Vol. 5, No. 6, 2011

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Sur le groupe de Chow de codimension deux des variétés sur les corps finis

Alena Pirutka

Vol. 5 (2011), No. 6, 803–817
Abstract

En utilisant la construction de Colliot-Thélène et Ojanguren, on donne un exemple d’une variété projective et lisse géométriquement rationnelle X, définie sur un corps fini Fp, telle que d’une part le groupe Hnr3(X, 2) est non nul et, d’autre part, l’application CH2(X) CH2(X ×FpF ̄p)Gal(F ̄pFp) n’est pas surjective.

Using a construction of Colliot-Thélène and Ojanguren, we exhibit an example of a smooth projective geometrically rational variety X defined over a finite field Fp, such that the group Hnr3(X, 2) is nonzero and the map CH2(X) CH2(X ×FpF ̄p)Gal(F ̄pFp) is not surjective.

Keywords
groupes de Chow, cohomologie non ramifiée, Chow groups, unramified cohomology
Mathematical Subject Classification 2000
Primary: 14C25
Milestones
Received: 14 May 2010
Revised: 12 October 2010
Accepted: 15 November 2010
Published: 2 April 2012
Authors
Alena Pirutka
École Normale Supérieure
45 rue d’Ulm
75230 Paris
France