The behavior of Hecke L-functions of real quadratic fields at $s = 0$

Byungheup Jun and Jungyoun Lee
The behavior of Hecke L-functions of real quadratic fields at $s = 0$

Byungheup Jun and Jungyun Lee

For a family of real quadratic fields $\{K_n = \mathbb{Q}(\sqrt{f(n)})\}_{n \in \mathbb{N}}$, a Dirichlet character χ modulo q, and prescribed ideals $\{b_n \subset K_n\}$, we investigate the linear behavior of the special value of the partial Hecke L-function $L_{K_n}(s, \chi_n := \chi \circ N_{K_n}, b_n)$ at $s = 0$. We show that for $n = qk + r$, $L_{K_n}(0, \chi_n, b_n)$ can be written as

$$\frac{1}{12q^2}(A_\chi(r) + kB_\chi(r)),$$

where $A_\chi(r), B_\chi(r) \in \mathbb{Z}[\chi(1), \chi(2), \ldots, \chi(q)]$ if a certain condition on b_n in terms of its continued fraction is satisfied. Furthermore, we write $A_\chi(r)$ and $B_\chi(r)$ explicitly using values of the Bernoulli polynomials. We describe how the linearity is used in solving the class number one problem for some families and recover the proofs in some cases.

1. Introduction

In this paper, we are mainly concerned with linear behavior of the special values of the Hecke L-function at $s = 0$ for families of real quadratic fields.

Let $\{K_n = \mathbb{Q}(\sqrt{f(n)})\}_{n \in \mathbb{N}}$ be a family of real quadratic fields where $f(n)$ is a positive square free integer for each n. For example $f(x)$ can be a polynomial with integer coefficients.

Work partially supported by KRF-2007-341-C00006 (Jun) and by the Basic Research Program through the National Foundation of Korea (NRF) funded by the ministry of Education, Science and Technology (Jun: 2012-007726; Lee: 2011-0023688).

MSC2000: 11M06.

Keywords: special values, Hecke L-functions, real quadratic fields, continued fractions.
For a Dirichlet character χ modulo q, we have a ray class character $\chi_n := \chi \circ N_{K_n}$ for each n. Fixing an ideal b_n in K_n for each n, one obtains an indexed family of partial Hecke L-functions $\{L_{K_n}(s, \chi_n, b_n)\}$, where the partial Hecke L-function for (K, χ, b) is defined as

$$L_K(s, \chi, b) := \sum_{\alpha \sim b \text{ integral} \atop (q, \alpha) = 1} \chi(\alpha) N(\alpha)^{-s}.$$

and $a \sim b$ means that $a = \alpha b$ for totally positive $\alpha \in K$.

Roughly speaking, if $L_{K_n}(0, \chi_n, b_n)$ can be written as linear polynomial in k with coefficients depending only on r for $n = qk + r$, we say that $L_{K_n}(0, \chi_n, b_n)$ is linear.

Definition 1.1 (linearity). When the special values of $L_{K_n}(s, \chi_n, b_n)$ at $s = 0$ are expressed as

$$L_{K_n}(0, \chi_n, b_n) = \frac{1}{12q^2} (A_\chi(r) + k B_\chi(r))$$

for $n = qk + r$, $A_\chi(r), B_\chi(r) \in \mathbb{Z}[\chi(1), \chi(2), \ldots, \chi(q)]$, we say that $L_{K_n}(0, \chi_n, b_n)$ is linear.

Linearity was originally observed by Biró in his proof of Yokoi’s conjecture.

Theorem 1.2 [Biró 2003b]. *If the class number of $\mathbb{Q}(\sqrt{n^2 + 4})$ is 1, then $n \leq 17$.*

In Yokoi’s conjecture, we take $K_n = \mathbb{Q}(\sqrt{n^2 + 4})$ and $b_n = O_{K_n}$. Biró [2003b, pp. 88, 89] expressed the special value of the Hecke L-function for (K_n, χ_n, O_{K_n}) at $s = 0$ for $n = qk + r$

$$L_{K_n}(0, \chi_n, b_n) = \frac{1}{q} (A_\chi(r) + k B_\chi(r)), \quad (1-1)$$

where

$$A_\chi(r) = \sum_{0 \leq C, D \leq q-1} \chi(D^2 - C^2 - rCD) \left\lfloor \frac{rC - D}{q} \right\rfloor (C - q),$$

$$B_\chi(r) = \sum_{0 \leq C, D \leq q-1} \chi(D^2 - C^2 - rCD) C (C - q).$$

When K_n is of class number 1, the unique ideal class can be represented by any ideal b_n. *A priori* the partial Hecke L-function equals the total Hecke L-function up to multiplication by 2 (that is,

$$L_{K_n}(0, \chi_n) = c L_{K_n}(0, \chi_n, O_{K_n}),$$

where c is the number of narrow ideal classes).
The behavior of Hecke L-functions of real quadratic fields at $s = 0$

From this identification, one can find the residue of n by sufficiently many primes p for which the class number of $\mathbb{Q}(\sqrt{n^2 + 4})$ is one. Moreover, by the linearity, this residue depends only on r. Consequently, one can tell whether or not p is inert in $\mathbb{Q}(\sqrt{n^2 + 4})$. As we have a bound for a smaller prime to inert depending on n, finally we have enough conditions to list all K_n of class number 1.

Other families (K_n, χ_n, b_n) that have linearity were discovered in [Biró 2003a; Byeon et al. 2007; Byeon and Lee 2008; Lee 2009a; 2009b]. Similarly, developing Biro’s method, one can solve the associated class number one problems. In this paper, we give a criterion on (K_n, χ_n, b_n) for $L_{K_n}(0, \chi_n, b_n)$ to be linear.

Our main theorem is as follows:

Theorem 1.3 (linearity criterion). Let $\{K_n = \mathbb{Q}(\sqrt{f(n)})\}_{n \in \mathbb{N}}$ be a family of real quadratic fields where $f(n)$ is a positive square free integer for each n. Let χ be a Dirichlet character modulo q for a positive integer q and χ_n be a ray class character modulo q defined by $\chi \circ N_{K_n}$. Suppose b_n is an integral ideal relatively prime to q such that $b_n^{-1} = [1, \delta(n)] := \mathbb{Z} + \delta(n)\mathbb{Z}$. Let $[[a_0, a_1, \ldots, a_n]]$ be the purely periodic continued fraction

$$[a_0, a_1, a_2, \ldots, a_n, a_0, a_1, \ldots],$$

where

$$[a_0, a_1, a_2, \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}.$$

Our main theorem is as follows:

Theorem 1.3 (linearity criterion). Let $\{K_n = \mathbb{Q}(\sqrt{f(n)})\}_{n \in \mathbb{N}}$ be a family of real quadratic fields where $f(n)$ is a positive square free integer for each n. Let χ be a Dirichlet character modulo q for a positive integer q and χ_n be a ray class character modulo q defined by $\chi \circ N_{K_n}$. Suppose b_n is an integral ideal relatively prime to q such that $b_n^{-1} = [1, \delta(n)]$. Assume the continued fraction expansion of $\delta(n) - 1$

$$\delta(n) - 1 = [[a_0(n), a_1(n), \ldots, a_{s-1}(n)]]$$

is purely periodic and of a fixed length s independent of n and $a_i(n) = \alpha_i n + \beta_i$ for some fixed $\alpha_i, \beta_i \in \mathbb{Z}$.

If $N_{K_n}(b_n(C + D\delta(n)))$ modulo q is a function only depending on C, D and r for $n = qk + r$, then $L_{K_n}(0, \chi_n, b_n)$ is linear.

Furthermore, we give a precise description of $A_\chi(r)$ and $B_\chi(r)$ using values of the Bernoulli polynomials (Proposition 3.8). From this description, for n with $h(K_n) = 1$, as in Biró’s case, one can compute the residue of n modulo p depending on the mod-q residue r of n. There are possibly many (q, p) pairs. The more pairs of (q, p) we have, the more we can restrict possible n. There are many known families for which the class number one problem can be solved in this way. Many known results can be recovered by using the continued fraction expansion to show linearity and finding enough (q, p).
There are still other families of real quadratic fields with linearity whose class number one problems are not yet answered. Morally, once we obtain a reasonable class number one criterion, finding sufficiently many \((q, p)\)-pairs should solve it.

This paper is composed as follows. In Section 2, we describe the special value at \(s = 0\) of the partial Hecke \(L\)-function in terms of values of the Bernoulli polynomials. Section 3 is devoted to the proof of our main theorem. In Section 4, Biró’s method is sketched as a prototype to apply the linearity. Section 5 concludes the paper with a possible generalization of the linearity criterion to a polynomial of higher order.

Notation and conventions. Throughout this article, we keep the following general notation and conventions. If necessary, we rewrite the notation at the place where it is used.

1. \(K\) is a real quadratic field.
2. For a real quadratic field \(K\), we fix an embedding \(\iota : K \rightarrow \mathbb{R}\). If there is no danger of confusion, we denote \(\iota(\alpha)\) by an element \(\alpha \in K\). \(\alpha'\) denotes the conjugate of \(\alpha\) as well as \(\iota(\alpha')\).
3. For \(\alpha \in K\), \(N_K(\alpha)\) denotes the norm of \(\alpha\) over \(\mathbb{Q}\). If there is no danger of confusion, we simply write \(N(\alpha)\) to denote \(N_K(\alpha)\). For an integral ideal \(a\) of \(K\), we let \(N(a) := [\mathcal{O}_K, a]\) denote the norm of \(a\).
4. For two linearly independent elements \(\alpha, \beta \in K\) viewed as a vector space over \(\mathbb{Q}\), \([\alpha, \beta]\) denotes the lattice (ie. free abelian group) generated by \(\alpha\) and \(\beta\). The lattice defined by a fractional ideal \(a\) of \(K\) is denoted by \([\alpha, \beta]\) if \(\{\alpha, \beta\}\) is a free basis of \(a\).
5. For a subset \(A\) of \(K\), we denote by \(A^+\) the set of totally positive elements in \(A\).
6. \(\chi\) is a fixed Dirichlet character of modulus \(q\).
7. For a real number \(x\),

\[
\langle x \rangle := \begin{cases}
 x - [x] & \text{for } x \notin \mathbb{Z}, \\
 1 & \text{for } x \in \mathbb{Z}.
\end{cases}
\]

Equivalently, \(\langle - \rangle\) is the composition \(\mathbb{R} \xrightarrow{\mod \mathbb{Z}} \mathbb{R}/\mathbb{Z} \rightarrow \mathbb{R}\), where \(\mathbb{R}/\mathbb{Z} \rightarrow \mathbb{R}\) is the unique map so that the composition is the identity on \((0, 1]\).
8. For a real \(x\), \([x]\) := \(x - \langle x \rangle\).
9. For an integer \(m\), \(\langle m \rangle_q\) denotes the residue of \(m\) by \(q\) taken in \([1, q]\) (i.e., \(m = qk + \langle m \rangle_q\) for \(k \in \mathbb{Z}\), \(\langle m \rangle_q \in [1, q] \cap \mathbb{Z}\)).
(10) For positive integers \(a_i, [a_0, a_1, a_2, \ldots] \) denotes the usual continued fraction:
\[
[a_0, a_1, a_2, \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}
\]
\([a_0, a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_{i+j}]\) denotes the continued fraction with periodic part \((a_i, a_{i+1}, \ldots, a_{i+j})\).
\([a_0, a_1, \ldots, a_n]\) is the purely periodic continued fraction
\([a_0, a_1, \ldots, a_n, a_0, a_1, \ldots]\).

(11) \((a_0, a_1, a_2, \ldots)\) denotes the minus continued fraction:
\[
(a_0, a_1, a_2, \ldots) := a_0 - \frac{1}{a_1 - \frac{1}{a_2 - \cdots}}
\]
\(((a_0, a_1, \ldots, a_n))\) is the purely periodic minus continued fraction:
\((a_0, a_1, a_2, \ldots, a_n, a_0, a_1, \ldots)\)

(12) For an integer \(s \), \(\mu(s) = 1 \) if \(s \) is odd and \(\mu(s) = \frac{1}{2} \) if \(s \) is even.

2. Partial Hecke \(L \)-function

Throughout this section, \(K \) denotes a real quadratic field and \(b \) is a fixed integral ideal of \(K \) relatively prime to \(q \) such that \(b^{-1} = [1, \delta] \) for \(\delta \in K \) satisfying \(0 < \delta' < 1 \) and \(\delta > 2 \).

A ray class character modulo \(q \) is a homomorphism
\[
\chi : I_K(q)/P_K(q) \rightarrow \mathbb{C}^*
\]
where \(I_K(q) \) is a group of fractional ideals of \(K \) which is relatively prime to \(q \) and \(P_K(q) \) is a subgroup of principal ideals \((\alpha)\) for totally positive \(\alpha \equiv 1 \pmod{q} \).

Define
\[
F := \{(C, D) \in \mathbb{Z}^2 \mid 0 \leq C, D \leq q - 1, (\langle C + D\delta \rangle b, q) = 1\}.
\]

Let \(E^+ \) be the set of totally positive units in \(K \), and \(E^+_q \) the set of totally positive units congruent to 1 mod \(q \). Then \(\epsilon \in E^+ \) acts on the set \(F \) by the rule
\[
\epsilon \ast (C + D\delta) = C' + D'\delta,
\]
where \(C' \) and \(D' \) are given by
\[
\epsilon \cdot (C + D\delta) + q b^{-1} = C' + D'\delta + q b^{-1} \quad \text{for} \ \epsilon \in E^+.
\]
Lemma 2.1. \((C, D)\) in \(F\) is fixed by the action of \(\epsilon\) if and only if \(\epsilon\) is in \(E^+_q\).

Proof. \((C, D)\) is fixed by \(\epsilon \in E^+\) if and only if \((C + D\delta)(\epsilon - 1) \in qb^{-1}\). Since \((b(C + D\delta), q) = 1\), the condition \((C + D\delta)(\epsilon - 1) \in qb^{-1}\) is equivalent to
\[
\epsilon \equiv 1 \pmod{q}.
\]
\(\square\)

Lemma 2.2. Suppose \(0 \leq C, D \leq q - 1\). Then the following are equivalent:

(1) \((C, D)\) is in \(F\).

(2) For every \(\alpha \in (C + D\delta)/q + b^{-1}\), the ideal \(q\alpha b\) is relatively prime to \(q\).

(3) For \(\alpha \in (C + D\delta)/q + b^{-1}\), the ideal \(q\alpha b\) is relatively prime to \(q\).

Proof. Suppose that \((q, (C + D\delta)b) = 1\).

We have
\[
\frac{q\alpha}{C + D\delta} \in 1 + \frac{q}{C + D\delta}b^{-1}
\]
for \(\alpha \in (C + D\delta)/q + b^{-1}\). Thus \((q, b(C + D\delta)) = 1\) implies that
\[
\frac{q\alpha}{C + D\delta} \equiv 1 \pmod{q}.
\]

Since
\[
qb\alpha = b(C + D\delta) \frac{q\alpha}{C + D\delta},
\]
we have
\[
(qb\alpha, q) = 1.
\]

If \((q, (C + D\delta)b) \neq 1\), then \((q, qb\alpha) \neq 1\) for \(\alpha \in (C + D\delta)/q + b^{-1}\), since for \(\alpha \in (C + D\delta)/q + b^{-1}\), we have
\[
qb\alpha \subset (C + D\delta)b + q\mathcal{O}_K.
\]
\(\square\)

Let \(F' = F/E^+\) be the orbit space of the action of \(E^+\) on \(F\). Let \(\tilde{F}'\) be a fundamental set of \(F'\). Let \(\epsilon\) be the totally positive fundamental unit. The order of the action of \(\epsilon\) is \(\lambda := [E^+: E^+_q]\) by Lemma 2.1. Then we can decompose \(F\) as follows:
\[
F = \bigsqcup_{i=0}^{\lambda-1} \epsilon^i \tilde{F}'\qquad (2-1)
\]
According to this decomposition of \(F\), we can further decompose the partial Hecke \(L\)-function:
Proposition 2.3. Let q be a positive integer. Given an ideal $b \subset K$ as specified at the beginning of this section and a ray class character χ modulo q, we have

$$L_K(s, \chi, b) = \sum_{\alpha \sim b \text{ integral}} \frac{\chi(\alpha) N(\alpha)^{-s}}{(q,\alpha) = 1} = \sum_{(C,D) \in \bar{F}'} \chi((C + D\delta)b) \sum_{\alpha \in (\frac{C + D\delta}{q} + b^{-1})^+ / E_q^+} N(q\alpha)^{-s}.$$

Proof. For $\alpha_1, \alpha_2 \in (q^{-1}b^{-1})^+$, $q\alpha_1b = q\alpha_2b$ if and only if $\alpha_1/\alpha_2 \in E^+$. So we have

$$\sum_{\alpha \sim b \text{ integral}} \frac{\chi(\alpha)}{N(\alpha)^s} = \sum_{(q,\alpha) = 1} \frac{\chi(\alpha)}{N(\alpha)^s} = \sum_{\alpha \in (q^{-1}b^{-1})^+ / E_q^+} \frac{\chi(q\alpha b)}{N(q\alpha b)^s} \sum_{(q,\alpha b) = 1} \chi(q\alpha b)$$

For a totally positive fundamental unit $\epsilon > 1$, we also have

$$\sum_{\alpha \in (q^{-1}b^{-1})^+ / E_q^+} \frac{\chi(q\alpha b)}{N(q\alpha b)^s} = \sum_{\alpha \in (q^{-1}b^{-1})^+ / E_q^+} \sum_{i=0}^{\lambda-1} \frac{\chi(q\alpha b \epsilon^i)}{N(q\alpha b \epsilon^i)^s} = \lambda \cdot \sum_{\alpha \in (q^{-1}b^{-1})^+ / E_q^+} \frac{\chi(q\alpha b)}{N(q\alpha b)^s}.$$

And from Lemma 2.2, we have

$$\sum_{(C,D) \in F} \frac{\chi(q\alpha b)}{N(q\alpha b)^s} = \sum_{\alpha \in (C + D\delta_b/\xi + b^{-1})^+ / E_q^+} \frac{\chi(q\alpha b)}{N(q\alpha b)^s} = \sum_{(C,D) \in F} \sum_{\alpha \in (\frac{C + D\delta_b}{q} + b^{-1})^+ / E_q^+} \chi(q\alpha b) \frac{\chi(q\alpha b)}{N(q\alpha b)^s}.$$

By equation (2), the above is equal to

$$\sum_{(C,D) \in \bar{F}'} \sum_{i=0}^{\lambda-1} \sum_{\alpha \in (\frac{C + D\delta_b}{q} + b^{-1})^+ / E_q^+} \chi(q\alpha b) \frac{\chi(q\alpha b)}{N(q\alpha b)^s}.$$

Since

$$\sum_{\alpha \in (\frac{C + D\delta_b}{q} + b^{-1})^+ / E_q^+} \frac{\chi(q\alpha b)}{N(q\alpha b)^s} = \sum_{\alpha \in (\frac{C + D\delta_b}{q} + b^{-1})^+ / E_q^+} \frac{\chi(q\alpha b \epsilon^i)}{N(q\alpha b \epsilon^i)^s},$$
the above also equal to
\[\lambda \cdot \sum_{(C,D) \in \tilde{F}} \sum_{\alpha \in ((C+D\delta+b^{-1})^+ / E_q^+)} \frac{\chi(qb\alpha)}{N(qb\alpha)}. \]

Note that for \(\alpha \in ((C+D\delta+b^{-1})^+ / E_q^+ \), \(qb\alpha \) and \((C+D\delta)b \) are in the same ray class modulo \(q \). Thus \(\chi(qb\alpha) = \chi((C+D\delta)b) \). This completes the proof. \(\square \)

Shintani–Zagier cone decomposition. We review briefly the decomposition of \((\mathbb{R}^2)^+\) into cones due to Shintani [1976] and Zagier [1975] (see also [van der Geer 1988]). This depends on a real quadratic field \(K \) and a fixed ideal \(a \) inside. Here for the sake of computation, we fix \(a = b^{-1} \) where \(b \) is set as in the beginning of this section.

\(K \) is embedded into \(\mathbb{R}^2 \) by \(\iota = (\tau_1, \tau_2) \), where \(\tau_1, \tau_2 \) are two real embeddings of \(K \). In particular, the totally positive elements of \(K \) land on \((\mathbb{R}^2)^+\). We are going to describe the fundamental domain of \((C+D\delta+b^{-1})^+ / E_q^+ \) embedded into \((\mathbb{R}^2)^+\).

The multiplicative action of \(E_q^+ \) on \(K^+ \) induces an action on \((\mathbb{R}^2)^+\) by coordinatewise multiplication:
\[\epsilon \circ (x, y) = (\tau_1(\epsilon)x, \tau_2(\epsilon)y). \]

A fundamental domain \(\mathcal{D}_R \) of \((\mathbb{R}^2)^+ / E_q^+ \) is given by
\[\mathcal{D}_R := \{ x\iota(1) + y\iota(\epsilon^{-\lambda}) | x > 0, y \geq 0 \} \subset (\mathbb{R}^2)^+ \tag{2-2} \]
where \(E_q^+ = \{ \epsilon^\lambda \} \) for an integer \(\lambda \) and \(\epsilon > 1 \) is the unique totally positive fundamental unit.

If we take the convex hull of \(\iota(b^{-1}) \cap (\mathbb{R}^2)^+ \) in \((\mathbb{R}^2)^+\), the vertices on the boundary are \(\{ P_i \}_{i \in \mathbb{Z}} \) for \(P_i \in \iota(b^{-1}) \), and determined by the conditions \(P_0 = \iota(1), P_{-1} = \iota(\delta) \) and \(x(P_i) < x(P_{i-1}) \) where \(x(P_k) \) denotes the first coordinate of \(P_k \) for \(k \in \mathbb{Z} \). Since any two consecutive boundary points make a basis of \(\iota(b^{-1}) \), we find that
\[\begin{pmatrix} 0 & 1 \\ -1 & b_i \end{pmatrix} \begin{pmatrix} P_{i-1} \\ P_i \end{pmatrix} = \begin{pmatrix} P_i \\ P_{i+1} \end{pmatrix}, \]
for an integer \(b_i \). It is easy to see that \(b_i \geq 2 \) from the convexity. Thus we obtain
\[x(P_{i-1}) + x(P_{i+1}) = b_i x(P_i). \tag{2-3} \]

Put \(\delta_i := \frac{x(P_{i+1})}{x(P_i)} > 1 \). Note that \(\delta_0 = \delta \). \(\delta_i \) satisfies a recursion relation:
\[\delta_i = b_i - \frac{1}{\delta_{i+1}} \quad \text{for } i \in \mathbb{Z}. \]
Therefore
\[
\delta_i = b_i - \frac{1}{b_{i+1} - \frac{1}{b_{i+2} - \ldots}} = (b_i, b_{i+1}, b_{i+2}, \ldots).
\]

Let \(\epsilon > 1 \) be the totally positive fundamental unit. Then \(\epsilon \) moves a boundary point to another boundary point, preserving the order. Thus, there exists a positive integer \(m \) so that for all \(i \in \mathbb{Z} \)
\[
\epsilon \circ P_i = P_i - m.
\]
(2-4)

Therefore we obtain the following proposition.

Proposition 2.4.

1. \(\delta_{i+m} = \delta_i \) for all \(i \in \mathbb{Z} \).
2. \(\delta_i = ((b_i, b_{i+1}, \ldots, b_{i+m-1})) = b_i - \frac{1}{b_{i+1} - \ldots} \frac{1}{b_{i+m-1} - \ldots} \).
3. \(\iota(\epsilon^{-1}) = P_m \).
4. \(\epsilon^{-1} \circ P_i = P_{i+m} \).
5. \(\iota(\epsilon^{-y}) = P_{ym} \).

Proof.

1. \(\delta_{i+m} = \frac{x(P_{i+m-1})}{x(P_{i+m})} = \frac{\epsilon x(P_{i-1})}{\epsilon x(P_i)} = \delta_i \).
2. This is an immediate consequence of (1).
3. From (2-4),
\[
P_m = \epsilon^{-1} \circ P_0,
\]
since \(P_0 = \iota(1) \) and \(\epsilon^{-1} \circ \iota(1) = \iota(\epsilon^{-1}) \).
4. This is immediate from (2-4).
5. This follows trivially from (3) and (4).

Using (2-2) and Proposition 2.4(4), the fundamental domain \(\mathcal{D}_\mathbb{R} \) of \((\mathbb{R}^2)^+/E_q^+ \) is further decomposed into the disjoint union of \(\lambda m \) smaller cones:
\[
\mathcal{D}_\mathbb{R} = \bigsqcup_{i=1}^{\lambda m} \{ xP_{i-1} + yP_i \mid x > 0, \ y \geq 0 \}.
\]

Clearly, the fundamental set of the quotient \((\iota((C + D\delta)/q + b^{-1}) \cap (\mathbb{R}^2)^+)/E_q^+ \) inside \(\mathcal{D}_\mathbb{R} \), which we denote by \(\mathcal{D} \), is given by a disjoint union:
\[
\mathcal{D} := \bigsqcup_{i=1}^{\lambda m} \left(\iota\left(\frac{C+D\delta}{q} + b^{-1} \right) \cap \{ xP_{i-1} + yP_i \mid x > 0, \ y \geq 0 \} \right).
\]
Since \(\{ P_{i-1}, P_i \} \) is a \(\mathbb{Z} \)-basis of \(\iota(b^{-1}) \), there is a unique \((x_{C+D\delta}^i, y_{C+D\delta}^i) \in (0, 1] \times [0, 1) \) such that

\[
x_{C+D\delta}^i P_{i-1} + y_{C+D\delta}^i P_i \in \iota\left(\frac{C+D\delta}{q} + b^{-1} \right),
\]

for each \(i, C, D \in \mathbb{Z} \). Thus

\[
\iota\left(\frac{C+D\delta}{q} + b^{-1} \right) \cap \{ x P_{i-1} + y P_i \mid x > 0, \ y \geq 0 \} = \{(x_{C+D\delta}^i + n_1) P_{i-1} + (y_{C+D\delta}^i + n_2) P_i \mid n_1, n_2 \in \mathbb{Z}_{\geq 0} \}. \quad (2-5)
\]

Yamamoto [2008, (2.1.3)] found that \((x_{C+D\delta}^i, y_{C+D\delta}^i) \) satisfy the following recurrence relations:

\[
x_{C+D\delta}^{i+1} = \langle b_i x_{C+D\delta}^i + y_{C+D\delta}^i \rangle,
\]
\[
y_{C+D\delta}^{i+1} = 1 - x_{C+D\delta}^i. \quad (2-6)
\]

Let \(A_i := x(P_i) \) for all \(i \in \mathbb{Z} \). Then from (2-5), we obtain the following:

\[
\sum_{\alpha \in (C+D\delta/q + b^{-1})^+/E_4^+} \frac{1}{N(\alpha)^s} = \sum_{i=1}^{\lambda m} \sum_{n_1, n_2 \geq 0} N((x_{C+D\delta}^i + n_1) A_{i-1} + (y_{C+D\delta}^i + n_2) A_i)^{-s}
\]
\[
= \sum_{i=1}^{\lambda m} \sum_{n_1, n_2 \geq 0} N((x_{C+D\delta}^i + n_1) \delta_i + (y_{C+D\delta}^i + n_2))^{-s} A_i^{-s}. \quad (2-7)
\]

Shintani [1976] evaluated \(\sum_{n_1, n_2 \geq 0} N((x + n_1) \delta + (y + n_2))^{-s} \) for nonpositive integers \(s \). In particular, the value at \(s = 0 \) is expressed by first and second Bernoulli polynomials as follows:

Lemma 2.5 (Shintani).

\[
\sum_{n_1, n_2 \geq 0} N((x + n_1) \delta + (y + n_2))^{-s} \bigg|_{s=0} = \frac{\delta + \delta'}{4} B_2(x) + B_1(x) B_1(y) + \frac{1}{4} \left(\frac{1}{\delta} + \frac{1}{\delta'} \right) B_2(y).
\]
Using this, we have
\[
\sum_{\alpha \in (C + D \delta + b^{-1})^+/E_q^+} \frac{1}{N(\alpha)^s} \bigg|_{s=0} = \sum_{i=1}^{\lambda m} \frac{\delta_i + \delta_i'}{4} B_2(x^i_{C+D\delta}) + B_1(x^i_{C+D\delta}) B_1(y^i_{C+D\delta}) + \frac{1}{4} \left(\frac{1}{\delta_i} + \frac{1}{\delta_i'} \right) B_2(y^i_{C+D\delta}). \tag{2-8}
\]

This simplifies further:

Lemma 2.6 [Yamamoto 2008, proof of Theorem 4.1.1].

\[
\sum_{i=1}^{\lambda m} \frac{\delta_i + \delta_i'}{4} B_2(x^i_{C+D\delta}) + \frac{1}{4} \left(\frac{1}{\delta_i} + \frac{1}{\delta_i'} \right) B_2(y^i_{C+D\delta}) = \sum_{i=1}^{\lambda m} \frac{b_i}{2} B_2(x^i_{C+D\delta}).
\]

Finally, we have
\[
\sum_{\alpha \in (C + D \delta + b^{-1})^+/E_q^+} \frac{1}{N(\alpha)^s} \bigg|_{s=0} = \sum_{i=1}^{\lambda m} B_1(x^i_{C+D\delta}) B_1(y^i_{C+D\delta}) + \frac{b_i}{2} B_2(x^i_{C+D\delta}).
\]

Lemma 2.7. Let \(\epsilon\) be the totally positive fundamental unit of \(K\). Then
\[
x_{C+D\delta}^{mi+j} = x_j^{\epsilon^*_{(C+D\delta)}} \quad \text{and} \quad y_{C+D\delta}^{mi+j} = y_j^{\epsilon^*_{(C+D\delta)}}
\]
for \(j = 0, 1, 2, \ldots, m - 1\).

Proof. From (4) of Proposition 2.4, we have \(A_{mi+j} = \epsilon^{-i} A_j\), for any integer \(i\). Thus
\[
x_{C+D\delta}^{mi+j} A_{mi+j-1} + y_{C+D\delta}^{mi+j} A_{mi+j} = x_{C+D\delta}^{mi+j} \epsilon^{-i} A_{j-1} + y_{C+D\delta}^{mi+j} \epsilon^{-i} A_j \in \frac{C + D\delta}{q} + b^{-1}.
\]

Therefore,
\[
x_{C+D\delta}^{mi+j} A_{j-1} + y_{C+D\delta}^{mi+j} A_j \in \frac{\epsilon^i \cdot (C + D\delta)}{q} + b^{-1}.
\]

From Lemma 2.7 and the periodicity of \(b_i\), we have:

Lemma 2.8.
\[
\sum_{\alpha \in (C + D \delta + b^{-1})^+/E_q^+} \frac{1}{N(\alpha)^s} \bigg|_{s=0} = \sum_{i=1}^{m-1} \sum_{j=0}^{\lambda - 1} B_1(x^{i}_{\epsilon^*_{(C+D\delta)}}) B_1(y^{i}_{\epsilon^*_{(C+D\delta)}}) + \frac{b_i}{2} B_2(x^{i}_{\epsilon^*_{(C+D\delta)}}).
\]

Finally, we have:
Proposition 2.9. For a ray class character χ modulo q and an ideal b of K such that

$$b^{-1} = [1, \delta]$$

for $\delta \in K$ with $\delta > 2$ and $0 < \delta' < 1$, we have

$$L_K(0, \chi, b) = \sum_{1 \leq C, D \leq q} \chi((C + D\delta)b) \sum_{i=1}^{m} B_1(x^i_{C+D\delta}) B_1(y^i_{C+D\delta}) + \frac{b_i}{2} B_2(x^i_{C+D\delta}).$$

Proof. From Proposition 2.3, we obtain

$$L_K(0, \chi, b) = \sum_{(C, D) \in \tilde{F}} \chi((C + D\delta)b) \sum_{\alpha \in (\frac{C+D\delta}{q} - b^{-1})^+/E^+_\delta} N(q\beta\alpha)^{-s}|_{s=0}.$$

Lemma 2.8 implies that this is equal to

$$\sum_{(C, D) \in \tilde{F}} \chi((C + D\delta)b) \sum_{j=0}^{\lambda-1} \sum_{i=1}^{m} B_1(x^i_{\epsilon^j(C+D\delta)}) B_1(y^i_{\epsilon^j(C+D\delta)}) + \frac{b_i}{2} B_2(x^i_{\epsilon^j(C+D\delta)}).$$

Since $(C + D\delta)\epsilon b = (C + D\delta)b$, this expression can be rewritten as

$$\sum_{(C, D) \in \tilde{F}} \chi((C + D\delta)\epsilon^j b) \times \sum_{i=1}^{m} B_1(x^i_{\epsilon^j(C+D\delta)}) B_1(y^i_{\epsilon^j(C+D\delta)}) + \frac{b_i}{2} B_2(x^i_{\epsilon^j(C+D\delta)}).$$

In view of the decomposition of F in (2-1), the preceding expression equals

$$\sum_{(C, D) \in F} \chi((C + D\delta)b) \sum_{i=1}^{m} B_1(x^i_{(C+D\delta)}) B_1(y^i_{(C+D\delta)}) + \frac{b_i}{2} B_2(x^i_{(C+D\delta)}).$$

If $((C + D\delta)b, q) \neq 1$ then $\chi((C + D\delta)b) = 0$. Thus we complete the proof. □

Remark 2.10. The summation running over $C, D \in [1, q]$ is actually supported on F. This is justified by the twist of the mod q Dirichlet character. Obviously, F depends on δ in K, but the twisted sum has an invariant form of δ and K. This is a subtle point in the proof of the main theorem where we deal with values of the Hecke L-function with respect to a family (K_n, χ_n, b).

3. Proof of the main theorem

In this section, we compute special values of the Hecke L-function for a family of real quadratic fields. The computation is made using the expression for the L-value from the previous section. After the computation, it will be apparent that the
linearity property comes from the shape of the continued fractions in the family. This will complete the proof of Theorem 1.3.

This gives a criterion that will recover several approaches of class number problems for some families of real quadratic fields.

Consider a family of real quadratic fields $K_n = \mathbb{Q}(\sqrt{d_n})$, where d_n is a positive square free integer. For a fixed Dirichlet character χ of modulus q, we associate a ray class character $\chi_n := \chi \circ N_{K_n/Q}$ for each n. Let us fix an ideal b_n of K_n for each n. Then we have a family of Hecke L-functions associated to (K_n, χ_n, b_n):

$$L_{K_n}(s, \chi_n, b_n) = \sum_a \frac{\chi_n(a)}{N(a)^s}$$

where a ranges over integral ideals in the ray class represented by b_n.

Plan of the proof. Assume that

$$b_n^{-1} = [1, \delta(n)]$$

with $\delta(n) > 2$, $0 < \delta(n)' < 1$. As discussed in Proposition 2.4, $\delta(n)$ has a purely periodic minus continued fraction expansion:

$$\delta(n) = ((b_0(n), b_1(n), \ldots, b_{m(n)−1}(n)))$$

$$= b_0(n) - \frac{1}{b_1(n) - \cdots - \frac{1}{b_{m(n)−1}(n) - \frac{1}{b_0(n) - \cdots}}}, \quad (3-1)$$

with $b_k(n) \geq 2$.

We extend the definition of $b_i(n)$ to all $i \in \mathbb{Z}$ by requiring that $b_{i+m(n)}(n) = b_i(n)$ for $i \in \mathbb{Z}$, and take $\delta_k(n) = ((b_k(n), b_{k+1}(n), \ldots, b_{k+m(n)-1}(n)))$. We define \{A_k(n)\}_{k \in \mathbb{Z}} by

$$A_{−1}(n) = \delta(n), \quad A_0(n) = 1, \quad \ldots, \quad A_{k+1}(n) = A_k(n)/\delta_{k+1}(n).$$

Then for fixed C, D and n, there is a unique $(x_{C+D\delta(n)}^i, y_{C+D\delta(n)}^i)$ such that

$$0 < x_{C+D\delta(n)}^i \leq 1, \quad 0 \leq y_{C+D\delta(n)}^i < 1, \quad (3-2)$$

and

$$x_{C+D\delta(n)}^i A_{−1}(n) + y_{C+D\delta(n)}^i A_i(n) = \frac{C + D\delta(n)}{q} + b_n^{-1}, \quad (3-3)$$

for each $i \in \mathbb{Z}$, as described in the previous section. This $(x_{C+D\delta(n)}^i, y_{C+D\delta(n)}^i)$ satisfies Yamamoto’s recursive relation (2-6) as follows:

$$x_{C+D\delta(n)}^{i+1} = (b_i(n)x_{C+D\delta(n)}^i + y_{C+D\delta(n)}^i), \quad y_{C+D\delta(n)}^{i+1} = 1 - x_{C+D\delta(n)}^{i+1}. \quad (3-4)$$
Now recall a standard conversion formula from a continued fraction expansion to a minus continued fraction expansion:

Lemma 3.1. Let \(\delta - 1 \) be a purely periodic continued fraction:

\[
[a_0, a_1, \ldots, a_{s-1}].
\]

Then the minus continued fraction expansion of \(\delta \) is

\[
((b_0, b_1, \ldots, b_{m-1})),
\]

where

\[
b_i := \begin{cases}
 a_{2j} + 2 & \text{for } i = S_j, \\
 2 & \text{otherwise},
\end{cases}
\]

where

\[
S_j = \begin{cases}
 0 & \text{for } j = 0, \\
 S_{j-1} + a_{2j-1} & \text{for } j \geq 1,
\end{cases}
\]

and the period \(m \) is given by

\[
m = \begin{cases}
 a_1 + a_3 + a_5 + \cdots + a_{s-1} = S_s/2 & \text{for even } s, \\
 a_0 + a_1 + a_2 + \cdots + a_{s-1} = S_s & \text{for odd } s.
\end{cases}
\]

Proof. (See [Zagier 1975, pp. 177, 178].) If \(s \) is an odd integer, the period \(m \) is

\[
\sum_{i=1}^{s} a_{2i-1} = a_1 + a_3 + \cdots + a_{2s-1} = S_s.
\]

Since \(a_i \) has period \(s \), we find that

\[
a_1 + a_3 + \cdots + a_{2s-1} = a_0 + a_1 + a_2 + \cdots + a_{s-1} = \sum_{i=0}^{s-1} a_i. \tag*{\square}
\]

For the family of \(\delta(n) \in K \), we assumed that

\[
\delta(n) - 1 = [a_0(n), a_1(n), a_2(n), \ldots, a_{s-1}(n)]
\]

has the same period for every \(n \).

Then \(\delta(n) \) has a purely periodic minus continued fraction expansion

\[
\delta(n) = ((b_0(n), b_1(n), \ldots, b_{m(n)-1}(n))),
\]

with \(b_i(n) \), \(S_j(n) \) and \(m(n) \) defined in the same manner as in the previous lemma.

One should be aware that \(m(n) \) varies with \(n \), while the period \(s \) of the positive continued fraction is fixed.

From Proposition 2.9 and the recursion (3-4) for \((x_i^{(C+D\delta(n))}, y_i^{(C+D\delta(n))})\), we have
The behavior of Hecke L-functions of real quadratic fields at $s = 0$

\[L_{K_n}(0, \chi_n, b_n) = \sum_{1 \leq C, D \leq q} \left(\chi_n((C + D\delta(n))) b_n \right) \]

\[\times \sum_{i=1}^{m(n)} \left(B_1(x_{C+D\delta(n)}^i) B_1(y_{C+D\delta(n)}^i) + \frac{b_i(n)}{2} B_2(x_{C+D\delta(n)}^i) \right). \]

(3-5)

To check the linear behavior, it suffices to show that

\[\sum_{i=1}^{m(n)} \left(B_1(x_{C+D\delta(n)}^i) B_1(y_{C+D\delta(n)}^i) + \frac{b_i(n)}{2} B_2(x_{C+D\delta(n)}^i) \right) \]

is linear in k with the coefficients depending only on r.

Because $b_i(n) = 2$ if $i \neq S_j(n)$ for every j, we can divide the sum above into two parts:

\[\sum_{l=1}^{s\mu(s)} (-B_1(x_{C+D\delta(n)}^{S_l(n)}) B_1(x_{C+D\delta(n)}^{S_l(n)-1}) + \frac{a_{2l}(n) + 2}{2} B_2(x_{C+D\delta(n)}^{S_l(n)}) \]

\[+ \sum_{l=0}^{s\mu(s)-1} \sum_{i=S_l(n)+1}^{S_{l+1}(n)-1} F(x_{C+D\delta(n)}^{i-1}, x_{C+D\delta(n)}^i), \]

(3-7)

where $\mu(s) = \frac{1}{2}$ or 1 for s even or odd, respectively, and

\[F(x, y) := -B_1(x) B_1(y) + B_2(x). \]

We will use the following fact to be proved later. Here and wherever there is no danger of misunderstanding, $x_i(n)$ means $x_{C+D\delta(n)}^i$ for fixed C, D.

Claim. The sequence \(\{x_i(n)\} \) is a piecewise arithmetic progression, in the sense that it satisfies these properties:

1. \(\{x_i(n)\}_{S_j(n) \leq i \leq S_{j+1}(n)} \) is an arithmetic progression mod \(\mathbb{Z} \) with common difference \(x_{S_{j}(n)+1}(n) - x_{S_{j}(n)}(n) \).
2. \(\{x_i(n)\}_{S_j(n) \leq i \leq S_{j+1}(n)} \) has period \(q \).
3. \(x_{S_j(n)}(n), x_{S_j(n)-1}(n) \) and \(x_{S_j(n)+1}(n) \) are independent of \(k \), where \(n = qk + r \).

Because of the constraint \(a_i(n) = \alpha_i n + \beta_i \), the value of \(\{a_i(n)\}_q \) is independent of \(k \) for \(n = qk + r \) and depends only on \(i \) and \(r \). We can thus set

\[\gamma_i(r) := \{a_i(n)\}_q, \]

(3-8)

where \(n = qk + r \). In particular, \(\gamma_i(r) = \{a_i(r)\}_q \).
Since \(\{ F(x_i(n), x_{i-1}(n)) \}_{S_i(n)+1 \leq i \leq S_{i+1}(n)-1} \) has period \(q \) (item 2 of the claim), we obtain
\[
\sum_{i=S_i(n)+1}^{S_{i+1}(n)-1} F(x_i(n), x_{i-1}(n)) = \sum_{i=S_i(n)+1}^{S_i(n)+\gamma_{2i+1}(r)-1} F(x_i(n), x_{i-1}(n)) + \kappa_{2i+1}(n) \sum_{i=S_i(n)+1}^{S_i(n)+q} F(x_i(n), x_{i-1}(n)),
\]
where \(a_i(n) = \kappa_i(n)q + \gamma_i(r) \) for an integer \(\kappa_i(n) \). Written precisely,
\[
\kappa_i(n) = \frac{a_i(n) - \gamma_i(r)}{q}. \tag{3-9}
\]

Since
\[
\alpha_i r + \beta_i = q\tau_i(r) + \gamma_i(r)
\]
for some integer \(\tau_i(r) \), we can write for \(n = qk + r \)
\[
\kappa_i(n) = k\alpha_i + \tau_i(r) \tag{3-10}
\]

Using 3, we see that \(x_{S_i(n)}(n) \) and \(x_{S_i(n)+1}(n) \) are determined by the residue \(r \) of \(n \) by \(q \). A priori the sums
\[
\sum_{i=S_i(n)+1}^{S_i(n)+\gamma_{2i+1}(r)-1} F(x_i(n), x_{i-1}(n)) \quad \text{and} \quad \sum_{i=S_i(n)+1}^{S_i(n)+q} F(x_i(n), x_{i-1}(n))
\]
are completely determined by \(x_{S_i(n)}(n) \) and \(x_{S_i(n)+1}(n) \) and remain unchanged while \(k \) varies.

Thus we conclude:

Fact 1. For \(n = qk + r \),
\[
\sum_{i=S_i(n)+1}^{S_{i+1}(n)-1} F(x_i(n), x_{i-1}(n))
\]
is a linear function of \(k \).

Using (3-9) and (3-10), we have
\[
-B_1(x_{S_i(n)}(n))B_1(x_{S_i(n)-1}(n)) + \frac{a_2(n) + 2}{2} B_2(x_{S_i(n)}(n)) \nonumber
\]
\[
= -B_1(x_{S_i(n)}(n))B_1(x_{S_i(n)-1}(n)) + \frac{a_2(n)qk + \tau_2(r)q + \gamma_2(r) + 2}{2} B_2(x_{S_i(n)}(n)).
\]

Again using item 3 of the Claim we conclude:
Proposition 3.4. For \(j \geq 0 \), we also note that \(b \) is a linear function of \(k \).

Additionally, we have:

Fact II. For \(n = qk + r \),

\[-B_1(x_{S_i(n)}(n))B_1(x_{S_i(n)-1}(n)) + \frac{a_{2i}(n) + 2}{2}B_2(x_{S_i(n)}(n))\]

is a linear function of \(k \).

Fact III. \(s \) and \(\mu(s) \) are independent of \(n \).

Together, Facts I, II and III imply that

\[\sum_{i=1}^{m(n)} -B_1(x_i(n))B_1(x_{i-1}(n)) + \frac{b_i(n)}{2}B_2(x_i(n))\] \hspace{1cm} \text{(3-11)}

is linear in \(k \) and the coefficients are functions of \(r \) for fixed \(C, D \).

There remains to prove properties 1, 2, and 3 of \(\{x_i(n)\} \). We will also give a precise description of the expression (3-11) to finish the proof of Theorem 1.3.

Periodicity and invariance. We now prove the Claim above about the sequence \(\{x_i(n)\} \).

Proposition 3.2. For \(j \geq 0 \), \(\{x_i(n)\}_{S_j(n) \leq i \leq S_{j+1}(n)} \) is an arithmetic progression mod \(\mathbb{Z} \) with common difference \(\langle x_{S_j(n)+1}(n) - x_{S_j(n)}(n) \rangle \).

Proof. Since \(b_i(n) = 2 \) for \(S_j(n) + 1 \leq i \leq S_{j+1}(n) - 1 \), we have that

\[x_{i+1}(n) = 2x_i(n) - x_{i-1}(n)\]

This implies that for \(S_j(n) + 1 \leq i \leq S_{j+1}(n) - 1 \),

\[\langle x_{i+1}(n) - x_i(n) \rangle = \langle (2x_i(n) - x_{i-1}(n)) - x_i(n) \rangle = \langle x_i(n) - x_{i-1}(n) \rangle. \]

\(\square \)

Lemma 3.3. For \(i \geq -1 \), we have \(qx_i(n) \in \mathbb{Z} \) and \(0 < x_i(n) \leq 1 \).

Proof. Since \(A_0(n) = 1 \) and \(A_{-1}(n) = \delta(n) \), we find from (3-2), (3-3), and (3-4) that

\[x_0(n) = \left\lfloor \frac{D}{q} \right\rfloor, \quad x_{-1}(n) = 1 - \frac{C}{q}. \]

We also note that \(b_i(n) \in \mathbb{Z} \) for any \(i \geq 0 \). Thus (3-4) implies this lemma. \(\square \)

Proposition 3.4. For \(j \geq 0 \) and \(a_{2j+1}(n) \geq q \), \(\{x_i(n)\}_{S_j(n) \leq i \leq S_{j+1}(n)} \) has period \(q \). Explicitly, we have

\[x_{S_j(n)+q+i}(n) = x_{S_j(n)+i}(n) \quad \text{for} \quad 0 \leq i \leq a_{2j+1}(n) - q.\]
Proof. Note that \(\{x_i(n) \mod 1\}_{S_j(n)\leq i \leq S_{j+1}(n)} \) is an arithmetic progression. Thus
\[
x_{S_j(n)+q+i}(n) = \{x_{S_j(n)+i}(n) + q(x_{S_j(n)+i}(n) - x_{S_j(n)+i-1}(n))\},
\]
for \(0 \leq i \leq a_{2j+1}(n) - q \). From Lemma 3.3, we find that
\[
q\langle x_{S_j(n)+i}(n) - x_{S_j(n)+i-1}(n) \rangle \in \mathbb{Z}.
\]
Thus
\[
\langle x_{S_j(n)+i}(n) + q\langle x_{S_j(n)+i}(n) - x_{S_j(n)+i-1}(n) \rangle \rangle = \langle x_{S_j(n)+i}(n) \rangle.
\]
Since \(0 < x_{S_j(n)+i}(n) \leq 1 \), we finally have
\[
\langle x_{S_j(n)+i}(n) \rangle = x_{S_j(n)+i}(n).
\]

For \(0 \leq r \leq q - 1 \), we define
\[
\Gamma_j(r) := \begin{cases}
0 & \text{for } j = 0, \\
\Gamma_j(r) + \gamma_{2j-1}(r) & \text{for } j \geq 1
\end{cases},
\]
where \(\gamma_t(r) \) is defined as in (3-8). For \(i \geq 0 \), we put
\[
c_i(r) = \begin{cases}
\gamma_{2j}(r) + 2 & \text{for } i = \Gamma_j(r), \\
2 & \text{otherwise}.
\end{cases}
\]

Consider a sequence \(\{v_{CD}^i(r)\}_{i=0}^{-1} \) with the initial value and the recursion relation as follows:
\[
v_{CD}^{-1}(r) = \frac{q-C}{q}, \quad v_{CD}^0(r) = \left\lfloor \frac{D}{q} \right\rfloor
\]
and
\[
v_{CD}^{i+1}(r) = [c_i(r)v_{CD}^i(r) - v_{CD}^{i-1}(r)].
\]

If \(C, D \) are fixed and clear from the context, we omit the subscript and abbreviate \(v_{CD}^i(r) \) to \(v_i(r) \).

Proposition 3.5. Using the above notation, we have, for \(j \geq 0 \) and \(n = qk + r \)
\[
x_{S_j(n)+i}(n) = v_{\Gamma_j(r)+i}(r) \quad \text{for } 0 \leq i \leq \gamma_{2j+1}(r)
\]

Proof. We use induction on \(j \).

When \(j = 0 \), \(S_0(n) = \Gamma_0(r) = 0 \). We need to show \(x_i(n) = v_i(r) \) for \(i \in [0, \gamma_1(r)] \).
As we saw in the proof of Lemma 3.3,
\[
x_0(n) = \left\lfloor \frac{D}{q} \right\rfloor = v_0(r), \quad x_{-1}(n) = 1 - \frac{C}{q} = v_{-1}(r).
\]
Since \(a_0(n) - \gamma_0(r) \in q\mathbb{Z} \), using (3-4) and the recursive relation of \(v_i(r) \), one can easily check that

\[
x_1(n) = \left((a_0(n) + 2) \left(\frac{D}{q} \right) + \frac{C}{q} \right) = \left((\gamma_0(r) + 2) v_0(r) - v_{-1}(r) \right) = v_1(r).
\]

For \(1 \leq i \leq \gamma_1(r) - 1 \), \(x_i(n) \) and \(v_i(r) \) satisfy the same recursion relation

\[
x_{i+1}(n) = \langle 2x_i(n) - x_{i-1}(n) \rangle, \quad v_{i+1}(r) = \langle 2v_i(r) - v_{i-1}(r) \rangle.
\]

Thus we have \(x_i(n) = v_i(r) \) for \(0 \leq i \leq \gamma_1(r) \).

Now assume that the proposition holds true for \(j < j_0 \). From Proposition 3.4, we find that if \(a_{2j_0-1}(n) \geq q \) then

\[
x_{S_{j_0-1}(n)+q+i}(n) = x_{S_{j_0-1}(n)+i}(n) \quad \text{for} \quad 0 \leq i \leq a_{2j_0-1}(n) - q. \tag{3-12}
\]

Since \(a_{2j_0-1}(n) - \gamma_{2j_0-1}(r) \in q\mathbb{Z} \), we obtain

\[
x_{S_{j_0}(n)-1}(n) = x_{S_{j_0-1}(n)+a_{2j_0-1}(n)-1}(n) = x_{S_{j_0-1}(n)+\gamma_{2j_0-1}(r)-1}(n) = v_{\Gamma_{j_0-1}(r)+\gamma_{2j_0-1}(r)-1}(r)
\]

and

\[
x_{S_{j_0}(n)}(n) = x_{S_{j_0-1}(n)+a_{2j_0-1}(n)}(n)
\]

\[
= x_{S_{j_0-1}(n)+\gamma_{2j_0-1}(r)}(n) = v_{\Gamma_{j_0-1}(r)+\gamma_{2j_0-1}(r)}(r) = v_{\Gamma_{j_0}(r)}(r).
\]

Moreover from (3-4), we find that

\[
x_{S_{j_0}(n)+1}(n) = \langle (a_{2j_0}(n) + 2)x_{S_{j_0}(n)}(n) - x_{S_{j_0}(n)-1}(n) \rangle
\]

\[
= \langle (\gamma_{2j_0}(r) + 2)v_{\Gamma_{j_0}(r)}(r) - v_{\Gamma_{j_0}(r)-1}(r) \rangle = v_{\Gamma_{j_0}(r)+1}(r).
\]

Since

\[
x_{i+1}(n) = \langle 2x_i(n) - x_{i-1}(n) \rangle \quad \text{for} \quad S_{j_0}(n) + 1 \leq i \leq S_{j_0+1}(n) - 1
\]

and

\[
v_{i+1}(r) = \langle 2v_i(r) - v_{i-1}(r) \rangle
\]

for \(\Gamma_{j_0}(r) + 1 \leq i \leq \Gamma_{j_0}(r) + \gamma_{2j_0+1}(r) - 1 = \Gamma_{j_0+1}(r) - 1 \), we have

\[
x_{S_{j_0}(n)+i}(n) = v_{\Gamma_{j_0}(r)+i}(r) \quad \text{for} \quad 0 \leq i \leq \gamma_{2j_0+1}(r).
\]

\[\square\]

Summations. Next we express (3-11), that is,

\[
\sum_{i=1}^{m(n)} -B_1(x_{C+D\delta(n)}^i)B_1(x_{C+D\delta(n)}^{i-1}) + \frac{b_1(n)}{2}B_2(x_{C+D\delta(n)}^i)
\]

in terms of \(\{ v_{C,D}^i(r) \} \).
Lemma 3.6. Let $d_l(r) := (v_{\Gamma_l(r)+1}(r) - v_{\Gamma_l(r)}(r))$ and $[x]_1 := x - (x)$. Then for $1 \leq \gamma \leq q$ and n such that $\gamma \leq a_{2l+1}(n)$ and $n = qk + r$, we have

$$\sum_{i=S_l(n)+1}^{S_l(n)+\gamma} (x_i(n) - x_{i-1}(n))^2 = \gamma d_l(r)^2 + (1 - 2d_l(r))[v_{\Gamma_l(r)}(r) + d_l(r)\gamma]_1$$

Proof. Since $0 < x_i(n) \leq 1$, we have

$$-1 < x_i(n) - x_{i-1}(n) < 1.$$

Thus

$$x_i(n) - x_{i-1}(n) = (x_i(n) - x_{i-1}(n)) + \psi_i(n),$$

where

$$\psi_i(n) = \begin{cases}
-1 & \text{if } x_i(n) \leq x_{i-1}(n), \\
0 & \text{if } x_i(n) > x_{i-1}(n).
\end{cases}$$

Since

$$\langle x_{i+1}(n) - x_i(n) \rangle = \langle 2x_i(n) - x_{i-1}(n) \rangle - x_i(n) = \langle x_i(n) - x_{i-1}(n) \rangle$$

for $S_l(n) + 1 \leq i \leq S_{l+1}(n) - 1$, we have

$$\langle x_i(n) - x_{i-1}(n) \rangle = \langle x_{S_l(n)+1}(n) - x_{S_l(n)}(n) \rangle = \langle v_{\Gamma_{l+1}(r)}(r) - v_{\Gamma_l(r)}(r) \rangle = d_l(r).$$

Hence we have

$$x_i(n) - x_{i-1}(n) = d_l(r) + \psi_i(n).$$

Thus we obtain

$$\sum_{i=S_l(n)+1}^{S_l(n)+\gamma} (x_i(n) - x_{i-1}(n))^2 = \gamma d_l(r)^2 + (1 - 2d_l(r)) \sum_{i=S_l(n)+1}^{S_l(n)+\gamma} \psi_i(n)^2.$$

Note that the sum on the right equals the number of i’s satisfying $x_i(n) \leq x_{i-1}(n)$ for $S_l(n) + 1 \leq i \leq S_l(n) + \gamma$.

Therefore

$$\sum_{i=S_l(n)+1}^{S_l(n)+\gamma} \psi_i(n)^2 = [x_{S_l(n)}(n) + d_l(r)\gamma]_1 = [v_{\Gamma_l(r)}(r) + d_l(r)\gamma]_1.$$

For simplicity, we let

$$F(x, y) := -B_1(x)B_1(y) + B_2(x) = (x - \frac{1}{2})(\frac{1}{2} - y) + x^2 - x + \frac{1}{6}.$$
Lemma 3.7. If $l \geq 0$ and $a_{2l+1}(n) \geq q$, then
\[
\sum_{i=S_l(n)+1}^{S_l(n)+q} F(x_i(n), x_{i-1}(n)) = \frac{1}{12} \left[6(qd_l(r))^2 + (1 - 2d_l(r))[\nu_{\Gamma_l(r)}(r) + d_l(r)\gamma_1] \right] - q.
\]
And if $1 \leq \gamma \leq q - 1$ and $a_{2l+1}(n) \geq \gamma$,\[
\sum_{i=S_l(n)+1}^{S_l(n)+\gamma} F(x_i(n), x_{i-1}(n)) = \frac{1}{12} \left[6(qd_l(r))^2 + (1 - 2d_l(r))[\nu_{\Gamma_l(r)}(r) + d_l(r)\gamma_1] + B_2(x_{S_l(n)+\gamma}(n)) - B_2(x_{S_l(n)}(n)) - \gamma \right],
\]
where $B_2(x)$ is the second Bernoulli polynomial.

Proof. We note that
\[
F(x, y) = \frac{1}{2}(x - y)^2 - \frac{1}{12} + \frac{1}{2}(B_2(x) - B_2(y)).
\]
Thus
\[
\sum_{i=S_l(n)+1}^{S_l(n)+\gamma} F(x_i(n), x_{i-1}(n)) = \sum_{i=S_l(n)+1}^{S_l(n)+\gamma} \left[\frac{1}{2}(x_i(n) - x_{i-1}(n))^2 - \frac{1}{12} + \frac{1}{2}(B_2(x_i(n)) - B_2(x_{i-1}(n))) \right].
\]
We note that for $1 \leq \gamma \leq q - 1$,
\[
\sum_{i=S_l(n)+1}^{S_l(n)+\gamma} B_2(x_i(n)) - B_2(x_{i-1}(n)) = B_2(x_{S_l(n)+\gamma}(n)) - B_2(x_{S_l(n)}(n)).
\]
and, from the periodicity of $x_i(n)$, we have that for $\gamma = q$
\[
\sum_{i=S_l(n)+1}^{S_l(n)+q} B_2(x_i(n)) - B_2(x_{i-1}(n)) = 0. \quad \square
\]

Proposition 3.8. Suppose $\delta(n) - 1 = [a_0(n), a_2(n), \ldots, a_{s-1}(n)]$, $a_i(n) = \alpha_i n + \beta_i$ for $\alpha_i, \beta_i \in \mathbb{Z}$ and $a_i(r) = q\tau_i(r) + \gamma_i(r)$ for $\gamma_i(r) = \langle a_i(r) \rangle_q$. Let $d_{CD}^l(r) := \langle v_{CD}^{\Gamma_l(r)+1} \rangle(r) - v_{CD}^{\Gamma_l(r)}(r)$. Then, for $n = qk + r$, we have
\[
\sum_{i=1}^{m(n)} -B_1(x_{C+D\delta(n)}^i)B_1(y_{C+D\delta(n)}^i) + \frac{b_1(n)}{2} B_2(x_{C+D\delta(n)}^i) = \frac{1}{12} (ACD(r) + kB_{CD}(r)),
\]
where

\[A_{CD}(r) := \sum_{l=1}^{s_{\mu(x)}} -12B_1(v_{CD}^{\Gamma_l(r)}(r))B_1(v_{CD}^{\Gamma_l(r)-1}(r)) + 6(a_{2l} + 2)B_2(v_{CD}^{\Gamma_l(r)}(r)) \]

\[+ \sum_{l=0}^{s_{\mu(x)-1}} \left[6((\gamma_{2l+1}(r) - 1)d_{CD}^l(r)^2 + (1 - 2d_{CD}^l(r))[v_{CD}^{\Gamma_l(r)}(r) + d_{CD}^l(r)(\gamma_{2l+1}(r) - 1)]_1 \right. \]

\[+ B_2(v_{CD}^{\Gamma_l(r)-1}(r)) - B_2(v_{CD}^{\Gamma_l(r)}(r))) - \gamma_{2l+1}(r) + 1 \]

\[+ \tau_{2l+1}(r)(6(qd_{CD}^l(r)^2 + (1 - 2d_{CD}^l(r))[v_{CD}^{\Gamma_l(r)}(r) + d_{CD}^l(r)(\gamma_{2l+1}(r) - 1)]) - q) \]

and

\[B_{CD}(r) := \sum_{l=1}^{s_{\mu(x)}} 6q\alpha_{2l}B_2(v_{CD}^{\Gamma_l(r)}(r)) \]

\[+ \sum_{l=0}^{s_{\mu(x)-1}} \alpha_{2l+1}(6(qd_{CD}^l(r)^2 + (1 - 2d_{CD}^l(r))[v_{CD}^{\Gamma_l(r)}(r) + d_{CD}^l(r)(\gamma_{2l+1}(r) - 1)]) - q). \]

Proof. From (3-7), we have

\[\sum_{i=1}^{m(n)} B_1(x_{C+D\delta(n)}^i)B_1(y_{C+D\delta(n)}^i) + \frac{b_1(n)}{2}B_2(x_{C+D\delta(n)}^i) \]

\[= \sum_{l=1}^{s_{\mu(x)}} \left(-B_1(x_{C+D\delta(n)}^{S_l(n)})B_1(x_{C+D\delta(n)}^{S_l(n)-1}) + \frac{\alpha_{2l}qk + \tau_{2l}(r)q + \gamma_{2l}(r) + 2}{2}B_2(x_{C+D\delta(n)}^{S_l(n)}) \right) \]

\[+ \sum_{l=0}^{S_l(n)+qa_{2l+1}k + q\tau_{2l+1}(r) + \gamma_{2l+1}(r) - 1} \sum_{i=S_l(n)+1}^{S_l(n)+qa_{2l+1}k + q\tau_{2l+1}(r) + \gamma_{2l+1}(r) - 1} F(x_{C+D\delta(n)}^{i}, x_{C+D\delta(n)}^{i-1}). \]

From Lemma 3.7, we have

\[\sum_{i=S_l(n)+qa_{2l+1}k + q\tau_{2l+1}(r) + \gamma_{2l+1}(r) - 1}^{S_l(n)+qa_{2l+1}k + q\tau_{2l+1}(r) + \gamma_{2l+1}(r) - 1} F(x_{C+D\delta(n)}^{i}, x_{C+D\delta(n)}^{i-1}) \]

\[= 12 \sum_{i=S_l(n)+1}^{S_l(n)+qa_{2l+1}k + q\tau_{2l+1}(r) + \gamma_{2l+1}(r) - 1} F(x_{C+D\delta(n)}^{i}, x_{C+D\delta(n)}^{i-1}) \]

\[+ 12(\alpha_{2l+1}k + \tau_{2l+1}(r)) \sum_{i=S_l(n)+1}^{S_l(n)+qa_{2l+1}k + q\tau_{2l+1}(r) + \gamma_{2l+1}(r) - 1} F(x_{C+D\delta(n)}^{i}, x_{C+D\delta(n)}^{i-1}) \]
\[6 \left((\gamma_{2l+1}(r) - 1) d_{CD}^l (r)^2 + (1 - 2d_{CD}^l (r))(v_{CD}^{\Gamma(r)} (r) + d_{CD}^l (r)(\gamma_{2l+1}(r) - 1) \right) \\
+ B_2(\chi_{C + D \delta(n)}^{S_l(n) + \gamma_{2l+1}(r) - 1} - B_2(\chi_{C + D \delta(n)}^{S_l(n) - 1}) - (\gamma_{2l+1}(r) - 1) \\
+ (\alpha_{2l+1}k + \tau_{2l+1}(r))(6(qd_{CD}^l (r)^2 + (1 - 2d_{CD}^l (r))[v_{CD}^{\Gamma(r)} (r) + d_{CD}^l (r)q_1] - q). \]

Since
\[x_{C + D \delta(n)}^{S_l(n)} = v_{CD}^{\Gamma(r)} (r), \quad x_{C + D \delta(n)}^{S_l(n) - 1} = v_{CD}^{\Gamma(r) - 1} (r), \quad \text{and} \quad x_{C + D \delta(n)}^{S_l(n) + \gamma_{2l+1}(r) - 1} = v_{CD}^{\Gamma(r) + d_{CD}^l (r)q_1 - 1}, \]

we complete the proof. \qed

End of the proof: Since \(v_{CD}^{\Gamma(r)} (r), v_{CD}^{\Gamma(r) - 1} (r) \) and \(d_{CD}^l (r) \) are in \(\frac{1}{q} \mathbb{Z} \), we find that
\[q^2 A_{CD}(r), q^2 B_{CD}(r) \in \mathbb{Z}. \]

Moreover, we have
\[L_{K_n}(0, \chi_n, b_n) = \frac{1}{12q^2} \sum_{C,D} \chi_n(C + D \delta(n))(q^2 A_{CD}(r) + kq^2 B_{CD}(r)). \]

Since \(\chi \) is a Dirichlet character of modulus \(q \), if \(n = qk + r \), we can write
\[\chi_n(b_n(C + D \delta(n))) = F_{CD}(r) \]
for a function \(F_{CD} \). Note that, if \(K_r \) is defined,
\[\chi_n(b_n(C + D \delta(n))) = \chi_r(b_r(C + D \delta(r))) = F_{CD}(r). \]
(This expression does not make sense if \(K_r \) and \(\delta(r) \) are undefined.)

If we set
\[A_{\chi}(r) := \sum_{C,D} F_{CD}(r)q^2 A_{CD}(r) \]
and
\[B_{\chi}(r) := \sum_{C,D} F_{CD}(r)q^2 B_{CD}(r), \]
we obtain the proof. \qed

4. Biró’s method

Let \(K_n \) be a family of real quadratic fields such that the special value of the Hecke \(L \)-function at \(s = 0 \) has linearity. Biró [Biró 2003a; 2003b] developed a method using linearity to find the residue of \(n \) such that \(h(K_n) = 1 \) by certain primes. In this section, we sketch Biró’s method.

Let \(K_n = \mathbb{Q}(\sqrt{d}) \) for a square free integer \(d = f(n) \) and \(D_n \) be the discriminant \(K_n \). For an odd Dirichlet character \(\chi : \mathbb{Z}/q \mathbb{Z} \rightarrow \mathbb{C}^* \), let \(\chi_n \) denote the ray class
character defined as $\chi_n = \chi \circ N_{K_n} : I_n(q)/P_n(q)^+ \rightarrow \mathbb{C}^*$, and let $\chi_D = (\frac{D}{q})$ denote the Kronecker character. Then the special value of the Hecke L-function at $s = 0$ has a factorization

$$L_{K_n}(0, \chi_n) = L(0, \chi)L(0, \chi\chi_D) = \left(\frac{1}{q} \sum_{a=1}^{q} a\chi(a) \right) \left(\frac{1}{qD_n} \sum_{b=1}^{qD_n} b\chi(b)\chi_D(b) \right).$$

Let $b_n = O_{K_n}$. Suppose that $L_{K_n}(0, \chi_n, b_n)$ is linear in the form

$$L_{K_n}(0, \chi_n, b_n) = \frac{1}{12q^2} (A\chi(r) + kB\chi(r))$$

for $A\chi(r), B\chi(r) \in \mathbb{Z}[\chi(1), \chi(2) \cdots \chi(q)]$. Let ϵ_n be the fundamental unit of K_n. From Proposition 2.2 in [Byeon and Lee 2011], we find that $L_{K_n}(0, \chi_n, b_n) = L_{K_n}(0, \chi_n, (\epsilon_n)b_n)$. Thus if the class number of K_n is one, then we have for $n = qk + r$

$$L_{K_n}(0, \chi_n) = \frac{c}{12q^2} (A\chi(r) + kB\chi(r))$$

where c is the number of narrow ideal classes.

Then we have

$$B\chi(r)k + A\chi(r) = \frac{12q}{c} \cdot \left(\sum_{a=1}^{q} a\chi(a) \right) \cdot \left(\frac{1}{qD_n} \sum_{b=1}^{qD_n} b\chi(b)\chi_D(b) \right).$$

Let L_{χ} be the cyclotomic field generated by the values of χ. Since

$$\frac{1}{qD_n} \sum_{b=1}^{qD_n} b\chi(b)\chi_D(b)$$

is integral in L_{χ}, for a prime ideal I of L_{χ} dividing $\sum_{a=1}^{q} a\chi(a)$, we have

$$B\chi(r)k + A\chi(r) \equiv 0 \pmod{I}.$$

And if I does not divide $B\chi(r)$, then

$$k \equiv -A\chi(r) B\chi(r) \pmod{I}.$$

Since $n = qk + r$, we have

$$n \equiv -q A\chi(r) B\chi(r) + r \pmod{I}.$$

Moreover, if $O_{L_{\chi}}/I = \mathbb{Z}/p\mathbb{Z}$, the residue of n modulo p is expressed only in terms of $A\chi(r), B\chi(r)$, and r as above.

We now list the necessary conditions on q and p:
The behavior of Hecke L-functions of real quadratic fields at $s = 0$

Condition (\textit{\roman*}), q is an odd integer; p is an odd prime; χ is a character with conductor q; I is prime ideal in L_χ lying over p, with $I\mid (\sum_{a=1}^{q} a\chi(a))$ and $O_{L_\chi}/I = \mathbb{Z}/p\mathbb{Z}$.

When linearity holds, these conditions are independent of the family $\{K_n\}$. Let S be the set of (q, p) satisfying Condition (\textit{\roman*}). We partition S as follows:

$$S = \bigcup_{q \text{ odd integer}} S_q,$$

where $S_q := \{(q, p) \in S\}$.

Finally, for $(q, p) \in S$, we obtain the residue of $n = qk + r$ modulo p for which the class number of K_n is 1.

The above method has been used to find an upper bound on the discriminant of real quadratic fields with class number 1 in some families of Richaud–Degert type where the linearity criterion is satisfied [Biró 2003a; 2003b; Byeon et al. 2007; Lee 2009a]. This information, together with a properly developed class number one criteria for each case, could be used to solve the class number problem.

It is easily checked that the criterion is fulfilled by general families of Richaud–Degert type. Furthermore, there are abundant examples of families of real quadratic fields satisfying the linearity criterion [McLaughlin 2003]. For these, we have controlled behavior of the special values of the Hecke L-function at $s = 0$, and Biró’s method is directly applicable in each case. We expect this method can be used to study many meaningful arithmetic problems for families of real quadratic fields, in addition to the class number problem.

5. A generalization

We conclude with a possible generalization of the linearity of the special value of the Hecke L-function. This generalization will be dealt in [Jun and Lee 2012].

As in the criterion for linearity, we set $K_n = \mathbb{Q}(\sqrt{f(n)})$ and let b_n an integral ideal of K_n. We assume $b_n^{-1} = [1, \delta(n)]$ for $\delta(n) - 1 = [a_1(n), a_2(n), \ldots, a_s(n)]$, with $a_i(x) \in \mathbb{Z}[x]$.

For a given conductor q, write $n = qk + r$ for $r = 0, 1, 2, \ldots, q - 1$. Suppose $N = \max_i \{\deg(a_i(x))\}$. Then the special value of the partial ζ-function of the ray class of b_n mod q at $s = 0$ can be written as

$$\zeta_{K_n,q}(0, (C + D\delta(n))b_n) = \frac{1}{12q^2}(A_0(r) + A_1(r)k + \cdots + A_N(r)k^N)$$

for some rational integers A_i depending only on r.

We have no application of this property in arithmetic, but it will be very interesting if one applies it in a similar fashion as Biró’s method.
Acknowledgment

We would like to thank Prof. Dongho Byeon for helpful comments and discussions. We also thank the anonymous referee for careful reading and many invaluable suggestions. The first named author wishes to thank Prof. Bumsig Kim and Prof. Soon-Yi Kang for warm support and encouragement.

References

Communicated by Andrew Granville
Received 2010-03-07 Revised 2011-03-24 Accepted 2011-05-08
byunghuep@gmail.com School of Mathematics, Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, South Korea
lee9311@kias.re.kr School of Mathematics, Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, South Korea

mathematical sciences publishers
The behavior of Hecke L-functions of real quadratic fields at $s = 0$
BYUNGHEUP JUN and JUNGYUN LEE

The Picard group of a $K3$ surface and its reduction modulo p
ANDREAS-STEPHAN ELSENHANS and JÖRG JAHNEL

Linear determinantal equations for all projective schemes
JESSICA SIDMAN and GREGORY G. SMITH

Involutions, weights and p-local structure
GEOFFREY R. ROBINSON

Parametrizing quartic algebras over an arbitrary base
MELANIE MATCHETT WOOD

Coleman maps and the p-adic regulator
ANTONIO LEI, DAVID LOEFFLER and SARAH LIVIA ZERBES

Conjecture de Shafarevitch effective pour les revêtements cycliques
ROBIN DE JONG and GÄEL RÉMOND