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The minimal resolution conjecture for
points on del Pezzo surfaces

Rosa M. Miró-Roig and Joan Pons-Llopis

Mustat,ă (1997) stated a generalized version of the minimal resolution conjecture
for a set Z of general points in arbitrary projective varieties and he predicted
the graded Betti numbers of the minimal free resolution of IZ . In this paper,
we address this conjecture and we prove that it holds for a general set Z of
points on any (not necessarily normal) del Pezzo surface X ⊆ Pd — up to three
sporadic cases — whose cardinality |Z | sits into the interval [PX (r − 1),m(r)]
or [n(r), PX (r)], r ≥ 4, where PX (r) is the Hilbert polynomial of X , m(r) :=
1
2 dr2
+

1
2r(2− d) and n(r) := 1

2 dr2
+

1
2r(d − 2). As a corollary we prove: (1)

Mustat,ă’s conjecture for a general set of s ≥ 19 points on any integral cubic
surface in P3; and (2) the ideal generation conjecture and the Cohen–Macaulay
type conjecture for a general set of cardinality s ≥ 6d+1 on a del Pezzo surface
X ⊆ Pd .

1. Introduction

Given a general set Z of s distinct points in Pn it is a long-standing problem in
algebraic geometry to find out the exact shape of the minimal free resolution of its
saturated ideal IZ . It is well-known that it has to be of the form

0→ Fn→ · · · → F1→ IZ → 0

with
Fi ∼= R(−r − i)bi,r ⊕ R(−r − i + 1)bi,r−1,

where R is the coordinate ring of Pn and r is the unique nonnegative integer such
that

(r+n−1
n

)
≤ s <

(r+n
n

)
. Moreover,

bi+1,r−1− bi,r =

(
r + i − 1

i

)(
r + n
n− i

)
− s

(
n
i

)
.
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The minimal resolution conjecture (MRC, for short) stated in [Lorenzini 1993]
says that this resolution has no ghost terms, that is, bi+1,r−1bi,r = 0 for all i . The
MRC is known to hold for n ≤ 4 [Gaeta 1951; Ballico and Geramita 1986; Walter
1995] and for large values of s for any n [Hirschowitz and Simpson 1996] but it is
false in general: Eisenbud, Popescu, Schreyer and Walter showed that it fails for
any n ≥ 6, n 6= 9 (see [Eisenbud et al. 2002]).

Besides MRC, two weaker conjectures have been stated concerning the initial
and ending terms of the minimal free resolution of an ideal of points: the ideal
generation conjecture (IGC for short), which says that the minimal number of
generators of the ideal of a general set of points will be as small as possible; this
conjecture can be translated in terms of the Betti numbers saying that b1,r b2,r−1=0.
At the other extreme of the resolution the Cohen–Macaulay type conjecture (CMC
for short) affirms that the canonical module ExtnR(R/IZ , R(−n − 1)) has as few
generators as possible, i.e., bn−1,r bn,r−1 = 0.

Mustat,ă [1998] introduced a generalized version of MRC for points in arbitrary
projective varieties (see Section 2 for a precise statement). Roughly speaking, it
says that given a projective variety X ⊆Pn , the minimal free resolution of the ideal
of any general set of points on X is determined by the resolution of the ideal of X .
When X = Pn , this formulation coincides with the original Lorenzini’s statement.
Giuffrida, Maggioni and Ragusa proved that this generalized conjecture holds for
any general set of points when X is a smooth quadric surface in P3 [Giuffrida
et al. 1996]. Casanellas [2009] proved that this conjecture holds for some special
cardinalities of sets of general points on a smooth cubic surface. In [Miró-Roig
and Pons-Llopis 2012] we showed that it also holds for any general set of at least
19 points on a smooth cubic surface in P3; Migliore and Patnott have been able to
prove this for sets of general distinct points of any cardinality on a cubic surface
X ⊆P3 given that X is smooth or has at most isolated double points [Migliore and
Patnott 2011, Theorem 1]. For the case of nonreduced 0-dimensional schemes see
[Miró-Roig and Pons-Llopis 2012].

The goal of this paper it to prove MRC for general points on a del Pezzo sur-
face (X,OX (1)), i.e., an integral arithmetically Gorenstein (not necessarily normal)
surface with a very ample line bundle OX (1) such that its dualizing sheaf verifies
ωX ∼= OX (−1). This kind of variety has been studied thoroughly by Fujita [1990]
in connection with his theory of 1-genus. He defines the 1-genus of a polarized
variety (X,OX (1)) of dimension n as 1(X,OX (1)) := n+OX (1)n−h0(X,OX (1)).
In his terminology, del Pezzo varieties are ACM varieties of 1-genus one.

The main technique used in this paper is the theory of Gorenstein liaison (see
Section 2 for a brief account). Roughly speaking, knowing that two sets of points
are G-linked will allow to pass from the minimal resolution of the ideal of one of
them to the resolution of the other one (mapping cone procedure). Then once MRC
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is known to hold for a general set of d + 2 points on a del Pezzo surface X ⊆ Pd

an induction process will provide us with our main theorems (4.2, 4.3 and 4.4).
Let us briefly explain how this paper is organized. In Section 2 we introduce

the background and main techniques needed, including general facts on del Pezzo
surfaces and basic results on G-liaison. In Section 3 we establish MRC for sets of
general points of two specific cardinalities,

m(r) := 1
2 dr2
+

1
2r(2− d) and n(r) := 1

2 dr2
+

1
2r(d − 2),

with r ≥ 2, on a del Pezzo surface X ⊂ Pd (up to four sporadic cases). We first
establish the result for m(2) points on X , which gives the initial step of our in-
duction (Lemma 3.5). An easy remark gives us that if n(r) general points on X
have the expected resolution then n(r)+ 1 general points do as well. Then, using
G-liaison, we prove that if m(r) general points on a del Pezzo surface X satisfy
MRC then so do n(r) general points (Proposition 3.6). Finally, again using G-
liaison, we show that if n(r)+1 general points on a del Pezzo surface satisfy MRC
then so do m(r + 1) (Proposition 3.8). Section 4 contains the main results of this
paper: namely that MRC holds on a del Pezzo surface (up to three of the four
sporadic cases just mentioned) for general sets of points whose cardinality falls
in the intervals [PX (r − 1),m(r)] and [n(r), PX (r)] for any r ≥ 4 = reg X + 1,
with PX (r) the Hilbert polynomial (see Theorem 4.2). As a corollary, we will
get that Mustat,ă’s conjecture holds for any general set of at least 19 points on a
cubic surface in P3 (Theorem 4.4) and the ideal generation conjecture as well as
the Cohen–Macaulay type conjecture holds for any general set of at least 6d + 1
points on a del Pezzo surface in Pd (Theorem 4.3).

2. Preliminaries

We work over an algebraically closed field k of characteristic zero. We set R =
k[X0, . . . , Xn] and denote the associated projective space by Pn

:=Proj(R). Given
closed subschemes Y ⊆ X ⊆ Pn , we denote the ideal sheaf of Y in X by IY |X

and the homogeneous saturated ideal by IY |X := H0
∗
(X,IY |X ) (or simply IY when

X = Pn). We denote by RX the homogeneous coordinate ring of X , defined as
k[X0, . . . , Xn]/IX . For any coherent sheaf E on X we denote the twisted sheaf
E⊗ OX (l) by E(l). As usual, Hi (X,E) stands for the i-th cohomology group and
hi (X,E) for its dimension. We use the notation Hi

∗
(E) for the graded R-module⊕

l∈Z Hi (Pn
k ,E(l)) and ωX will stand for the dualizing sheaf. The Hilbert function

and Hilbert polynomial of X are denoted, respectively, by HX (t) and PX (t)∈Q[t].
The regularity of X is defined to be that of IX ; i.e., reg X ≤ m if and only if
Hi (Pn,IX (m − i)) = 0 for i ≥ 1. By [Eisenbud 2005, Chapter IV, Theorem 4.2]
we know that PX (t)= HX (t) for any t ≥ reg X−1+δ−n, where δ is the projective
dimension of RX . By a variety we mean an integral and proper scheme over k.
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Definition 2.1. Let X ⊆ Pn be a subscheme with minimal graded free resolution

F• : 0→ Fn+1
dn+1
−→ Fn→ · · · → F1

d1
−→ F0

d0
−→ R/IX → 0.

The graded Betti numbers bi j (X) are defined by

Fi =
⊕
j∈Z

R(−i − j)bi j (X), i.e., bi j (X)= dimk Tori (R/IX , k)i+ j

and the Betti diagram of X has in the (i, j)-th position the Betti number bi j (X).

Remark 2.2. The free resolution F• is minimal if, after choosing basis of Fi , the
matrices representing di do not have any nonzero scalar.

Mustat,ă [1998] predicted the minimal free resolution of a general set of points
Z in an arbitrary projective variety X ; he proved that the first rows of the Betti
diagram of Z coincide with the Betti diagram of X and that there are two extra
nontrivial rows at the bottom. He also gave lower bounds for the Betti numbers
in these last two rows and the minimal resolution conjecture (MRC) for points on
a projective variety states that these lower bounds are attained for a general set of
points. Let us recall it.

Theorem 2.3 [Mustat,ǎ 1998]. Let X ⊆ Pn be a projective variety with dim X ≥ 1
and reg X =m. Let s be an integer with PX (r−1)≤ s< PX (r) for some r ≥m+1
and let Z be a set of s general points on X. If

0→ Fn→ Fn−1→ · · · → F2→ F1→ R→ R/IX → 0

is a minimal free R-resolution of R/IX , then R/IZ has a minimal free R-resolution
of the type

0→ Fn ⊕ R(−r − n+ 1)bn,r−1 ⊕ R(−r − n)bn,r

→ · · · → F2⊕ R(−r − 1)b2,r−1 ⊕ R(−r − 2)b2,r

→ F1⊕ R(−r)b1,r−1 ⊕ R(−r − 1)b1,r → R→ R/IZ → 0;

moreover,

bi+1,r−1(Z)−bi,r (Z)=
dim X−1∑

l=0

(−1)l
(

n−l−1
i−l

)
1l+1 PX (r+l)−

(
n
i

)
(s−PX (r−1)).

The minimal resolution conjecture (MRC for short) says that bi+1,r−1 · bi,r = 0
for i = 1, . . . , n− 1. Related to it are two weaker conjectures that deal only with
a part of the minimal resolution of a general set of points: the ideal generation
conjecture (IGC for short), which says that the minimal number of generators of
the ideal of a general set of points will be as small as possible; this conjecture can
be translated in terms of the Betti numbers saying that b1,r b2,r−1 = 0. At the other
extreme of the resolution the Cohen–Macaulay type conjecture (CMC for short)
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affirms that the canonical module ExtnR(R/IZ , R(−n − 1)) has as few generators
as possible, i.e., bn−1,r bn,r−1 = 0.

One of the main tools used in this paper is Gorenstein liaison theory. We recall
its main features, of this theory referring the reader to [Kleppe et al. 2001] for a
complete account.

Definition 2.4. A closed subscheme X ⊆ Pn of dimension r is said to be Arith-
metically Cohen–Macaulay (briefly, ACM) if its homogeneous coordinate ring RX

is a Cohen–Macaulay ring or, equivalently, dim RX = depth RX .

Thanks to the graded version of the Auslander–Buchsbaum formula (for any
finitely generated R-module M):

pd(M)= n+ 1− depth(M),

we deduce that a subscheme X ⊆Pn is ACM if and only if the projective dimension
of RX is equal to the codimension of X ; i.e.,

pd(RX )= codim X. (2-1)

Hence, if X ⊆ Pn is a codimension c ACM subscheme, a graded minimal free
R-resolution of IX is of the form:

0→ Fc→ Fc−1→ · · · → F1→ IX → 0

where Fi =
⊕

j∈Z R(− j)βi, j , i = 1, . . . , c.

Definition 2.5. If X ⊆ Pn is an ACM subscheme then, the rank of the last free R-
module in a minimal free R-resolution of IX is called the Cohen–Macaulay type
of X .

Definition 2.6. A codimension c subscheme X of Pn is arithmetically Gorenstein
(briefly AG) if its homogeneous coordinate ring RX is a Gorenstein ring or, equiva-
lently, its saturated homogeneous ideal, IX , has a minimal free graded R-resolution
of the following type:

0→ R(−t)→
αc−1⊕
i=1

R(−nc−1,i )→ · · · →
α1⊕

i=1
R(−n1,i )→ IX → 0.

In other words, an AG scheme is an ACM scheme with Cohen–Macaulay type 1.

Any zero-dimensional scheme is ACM. For varieties of higher dimension we
have the following characterization:

Lemma 2.7. If dim X ≥ 1, then X ⊆ Pn is ACM if and only if Hi
∗
(IX ) = 0 for

1≤ i ≤ dim X.

The following remark will be used without further mention throughout the paper:
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Remark 2.8. Let X ⊆ Pn be an ACM variety of dimension ≥ 1 and let Y ⊆ X be
any subvariety. Then the saturated ideal IY |X equals IY |Pn/IX |Pn .

Definition 2.9. Two subschemes X1 and X2 of Pn are directly Gorenstein linked
(directly G-linked for short) by an AG scheme G ⊆ Pn if IG ⊆ IX1 ∩ IX2 and

[IG : IX1] = IX2, [IG : IX2] = IX1 .

We say that X2 is residual to X1 in G. When G is a complete intersection we talk
about a C I -link.

When X1 and X2 do not share any component, being directly G-linked by an
AG scheme G is equivalent to G = X1 ∪ X2.

Usually it is not easy to find out AG schemes to work with. The following
theorem gives a useful way to construct them. Notice that, since we will want
to work with varieties that can even be nonnormal, we will have to work in the
framework of generalized divisors as introduced in [Hartshorne 1994; 2007]. The
only general requirements to be fulfilled in order to work in this context are that
the schemes satisfy conditions S2 and G1.

Definition 2.10. A subscheme X ⊆Pn satisfies the condition Gr if every localiza-
tion of RX of dimension ≤ r is a Gorenstein ring. Usually this property is quoted
as “Gorenstein in codimension ≤ r”, i.e., the non locally Gorenstein locus has
codimension ≥ r + 1. In particular, G0 is generically Gorenstein.

Theorem 2.11 (compare [Kleppe et al. 2001, Lemma 5.4]). Let S⊆Pn be an ACM
scheme satisfying condition G1. Denote by KS the canonical divisor and by HS a
general hyperplane section of S. Then any effective divisor in the linear system
|m HS − KS| is arithmetically Gorenstein.

The main feature of G-liaison exploited in this paper is that through the mapping
cone procedure it is possible to pass from the free resolution of a scheme X1 to the
free resolution of its residual X2 on an arithmetically Gorenstein scheme. Let us
recall how it works [Weibel 1994]:

Lemma 2.12 (mapping cone procedure). Let

0→ M
α
−→ N → P→ 0

be a short exact sequence of finitely generated R-modules and let us consider free
resolutions

e• : 0→ Gn+1
en+1
−→ Gn→ · · ·

e1
−→ G0

e0
−→ M→ 0

and
d• : 0→ Fn+1

dn+1
−→ Fn→ · · ·

d1
−→ F0

d0
−→ N → 0.
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Then the morphism α lifts to a morphism between the resolutions α• : e•→ d•
and a (not necessarily minimal) free resolution for P is

0→ Gn+1
cn+2
→ Gn ⊕ Fn+1

cn+1
→ · · ·

c3
→ G1⊕ F2

c2
→ G0⊕ F1

c1
→ F0

c0
→ P→ 0,

where

ci+1 =

(
−ei 0
αi di+1

)
for 1≤ i ≤ n.

Lemma 2.13. Let V1, V2 ⊆ Pn be two ACM schemes of codimension c directly
G-linked by an AG scheme W . Let the minimal free resolutions of IV1 and IW be

0→ Fc
dc
−→ Fc−1

dc−1
−→ · · · F1

d1
−→ IV1 → 0

and
0→ R(−t)

ec
−→ Gc−1

ec−1
−→ · · ·G1

e1
−→ IW → 0

respectively. Then the functor Hom(−, R(−t)) applied to a free resolution of
IV1/IW gives a (not necessarily minimal) resolution of IV2 :

0→ F∨1 (−t)→ F∨2 (−t)⊕G∨1 (−t)→ · · · → F∨c (−t)⊕G∨c−1(−t)→ IV2 → 0.

Let us finish this section introducing the family of varieties that we deal with
throughout this paper.

Definition 2.14. A del Pezzo surface is a nondegenerate 2-dimensional projective
variety X ⊆Pd that is locally Gorenstein and such that its canonical sheaf verifies
ωX ∼= OX (−1).

As examples of del Pezzo surfaces, we can consider any integral cubic surface
in P3 or any complete intersection of two quadrics in P4. Notice that there exists
a more general definition of del Pezzo surface for which it is only required that
ω−1

X is ample. Smooth surfaces with ample anticanonical sheaf are classically
classified; see, for example, [Manin 1986, Chapter IV, Theorems 24.3 and 24.4] or
[Dolgachev 2010, Corollary 8.1.17].

Any del Pezzo surface X ⊆ Pd satisfies deg(X) = d = codim(X)+ 2. Recall
that given a nondegenerate projective variety X ⊆Pd it always holds that1(X) :=
deg X+dim X−h0(OX (1))≥ 0. It is a classical result the classification of minimal
varieties, i.e., varieties for which there is equality in the previous expression (see,
for instance, [Dolgachev 2010, Theorem 8.1.1]). Moreover, in the setting of his
theory of 1-genus, Fujita has also a satisfactory classification of quasiminimal
varieties, i.e., varieties X satisfying 1(X) = 1. In his terminology, del Pezzo
surfaces correspond to quasiminimal surfaces with sectional genus one (i.e., the
arithmetic genus of a general hyperplane section is one). For more details see
[Fujita 1990].
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Any del Pezzo surface is ACM [Fujita 1990, (6.4)]. Therefore, according to
[Hoa 1993, Theorem 1], the minimal free resolution of the coordinate ring of a del
Pezzo surface X ⊆ Pd has the form:

0→ R(−d)→ R(−d + 2)αd−3 → · · · → R(−2)α1 → R→ RX → 0 (2-2)

where

αi = i
(

d − 1
i + 1

)
−

(
d − 2
i − 1

)
for 1≤ i ≤ d − 3.

Notice that X turns out to be AG and, in particular, αi = αd−2−i for all i =
1, . . . , d − 2.

3. The minimal resolution conjecture for sets of m(r) and n(r) general points

The goal of this section is to prove MRC for general sets of points of two specific
cardinalities

m(r) := 1
2 dr2
+

1
2r(2− d) and n(r) := 1

2 dr2
+

1
2r(d − 2)

on a del Pezzo surface X . Since the structure of our proof requires that X contains
at least a line L and moreover that the elements of the linear system |L + r H |
satisfy condition G1 in order to apply the theory of generalized divisors, we need
to exclude the four cases X ∼= P2, X ∼= P1

×P1, X ∼= F2 := P(OP1 ⊕ OP1(−2)),
and X the Bordello surface, a complete intersection of two quadrics on P4 with a
double line. Therefore, in this section X ⊆Pd will stand for any del Pezzo surface
as was defined in Definition 2.14 except the four aforementioned sporadic cases.
The Hilbert polynomial and the regularity of X can be easily computed using (2-2):
PX (r)= 1

2 d(r2
+ r)+ 1 and reg X = 3. Notice that

PX (r − 1) < m(r) < n(r) < PX (r). (3-1)

We also set the following notation.

(i) L is any line on X .

(ii) H denotes a general hyperplane section of X .

(iii) If C is a curve on X , HC will be a general hyperplane section of C and KC

the canonical divisor on C .

The strategy for finding the minimal free resolution for a general set of points
with cardinality n(r) or m(r), for r ≥ 2, is as follows. First we establish the
result for m(2) = d + 2 points, which gives the starting point for our induction
process. Then, using G-liaison, we prove that if m(r) general points on any del
Pezzo surface satisfy MRC then so do n(r) general points. Next we observe that if
n(r) general points on X have the expected minimal free resolution then n(r)+ 1
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general points do as well. And, finally, we show that if n(r)+ 1 general points on
a del Pezzo surface satisfy MRC then so do m(r + 1).

We will prove the result via a series of lemmas and propositions. Since the
shape of the minimal free resolution of the homogeneous ideal IX |P3 of a del Pezzo
surface of degree 3 is slightly different from that of a del Pezzo surface of degree
d ≥ 4 we need to consider the two cases separately in some arguments. We will
give complete proofs in the case of degree d ≥ 4. The concrete arguments on the
case of degree 3 are analogous but much easier to write down and will therefore
be left to the reader.

Lemma 3.1. Let X ⊆ Pd be any del Pezzo surface of degree d ≥ 4 and take C ∈
|(r + ε)H |, r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system
|r HC | is AG and it has a minimal free resolution of the following form:

0→ R(−2r−d−ε)→ R(−2r−d+2−ε)αd−3⊕R(−r−d)2−ε⊕R(−r−d−1)ε

→ · · · → Mi → R(−2r−ε)⊕R(−r−2)(2−ε)α1⊕R(−r−3)εα1

→ M1 := R(−r)2−ε⊕R(−r−1)ε→ IG|X → 0,

where Mi := R(−2r − i+1− ε)αi−2⊕ R(−r − i)(2−ε)αi−1⊕ R(−r − i−1)εαi−1 for
i = 3, . . . , d − 2 and αi = i

(d−1
i+1

)
−
(d−2

i−1

)
for 1≤ i ≤ d − 3.

Proof. A curve C in |(r + ε)H | has saturated ideal IC |X =H0
∗
(OX (−r − ε)). From

(2-2) we have

0→ OPd (−d)→ OPd (−d+2)αd−3→· · ·→ OPd (−2)α1→ OPd → OX→ 0, (3-2)

with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1 ≤ i ≤ d − 3. Twisting (3-2) with OPd (−r − ε) and

taking global sections we get the minimal graded free resolution of IC |X :

0→ R(−r−d−ε)→ · · · → R(−r−(i+ε))αi−1

→ · · · → R(−r−2−ε)α1 → R(−r−ε)→ IC |X → 0.

Now we can apply the horseshoe lemma to the exact sequence

0→ IX |Pd → IC |Pd → IC |X → 0

to obtain the minimal free resolution of IC |Pd :

0→ R(−r−d−ε)→ R(−r−d+2−ε)αd−3⊕R(−d)→ · · ·

→ Ti := R(−r−i−ε)αi−1⊕R(−(i+1))αi → · · ·

→ R(−r−ε)⊕R(−2)α1 → IC |Pd → 0.

This sequence shows that C ⊆ Pd is an arithmetically Gorenstein variety with
canonical module KC := Extd−1

R (R/IC , R(−d − 1))= RC(r − 1+ ε). Therefore
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IG|C = H 0
∗
(OC(−r)) = KC(−2r + 1− ε). We apply Hom(−, R(−d − 1)) to the

previous sequence and we get a graded minimal free resolution of KC :

0→ R(−d−1)→ R(r−d−1+ε)⊕R(−d+1)αd−3 → · · ·

→ T ′i → · · · → R(−1)⊕R(r−3+ε)α1 → R(r−1+ε)→ KC → 0,

where T ′i := T∨d−i (−d−1)= R(r − i − ε)αi−1⊕ R(−i)αi−2 for i = 3, . . . , d−2. If
we twist the previous sequence by −2r + 1− ε we get the minimal resolution of
IG|C :

0→ R(−2r−d−ε)→ R(−r−d)⊕R(−2r−d+2−ε)αd−3→· · ·→ T ′i (−2r+1−ε)

→ · · · → R(−2r−ε)⊕R(−r−2)α1 → R(−r)→ IG|C → 0.

Finally, we can apply the horseshoe lemma to the short exact sequence

0→ IC |X → IG|X → IG|C → 0

to recover the resolution of IG|X :

0→ R(−2r−d−ε)→ R(−2r−d+2−ε)α1⊕R(−r−d)2−ε⊕R(−r−d−1)ε

→ · · · → Mi → · · · → R(−2r−ε)⊕R(−r−2)(2−ε)α1⊕R(−r−3)εα1

→ R(−r)2−ε⊕R(−r−1)ε→ IG|X → 0,

where Mi := R(−2r− i+1−ε)αi−2⊕ R(−r− i)(2−ε)αi−1⊕ R(−r− i−1)εαi−1 for
i = 3, . . . , d − 2. �

Lemma 3.2. Let X⊆P3 be a del Pezzo surface of degree 3 and take C ∈|(r+ε)H |,
r ≥ 2, ε ∈ {0, 1}. Then, any effective divisor G in the linear system |r HC | is AG
and it has a minimal free resolution of the form

0→ R(−2r−3−ε)→ R(−2r−ε)⊕R(−r−3)2−ε⊕R(−r−4)ε

→ R(−r)2−ε⊕R(−r−1)ε→ IG|X → 0.

Proof. This is completely analogous to Lemma 3.1. See also [Casanellas 2009,
Proposition 3.5]. �

Lemma 3.3. Let X ⊆ Pd be a del Pezzo surface and let L ⊆ X be a line on it.
Take C ∈ |L + r H |, r ≥ 2, and let G be any effective divisor in the linear system
|2r HC−KC |. Then, G is arithmetically Gorenstein and the minimal free resolution
of IG|C has the form

0→ R(−2r−d−1)→ R(−2r−d+1)α1⊕R(−r−d)d−1
→ · · ·

→ R(−2r−i)αd−i⊕R(−r−i−1)(
d−1
d−i)+αd−i−1 → · · ·

→ R(−2r−1)⊕R(−r−3)(
d−1
d−2)+αd−3 → R(−r−1)⊕R(−r−2)→ IG|C → 0,
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with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1≤ i ≤ d − 3.

Proof. Let L ⊆ X be any line. Its ideal as a subvariety of Pd has a resolution

0→ R(−d + 1)→ · · · → R(−i)(
d−1

i )→ · · · → R(−1)d−1
→ IL|Pd → 0.

Using the mapping cone procedure for the exact sequence 0→ IX |Pd → IL|Pd →

IL|X → 0 we get

0→R(−d)⊕R(−d+1)→· · ·→R(−i)(
d−1

i )+αi−1→· · ·→R(−1)d−1
→ IL|X→0

with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1 ≤ i ≤ d − 3. Therefore, C ∈ |L + r H | has the

minimal graded free resolution

0→ R(−r−d)⊕R(−r−d+1)→ · · · → R(−r−i)(
d−1

i )+αi−1

→ · · · → R(−r−1)d−1
→ IC |X → 0. (3-3)

Now the horseshoe lemma applied to 0→ IX |Pd → IC |Pd → IC |X → 0 gives us

0→ R(−r−d)⊕R(−r−d+1)→ R(−r−d+2)(
d−1
d−2)+αd−3⊕R(−d)

→ · · · → R(−r−i)(
d−1

i )+αi−1⊕R(−(i+1))αi → · · · →

R(−r−1)d−1
⊕R(−2)α1 → IC |Pd → 0.

Since C is ACM we can apply Hom(−, R(−d − 1)) to get a resolution of KC :

0→ R(−d−1)→ R(−d+1)α1⊕R(r−d)d−1

→ · · · → R(r−i−1)(
d−1
d−i)+αd−i−1⊕R(−i)αd−i → · · · →

R(r−3)(
d−1
d−2)+αd−3⊕R(−1)→ R(r−1)⊕R(r−2)→ KC → 0.

Now, since G ∈ |2r HC − KC | we have

0→ R(−2r−d−1)→ R(−2r−d+1)α1⊕R(−r−d)d−1

→ · · · → R(−2r−i)αd−i⊕R(−r−i−1)(
d−1
d−i)+αd−i−1 → · · · →

R(−2r−1)⊕R(−r−3)(
d−1
d−2)+αd−3 → R(−r−1)⊕R(−r−2)→ IG|C → 0.

�

Lemma 3.4. Let X ⊆ P3 be an integral cubic surface and let L ⊆ X be a line
on it. Take C ∈ |L + r H |, r ≥ 2, and let G be any effective divisor in the linear
system |2r HC − KC |. Then, G is arithmetically Gorenstein and the minimal free
resolution of IG|C has the following form:

0→R(−2r−4)→ R(−2r−1)⊕R(−r−3)2→R(−r−1)⊕R(−r−2)→ IG|C→0

Proof. This is completely analogous to Lemma 3.3. �
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Lemma 3.5. A general set Z of m(2) = d + 2 points on any del Pezzo surface
X ⊆ Pd has a minimal free resolution of the type

0→ R(−d − 2)→ R(−d)γd−1 → · · · → R(−3)γ2 → R(−2)2d−1
→ IZ |X → 0,

with

γi =

1∑
l=0

(−1)l
(

d − l − 1
i − l

)
1l+1 HX (2+ l)−

(
d
i

)
(m(2)− HX (1)).

Proof. A general set Z of d+2 points on X is in linearly general position (i.e., any
subset of Z of d + 1 points spans Pd ). It is well-known that such a Z is AG with
minimal free resolution

0→ R(−d−2)→ R(−d)ρd−1 → R(−d+1)ρd−2

→ · · · → R(−3)ρ2 → R(−2)ρ1 → IZ |Pd → 0,

where ρi = i
(d+1

i+1

)
−
( d

i−1

)
for 1 ≤ i ≤ d − 1. We now apply the mapping cone

procedure to 0→ IX → IZ → IZ |X → 0 to obtain a free resolution of IZ |X :

0→ R(−d−2)→ R(−d)ρd−1+1
→ R(−d+1)ρd−2 → R(−d+2)ρd−3−αd−3

→ · · · → R(−3)ρ2−α2 → R(−2)ρ1−α1 → IZ |X → 0,

with αi = i
(d−1

i+1

)
−
(d−2

i−1

)
for 1 ≤ i ≤ d − 3. Since there are no ghost terms on the

previous exact sequence, it is minimal and the coefficients are forced to be given
by the formula from the statement. �

Once we have fixed the starting point of the induction we can deal with the
different steps of the procedure.

Fix an integer r ≥ 2 and let Zm(r) and Zn(r) be general sets of points on X of
cardinality m(r) and n(r) respectively. We show that they are directly G-linked
by an effective divisor G linearly equivalent to r HC , where C is a curve in the
linear system |r HX |. Two issues need to be checked. First, we must show that
h0(OX (r)) > m(r), to guarantee the existence of a curve C in the linear system
|r HX | such that Zm(r) lies on C . Secondly, we need to verify that n(r) > pa(C),
to be able to apply Riemann–Roch Theorem for (singular) curves, which assures
that there exists an effective divisor Zn(r) of degree n(r) such that Zm(r) + Zn(r)

is linearly equivalent to a divisor r HC . Notice that, thanks to [Eisenbud 2005,
Chapter IV, Theorem 4.2], PX (r)= HX (r)= h0(OX (r)) for any r ≥ 1.

Regarding the first issue, we have h0(OX (r)) = PX (r) > m(r) by construction
and by (3-1).

Regarding the second issue, consider the exact sequence

0→ OX (−r)→ OX → OC → 0.
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Applying the functor of global sections we have

0= H 1(X,OX )→ H 1(C,OC)→ H 2(X,OX (−r))→ H 2(X,OX )= 0

and therefore pa(C) = h1(OC) = h2(OX (−r)) = h0(OX (r − 1)), where the last
equality holds by Serre duality and taking into account that ωX ∼= OX (−1). Then,
since

n(r)= dr2
−m(r) > PX (r − 1)= h0(OX (r − 1))= pa(C),

we are done.
Since this construction can also be performed starting from a general set Zn(r)

of n(r) points we see that a general set of m(r) points is G-linked to a general set
of n(r) points and vice versa. This yields:

Proposition 3.6. Fix r≥2 and assume that the ideal IZm(r)|X of m(r) general points
on a del Pezzo surface X ⊆ Pd has the minimal free resolution

0→ R(−r−d)r−1
→ R(−r−d+2)γd−1,r−1

→ · · · → R(−r−1)γ2,r−1 → R(−r)(d−1)r+1
→ IZm(r)|X → 0,

with

γi,r−1 =

1∑
l=0

(−1)l
(

d − l − 1
i − l

)
1l+1 PX (r + l)−

(
d
i

)
(m(r)− PX (r − 1)).

Then the ideal IZn(r)|X of n(r) general points has the minimal free resolution

0→ R(−r−d)(d−1)r−1
→ R(−r−d+1)βd−1,r

→ · · · → R(−r−2)β2,r → R(−r)r+1
→ IZn(r)|X → 0,

with

βi,r =

1∑
l=0

(−1)l+1
(

d − l − 1
i − l

)
1l+1 PX (r + l)+

(
d
i

)
(n(r)− PX (r − 1)).

Conversely, if n(r) general points on a del Pezzo surface X ⊆Pd have the expected
resolution then m(r) general points do as well.

Proof. As mentioned before, we give the complete proof in the case d ≥ 4. The
case d = 3 is completely analogous using Lemma 3.2 instead of Lemma 3.1. So
suppose that d ≥ 4. We will check that if m(r) general points have the expected
resolution then so do n(r) and we leave to the reader the converse (which is proved
analogously). By the preceding discussion, m(r) and n(r) general points on X are
G-linked by G ∈ |r HC |, where C is a curve in the linear system |r H |. Thanks to
Lemma 3.1 we know the resolution of IG|X and hence we can apply the mapping
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cone procedure to the commutative diagram

R(−2r−d) //

��

R(−r−d)r−1

��

R(−2r−d+2)α1⊕R(−r−d)2 //

��

R(−r−d+2)γd−1

��

...

��

...

��

R(−2r−i+1)αd−i⊕R(−r−i)2αi−1 //

��

R(−r−i+1)γi

��

...

��

...

��

R(−2r)⊕R(−r−2)2α1 //

��

R(−r−1)γ2

��

R(−r)2 //

��

R(−r)(d−1)r+1

��

0 −→ IG|X //

��

IZm(r)|X −→ IZm(r)|G −→ 0.

��

0 0

Since IG|X ⊆ IZm(r)|X , we can take as part of the generators of IZm(r)|X the gen-
erators of IG|X and therefore the matrix defining the first horizontal map contains
nonzero scalar entries. So the repeated elements can be split off. Therefore we get

0→ R(−r−d)(d−1)r−1
→ R(−r−d+1)βd−1,r

→ · · · → R(−2)α1⊕R(−r)r+1
→ IZn(r)|Pd → 0.

The mapping cone procedure applied to the exact sequence 0→ IX → IZn(r) →

IZn(r)|X → 0 then gives the desired minimal resolution for IZn(r)|X . �

Lemma 3.7. Let X ⊂ Pd be any del Pezzo surface. Fix r ≥ 2 and assume that
the ideal IZn(r)|X of a set Zn(r) of n(r) general points on X ⊆ Pd has the expected
minimal free graded resolution then a set of n(r)+ 1 general points do as well.

Proof. Since IZn(r)|X has the expected minimal free resolution, we know that IZn(r)|X

is generated by r+1 forms of degree r . Moreover, we know that there are no linear
relations among them. We take a general point p∈ X and set Z := Zn(r)∪{p}. Since
IZ |X ⊂ IZn(r)|X , we can take the r generators of IZ |X in degree r to be a subset of the
generators of IZn(r)|X in degree r ; in particular, they do not have linear syzygies.
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We must add d generators of degree r + 1 in order to get a minimal system of
generators of IZ |X . Hence the first module in the minimal free resolution of IZ |X

is R(−r)r ⊕ R(−r − 1)d which forces the remaining part of the resolution. �

Proposition 3.8. Let X ⊆ Pd be a del Pezzo surface. Fix r ≥ 2 and assume that
the ideal IZ p(r)|X of p(r) := n(r) + 1 general points on X has the minimal free
resolution

0→ R(−r−d)(d−1)r
→ R(−r−d+1)δd−1,r

→ · · · → R(−r−2)δ2,r → R(−r)r⊕R(−r−1)d → IZ p(r)|X → 0,

with

δi,r =

1∑
l=0

(−1)l+1
(

d − l − 1
i − l

)
1l+1 HX (r + l)+

(
d
i

)
(p(r)− HX (r − 1)).

Then the ideal IZm(r+1)|X of m(r+1) general points has the minimal free resolution

0→ R(−r−d−1)r → R(−r−d+1)γd−1,r

→ · · · → R(−r−2)γ2,r → R(−r−1)(d−1)r+d
→ IZm(r+1)|X → 0,

with

γi,r =

1∑
l=0

(−1)l
(

d − l − 1
i − l

)
1l+1 HX (r + 1+ l)−

(
d
i

)
(m(r + 1)− HX (r)).

Proof. Let Z p(r) be a set of p(r) general points with resolution as in the statement.
Let us consider the linear system |L + r H |. Since dim |L + r H | ≥ dim |r H | =
h0(OX (r))− 1 = PX (r)− 1 > p(r), we can find a curve C ∈ |L + r H | passing
through these p(r) points. As it is shown in [Pons-Liopis 2011, Chapter II] we can
suppose that C verifies condition G1. Notice that deg(C) = 1+ rd and pa(C) =
d
(r

2

)
+ r . Since pa(C) < m(r + 1) we can find an effective divisor Zm(r+1) of

degree m(r + 1) such that Z p(r) and Zm(r+1) are G-linked by a divisor of degree
p(r)+m(r + 1)= dr2

+ dr + 2= deg(2r HC − KC). This will allowed us to find
the resolution of Im(r+1)|X . First of all, let us find the minimal free resolution of the
ideal Ip(r)|C from the exact sequence 0→ IC |X → Ip(r)|X → Ip(r)|C → 0 through
the mapping cone procedure, with the resolution of IC |X as it was found in (3-3).
It turns out to be

0→ R(−r−d)(d−1)r+1
→ R(−r−d+1)cd−1,r

→ · · · → R(−r−2)c2,r → R(−r)r⊕R(−r−1)→ Ip(r)|C → 0.

Since we have already found out the minimal free resolution of IG|C (Lemma 3.3)
we can use the mapping cone procedure applied to the sequence 0 → IG|C →

Ip(r)|C → Ip(r)|G→ 0 to get
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0→ R(−2r−d−1)→ R(−r−d)(d−1)r+d
⊕R(−2r−d+1)α1

→ · · · → R(−r−i)di,r⊕R(−2r−i+1)αd−i+1 → · · · →

R(−r−2)d2,r → R(−r)r → IZ p(r)|G→ 0.

(If d = 3 we have instead 0→ R(−2r − 4)→ R(−r − 3)2r+2
⊕ R(−2r − 1)→

R(−r − 2)d2,r → R(−r)r → IZ p(r)|G→ 0.)
Finally we obtain the minimal free resolution of Im(r+1)|Pd :

0→ R(−r−d−1)r → R(−r−d+1)γd−1,r → R(−r−d+2)γd−2,r⊕R(−d)

→ · · · → R(−r−i)γi,r⊕R(−i)αi → · · · →

R(−r−1)(d−1)r+d
⊕R(−2)α1 → IZm(r+1)|Pd → 0

(0→ R(−r − 4)r → R(−r − 2)γ2,r → R(−r − 1)2r+3
⊕ R(−3)→ IZm(r+1)|P3 → 0

if d = 3) from which it is straightforward to recover the predicted resolution of
IZm(r+1)|X . �

We are now ready to prove the main theorem of this section:

Theorem 3.9. Let X ⊆ Pd be a del Pezzo surface. We have:

(1) Let Zn(r) ⊆ X be a general set of n(r) points, r ≥ 2. Then the minimal graded
free resolution of IZn(r)|X has the form

0→ R(−r−d)(d−1)r−1
→ R(−r−d+1)βd−1,r → R(−r−d+2)βd−2,r

→ · · · → R(−r−2)β2,r → R(−r)r+1
→ IZn(r)|X → 0,

with

βi,r =

1∑
l=0

(−1)l+1
(

n− l − 1
i − l

)
1l+1 HX (r + l)+

(
n
i

)
(n(r)− HX (r − 1)).

(2) Let Zm(r)⊆ X be a general set of m(r) points, r ≥ 2. Then its minimal graded
free resolution has the form

0→ R(−r−d)r−1
→ R(−r−d+2)γd−1,r−1

→ · · · → R(−r−1)γ2,r−1 → R(−r)(d−1)r+1
→ IZm(r)|X → 0,

with

γi,r−1 =

1∑
l=0

(−1)l
(

n− l − 1
i − l

)
1l+1 PX (r + l)−

(
n
i

)
(m(r)− PX (r − 1)).

In particular, Mustat,ă’s conjecture works for n(r) and m(r), r ≥ 4, general
points on a del Pezzo surface X ⊆ Pd .
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Proof. Lemma 3.5 establishes the result for a set of m(2) general points, the starting
point of our induction process. Therefore, the result about the resolution of IZn(r)|X

and IZm(r)|X follows using Lemma 3.7, Propositions 3.6 and 3.8 and applying in-
duction. �

4. Main theorem

In this last section, we are going to prove that MRC holds for a general set of points
Z on a del Pezzo surface (excluding three of the four sporadic cases pointed out at
the beginning of the previous section: X ∼=P1

×P1, X ∼= F2 :=P(OP1⊕OP1(−2)),
and X the Bordello surface) when the cardinality of Z falls in intervals of the form
[PX (r−1),m(r)] or [n(r), PX (r)], r ≥ 4. So for the rest of the paper X will denote
any del Pezzo surface excluding these three particular surfaces. We will use the
fact that we already know that n(r) and m(r) general points on a del Pezzo surface
satisfy MRC together with the following lemma which controls how the bottom
lines of the Betti diagram of a set of general points on a projective variety change
when we add another general point. This lemma will turn out to be a cornerstone
in our proof of MRC for del Pezzo surfaces:

Lemma 4.1. Let X ⊆ Pn be a projective variety with dim X ≥ 2, reg X = m and
with Hilbert polynomial PX . Let s be an integer with PX (r − 1) ≤ s < PX (r) for
some r ≥ m + 1, let Z be a set of s general points on X and let P ∈ X \ Z be a
general point. We have

(i) bi,r−1(Z)≥ bi,r−1(Z ∪ P) for every i .

(ii) bi,r (Z)≤ bi,r (Z ∪ P) for every i .

Proof. See [Mustat,ǎ 1998, Proposition 1.7.]. �

We are now ready to state the main result of this paper:

Theorem 4.2. Let X ⊆ Pd be a del Pezzo surface. Let r satisfy r ≥ reg X + 1= 4.
Then for a general set of points Z on X such that PX (r − 1) ≤ |Z | ≤ m(r) or
n(r)≤ |Z | ≤ PX (r) the minimal resolution conjecture is true.

Proof. First of all we want to point out that the result was already known in the
cases |Z | = PX (r − 1) and |Z | = PX (r)− 1 [Mustat,ǎ 1998, Examples 1 and 2].

On the other hand, the results about Ulrich bundles proved in [Pons-Liopis 2011,
Chapter II] and Serre’s correspondence allows us to deal with the case of X ∼= P2.
So let X be any other del Pezzo surface. Let Z ′ be a general set of points of
cardinality |Z ′| = n(r) and add general points to Z ′ in order to get a set of points Z
of cardinality n(r)≤ |Z | ≤ PX (r). By Theorem 3.9 we have that bi,r−1(Z ′)= 0 for
all i = 2, . . . , d . Therefore we can apply Lemma 4.1 to deduce that bi,r−1(Z)= 0
for all i = 2, . . . , d. Thus, by semicontinuity, MRC holds for a general set of |Z |
points.



44 Rosa M. Miró-Roig and Joan Pons-Llopis

Now if |Z | ≤ m(r), we can add general points to Z in order to have a general
set Z ′ including Z and such that |Z ′| = m(r). Again from the previous Theorem
we have that bi,r (Z ′)= 0 for all i = 1, . . . , d−1. So we can use again Lemma 4.1
to deduce that bi,r (Z) = 0 for all i = 1, . . . , d − 1 and therefore MRC holds for
Z . �

As a consequence of Theorem 3.9 we will prove that the number of generators
of the ideal of a general set of points on a del Pezzo surface is as small as possible
and so it is the number of generators of its canonical module as well. In fact, we
have:

Theorem 4.3. Let X ⊆ Pd be a del Pezzo surface. Then for a general set of points
Z on X such that |Z | ≥ PX (3) the Cohen–Macaulay type conjecture and the ideal
generation conjecture are true.

Proof. Let Z be a general set of points on our del Pezzo surface X . If it is the case
that n(r) ≤ |Z | ≤ m(r + 1) the result has been proved on the previous theorem.
So we can assume that m(r) < |Z | < n(r) for some r . We know that MRC holds
for a general set |Z ′| of n(r) points on X , Z ⊆ Z ′ and in particular b1,r (Z ′) = 0.
Applying Lemma 4.1 inductively we see that b1,r (Z) = 0. Analogously, since
MRC holds for a general set Z ′′ of m(r) points, bd,r−1(Z ′′) = 0 with Z ′′ ⊆ Z .
Applying once again the same lemma we see that bd,r−1(Z)= 0. �

In the particular case of the cubic surface, since the minimal free resolution of
its points has length three, we recover one of the main results of [Miró-Roig and
Pons-Llopis 2012] (see also [Migliore and Patnott 2011; Casanellas 2009]):

Theorem 4.4. Let X ⊆ P3 be an integral cubic surface (i.e., a del Pezzo surface
of degree three). Then the minimal resolution conjecture holds for a general set of
points on X of cardinality ≥ PX (3)= 19.

Proof. By Theorem 4.3 we know that any set Z of general points on X verify the
Cohen–Macaulay type conjecture and the ideal generation conjecture. But since
the codimension is three there is no further term on the resolution left to consider
so the general MRC also holds. �
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