in which case the statement
follows from Lemma 1.1.17. U

Proof of Theorem 1.2.3. Set CH := (CH,, CH", x, 1) and F := (F,, F*, T, ¢). For
¢ € Homy(CH, F), we get

¢(lx) =1x

for all smooth schemes X; thus Proposition 1.2.4 implies that Homt(CH, F) is
either empty or contains only one element.

Obviously the conditions (1)—(4) of 1.2.3 are necessary for Homt(CH, F) to
be nonempty. So let us assume that the conditions are satisfied. Proposition 1.2.4
yields a natural transformation of right-lax symmetric monoidal functors

¢ : (CHy, x,1) —> (F,, T, e).

We need to prove that ¢ induces a natural transformation ¢ : CH* — F*,

1st step: Assume that f : (X, ®) — (¥, ¥) in V* is smooth. We claim diagram

CH* (/)
CH(Y, V) — CH(X, @)

I I
Fv.w) L pox, @)

commutes. It suffices to prove

F*()(@a (VD) = bx, r-1vy (VD

for all irreducible closed subsets V C Y. By using semipurity we may replace Y
by an open set and thus assume that V' is smooth. We obtain

F*(f)(@x.wvy([VD) = F*(f)FGv)(1y)
= Fu(t ) F*(fl 1)) v) by 1.1.9(4)
= F(p-1v) (L p-1(v))
= bex, -1y (LF DD,
where 1y : V — (Y, V) and 1 -1y : f~H(V) = (X, f7H(V)).
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2nd step: Let p : E — X be a vector bundle and let s : X — E be the zero
section. We claim that for every closed subscheme W C X the following diagram
is commutative:

CH(E, p—l(W)) CH(X W)
ld) ¢
F(E, p~' (W) — = F(X, W),

Indeed, by homotopy invariance we may write any a € CH(p~'(W)) as a =
CH*(p)(b) with b € CH(W). Thus by the 1st step,

F*(s)(¢(a)) = F*()F*(p) (9 (D)) = ¢ (b) = ¢ (CH"(s)(a)).

3rd step: For every closed subscheme W C X, denote by
0: (X, W) > (XxP',WxP") and 150:(X,W)—> (X xP, WxP,

the morphisms in V* and V, induced by the inclusions X x {0} C X x P! and
X x {oo} C X x P!, respectively. We claim that

F*(10) = F*(1c0)-
Indeed, if p : (X x P!, W x P!) — (X, W) is the first projection, then

F*(1e)(@) = Fi(p) Fy (1) (@ (XD U F* (1) (@) = Fi(p) (Fx(1e) (@ ([X]) Ua)

for € € {0, 00}. Since F,(1)(¢([X]) = ¢([X x {€}]) the claim follows from
[X x {0}] = [X x {oo}] in CH' (X x P1).

4th step: Let f : X — Y be a closed immersion and V C Y a closed subscheme;
set W:= f~1(V)=V xy X. Then f induces f : (X, W) — (Y, V) in V* and we
claim that

ca. v) 2L cax. w)

X X
F*(f)

FY,V) F(X, W)

is a commutative diagram.
Again, it is sufficient to prove

FX(f)@(VD) = ¢(CH"(f))

for V integral.
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For the proof we use deformation to the normal cone [Fulton 1998, Section 5].

Let
M :=Blyx (o) (¥ x P1)\ Blyx oo} (Y x {00},

M° :=Blw (oo} (V X P1) \ Blyy o) (V x {00});

then M° c MO is closed, and M° and M° are flat over P!. We have closed im-
mersions 1y : X x P! — MO and 1y : W x P! — MO that deform the immersions
X C Y and W C V, respectively, over P!\ {00} to the zero section of the normal
cone over oo.

Since W x P! = M°n (X x P') we obtain morphisms

e s (X x {€}, W x {€}) > (M°, M%)

in V* for € € {0, co}. By the 3rd step we know that F*(1p) = F*(1x0).
Consider the projection p : (Y x (P {o0}), V x (P'\ {o0})) — (¥, V) in V*,
Note that M is the closure of V x (P! \ {o0}) in M°, and thus

CH*(p)(IV]) = CH*(;)(IM°])

with 7 : (Y x (P'\ {00}), V x (P \ {00})) = (M, MO) the open immersion. By
using the Ist step we get F*(p)(¢([V]) = F*(])(¢([MO])) and thus

F*(f)(@ (VD) = F* 1) (¢ ([M°]) = F*(1s0) (¢ (IM°])).
Now, let us compute F*(i1o). The morphism 14, has a factorization
oo 1 (X, W) > (Nyx, Cyyw) = (M°, M°),

where Ny, x is the normal bundle and Cy,w is the normal cone. Note that Ny, x is
a smooth divisor in M?, which intersects M properly (being the fiber of M? — P!
over 00), so that we may apply (1.2.8) to r. Moreover s is the zero section of the
normal bundle. The zero section also induces a morphism

s": (X, W) — (Ny;x, Ny;x xx W) in V¥

denote by 7 : (Ny,x, Cv;w) — (Ny,x, Ny;x xx W) the morphism in V, induced
by the identity map. Then 1.1.9(4) yields

F*(s) = F*(s') o Fy(1).

Thus we get
F*(100) (@ (IM°])) = F*(s") Fy(x) F*(t) (¢ (IM°]))
= F*(s") F(7) (¢ (CH* (1) (IM°]))) by (1.2.8)
= ¢ (CH* (100) ([M°])) by the 2nd step

= ¢ (CH* (10)([M"1)) = ¢ (CH* (/) (VD).
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Sth step: Let f: (X, ®) — (Y, V) be any morphism in V*. We have to prove that

o CH (f)=F*(f)o¢.
Indeed, f factors through

frx o) 28 (xxy, pry ' (W) > (1, W).

By the 1st step we may reduce to the case of the closed immersion (id, f), and by
using Proposition 1.1.29 the statement follows from the 4th step. ([

1.3. Correspondences. Let (F,, F*,T,e) € T. Let X; fori = 1,2, 3 be smooth
varieties and ®;; for ij = 12,23, 13 be families of supports on X; x X ;. Denote
by pij : X1 x X5 x X3 — X; x X the projection. Suppose that

{p13|p1;<¢lz>np2;(¢zs> 1 proper, (1.3.1)

P1i3(pra (@12) N pyy ($23)) C D3

Then we define
F(X1 xX5,P10)® F(Xy x X3, Py3) > F(X| x X3,P13), a®br>boa
to be the composition

F(X1 x X2, ®12) @ F(X2 x X3, $23)

F*(p12)®F*(p23) > )
PR PP F(X x Xa x Xa, Py (P12)) ® F(X1 x X2 X X3, pyy ($23))

= F(X1 X X2 x X3, pi, (@12) N pyil(®23))
LB b (X x X3, @13). (13.2)

1.3.3. Let d>;j for ij = 12,23, 13 be families of supports on X; x X;. Suppose
that

{pl3|P|2 (®12)mp23 (®33) is proper,
P13(p12 (®),) N pys (@ 53) C @5,
and d>;.j C ®;; forij = 12,23, 13. Obviously, the diagram

F(X1 x X2, ®},) ® F(X2 x X3, ®)3) —— F(X; x X3, ®)3)

l |

F(X1 x X2, ®12) ® F(X3 x X3, ®23) —— F(X| x X3, ®13)

is commutative.
The most important case for us will be (CH,, CH*, x, 1). For later use we
record the following particular case of the discussion above.
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Lemma 1.3.4. Let X; fori =1, 2, 3 be smooth schemes and ®;; forij=12,23,13
be families of supports on X; x X ; that satisfy (1.3.1). Fora € Z¢,(X| x X2) and
b e Zyp,, (X2 x X3), we define

supp(a, b) := p13(py; (supp(@)) N p33 (supp(b))), (1.3.5)
which is a closed subset contained in ® 3. The families of supports

DY, = DPsupp(a) D)3 = Dsupp(b)» D3 = Psupp(a,b)

satisfy (1.3.1). The cycles a and b define in the obvious way classes

a € CH(supp(a)), b € CH(supp(b)).

aECH(Xl XXz,Cblz), bECH(XzXX3,<I)23).
Then boa is the image Ofl; oa via the map CH(supp(a, b)) — CH(X;| x X3, ®13).

Lemma 1.3.4 helps to understand the composition of two cycles a and b via the
purely set-theoretic computation of supp(a, b). Frequently we are able to compute
the composition over suitable good open subsets; this is the motivation for the next
lemma.

Lemma 1.3.6. Ler X; fori =1, 2, 3 be smooth schemes. Let a € Z(X| X X;) and
b € Z(X, x X3) be algebraic cycles such that
P13l ot supp(@)npy suppepy S Proper.

Let X| C X1, X}, C X3 be open subsets; define a’ € Z(X| x X3),b" € Z(X5 x X%)
as the restrictions of a, b. We denote by p;; the projections from X' x X x Xj.

(1) The restriction of p}, to p/lgl supp(a’) N pgl supp(b’) is proper.
(2) The equality

supp(a’, b') = supp(a, b) N (X] x X})
holds, where supp(a, b) is defined in (1.3.5).

(3) The composition b’ o d’ is the image of b o a via the localization map
CH(supp(a, b)) — CH(supp(a’, b")).
(Here supp(a’, b') C supp(a, b) is an open subset by (2)).

Proof. By definition we obtain
supp(a’) = supp(a) N (X x X3), supp(b’) = supp(b) N (X2 x X3).
For (1): Let Z1, C X1 x X», Z>3 C X5 x X3 be closed subsets such that

P13 |pl—zlzlzmp2—31 7,, 18 proper.
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Set Z|, = Z1nN (X x X3) and Z); = Z23 N (X2 x X%). Obviously,
P13 Z1, N phs' Zhs = (piy Z12 N iy Zo3) N (X} x X5 x X5).

Thus, if py,' Z12N pyy Z23 is proper over X x X3, then pl;' Z},N ph;' Z}, is proper
over X| x XJ.

Statement (2) is a straightforward computation. For (3): By using the definition
of o in (1.3.2) it is straightforward to show that the diagram

CH(X | x X7, supp(a))®@CH(X2x X3, supp(h)) —— CH(X| x X3, supp(a, b))

! l

CH(X x X2, supp(a’)) ®CH(Xx X}, supp(b')) —-= CH(X| x X}, supp(a’, b))
is commutative. O

1.3.7. For two smooth schemes X and Y and families ® and W of supports of X
and Y, respectively, we define a family of supports P (P, W) on the product by

P(®,V):={ZC X xY; Zisclosed, pr,|z is proper,
Zz ﬂprl’l(W) € prz’l(\ll) for every W € ®}. (1.3.8)
Let X; for i = 1,2, 3 be smooth schemes and let ®; be a family of supports

on X; fori =1, 2, 3. It is easy to see that ®;; := P(®P;, ®;) satisfy the condition
(1.3.1) and therefore

F(X1 x X2, P(®1, P2)) ® F(X2 x X3, P(P2, ®3))
— F(X] XX3,P(¢'1,¢3)), (139)

where a ® b — b oa, is well defined.
Proposition 1.3.10. (1) Let X; fori = 1,...,4 be a smooth scheme and let ®;

fori=1,...,4 be afamily of supports of X;. We have

azgo(axoap) = (azsoaxy)oap forallajje€ F(X; xX;, P(®;, D;)).
(2) For any (X, ®), the diagonal immersion induces a morphism

1 X—>XxX,P(®, D) inV,.

We set Ax, o) := Fi(1)(1x). The equality Ax o) 0 g = g holds for all (Y, V)
and g € F(Y x X, P(¥, ®)), and g o A(x,0) = g holds for all (Y, V) and
geF(X xY, P(D,W)).

Proof. The proof of the first statement is as in [Fulton 1998, Proposition 16.1.1]
but one has to keep track of the supports, which is straightforward.
The second statement is an easy computation. U
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1.3.11. Grading. For (X, ®) and (Y, ¥), F, and F* give rise to two different
gradings on F(X x Y, P(®, V)). Unfortunately, neither are compatible with the o
from (1.3.9). We define a new grading by

F(X xY, P(®, V) = @ FRAmXOH (xS Y, p(D, W),
X/

where X’ runs through the connected components of X. With this grading, o be-
comes a morphism of graded abelian groups.
By the definition of the grading there are choices. We could also define a grading

F(X xY, P(®,9)); = @D Faaimexy4i (X x ¥, P(D, ).
X/

Definition 1.3.12. To an object F = (Fy, F*,T,e) € T, we attach the graded
additive symmetric monoidal category Cory with objects ob(Corg) = ob(V,) =
ob(V*) and morphisms

Homcg,, (X, @), (Y, W) =F(X x Y, P(®, ¥))

with composition law a ® b — b oa (1.3.9). The identity is A (x, o).
The product ® on Cor is defined by

X, 0)Q Y, V) =(XxY, dx W),

and for two morphisms f € F(X x X/, P(®,®")) and g€ F(Y xY', P(¥, ¥")),
we define

f ® g € Homcor, (X, @) ® (¥, W), (X', @) ® (Y', W),
f®g:=F.(idy xpux,y xidy ) (T (f ®28)),

where px y is the permutation of the factors (X', ®’) and (¥, W).

1.3.13. Given two objects ', G € T and a morphism ¢ : F — G in T, we obtain
a functor of graded additive symmetric monoidal categories

Cor(¢) : Corgp — Corg
that is given by
p:F(XxY,P(P,¥V))—> GX xY, P(,V))
for all (X, @) and (Y, V). This provides a functor
Cor: T — Catgrap.g, F > Corp, ¢ — Cor(¢).

Here, Catgrap,g is the category of graded additive symmetric monoidal categories.
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1.3.14. In order to state the properties of Cor, it is convenient to introduce the
category V with objects ob(V) =ob(V,) =ob(V*) and only morphisms the identity
idy (for every X € ob(V)). There are obvious functors V — V,, V — V* and
V — Corp for all F' € T. We define Caty Grap,e to be the category with functors
V — X as objects (X € Catgrap,g) and commutative diagrams

f Y,

\ / (13.15)

Vv

X

with f € Homcatg,,, , (X, Y), as morphisms. In general a functor f is said to be
under V if the diagram (1.3.15) is commutative.

Proposition 1.3.16. The functor Cor : T — Caty /Grap,e is fully faithful.

Proof. Given F,G € T and ¢ : F — G, we can recover ¢ : F(X) — G(X) for
X € ob(V) from the map Cor(¢):

Homc,, (Spec(k), X) — Homcoy, (Spec(k), X). (1.3.17)

On the other hand, given ¢ : Corp — Corg in Caty,Grab,e. the map (1.3.17)
defines a morphism FF — G in T. O

1.3.18. For all F € T, there is a functor
pr : Corgp — GrAb
defined by
pr(X, ®) = F(X, P)
pr(y) = (a > Fi(pr)(F*(pr))(@Uy)) fory € F(X xY, P(®,V)).

The map pr(y) : F(X,®) — F(Y,V¥) is well defined since pr, restricted to
pr; (@) N P(d, W) is proper and pr; ' (®) N P(d, ) C pr; ' (¥) by definition
of P(®, V). Functoriality is again a straightforward computation.

Moreover, there are functors

tf :Ve— Corp and 15 : (V") - Corp,
(under V) such that
pFo‘rf=F* and prpoty=F*.

The functor [ : V,, — Cor is defined by mapping a morphism f: (X, ®)— (¥, ¥)
to F.(id, f)(1x), where (id, f) : X — (X x Y, P(®, V)) is in V,. Similarly, the
functor 7}, : V* — Corp is defined by mapping a morphism f : (X, ®) — (Y, W)
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to F.(f,id)(1x) with (f,id) : X — (¥ x X, P(¥, ®)) in V,. Then the equalities
protl =F,and pro 75 = F* follow easily from the projection formula.

Lemma 1.3.19. If ¢ : F — G is a morphism in T, then

Cor(p)otf =1 and Cor(¢)o Th = T15.

Proof. For the first equality, let f : (X, ®) — (¥, ¥) be a morphism in V,. We get
Cor(¢) () (f)) = Cor(¢)(Fu(id, f)(1x)) = ¢ (Fi(id, f)(1x))
= G.(d, N (@(1x) = G.(id, )H(1x) =7 (/).

The second equality is proved in the same way. ([

2. Hodge cohomology with support

For a smooth scheme X and a family of supports ® of X, we define
H(X, ®) =P Hy(X. @),
iJj
and call this k-vector space the Hodge cohomology of X with support in ®. We
denote by H*(X, ®) the graded abelian group, which in degree n equals

H"(X, ®) = (P Hy(X.2)). (2.0.1)
i+j=n

We denote by H, (X, ®) the graded abelian group, which in degree n equals
Hy(X, ®) = (P H* W (X,, @), (2.0.2)

r

where X = [ [, X, is the decomposition into connected components. We define
e:Z— H(Speck)=k (2.0.3)

to be the natural map sending 1 to 1.
The goal of this section is to provide the object functions H, and H* with the
structure of functors

H,:V.— GrAb and H*:(V*)°® — GrAb
and to define for each (X, ®), (¥, ¥) € ob(V,) = ob(V*) a morphism
T(X’q;)’(y’\y) THX, D) QHY, V) > HX XY, D x W)

of graded abelian groups (for both gradings) such that (H,, H*, T, e) is an object
in T, that is, it is a datum as in 1.1.8 and satisfies the properties 1.1.9.

2.1. Pullback.
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2.1.1. We work in the bounded derived category of quasicoherent sheaves D”(X)
on a scheme X. (The bounded derived category of coherent sheaves will be denoted
by Df(X).) Let f : X — Y be a morphism of schemes; let ® and ¥ be families
of supports of X and Y, respectively. There is an isomorphism of functors

RT; 1y) = RTyRfs. 2.1.2)
If W C W’ for another family of supports W', then the diagram
2.1.2)
Rl—‘f—l(\p/) —_— RF\IJ/ Rf*
T ] 2.1.3)
(2.1.2)

er—l(\p) —_ RF\IJRf*
is commutative. Moreover, if g : Z — X is another morphism of schemes then the
following diagram is commutative:

(2.1.2)for fog
Rr(fog)—l(q,) —_—> RF\[JR(f Og)>|<

2.14
(2.1.2) for gl 2.1.2) for f ( |

RT =109 Rg-
2.1.5. For a morphism f : X — Y of schemes, we have
id— Rf.Lf*,
and thus we obtain a morphism of functors
RTy — RT po1y)Lf™; (2.1.6)

it easily follows from (2.1.3) that the diagram

(2.1.6) %
RF\[J/ —_— Rl—‘f—l () Lf

] T 2.1.7)
(2.1.6)
quj I RFf—l(q,)Lf*

commutes for ¥ C W’. From (2.1.7) and (2.1.4) it follows that for another mor-
phism g : Z — X of schemes the following diagram is commutative:

2.1.6) f
RTy _ @lOfrf RT o1y Lf*

(2.1.6)f0rfogl/ / (2.1.8)
(2.1.6) for g

RT (fog)-1wyL(f 0 8"
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For a morphism f : (X, ®) — (Y, ¥) in V* (thatis, f~'(¥) C ®), the morphism
RTy QY — RT jo1(g)Lf*Q§ = RT po109) f* QY — RT jo109)Q% — RTo QY
(for d > 0) gives a morphism
H*(f): HY,¥) > H(X, ®). (2.1.9)
By a straightforward computation, f +— H™*(f) defines a functor (V*)°? — GrAb.

2.2. Push-forwardin the derived category. We recall the following notations from
duality theory [Hartshorne 1966; Conrad 2000]: Let X be a separated k-scheme of
finite type with structure map 7 : X — Spec k. We have 7'k € D’ (X). (In fact if X
has dimension d, then 7'k has nonzero cohomology only in the interval [—d, 0].
This follows from [Hartshorne 1966, Chapter V, Proposition 7.3 and its proof] and
[Conrad 2000, (3.1.25)].) We denote

Dx := R %omy (-, n'k) : D’(X) — D’(X). (2.2.1)
If f:X — Y is a proper morphism between k-schemes, we have the trace map
Try: Rfif' — id, (2.2.2)

which is a natural transformation of functors on D} (Y). For maps f : X — Y and
g :Y — Z, we have the canonical isomorphisms

crei(gf) = f'g' in DF(X). (2.2.3)

Notation 2.2.4. Given a bounded complex C in D(X) and a morphism of com-
plexes ¢ : A — B in D(X), we will often denote the morphism R #omy (C, ¢) :
R Homy (C, A)— R ¥omy (C, B) simply by ¢ and the morphism R #omy (¢, C):
R ¥omy (B, C) — R #omx (A, C) by ¢". It will always be clear from the context
what C is in the particular situation.

Definition 2.2.5. Let f : X — Y be a proper k-morphism. Let mx and my denote
the structure maps of X and Y respectively. Then we define

f«: RfDx (%) — Dy(Qy) for ¢ >0,

to be the composition

Cfry

Rf.R Homyx (Q%, wik) —=> Rf,R Homy (Q%, f'myk)

nat.

T -
2% R%omy (RAQL. R, flrbk) —> R Yomy (Rf.QL, whk)

YL R omy (R, whk).
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Remark 2.2.6. (1) Notice that the composition of the middle two arrows in the
composition above is just the standard Grothendieck duality isomorphism (see
for example [Conrad 2000, (3.4.10)])

Rf.R Jomx (-, f'(-)) = R%omy (Rfi(-), -)

(2) Itis straightforward to check that the push-forward above also equals the com-
position

“@f*Y Cfm
Rf.Dx(Q%) —— Rf*DX<Lf*szq -

!

) =% Rf.R %omX(Lf*Qq,f' k)

= R¥omy(Q%, Rf. f° JTYk) —> Dy(Q ).
Here adj. denotes the isomorphism
Rf. R 9omy (Lf*(-), -) = R%omy (-, Rf:(-)) on DI (Y)x D*(X)

(see [Hartshorne 1966, Chapter II, Proposition 5.10]) and ¢f* : Lf *Q‘)], — Q?{
is the morphism corresponding to Q‘é — R f*QSI( under H°(Y, -) applied to
the isomorphism above.

Proposition 2.2.7. (1) id, =id.
) Let f: X > Y and g : Y — Z be two proper maps with X and Y of pure
dimension dx and dy, respectively. Then
(8o f)x=gxoRg:(fs): Rg*Rf*DX(Q ) — DZ(Q ).

3) Let
X s x
ol
) 4
be a cartesian diagram with f proper, u étale and X of pure dimension d.

Then the diagram

w*Rf.Dx(Q%) —= Y u*Dy (22)

Nl jw (2.2.8)
Rf',Dx(9%) — = Dy

commutes, where the vertical maps are the natural isomorphisms (in the proof
we will make these isomorphisms precise).
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Proof. (1) is clear. By [Conrad 2000, Lemma 3.4.3, (TRA1) and p. 139, (VAR1)],
we have

Tryor = Try oRg.(Try) 0o R(g o f)i(crg) s RgsRf(go ) =id.  (2.2.9)

and
CrgOCoorn = f(Con)oCrnog: (hogo f) — f'g'h', (2.2.10)
where h : Z — W is a third map. This implies (2).
Now to make the vertical maps in (3) precise we need some further notation:
Let
o u*Rf, = Rfau'™, ey u* = u',
Bu:u*R¥om(-, -) = R Hom@u*(-), u*())
be the natural isomorphisms. Then the vertical map on the left of (2.2.8) is given
by c;}ﬂx o ey o By o« and the vertical map on the right of (2.2.8) is given by

1

Cy 7y ©€u © Pu. Thus we have to prove

Coomy 0€u o Buou*(f) = floc,! oesopyoa. (2.2.11)
Denote by by ¢ : u"™ f = 'u* the isomorphism of [Hartshorne 1966, Chapter
VII, Corollary 3.4(a)(5)]; see also [Conrad 2000, (3.3.24)]. Then it is easy (but
tedious) to check that (2.2.11) follows from

W (Trp) =Trp oR ' (by. p) o : u*Rf f' — Rf f/u*
(see [Conrad 2000, Lemma 3.4.3, (TRA4)]) and the following lemma. U
Lemma 2.2.12. Let

u/

X —

h
y oy

be a cartesian diagram with u étale. Then the following diagram commutes (with
notation as above):
M/*f! bu.y f/!l/l*
e L f/!(eu)

Cu/,f
u/!f!

Proof. We extensively use the notation of [Hartshorne 1966; Conrad 2000]. All
maps and functors involved in the statement are defined, for example, in [Conrad
2000, (3.3.6), (3.3.15), (3.3.21), (3.3.25)]. Using these definitions for the residual

C s
S 1
Bt
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complex K = my 2k on Y together with the identity #*K = u® K and the commu-
tativity of

u*Dg D, g Dy+g . u*Dg
N I
Dy-xu*Dg Dy ——> Dyexu*,
one checks that one is reduced to proving the commutativity of the diagram

dy,f

u* fAK f’Au*K
%/ll l Pt (2.2.13)
u/AfA hA f/AMAK

Here the maps are the analogs in the category of residual complexes of the maps
in the lemma; see [Hartshorne 1966, Chapter 1V, Theorems 3.1 and 5.5]. Since
we work with actual complexes now, the commutativity of the diagram above is a
local question. Thus take U C X open such that f|y factors as U N P—>Y withi a
closed immersion and p smooth. Then f’|y also factors as U —>P’ —>Y ’. By the
construction of f A'in the proof of [Hartshorne 1966, Chapter VI, Theorem 3.1(a)]
we have f2 =i¥p?and also f'* =i"" p’*. Now by [Hartshorne 1966, Chapter VI,
Theorem 5.5(2)], we have

A
Cp,i 0y, f =dup,ioi (dup)ocy,i,

with u p being the base change of u by p : P — Y. This equality implies that it is
sufficient to prove the commutativity of (2.2.13) for i and p separately. Thus we
are reduced to consider the two cases f is finite or f is smooth. The latter case
smooth is immediate, while the first follows from [Conrad 2000, Theorems 3.3.1,
2.(VAR4)]. (|

Remark 2.2.14. (1) Let 7 : X — Spec k be smooth of pure dimension d. Then
there is a canonical isomorphism Tk SZ‘;( [d] =: wx[d]. More generally, for
any j > 0 and n € Z we have the isomorphism

Q] = Dx (%) —dl, (2.2.15)
which is defined to be the composition of
Q] = Homx(QY 7, Q)n], ar (B> aAp)
(notice that we make the choice of a sign here) with

omy (% 7, Q%) [n]=Hom* (Y 7, Q4[d])[n—d]1= R Hom(Q% 7, 7'k)[n—d).
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(2) Let X be a k-scheme of pure dimension d and U C X a smooth open sub-
scheme; then we have for all j >0

Q) ~ omy (R, 7, Qf [d)[—d] ~ Dx(Qy ) |yl[—d].

where the first isomorphism is as in (1) and the second is given by restriction
(or to be more precise, first use the isomorphism Q;’] [d] =~ nl!]k and then the
vertical isomorphism on the right in (2.2.8) with U < X instead of u: Y’ — Y).

Lemma 2.2.16. Let mx : X — Speck be proper of pure dimension dx and let
my 1 Y — Speck be smooth of pure dimension dy. We denote by pr, : X xY — Y
the projection (it is proper) and set d := dim(X x Y). Then for all j > O, there is
a morphism in D} (X x Y)

y 1 prh(Oy) ® (prs 2 [dy]) = Dy (prs 25 )
satisfying the following conditions:

(1) For U C X open and smooth denote by p> : U x X — Y the restriction of pr,.
Then y |y xy is the composition

(pry(Oy) ® pr ) “ldyDluxy = Qf.y,yldx]® p3Q) *[dy]
= Q?]XXY/Y[dX] ®pyR %OmY(Qi_j’ Qiy [dy]) — DUxY(PikQL)i/_j)-

Here the last isomorphism is induced by the composition of the canonical
isomorphisms

ey yldx1® P3R5 1dy] = Q) 1d] = 7y oy (K).
(2) The following diagram commutes:

R prs, (prh (Oy) ® prs 25 [dy]) R pry, Dxoy (pri Q577)

proj. formula L l

R pry, (pry (Oy)) ® 25~ [dy ] R Stomy (57, b k)
Q) ¥ [dy),

where the vertical map on the right is Trp,, o adjunction o ¢y, 7y -

Proof. Conrad [2000, (4.3.12)] defines a map

€pr, - pr!2(©y) ®F pr5 Jr,!,k — pr!2 ﬂ;,k
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such that
| L " \ epr2|U><Y \ \
(pry(Oy) ®" prj wyk) |luxy ——— (pry myk) luxy
T: :T (2.2.17)
QX yldx1® p3y [dy] = Qd L 1d]

commutes, where the vertical map on the left is the composition of the canonical
isomorphism Q¢, ,[d] = 7}, ., (k) with ¢p, x, : 7}y = pbmy. Furthermore by
[Conrad 2000, Theorem 4.4.1] the following diagram commutes:

epr
R pr,, (pr!2 Oy ®L pr3 n!Yk) R pry, pr’2 (n)!,k)
proj. formulal j Trpr, (2.2.18)

Rpr,, (pr!2 Oy) @ JTI!/k nlz,k.

Trpr, ®1d

We define y to be the composition

W8@2.15) prs(Oy) @ prs R %omy(Qi_j, nyk)

pry(Oy) ® pri Q{,_‘IX [dy]
R Hom(pr; Qcé_j, pr(Oy) ®" pr 7y k)

~1
Cpry 1y ©€pra d

Dx .y (pr5 nyj)-
It follows from (2.2.17) and (2.2.18) that y satisfies (1) and (2). O

Proposition 2.2.19. Leti : X < Y be a closed immersion of pure codimension c¢
between smooth k-schemes of pure dimension dx and dy, respectively. Then

RLxQY[c] Z95(QY) in D.(Oy) forall g > 0.

Suppose further the ideal sheaf of X in Oy is generated by a sequence t =ty, ..., 1,
of global sections of Oy. Define a morphism 1;1( by

dta
1% 1,Q% = H(QT),  a (—1)6[ t“},
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where & € Q’II, is any lift of @ and dt =dt; A - - - ANdt.. (Here we use the notation of
Section A.1.) Then the following diagram commutes in Dé’c (Oy):

i, Dx (5 ) [—dy] —= Dy(QE ) [—dy]

(2.2.15)] j(2.2.15)
i.Q% Q5] (2.2.20)
4| T
G (™) = RLx(Qy)[cl.

Proof. The first statement is well known; see also Lemma A.2.5. It remains to
prove the commutativity of (2.2.20). Let 7y : X — Speck and 7y : ¥ — Speck
be the structure maps. By Definition 2.2.5, the top row in (2.2.20) is given by the
following composition in Dgc (Oy):

LD R Hom(QE 1, mhk)[—dy]

i.Q%
Cimy . dx—q .1_\
—> R Hom(QLy 7, i'myk)[—dx]

nat.

—> R %om(l*Q‘;{X_q, i*i!m!/k)[—dx]

KL %om(l*Q?{X_q, myk)[—dx]

@Y

—1
D RIHom(QX Y ahi)[—dy] S22

Q5 el

Wesetiy := z;i(" . Then it follows from Lemma A.2.12 and the definition of (2.2.15)
that the composition above equals

q multipl.

1.1 T, Hom(QE Y, Qi)

nat. .
—> Hom(i, QY dx=q_; 182

dx)
2 Jeom (i, QY s (7)) (2.2.21)

ﬂ>%;€om(sz“x 795 ()
—1
Y, geom* (X1, Q¥ [e]) 2, 6],

where (%) is induced by %&(Qf}’ )= RT X(Q?,Y)[c] — Qf}’ [c]. There is a natural
isomorphism

965, (R57) = Hom (I, 965, (QY))



Higher direct images of the structure sheaf 727

coming from the isomorphisms
Hom (¥, 5 (QY)) = R Hom(QY ™, RT x(Q4)[c])
= RTx(R #om(Qy" ™%, Q9 )[e] = RT x (2 )[e]
= HE (25T,
This isomorphism is explicitly given by

9 (57 = Jom(QYF 7, G (2))), [Ia} I (5 - [“’6 D

The composition (2.2.21) equals

“lo@i*)Voixo Do 1tipl. .
i, Qf L) ctxematiotmil) %g((szc“) > RO x (5T [e] — 25 c].
It is straightforward to check that 13( =¢ 1o (i*)Yo1xo(nat.)o (multipl.), and this
implies the commutativity of (2.2.20). Ul

Corollary 2.2.22. Assume we have a cartesian square

X’(—i/> Y’

1k

xo o Y,

in which X, X', Y, Y' are smooth of pure dimension dx, dx', dy, dy, i is a closed
immersion, and c :==dy —dx = dy —dx. Then for all ¢ > 0O the following diagram
commutes in Db (Y):

ivRgx+ Q% = Rgy.i Q% — Rgy. Q3 c]

g}}{ g;]

i.Q% Q5 e,

where the lower horizontal morphism is given by the composition

} (2.2.15) . dy— i dy— (2.2.15)
Q% —— i.Dx(Q%H—dx] = Dy(QyD[—dx] —— @;"[c]
and the upper horizontal morphism by Rgy. applied to the analogous map for i’.

Proof. Since R x Rgy. = Rgy.R[ x/, we naturally have a commutative diagram

Rgys %5, (Q2577) —= Rgy« RCx/ (51 Dle] — Rgy«(Q5)[c]

g’;T g?T g’;T

%, (Q5H) ———— RO x (25 ) [c] ——— Q5[c],
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where the g} on the very left is defined in such a way that the left square commutes.
By Proposition 2.2.19 it thus suffices to prove the commutativity of

4

. . 4 +
58X = gy Ry — > gy W5 ()

g}] g?T
q

QL ki 9, (QH).

This is a local question, we may therefore assume that the ideal of X in Y is
generated by a sequence ti, ..., . of global sections of Oy. Then gyt ..., gyte
is a sequence of global sections of Oy, which generate the ideal sheaf of X’
in Y’. Hence the assumption follows from the explicit description of z% and z?(/
in Proposition 2.2.19. O

Proposition 2.2.23. Let f : X — Y be a finite and surjective morphism between
smooth schemes, which are both of pure dimension n. We denote by

Ty Equ*Qg( — EBqQ?,
the composition

neqy 0215, (2.2.15)

B, 1.9 22 @, £.Dx (D L @, Dy (@)

Then we have the following:

D,9}-

(1) In degree 0, the map Ty equals the usual trace on the finite and locally free
Oy-module f,Ox, that is, Trx,y : fxOx — Oy.

(2) Fora € f,Q5 and B € Qb we have

T (af*B) =tr()B.

(3) The composition Ty o f*: q Q'{, - &P q Q‘II, equals multiplication with the
degree of f.

Proof. All statements are local in Y. We may therefore assume that f factors as
X5 P5Y, whereiisa regular closed immersion of pure codimension d and 7 is
smooth of relative dimension d; further we may assume that the ideal sheaf of X
in P is generated by d global sections t1, ..., t; of Op. Then in degree n the map
77 equals the trace map r? : fewx — wy from Section 1.3.1 and in degree g the
map 7y thus equals the composition

f*Qq Nf*%omX(Q wX)_)%OmY(f* q , frox)

7, geom( f*sz’;;", wy) 255 Gom(Q7, wy) = Q.
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Thus for o € f ng, Lemma A.3.3 gives the following formula for 7/(a): In

i*Q(IJj—q — @ l*(QrP/Y) ®f*QS ,

r+s=d+q
write
*dignndyind) = Y D iY@ f By for v €Q . Bis €95,
r+s=d+q j

where & € Q'f[, 1s a lift of «. Then

t7(@) = (~1)"@ D2 3" Respy [t Yid td}ﬁm el (2.2.24)
. 17 ey
J

This formula immediately implies (2). For any a € Oy, we have

Eldl‘d/\--‘/\dl‘1:| |:5dt1A'--Adtd:|
=Resp,y )

Tf(a) = (_1)d(d71)/2 ReSP/Y |: " y

fHy...,1q
which equals Tryx,y(a) by [Conrad 2000, page 240, (R6)]; hence (1). Finally (3)
is a direct consequence of (1) and (2). O

Remark 2.2.25. The trace map from Proposition 2.2.23 and its properties are well
known; see for example [Kunz 1986, §16], where the trace is considered in much
greater generality. There the construction is done via an ad hoc method not using
the duality formalism. Therefore the connection to the trace map above is not a
priori clear.

2.3. Push-forward for Hodge cohomology with support.

Definition 2.3.1. Let f : (X, ®) — (¥, V) be a morphism in V, with X equi-
dimensional. We define a compactification of f to be a factorization

f=foj:(X,®) — (X,d)— (¥, V),

where X is equidimensional (but possibly singular), j is an open immersion and
f is proper. Notice that since f|q is proper, ® is also a family of supports on X.
The compactification will be denoted by (j, f).

By Nagata’s compactification theorem (see, for example [Conrad 2007]) any f
in V, admits a compactification.

Definition 2.3.2 (push-forward). Let f : (X, ®) — (Y, W) be a morphism in V,
and assume that X and Y are of pure dimension dx and dy, respectively, and set
r:=dx —dy. Let

X. ®) 5 (X.0) 5 (v, w)



730 Andre Chatzistamatiou and Kay Riilling

be a compactification of f. We define the push-forward
H.(f):HX,®)— H(Y, V)

as the composition

X, ) @ H (R, D@ e ™ @ -1, (. Dy(@ ™
ij o

i,J

of, @ Hy (v, D@ ) 22 D HYT (v, Q) = H(Y, W),
i, LJ
where the first isomorphism is the composition of (2.2.15) for n = 0 with the
excision isomorphism. Notice that we obtain a morphism of graded abelian groups
H,(f): H (X, ®) > H,. (Y, ¥); see (2.0.2).
This definition is independent of the chosen compactification.
We extend the definition to the case of nonequidimensional X and Y additively.

Proof. We have to prove the independence of H,.(f) from the chosen compactifi-
cation. Let ,
J2
X —X,

|

X, ——Y
S

be a commutative diagram with d := dim X| = dim X, = dx, j; and j, open and
f1 and f> proper. Notice that g is automatically proper. Then the diagram

Hy ! (Dx, (@,") —= H |, (Dx, (9%, 7))

=~ Sox
HE(Q)) & g Hi 4 (Dy(Q47)).
e J d—j i d /
i— - i— -
Hiy ! (Dx, () — HI |, (Dx, (25,7)

commutes. The left triangle commutes since g, |x =id, by Proposition 2.2.7(3), the

square in the middle obviously commutes, and the triangle on the right commutes
by Proposition 2.2.7(2).

Two arbitrary compactifications of f always receive a map from a third one and

thus the general case follows from the case above. (]

Proposition 2.3.3. (1) H.(id) =id.

2) Let f: (X,®) > (Y,¥V)and g : (Y,V) — (Z, E) be two morphisms in V.
Then Hy(go f) = H.(g) o Hi(f) : H(X, ®) > H(Z, E).
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Q) Iff:(X,®)— (Y,V)in V, is finite, then H,(f) is induced by the trace map
Ty from Proposition 2.2.23.

Proof. (1) follows from Proposition 2.2.7(1). Now for (2) we may assume that
X, Y and Z are connected. Let (jx, f1) and (jy, g1) be compactifications of f
and g, respectively. Let (jx,, f2) be a compactification of jy o fi. Thus we have a

commutative diagram
X>

43,
st NN

X—Y—17Z7,
f 8

with vertical arrows open immersions and diagonal arrows proper. By replacing
X by f{l(Y ), we may assume that the parallelogram is cartesian. Then by
Proposition 2.2.7(3) the diagram

(Dx, (R))) 2= Hi,(Dy, (2)))

S

(\I,)(Dxl (Q4,)) —— Hi,(Dy(2}))

f ()

commutes. Thus (2) follows from Proposition 2.2.7(2). Finally (3) follows imme-
diately from the definitions. ([
Lemma 2.3.4. Consider a cartesian diagram

X xY,®) Lo, v)

gXxYl Lgy
f

(X XY, ®) —— (Y, V),

such that f is induced by the projection to Y, with f, f' € V, and gxxy, gy € V*.
Then H*(gy) o Hy(f) = Hy(f") o H*(gx xv)-

Furthermore, Hy(f) : H(X x Y, ®) — H(Y, V) factors over the projection
H(X x Y, ®) > @D Hy,(X x Y, pr} QF @ prs Q).
i.j
Proof. We may assume X and Y are of pure dimension dy and dy, respectively,

and we set d := dy +dy. We embed X as an open in a proper k-scheme X of pure
dimension dy. Then

(X xY,®) L (Xxv, o) 22 (v, 0)
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is a compactification of f, where j is the open embedding and pr, is induced by
the projection to Y. Similarly we obtain a compactification for f’, in which case
we write pr;, for the projection to Y’. The second statement of the lemma follows
from Definition 2.3.2, Remark 2.2.6(2) and the commutative diagram

Q;(xY > DXXY(QXXy)[ d]
projection L l (pr3)”

pr QY @ pr Q) = Dy (pr Q5 [ —dl.

Now we come to the first statement of the lemma. Consider the diagram (we
use a shortened notation)

j—d
prfl(q,)(D «y (% 1))

Pro,
/ (pr;)v \

i—d i— i—d
H o Dy (3 277) HY (@)™,

pr, ()
-y /

(prh (Oy) ® pri 1 [dy])

Hy (Qy)

H _[ll(\l/)
where we use the notation of Lemma 2.2.16, the upper map on the left is induced
by excision, the middle and the lower map on the left are induced by projection
and excision, and the middle and the lower map on the right are induced by the
corresponding maps from Lemma 2.2.16(2). It follows from Lemma 2.2.16 and
Remark 2.2.6(2) that all the triangles in this diagram commute. Replacing ¥ by Y’
and pr, by pr,, we obtain a similar commutative diagram. Thus it remains to show
that the diagram

. : . -, ®id
Hy(eey) ——— Hy , (0r (Or) Oprs 24~ dy ) T @)

H*(gxxy) H*(gy)

i j i—d /% ~J—dx p ®ld i—dy Jj—dx
H@/(QXXyr) H G ) (Prz (Oy)®pry* Q) ¥ [dy]) —— Hy, ™ (25, ™)
(2.3.5)

is commutative, where d’ = dx + dy. To this end we define the map

75t Rf«RLo(wxxy/v[dx]) = RLyOy,
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to be the composition

excision =~

RfRT o (wxxy/v[dx]) ——— R pr,, RCo(pry Oy)
~ Trpr
5% Rpry, RT 14 (prb Oy) <> RTy R pry, prs Oy — RTy 0y
Then the upper horizontal line in diagram (2.3.5) equals H' —d(y, .) applied to the
composition

projection

Rf,RT Q% ,[d] Rf.RTo(wxxy vldx]® f*Q[dy])

~ - Tr®id i
= Rf.RTo(0xxy vldx]) ® Q)™ [dy] =— RTy (R} ™)[dy].

(That there is no intervention of signs in the definition of the projection map is
compatible with the fact that the isomorphism wx xy [d] = wx xy, v [dx]1Q f*wy[dy]
is defined without a sign; see [Conrad 2000, (2.2.6)].) The lower horizontal line in
the diagram (2.3.5) equals H' —d'(y’, ) applied to the analog composition for f.
Then it is straightforward to check that the commutativity of diagram (2.3.5) is
implied by the commutativity of

Rf«RT o (wxxy/yldx]) Y . RT 4Oy
g;{xYl lg; (2.3.6)
Rgy«RfRT o (wxxy /vy [dx]) . RgyRT ¢ Oy
To prove the commutativity of this last diagram we can clearly assume (by

definition of the pull-back and 7y) that &' = gXXY(tb) and V' = g, "(w). We
define the map

a1 Rpr,, pry Oy — Rgy.R prs, (pry)' Oy
to be the composition

byl
R pr,, prh (k) %R pry, pri (n}!?k)
— Rgy«R pr’z*(pr’l)*(n;?k)
bﬂ 15 ﬂ
Y"

—— Rgy+R pr), (pr) (},k) = Rgy.R pr), (pr)) Oy,

where by, 7. :pry Jr;? o~ pr!2 my is the isomorphism from [Hartshorne 1966, Chapter
VII, Corollaries 3.4(a)(5)] and the middle map is the composition of the natural
maps

Rpry, pri — Rgy.Lgy R pry, pri — Rgy«Rpry, Lgk , Pri = Rgy«R pry, (pr))™.



734 Andre Chatzistamatiou and Kay Riilling

Now the commutativity of diagram (2.3.6) follows from the commutativity of

Rf«RT ¢ (wxxy y[dx]) —————— RTyR pr,, prb Oy

g)*(ij al

Rgy«Rf/RT ¢/ (wxxy v [dx]) — RTwRgy.R pry, (pry)' Oy,

which is clear by the explicit description of the isomorphisms b. .y in the smooth
case (see [Hartshorne 1966, Chapter VII, Corollary 3.4(a), Var 6]), and from the
commutativity of the diagram

Trpr,

Ry R pr,, pr Oy Ry (Oy)

al lg;‘,
Tr_/

I

RT ¢ Rgy«R pry, (pry)' Oy —> RLy Rgy.(Oy),
which follows from [Hartshorne 1966, Chapter VII, Corollary 3.4(b), TRA 4].
Hence the statement. O

Proposition 2.3.7. Let
(X', &) L (v, W)
8x l lgy
f
(Xv <I)) — (Y’ \'Ij)’
be a cartesian square with f, f' € V, and gx, gy € V*. Assume either that gy is

flat or gy is a closed immersion and f is transversal to Y'. Then

H*(gy) o Hi(f) = Hi(f) o H*(gx).

Proof. After embedding X in X x Y via the graph morphism, the diagram above
splits as

(X', ) (X x ¥, @) s (v, W)

lgx lidxgy lgy

(X, D) — (X x ¥, D) =2~ (¥, W).

Both squares are cartesian, the projections pr, are smooth and the inclusions are
closed. If gy is a closed immersion and f is transversal to Y’, then id x gy :
X x Y — X x Y is transversal to X <> X x Y. Thus the statement follows from
Proposition 2.3.3(2), Corollary 2.2.22 and Lemma 2.3.4. O

Lemma 2.3.8. Let X be smooth and 1 : D — X the inclusion of a smooth divisor.
Let @ be a family of supports on D and denote by 11 : (D, ®) — (X, ©) the map in
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Vi induced by 1. Then H,(1) : Hé(D, Q{)) — Hc’;l(X, QQI) is the connecting
homomorphism of the long exact cohomology sequence associated to the exact
sequence

0— " — @4 log D) =5 1,.0), — 0, (2.3.9)

where Res(%a) = 1"(a) for t € Ox a regular element defining D and a € Qéf
In particular, if ® C X is supported in codimension > i + 1 in X, then H,(1}) is
injective on Hé.
Proof. By Remark 2.2.14(1), the map 1, from Definition 2.2.5 induces a map (also
denoted by 1)

Iy : l*QjD — Q?rl[l].
It suffices to show that this map coincides with the edge homomorphism coming
from the distinguished triangle (2.3.9), which we denote by drs. The diagram

#om(Qy Y 1wp) — FHom(QL YD wy[1])

T -

Q! QL [1],

where n = dim X and the vertical maps are induced by multiplication from the
left, is commutative for both 7, and dres. Thus we only need to consider the case
j=n—1.

Let K* be the complex Ox(—D) — Oy in degree [—1, 0]. Then K*® — 1,0p is
a locally free resolution. We denote by Tr] the composition

l*a)D/X[—l] 1) l*l!@x E) @X,
where 7, is the fundamental local isomorphism (see (A.2.1)). Then Tr, is given by

Tt - 1,wp x[—1] < Hom®*(K*, Ox) — Ox.

Here the first map is in degree 1 given by (see (A.2.2))
%Om(Gx(—D),@X)=©X(D)—>l*a)D/)@ 1/t — —l‘v,

where ¢ is a regular parameter defining D, and the second map (in degree 0) by
#om(Ox,Ox) = Ox. (See the proof of Lemma A.2.5 and in particular (A.2.8).)

It thus follows from the commutative diagram (A.2.14) that 1, : 1,0p — wx
equals the composition

T [1]®id
1xwp — L,wp/x @ wy — wx[1],
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where the first map is given by « — ¥ ® (dt A &), with @ a lift. Obviously the
following diagram commutes:

0 wx wx (log D) —X LD 0

| | |

0 —— Jom(Ox, Ox) ® wxy — Ox(D) ® wx — 1,wp/x @ wx — 0.

Now, by the above (and the sign conventions from [Conrad 2000, 1.3]), the map
1,wp;x @wy — #om(Oy, Ox)[1]®@wx induced by the lower exact sequence equals
—(Tr, ® id). (Here we need that #om®*(K*, Ox)[1] = Jom(K ~*D 0y).) Thus
the commutativity of the diagram above yields i, = —0_ Res = ORes- |

2.4. The Kiinneth morphism. For (X, ®) and (Y, V) € ob(V,) = ob(V*), the
Kiinneth morphism

X Hb (X, Q8) x HL (Y, Q%) — HL (X x v, b)) (2.4.1)

is defined as the composition of the cartesian product with multiplication. Choose
flasque resolutions % — /® and Q} — J* and write K}, =Ker(l'o I’ — ' l'™)
and K\]p = Ker(I'yJ/ — [yJ/T). Then pr1_11° Rk prz_l.l' is a resolution of
prl_1 Qf( ®y pry ! Q;’, and (2.4.1) is induced by the composition of the natural maps
K ® Ki — Hg;";l, (pl‘l_l I° ® prz_1 J®)

— HG (X x Y, prit @F @cpry ' Q1) — HEH, (X x v, Q0.
We define

T-HX, O)QH(Y, V) > HX xY,dx V) (2.4.2)
by the formula
T(tip ® Bjg) = (=D (@i p x Bjg),

where «; , € Hé)(X, Qf(), Bj.q € H\{,(Y, Q‘{,), and x is the map in (2.4.1).

Proposition 2.4.3. The triples (H,, T, e) and (H*, T, e) define right-lax symmet-
ric monoidal functors (see Section 1.1.9).

Lemma 2.4.4. Let f : X — Y be a morphism. Assume Y to be smooth and X of
pure dimension d. Then for any p, q > 0, there is a morphism

d— d—
w:Dx(Q% ") ® Q! — Dx(Qy P1),

such that
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(1) if U C X is a smooth open subset, then the diagram

— nlul—d] _
Dy N=d]® flu* Q"= Dy TP [—d]
(2.2.15) j ~ (2.2.15) L:
Qr® flu*Ql Qpta

commutes, where the lower horizontal map is given by o @ B — o A f*(B);

(2) if f is proper, then the diagram

RfDx(Q7 ") ® Q1 —= Rf(Dx(Q7 ") ® f*Q%) e Rf, Dx(Q4 7+

Dy (2} ") @2 Dy (25~ "*7)

commutes, where the lower horizontal map is induced by
Hom(QL 7, Q) @ Q1 — Hom(QL T, QY),  p@a> p(a ().

Proof. We denote by mx and mry the structure maps of X and Y, respectively. Since
T )’(k and rr)!/k are dualizing complexes, they are represented by bounded complexes
of injectives Iy and /7, and Try : f*n)!(k = f*f!rri,k — n!yk is thus represented by
a morphism of complexes Try : f,Iy — Iy. Now the map

1 Homy (Y7 1) @ £ — Homy (% YT, I3)
is in degree n given by
Homy (Y 7, 1) @ f*Q — Homx(QL YTV I, 6@a > 6(f (@) A -).

It is immediate that this defines a map of complexes that satisfies (1). For (2) we
observe that it suffices to check the commutativity of

omy (£, 247, £,I3) ® QL s domy (£,Q4L PTV | £13)
Try o(-)of*j lTrfO(')Of*

omy (477, I3) @ Q1 Hom(Qy TV 19,

which is straightforward. U

Proof of Proposition 2.4.3. Recall that H*(X, @) is graded by (2.0.1) and H,.(X, ®)
is graded by (2.0.2). The morphism 7 respects the grading for both gradings. In
the following, we will work with the upper grading H*, but all arguments will also
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work for the lower grading H, because the difference between lower and upper
grading is an even integer.

By using the associativity of x (defined in (2.4.1)) it is straightforward to prove
the associativity of 7. Let us prove the commutativity of 7', that is, that the diagram

HX, ®)QHY, V) ——> HX x Y, d x ¥)

| e

HY, W)@ H(X,d) ——= H(Y x X, ¥ x )

is commutative. The left vertical map is defined by a ® b +— (—1)dee@ dee®p @ g,
and the right vertical map is given by H*(e;) and H,(e;), respectively, with

€1 xX,¥xP)— (XxY,dxW),
:(XXxY, dx¥V)—> (Y x X,V x D)

the obvious morphisms €; € V* and €, € V.. Obviously, H*(e1) = Hy(e2); thus
we may work with H*(e;) in the following. Note that the diagram

; (2.4.1)
Hy (X, Q) x HY (Y, Q)) —= Hy ly (X x ¥, Q514)

l l(—l)”"’h’*(é])

H (Y, Q%) x Hy(X, Q%) 2L Bt (v x X, it
is commutative, where the left vertical arrow is defined by a x b+ (—=1)""/ (b x a).
By using this diagram it is a straightforward calculation to prove the commutativity
of (2.4.5).

We still need to prove the functoriality of 7 for H* and H,. For H* this fol-
lows immediately from the definitions. Let us prove the functoriality for H,. We
will write Hc’i)( -) instead of Hfb (X, -). By using the commutativity of T (that is,
(2.4.5)) it is enough to prove that the diagram

Hiy(Qy) x Hy(2)) Hely (555
H, (h)xidl lH*(hxid) (2.4.6)

i - j T itj— —r
Hy () x Hy () —— Hy'ly (")
commutes for any (Y, W) € V,, h: (X, ®)— (X', ) in V, and r =dim X —dim X’
(X and X’ are assumed to be equidimensional). Equivalently, the diagram (2.4.6),
but with x instead of T as horizontal arrows, commutes. Observe that x can be
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factored as

H*(pry)xid

x  Hi(QD) x HY Q%) H\ (250 x HY () — Hytl, (@519,

where the map at right is the composition of the cartesian product with the multipli-
cation map Ql;(xy R prz_1 Qq — QI;(J;Qy, a® B+ a Aprs B. By Proposition 2.3.7
the diagram

H*(pry)

HL(Q%) HL ,(Q%.,) (2.4.7)
H(h*)l jH*(hxid)

iy _, H*(pry) r r
H (@) ——= HLT (@Q57)

commutes. Thus it suffices to prove that

J gt (qpta
d)xY(QXxY) X Hy, (Q ) Hy oy (825 y)
H*(hxid)xidl lH*(hxid)

HET QP ) x HY Q1) —— HyH T (@b

commutes.
Now let 4 : X — X’ be a compactification of / and setd =dim X +dim Y. We
write
d— d—
wf i=Dg,y(QF) and @y y = Dyy(Qy Ly
Notice that a)f |X><y Qf{xy[d] and a)X, y = QX/XY[ — r]. With this notation
the push—forward is a morphism

(h x1id), : R(h x id)*w;ixy — wf(,xy

and we have to show that the following diagram commutes:

; + +

Hi, oy (@f ) x Hy(Q)) —— Hyly (0h™)

(hxid)*xidL l(hxid)*
i+j +

xY(a’X/xY) X Hj (9 ) — zlb/xjxp(w;}/qu)’

where the upper map is given by the cartesian product composed with the u from
Lemma 2.4.4. Clearly we may assume ® = A ~!(®’); thus

HY y(o Hg oy (R(h x id)s0f ). (2.4.8)

XY)_
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Now it follows from Lemma 2.4.4(2) that it is enough to prove the commutativity
of the diagram

Hb y(@% ) x HY(Q)) — Hy ly (R(h x id)(0f )@ pry' QF)
(flxid)*xidl l(ﬁxid)*@d

Hi, (@ ) x H,(Q1) HY (@, ®ipry' ),

where the upper horizontal map is the composition of (2.4.8) with the cartesian
product, and the diagram

HAH L (R(hxid), (@8 D&pry' Q) —= Hy'ly (R xid).(wh )®opr; 2F)
(h xid)*®idl l (hxid),®id
ngiw(w;xy@kprz_l Qy) ——— Hcll>+x]xp (@ .y ®cpr3 Q7).

For this take injective resolutions w?  — I*® and o}, , — J°; then the push-
X x X

forward is given by an actual morphism (/ x id),/* — J*. Now the commutativity
of the first diagram is easily checked by taking an injective resolution of Q?,. For
the commutativity of the second we observe that

(h x id),I® ®x pr2_1 Q} and (h x id),I°® ®¢ prs QY
still represent
R(h x id)*a)gxy Rk prz_1 Q) and R(h x id)*a)gxy ®q prs 2

respectively, and similarly with (4 x id),/* replaced by J* and (i x id)*w’;(xy
by a);},xy. Thus it is enough to check the commutativity using these complexes,
which is obvious. U

2.5. Summary. Let (H,, H*, T, ¢) be the datum defined above, that is, we define
H, : V., — GrAb on objects by (2.0.2) and on morphisms by Definition 2.3.2, we
define H* : (V*)°? — GrAb on objects by (2.0.1) and on morphisms by (2.1.9),
and we define T by (2.4.2) and e by (2.0.3).

Theorem 2.5.1. The datum (H,, H*, T, e) is an object in T, that is, it is a datum
as in 1.1.8 and satisfies the properties 1.1.9.

We denote by HP the pure part of H, that is,

HP(X, ®) _@H®(X Q%) for (X, ®) eV, (2.5.2)

n>0
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and let HP*(X, @) be the graded abelian group, which in degree 2n equals
HP" (X, ®) = HL(X, Q%)

and is zero in odd degrees. The graded abelian group HP,(X, ®) is defined as in
(2.0.2). Then the functors H, and H* induce functors HP, and HP*, and T and e
restrict to HP.

Corollary 2.5.3. The datum (HP,., HP*, T, e) is an object in T. Furthermore
HP satisfies the semipurity condition from Definition 1.2.1 and the natural map
(HP,,HP*, T, e) — (Hy, H*, T, e) is a morphism in T.

Proof. The semipurity condition follows from [Grothendieck 1968, Exposé III,
Proposition 3.3]. (]

3. Cycle class map to Hodge cohomology and applications

In this section k is assumed to be a perfect field (unless stated otherwise).

3.1. Cycle class.

Proposition 3.1.1 (cycle class). Let X be a smooth scheme and let W C X be an
irreducible closed subset of codimension c. There is a class clix,wy = cl(W) €
Hy, (X, Q) with the property that

H*())(cl(W)) = H.(tynw) (1)

for every open subset U C X such that U N'W is smooth (and nonempty), where
J:U,wnuU) - X, W)yand 1 : WNU — (U, WNU) are induced by the
open and closed immersion, respectively, and 1 is the identity element of the ring
HO(X, Oy).

Remark 3.1.2. The cycle class in the proposition is Grothendieck’s “fundamental
class”; see for example [Lipman 1984, page 39, (ii)]. For the convenience of the
reader and to be sure about the compatibility with the push-forward constructed in
the previous section, we give a proof of the proposition, which is standard.

Proof. Ist step: Let n be the generic point of W. We define

H;(X, Q) = 11_1’)1’1 Hinw (U, Q7)),
nelU
where the inductive limit runs over all open sets U C X with n € U. Choose U
such that U N W # & is smooth. The image of H,(ynw)(1) € Hy;~y (U, Q) in
H,; (X, Q%) doesn’t depend on the choice of U by Section 1.1.9(4). We denote this
class by cl(W),.
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2nd step: AclassaeH‘(X Q) is in the image of
Hy, (X, Q )—>H‘(X Q%)

(that is, extends to a global class) if and only if for all 1-codimensional points x in
W there is an open subset U C X containing x, so that a lies in the image of

Hyny (U, Q) — Hy (X, Q%).
Indeed, the Cousin resolution yields an exact sequence

0— Hy(X. Q%) - Hi(X. Q0 —~> @  HF'(X. Q). (3.1.3)
xeW,cd(x)=1

and Hp,~y (U, Q) — H‘(X Q) — H‘“(X Q) vanishes for all x and U as
above.

3rd step: If W is normal then cI/(W), extends (uniquely) to a class in Hy, (X, Q).
Indeed, since W is regular in codimension one and we assume that k is perfect, we
may choose an open U C X such that U N W is smooth and U N W contains all
points of codimension 1 of W. So that the class extends by the 2nd step. Note that
the extension is unique because of the exact sequence (3.1.3).

4th step: We claim that the class c/(W), extends to a class in Hy, (X, Q). In view
of the 2nd step it is sufficient to extend the class at all points x € W of codimension
1. Thus we may assume that X (and therefore W) is affine. The normalization
W — W is a finite morphism and thus projective. Choose an embedding W —
W x [P} over W. The previous step yields a class cl(W) e H (X x P, Q')‘(J;CP,,)
Consider H, (prl)(cl(W)) € Hy, (X, Q); foranopen U C X such that WNU # &
and U N W is smooth, we obtaln

H* () Hy(pry) (cl(W)) = Hy (pryygy ) H* () (cl(W))
= Ho (o1 ) Hi 1 g o) (D) = HaGioow) (D),

with j': (U x P*, (U x P") N W) — (X x P", W). Thus H,(pr,)(cl(W)) is the
desired lift. O

3.1.4. Explicit description of the cycle class. Let X be a smooth scheme and let
W C X be an irreducible closed subset of codimension ¢ with generic point n € X.
Denote A =0y ;. Then

C

H{(X, Q%) = lim
=4 %)

where the limit is over all A-sequences f = (fi, ..., f.) of length c that are con-
tained in m,, (in particular \/(fi, ..., fc) = m;). The class of w € Q¢ under the
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composition in Q¢ — Q4 /(f) — H,;'(X, Q) is denoted by [‘;f] See Section A.1
for details.

Now let U be an affine open subset of X such that U N W is smooth and the
ideal of W N U in Oy is generated by global sections 1, ...,f. on U. Then by
Proposition 2.2.19

c dty ---dt,
(W), = (1) [t ]

Is---5lc

Lemma 3.1.5. For a closed immersion1 : X — Y between smooth schemes and an
effective smooth divisor D C Y such that

o D meets X properly, and thus DN X := D xy X is a divisor on X,

e D' := (DN X)eq is smooth and connected, and thus DNX =n-D’ as divisors
(for some n € Z withn > 1),

we denote by 1x : X — (Y, X) and 1p : D' — (D, D') the morphisms in V, induced
by 1, and we define g» : (D, D') — (Y, X) in V* by the inclusion g : D < Y. Then
the following equality holds:

H*(g2)(Hi(1x)(1x)) = n - Hy(tp) (1 p).

Proof. Let ¢ be the codimension of X in Y and g3 : (D, D') — (Y, D’) be induced
by the inclusion D C Y. Then

Hy(g3) : Hpy (D, Q) — HpH (¥, 5™
is injective (by Lemma 2.3.8), and thus we need to prove
H,(g3)H*(g2) Hi1x)(1x) = n - Ho(g3) Hip) (1p).
Let g1 : D — (Y, D) be induced by g; then projection formula 1.1.16 gives
H.(g3)H*(82) (H(1x)(1x)) = H.(g1)(1p) U Hi(1x)(1x).
Therefore it suffices to prove
H,(g1)(1p)U H(1x)(1x) =n - Hy(gzo1p)(1p). (3.1.6)

Let 1 be the generic point of D’. Since H§+1(Y , Q;“) = 0 for all closed subsets
Z C Y of codimension > ¢ + 2, by [Grothendieck 1968, Exposé 111, Proposition
3.3], the restriction map

Hy' (v, @t - HP (v, 5 (3.1.7)

is injective. Thus it is sufficient to prove the equality (3.1.6) in H,;‘“(Y, Q;}H).
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Since X is smooth we may find a regular sequence 71, . . ., f. € Oy, that generates
the ideal of X. If D =div(f) around 7, then

B df e dn N -+ Adt, et df AdtyA--- Adt,
( D[f]U( 1)[ f,..., L :|_( D |: fitt, oo te ]

is the image of H,(g1)(1p) U Ha(1x)(1x) in HSH (Y, Qsth.

Let r € Oy, be alift of a generator of the maximal ideal in Oy ,. By the explicit
description of the cycle class in Section 3.1.4 we get
dr ANdty A - --/\dtc]

H,(g301p)(1p) = (—1)C+1[
T, 0, ..., L

Obviously f =an" in Ox y for a unit a € O ,. Choose a lift a € 0y, of a; thus
f =an" modulo (¢, ..., 1), and we obtain

[df/\dtl/\---/\dtc] _ [nan"—l -dn/\dtl/\---/\dtcj|

fitl, ...t an", ty, ..., 1t
dmn ANdty N --- Adt,
=n- ,
T, 0, ...,1
which proves (3.1.6). O

Theorem 3.1.8. There exists a morphism cl:CH — H = (H,, H*, T, e) in T.

Proof. Since there is a morphism HP = (HP,, HP*, T, ¢) — H in T, it suffices to
prove the existence of ¢/ : CH — HP.

This follows from Theorem 1.2.3, since HP satisfies all the conditions listed
there: HP is in T and satisfies the semipurity condition 1.2.1 by Corollary 2.5.3. It
satisfies 1.2.3(1) by Proposition 2.3.3(3) and 1.2.3(3) by Lemma 3.1.5. Finally the
element cl(x,w) from 1.2.3(4) is the cycle class constructed in Proposition 3.1.1
and 1.2.3(2) is obvious. O

3.2. Main theorems.

3.2.1. Let f: (X, ®) — (Y, V) be a morphism in V, or V*. By Theorem 3.1.8,
Section 1.3.18 and Lemma 1.3.19, the morphisms

H.(f):H(X,®)—> H,(Y,¥) and H*(f): H*(Y,V¥V)—> H*(X, D)
are respectively given by (we write c/ instead of Cor(cl))

H,.(f)=puocloty(f) and H*(f) = puoclotly(f).

Thus we may use composition of correspondences in Corcy to compute H*(f) o

H.(f), H«(f)o H*(f), etc.
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Proposition 3.2.2. Let X, Y be smooth and connected, and let
o € Homcory (X, Y)? = CHY™X (X x ¥, P(Dy, Py)).

(1) If the support of a projects to an r-codimensional subset in Y, then the re-
striction of py o cl(a) to P Hi(X, Qg() vanishes.

j<r,i
(2) If the support of a projects to an r-codimensional subscheme in X, then the

restriction of py o cl() 10 €D = gim x—r11.i H' (X, Q%) vanishes.

Proof. (1) We may assume o = [V] for V C X x Y a closed irreducible subset of
dimension dim(Y) =: dy, with py (V) C Y of codimension . We set dx = dim X.

By definition of py (see Section 1.3.18) and Lemma 2.3.4 it is sufficient to prove
that for all 0 < g <r — 1 the image of the class c/(V') vanishes via the map

P (@) 25 H (o] 24 @ pr 2)).

To prove this we may also localize at the generic point  of V [Grothendieck 1968,
Exposé 111, Proposition 3.3].

We write B = Oxxy,, and A = Oy ,,(;. Now A is a regular local ring of

dimension r and B is formally smooth over A. Let #1,...,% € A be a regular
system of parameters of A. Since B/(1 ® t1,...,1 ®¢,) is a local regular ring
there exist elements s,41, ..., 57, € Bsuchthat 1®#, ..., 1®%t, Sy41, ..., Sdy 1S

a system of regular parameters for B. Thus by the explicit description of the cycle
class in Section 3.1.4 we obtain
dd@t)A---ANd(A®t)Nd A Ad
cl(V), :(—1)"*[ ten (@) ndsra s"X].
1®t,.... 10, S 41, ..., Sdy
This clearly implies the claim.

(2) Letao =[V] be as in (1) and suppose px (V) has codimension r in X. As above
it suffices to prove that for all 0 < ¢ <r — 1 the image of the class c/(V') vanishes
under the projection map

e Proj. 0j. e d

HyX Q) —> Hy (pr} Q% @ prs Q7).
Write C =0y ;- Thenasin (1) we find 7y, ..., 7, € Cand 0,41, ..., 04y € B,
suchthat 11 ®1, ..., 7. ®1, 0,41, ..., 04, 1S a system of regular parameters for B.

Thus

’

AV, = (_1ydx [d(n QDA ANd(ty, Q1) Adory1 A+ /\dadx}

‘E1®1,...,‘Er®1,0'r+1,...,O’dX

which implies the claim. U
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3.2.3. Let S be a k-scheme and let f : X — S and g : ¥ — S be two integral
S-schemes that are smooth over k. Let Z C X xsY be a closed integral subscheme
of dimension equal to the dimension of ¥ and such that pr,|z : Z — Y is proper.
For an open subset U C S, we denote by Zy C F~HU) xy g‘l(U) the pullback
of Z over U. This gives a correspondence [Zy] € Homcorey, (f -, gil(U )0,
which induces a morphism of k-vector spaces

procl(Zy)) : H (f 7 (U), @)y ) — H' (g7 W), @), ) foralli, j.

Proposition 3.2.4. In the situation above, the set {py o cl([Zy]) | U C Z open}
induces a morphism of quasicoherent Og-modules

pu(Z/S): R f,Q), — R'g.Q foralli, j.
Proof. We need to show the following statements:

(1) The maps py o cl([Zy]) are compatible with restriction to open sets.

(2) The maps pg o cl([Zy]) are O(U)-linear.
To show (1), let us denote by
priy fTHU) x g7 (U) — fTHU) for pryy € V¥,
Proy t (f 1) x g7H W), P(® 11y Pgriwy) = 87 (U) for pryy € Vi,

the morphism induced by the projections (see (1.1.2) and (1.3.8) for the definition
of P(® s-1(yy, Pg-117)))- Let j : V <> U be an open immersion and denote by

Jrif'WVy = fNU) and g7 N (V)= g N(U)

the morphisms in V* induced by ;.

We have to show that for all a € H"(f_1 ), Q;_,(U))

H*(jg) Hi(pry, ) (H ™ (pry ) (@) U cl([Zy])
= H.(pry, ) (H"(pr; ) (H*(j) (@) Ucl(Zy]). (3.2.5)

As a first step from the left side to the right side we observe that
H*(jo) Hi(pry, ) = Hi(pry, ) H* (id p-1 1) X jg),

where pr’Z,V (N U)x g H(V), ) — ¢~ (V) in Vi is induced by the projection
and ® := (id xjg)_lP(CIDf_l(U), ®@,-1(7))- Denoting pr/l’U N U) x g7 W(V) —
f~Y(U) as a morphism in V*, we obtain the equality

H*(id g1y % jo) (H*(pry ) (@) Ucl([Zy ) = H* (pr} 1) (@) U cl((Zy])
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in H(f_l(U) X g_l(V), ®); here we consider Zy € ® as a closed subset of
f~H(U) x g7 (V). Next, consider the morphisms
Jrxidgagyy fTHVxgT (V) = IO xg T V),
(T WVxgT V)L Zy) = (W) xgTH(V), @),
id": (fT VIxg™ V), Zy) = (f I (V) xg ™ (V) P(@poi gy, Pyivy))s
with
jf xidg-1iyy € VY, teV,, id eV,

and where id’ is induced by the identity. The projection formula yields

H*(pr} y)(@) Ucl([Zy]) = H*(pr} ;) (a) U cl(CH.(t)([Zy]))
= H, (0)(H" (jy x idg-1(y)) H* (pry 1) (@) U cl([Zy])).

Now the equalities

H,(pry y) Hy(t) = Hi(pry y) Hi(id),
H*(jg x idg-1v)) H* (pr) ) = H*(pry ) H™ (jip),
imply the claim (3.2.5).

For (2), it suffices to consider the case U = S = Spec R. The ring homomor-
phisms g*: R — H°(X,0x) and f*: R — H°(Y, Oy) induce R-module structures
on H(X) and H(Y), respectively. .

We have to prove the following equality forall » € R and a € H' (X, Qg():

g"(r) U Hy(pry) (H* (pry)(a) U cl([Z])) = H(pry) (H* (pr) (f*(r) Ua) Ucl([Z])).
For this, it is enough to show that

H*(pry) (8" (r) Ucl(IZ])
= H*(pr))(f*(M)Ucl(IZ]) in HY(X x Y, Q%,y). (3.2.6)

Choose an open set U C X x Y such that Z N U is nonempty and smooth. Since
the natural map Hg(X X Y, Q;l(xy) — HgmU(U, Qﬁl]) is injective, it suffices to
check (3.2.6) on HgmU(U, Q?]). We write 11 : ZNU — (U, ZNU) in V, and
12: ZNU — U in V* for the obvious morphisms. By using the projection formula
and cl([ZNU]) = H,(11)(1) we reduce to the statement

H*(12) H* (pry) (8" (r)) = H* () H* (pr) (f*(r)).

This follows from g o pr, o1p = f o pr o15. g
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Definition 3.2.7. Two integral schemes X and Y over a base S are called properly
birational over § if there is an integral scheme Z over S and morphisms over S:

Zz

proper, biratiory \prjper, birational

X Y.

Theorem 3.2.8. Let S be a scheme over a perfect field k. Let f : X — S and
g:Y — § be integral S-schemes, that are smooth over k and properly birational
over S. Let Z be an integral scheme together with proper birational morphisms
Z — X and Z — Y such that

X/Z\Y
N

is commutative. We denote by Zg be the image of Z in X xs Y. Then, for all i,
pH(Zo/S) induces isomorphisms of Os-modules (d = dim X = dim Y)

Rif*@x = Rig*@y and Rif*le( = R"g*Q‘;.

Proof. Recall that py(Zy/S) is defined in Proposition 3.2.4 as the sheafication of
the maps

procl(((Zowl) - H'(f 7' W), @), ) = H (g7'(U), Q1 ), (329

where U runs over all open sets of S and Zp y denotes the restriction of Zj
to f~1(U) xy g~ (U). By Proposition 3.2.4, py(Zo/S) is a morphism of Og-
modules.

Obviously, it is sufficient to prove that (3.2.9), for j = 0 and j = d, is an
isomorphism for every open U. Thus we may suppose that U = S, f~1(U) =X
and g~ '(U) =Y, Zy,y = Z, and we need to prove that

pu ocl([(Zo)) : H' (X, 0x) — H'(Y0Oy),
pr ocl([(Zo]) : H (X, Q%) — H' (Y, Q),

are isomorphisms for all i. In other words, we reduced to the case S = Spec(k).
Obviously, we may assumethat ZC X xY.Let Z'CZ, X' C X andY' CY be
nonempty open subsets such that prfl (X') =Z'" and pr, Y(v") = Z’, and such that
pr;: Z'— X' and pr, : Z' — Y’ are isomorphisms.
We obtain a correspondence [Z] € Homcorey (X, Y )0, and we denote by [Z'] €
Homcor; (Y, X )0 the correspondence defined by Z considered as subset of ¥ x X.
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We claim that
[Z]o[Z'l1=Ay+E; and [Z']o[Z]= Ax+ E»,

with cycles E; and E», supported in (Y \ Y') x (Y \Y") and (X \ X') x (X \ X"),
respectively. Indeed, in view of Lemma 1.3.4, [Z"] o [Z] is naturally supported in

supp(Z, Z') = {(x1,x2) € X x X | (x1,y) € Z, (y, xp) € Z' for some y € Y}.

By using Lemma 1.3.6 for the open X’ C X, we conclude that [Z'] o [Z] maps to
[Ax] via the localization map

CH(supp(Z, Z")) — CH(supp(Z, Z") N (X' x X)).

Thus
[Z'1o[Z]1=Ax+ E>

with E, supported in supp(Z, Z") \ (X’ x X’). Finally, we observe that
supp(Z, ZHN (X' x X)U(X x X)) = Ay =supp(Z, Z)N (X' x X,

and thus E5 has support in (X x X)\ (X' x X)U(X x X)) = (X \ X)) x (X\ X").
The same argument works for [Z] o [Z'].
Now, Proposition 3.2.2 implies that pg o cl([Z]) induce isomorphisms

H*(X,0x) = H*(Y,0y) and H*(X, Q%) = H*(Y, Q). O

Corollary 3.2.10. Let k be an arbitrary field and let f : X — Y be a proper
birational morphism between smooth schemes X and Y. Then

Rfi(0x) =0y and Rfi(wx)=wy.

Proof. By base change we may assume that & is algebraically closed. The claim
follows from Theorem 3.2.8 for S=Y and X = Z. (]

3.2.11. Consider a commutative diagram
Y, ——>Y

. fin.
N if
ot bir. X

—_—
T

Here, all morphisms are proper and all schemes are integral, X and Y are smooth
of dimension dy and dy,  is birational, f is surjective, Y, — X is generically
finite and surjective, and Y, < Y is a closed immersion. Let n be the generic point
of X; then Y, x x n is finite over Spec k(1) of degree deg(Y,/ X).
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Choose a nonempty open set U C X with 7 : 7~ 1(U) 5 U and such that
Y :=Y,N f~YU) c f~Y(U)=>U is a finite morphism. Set

Zy =Y, xyn~1(U) C Y, xx X,

which gives a morphism [Z,]: Y — X in Corcy. Furthermore, set

F=x"1U)xy f~'(U)C X xx Y,

which defines an element [I'] : X—Yin Corcy. By using Lemmas 1.3.4 and 1.3.6,
we obtain

[Za]o[I'] = deg(Ya/X) -idg +Ej,

where E| has support in At (X\U) x ! (X\U); thus pgocl(E7) acts trivially on
H*(X,03)® H* (X, Q?{‘) by Proposition 3.2.2. On the other hand, Lemmas 1.3.4
and 1.3.6 imply

[TlolZd=Y; xy f~1(U) + Ex,

where E» has support in f~1(X \ U) x f~1(X \ U); thus py o cl(E;) = 0 on
H*(Y,0y)® H*(Y, Q‘;Y). Moreover, by using Lemmas 1.3.4 and 1.3.6 again,

[[To[Zuo[TTolZ,] =deg(Ya/X) - Y, xu f~1(U) + Es,

with a cycle E3 supported in £~ (X\U)x f~1(X\U), and therefore pyocl(E3) =0
on H*(Y, Oy) & H*(Y, Q).
We obtain an endomorphism

P(Ya) = pH o CZ([F] o [Za])|H*(Y,©y)®H*(Y,QI;Y)

of H*(Y,0y) ® H*(Y, sziyz such that P(Y,)? = deg(Y,/X) - P(Y,). Note that
P(Y,) does not depend on X, because it is given by

P(Yy) = pu (cl([Y, xy f~1UD).
Proposition 3.2.12. [fdeg(Y,/ X) is invertible in k then
procl(l): H*(X,05)® H*(X, Q‘;}X) — image(P(Ya)|H*(Y’@Y)®H*(Y’QC;Y))
is a well-defined isomorphism.
Proof. Indeed
((pH o Cl(Za)) o (pH o CZ(F))) |H*(X,@)"()®H*(X,Q§X)

is multiplication by deg(Y,/ X). It follows that pg ocl(I") is injective and the image
is contained in the image of P(Y,). The opposite inclusion is obvious. O
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Corollary 3.2.13. Let Y, X and X be as in Section 3.2.11. Let a € Y be a closed
point of the generic fiber f~'(n) with degy, (a) € k*; we denote the corresponding
closed subvariety by Y,. Fori > 0, the following are equivalent:

(1) R'm.(05) ® R () = 0.
(2) P(Y,N f~Y(X")) vanishes on
i -1 ie—1 d
H'(f7 (XD, 0p1x0) @ H'(f (X)), Qf{u(xf))
for every affine open subset X' C X.

Proof. In view of Proposition 3.2.12 we get
H' (w1 (X", O-1x) = image(P (Yo O f XDl r-10x00.0,4,)
and

dy

H(z7'(X"), @™ ) = image(P (¥, N f~' (X))
=l

- Hi(f~1(X"),Q ))
for every open subset X’ C X. O

Theorem 3.2.14. Let k be an arbitrary field. Consider

Y
k
X

’

X "=

where Y and X are smooth and connected, X is integral and normal, f is surjective
and finite with deg(f) € k*, and finally m is birational and proper. Then X is
Cohen—Macaulay and

Rm,0; =0x and Rmw;=wy,
where wy is the dualizing sheaf of X.

Proof. Choose an algebraic closure k of k. We claim that X is geometrically
normal, that is,

.
X xp k= ]_[ X; (disjoint union) (3.2.15)
i=1

with X; integral and normal for all i. Indeed, since X is normal we obtain

©X — ﬂ*@)},
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and this isomorphism is stable under the base change to k. Because X is smooth,
X x¢kisa disjoint union of smooth schemes

k=] %
i=1

From Oy, ¢ = 1,05 %x.& We conclude that 7 x k has connected fibres; thus we
obtain the equality (3 2.15) with X; := (m X k)(X) Of course, X — X; is
birational, and Ox, — (7 Xg k)0 %, implies that X; is normal.

We denote by Y;, X, Xk the base change to k, and by oy : Xj; — X the obvious
morphism. Since

oyR' w05 = Rin,;*@gk,, and ojR' mw; = Ri”l?*“’f(;,’
and oy is faithfully flat, it is sufficient to prove
R"n,;*@;(,' =0= Rin,;*wg, for alli > 0.

Now X x;k = 11, X; with X; smooth and connected such that 7z | . X — X;
is birational. We define Y; := Y; N f (X )and let Y; = ]_[ Y; ; be the decompo-
sition into connected (smooth) Components Since deg(Y; / X;) € k* is invertible,
there exists j such that deg(Y; j/X;) € k*. Thus we are reduced to proving the
claim for an algebraically closed field .

Since f is affine, the statement R, 0 = Ox follows from Corollary 3.2.13 and
X normal. Applying Dy and shifting by [—dx] (with dx = dim X), we obtain
Rn*QdX = n)'(k[ dx] (with wy : X — Speck the structure map). Now again by
Corollary 3.2.13, we obtain R’n*Q dx — 0 for all i # 0. Thus nXk[ —dx] = wx 1S
a sheaf and hence X is Cohen—Macaulay U

4. Generalization to tame quotients

The goal of this section is to generalize Theorem 3.2.8 by replacing the assumption
on the smoothness of X and Y with the weaker assumption that X and Y are
tame quotients (see Definition 4.2.6). We already proved in Theorem 3.2.14 that
the cohomology of the structure sheaf and the dualizing sheaf of a tame quotient
behaves like for smooth schemes. Therefore it is a natural question to extend
Theorem 3.2.8 in order to include tame quotients.

4.1. The action of finite correspondences. Let X be a smooth scheme and Z a
closed integral subscheme of pure codimension c¢. Then %J (Q%) =0for j <c.
Consequently, there is a natural morphism

#H5(Q) [—c]l = RL zQ5, “4.1.1)
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which induces an isomorphism H (X, Q%) = HO(X, ¥ (25%)).

Definition 4.1.2. Let f : X — Y be a morphism between smooth k-schemes of pure
dimension dy and dy, respectively. Let Z C X be a ¢ := dx — dy codimensional
integral subscheme such that the restriction of f to Z is finite. Then we define for
q > 0 the local push-forward

fzs: HHG(QY) — QF°

in the following way: Choose a compactlﬁcatlon of f, that is, a proper morphism
f:X — Y and an open immersion j : X < X such that f = f o j, and then define
fz+« as the composition in DqC(Y ) of the natural map

@.1.1)

[#5(Q5) —— Rf(RT z(25)[c])

with

Rf«(RT z(Q5)[c]) ——— i Rf*RFz(DX(QdX Nle —dx])
forget support
—_—

R [ D (Q ) [—dy) (4.1.3)

(2.2.15)

= Dy(QF ) [—dy] = @7,

where f, is the morphism from Definition 2.2.5.
Applying H°(X, -) gives a morphism
HO(Y, f35(Q5)) = H(X, #5(Qx)) = Hy (X, Q%) — HO(Y, 257,

which by the definition coincides with the cohomological degree zero part of the
pushforward for f : (X, Z) — Y; see Definition 2.3.2. This also implies that fz.,
is independent of the chosen compactification.

Definition 4.1.4. Let S be a k-scheme and let f : X — Sand g:Y — § be
two integral S-schemes, which are smooth over k. Let Z C X x5 Y be a closed
integral subscheme such that pr,|z : Z — Y is finite and surjective. In particular
the codimension of Z in X x Y equals dim X := ¢. The projections from X x Y
to X and Y are denoted by pr; and pr,, respectively. For all ¢ > 0 we define a
morphism
(P% : f*Q;l( - 8*9(1]/

as follows: Let

c(Z) e Hy(X x Y, Q% y) = HO(X x Y, %#5(Q25 y))
be the cycle class of Z. The cup product with c/(Z) yields a morphism

Ucl(Z) : Q% y — H QST (4.1.5)
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and hence a morphism f; pry, Q[)](xy — fupry, %5 (Qg;;qy). We claim that it also

induces a morphism of Og-modules
f* PIyy Q?{XY — 8x Py, %%(Q()I(tc)’) (4‘1‘6)

Indeed since ¥, (Q?;CY) has support in Z C X xgs Y, the two abelian sheaves

8 Pry, H(Q%LS) and  fopry, #5 Q%)

are equal; we denote this abelian sheaf on S by «l. Now there are two Og-module
structures on &: They are induced by

8" ) r* pry
Os — g+0y — g« pry, Oxxy and Og— f.Ox — fipr, Oxxy.
The claim (4.1.6) is now a consequence of the following equality in s:

pr; 8" (a) - (BUcl(Z)) =pr] f*(a) - (BUcl(Z))

for all a € Og, B € f, pry, QL)I(XCZ(Z))Y’ which holds by (3.2.6). We can then define
the morphism ¢ as the composition

pr} (4.1.6) c P2z«
[ = fupry, Q% — g phy, HS(Q5 L) =5 2.0, 4.1.7)

We write 9z = @, ¢5.
Leta =), n;[Z;] be a formal sum of integral closed subschemes Z; of X x g7,
which are finite and surjective over Y, with coefficients n; in Z. Then we define

Py = Z”i%ﬂli : @ f*Q‘)I( — @g*Q;},. 4.1.8)
i q q

Lemma 4.1.9. In the situation above, assume additionally that g is affine. Then
for any cycle « = Zi n;[Z;], with Z; C X xsY integral closed subschemes, which
are finite and surjective over Y, and n; € Z, we have the equality

@ H' (S, 9o) = pu(cl@) : P H'(X, @) > P H' (¥, @),
ij i,j

where « is the image of @ in CHgimy(X X Y, P(®x, Py)) with P(Ox, ®x) as
in (1.3.8), py is defined in 1.3.18 and cl is a shorthand notation for Cor(cl) with
cl:CH — H the morphism from 3.1.8.

Proof. Let w : § — Speck be the structure map. We may assume o = [Z] with
Z C X xgY anintegral closed subscheme, which is finite and surjective over Y. Itis
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easy to see that pg (cl(@)) is induced by taking the cohomology of the composition

pry
Rr, £ Q% — Rw.R(fpr)«Q%, (4.1.10)

Ucl(Z) '
SAB, R R(Sf pry) I QL)

ZCXxgY .
= R R(gpry) 9 (50

= R (g pry)« HS(Q%) (4.1.11)

4.1.1)
% Rm.R(g pry)«RL2(Q%5)c]

G Rit,g.9 4.1.12)

We used for the fourth arrow the isomorphism
(8 Pro)H5 (Q5y) = R(gpry)H (55,

because %< (Q%4",) is a quasicoherent O, y-module with support in Z, the map
Z — Y is finite, and g : Y — § is affine. For the third arrow, notice that there is no
map R(f pry)«d, — R(g pry)«d5 in the derived category of Og-modules, but in
the derived category of sheaves of k-vector spaces on S these two complexes are
isomorphic and that’s all we need to define the third arrow.

We have to compare the morphism from (4.1.10) to (4.1.12) with Rm,¢z, where
@z is defined in (4.1.7). Obviously, the morphism from (4.1.10) to (4.1.11) is equal
to R, ((4.1.6)opry). The morphism from (4.1.11) to (4.1.12) equals R, (pr, z,),
which proves the claim. ([

4.2. Tame quotients.

4.2.1. Let X be a k-scheme that is normal, Cohen—-Macaulay (CM) and equidi-
mensional of pure dimension n and denote by w : X — Speck its structure map.

Then Hi(7'k) = 0 for all i # —n; see [Conrad 2000, Theorem 3.5.1]. The
dualizing sheaf of X is then by definition

wy = H " (7'k).
We list some well-known properties:
(1) wx[n] is canonically isomorphic to 7'k in DF(X).

(2) wy is a dualizing complex on X, that is, wx is coherent, has finite injective
dimension and the natural map Oy — R Hom(wyx, wx) is an isomorphism.
(Indeed by [Hartshorne 1966, Chapter V, 10.1 and 10.2], 7'k is a dualizing
complex.)

(3) wyx is CM with respect to the codimension filtration on X, that is,

depth@X,X wx y =dimOx, forallx e X,
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(By [Hartshorne 1966, Chapter V, Proposition 7.3] wy is Gorenstein, in par-
ticular CM, with respect to its associated filtration. Therefore we have to show
that the associated codimension function to wy [Hartshorne 1966, V.7] is the
usual codimension function. By [Hartshorne 1966, Chapter V, Proposition
7.1] it suffices to show that EXt%x,n(k(’?)’ wx,y) 7 0 for all generic points
n € X. But X is normal and thus wy ;, = k(n).

In case X is smooth, wy is canonically isomorphic to €2, via the isomorphism
~ _! e, = # n
wx = 1w'k[—n] — n"k[—n] = QY,

where e, : 7' = 7# is the isomorphism from [Conrad 2000, (3.3.21)].

If u:U — X is étale, then u*wy is canonically isomorphic to wy via the
isomorphism

—1
Cumr =

ey, = | | ! - |
fox 2S5 oy Zu't'k S (mow) 'k Z wy,

oy =u

where ¢,  : (o u)' = u'or' is the isomorphism from [Conrad 2000, 3.3.14].

Let U be an open subscheme of X that is smooth over k£ and contains all
1-codimensional points and denote by j : U — X the corresponding open
immersion. Then adjunction induces an isomorphism

>~ .k ~ ~
wx = jxj ox = jiou = j.Qy,

where the last two isomorphisms are induced by (4) and (5). (This follows
from (3). Indeed, let V C X be open; then I'(V, wy) — I'(V, j.j*wx) =
['(VNU, wy) is the restriction. Since all points in the complement of U have
codimension > 2, we obtain from (3) that depth(wy ) > 2 forall x € X\ U.
Therefore I'(V, wx) — I'(V N U, wy) is bijective by [Grothendieck 1968,
Exposé 111, Corollary 3.5].)

4.2.2. Let X be smooth and Y a normal CM scheme both of pure dimension n, and
let f: X — Y be a finite and surjective morphism. Then we have the usual pull-back
on the structure sheaves f*: 0y — f,Ox as well as a trace map r? 1 fuO0x — Oy,
which extends the usual trace over the smooth locus of Y (over which f is flat).
We define a pull-back and a trace between the dualizing sheaves as follows.

Definition 4.2.3. Let X be smooth and let Y be a normal CM scheme, both of pure
dimension n, and let f : X — Y be a finite and surjective morphism.

(1) We define a pullback morphism

f*:wY%f*wX



Higher direct images of the structure sheaf 757

as follows: Choose j : U — Y open and smooth over k such that it contains
all 1-codimensional points of Y;let j': U' =X xy U — X and f': U’ — U
be the base changes of j and f. Then we define f* as the composition

. o . ~
wy = j Q) — j« [1Q = feiou = fuox;

for the last isomorphism observe that U’ contains all 1-codimensional points
of X. It is straightforward to check that this morphism is independent of
the choice of U. (One only needs the compatibility statements (VAR1) and
(VAR3) of [Hartshorne 1966, Chapter VII, Corollary 3.4(a)].)

(2) We define the trace
Th: frox = oy

as the composition in D} (Y)

frwx = f*ﬂ')!(k[_n] Lfl) f*f!ﬂ)!/k[—l’l] & JT)!,k[—n] = wy,

where mx and 7y are the structure maps of X and Y and Try is the trace
morphism [Conrad 2000, (3.3.2)].

We write f*:0y @ wy — f+(Ox ® wy) for the sum of the usual pull-back with the
pull-back defined in (1), and write 7 := r? &) ‘E? : f+(Ox ®wyx) — Oy ® wy.
Remark 4.2.4. By its definition, the 7 constructed above equals, when restricted

to the smooth locus of Y, the 74 from Proposition 2.2.23.

Corollary 4.2.5. Let X, Y and f be as in Definition 4.2.3. Suppose that X is
connected. Then the composition

‘L'fof* :0y ®wy — Oy D wy
is equal to multiplication with the degree of f.

Proof. We have to check that the section s = 7y o f* —deg f of
H°(Y, tomy (Oy, Oy)) @ H(Y, Jomy (wy, wy))

is zero. But H°(Y, %omy (Oy, Oy)) = HO(Y, Oy) = HO(Y, %omy (wy, wy)) (for
the last equality we need that wy is a dualizing complex). Therefore it is enough to
check that s is zero over an open and dense subset U of Y. We may choose U such
that it is smooth and contains all 1-codimensional points of Y. Thus the statement
follows from Proposition 2.2.23(3). O

Definition 4.2.6. Let X be a k-scheme. We say that X is a tame quotient if X is
integral and normal and there exists a smooth and integral scheme X’ with a finite
and surjective morphism f : X’ — X whose degree is invertible in k.
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Remark 4.2.7. Assume X is a tame quotient. Then X is CM; see [Kollar and Mori
1998, Proposition 5.7(1)].

We may describe the cohomology of the structure sheaf and of the dualizing
sheaf of a tame quotient as a direct summand of the corresponding cohomology of
a smooth scheme as follows.

Proposition 4.2.8. Let f : X — Y be a finite and surjective morphism between
integral schemes. Assume X is smooth and Y is normal. Furthermore, we assume
that deg f is invertible in k. Set

a:=[X xy X] in CHaimx(X x X, P(®x, ®x)) =: Homcorg, (X, X)°,
(see (1.3.8) for the definition of P(®x, ®x)). Then, for all i, the pull-back mor-
phism
f*(H'(Y,0) @ H' (Y, wy)) — (H'(X, 0x) ® H' (X, )
induces an isomorphism
(H'(Y,0y) ® H' (Y, wy)) = pp (cl(@))(H' (X, Ox) ® H' (X, wx)).

(The functor py is defined in 1.3.18 and cl is a shorthand notation for Cor(cl) with
cl: CH — H the morphism from Theorem 3.1.8.)

Proof. Write @ = [X xy X] =) ;nr[T], where the sum is over all irreducible
components T of X xy X. Notice that all the T have dimension equal to dim X
and project (via both projections) finitely and surjectively to X. Therefore

¢o : fx(Ox Dwyx) = f(Ox ®wy)

is defined, where ¢, is the morphism from Definition 4.1.4. By Lemma 4.1.9 we
have, for all i,

H' (Y, 9o) = proclia) : H(X,0x ®wx) > H(X,0x ®wy).  (42.9)

We claim

go = frots: fi(Ox ®wx) = fi(Ox ® wx). (4.2.10)
Let U C Y be a nonempty smooth open subscheme that contains all 1-codimen-
sional points of Y. Then f~!(U) is smooth and contains all 1-codimensional points
of X. Hence for any open V C Y, the restriction map

HY(f'(V), 0x @ wx) — H'(f (V)N f71(U), Ox ® wx)

is an isomorphism; see [Grothendieck 1968, Exposé III, Corollary 3.5]. Since
both maps in (4.2.10) are compatible with restriction to open subsets of Y, we
may therefore assume that Y is smooth. In particular f is flat and thus « equals
[Fff] o[I'f], where I'f is the graph of f and Fff its transposed. Now the identity
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(4.2.10) follows from (4.2.9) (in the case i = 0), Proposition 2.3.3(3) and 3.2.1.
Thus applying again (4.2.9), we obtain
pr (cl(@)(H' (X, 0x) ® H' (X, wx))

=TImage(f*ot;: H' (X,0x ®wx)) — H' (X, Ox ® wx).
Since T o0 f*: (H (Y, Oy) ® H (Y, wy)) — (H'(Y, Oy) ® H' (Y, wy)) is multipli-
cation with the degree of f (by Corollary 4.2.5) the proposition follows. (]
4.3. Main theorem for tame quotients.

Theorem 4.3.1. Let S be a scheme over a perfect field k. Let wx : X — S and wy :
Y — S be two integral S-schemes, which are tame quotients (see Definition 4.2.6).
Furthermore, we assume that X and Y are properly birational equivalent. Then
any Z as in Definition 3.2.7 induces isomorphisms of Os-modules

Riy,Ox = Riny.0y and R'mwy.wx = R'my.wy foralli > 0.

These isomorphisms depend only on the Og ,-isomorphism k(X) = k(Y) induced
by Z, where n = mx (generic point of X) = my(generic point of Y).
Proof.

Claim 1. There are isomorphisms as in the statement in the case S = Spec k.

Choose integral and smooth schemes X’ and Y’ with finite and surjective mor-
phisms f: X’ — X and g : Y’ — Y whose degree is invertible in k. Choose Z as in
Definition 3.2.7. We may assume that Z C X x Y is a closed integral subscheme.
We define Zy/, Zy: and Z’ by the cartesian diagram

\
/
\

\/\

/ \

\ /
Here the arrows with an ~ are proper and birational morphisms between integral
schemes, and all other morphisms are finite and surjective. We may identify Z’
with a closed subscheme of X’ x Y’ whose irreducible components are proper
and surjective over both X’ and Y’, and all irreducible components have the same
dimension equal to d :=dim X =dim X’ =dim Y =dim Y’ (since f and g are finite
and universally equidimensional). Therefore Z’ and its transpose define cycles

[Z1e CHY(X' x Y/, P(dx, ®y)) and [Z') € CHU(Y' x X', P(®y/, Dy)).
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Now choose nonempty smooth open subschemes X,, Y, of X, Y such that the
morphisms Z — X, Z — Y induce isomorphisms Z, — X,, Z, — Y, with

Zo =X, XxZ=7ZxyY,.

Set X, = f~'(X,) and Y, = g~!(¥,) and denote by f, and g, the restrictions of
f and g to X/, and Y, respectively. We define Zy:, Zy; and Z, by the cartesian
diagram

Here the arrows with an =~ are isomorphisms, and all other arrows are finite and
surjective. We set X, = X'\ X, and Y/ = Y’ \ Y; these are closed subsets of
codimension > 1. Now we define

o :=[X xx X']e CHY (X' x X', P(®x, Px')),
B:=[Y' xyY1eCH! (Y xY', P(dy, Dy)).

We claim
degg-([Z'Noa) —deg f-(Bo[Z']) € image(CH.(X. x Y))), (4.3.2)
deg f-([Z') oB) —degg - (@o[Z']) € image(CH. (Y. x X.)), (4.3.3)
([Z'T o[ZNoa) — deg f deg g -« € image(CH,(X|. x X)), (4.3.4)
([ZN0[Z'] o B) —deg f deg g - B € image(CH, (Y. x Y))). (4.3.5)

By symmetry, it suffices to prove (4.3.2) and (4.3.4). Let us prove (4.3.2). By
using Lemma 1.3.4 we can consider

a e CHX xx X)), B e CH(Y' xyY'), [Z'1eCH(Z),
and see that [Z'] o« and B o [Z’] are naturally supported in CH(Z').

Since Z'N (X, x YYU (X' xY)) =Z'N(X, xY,), Lemma 1.3.6 and the
localization sequence for Chow groups implies the claim if the equality

deg(g) - [Zlx'xy; ol x;xxr = deg(f) - Bly'xy; o [Z]1x,x v (4.3.6)
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holds in CH(Z' N (X, x Y))). Here we have
alx xx € CH(X, xx X") = CH(X, xx, X),
Bly'xy, € CH(Y' xy Y;) = CH(Y, xy, Y,),
[Z']lx,xy € CH(Z' N (X, x Y")) =CH(Z'N (X, x Y,)),
[Z|x'xy; € CH(Z'N (X' x Y,)) = CH(Z' N (X, x Y,)).
Obviously,
alxyxx = [X, xx, X,1=[T" 1o[[y,], (4.3.7)
Bly'xy, =Y, xy, Y, = [T} 10[Tg,l,
[Zlxyxy =[Z,] = [Ty 10[Zs10[Ty,],
[Z|xxv; =[Z,].
Thus (4.3.6) follows from
[Ts,]o (I, 1=deg(f)[Ax,], (4.3.8)
[Tg,]o [Ty, ] =deg()[Ay,].

This finishes the proof of (4.3.2). The proof of (4.3.4) is similar. The cycles
[Z') o[Z'] o and « are supported in

B={(x;,x)) e X' x X"| (f(x]),y) € Z,(f(x}),y) € Z for some y € Y}.

We see that BN((X, x X )U(X'x X]))=BN(X, x X)), and by using Lemma 1.3.6
it is sufficient to prove

[Z)) o[Z1o[X, xx, X,]=deg fdegg-[X, xx, X,].

In view of (4.3.7), this follows immediately from (4.3.8).
Since deg f and deg g are invertible in k, it follows from Proposition 3.2.2 and
(4.3.2) that (deg )~ py o cl([Z']) induces a morphism

(or ocl(@)H* (X', Ox' ® wx') — (pu o cl(B))H*(Y', Oy @ wy’)
and by (4.3.3), (deg g) ! py o cl([Z']") induces a morphism
(pr o cl(B)H*(Y', Oy @ wy) — (pu o cl(@)H* (X', Ox @ wx).

By (4.3.4) and (4.3.5) these two morphisms mutually inverse. So Proposition 4.2.8
yields isomorphisms

H (X,0x) X H (Y,0y) and H'(X,wx)= H'(Y,wy) foralli>0.

This proves Claim 1.
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Claim 2. The isomorphisms constructed in Claim 1 depends only on the isomor-
phism k(X) = k(Y) induced by a Z.

We use the shorthand notation H' (X) = H' (X, Ox ® wy). Choose Z as in
Definition 3.2.7. Denote by Z, the image of Z in X x Y. Choose f] : X; - X
and g; : Y1 — Y finite and surjective, with X, ¥; smooth and integral and deg fi,
deg g1 € k*. Define

a1 :=ppocl([X1 xx X1]), Bi1:= puocl([Y1 Xy Y1]),
Y1(Z) = (deg f1) " pr o cl([X1 xx Zo xy Y1]).
Then, as seen in the proof of Claim 1 above, we obtain isomorphisms
(2Z), ~ * o~

H(0 25 o 1 ) B2 gia () £ H ),
Now choose two different Z as in Definition 3.2.7, say Z; and Z,, which induce
the same isomorphism k(X) = k(Y). Then we can find smooth open subschemes
Xos Yo, Z1.0, Z2oof X, Y, Z1, Zy such that for i =1, 2, we have

Zio=ZixxXo=Z; Xy Y,,

the projections Z; , = Xo, Zio = Y, are isomorphisms, and the induced iso-
morphisms /; : X, — Zo.i = Y, fori =1, 2 are equal. Proposition 3.2.2 implies
yl(Zl) = yl(Zz) on H'(X). Therefore yl(Z) depends only on the isomorphism
k(X) = k(Y), which Z induces. From now on we fix such an isomorphism and
simply write y 1.

Now choose fr: Xy — X and g : Y, — Y finite and surjective, with X5, Y»
smooth and integral and deg f>, deg g» € k*. Define a», 8> and y; as above (in the
above formulas replace 1 by 2) and set - -

a1y = (deg f1) "' pr o cl([X1 xx Xal), a1 = (deg f2) ™' pu o cl([X2 xx X11)
Bi2:=(degg)) ' procl([Y1 xy Ya),  Bar = (deg g2) ™' pi o cl([¥2 xy Y1]).
Then one checks as in the proof of Claim 1 that o : H (X)) — H'(X») induces an
isomorphism a1 H' (X1) = a2 H' (X7) with inverse a2 and B12: H (Y1) —> H' (Y2)
induces an isomorphism élH Yy = ézH (Y,) with inverse §21. Further one
checks that élz oyiow] =Yy20a1200]. Thus we obtain the commutative diagram

~

arH (X)) BiH' (Y1) g m
1> 10—
H (X) ~|en ~| B2 H(Y). (4.3.9)
f2*7: . . g; =~
ar H' (X2) B2H'(Y2)
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Therefore the isomorphisms of Claim 1 do not depend on the choice of f; and g;.
This proves Claim 2 and also the theorem in the case S = Spec k.

Finally, consider the case of a general basis S. Choose Z as in Definition 3.2.7
and choose integral, smooth schemes X’ and Y’ with finite, surjective morphisms
f:X — Xand g : Y — Y whose degree is invertible in k. For U C S open
denote by Xy, fu, etc. the pull-backs over U. By Proposition 4.2.8, the pull-back
fi; realizes Hi Xy, Ox, ® wx,) as a direct summand of Hi(X’L/, @Xb ® a)Xb).
This is clearly compatible with restrictions along opens V C U C § and thus the
pull-back f* realizes Rimx.(Ox @ wy) as a direct summand of the Og-module
Rimyx, f(Ox @ wy). In the same way, g* realizes Rimy«(Oy @ wy) as a direct
summand of the Og-module R'7y,.g.(Oy @ wy'). Further, by the case S = Spec k
considered above, the map

(deg )~ o o cl(Zyy]) - H*(Xpy. O, @ wyy) — H* (Y], Oy, @ owyy)

induces an isomorphism between H*(Xy, Ox, @ wx,) and H*(Yy, Oy, ® wy,).
Write [Z'] = ), n7[T], where the sum is over the irreducible components of
Z'. Then the collection {(deg f)~'py o cl([Z,]) | U C S} induces a morphism of
Os-modules (by Proposition 3.2.4)

pu(Z'18) =Y nr pu(T/S): R'7xs fu(Ox ® wx) > R'7y.g.(Oy ® wy),
T

which by the above induces an isomorphism

R'7x«(Ox @ wx) = R'ny.(Oy ® wy). (4.3.10)
Claim 2 implies that (4.3.10) depends only on the Og ,-isomorphism k(X) = k(Y)
induced by Z. O
Remark 4.3.11. Theorem 4.3.1 implies Theorem 3.2.8 and Theorem 3.2.14.

Corollary 4.3.12. Let 7 : X — Y be a birational and proper morphism between
integral schemes over a perfect field k. Assume X and Y are tame quotients. Then
* induces isomorphisms

Rn,0x =0y and Rm.wx =wy.
Proof. In Theorem 4.3.1 take S =Y, wx =7 and 7y = idy. O

4.4. Open questions. Questions in char(k) = p.

4.4.1. Do the statements in Theorem 3.2.8 and Theorem 3.2.14 hold when k is not
perfect and smooth is replaced by regular?

4.4.2. Let f: Y — X be a surjective projective morphism with connected fibres
between smooth varieties ¥ and X. [s R4m®)—dim(X) fewy = wx? In char(k) =0
this holds by [Kollar 1986, Proposition 7.6].
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4.4.3. Let f: Y — X be a surjective projective morphism with connected fibres
between smooth varieties Y, X. Is R¢ f,wy = 0 for e > dim(Y) — dim(X)? In
char(k) = 0 this holds by [Kolldr 1986, Theorem 2.1(ii)].

Appendix
All schemes in this appendix are assumed to be finite-dimensional and noetherian.

A.1. Local Cohomology. LetY = Spec B be an affine scheme and X C Y a closed
subscheme of pure codimension ¢, defined by the ideal / C B. We assume that
there exists a B-regular sequence t =11, ...,t. € I with /(1) = V1, where ()
denotes the ideal (¢, ..., f.) C B. We denote by K *(¢) the Koszul complex of the
sequence ?, that is, K79(t) = K, (1) = /\q B¢ forq=0,...,c,and if {eq, ..., e;}
is the standard basis of B and ¢;, . ;, :=e;; A+ - - Ae;,, then the differential is given
by
9 .
dl(ei, i) =dy (e i)=Y ()t oo
Jj=1

For any B-module M we define the complex

K*(t, M) := Homg(K ~*(t), M),

and denote its n-th cohomology by H”" (¢, M). The map

.....

induces a canonical isomorphism H¢(t, M) ~ M /(t)M.

If t and ¢’ are two sequences as above with (¢') C (¢), then there exists a ¢ X c-
matrix 7 with coefficients in B such that ' = Tt and T induces a morphism
of complexes K*(t') — K*(t), which is the unique (up to homotopy) morphism
lifting the natural map B/(t') — B/(t). Furthermore we observe that, for any pair
of sequences ¢ and ¢’ as above, there exists an N > 0 such that (+) C (), where
tV denotes the sequence th , ..., tN. Thus the sequences ¢ form a directed set and
H¢(t, M) — H(t', M) for (t') C (¢) becomes a direct system. It follows from
[Grothendieck 1968, Exposé II, Proposition 5] that we have an isomorphism

li_r)nM/(t)M = h_r)an(t, M)=Hy(Y, M),
t t
where the limit is over all B-regular sequences t =#q, ..., f. in B with V((¢)) = X

and M is the sheaf associated to M. We denote by [": ] the image of m € M under
the composition

M — M/(t)M — H(t, M) — HS(Y, M).
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It is a consequence of the explanations above that we have the following properties:

(1) Let ¢ and ¢’ be two sequences as above with (') C (). Let T be a ¢ X c-matrix

with ' = T't; then
det(T)m _m
t IR

) [’"er/] - [m] + [m} and [t"m] —0 foralli.
t t t t

(3) If M is any B-module of finite rank, then
. ~ . ~ b bm
Hy(Y,0y)®p M — Hy (Y, M), ; X m — ;

is an isomorphism.

Remark A.1.1. Since for a B-regular sequence ¢ as above K*(¢) — B/(t) is a free
resolution, we have an isomorphism for all n, given by

Ext"(B/(t), M) ~ H" (Hom%(K*(t), M)).
We also have an isomorphism
Hom% (K*(t), M) ~ K*(t, M),

which is given by multiplication with (—1)""*1/2 in degree n. We obtain an
isomorphism

Vv EX(B/(1), M) = H(t, M) = M/()M,

which has the sign (—1)“*+1/2 in it. In particular, under the composition

Ext(B/(1), M) L5 M /()M — HE(Y, D),

the class of a map ¢ € Homp (/\C B¢, M) is sent to
(—1yele+Dr2 [90(6’1 ..... C)].

Lemma A.1.2. Let Y = Spec B be as above, let M be a quasicoherent sheaf on Y,
letc>0andletty,...,t. 1 bea B-regular sequence. Set X' .=V (t1,...,t.41) C
X:=V(t1,...,t.). Let 9 : H)C(\X,(Y\X/, M) — H;TI(Y, M) be the boundary map
of the localization long exact sequence. Then

a[m/tc+l:|_|: m ]
LS R tla-~-stC5tC+l
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Proof. Let M be the B-module of global sections of (. By [Grothendieck 1968,
Exposé II, Corollary 4] and Cech computations, we may identify

c+1 , HC—/"_l(Y, ./‘/L) — 1 le1
ZC M, ~ X c+1 N
i=1 fpeeti-teley] Zi:] Mtl"' i letl

and 0 is the natural map from left to right. Under these identifications, the map

’

Hf(\x/(Y \ X/, ./‘/L) -

M, /(t,....tc)=H(K*(t, M)) — H§\X,(Y, M) sends the class of m/f.1, for
m € M, to the class of (m/t.41)/(t; - - - t.) and similarly for M/(t{, ..., tcy1) =
H{P (Y, 0. O

A.2. The trace for a regular closed embedding. We now explicitly describe the
trace morphism for a regular closed embedding. This is well known and appears
in various incarnations in the literature; see for example [Lipman 1984; Hiibl and
Seibert 1997, Section 4]. However in all the articles we are aware of, more el-
ementary versions of duality theory are used (for example no derived categories
appear). Since the compatibility of these theories with the one we are working
with—namely the one developed in [Hartshorne 1966; Conrad 2000] —is not
evident to us, and also to be sure about the signs, we recall the description of the
trace in this situation.

Leti : X — Y be a closed immersion of pure codimension ¢ between two
Gorenstein schemes and assume that the ideal sheaf $ of X is generated by a
sequence t = (t1, . .., t.) of global sections of Oy. Then the image of # in any local
ring of Y is automatically a regular sequence. We denote by K*(¢) the sheafified
Koszul complex of ¢ and set

[
wx/y = [\ Homg, (9/97, Ox).

The fundamental local isomorphism (see for example [Conrad 2000, 2.5]) gives an
isomorphism in Df Y)

ni: i*a)x/y[—c] (i %0m}(K'(t), @y) =R %Omy(i*Gx, @y) = i*i!©y. (A21)

The first map is induced by

.
dtom( /\ 05, Oy) = Hom"(K*(t), Oy) — irwx/y. (A.2.2)

@ (=D 20 A ALY

c

(The reason for the sign is Remark A.1.1.) Composing the morphism 7; with the
trace Tr; : i,i'Oy — Oy (see for example [Conrad 2000, 3.4]), we obtain a morphism
in D2(Y)

iy y[—c] B ii'0y =5 Oy, (A2.3)
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which factors in Dé’c(Y ) as

iy y[—cl 25 i,i'0y 5 R xOy. (A.2.4)
Lemma A.2.5. In the situation above there is a natural isomorphism

RT xO0y = #%(Oy)[—c] in Dfl’c(Y) (A.2.6)
and #°((A.2.4)) is given by

a
iwoyyy — % Oy), at) A---At) (—1)C<f+‘>/2[t t ] (A.2.7)
1s -0 lc

where a € Oy is any lift of a € Ox.

Proof. The first statement is equivalent to %’X (Oy) =0, for i # ¢, and hence we
may assume that Y is affine. We have the vanishing for i < ¢ since Y is CM by
[Grothendieck 1968, Exposé III, Proposition 3.3] and for i > ¢ since the ideal
of X in Y is generated by ¢ elements, which by a Cech argument implies that
H (Y \X,0y)=0fori>c.

We denote by E® = E*(Oy) the Cousin complex of Oy; see e.g., [Hartshorne
1966, Chapter IV, Section 2]. In particular E* is an injective resolution of Oy (since
Y is Gorenstein) and if ¥©) denotes the set of points of codimension c in ¥, then

E'= @ iy H{(Y, Oy),

yey©

where i, : y — Y is the inclusion and Hy (Y, Oy) = colim,cy HgmU(Y, Oy), the
limit being over all open subsets U C Y that contain y. We write K® := K*(¢).

The trace Tr; : i,i'Oy — Oy is now induced by the “evaluation at 1” morphism
#om*(i,Ox, E®*) — E°. Furthermore the augmentation morphisms K*®* — i,0x
and Oy — E*° induce quasiisomorphisms

Hom®(K*®, Oy) = Jom®(K®, E®) < Jom®(i,Ox, E®). (A.2.8)

To prove the second statement, we may assume a = 1 € Oyx. We define a €
#Hom“(K*, Oy) = Hom(A°0Y, Oy) by ale;,. . ) =1and B € Hom°(i,Ox, E*®) =
#om(i, Oy, E) by

.....

B) = (By) € E = P iy H(Y,0y),

yeyY©

with
[ ! ] if y is a generic point of X,

ﬁ — I,y tc
Y 0 otherwise.
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Then
Tri(B) = |:t } € #%(0y),

where B is the residue class of 8 in % (%¢om®(i,Ox, E*)) and

| EIIIR 7

ni(a) = (_1)C(C+1)/2t1\/ VANREIVAN t‘\./ S i*a)x/y.
Thus the second statement of the lemma follows if we can show that the images of

a and B in Hom(K*®, E*®) differ by an element in d;e_mln. (¥om ! (K*, E®)).
For j =0,...,c—1, we define

y T = T eET = @ iy HST T (Y. 0p)
yeye=1-p)
by

c—1—j —

15 P le—j—1
yy -

[ Ve ] ify ey eI =Dnvi, ... teo1-)),
{0 otherwise.

In particular yo =1/t e, H,?I_ (Y, Oy) =;k(n;), with n; the generic points of Y.
Notice that (by Lemma A.1.2)

dey " =te_jy/ forall j > 1, (A.2.9)
Ly =0 forall j >0, ie{l,...,c—1—j}. (A.2.10)
Further define
c—1
¥ = (o, ..., Yeo1) € Yom ™ (K*, E*) = P Hom(K ;, E' )
j=0
by
(—DJCetDye==i if Gy, ....i))=(c+1—],...,0),
Ve, .ij) = Y bl /
0 otherwise.

By definition and (A.2.10) we have
...,i,-) #0ifg#lor(iy,...,ij)) #@+1—j,...,0). (A21l)

Now we calculate the boundary of ,

Al = @S oo, . dS T oW+ (= 1D)Y 1 0dX, L (=) Y1 0dK).

iy Vi-1e; i,

Ist Case: j =0.
dz—] o wo(l) — dg_lyc_l = ﬂ(l) by (A29)

2nd Case: 1 < j <c¢—2. By (A.2.11) and the definition of i, we have
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if (iy,...,ij) #(c+1—j,...,c) and otherwise

(di o+ (=Y 10dF) et o)
= (=1 DAy I (Dt W1 (eerrj)
= (~1)/ D@y ‘/J/L_]_J—fcfjﬂy ~/)=0 by (A29).

3rd Case: j =c—1. By (A.2.11), we have
(=D Yer1(@X(e1 ) = (=Dtipei(er. o) = —1 = —aler, ).

All in all we obtain

dst () =(B,0,...,0, —a). 0

Lemma A.2.12. Let S be a Gorenstein scheme and i : X — Y a closed immersion
between smooth, separated and equidimensional S-schemes with structure maps
wyx: X — Sand T[y Y — Sand denote by dx s and dy s their relative dimensions.
We set wx;s = QX/S, wy/s ‘= Qy/s and ¢ = dy;s — dx/s. Assume that the ideal
sheaf of X in Y is generated by a sequencet =t1, ..., 1t. of global sections of Oy.
Define a morphism 1x by

.| dta
iy tixwx)s = Hg(wyss), ar (=1) [ . }

with @ € QY/S any lift of o and dt = dty A - - - Adt.. Then the following diagram
in D .(Oy) is commutative:

Ci,y Tr;
iy 05— ii'r 0y ——— = 705 (A2.13)

| ]

b . ~
Ixwx;sldx/s] —— H(wys)ldx;s] — R x(wy/s)[dyys],

where the vertical map on the left is the well-known canonical isomorphism (see
[Conrad 2000, (3.3.21)]), the vertical map on the right is the composition of the
forget supports map RT x(wy/s)[dy;s] — wy;sldy;s] with the canonical isomor-
phism wysldy/s] = n)!,@s and Ci g, : n)!( = i!n)!, is the canonical isomorphism
[Conrad 2000, (3.3.14)].

Proof. Let $ C Oy be the ideal sheaf of X. As above we write
c
wx/y = [\ Home, (9/97, 0).

Further let 7y : n{,@s = wy/sldy;s] and tx : 71)!(@5 = wy/sldx/s] be the canoni-
cal isomorphisms and 7; : wx/y[—c] = i'Oy the fundamental local isomorphism
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(A.2.1). Consider the following diagram in Df (Oy):

| Ciy» = RN Tr; !

iy Og ixi'myOg 7, Os

. . L Tr; ®id ‘

i3 0 i,i'0y ®L 7,05 ' 7,0 (A.2.14)

:th :Lni‘lg)ry :jry
Trl ®id

~

ixwx/sldx/s] — ixox/y[—c] ® wy/sldy;s] — wy/sldy/s].

Here some explanations: The middle horizontal arrow on the left is defined such
that the upper left square commutes. We have a canonical identification i,i'(-) =
R ¥omg, (i.0x, (-)) and since rri,@g is isomorphic to a shifted locally free Oy-
module, we have R Jomg, (i,.0x, ﬂ)!,@s) = R ¥omg, (i,.0x, Oy) ®L 7'[;,@5; this
defines the upper vertical arrow in the middle. Furthermore Tr; : ') = ()
may be identified with R Jomg, (i,0x, -) — (-) given by the evaluation at 1.
This shows, that in the diagram above the upper square on the right commutes.
The map Tr; s iywy/y[—c] — Oy on the right bottom is the composition (A.2.3)
and thus the lower square on the right commutes by definition. The horizontal
isomorphism on the lower left is given by (see [Conrad 2000, page 29, 30(c) and
(2.2.6)D

ixwx/sldx;s] — ixwxy[—c]l @ wy/sldys], ) (A215)
a1 A AL)QdE A Adl A@,

with @ € Qf,);/ss any lift of «. That the square on the lower left commutes follows
from [Conrad 2000, Theorem 3.3.1, (3.3.27)] and [Conrad 2000, Lemma 3.5.3].
(Notice that by [Conrad 2001, p. 5, pp. 160-164] the statement of [Conrad 2000,
Lemma 3.5.3] should be “(3.5.8) is equal to (3.5.7)” instead of “(3.5.8) is equal to
(—1)"™ =" times (3.5.7)”.) Thus the whole diagram commutes. The upper line
equals the upper line in (A.2.13) and the lower line factors as the composition

Lxwx/sldx/s] = ixwx y[—c] @ wy;sldy/s]
r,-®id c c
SO 5 (Oy)[—c] @ wyysldy 5] = H (wy/s)ldxs] (A2.16)

with the natural map

H (wy/s)dxs] = R x (wy/s)dy;s] — wysldy;s].

Here tr; denotes the composition of RI" x(Tr;) with the isomorphism R x(0Oy) =
#%(Oy)[—c]. Thus the lemma is proved once we know that (A.2.16) equals 1x.
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But by Lemma A.2.5 the map tr; is given by

(¢ 1
i*wX/Y — %g((@Y), tlv A /\tcv — (_l)c(c+l)/2|:t:|'

Together with (A.2.15) we obtain that (A.2.16) is given by

ar> ) A ALY QdE A Ad AG
1 dta
> (—1)C<C+1>/2H @dtc A+ Adty NG = (—1)"[ t“],
which by definition equals 1x. This proves the lemma. O

A.3. The trace for a finite and surjective morphism.

1.3.1. Let S be a Gorenstein scheme and f : X — Y a finite and surjective mor-
phism of smooth, separated and equidimensional S-schemes, both of which have
relative dimension n. We denote by wx : X — S and wry : ¥ — S the respective
structure maps. Then we define the trace map

T? . f*a)x/s — Wy/s (A32)
to be the composition

feoxss = REmyOsT—n] =™ Rf, f'wy0sl—n] ~5 7 Osl—n] = wys.

In the lemma below we give a well-known explicit description of this trace map,
for which we could not find an appropriate reference. There are well-studied ad
hoc definitions of this trace map not using the machinery of duality theory (see
for example [Kunz 1986, §16]), but it is a priori not clear that these construction
coincide with the one above.

Lemma A.3.3. Let f : X — Y be as above and assume it factors as

X¢>P

1y

Y,

where 1 is smooth and separated of pure relative dimension d and i is a closed
immersion whose ideal sheaf $ C Op is generated by global sections ty, ..., tg €
['(P,0p). Then for any local section o € fywyx,s, we have a formula for rJ’Z (2):
Leta € Q’;)/S be any lift of « and write

i*dtgy A ANdt AQ) = Zi*)/j ®f*,3j, where Vi Ewpyy, ,Bj € wy/s
J



772 Andre Chatzistamatiou and Kay Riilling

lnl*Q"+S_l wp/s =i"(wpy) ® f*wys. Then

4«n=(—n“*“ﬂ§:mey[
J
] € Oy is the residue symbol defined in [Conrad 2000, (A.1.4)].

]ﬁj € wy/s,

J
f,...,1q

where Resp/y [

Proof. The proof is a collection of compatibility statements from [Conrad 2000].
First we collect some notation.

(D) ;“l./’m) twx/s — wx/p @ i*wp/s is defined in [Conrad 2000, pp. 29-30, (c)]
and sends o to (t;) A--- A L)) ®i*(dtg A--- Adt; A @), where we identify

wx/p = N9/
2) n: %xt?, (ix0x, -) = wx/p ®i*(-) is the fundamental local isomorphism
[Conrad 2000, (2.5.1)].

(3) For a smooth and separated morphism of pure relative dimension n between
two schemes g: V — W, e, : g' — g* = wy,w[n]®F (-) denotes the natural
transformation [Conrad 2000, (3.3.21)].

(4) In case g as above factors as g =hoi withi:V — Z finiteand h: Z - W
smooth, ¥; p, : g" = i’h* is the isomorphism defined in [Conrad 2000, (2.7.5)],
where i°(-) =i "' R #omz(i,.0y, -) ®;-1; 0, Oy is defined in [Conrad 2000,
(2.2.8)].

(5) dy: 'S f?isthe isomorphism defined in [Conrad 2000, (3.3.19)].

6) Try: fuf ' id is the trace morphism defined in [Conrad 2000, 3.4], and
Trfy: fif ® — id is the finite trace morphism defined in [Conrad 2000, (2.2.9)]
and which is induced by evaluation at 1.

Consider the diagram on page 773. Let us describe the different squares and
triangles in this diagram:

(1) The vertical isomorphism on the right in square 1 is immediate from the def-
inition of nﬁ; the left vertical isomorphism is defined such that the square
commutes.

(2) See [Conrad 2000, Theorem 3.5.1, Corollary 3.5.2] for the isomorphism in the
lower right of square 2. The square commutes by [Conrad 2000, Lem. 3.5.3].
(By [Conrad 2001, comment to pp. 160-164] the last statement of [Conrad
2000, Lemma 3.5.3] should be “..., then (3.5.8) is equal to (3.5.7)”.)

(3) Square 3 commutes by [Conrad 2000, (3.3.27)].

(4) The vertical isomorphism on the right of square 4 is induced by the natural

isomorphism (y)* = nY# #. For the commutativity of the square, see the

discussion in [Conrad 2000, p. 83—84] (our case is point three).
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{i/.n .
fawx)s === fawxs - fulwxp®i*wp)s)

= @ = @ 0!
firOs[—n] BaLN fumbOs[—n] Yy fo@h0s[—n)) —— f. €xt%(i.0x, wp)s)
Chny © Viay  (4) ~
fof Ty Ost-n] = fu Prf0st-nl & L@t atOsl-n) - () -
- ® - @ -
fiflwyss v fifPwys e fi’mtwys ——— fiext%(i,0x, wp/y®@m*wy/s)
- m,g - . @ -

Yix . ~ .
DY/S <ired Ff (Oy)®wy/s — fi(i®7*0y)@wy s —= fi €xth(i.0x, wpy)@wy/s.

(5) The isomorphism on the right of square 5 is induced by the natural isomor-
phism wp/s = wp/y ® m*wy;s. The square commutes by the functoriality
of the horizontal isomorphisms, which are just induced by taking the O-th
cohomology (the other cohomology groups being zero).

(6) The vertical isomorphism on the right of square 6 is induced by wy,s =
7'[)!/@5[—}’1] = nﬁ@ s[—n]. Thus the square commutes by the functoriality of d ;.

(7) The vertical isomorphism on the right of square 7 is defined as above. Thus
the square commutes by the functoriality of v; .

(8) Triangle 8 commutes by [Conrad 2000, Lemma 3.4.3, (TRA2)].

(9) By [Hartshorne 1966, proof of Chapter III, Proposition 6.5], we may identify
fof ba)y/s with the sheaf #omy ( /.0y, wy,s) (since wy/s is locally free) and
Trf; is given by evaluation at 1. The vertical map on the right of triangle 9 is
defined by the isomorphism #omy ( f.0x, wy,s) = Homy (f,.O0x, Oy) @ wy/s.
The triangle thus obviously commutes.

(10) By [Conrad 2000, (2.8.3) and the paragraph after this, pp. 100—101] we have
a commutative square

1//ii'r
b . b _#
ffoy)s ———i’n"wy/s

L 1//[,7[ . l
fP0y ® froy;s —= i7" 0y ® f*wy/s.

Applying f, to this diagram and using projection formula defines the com-
mutative square 10.
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(11) The horizontal maps in square 11 are induced by taking the O-th cohomol-
ogy, the vertical maps are the natural isomorphisms (wy/s is locally free and
projection formula). The commutativity of the diagram is clear.

(12) The isomorphism in the upper right of triangle 12 is induced by the isomor-
phism wp/s = wp/y @ m*wy,s and the projection formula. The triangle com-
mutes by [Conrad 2000, Theorem 2.5.2, 1].

Thus diagram on page 773 is commutative. The composition of the vertical maps
along the left outer edge of the diagram equals rj’l by definition. The composition
of the vertical maps along the right outer edge of the diagram is by [Conrad 2000,
Theorem 2.5.2, 1] equal to the composition

felwx/p @ i*wp/s) = fulox/p ®i*wp/y) ® wy/s
n; ' ®id
—_— f*%xtp(z Ox,wp/y) @ wyys.

All together we see that ‘L'? equals the composition

/ n; lgid
frwxss —5 fulwx/p @ i*wp) = fulwx/p ®@i*wp)y) @ wy/s —>
‘/’71 ~ eval. at 1
f(@i®7*0y) @ wy s —> fof Oy @ oy = Homy (f.0x, Oy) ® wy/s ——> wy/s.
Hence the claim follows from the definition of g“i/,np (see (1) above) and the defi-

nition of the residue symbol in [Conrad 2000, (A.1.4)]. ]
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