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For a family of real quadratic fields {Kn =Q(
√

f (n))}n∈N, a Dirichlet character
χ modulo q, and prescribed ideals {bn ⊂ Kn}, we investigate the linear behavior
of the special value of the partial Hecke L-function L Kn (s, χn := χ ◦NKn , bn) at
s = 0. We show that for n = qk+ r , L Kn (0, χn, bn) can be written as

1
12q2 (Aχ (r)+ k Bχ (r)),

where Aχ (r), Bχ (r) ∈ Z[χ(1), χ(2), . . . , χ(q)] if a certain condition on bn in
terms of its continued fraction is satisfied. Furthermore, we write Aχ (r) and
Bχ (r) explicitly using values of the Bernoulli polynomials. We describe how
the linearity is used in solving the class number one problem for some families
and recover the proofs in some cases.
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1. Introduction

In this paper, we are mainly concerned with linear behavior of the special values
of the Hecke L-function at s = 0 for families of real quadratic fields.

Let {Kn = Q(
√

f (n))}n∈N be a family of real quadratic fields where f (n) is
a positive square free integer for each n. For example f (x) can be a polynomial
with integer coefficients.
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For a Dirichlet character χ modulo q, we have a ray class character χn :=χ◦NKn

for each n. Fixing an ideal bn in Kn for each n, one obtains an indexed family of
partial Hecke L-functions {L Kn (s, χn, bn)}, where the partial Hecke L-function for
(K , χ, b) is defined as

L K (s, χ, b) :=
∑

a∼b integral
(q,a)=1

χ(a)N (a)−s .

and a∼ b means that a= αb for totally positive α ∈ K .
Roughly speaking, if L Kn (0, χn, bn) can be written as linear polynomial in k

with coefficients depending only on r for n = qk + r , we say that L Kn (0, χn, bn)

is linear.

Definition 1.1 (linearity). When the special values of L Kn (s, χn, bn) at s = 0 are
expressed as

L Kn (0, χn, bn)=
1

12q2 (Aχ (r)+ k Bχ (r))

for n=qk+r , Aχ (r), Bχ (r)∈Z[χ(1), χ(2), . . . , χ(q)], we say that L Kn (0, χn, bn)

is linear.

Linearity was originally observed by Biró in his proof of Yokoi’s conjecture.

Theorem 1.2 [Biró 2003b]. If the class number of Q(
√

n2+ 4 ) is 1, then n ≤ 17.

In Yokoi’s conjecture, we take Kn =Q(
√

n2+ 4 ) and bn = OKn . Biró [2003b,
pp. 88, 89] expressed the special value of the Hecke L-function for (Kn, χn, OKn )

at s = 0 for n = qk+ r

L Kn (0, χn, bn)=
1
q
(Aχ (r)+ k Bχ (r)), (1-1)

where

Aχ (r)=
∑

0≤C,D≤q−1

χ(D2
−C2

− rC D)
⌈rC−D

q

⌉
(C − q),

Bχ (r)=
∑

0≤C,D≤q−1

χ(D2
−C2

− rC D)C(C − q).

When Kn is of class number 1, the unique ideal class can be represented by any
ideal bn . A priori the partial Hecke L-function equals the total Hecke L-function
up to multiplication by 2 (that is,

L Kn (0, χn)= cL Kn (0, χn, OKn )

where c is the number of narrow ideal classes).
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From this identification, one can find the residue of n by sufficiently many
primes p for which the class number of Q(

√
n2+ 4 ) is one. Moreover, by the

linearity, this residue depends only on r . Consequently, one can tell whether or
not p is inert in Q(

√
n2+ 4 ). As we have a bound for a smaller prime to inert

depending on n, finally we have enough conditions to list all Kn of class number 1.
Other families (Kn, χn, bn) that have linearity were discovered in [Biró 2003a;

Byeon et al. 2007; Byeon and Lee 2008; Lee 2009a; 2009b]. Similarly, developing
Biro’s method, one can solve the associated class number one problems.

In this paper, we give a criterion on (Kn, χn, bn) for L Kn (0, χn, bn) to be linear.
The criterion is in terms of the continued fraction expression of δ(n), where b−1

n =

[1, δ(n)] := Z + δ(n)Z. Let [[a0, a1, . . . , an]] be the purely periodic continued
fraction

[a0, a1, a2, . . . , an, a0, a1, . . . ],

where

[a0, a1, a2, . . . ] := a0+
1

a1+
1

a2+ · · ·

.

Our main theorem is as follows:

Theorem 1.3 (linearity criterion). Let {Kn = Q(
√

f (n) )}n∈N be a family of real
quadratic fields where f (n) is a positive square free integer for each n. Let χ
be a Dirichlet character modulo q for a positive integer q and χn be a ray class
character modulo q defined by χ ◦ NKn . Suppose bn is an integral ideal relatively
prime to q such that b−1

n = [1, δ(n)]. Assume the continued fraction expansion of
δ(n)− 1

δ(n)− 1= [[a0(n), a1(n), . . . , as−1(n)]]

is purely periodic and of a fixed length s independent of n and ai (n)= αi n+βi for
some fixed αi , βi ∈ Z.

If NKn (bn(C + Dδ(n))) modulo q is a function only depending on C , D and r
for n = qk+ r , then L Kn (0, χn, bn) is linear.

Furthermore, we give a precise description of Aχ (r) and Bχ (r) using values
of the Bernoulli polynomials (Proposition 3.8). From this description, for n with
h(Kn)=1, as in Biró’s case, one can compute the residue of n modulo p depending
on the mod-q residue r of n. There are possibly many (q, p) pairs. The more pairs
of (q, p) we have, the more we can restrict possible n. There are many known
families for which the class number one problem can be solved in this way. Many
known results can be recovered by using the continued fraction expansion to show
linearity and finding enough (q, p).
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There are still other families of real quadratic fields with linearity whose class
number one problems are not yet answered. Morally, once we obtain a reasonable
class number one criterion, finding sufficiently many (q, p)-pairs should solve it.

This paper is composed as follows. In Section 2, we describe the special value
at s= 0 of the partial Hecke L-function in terms of values of the Bernoulli polyno-
mials. Section 3 is devoted to the proof of our main theorem. In Section 4, Biró’s
method is sketched as a prototype to apply the linearity. Section 5 concludes the
paper with a possible generalization of the linearity criterion to a polynomial of
higher order.

Notation and conventions. Throughout this article, we keep the following general
notation and conventions. If necessary, we rewrite the notation at the place where
it is used.

(1) K is a real quadratic field.

(2) For a real quadratic field K , we fix an embedding ι : K → R. If there is no
danger of confusion, we denote ι(α) by an element α ∈ K . α′ denotes the
conjugate of α as well as ι(α′).

(3) For α ∈ K , NK (α) denotes the norm of α over Q. If there is no danger of
confusion, we simply write N (α) to denote NK (α). For an integral ideal a

of K , we let N (a) := [oK , a] denote the norm of a.

(4) For two linearly independent elements α, β ∈ K viewed as a vector space over
Q, [α, β] denotes the lattice (ie. free abelian group) generated by α and β.
The lattice defined by a fractional ideal a of K is denoted by [α, β] if {α, β}
is a free basis of a.

(5) For a subset A of K , we denote by A+ the set of totally positive elements
in A.

(6) χ is a fixed Dirichlet character of modulus q.

(7) For a real number x ,

〈x〉 :=
{

x − [x] for x 6∈ Z,

1 for x ∈ Z.

Equivalently, 〈−〉 is the composition R
mod Z
−−−→ R/Z→ R, where R/Z→ R is

the unique map so that the composition is the identity on (0, 1].

(8) For a real x , [x]1 := x −〈x〉.

(9) For an integer m, 〈m〉q denotes the residue of m by q taken in [1, q] (i.e.,
m = qk+〈m〉q for k ∈ Z, 〈m〉q ∈ [1, q] ∩Z).
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(10) For positive integers ai , [a0, a1, a2, . . . ] denotes the usual continued fraction:

[a0, a1, a2, . . . ] := a0+
1

a1+
1

a2+ · · ·

[a0, a1, . . . , ai−1, ai , ai+1, . . . , ai+ j ] denotes the continued fraction with pe-
riodic part (ai , ai+1, . . . , ai+ j ).
[[a0, a1, . . . , an]] is the purely periodic continued fraction

[a0, a1, . . . , an, a0, a1, . . . ].

(11) (a0, a1, a2, . . . ) denotes the minus continued fraction:

(a0, a1, a2, . . . ) := a0−
1

a1−
1

a2− · · ·

((a0, a1, . . . , an)) is the purely periodic minus continued fraction:

(a0, a1, a2, . . . , an, a0, a1, . . . )

(12) For an integer s, µ(s)= 1 if s is odd and µ(s)= 1
2 if s is even.

2. Partial Hecke L-function

Throughout this section, K denotes a real quadratic field and b is a fixed integral
ideal of K relatively prime to q such that b−1

=[1, δ] for δ∈K satisfying 0<δ′<1
and δ > 2.

A ray class character modulo q is a homomorphism

χ : IK (q)/PK (q)→ C∗

where IK (q) is a group of fractional ideals of K which is relatively prime to q and
PK (q) is a subgroup of principal ideals (α) for totally positive α ≡ 1 (mod q).

Define

F := {(C, D) ∈ Z2
| 0≤ C, D ≤ q − 1, ((C + Dδ)b, q)= 1}.

Let E+ be the set of totally positive units in K , and E+q the set of totally positive
units congruent to 1 mod q . Then ε ∈ E+ acts on the set F by the rule

ε ∗ (C + Dδ)= C ′+ D′δ,

where C ′ and D′ are given by

ε · (C + Dδ)+ qb−1
= C ′+ D′δ+ qb−1 for ε ∈ E+.
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Lemma 2.1. (C, D) in F is fixed by the action of ε if and only if ε is in E+q .

Proof. (C, D) is fixed by ε ∈ E+ if and only if (C + Dδ)(ε − 1) ∈ qb−1. Since
(b(C + Dδ), q)= 1, the condition (C + Dδ)(ε− 1) ∈ qb−1 is equivalent to

ε ≡ 1 (mod q). �

Lemma 2.2. Suppose 0≤ C, D ≤ q − 1. Then the following are equivalent:

(1) (C, D) is in F.

(2) For every α ∈ (C + Dδ)/q + b−1, the ideal qαb is relatively prime to q.

(3) For a α ∈ (C + Dδ)/q + b−1, the ideal qαb is relatively prime to q.

Proof. Suppose that (q, (C + Dδ)b)= 1.
We have

qα
C + Dδ

∈ 1+
q

C + Dδ
b−1

for α ∈ (C + Dδ)/q + b−1. Thus (q, b(C + Dδ))= 1 implies that

qα
C + Dδ

≡ 1 (mod q).

Since

qbα = b(C + Dδ)
qα

C + Dδ
,

we have

(qbα, q)= 1.

If (q, (C + Dδ)b) 6= 1, then (q, qbα) 6= 1 for α ∈ (C + Dδ)/q + b−1, since for
α ∈ (C + Dδ)/q + b−1, we have

qbα ⊂ (C + Dδ)b+ q OK . �

Let F ′ = F/E+ be the orbit space of the action of E+ on F . Let F̃ ′ be a
fundamental set of F ′. Let ε be the totally positive fundamental unit. The order of
the action of ε is λ := [E+ : E+q ] by Lemma 2.1. Then we can decompose F as
follows:

F =
λ−1⊔
i=0

εi F̃ ′. (2-1)

According to this decomposition of F , we can further decompose the partial Hecke
L-function:
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Proposition 2.3. Let q be a positive integer. Given an ideal b ⊂ K as specified at
the beginning of this section and a ray class character χ modulo q, we have

L K (s, χ, b)=
∑

a∼b integral
(q,a)=1

χ(a)N (a)−s

=

∑
(C,D)∈F̃ ′

χ((C + Dδ)b)
∑

α∈(C+Dδ
q +b−1)+/E+q

N (qbα)−s .

Proof. For α1, α2 ∈ (q−1b−1)+, qα1b= qα2b if and only if α1/α2 ∈ E+.
So we have∑

a∼b integral
(q,a)=1

χ(a)

N (a)s
=

∑
a∼qb integral
(q,a)=1

χ(a)

N (a)s
=

∑
α∈(q−1b−1)+/E+

(q,qαb)=1

χ(qαb)

N (qαb)s

For a totally positive fundamental unit ε > 1, we also have

∑
α∈(q−1b−1)+/E+q
(q,qbα)=1

χ(qbα)

N (qbα)s
=

∑
α∈(q−1b−1)+/E+
(q,qbα)=1

λ−1∑
i=0

χ(qbαεi )

N (qbαεi )s

= λ ·
∑

α∈(q−1b−1)+/E+
(q,qbα)=1

χ(qbα)

N (qbα)s
.

And from Lemma 2.2, we have∑
α∈(q−1b−1)+/E+q
(q,qbα)=1

χ(qbα)

N (qbα)s
=

∑
(C,D)∈F

∑
α∈(C+Dδ

q +b−1)+/E+q
(q,qbα)=1

χ(qbα)

N (qbα)s

=

∑
(C,D)∈F

∑
α∈(C+Dδ

q +b−1)+/E+q

χ(qbα)

N (qbα)s
.

By equation (2), the above is equal to

∑
(C,D)∈F̃ ′

λ−1∑
i=0

∑
α∈(

(C+Dδ)εi
q +b−1)+/E+q

χ(qbα)

N (qbα)s
.

Since ∑
α∈(

(C+Dδ)εi
q +b−1)+/E+q

χ(qbα)

N (qbα)s
=

∑
α∈(

(C+Dδ)
q +b−1)+/E+q

χ(qbαεi )

N (qbαεi )s
,
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the above also equal to

λ ·
∑

(C,D)∈F̃ ′

∑
α∈(C+Dδ

q +b−1)+/E+q

χ(qbα)

N (qbα)s
.

Note that for α ∈ (C+Dδ
q +b−1)+, qbα and (C+Dδ)b are in the same ray class

modulo q. Thus χ(qbα)= χ((C + Dδ)b). This completes the proof. �

Shintani–Zagier cone decomposition. We review briefly the decomposition of
(R2)+ into cones due to Shintani [1976] and Zagier [1975] (see also [van der Geer
1988]). This depends on a real quadratic field K and a fixed ideal a inside. Here
for the sake of computation, we fix a = b−1 where b is set as in the beginning of
this section.

K is embedded into R2 by ι= (τ1, τ2), where τ1, τ2 are two real embeddings of
K . In particular, the totally positive elements of K land on (R2)+. We are going
to describe the fundamental domain of (C+Dδ

q +b−1)+/E+q embedded into (R2)+.
The multiplicative action of Eq

+ on K+ induces an action on (R2)+ by coordi-
natewise multiplication:

ε ◦ (x, y)= (τ1(ε)x, τ2(ε)y).

A fundamental domain DR of (R2)+/E+q is given by

DR := {xι(1)+ yι(ε−λ) | x > 0, y ≥ 0} ⊂ (R2)+ (2-2)

where E+q =
〈
ελ
〉
for an integer λ and ε>1 is the unique totally positive fundamental

unit.
If we take the convex hull of ι(b−1)∩(R2)+ in (R2)+, the vertices on the bound-

ary are {Pi }i∈Z for Pi ∈ ι(b
−1), and determined by the conditions P0= ι(1), P−1=

ι(δ) and x(Pi ) < x(Pi−1) where x(Pk) denotes the first coordinate of Pk for k ∈ Z.
Since any two consecutive boundary points make a basis of ι(b−1), we find that(

0 1
−1 bi

)(
Pi−1

Pi

)
=

(
Pi

Pi+1

)
,

for an integer bi . It is easy to see that bi ≥ 2 from the convexity. Thus we obtain

x(Pi−1)+ x(Pi+1)= bi x(Pi ). (2-3)

Put δi :=
x(Pi−1)

x(Pi )
> 1. Note that δ0 = δ. δi satisfies a recursion relation:

δi = bi −
1
δi+1

for i ∈ Z.
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Therefore

δi = bi −
1

bi+1−
1

bi+2− · · ·

= (bi , bi+1, bi+2, . . . ).

Let ε > 1 be the totally positive fundamental unit. Then ε moves a boundary
point to another boundary point, preserving the order. Thus, there exists a positive
integer m so that for all i ∈ Z

ε ◦ Pi = Pi−m . (2-4)

Therefore we obtain the following proposition.

Proposition 2.4. (1) δi+m = δi for all i ∈ Z.

(2) δi = ((bi , bi+1, . . . , bi+m−1))= bi −
1

bi+1− · · ·
1

bi+m−1−
1

bi − · · ·

.

(3) ι(ε−1)= Pm .

(4) ε−1
◦ Pi = Pi+m .

(5) ι(ε−γ )= Pγm .

Proof. (1) δi+m =
x(Pi+m−1)

x(Pi+m)
=
εx(Pi−1)

εx(Pi )
= δi .

(2) This is an immediate consequence of (1).
(3) From (2-4),

Pm = ε
−1
◦ P0,

since P0 = ι(1) and ε−1
◦ ι(1)= ι(ε−1).

(4) This is immediate from (2-4).
(5) This follows trivially from (3) and (4). �

Using (2-2) and Proposition 2.4(4), the fundamental domain DR of (R2)+/E+q
is further decomposed into the disjoint union of λm smaller cones:

DR =

λm⊔
i=1

{x Pi−1+ y Pi | x > 0, y ≥ 0}.

Clearly, the fundamental set of the quotient
(
ι((C + Dδ)/q + b−1)∩ (R2)+

)
/E+q

inside DR, which we denote by D, is given by a disjoint union:

D :=

λm⊔
i=1

(
ι
(C+Dδ

q
+ b−1

)
∩ {x Pi−1+ y Pi | x > 0, y ≥ 0}

)
.
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Since {Pi−1, Pi } is a Z-basis of ι(b−1), there is a unique (x i
C+Dδ, yi

C+Dδ) ∈

(0, 1]× [0, 1) such that

x i
C+DδPi−1+ yi

C+DδPi ∈ ι
(C+Dδ

q
+ b−1

)
,

for each i,C, D ∈ Z. Thus

ι
(C+Dδ

q
+ b−1

)
∩ {x Pi−1+ y Pi | x > 0, y ≥ 0}

= {(x i
C+Dδ + n1)Pi−1+ (yi

C+Dδ + n2)Pi | n1, n2 ∈ Z≥0}. (2-5)

Yamamoto [2008, (2.1.3)] found that (x i
C+Dδ, yi

C+Dδ) satisfy the following re-
currence relations:

x i+1
C+Dδ = 〈bi x i

C+Dδ + yi
C+Dδ〉,

yi+1
C+Dδ = 1− x i

C+Dδ.
(2-6)

Let Ai := x(Pi ) for all i ∈ Z. Then from (2-5), we obtain the following:

∑
α∈(C+Dδ

q +b−1)+/E+q

1
N (α)s

=

λm∑
i=1

∑
n1,n2≥0

N
(
(x i

C+Dδ + n1)Ai−1+ (yi
C+Dδ + n2)Ai

)−s

=

λm∑
i=1

∑
n1,n2≥0

N
(
(x i

C+Dδ + n1)δi + (yi
C+Dδ + n2)

)−s A−s
i . (2-7)

Shintani [1976] evaluated
∑

n1,n2≥0 N
(
(x + n1)δ+ (y+ n2)

)−s for nonpositive
integers s. In particular, the value at s=0 is expressed by first and second Bernoulli
polynomials as follows:

Lemma 2.5 (Shintani).

∑
n1,n2≥0

N
(
(x + n1)δ+ (y+ n2)

)−s
∣∣∣
s=0

=
δ+δ′

4
B2(x)+ B1(x)B1(y)+

1
4

(1
δ
+

1
δ′

)
B2(y).
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Using this, we have∑
α∈(C+Dδ

q +b−1)+/E+q

1
N (α)s

∣∣∣
s=0

=

λm∑
i=1

δi+δ
′

i
4

B2(x i
C+Dδ)+B1(x i

C+Dδ)B1(yi
C+Dδ)+

1
4

( 1
δi
+

1
δ′i

)
B2(yi

C+Dδ). (2-8)

This simplifies further:

Lemma 2.6 [Yamamoto 2008, proof of Theorem 4.1.1].

λm∑
i=1

δi + δ
′

i

4
B2(x i

C+Dδ)+
1
4
(

1
δi
+

1
δ′i
)B2(yi

C+Dδ)=

λm∑
i=1

bi

2
B2(x i

C+Dδ).

Finally, we have

∑
α∈(C+Dδ

q +b−1)+/E+q

1
N (α)s

∣∣∣
s=0
=

λm∑
i=1

B1(x i
C+Dδ)B1(yi

C+Dδ)+
bi

2
B2(x i

C+Dδ).

Lemma 2.7. Let ε be the totally positive fundamental unit of K . Then

xmi+ j
C+Dδ = x j

εi∗(C+Dδ) and ymi+ j
C+Dδ = y j

εi∗(C+Dδ)

for j = 0, 1, 2, . . . ,m− 1.

Proof. From (4) of Proposition 2.4, we have Ami+ j = ε
−i A j , for any integer i .

Thus

xmi+ j
C+DδAmi+ j−1+ ymi+ j

C+DδAmi+ j = xmi+ j
C+Dδε

−i A j−1+ ymi+ j
C+Dδε

−i A j ∈
C + Dδ

q
+b−1.

Therefore,

xmi+ j
C+DδA j−1+ ymi+ j

C+DδA j ∈
εi
· (C + Dδ)

q
+ b−1. �

From Lemma 2.7 and the periodicity of bi , we have:

Lemma 2.8.
∑

α∈(C+Dδ
q +b−1)+/E+q

1
N (α)s

∣∣∣
s=0

=

m∑
i=1

λ−1∑
j=0

B1(x i
ε j∗(C+Dδ))B1(yi

ε j∗(C+Dδ))+
bi

2
B2(x i

ε j∗(C+Dδ)).

Finally, we have:
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Proposition 2.9. For a ray class character χ modulo q and an ideal b of K such
that

b−1
= [1, δ]

for δ ∈ K with δ > 2 and 0< δ′ < 1, we have

L K (0, χ, b)=
∑

1≤C,D≤q

χ((C+Dδ)b)
m∑

i=1

B1(x i
(C+Dδ))B1(yi

C+Dδ)+
bi

2
B2(x i

C+Dδ).

Proof. From Proposition 2.3, we obtain

L K (0, χ, b)=
∑

(C,D)∈F̃ ′

χ((C + Dδ)b)
∑

α∈(C+Dδ
q +b−1)+/E+q

N (qbα)−s
|s=0.

Lemma 2.8 implies that this is equal to

∑
(C,D)∈F̃ ′

χ
(
(C+Dδ)b

) λ−1∑
j=0

m∑
i=1

B1(x i
ε j∗(C+Dδ))B1(yi

ε j∗(C+Dδ))+
bi

2
B2(x i

ε j∗(C+Dδ)).

Since (C + Dδ)εb= (C + Dδ)b, this expression can be rewritten as

∑
(C,D)∈F̃ ′

λ−1∑
j=0

(
χ((C + Dδ)ε jb)

×

m∑
i=1

B1(x i
ε j∗(C+Dδ))B1(yi

ε j∗(C+Dδ))+
bi

2
B2(x i

ε j∗(C+Dδ))

)
.

In view of the decomposition of F in (2-1), the preceding expression equals∑
(C,D)∈F

χ((C + Dδ)b)
m∑

i=1

B1(x i
(C+Dδ))B1(yi

(C+Dδ))+
bi

2
B2(x i

(C+Dδ)).

If ((C + Dδ)b, q) 6= 1 then χ((C + Dδ)b)= 0. Thus we complete the proof. �

Remark 2.10. The summation running over C, D ∈ [1, q] is actually supported
on F . This is justified by the twist of the mod q Dirichlet character. Obviously, F
depends on δ in K , but the twisted sum has an invariant form of δ and K . This is
a subtle point in the proof of the main theorem where we deal with values of the
Hecke L-function with respect to a family (Kn, χn, b).

3. Proof of the main theorem

In this section, we compute special values of the Hecke L-function for a family
of real quadratic fields. The computation is made using the expression for the L-
value from the previous section. After the computation, it will be apparent that the
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linearity property comes from the shape of the continued fractions in the family.
This will complete the proof of Theorem 1.3.

This gives a criterion that will recover several approaches of class number prob-
lems for some families of real quadratic fields.

Consider a family of real quadratic fields Kn =Q(
√

dn ), where dn is a positive
square free integer. For a fixed Dirichlet character χ of modulus q , we associate
a ray class character χn := χ ◦ NKn/Q for each n. Let us fix an ideal bn of Kn for
each n. Then we have a family of Hecke L-functions associated to (Kn, χn, bn):

L Kn (s, χn, bn)=
∑

a

χn(a)

N (a)s

where a ranges over integral ideals in the ray class represented by bn .

Plan of the proof. Assume that

b−1
n = [1, δ(n)]

with δ(n) > 2, 0 < δ(n)′ < 1. As discussed in Proposition 2.4, δ(n) has a purely
periodic minus continued fraction expansion:

δ(n)= ((b0(n), b1(n), . . . , bm(n)−1(n)))

= b0(n)−
1

b1(n)− · · ·
1

bm(n)−1(n)−
1

b0(n)− · · ·

,
(3-1)

with bk(n)≥ 2.
We extend the definition of bi (n) to all i ∈ Z by requiring that bi+m(n)(n) =

bi (n) for i ∈ Z, and take δk(n) = ((bk(n), bk+1(n), . . . , bk+m(n)−1(n))). We define
{Ak(n)}k∈Z by

A−1(n)= δ(n), A0(n)= 1, . . . , Ak+1(n)= Ak(n)/δk+1(n).

Then for fixed C, D and n, there is a unique (x i
C+Dδ(n), yi

C+Dδ(n)) such that

0< x i
C+Dδ(n) ≤ 1, 0≤ yi

C+Dδ(n) < 1, (3-2)

and

x i
C+Dδ(n)Ai−1(n)+ yi

C+Dδ(n)Ai (n) ∈
C + Dδ(n)

q
+ b−1

n , (3-3)

for each i ∈ Z, as described in the previous section. This (x i
C+Dδ(n), yi

C+Dδ(n))

satisfies Yamamoto’s recursive relation (2-6) as follows:

x i+1
C+Dδ(n) = 〈bi (n)x i

C+Dδ(n)+ yi
C+Dδ(n)〉, yi+1

C+Dδ(n) = 1− x i
C+Dδ(n). (3-4)
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Now recall a standard conversion formula from a continued fraction expansion
to a minus continued fraction expansion:

Lemma 3.1. Let δ− 1 be a purely periodic continued fraction:

[[a0, a1, . . . , as−1]].

Then the minus continued fraction expansion of δ is

((b0, b1, . . . , bm−1)),

where

bi :=

{
a2 j + 2 for i = S j ,
2 otherwise,

where

S j =

{
0 for j = 0,
S j−1+ a2 j−1 for j ≥ 1,

and the period m is given by

m =
{

a1+ a3+ a5 · · · + as−1 = Ss/2 for even s,
a0+ a1+ a2 · · · + as−1 = Ss for odd s.

Proof. (See [Zagier 1975, pp. 177, 178].) If s is an odd integer, the period m is

s∑
i=1

a2i−1 = a1+ a3+ · · ·+ a2s−1 = Ss .

Since ai has period s, we find that

a1+ a3+ · · ·+ a2s−1 = a0+ a1+ a2 · · · + as−1 =

s−1∑
i=0

ai . �

For the family of δ(n) ∈ K , we assumed that

δ(n)− 1= [[a0(n), a1(n), a2(n), . . . , as−1(n)]]

has the same period for every n.
Then δ(n) has a purely periodic minus continued fraction expansion

δ(n)= ((b0(n), b1(n), . . . , bm(n)−1(n))),

with bi (n), S j (n) and m(n) defined in the same manner as in the previous lemma.
One should be aware that m(n) varies with n, while the period s of the positive

continued fraction is fixed.
From Proposition 2.9 and the recursion (3-4) for (x i

C+Dδ(n), yi
C+Dδ(n)), we have
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L Kn (0, χn, bn)=
∑

1≤C,D≤q

(
χn((C + Dδ(n))bn)

×

m(n)∑
i=1

(
B1(x i

C+Dδ(n))B1(yi
C+Dδ(n))+

bi (n)
2

B2(x i
C+Dδ(n))

))
. (3-5)

To check the linear behavior, it suffices to show that

m(n)∑
i=1

(
B1(x i

C+Dδ(n))B1(yi
C+Dδ(n))+

bi (n)
2

B2(x i
C+Dδ(n))

)
(3-6)

is linear in k with the coefficients depending only on r .
Because bi (n) = 2 if i 6= S j (n) for every j , we can divide the sum above into

two parts:

sµ(s)∑
l=1

(
−B1(x

Sl (n)
C+Dδ(n))B1(x

Sl (n)−1
C+Dδ(n))+

a2l(n)+ 2
2

B2(x
Sl (n)
C+Dδ(n))

)
+

sµ(s)−1∑
l=0

Sl+1(n)−1∑
i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n)), (3-7)

where µ(s)= 1
2 or 1 for s even or odd, respectively, and

F(x, y) := −B1(x)B1(y)+ B2(x).

We will use the following fact to be proved later. Here and wherever there is no
danger of misunderstanding, xi (n) means x i

C+Dδ(n) for fixed C, D.

Claim. The sequence {xi (n)} is a piecewise arithmetic progression, in the sense
that it satisfies these properties:

1. {xi (n)}S j (n)≤i≤S j+1(n) is an arithmetic progression mod Z with common differ-
ence

〈
xS j (n)+1(n)− xS j (n)(n)

〉
.

2. {xi (n)}S j (n)≤i≤S j+1(n) has period q.

3. xS j (n)(n), xS j (n)−1(n) and xS j (n)+1(n) are independent of k, where n = qk+r .

Because of the constraint ai (n)= αi n+βi , the value of 〈ai (n)〉q is independent
of k for n = qk+ r and depends only on i and r . We can thus set

γi (r) := 〈ai (n)〉q , (3-8)

where n = qk+ r . In particular, γi (r)= 〈ai (r)〉q .
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Since {F(xi (n), xi−1(n))}S j (n)+1≤i≤S j+1(n)−1 has period q (item 2 of the claim),
we obtain
Sl+1(n)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n))

=

Sl (n)+γ2l+1(r)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n))+ κ2l+1(n)
Sl (n)+q∑

i=Sl (n)+1

F(xi (n), xi−1(n)),

where ai (n)= κi (n)q + γi (r) for an integer κi (n). Written precisely,

κi (n)=
ai (n)− γi (r)

q
. (3-9)

Since
αir +βi = qτi (r)+ γi (r)

for some integer τi (r), we can write for n = qk+ r

κi (n)= kαi + τi (r) (3-10)

Using 3, we see that xSl (n)(n) and xSl (n)+1(n) are determined by the residue r of
n by q . A priori the sums

Sl (n)+γ2l+1(r)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n)) and
Sl (n)+q∑

i=Sl (n)+1

F(xi (n), xi−1(n))

are completely determined by xSl (n)(n) and xSl (n)+1(n) and remain unchanged
while k varies.

Thus we conclude:

Fact I. For n = qk+ r ,

Sl+1(n)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n))

is a linear function of k.

Using (3-9) and (3-10), we have

−B1(xSl (n)(n))B1(xSl (n)−1(n))+
a2l(n)+ 2

2
B2(xSl (n)(n))

=−B1(xSl (n)(n))B1(xSl (n)−1(n))+
α2lqk+ τ2l(r)q + γ2l(r)+ 2

2
B2(xSl (n)(n)).

Again using item 3 of the Claim we conclude:
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Fact II. For n = qk+ r ,

−B1(xSl (n)(n))B1(xSl (n)−1(n))+
a2l(n)+ 2

2
B2(xSl (n)(n))

is a linear function of k.

Additionally, we have:

Fact III. s and µ(s) are independent of n.

Together, Facts I, II and III imply that

m(n)∑
i=1

−B1(xi (n))B1(xi−1(n))+
bi (n)

2
B2(xi (n)) (3-11)

is linear in k and the coefficients are functions of r for fixed C, D.
There remains to prove properties 1, 2, and 3 of {xi (n)}. We will also give a

precise description of the expression (3-11) to finish the proof of Theorem 1.3.

Periodicity and invariance. We now prove the Claim above about the sequence
{xi (n)}.

Proposition 3.2. For j ≥ 0, {xi (n)}S j (n)≤i≤S j+1(n) is an arithmetic progression mod
Z with common difference 〈xS j (n)+1(n)− xS j (n)(n)〉.

Proof. Since bi (n)= 2 for S j (n)+ 1≤ i ≤ S j+1(n)− 1, we have that

xi+1(n)= 〈2xi (n)− xi−1(n)〉.

This implies that for S j (n)+ 1≤ i ≤ S j+1(n)− 1,

〈xi+1(n)− xi (n)〉 = 〈〈2xi (n)− xi−1(n)〉− xi (n)〉 = 〈xi (n)− xi−1(n)〉. �

Lemma 3.3. For i ≥−1, we have qxi (n) ∈ Z and 0< xi (n)≤ 1.

Proof. Since A0(n) = 1 and A−1(n) = δ(n), we find from (3-2), (3-3), and (3-4)
that

x0(n)=
〈D

q

〉
, x−1(n)= 1− C

q
.

We also note that bi (n) ∈ Z for any i ≥ 0. Thus (3-4) implies this lemma. �

Proposition 3.4. For j ≥ 0 and a2 j+1(n) ≥ q , {xi (n)}S j (n)≤i≤S j+1(n) has period q.
Explicitly, we have

xS j (n)+q+i (n)= xS j (n)+i (n) for 0≤ i ≤ a2 j+1(n)− q.
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Proof. Note that {xi (n) mod 1}S j (n)≤i≤S j+1(n) is an arithmetic progression. Thus

xS j (n)+q+i (n)=
〈
xS j (n)+i (n)+ q〈xS j (n)+i (n)− xS j (n)+i−1(n)〉

〉
,

for 0≤ i ≤ a2 j+1(n)− q. From Lemma 3.3, we find that

q〈xS j (n)+i (n)− xS j (n)+i−1(n)〉 ∈ Z.

Thus
〈xS j (n)+i (n)+ q〈xS j (n)+i (n)− xS j (n)+i−1(n)〉〉 = 〈xS j (n)+i (n)〉.

Since 0< xS j (n)+i (n)≤ 1, we finally have

〈xS j (n)+i (n)〉 = xS j (n)+i (n).

�

For 0≤ r ≤ q − 1, we define

0 j (r) :=
{

0 for j = 0,
0 j (r)+ γ2 j−1(r) for j ≥ 1

,

where γi (r) is defined as in (3-8). For i ≥ 0, we put

ci (r)=
{
γ2 j (r)+ 2 for i = 0 j (r),
2 otherwise.

Consider a sequence {νi
C D(r)}i≥−1 with the initial value and the recursion rela-

tion as follows:

ν−1
C D(r)=

q−C
q

, ν0
C D(r)=

〈D
q

〉
and

νi+1
C D (r)=

〈
ci (r)νi

C D(r)− ν
i−1
C D (r)

〉
.

If C, D are fixed and clear from the context, we omit the subscript and abbreviate
νi

C D(r) to νi (r).

Proposition 3.5. Using the above notation, we have, for j ≥ 0 and n = qk+ r

xS j (n)+i (n)= ν0 j (r)+i (r) for 0≤ i ≤ γ2 j+1(r)

Proof. We use induction on j .
When j =0, S0(n)=00(r)=0. We need to show xi (n)=νi (r) for i ∈[0, γ1(r)].

As we saw in the proof of Lemma 3.3,

x0(n)=
〈D

q

〉
= ν0(r), x−1(n)= 1− C

q
= ν−1(r).
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Since a0(n)− γ0(r) ∈ qZ, using (3-4) and the recursive relation of νi (r), one can
easily check that

x1(n)=
〈
(a0(n)+ 2)

〈D
q

〉
+

C
q

〉
=
〈
(γ0(r)+ 2)ν0(r)− ν−1(r)

〉
= ν1(r).

For 1≤ i ≤ γ1(r)− 1, xi (n) and νi (r) satisfy the same recursion relation

xi+1(n)= 〈2xi (n)− xi−1(n)〉, νi+1(r)= 〈2νi (r)− νi−1(r)〉.

Thus we have xi (n)= νi (r) for 0≤ i ≤ γ1(r).
Now assume that the proposition holds true for j < j0. From Proposition 3.4,

we find that if a2 j0−1(n)≥ q then

xS j0−1(n)+q+i (n)= xS j0−1(n)+i (n) for 0≤ i ≤ a2 j0−1(n)− q. (3-12)

Since a2 j0−1(n)− γ2 j0−1(r) ∈ qZ, we obtain

xS j0 (n)−1(n)= xS j0−1(n)+a2 j0−1(n)−1(n)= xS j0−1(n)+γ2 j0−1(r)−1(n)

= ν0 j0−1(r)+γ2 j0−1(r)−1(r)= ν0 j0 (r)−1(r)

and

xS j0 (n)(n)= xS j0−1(n)+a2 j0−1(n)(n)

= xS j0−1(n)+γ2 j0−1(r)(n)= ν0 j0−1(r)+γ2 j0−1(r)(r)= ν0 j0 (r)(r).

Moreover from (3-4), we find that

xS j0 (n)+1(n)= 〈(a2 j0(n)+ 2)xS j0 (n)(n)− xS j0 (n)−1(n)〉

= 〈(γ2 j0(r)+ 2)ν0 j0(r)(r)− ν0 j0 (r)−1(r)〉 = ν0 j0 (r)+1(r).

Since

xi+1(n)= 〈2xi (n)− xi−1(n)〉 for S j0(n)+ 1≤ i ≤ S j0+1(n)− 1

and
νi+1(r)= 〈2νi (r)− νi−1(r)〉

for 0 j0(r)+ 1≤ i ≤ 0 j0(r)+ γ2 j0+1(r)− 1= 0 j0+1(r)− 1, we have

xS j0 (n)+i (n)= ν0 j0 (r)+i (r) for 0≤ i ≤ γ2 j0+1(r). �

Summations. Next we express (3-11), that is,

m(n)∑
i=1

−B1(x i
C+Dδ(n))B1(x i−1

C+Dδ(n))+
bi (n)

2
B2(x i

C+Dδ(n))

in terms of {νi
C D(r)}.
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Lemma 3.6. Let dl(r) := 〈ν0l (r)+1(r)− ν0l (r)(r)〉 and [x]1 := x − 〈x〉. Then for
1≤ γ ≤ q and n such that γ ≤ a2l+1(n) and n = qk+ r , we have

Sl (n)+γ∑
i=Sl (n)+1

(xi (n)− xi−1(n))2 = γ dl(r)2+ (1− 2dl(r))[ν0l (r)(r)+ dl(r)γ ]1

Proof. Since 0< xi (n)≤ 1, we have

−1< xi (n)− xi−1(n) < 1.

Thus

xi (n)− xi−1(n)= 〈xi (n)− xi−1(n)〉+ψi (n),

where

ψi (n)=
{
−1 if xi (n)≤ xi−1(n),

0 if xi (n) > xi−1(n).

Since

〈xi+1(n)− xi (n)〉 =
〈
〈2xi (n)− xi−1(n)〉− xi (n)

〉
= 〈xi (n)− xi−1(n)〉

for Sl(n)+ 1≤ i ≤ Sl+1(n)− 1, we have

〈xi (n)− xi−1(n)〉 = 〈xSl (n)+1(n)− xSl (n)(n)〉 = 〈ν0l (r)+1(r)− ν0l (r)(r)〉 = dl(r).

Hence we have

xi (n)− xi−1(n)= dl(r)+ψi (n).

Thus we obtain

Sl (n)+γ∑
i=Sl (n)+1

(xi (n)− xi−1(n))2 = γ dl(r)2+ (1− 2dl(r))
Sl (n)+γ∑

i=Sl (n)+1

ψi (n)2.

Note that the sum on the right equals the number of i’s satisfying xi (n)≤ xi−1(n)
for Sl(n)+ 1≤ i ≤ Sl(n)+ γ .

Therefore

Sl (n)+γ∑
i=Sl (n)+1

ψi (n)2 = [xSl (n)(n)+ dl(r)γ ]1 = [ν0l (r)(r)+ dl(r)γ ]1. �

For simplicity, we let

F(x, y) := −B1(x)B1(y)+ B2(x)=
(
x − 1

2

)(1
2 − y

)
+ x2
− x + 1

6 .
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Lemma 3.7. If l ≥ 0 and a2l+1(n)≥ q , then

Sl (n)+q∑
i=Sl (n)+1

F(xi (n), xi−1(n))

=
1

12

[
6
(
qdl(r)2+ (1− 2dl(r))[ν0l (r)(r)+ dl(r)q]1

)
− q

]
.

And if 1≤ γ ≤ q − 1 and a2l+1(n)≥ γ ,

Sl (n)+γ∑
i=Sl (n)+1

F(xi (n), xi−1(n))= 1
12

[
6
(
γ dl(r)2+ (1− 2dl(r))[ν0l (r)(r)+ dl(r)γ ]1

+ B2(xSl (n)+γ (n))− B2(xSl (n)(n))
)
− γ

]
,

where B2(x) is the second Bernoulli polynomial.

Proof. We note that

F(x, y)= 1
2(x − y)2− 1

12 +
1
2(B2(x)− B2(y)).

Thus

Sl (n)+γ∑
i=Sl (n)+1

F(xi (n), xi−1(n))

=

Sl (n)+γ∑
i=Sl (n)+1

[ 1
2(xi (n)− xi−1(n))2− 1

12 +
1
2(B2(xi (n))− B2(xi−1(n)))

]
.

We note that for 1≤ γ ≤ q − 1,

Sl (n)+γ∑
i=Sl (n)+1

B2(xi (n))− B2(xi−1(n))= B2(xSl (n)+γ (n))− B2(xSl (n)(n)).

and, from the periodicity of xi (n), we have that for γ = q

Sl (n)+q∑
i=Sl (n)+1

B2(xi (n))− B2(xi−1(n))= 0. �

Proposition 3.8. Suppose δ(n)−1=[[a0(n), a2(n), . . . , as−1(n)]], ai (n)=αi n+βi

for αi , βi ∈ Z and ai (r) = qτi (r) + γi (r) for γi (r) = 〈ai (r)〉q . Let dl
C D(r) :=

〈ν
0l (r)+1
C D (r)− ν0l (r)

C D (r)〉. Then, for n = qk+ r , we have

m(n)∑
i=1

−B1(x i
C+Dδ(n))B1(yi

C+Dδ(n))+
bi (n)

2
B2(x i

C+Dδ(n))=
1

12(AC D(r)+k BC D(r)),
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where

AC D(r)

:=

sµ(s)∑
l=1

−12B1(ν
0l (r)
C D (r))B1(ν

0l (r)−1
C D (r))+ 6(a2l(r)+ 2)B2(ν

0l (r)
C D (r))

+

sµ(s)−1∑
l=0

[
6
(
(γ2l+1(r)− 1)dl

C D(r)
2

+ (1− 2dl
C D(r))[ν

0l (r)
C D (r)+ dl

C D(r)(γ2l+1(r)− 1)]1

+ B2(ν
0l+1(r)−1
C D (r))− B2(ν

0l (r)
C D (r))

)
− γ2l+1(r)+ 1

+ τ2l+1(r)
(
6(qdl

C D(r)
2
+ (1− 2dl

C D(r))[ν
0l (r)
C D (r)+ dl

C D(r)q]1)− q
)]

and

BC D(r) :=
sµ(s)∑
l=1

6qα2l B2(ν
0l (r)
C D (r))

+

sµ(s)−1∑
l=0

α2l+1
(
6(qdl

C D(r)
2
+ (1− 2dl

C D(r))[ν
0l (r)
C D + dl

C D(r)q]1)− q
)
.

Proof. From (3-7), we have

m(n)∑
i=1

B1(x i
C+Dδ(n))B1(yi

C+Dδ(n))+
bi (n)

2
B2(x i

C+Dδ(n))

=

sµ(s)∑
l=1

(
−B1(x

Sl (n)
C+Dδ(n))B1(x

Sl (n)−1
C+Dδ(n))+

α2lqk+τ2l(r)q+γ2l(r)+2
2

B2(x
Sl (n)
C+Dδ(n))

)

+

sµ(s)−1∑
l=0

Sl (n)+qα2l+1k
+qτ2l+1(r)+γ2l+1(r)−1∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n)).

From Lemma 3.7, we have

12

Sl (n)+qα2l+1k
+qτ2l+1(r)γ2l+1(r)−1∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n))

= 12
Sl (n)+γ2l+1(r)−1∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n))

+ 12(α2l+1k+ τ2l+1(r))
Sl (n)+q∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n))
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= 6
(
(γ2l+1(r)−1)dl

C D(r)
2
+(1−2dl

C D(r))
[
ν
0l (r)
C D (r)+dl

C D(r)(γ2l+1(r)−1)
]

1

+ B2(x
Sl (n)+γ2l+1−1
C+Dδ(n) )− B2(x

Sl (n)
C+Dδ(n))

)
− (γ2l+1(r)− 1)

+(α2l+1k+τ2l+1(r))
(
6(qdl

C D(r)
2
+ (1−2dl

C D(r))[ν
0l (r)
C D (r)+dl

C D(r)q]1)−q
)
.

Since

x Sl (n)
C+Dδ(n)= ν

0l (r)
C D (r), x Sl (n)−1

C+Dδ(n)= ν
0l (r)−1
C D (r), and x Sl (n)+γ2l+1(r)−1

C+Dδ(n) = ν
0l+1(r)−1
C D ,

we complete the proof. �

End of the proof. Since ν0l (r)
C D (r), ν0l (r)−1

C D (r) and dl
C D(r) are in 1

q Z, we find that

q2 AC D(r), q2 BC D(r) ∈ Z.

Moreover, we have

L Kn (0, χn, bn)=
1

12q2

∑
C,D

χn(C + Dδ(n))(q2 AC D(r)+ kq2 BC D(r)).

Since χ is a Dirichlet character of modulus q , if n = qk+ r , we can write

χn(bn(C + Dδ(n)))= FC D(r)

for a function FC D . Note that, if Kr is defined,

χn(bn(C + Dδ(n)))= χr (br (C + Dδ(r)))= FC D(r).

(This expression does not make sense if Kr and δ(r) are undefined.)
If we set

Aχ (r) :=
∑
C,D

FC D(r)q2 AC D(r)

and
Bχ (r) :=

∑
C,D

FC D(r)q2 BC D(r),

we obtain the proof. �

4. Biró’s method

Let Kn be a family of real quadratic fields such that the special value of the Hecke
L-function at s = 0 has linearity. Biró [Biró 2003a; 2003b] developed a method
using linearity to find the residue of n such that h(Kn) = 1 by certain primes. In
this section, we sketch Biró’s method.

Let Kn =Q(
√

d ) for a square free integer d = f (n) and Dn be the discriminant
Kn . For an odd Dirichlet character χ : Z/qZ→ C∗, let χn denote the ray class
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character defined as χn = χ ◦NKn : In(q)/Pn(q)+→C∗, and let χD = (
D
·
) denote

the Kronecker character. Then the special value of the Hecke L-function at s = 0
has a factorization

L Kn (0, χn)= L(0, χ)L(0, χχDn )=

(
1
q

q∑
a=1

aχ(a)
)(

1
q Dn

q Dn∑
b=1

bχ(b)χDn (b)
)
.

Let bn = OKn . Suppose that L Kn (0, χn, bn) is linear in the form

L Kn (0, χn, bn)=
1

12q2 (Aχ (r)+ k Bχ (r))

for Aχ (r), Bχ (r) ∈ Z[χ(1), χ(2) · · ·χ(q)]. Let εn be the fundamental unit of Kn .
From Proposition 2.2 in [Byeon and Lee 2011], we find that L Kn (0, χn, bn) =

L Kn (0, χn, (εn)bn). Thus if the class number of Kn is one, then we have for n =
qk+ r

L Kn (0, χn)=
c

12q2 (Aχ (r)+ k Bχ (r))

where c is the number of narrow ideal classes.
Then we have

Bχ (r)k+ Aχ (r)=
12q

c
·

( q∑
a=1

aχ(a)
)
·

(
1

q Dn

q Dn∑
b=1

bχ(b)χDn (b)
)
.

Let Lχ be the cyclotomic field generated by the values of χ . Since

1
q Dn

q Dn∑
b=1

bχ(b)χDn (b)

is integral in Lχ , for a prime ideal I of Lχ dividing
∑q

a=1 aχ(a), we have

Bχ (r)k+ Aχ (r)≡ 0 (mod I ).

And if I does not divide Bχ (r), then

k ≡−
Aχ (r)
Bχ (r)

(mod I ).

Since n = qk+ r , we have

n ≡−q
Aχ (r)
Bχ (r)

+ r (mod I ).

Moreover, if OLχ /I =Z/pZ, the residue of n modulo p is expressed only in terms
of Aχ (r), Bχ (r), and r as above.

We now list the necessary conditions on q and p:
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Condition (∗). q is an odd integer; p is an odd prime; χ is a character with
conductor q; I is prime ideal in Lχ lying over p, with I |

(∑q
a=1 aχ(a)

)
and

OLχ /I = Z/pZ.

When linearity holds, these conditions are independent of the family {Kn}.
Let S be the set of (q, p) satisfying Condition (∗). We partition S as follows:

S =
⋃

q odd integer

Sq , where Sq := {(q, p) ∈ S}.

Finally, for (q, p) ∈ S, we obtain the residue of n = qk+r modulo p for which
the class number of Kn is 1.

The above method has been used to find an upper bound on the discriminant of
real quadratic fields with class number 1 in some families of Richaud–Degert type
where the linearity criterion is satisfied [Biró 2003a; 2003b; Byeon et al. 2007;
Lee 2009a]. This information, together with a properly developed class number
one criteria for each case, could be used to solve the class number problems.

It is easily checked that the criterion is fulfilled by general families of Richaud–
Degert type. Furthermore, there are abundant examples of families of real quadratic
fields satisfying the linearity criterion [McLaughlin 2003]. For these, we have
controlled behavior of the special values of the Hecke L-function at s = 0, and
Biro’s method is directly applicable in each case. We expect this method can be
used to study many meaningful arithmetic problems for families of real quadratic
fields, in addition to the class number problem.

5. A generalization

We conclude with a possible generalization of the linearity of the special value of
the Hecke L-function. This generalization will be dealt in [Jun and Lee 2012].

As in the criterion for linearity, we set Kn = Q(
√

f (n) ) and let bn an integral
ideal of Kn . We assume b−1

n = [1, δ(n)] for δ(n)− 1 = [a1(n), a2(n), . . . , as(n)],
with ai (x) ∈ Z[x].

For a given conductor q , write n = qk + r for r = 0, 1, 2, . . . , q − 1. Suppose
N =maxi {deg(ai (x))}. Then the special value of the partial ζ -function of the ray
class of bn mod q at s = 0 can be written as

ζKn,q(0, (C + Dδ(n))bn)=
1

12q2

(
A0(r)+ A1(r)k+ · · ·+ AN (r)k N )

for some rational integers Ai depending only on r .
We have no application of this property in arithmetic, but it will be very inter-

esting if one applies it in a similar fashion as Biró’s method.
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