The Picard group of a $K3$ surface and its reduction modulo p

Andreas-Stephan Elsenhans and Jörg Jahnel
The Picard group of a K3 surface and its reduction modulo p

Andreas-Stephan Elsenhans and Jörg Jahnel

We present a method to compute the geometric Picard rank of a K3 surface over \mathbb{Q}. Contrary to a widely held belief, we show that it is possible to verify Picard rank 1 using reduction at a single prime.

1. Introduction

1.1. For complex, projective K3 surfaces, the Picard group is a highly interesting invariant. In general, it is isomorphic to \mathbb{Z}^n for some $n = 1, \ldots, 20$. A generic K3 surface has Picard rank 1. Nevertheless, the first explicit examples of K3 surfaces over \mathbb{Q} having geometric Picard rank 1 were constructed by R. van Luijk [2007] as late as 2004. Van Luijk’s method is based on reduction modulo p. It works as follows.

Approach 1.2 (van Luijk). Let S be a K3 surface over \mathbb{Q}.

(i) At a place p of good reduction, the Picard group $\text{Pic}(S_{/\mathbb{Q}})$ of the surface injects into the Picard group $\text{Pic}(S_{/\mathbb{F}_p})$ of its reduction modulo p.

(ii) On its part, the group $\text{Pic}(S_{/\mathbb{F}_p})$ injects into the second étale cohomology group $H^2_{\text{ét}}(S_{/\mathbb{F}_p}, \mathbb{Q}_l(1))$.

(iii) Only roots of unity can arise as eigenvalues of the Frobenius Frob on the image of $\text{Pic}(S_{/\mathbb{F}_p})$ in $H^2_{\text{ét}}(S_{/\mathbb{F}_p}, \mathbb{Q}_l(1))$. The number of eigenvalues of this form, counted with multiplicities, is therefore an upper bound for the Picard rank of $S_{/\mathbb{F}_p}$. One may compute the eigenvalues of Frob by counting the points on S, defined over \mathbb{F}_p and some finite extensions.

Doing this for one prime, one obtains an upper bound for $\text{rk} \text{Pic}(S_{/\mathbb{F}_p})$, which is always even. The Tate conjecture asserts that this bound is actually sharp.

Elsenhans was supported in part by the Deutsche Forschungsgemeinschaft (DFG) through a funded research project.

MSC2010: primary 14C22; secondary 14D15, 14J28, 14Q10.

Keywords: K3 surface, Picard group, Picard scheme, deformation, Artin approximation, Van Luijk’s method.
Therefore, the best that could happen is to find a prime p that yields an upper bound of 2 for the rank of $\text{Pic}(S_{\overline{Q}})$.

(iv) In this case, the assumption that the surface has Picard rank 2 over \overline{Q} implies that the discriminants of both Picard groups, $\text{Pic}(S_{\overline{Q}})$ and $\text{Pic}(S_{\overline{F}_p})$, belong to the same square class. Note here that reduction modulo p respects the intersection pairing.

(v) To obtain a contradiction, one combines information from two primes. It may happen that one has a rank bound of 2 at both places but that different square classes arise for the discriminants. Then, these data are incompatible with Picard rank 2 over \overline{Q}. Geometric Picard rank 1 is proven.

1.3. The improvement. The idea behind Approach 1.2 is to consider the specialization $sp : \text{Pic}(S_{\overline{Q}}) \hookrightarrow \text{Pic}(S_{\overline{F}_p})$ as an injection of lattices. Then, the two possibilities $\text{rk Pic}(S_{\overline{Q}}) < \text{rk Pic}(S_{\overline{F}_p})$ and $\text{rk Pic}(S_{\overline{Q}}) = \text{rk Pic}(S_{\overline{F}_p})$ are distinguished. In the latter, the standard fact is used that $\text{disc Pic}(S_{\overline{Q}})/\text{disc Pic}(S_{\overline{F}_p})$ is a perfect square.

We will show in this article that the assertion for the second case may be refined to $\text{disc Pic}(S_{\overline{Q}}) = \text{disc Pic}(S_{\overline{F}_p})$. More precisely, we shall prove that, at least for $p \neq 2$, the cokernel of $sp : \text{Pic}(S_{\overline{Q}}) \hookrightarrow \text{Pic}(S_{\overline{F}_p})$ is always torsion-free. This is true actually in a by-far more general situation than just for $K3$ surfaces.

Theorem 1.4. Let R be a discrete valuation ring with quotient field K of characteristic 0 and residue field k of characteristic $p > 0$. Further, let $\pi : X \to \text{Spec } R$ be a morphism of schemes that is proper and smooth.

Suppose that R is of ramification degree $e < p - 1$ and that k is perfect. Then, the cokernel of the specialization homomorphism $sp_K : \text{Pic}(X_{\overline{K}}) \to \text{Pic}(X_{\overline{K}})$ is torsion-free.

Remarks 1.5. (a) In the applications, we will have $R = \mathbb{Z}_{(p)} \subset \overline{Q}$. Then, the assumption simply means $p \neq 2$.

(b) We will show this theorem in Section 3. As an application, one may prove $\text{rk Pic}(S_{\overline{Q}}) = 1$ for a $K3$ surface S using its reduction at a single prime. This works as follows.

Approach 1.6. Let a $K3$ surface S over \overline{Q} be given.

(i) For a prime $p \neq 2$ of good reduction, perform steps (i), (ii) and (iii) as in Approach 1.2. Thereby, the hope is to prove $\text{rk Pic}(S_{\overline{F}_p}) = 2$. Further, compute the discriminant giving two explicit generators.

Alternatively, to determine the discriminant, one might use the Artin–Tate formula [Milne 1975]. In this case, $\text{rk Pic}(S_{\overline{F}_p}) = 2$ is shown only relative to the Tate conjecture. Observe, however, that a surface with $\text{rk Pic}(S_{\overline{F}_p}) = 1$, due to a failure of the Tate conjecture, would serve our purposes as well.
(ii) Assume \(\text{rk} \text{Pic}(S_{\mathbb{Q}}) = 2 \). Then, according to Theorem 1.4, every invertible sheaf on \(S_{\mathbb{F}_p} \) must lift to \(S_{\mathbb{Q}} \). Estimate the degree of a hypothetical effective divisor. Finally, use Gröbner bases to verify that such a divisor does not exist.

Example 1.7. Consider the \(K3 \) surface \(S \) over \(\mathbb{Q} \) given by
\[
w^2 = x^5 y + x^4 y^2 + 2 x^3 y^3 + x^2 y^4 + x y^5 + 4 y^6 + 2 x^5 z + 2 x^4 z^2 + 4 x^3 z^3 + 2 x z^5 + 4 z^6.
\]
Then, \(\text{rk} \text{Pic}(S_{\mathbb{Q}}) = 1 \).

Proof. For the reduction of \(S \) at the prime \(5 \), one sees that the branch locus has a tritangent line given by \(z - 2 y = 0 \). It meets the branch locus at \((1 : 0 : 0), (1 : 3 : 1) \), and \((0 : 1 : 2) \).

The numbers of points on \(S \) over \(\mathbb{F}_5 \) are, in this order, 41, 751, 15 626, 392 251, 9 759 376, 244 134 376, 6 103 312 501, 152 589 156 251, 3 814 704 296 876, and 95 367 474 609 376. Thus, the traces of Frob on \(H^2_{\text{ét}}(S_{\mathbb{F}_5}, \mathbb{Q}_l) \) are 15, 125, 0, 1 625, \(-6 250\), \(-6 250\), \(-203 125\), 1 265 625, 7 031 250, and 42 968 750.

Elsenhans and Jahnel [2008a, Algorithm 23] show that the sign in the functional equation is positive. The characteristic polynomial of Frob is therefore completely determined. For its decomposition into prime polynomials, we find (after Tate twist to \(H^2_{\text{ét}}(S_{\mathbb{F}_5}, \mathbb{Q}_l(1)) \))
\[
\frac{1}{5} (t - 1)^2 (5 t^{20} - 5 t^{19} - 5 t^{18} + 10 t^{17} - 2 t^{16} - 3 t^{15} + 4 t^{14} - 2 t^{13} - 2 t^{12} + t^{11}
+ 3 t^{10} + t^9 + 2 t^8 - 2 t^7 - 4 t^6 - 3 t^5 - 2 t^4 + 10 t^3 - 5 t^2 - 5 t + 1).
\]

This shows \(\text{rk} \text{Pic}(S_{\mathbb{F}_5}) \leq 2 \).

The irreducible components of the pull-back of the tritangent line are explicit generators for \(\text{Pic}(S_{\mathbb{F}_5}) \). Such a component \(l \), because it is a projective line, has self-intersection number \(l^2 = -2 \). Further, \(lh = 1 \) for \(h \) the pull-back of a line. If we had \(\text{rk} \text{Pic}(S_{\mathbb{Q}}) = 2 \), then the invertible sheaf \(\mathcal{O}(l) \) would lift to \(S_{\mathbb{Q}} \). We would have a divisor \(L \) on \(S_{\mathbb{Q}} \) such that \(HL = 1 \) and \(L^2 = -2 \). By [Barth et al. 1984, Proposition VIII.3.6.i], such a divisor is automatically effective.

The equation \(HL = 1 \) shows that \(L \) is obtained from a line on \(\mathbb{P}^2 \), the pull-back of which splits into two components. This is possible only for a line tritangent to the branch locus. Algorithm 8 of [Elsenhans and Jahnel 2008a] shows, however, using Gröbner bases, that such a tritangent line does not exist.

\(\square \)

2. The cokernel of the restriction map

Notation 2.1. (i) Let \(R \) be a discrete valuation ring of unequal characteristic. We will write \(K := \text{Quot}(R) \) for its quotient field, \(p \) for the maximal ideal, \(k := R/p \) for the residue field of characteristic \(p \), and \(\nu : K \to \mathbb{Z} \) for the normalized valuation. Let \(e := \nu(p) \) denote the ramification degree of \(R \).
(ii) Let X be an R-scheme. Then, we will write X_p for the special fiber and X_η for the base extension of X. For L an extension of K, we will denote by X_L the extension of X_η to L. Analogously, for l an extension of k, we will write X_l for the base extension of X_p to l. In the particular case that $l = \mathbb{F}_q$, the shortcut X_q shall be used for X_l.

Proposition 2.2. Let $\pi : X \to \text{Spec } R$ be a morphism of schemes that is proper and flat. Suppose that the special fiber X_p is normal.

If R is complete and satisfies the condition $e < p - 1$, then the cokernel of the restriction homomorphism $\text{Pic}(X) \to \text{Pic}(X_p)$ is torsion-free.

Proof. This result was obtained by M. Raynaud in the course of his investigations on the Picard scheme [Raynaud 1979, Théorème 4.1.2.1]. □

Remark 2.3. Assume, also, that the restriction homomorphism $H^1(X, \mathcal{O}_X) \to H^1(X_p, \mathcal{O}_{X_p})$ is surjective. Then, the assertion of Proposition 2.2 may be established using the following elementary argument, which is also due to M. Raynaud [1979, section 1].

Consider the functors T^i on the category of all finitely generated R-modules to finitely generated R-modules, given by $T^i(M) := H^i(X, \pi^*\mathcal{M})$. Here, \mathcal{M} denotes the coherent sheaf associated with the R-module M. According to [Grothendieck 1963, Proposition (7.7.10), p. 71], the functor T^1 is right exact. Hence, by [ibid., Théorème (7.7.5.II), p. 68], T^2 is left exact. This, in turn, immediately implies that $H^2(X, \mathcal{O}_X)$ is torsion-free.

Further, the short exact sequence

$$0 \to \mathcal{U}_1 \to \mathcal{O}_X^* \to \mathcal{O}_{X_p}^* \to 0$$

shows that $\text{coker}(\text{Pic}(X) \to \text{Pic}(X_p))$ injects into $H^2(X, \mathcal{U}_1)$. Finally, as $e < p - 1$, the exponential map provides us with an isomorphism

$$\mathcal{O}_X^* \xrightarrow{p} p\mathcal{O}_X \xrightarrow{\exp} \mathcal{U}_1.$$

Remarks 2.4. (i) The additional assumption of 2.3 is fulfilled in our applications.

(ii) For prime-to-p torsion, the assertion of Proposition 2.2 is true in a more general situation.

Proposition 2.5. Let $\pi : X \to \text{Spec } R$ be a proper morphism of schemes.

If R is Henselian, then the cokernel of the restriction homomorphism

$$\text{Pic}(X) \to \text{Pic}(X_p)$$

has no prime-to-p torsion.
Proof. Let \(l \neq p \) be a prime number. We will show that there is no \(l \)-torsion. For this, we observe at first that, according to a consequence of the theorem on proper base change [Artin et al. 1973, Exp. XII, Corollaire 5.5.iii], the restriction morphism induces bijections

\[
H^1_{\text{ét}}(X, \mu_l) \cong H^1_{\text{ét}}(X_p, \mu_l) \quad \text{and} \quad H^2_{\text{ét}}(X, \mu_l) \cong H^2_{\text{ét}}(X_p, \mu_l).
\]

Because [Berthelot et al. 1971, Exp. X, diagramme (7.13.10)] the restriction homomorphisms on the Picard groups and étale cohomology commute with the Chern maps, we see that restriction induces a surjection \(\text{Pic}(X)_l \twoheadrightarrow \text{Pic}(X_p)_l \) and an injection \(\text{Pic}(X) / l \hookrightarrow \text{Pic}(X_p) / l \).

Applied to the two commutative diagrams of short exact sequences

\[
\begin{array}{cccccc}
0 & \rightarrow & \text{Pic}(X)_l & \rightarrow & \text{Pic}(X) & \rightarrow & P_X & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \text{Pic}(X_p)_l & \rightarrow & \text{Pic}(X_p) & \rightarrow & P_{X_p} & \rightarrow & 0,
\end{array}
\]

the snake lemma now shows that the induced homomorphism

\[
\text{coker}(\text{Pic}(X) \rightarrow \text{Pic}(X_p)) \rightarrow \text{coker}(P_X \rightarrow P_{X_p})
\]

is a bijection, while

\[
\text{coker}(P_X \rightarrow P_{X_p}) \rightarrow \text{coker}(\text{Pic}(X) \rightarrow \text{Pic}(X_p))
\]

is injective. Consequently, \(\text{coker}(\text{Pic}(X) \rightarrow \text{Pic}(X_p)) \) has no \(l \)-torsion. \(\square \)

3. The cokernel of the specialization map

3.1. In this section, we continue to use the notation from 2.1. Let \(\pi : X \rightarrow \text{Spec} R \) be a morphism of schemes that is proper and smooth. We have the restriction homomorphisms

\[
\text{Pic}(X_\eta) \hookrightarrow \text{Pic}(X) \rightarrow \text{Pic}(X_p).
\]

As \(\pi \) is smooth, the arrow to the left is a bijection [Berthelot et al. 1971, Exp. X, App. 7.8]. Consequently, there is a natural homomorphism \(\text{sp} : \text{Pic}(X_\eta) \rightarrow \text{Pic}(X_p) \), which is called the specialization.
Lemma 3.2. Let $\pi : X \to \text{Spec } R$ be a morphism of schemes that is proper and smooth.

If R is complete and satisfies the condition $e < p - 1$, then the cokernel of the specialization homomorphism $\text{sp} : \text{Pic}(X_\eta) \to \text{Pic}(X_p)$ is torsion-free.

Proof. The assertion follows directly from Proposition 2.2. \hfill \square

3.3. Let K'/K be an extension field equipped with a discrete valuation extending that on K. Denote by R' the discrete valuation ring and by k' the residue field. The morphism $X \times_{\text{Spec } R} \text{Spec } R' \to \text{Spec } R'$, obtained by base change, induces a specialization homomorphism $\text{sp}_{K'} : \text{Pic}(X_{K'}) \to \text{Pic}(X_{k'})$.

There are the following two applications.

(i) Suppose R to be complete. Then, for every finite extension K'/K, there is a unique [Serre 1968, Chap. II, §2, Proposition 3] discrete valuation extending the valuation on K. The direct limit of the homomorphisms $\text{sp}_{K'} : \text{Pic}(X_{K'}) \to \text{Pic}(X_{k'})$ is a natural homomorphism $\text{sp}_R : \text{Pic}(X_R) \to \text{Pic}(X_{\overline{K}})$, again called the specialization.

(ii) For general R, fix an embedding $K \hookrightarrow \overline{K}$ of the algebraic closure of K into that of its completion. By functoriality, this embedding induces a homomorphism $\text{Pic}(X_R) \to \text{Pic}(X_{\overline{K}})$. Composing with $\text{sp}_{\overline{K}}$, constructed in (i), one has a specialization homomorphism $\text{sp}_R : \text{Pic}(X_R) \to \text{Pic}(X_{\overline{K}})$.

Proposition 3.4. Let $\pi : X \to \text{Spec } R$ be a morphism of schemes that is proper and smooth.

Suppose R is complete and satisfies the condition $e < p - 1$, and let k be perfect. Then, the cokernel of the specialization homomorphism $\text{sp}_R : \text{Pic}(X_R) \to \text{Pic}(X_{\overline{K}})$ is torsion-free.

Proof. By [Serre 1968, Chap. III, §5, Corollaire 1 du Théorème 3], K has a unique maximal unramified extension K^u, which is actually the filtered direct limit of all finite unramified extensions K'/K.

An unramified extension does not change the ramification degree. Hence, by Lemma 3.2, the homomorphisms $\text{sp}_{K'} : \text{Pic}(X_{K'}) \to \text{Pic}(X_{k'})$ have torsion-free cokernels. As the filtered direct limit is an exact functor, the same is true for $\text{sp}_{K^u} : \text{Pic}(X_{K^u}) \to \text{Pic}(X_{\overline{K}})$.

We claim that the specialization homomorphism sp_R has the same image in $\text{Pic}(X_{\overline{K}})$ as sp_{K^u}. For this, let $L \in \text{Pic}(X_R)$. The inertia group $I := \text{Gal}(\overline{K}/K^u)$ sends L to a finite orbit $\{L_1, \ldots, L_m\}$. The specializations of L_1, \ldots, L_m in $\text{Pic}(X_{\overline{K}})$ are all the same. Therefore,

$$m \cdot \text{sp}_R(L) = \text{sp}_R(L^\otimes m) = \text{sp}_R(L_1 \otimes \cdots \otimes L_m) = \text{sp}_{K^u}(L_1 \otimes \cdots \otimes L_m).$$
since $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_m$ is I-invariant. Hence, $m \cdot \text{sp}_K(\mathcal{L}) \in \text{im} \text{sp}_{K^\text{nr}}$. As sp_{K^nr} has a torsion-free cokernel, we see that $\text{sp}_K(\mathcal{L}) \in \text{im} \text{sp}_{K^\text{nr}}$, too. □

Remark 3.5. The argument above uses that $\text{Pic}(X_L) = \text{Pic}(X_K)^{\text{Gal}(L/K)}$. This equality is certainly not correct, in general. It is true as soon as $Y(K) \neq \emptyset$ for every connected component Y of X.

As π is smooth, we indeed have $Y(K^\text{nr}) \neq \emptyset$. To see this, let $s : \text{Spec} l \to Y_k$ be a point defined over a finite extension. By [Grothendieck 1967, Proposition (17.5.3), p. 68], s may be lifted to a morphism $\text{Spf} S \to Y$ for S the corresponding unramified extension of R. Then [Grothendieck 1961, Théorème (5.4.1), p. 156] yields the desired point.

Theorem 3.6. Let R be a discrete valuation ring with quotient field K of characteristic 0 and residue field k of characteristic $p > 0$. Further, let $\pi : X \to \text{Spec} R$ be a morphism of schemes that is proper and smooth.

Suppose that R is of ramification degree $e < p - 1$ and that k is perfect. Then, the cokernel of the specialization homomorphism $\text{sp}_K : \text{Pic}(X_K) \to \text{Pic}(X_k)$ is torsion-free.

Corollary 3.7. Let $p \neq 2$ be a prime number and X be a scheme proper and flat over \mathbb{Z}. Suppose that the special fiber X_p is nonsingular.

Then, the cokernel of the specialization homomorphism

$$\text{sp}_\mathbb{Q} : \text{Pic}(X_{\mathbb{Q}}) \to \text{Pic}(X_{\mathbb{F}_p})$$

is torsion-free.

Remark 3.8. The technical condition on the ramification degree cannot be omitted. In fact, D. Maulik and B. Poonen [2010, Example 3.12] constructed counterexamples to the assertion of Theorem 3.6 in the situation that $e \geq p - 1$.

Remarks 3.9 (elementary reductions). (i) Let R' be a discrete valuation ring, finite and flat over R. Then, the assertion for $\text{pr}_2 : X \times_{\text{Spec} R} \text{Spec} R' \to \text{Spec} R'$, obtained by base-change, implies that for π.

(ii) In particular, we may suppose that $\pi : X \to \text{Spec} R$ has a section.

(iii) We may suppose that the fibers of π are geometrically connected.

Indeed, as $\pi : X \to \text{Spec} R$ is proper and smooth, one has $\pi_* \mathcal{O}_X = \tilde{S}$ for S a finite étale R-algebra [Grothendieck 1963, Remarque (7.8.10.i), p. 75]. Hence, there exists a discrete valuation ring R', étale over R, such that $S \otimes_R R'$ is a direct product of finitely many copies of R'. This means that the connected components of $X \times_{\text{Spec} R} \text{Spec} R'$ have geometrically connected fibers. Knowing the assertion for each component separately, the proof will be complete.
Proposition 3.10. Let R be a discrete valuation ring of characteristic 0 and let $\pi : X \to \text{Spec } R$ be a proper and smooth morphism of schemes. Suppose that π has a section and that the fibers of π are geometrically connected.

Then, the specialization homomorphisms

$$\text{sp}_R : \text{Pic}(X_R) \to \text{Pic}(X_k) \quad \text{and} \quad \text{sp}_\widehat{R} : \text{Pic}(X_{\widehat{R}}) \to \text{Pic}(X_k)$$

have the same image.

Proof. As sp_R factors via $\text{sp}_\widehat{R}$, we clearly have $\text{im } \text{sp}_R \subseteq \text{im } \text{sp}_\widehat{R}$. We will show the reverse inclusion in several steps. Let an invertible sheaf $\mathcal{L} \in \text{Pic}(X_{\widehat{R}})$ be given. We have to construct an invertible sheaf $\mathcal{L}' \in \text{Pic}(X_R)$ having the same specialization as \mathcal{L}.

First step (the Picard scheme). Our assumptions on π imply that it is cohomologically flat in dimension zero [Grothendieck 1963, Proposition (7.8.6), p. 74]. Hence, by [Artin 1969b, Theorem 7.3], the Picard functor $\text{Pic}_{X/R}$ is representable by an algebraic space $P := \text{Pic}_{X/R}$ that is locally of finite type over R. According to [Grothendieck 1962, Exp. 236, Théorème 2.1.i], P is separated. This is enough to ensure that P is actually a scheme [Raynaud 1970, Théorème (3.3.1)]. Further, every closed subset $Z \subseteq P$, being of finite type, is proper over R.

Second step (the representing morphism). The invertible sheaf $\mathcal{L} \in \text{Pic}(X_{\widehat{R}})$ is defined over a finite extension L of \widehat{R}. Hence, it defines a morphism $i : \text{Spec } L \to P$. As \widehat{R} is complete, there is a unique prolongation to L of the discrete valuation on \widehat{R}. That is, we have a discrete valuation ring $S \supseteq \widehat{R}$. There is a unique continuation $j : \text{Spec } S \to P$ of i.

Third step (Artin approximation). By Lemma 3.12, we have $S = \widehat{S}$ for a discrete valuation ring \widehat{S}, finite over R. Write L for the quotient field of \widehat{S}. This is a finite extension of K.

We now recall that discrete valuation rings of characteristic zero are excellent [Grothendieck 1965, Scholie (7.8.3.iii), p. 214]. In particular, Artin’s approximation results [1969a] are applicable. According to [1969a, Corollary (2.5)], there are an étale extension S' of \widehat{S} and a morphism $j' : \text{Spec } S' \to P$ of schemes that coincides, up to extensions of the base field, with j on the special fiber.

Corresponding to j', there is some $\xi \in \text{Pic}_{X/R}(\text{Spec } S')$.

Fourth step (an invertible sheaf). As the fibers of X are geometrically connected, we have $\pi_* \mathcal{O}_X = \mathcal{O}_{\text{Spec } R}$. Further, since π has a section, one has [Grothendieck 1962, Exp. 232, Proposition 2.1]

$$\text{Pic}_{X/R}(T) = \text{Pic}(X \times_{\text{Spec } R} T) / \text{Pic}(T)$$
for every R-scheme T. In particular,

$$\text{Pic}_{X/R}(\text{Spec } S') = \text{Pic}(X \times_{\text{Spec } R} \text{Spec } S') / \text{Pic}(\text{Spec } S')$$

$$= \text{Pic}(X \times_{\text{Spec } R} \text{Spec } S').$$

Hence, ξ defines an invertible sheaf on $X \times_{\text{Spec } R} \text{Spec } S'$. Let $L' \in \text{Pic}(X_{\overline{K}})$ be its restriction to the generic fiber. Then, by construction, L' has the same specialization as L. The assertion follows. □

Remark 3.11. Suppose that $H^1(X, \mathcal{O}_X) = 0$. Then, Proposition 3.10 is significantly more elementary. In fact, the Picard scheme P_K is of dimension zero [Grothendieck 1962, Exp. 236, Proposition 2.10.iii] in this case. Hence, every point on P_K is defined over \overline{K}. No approximation argument is necessary.

Actually, the assumption $H^1(X, \mathcal{O}_X) = 0$ is fulfilled in the examples, discussed in 1.7 and below in Section 4.

Lemma 3.12. Let R be a discrete valuation ring with quotient field K of characteristic zero and L/\hat{K} a finite field extension of its completion.

Then, there exists a subfield $\hat{L} \subset L$, finite over K, such that $\hat{L} = L$.

Proof. Choose a primitive element x of L over \hat{K} and let $f \in \hat{K}[X]$ be its minimal polynomial. Then, the assertion is an immediate consequence of [Serre 1968, Chapitre II, §2, Exercice 2]. □

3.13. Proof of Theorem 3.6. Consider the completion \hat{R} of R and denote by \hat{K} the corresponding quotient field. The ramification degree of \hat{R} is the same as that of R. Therefore, Proposition 3.4 shows that the specialization homomorphism $sp_{\overline{K}} : \text{Pic}(X_{\overline{K}}) \to \text{Pic}(X_{\overline{K}})$ has a torsion-free cokernel. Further, by Proposition 3.10, $sp_{\overline{K}}$ has the same image in $\text{Pic}(X_{\overline{K}})$ as $sp_{\overline{K}}$. This implies the assertion. □

4. The obstruction to first order deformations

The obstructions to lifting invertible sheaves were essential for the elementary proof of Proposition 2.2, as discussed in 2.3. In some cases, they can be made explicit.

Proposition 4.1. Let S be a $K3$ surface of degree 2 over \mathbb{Q}, given explicitly by

$$w^2 = f_6(x, y, z)$$

for $f_6 \in \mathbb{Z}[x, y, z]$ of degree 6. Suppose, for a prime $p \neq 2$ of good reduction, there is an \mathbb{F}_p-rational line “$\ell = 0$”, tritangent to the ramification locus of S_p. Write l for an irreducible component of the pull-back of the tritangent.

One has $f_6 \equiv f_3^2 + \ell f_5 \pmod{p}$ for homogeneous forms $f_3, f_5 \in \mathbb{Z}[x, y, z]$. Put

$$G(x, y, z) := (f_6 - f_3^2 - \ell f_5)/p.$$
Then, \(\mathcal{O}(l) \) lifts to \(S_{p^2} \) if and only if \(G \) vanishes in \(\mathbb{F}_p[x, y, z]/(\ell, f_3, f_5) \).

Proof. Suppose that \(\mathcal{O}(l) \) has a lift \(\mathcal{L} \in \text{Pic}(X_{p^2}) \). Then, \(\mathcal{L}/p\mathcal{L} \cong \mathcal{O}(l) \). Since multiplication by \(p \) induces an isomorphism \(\mathcal{L}/p\mathcal{L} \cong p\mathcal{L} \), we automatically have a short exact sequence

\[
0 \rightarrow \mathcal{O}(l) \rightarrow \mathcal{L} \rightarrow \mathcal{O}(l) \rightarrow 0.
\]

As \(H^1(X_p, \mathcal{O}(l)) = 0 \), the restriction map \(H^0(X_{p^2}, \mathcal{L}) \rightarrow H^0(X_p, \mathcal{O}(l)) \) is a surjection. That is, the divisor \(l \) on \(X_p \) necessarily lifts to an effective Cartier divisor on \(X_{p^2} \).

This is possible only when the line defined by \(\ell \) may be lifted to \(\mathbb{P}^2 \) in such a way that it is still a tritangent. On the other hand, if \(\ell \) may be lifted to \(\mathbb{P}^2 \), such that it is still a tritangent, then clearly \(\mathcal{O}(l) \) lifts to \(X_{p^2} \).

Explicitly, the condition means that \(f_6 \) is a square modulo \(p^2 \) and some lift of \(\ell \). Writing

\[
f_6 \equiv (f_3 + pf_{5'})^2 + (\ell + p\ell')(f_5 + pf_5') \pmod{p^2},
\]

one immediately sees that this is equivalent to the assertion that \(G \) vanishes in \(\mathbb{F}_p[x, y, z]/(\ell, f_3, f_5) \). \(\square \)

Remark 4.2. There is another proof that consists of the determination of the cohomological obstruction to lifting \(\mathcal{O}(l) \), that is, of the image of \(\mathcal{O}(l) \) under the connecting homomorphism \(d : \text{Pic}(X_p) \rightarrow H^2(X_p, \mathcal{O}_{X_p}) \) that is induced by the short exact sequence

\[
0 \rightarrow \mathcal{O}_{X_p} \rightarrow \mathcal{O}_{X_{p^2}}^* \rightarrow \mathcal{O}_{X_p}^* \rightarrow 0.
\]

The obstruction may easily be computed in Čech cohomology for a suitable affine open covering of \(X_{p^2} \). Via the corresponding isomorphism \(H^2(X_p, \mathcal{O}_{X_p}) \cong \mathbb{F}_p \), our result is indeed \(((-G) \mod (p, \ell, f_3, f_5)) \). The necessary calculations are, however, rather lengthy and shall not be reproduced here.

4.3. In the examples below, we will use the obstruction in its explicit form, as given in Proposition 4.1. The methods for point counting, which we apply, are explained in some detail in [Elsenhans and Jahnel 2008a; 2008b; 2010].

Example 4.4. Let \(S \) be a K3 surface over \(\mathbb{Q} \) given by \(w^2 = f_6(x, y, z) \). Suppose

\[
f_6(x, y, z) = x^6 + 2x^5z + 2x^4y^2 + 2x^4z^2 + 2x^3y^3 + 2x^3z^3 + 2x^2y^4 + 2x^2y^3z + x^2z^4 + xy^3z^2 + 2xz^5 + y^6 \pmod{3}.
\]

Assume further that the coefficient of \(y^2z^4 \) is not divisible by 9.

Then, \(\text{rk Pic}(S_{\overline{\mathbb{Q}}}^*) = 1 \).
Proof. A direct calculation shows that, modulo 3, the right hand side is \(f_5^2 + xf_5 \) for \(f_3 = 2x^3 + 2x^2z + xz^2 + 2y^3 \) and \(f_5 = 2x^3y^2 + x^2z^3 + 2xy^4 + 2z^5 \). Thus, the branch locus of \(S_3 \) has a tritangent line given by \(x = 0 \).

The numbers of points over \(\mathbb{F}_{3^d} \) are, in this order, 19, 127, 676, 6 751, 58 564, 532 414, 4 791 232, 43 038 703, 387 383 311, and 3 486 675 052. For the decomposition of the characteristic polynomial of the Frobenius on \(H^2_{\text{ét}}(S_{\mathbb{F}_3}, \mathbb{Q}_l(1)) \), we find

\[
\frac{1}{3}(t-1)^2(3t^{20} - 3t^{19} - 3t^{18} + 8t^{17} - 3t^{16} - 4t^{15} + 6t^{14} - 4t^{13} + 2t^{12} + 4t^{11} - 7t^{10} + 4t^9 + 2t^8 - 4t^7 + 6t^6 - 4t^5 - 3t^4 + 8t^3 - 3t^2 - 3t + 3).
\]

This shows \(\dim \text{Pic}(S_{\mathbb{F}_3}) \leq 2 \).

Let \(l \) be an irreducible component of the pull-back of the tritangent line. We have to show that the obstruction to lifting \(\mathcal{O}(l) \) is nonzero. For this, we observe that \(x, f_3, \) and \(f_5 \) do not generate the monomial \(y^2z^4 \). However, \(G \) contains this monomial by its very definition. \(\square \)

Example 4.5. Consider the \(K3 \) surface \(S \) over \(\mathbb{Q} \), given by \(w^2 = f_6(x, y, z) \) for

\[
f_6(x, y, z) = 4x^6 + 2x^5y + 12x^5z + 2x^4y^2 + 4x^4yz + 12x^4z^2 + 24x^3y^3 - 57x^3y^2z - 9x^3yz^2 + 6x^3z^3 + 8x^2y^4 - 5x^2y^3z - 72x^2y^2z^2 + 7x^2yz^3 + 4x^2z^4 + 20xy^4z - 52xy^3z^2 - 57xy^2z^3 + 7xyz^4 + 4y^5z - 7y^4z^2 - 18y^3z^3 + 7y^2z^4 + 12yz^5 + 2z^6.
\]

Then, \(\dim \text{Pic}(S_{\mathbb{Q}}) = 3 \).

Proof. We have

\[
f_6 = (2x^3 + 2x^2z + y^2z + yz^2 + z^3)^2 \\
+ (2x^2 + 2xz + yz + z^2)(x^3y + 2x^3z + x^2y^2 + x^2yz + 2x^2z^2 + 12xy^3 \\
- 34xy^2z - 9xyz^2 - 2xz^3 + 4y^4 - 15y^3z - 7y^2z^2 + 9yz^3 + z^4)
\]

and

\[
f_6 = 4(x^3 + 2x^2y + 2x^2z + xy^2 + xyz + xz^2 + y^2z + yz^2 + z^3)^2 \\
- (x^2 + xz + yz + z^2)(14x^3y + 4x^3z + 22x^2y^2 + 22x^2yz + 8x^2z^2 - 8xy^3 \\
+ 61xy^2z + 9xyz^2 + 6xz^3 - 4y^4 + 15y^3z + 11y^2z^2 - 6yz^3 + 2z^4).
\]

Hence, there are two conics \(C_1 \) and \(C_2 \), each of which is six times tangent to the ramification locus of \(S \). The irreducible components of their pull-backs yield the
intersection matrix
\[
\begin{pmatrix}
-2 & 6 & 1 & 3 \\
6 & -2 & 3 & 1 \\
1 & 3 & -2 & 6 \\
3 & 1 & 6 & -2
\end{pmatrix},
\]
which is of rank 3. Hence, \(\text{rk Pic}(S_{\overline{\mathbb{Q}}}) \geq 3\).

On the other hand, \(S\) has good reduction at the prime \(p = 3\). Point counting over extensions of \(\mathbb{F}_3\) shows that the characteristic polynomial of the Frobenius operating on \(H^2_{\text{ét}}(S_{\mathbb{F}_3}, \mathbb{Q}_l(1))\) is
\[
\frac{1}{3}(t - 1)^4(3t^{18} + 3t^{17} + 2t^{16} + 2t^{15} + 4t^{14} + 5t^{13} + 4t^{12} + 3t^{11} + 6t^{10} + 8t^9 \\
+ 6t^8 + 3t^7 + 4t^6 + 5t^5 + 4t^4 + 2t^3 + 2t^2 + 3t + 3).
\]
Consequently, we have \(\text{rk Pic}(S_{\mathbb{F}_3}) \leq 4\).

In particular, the assumption \(\text{rk Pic}(S_{\overline{\mathbb{Q}}}) > 3\) implies \(\text{rk Pic}(S_{\mathbb{F}_3}) = \text{rk Pic}(S_{\overline{\mathbb{Q}}})\). Theorem 3.6 guarantees that the specialization map \(\text{sp}_{\overline{\mathbb{Q}}}: \text{Pic}(S_{\overline{\mathbb{Q}}}) \to \text{Pic}(S_{\mathbb{F}_3})\) must be bijective. Giving one invertible sheaf \(\mathcal{L} \in \text{Pic}(S_{\mathbb{F}_3})\) with a nontrivial obstruction will be enough to yield a contradiction.

For this, observe that the ramification locus of \(S_3\) has a tritangent line given by \(x + y + z = 0\). Indeed,
\[
f_6(x, y, z) \equiv (x^3 + x^2y + xy^2 + y^3)^2 + (x + y + z)(2x^3y^2 + x^3yz + 2x^2yz^2 + 2xy^4 \\
+ xy^3z + xy^2z^2 + 2xyz^3 + xz^4 + 2y^5 + 2y^4z + yz^4 + 2z^5) \pmod{3}.
\]
Modulo the ideal \((3, x + y + z)\), we have
\[
f_3 \equiv x^3 + x^2y + xy^2 + y^3, \\
f_5 \equiv -(x^5 + x^3y^2 + x^2y^3 + xy^4 + y^5), \quad G \equiv x^6 + 2x^5y + x^4y^2 + 2xy^5 + y^6.
\]
Trying to generate \(G\) by \(3, x + y + z, f_3, \) and \(f_5\) now leads to a system of seven linear equations in six unknowns that is easily seen to be unsolvable. \(\square\)

Remarks 4.6. (i) It is not at all hard to generate more examples similar to 1.7 and 4.4. Choosing the coefficients in \(\mathbb{F}_p\) at random, one usually finds Picard rank 2 over \(\mathbb{F}_p\) after a few trials. One may work with small primes, only, say \(p \leq 7\).

Clearly, for our arguments, it is of importance to have explicit generators for \(\text{Pic}(S_{\mathbb{F}_p})\). In practice, it turns out that a second generator may often be found. We have no formal reason for this. However, [Kovács 1994] might give an indication.

In Example 4.4, we applied a linear transform in order to make the obstruction depend only on a single coefficient. In general, one would have a linear form in the coefficients.
(ii) Example 4.5 is a bit more particular. Both conics, which are six times tangent to the ramification sextic, simultaneously lift to \mathbb{Q}. This is not at all the generic behavior.

(iii) It seems to be substantially more difficult to construct examples for which $\text{rk} \operatorname{Pic}(X) \leq \text{rk} \operatorname{Pic}(X_p) - 2$ may be shown. To understand the problem, recall the obstruction homomorphism $\delta : \operatorname{Pic}(X_p) \to H^2(X, \mathcal{O}_X)$, introduced in Remark 2.3. In Proposition 4.1, we calculated $\delta(\mathcal{L})$ at a precision of one p-adic digit.

In order to verify $\text{rk} \operatorname{Pic}(X) \leq \text{rk} \operatorname{Pic}(X_p) - 2$, one would have to ensure that $\text{rk}_Z(\text{im} \delta) \geq 2$. This, however, is impossible as long as only p-adic approximations of finitely many values $\delta(\mathcal{L})$ are known.

There are methods known to show

$$\text{rk} \operatorname{Pic}(X) \leq \text{rk} \operatorname{Pic}(X_{p_1}) - 2 \quad \text{and} \quad \text{rk} \operatorname{Pic}(X) \leq \text{rk} \operatorname{Pic}(X_{p_2}) - 2$$

when one works with two primes [Elsenhans and Jahnel 2011].

References

Communicated by János KolláR
Received 2010-03-31 Revised 2011-03-01 Accepted 2011-04-01

stephan.elsenhans@uni-bayreuth.de
jahnel@mathematik.uni-siegen.de
The behavior of Hecke L-functions of real quadratic fields at $s = 0$
BYUNGHEUP JUN and JUNGYUN LEE

The Picard group of a $K3$ surface and its reduction modulo p
ANDREAS-STEPHAN ELSENHANS and JÖRG JAHNEL

Linear determinantal equations for all projective schemes
JESSICA SIDMAN and GREGORY G. SMITH

Involutions, weights and p-local structure
GEOFFREY R. ROBINSON

Parametrizing quartic algebras over an arbitrary base
MELANIE MATCHETT WOOD

Coleman maps and the p-adic regulator
ANTONIO LEI, DAVID LOEFFLER and SARAH LIVIA ZERBES

Conjecture de Shafarevitch effective pour les revêtements cycliques
ROBIN DE JONG and GAËL RÉMOND