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We prove that for an odd prime p, a finite group G with no element of order 2p
has a p-block of defect zero if it has a non-Abelian Sylow p-subgroup or more
than one conjugacy class of involutions. For p=2, we prove similar results using
elements of order 3 in place of involutions. We also illustrate (for an arbitrary
prime p) that certain pairs (Q, y), with a p-regular element y and Q a maximal
y-invariant p-subgroup, give rise to p-blocks of defect zero of NG(Q)/Q, and
we give lower bounds for the number of such blocks which arise. This relates to
the weight conjecture of J. L. Alperin.

Introduction

Involutions have played a crucial role in finite group theory for many decades.
They also figure prominently in representation theory, both ordinary and modular.
Examples of the former include their occurrence in finite reflection groups, and
an example of the latter is that in characteristic 2, J. Murray proved in [2006]
that the projective summands of the (characteristic 2) permutation module (under
conjugation action) on the solutions of x2

= 1 in G are (in bijection with) the real
2-blocks of defect zero.

Involutions also influence representation theory in odd characteristic. It was
proved by Brauer and Fowler in [1955] that when p is an odd prime, G has a p-
block of defect zero if there is an involution t ∈G that neither inverts nor centralizes
any nontrivial p-element of G. This result was extended by T. Wada [1977], who
proved that if there are r mutually nonconjugate involutions of G that neither invert
nor centralize any nontrivial p-element of G, then G has at least r distinct p-blocks
of defect zero. We prove here that when p = 2, elements of order 3 can play a
role analogous to that played when p is odd by involutions in the results above:
We prove that the number of 2-blocks of defect zero of G is at least as great as the
number of conjugacy classes of elements of order 3 that normalize no nontrivial
2-subgroup of G.

We also point out here that results of this nature can be combined with local
group-theoretic analysis to prove that if p is an odd prime and G is a group without
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elements of order 2p, then G has a p-block of defect zero if it has more than one
conjugacy class of involutions (we prove a more precise result without using the
classification of finite simple groups, which could be sharpened even further by
using that classification).

In a different direction, the celebrated weight conjecture of J. L. Alperin (in its
nonblockwise version) defines (for a fixed prime p) a weight of G (up to conjugacy)
as a pair (Q, S), where Q is a p-subgroup of G and S is an absolutely simple
projective NG(Q)/Q module in characteristic p. Alperin’s weight conjecture then
asserts that the number of nonconjugate weights of G for p should be the number
of conjugacy classes of p-regular elements of G (which is also the number of
isomorphism types of absolutely simple modules for G in characteristic p). At
present, there seems to be no reason to expect a natural bijection between weights
and p-regular conjugacy classes, or between weights and characteristic p simple
modules for G (though it is impossible to preclude the possibility that one or the
other might emerge in future). Relatively few purely group-theoretic criteria are
known to date that place nonconjectural bounds on the number of weights. We
give some group-theoretic conditions of this nature that place lower bounds on
the number of weights, using sharpenings of results of Brauer and Fowler [1955],
Tsushima [1977] and Wada [1977], going somewhat further than my results in
[Robinson 1983], and incorporating the result about 2-blocks of defect zero and
elements of order 3 that normalize no nontrivial 2-subgroup of G.

A naïve attempt at associating p-regular classes with weights of G might be to
consider a p-regular element y and a maximal y-invariant p-subgroup Q. Then
y normalizes no nontrivial p-subgroup of NG(Q)/Q and it might be hoped that a
p-block of defect zero of NG(Q)/Q could be naturally associated to y (or yQ).
More ambitiously, it might be hoped that weights could be parametrized in terms
of conjugacy classes of pairs (Q, y), where y is a p-regular element of G and Q
is a maximal y-invariant p-subgroup of G.

However, there are usually more conjugacy classes of such pairs (Q, y) than
there are simple modules. The number of conjugacy classes of such pairs (Q, y) is
equal to the number of simple modules precisely when CG(y) transitively permutes
the maximal y-invariant p-subgroups of G for each p-regular y ∈ G. In general,
this need not be the case. For example, when p = 3 and G ∼= PSL(2, 11) we may
take y to be an involution. There is a Sylow 3-subgroup Q of G that is centralized
by y, and there is another Sylow 3-subgroup R of G whose nonidentity elements
are inverted by y. Clearly Q and R are not conjugate via an element of CG(y).

We are nevertheless interested in pairs (Q, y), where y is p-regular and Q is a
maximal y-invariant p-subgroup, and we will point out some instances where they
give rise to weights.
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Lemma 1. (i) Let Q be a p-subgroup of G and y be a p-regular element of
NG(Q) such that yQ ∈ Op′(NG(Q)/Q). Then Q is a maximal y-invariant
p-subgroup of G if and only if CQ(y) ∈ Sylp(NG(Q)∩CG(y)).

(ii) Suppose that p is odd, and let Q be a p-subgroup of G and y be an involution
of NG(Q). Then Q is a maximal y-invariant p-subgroup of G if and only if
yQ neither inverts nor centralizes any element of order p in NG(Q)/Q.

(iii) Suppose that p = 2, and let Q be a 2-subgroup of G and y be an element of
order 3 in NG(Q). Then Q is a maximal y-invariant 2-subgroup of G if and
only if yQ is not contained in any subgroup isomorphic to A4 of NG(Q)/Q,
and yQ does not centralize any involution of NG(Q)/Q.

Proof. (i) Notice that Q is a maximal y-invariant p-subgroup of G if and only if
Q is a maximal y-invariant p-subgroup of NG(Q), for if Q < R and R is another
y-invariant p-subgroup of G, then Q < NR(Q) and NR(Q) is y-invariant. Hence
we may suppose that QCG, and do so. Set G = G/Q, and so on. Then CG(y)=
CG(y) since y is p-regular and Q is a p-group. Since y ∈ Op′(G), we see that
y centralizes any p-subgroup of G that it normalizes. Hence Q is a maximal
y-invariant p-subgroup of G if and only if y normalizes no nontrivial p-subgroup
of G, if and only if y centralizes no nontrivial p-subgroup of G, if and only if
CQ(y) ∈ Sylp(CG(y)).

(ii) Again we may suppose that Q C G and we set G = G/Q. If y inverts or
centralizes an element of order p in G, then Q is clearly not a maximal y-invariant
p-subgroup of G. On the other hand, if y normalizes a nontrivial p-subgroup
of G, then y normalizes a nontrivial Abelian p-subgroup A, say. We have A =
[A, y] × CA(y), so that ȳ must either centralize or invert a nonidentity element
of A.

(iii) The proof of this part is analogous to part (ii), except that in the final step,
A may be chosen to be elementary Abelian, and [A, y] is a direct product of
ȳ-invariant Klein 4-groups, each acted on by y without nontrivial fixed points. �

Definition. When p is a prime and G is a finite group, a pair (Q, x) is called a
pseudoweight for G if x is a p-regular element of G, Q is a maximal x-invariant
p-subgroup of G, and one or more of the following occurs:

(i) x Q ∈ Op′(NG(Q)/Q).

(ii) p is odd and x is an involution.

(iii) p = 2 and x has order 3.

Remark. It is easy to check that (Q, 1) is a pseudoweight for G if and only if
Q ∈ Sylp(G), so there is a unique conjugacy class of pseudoweights with second
component 1G . When Q is a Sylow p-subgroup of G, notice that the number of
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nonconjugate pseudoweights with first component Q is the number of conjugacy
classes of p-regular elements of NG(Q), since NG(Q)/Q is a p′-group. If p is
odd, every involution occurs as the second component of at least one pseudoweight,
since whenever t is an involution, there is at least one maximal t-invariant p-
subgroup of G (which may be trivial). Similarly, if p = 2, then every element of
order 3 occurs as the second component of at least one pseudoweight.

Before our first result, we recall some results of [Murray 1999; Robinson 1983].
Let P be a Sylow p-subgroup of G. In [Robinson 1983], it is proved that the
number of p-blocks of defect zero is the rank of a matrix S with entries in GF(p)
defined as follows: The rows and columns of S are indexed by the conjugacy
classes of p-regular elements y of G such that CG(y) is a p′-group. The (i, j)-
entry of S is si j , which is the residue (mod p) of |�i j |/|P|, where �i j is the set
of (u, v) ∈ Ci × C j such that u−1v ∈ P , where Ci is the i-th conjugacy class of
p-regular elements of p-defect zero. This is refined by [Murray 1999, 6.3], which
shows that�i j may be replaced by �̃i j , which is obtained by only counting ordered
pairs (u, v) such that u−1v is an element of P of order at most p, and we may use
S̃ in place of S, where s̃i j is the residue (mod p) of |�̃i j |/|P|. We will see that,
when p = 2, this refinement is advantageous.

Theorem 2. For each p-subgroup Q of G, the number of conjugacy classes of
weights of G with first component conjugate to Q is greater than or equal to the
number of conjugacy classes of pseudoweights of G with first component conjugate
to Q.

Proof. First note that G permutes its pseudoweights by conjugation. For each p-
subgroup of G, the G-conjugate pseudoweights with first component Q correspond
bijectively to the NG(Q)/Q-conjugacy classes of pseudoweights with trivial first
component, since there is a bijection between p-regular conjugacy classes of N =
NG(Q) and p-regular conjugacy classes of N/Q. Hence it suffices to prove that
the number of p-blocks of defect zero is at least the number of conjugacy classes
of pseudoweights with trivial first component.

Let (1, x1), . . . , (1, xd) be representatives for the conjugacy classes of pseudo-
weights of G with trivial first component. Then no xi normalizes any nontrivial
p-subgroup of G.

Let us label so that xi ∈ Ci for 1≤ i ≤ d. We show that the first d×d minor of
S̃ is an invertible diagonal matrix, so that S̃ has rank at least d . For if 1≤ i, j ≤ d ,
and u is conjugate to xi and v is conjugate to x j with u−1v ∈ P of order at most p,
then u−1v is p-regular (if u or v is in Op′(G) this is clear). If p is odd and u
and v are both involutions that invert no element of order p, then u−1v must be
p-regular. If p = 2 and u and v are both elements of order 3 that normalize no
nontrivial 2-subgroup of G and u−1v is an involution, then 〈u, v〉 ∼= A4 and u is
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conjugate to v within 〈u, v〉, a contradiction. Hence u−1v is p-regular in all cases,
(so is the identity, as P is a p-group). Thus s̃i j = 0 for i 6= j and 1≤ i, j ≤ d. Also,
s̃i i is the residue (mod p) of |Ci |/|P| for 1≤ i ≤ d . Thus s̃i i 6= 0 for 1≤ i ≤ d , as
required to complete the proof. �

Because of its analogy with the result of Brauer and Fowler [1955] mentioned
previously, we single out for special mention this:

Corollary 3. Let G be a finite group of order divisible by 6. If G contains an
element of order 3 that normalizes no nontrivial 2-subgroup of G, then G has a
2-block of defect zero. More precisely, the number of 2-blocks of defect zero is
greater than or equal to the number of conjugacy class of elements of order 3 of G
that normalize no nontrivial 2-subgroup of G.

We now combine some local-group theoretic analysis with the block-theoretic
results we have used.

Theorem 4. Let G be a finite group of even order that contains no element of
order 2p for some odd prime p. Then either G has a p-block of defect zero or else
G has Abelian Sylow p-subgroups and a unique conjugacy class of involutions.
Furthermore, if G has no p-block of defect zero, and has Sylow p-subgroups of
rank at least 3, then either G/O{2,p}′(G) has a normal Sylow p-subgroup or else
G has a strongly p-embedded subgroup.

Proof. Suppose that G has no p-block of defect zero. Set π = {2, p}. To prove the
theorem, it suffices to consider the case that Oπ ′(G) = 1. By the result of Brauer
and Fowler mentioned earlier, every involution of G inverts an element of order p,
as G has no element of order 2p. Also, since G contains no element of order 2p,
no section of G is isomorphic to SL(2, p), so that, by a theorem of Glauberman
[1968], N = NG(ZJ(P)) controls strong fusion in G for P ∈ Sylp(G). Thus N
must have even order, as some element of order p is conjugate to its inverse in G.

Since G contains no element of order 2p, the Sylow 2-subgroups of N must be
cyclic or generalized quaternion, since if there were a Klein 4-subgroup, V say,
of N , then each involution of V would invert every element of ZJ(P), which is
a contradiction since the product of any two involutions that invert all of ZJ(P)
centralizes ZJ(P). Hence N has a unique conjugacy class of involutions and, by the
Brauer–Suzuki theorem, N =O2′(N )CN (t) for t any involution of N . Thus O2′(N )
contains P as CN (t) is a p′-group. We may suppose that P is t-invariant, so that
P is Abelian as t acts without nontrivial fixed-points on P . We wish to prove that
G has a unique conjugacy class of involutions. Let u be an involution of G. Then,
replacing u by a conjugate if necessary, we may suppose that u inverts an element
h of order p in P . Then NG(〈h〉) = CG(h)NN (〈h〉) so that u is conjugate within
NG(〈h〉) to an involution of NN (〈h〉) since CG(h) has odd order. In particular, u is
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conjugate in G to an involution of N . This completes the proof of the first claim,
as N has one conjugacy class of involutions.

For the second claim, set A = �1(P), and suppose that |A| ≥ p3. For each
a ∈ A#, we know that CG(a) has odd order by hypothesis, and so is solvable. Thus
CG(a) = CN (a)Op′(CG(a)) for each such a. If Op′(CG(a)) = 1 for each such a,
then either N is strongly p-embedded in G or else P C G (for if Op(G) 6= 1,
then G = O2′(G)CG(t) for t an involution, and O2′(G) has a normal Sylow p-
subgroup since Oπ ′(G)=1). Otherwise, by the solvable signalizer functor theorem
[Glauberman 1976],

θ(A)= 〈Op′(CG(a)) : a ∈ A#
〉

is a solvable π ′-group. Then M = NG(θ(A)) < G. Now

N = NG(P)≤ NG(A)≤ M.

Also, for each a ∈ A#, we have CG(a) = CN (a)Op′(CG(a)) ≤ M . For each non-
trivial subgroup B of P , we have

NG(B)≤ NG(�1(B))= CG(�1(B))NN (�1(B))≤ M.

Thus M is strongly p-embedded in this case. �
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