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We develop the notion of stratifiability in the context of derived categories and
the six operations for stacks. Then we reprove the Lefschetz trace formula for
stacks, and give the meromorphic continuation of L-series (in particular, zeta
functions) of Fq -stacks. We also give an upper bound for the weights of the
cohomology groups of stacks, and an “independence of `” result for a certain
class of quotient stacks.

1. Introduction

In topology there is the famous Lefschetz–Hopf trace formula, which roughly says
that if f : X → X is an endomorphism of a compact connected oriented space
X with isolated fixed points, then the number of fixed points of f , counted with
multiplicity, is equal to the alternating sum of the traces of f ∗ on the singular
cohomology groups H i (X,Q).

There is also a trace formula in algebraic geometry, for schemes over finite
fields, due to Grothendieck. It says that if X0 is a scheme over Fq , separated and
of finite type, and Fq is the q-geometric Frobenius map, then

#X0(Fq)=

2 dim X0∑
i=0

(−1)i Tr(Fq , H i
c (X,Q`)),

where H i
c (X,Q`) is the `-adic cohomology with compact support. In fact he

proved the trace formula for an arbitrary constructible sheaf, see [Grothendieck
1965, Verdier 1967, Deligne 1977].

Behrend conjectured the trace formula for smooth algebraic stacks over Fq in
his thesis and [Behrend 1993], and proved it in [Behrend 2003]. However, he
used ordinary cohomology and arithmetic Frobenius (rather than compact support
cohomology and geometric Frobenius) to prove the “dual statement,” probably
because at that time the theory of dualizing complexes of algebraic stacks, as
well as compact support cohomology groups of stacks, were not developed. Later
Laszlo and Olsson [2008a; 2008b] developed the theory of the six operations for
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algebraic stacks, which makes it possible to reprove the trace formula, and remove
the smoothness assumption in Behrend’s result. Also we will work with a fixed
isomorphism of fields ι :Q`−→

∼ C, namely we will work with ι-mixed complexes,
rather than mixed ones, and this is a more general setting (see Remark 2.8.1).

Once we have the trace formula, we get a factorization of the zeta function
into a possibly infinite product of L-factors, and from this one can deduce the
meromorphic continuation of the zeta functions, generalizing a result of Behrend
[1993, 3.2.4]. Furthermore, to locate the zeros and poles of the zeta functions, we
give a result on the weights of cohomology groups of stacks.

We briefly mention the technical issues. As pointed out in [Behrend 2003], a
big difference between schemes and stacks is the following. If

f : X0→ Y0

is a morphism of Fq -schemes of finite type, and K0 ∈ Db
c (X0,Q`), then f∗K0

and f!K0 are also bounded complexes. Since often we are mainly interested in
the simplest case when K0 is a sheaf concentrated in degree 0 (for instance, the
constant sheaf Q`), and Db

c is stable under f∗ and f!, it is enough to consider Db
c

only. But for a morphism
f : X0→ Y0

of Fq -algebraic stacks of finite type, f∗ and f! do not necessarily preserve bound-
edness. For instance, the cohomology ring H∗(BGm,Q`) is the polynomial ring
Q`[T ] with deg(T )= 2. So for stacks we have to consider unbounded complexes,
even if we are only interested in the constant sheaf Q`. In order to define the trace of
the Frobenius on cohomology groups, we need to consider the convergence of the
complex series of the traces. This leads to the notion of an ι-convergent complex
of sheaves (see Definition 4.1).

Another issue is the following. In the scheme case one considers bounded
complexes, and for any bounded complex K0 on a scheme X0, there exists a
stratification of X0 that “trivializes the complex K0” (that is, the restrictions of all
cohomology sheaves Hi K0 to each stratum are lisse). But in the stack case we have
to consider unbounded complexes, and in general there might be no stratification
of the stack that trivializes every cohomology sheaf. This leads to the notion of
a stratifiable complex of sheaves (see Definition 3.1). We need the stratifiability
condition to control the dimensions of cohomology groups (see Lemma 3.10). All
bounded complexes are stratifiable by Lemma 3.4 (v).

Also we will have to impose the condition of ι-mixedness, due to unbounded-
ness. For bounded complexes on schemes, the trace formula can be proved without
using this assumption, although the conjecture of Deligne [1980, 1.2.9] that all
sheaves are ι-mixed is proved by Laurent Lafforgue, see Remark 2.8.1.
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We briefly introduce the main results of this paper.

Fixed point formula.

Theorem 1.1. Let X0 be an Artin stack of finite type over Fq , and let [X0(Fq)] be
the set of isomorphism classes of the groupoid of Fq -points of X0. Then the series∑

n∈Z

(−1)n Tr(Fq , H n
c (X,Q`)),

regarded as a complex series via ι, is absolutely convergent, and its limit is “the
number of Fq -points of X0”, namely

#X0(Fq) :=
∑

x∈[X0(Fq )]

1
# Autx Fq

.

Here Fq denotes the q-geometric Frobenius. To generalize, one wants to impose
some condition (P) on complexes K0 ∈ D−c (X0,Q`) such that:

(1) The condition (P) is preserved by f!.

(2) If a complex K0 satisfies (P), then the “naive local terms” are well-defined.

(3) Trace formula holds in this case.

The condition (P) on K0 turns out to be a combination of three parts: ι-conver-
gence (which implies (2) for K0), ι-mixedness and stratifiability (which, together
with the first part, implies (2) for f!K0). See Theorem 4.2 for the general statement.
These conditions are due to Behrend [2003].

Meromorphic continuation. The rationality in Weil conjecture was first proved
by Dwork, namely the zeta function Z(X0, t) of every variety X0 over Fq is a
rational function in t . Later, this was reproved using the fixed point formula
[Grothendieck 1965, Illusie 1977]. Following Behrend [1993, 3.2.3], we define
the zeta functions of stacks as follows.

Definition 1.2. For an Fq -algebraic stack X0 of finite type, define the zeta function

Z(X0, t)= exp
(∑
v≥1

tv

v

∑
x∈[X0(Fqv )]

1
# Autx Fqv

)
,

as a formal power series in the variable t .

Notice that in general, the zeta function is not rational (see Section 7). Behrend
[1993, 3.2.4, 3.2.5] proved that if X0 is a smooth algebraic stack, and it is a quotient
of an algebraic space by a linear algebraic group, then its zeta function Z(X0, t) is a
meromorphic function in the complex t-plane; if X0 is a smooth Deligne–Mumford
stack, then Z(X0, t) is a rational function. These results can be generalized as
follows.
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Theorem 1.3. For every Fq -algebraic stack X0 of finite type, its zeta function
Z(X0, t) defines a meromorphic function in the whole complex t-plane. If X0 is
Deligne–Mumford, then Z(X0, t) is a rational function.

See Proposition 7.3.1 and Theorem 8.1 for the general statement.

A theorem of weights. One of the main results in [Deligne 1980] is that if X0 is
an Fq -scheme, separated and of finite type, and F0 is an ι-mixed sheaf on X0 of
punctual ι-weights ≤w ∈R, then for every n, the punctual ι-weights of H n

c (X,F)

are ≤ w+ n. The cohomology groups are zero unless 0 ≤ n ≤ 2 dim X0. We will
see in Remark 7.2.1 that the upper bound w + n for the punctual ι-weights does
not work in general for algebraic stacks. We will give an upper bound that applies
to all algebraic stacks. Deligne’s upper bound of weights still applies to stacks for
which all the automorphism groups are affine.

Theorem 1.4. Let X0 be an Fq -algebraic stack of finite type, and let F0 be an
ι-mixed sheaf on X0, with punctual ι-weights ≤ w, for some w ∈ R. Then the
ι-weights of H n

c (X,F) are ≤ dim X0 +
n
2 +w, and they are congruent mod Z to

weights that appear in F0. If n > 2 dim X0, then H n
c (X,−) = 0 on sheaves. If for

all points x ∈X(F) in the support of F, the automorphism group schemes Autx are
affine, then the ι-weights of H n

c (X,F) are ≤ n+w.

Organization. In Section 2 we review some preliminaries on derived categories
of `-adic sheaves on algebraic stacks over Fq and ι-mixed complexes, and show
that ι-mixedness is stable under the six operations.

In Section 3 we develop the notion of stratifiable complexes in the context of
Laszlo and Olsson’s `-adic derived categories, and prove its stability under the six
operations.

In Section 4 we discuss convergent complexes, and show that they are preserved
by f!. In Section 5 we prove the trace formula for stacks. These two theorems
are stated and proved in [Behrend 2003] in terms of ordinary cohomology and
arithmetic Frobenius, and the proof we give here uses geometric Frobenius.

In Section 6 we discuss convergence of infinite products of formal power series,
which will be used in the proof of the meromorphic continuation. In Section 7 we
give some examples of zeta functions of stacks, and give the functional equation
of the zeta functions and independence of ` of Frobenius eigenvalues for proper
varieties with quotient singularities in Proposition 7.3.2.

In Section 8 and Section 9, we prove the meromorphic continuation and the
weight theorem respectively. Finally in Section 10 we discuss “independence of
`” for stacks, and prove Proposition 10.5 that for the quotient stack [X0/G0], where
X0 is a proper smooth variety and G0 is a linear algebraic group acting on X0, the
Frobenius eigenvalues on its cohomology groups are independent of `.
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Notation and conventions.

1.5.1. We fix a prime power q = pa and an algebraic closure F of the finite field
Fq with q elements. Let F or Fq be the q-geometric Frobenius, namely the q-th
root automorphism on F. Let ` be a prime number, ` 6= p, and fix an isomorphism
of fields Q` −→

ι
C. For simplicity, let |α| denote the complex absolute value |ια|,

for α ∈Q`.

1.5.2. In this paper, by an Artin stack (or an algebraic stack) over a base scheme S,
we mean an S-algebraic stack in the sense of M. Artin [Laumon and Moret-Bailly
2000, 4.1] of finite type. When we want the more general setting of Artin stacks
locally of finite type, we will mention that explicitly.

1.5.3. Objects over Fq will be denoted with an index 0. For instance, X0 will denote
an Fq -Artin stack; if F0 is a lisse-étale sheaf (or more generally, a Weil sheaf 2.4)
on X0, then F denotes its inverse image on X := X0⊗Fq F.

1.5.4. For a field k, let Gal k denote its absolute Galois group Gal(ksep/k). By a
variety over k we mean a separated reduced k-scheme of finite type. Let W (Fq) be
the Weil group FZ

q of Fq .

1.5.5. For a profinite group H , by Q`-representations of H we always mean finite-
dimensional continuous representations (see [Deligne 1980], 1.1.6), and denote by
RepQ`

H the category of such representations.

1.5.6. For a scheme X , we denote by |X | the set of its closed points. For a category
C we write [C] for the collection of isomorphism classes of objects in C. For
example, if v ≥ 1 is an integer, then [X0(Fqv )] denotes the set of isomorphism
classes of Fqv -points of the stack X0. This is a finite set.

For x ∈ X0(Fqv ) we will write k(x) for the field Fqv . For an Fq -scheme X0

(always of finite type) and x ∈ |X0|, we denote by k(x) the residue field of x .
In both cases, let d(x) be the degree of the field extension [k(x) : Fq ], and let
N (x) = qd(x)

= #k(x). Also in both cases let x : Spec Fqv → X0 (or X0) be the
natural map (v = d(x)), although in the second case the map is defined only up to
an automorphism in Gal(k(x)/Fq). Given a K0 ∈ Dc(X0,Q`) (see Section 2), the
pullback x∗K0 ∈ Dc(Spec k(x),Q`)= Dc(RepQ`

Gal k(x)) gives a complex Kx of
representations of Gal k(x), and we let Fx be the geometric Frobenius generator
Fqd(x) of this group, called “the local Frobenius”.

1.5.7. Let V be a finite dimensional Q`-vector space and ϕ an endomorphism of
V . For a function f : Q`→ C, we denote by

∑
V,ϕ f (α) the sum of values of f

in α, with α ranging over all the eigenvalues of ϕ on V with multiplicities. For
instance,

∑
V,ϕ α = Tr(ϕ, V ).
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A 0× 0-matrix has trace 0 and determinant 1. For K ∈ Db
c (Q`) and an endo-

morphism ϕ of K , we define, following Deligne [1977],

Tr(ϕ, K ) :=
∑
n∈Z

(−1)n Tr(H n(ϕ), H n(K )), and

det(1−ϕt, K ) :=
∏
n∈Z

det(1− H n(ϕ)t, H n(K ))(−1)n .

For unbounded complexes K we use similar notations if the series (respectively
the infinite product) converges (converges term by term; see Definition 6.2).

1.5.8. For a map f : X→Y and a sheaf F on Y , we sometimes write H n(X,F) for
H n(X, f ∗F). We write H n(X) for H n(X,Q`), and hn(X,F) for dim H n(X,F),
and similarly for H n

c (X) and hn
c (X,F).

1.5.9. For an Fq -algebraic stack X0 and a Weil complex K0 on X0, by R0(X0, K0)

(respectively R0c(X0, K0)) we mean Ra∗K0 (respectively Ra!K0), where the mor-
phism a : X0→ Spec Fq is the structural map.

The derived functors R f∗, R f!, L f ∗ and R f ! are usually abbreviated as f∗, f!,
f ∗ and f !. But we reserve⊗,Hom and Hom for the ordinary sheaf tensor product,
sheaf Hom and Hom group, respectively, and use ⊗L , RHom and RHom for their
derived functors.

2. Derived category of `-adic sheaves and mixedness

We briefly review the definition in [Laszlo and Olsson 2008a; 2008b] for derived
category of `-adic sheaves on stacks. Then we show that ι-mixedness is stable un-
der the six operations. As a consequence of Lafforgue’s result from Remark 2.8.1,
this is automatic, but we still want to give a much more elementary argument.
The proof works for mixed complexes as well, see Remark 2.12. One can also
generalize the structure theorem of ι-mixed sheaves in [Deligne 1980] to algebraic
stacks as in Remark 2.7.1.

2.1. Let3 be a complete discrete valuation ring with maximal ideal m and residual
characteristic `. Let 3n =3/m

n+1, and let 3• be the pro-ring (3n)n . We take the
base scheme S to be a scheme that satisfies the following condition:

(LO): S is noetherian, affine, excellent, finite-dimensional, in which ` is invert-
ible, and all S-schemes of finite type have finite `-cohomological dimension.

We denote by X,Y, . . . Artin stacks locally of finite type over S.
Consider the ringed topos A=A(X) :=Mod(XN

lis-ét,3•) of projective systems
(Mn)n of Ab(Xlis-ét) such that Mn is a 3n-module for each n, and the transition
maps are3-linear. An object M ∈A is said to be AR-null, if there exists an integer
r > 0 such that for every integer n, the composed map Mn+r → Mn is the zero
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map. A complex K in A is called AR-null, if all cohomology systems Hi (K ) are
AR-null; it is called almost AR-null, if for every U in Lis-ét(X) (assumed to be of
finite type over S), the restriction of Hi (K ) to Ét(U ) is AR-null. Let D(A) be the
ordinary derived category of A. See [Laumon and Moret-Bailly 2000, 18.1.4] for
the definition of constructible sheaves on Xlis-ét.

Definition 2.2. An object M = (Mn)n ∈A is adic if all the Mn’s are constructible,
and for every n, the natural map

3n ⊗3n+1 Mn+1→ Mn

is an isomorphism. It is called almost adic if all the Mn’s are constructible, and
for every object U in Lis-ét(X), the restriction M |U is AR-adic, that is, there exists
an adic NU ∈Mod(U N

ét ,3•) and a morphism NU → M |U with AR-null kernel and
cokernel.

A complex K in A is a λ-complex if Hi (K ) ∈ A are almost adic for all i . Let
Dc(A) be the full triangulated subcategory of D(A) consisting of λ-complexes, and
let Dc(X,3) be the quotient of Dc(A) by the thick full subcategory of those which
are almost AR-null. This is called the derived category of 3-adic sheaves on X.

Remark 2.2.1. (i) Dc(X,3) is a triangulated category with a natural t-structure,
and its heart is the quotient of the category of almost adic systems in A by the thick
full subcategory of almost AR-null systems. One can use this t-structure to define
the subcategories D†

c (X,3) for †=±, b.
If X/S is of finite type (in particular, quasi-compact), it is clear that K ∈Dcart(A)

is AR-null if it is almost AR-null. Also if M ∈ A is almost adic, the adic system
NU and the map NU → M |U in the definition above are unique up to unique
isomorphism, for each U , so by [Laumon and Moret-Bailly 2000, 12.2.1] they
give an adic system N of Cartesian sheaves on Xlis-ét, and an AR-isomorphism
N→ M . This shows that an almost adic system is AR-adic, and it is clear [Illusie
1977, p. 234] that the natural functor

3-Sh(X)→ heart Dc(X,3)

is an equivalence of categories, where 3-Sh(X) denotes the category of 3-adic (in
particular, constructible) systems.

(ii) Dc(X,3) is different from the ordinary derived category of Mod(Xlis-ét,3)

with constructible cohomology; the latter can be denoted by Dc(X,3). Here
Mod(Xlis-ét,3) denotes the abelian category of 3X-modules, not adic sheaves
3-Sh(X).

(iii) When S = Spec k for k a finite field or an algebraically closed field, and
X = X is a separated S-scheme, [Laszlo and Olsson 2008b, 3.1.6] gives a natural
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equivalence of triangulated categories between Db
c (X,3) and Deligne’s definition

Db
c(X,3) in [Deligne 1980, 1.1.2].

2.3. Let π : XN
lis-ét → Xlis-ét be the morphism of topoi where π−1 takes a sheaf

F to the constant projective system (F)n , and π∗ takes a projective system to the
inverse limit. This morphism induces a morphism of ringed topoi

(π∗, π∗) : (X
N
lis-ét,3•)→ (Xlis-ét,3).

The functor Rπ∗ :Dc(A)→D(X,3) vanishes on almost AR-null objects [Laszlo
and Olsson 2008b, 2.2.2], hence factors through Dc(X,3). In [ibid., 3.0.8], the
normalization functor is defined to be

K 7→ K̂ := Lπ∗Rπ∗K : Dc(X,3)→ D(A).

This functor plays an important role in defining the six operations (ibid.). For
instance:

• For F ∈ D−c (X,3) and G ∈ D+c (X,3), RHom(F,G) is defined to be the image
of RHom3•(F̂, Ĝ) in Dc(X,3).

• For F,G ∈ D−c (X,3), the derived tensor product F ⊗L G is defined to be the
image of F̂ ⊗L

3•
Ĝ.

• For a morphism f : X→Y and F ∈ D+c (X,3), the derived direct image f∗F is
defined to be the image of f N

∗
F̂ .

Let Eλ be a finite extension of Q` with ring of integers Oλ. Following Laszlo
and Olsson [2008b] we define Dc(X, Eλ) to be the quotient of Dc(X,Oλ) by the
full subcategory consisting of complexes K such that, for every integer i , there
exists an integer ni ≥ 1 such that Hi (K ) is annihilated by λni . Then we define

Dc(X,Q`)= 2-colimEλ Dc(X, Eλ),

where Eλ ranges over all finite subextensions of Q`/Q`, and the transition functors
are

Eλ′ ⊗Eλ − : Dc(X, Eλ)→ Dc(X, Eλ′)

for Eλ ⊂ Eλ′ .

2.4. From now on in this section, S = Spec Fq . We recall some notions of weights
and mixedness from [Deligne 1980], generalized to Fq -algebraic stacks.

2.4.1. Frobenius endomorphism. For an Fq -scheme X0, let FX0 : X0 → X0 be
the morphism that is identity on the underlying topological space and q-th power
on the structure sheaf OX0 ; this is an Fq -morphism. Let FX : X→ X be the induced
F-morphism FX0 × idF on X = X0⊗ F.
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By functoriality of the maps FX0 , we can extend it to stacks. For an Fq -algebraic
stack X0, define FX0 : X0→ X0 to be such that for every Fq -scheme X0, the map

FX0(X0) : X0(X0)→ X0(X0)

sends x to x ◦ FX0 . We also define FX : X→ X to be FX0 × idF. This morphism
is a universal homeomorphism, hence F∗X and FX∗ are quasi-inverse to each other,
and F∗X ' F !X, FX∗ ' FX!.

2.4.2. Weil complexes. A Weil complex K0 on X0 is a pair (K , ϕ), where K is in
Dc(X,Q`) and ϕ : F∗X K → K is an isomorphism. A morphism of Weil complexes
on X0 is a morphism of complexes on X commuting with ϕ. We also call K0 a Weil
sheaf if K is a sheaf. Let W (X0,Q`) be the category of Weil complexes on X0; it
is a triangulated category with the standard t-structure, and its core is the category
of Weil sheaves. There is a natural fully faithful triangulated functor

Dc(X0,Q`)→W (X0,Q`).

The usual six operations are well-defined on Weil complexes.

• Verdier duality. The Weil complex structure on DX K is given by the inverse of
the isomorphism

DX K
Dϕ
−−→ DX F∗X K −→∼ F∗X DX K .

• Tensor product. Let K0 and L0 be two Weil complexes such that K ⊗L L (which
is K ⊗ L since they are of Q`-coefficients) is constructible. This is the case when
they are both bounded above. The Weil complex structure on K ⊗ L is given by

F∗X(K ⊗ L)−→∼ F∗X K ⊗ F∗X L −−−−−→
ϕK⊗ϕL K ⊗ L .

• Pullback. This is clear:

F∗X f ∗K −→∼ f ∗F∗Y K −−−−→
f ∗ϕ

f ∗K .

Here f : X0→ Y0 is an Fq -morphism and (K , ϕ) is a Weil complex on Y0.

• Pushforward. Let f : X0 → Y0 and K0 ∈ W+(X0,Q`). The Weil complex
structure on f∗K is given by

F∗Y f∗K −→ f∗F∗X K −−−−→
f ∗ϕ

f∗K ,

where the first arrow is an isomorphism, because it is adjoint to

f∗K → FY∗ f∗F∗X K ' f∗FX∗F∗X K

obtained by applying f∗ to the adjunction morphism K → FX∗F∗X K , which is an
isomorphism.
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• The remaining cases f !, f! and RHom follow from the previous cases.

In this article, when discussing stacks over Fq , by a “sheaf” or “complex of
sheaves,” we usually mean a “Weil sheaf” or “Weil complex,” whereas a “lisse-
étale sheaf or complex” will be an ordinary constructible Q`-sheaf or complex on
the lisse-étale site of X0.

For x ∈ X0(Fqv ), it is a fixed point of FvX, hence there is a “local Frobenius
automorphism” Fx : Kx → Kx for every Weil complex K0, defined to be

Kx ' KFX(x) = (F
∗

X K )x
ϕ
−→ Kx .

2.4.3. ι-Weights and ι-mixedness. Recall that ι is a fixed isomorphism Q`→ C.
For α ∈ Q

∗

` , let wq(α) := 2 logq |ια|, called the ι-weight of α relative to q . For a
real number β, a sheaf F0 on X0 is said to be punctually ι-pure of weight β, if for
every integer v ≥ 1 and every x ∈X0(Fqv ), and every eigenvalue α of Fx acting on
Fx , we have wN (x)(α) = β. We say F0 is ι-mixed if it has a finite filtration with
successive quotients punctually ι-pure, and the weights of these quotients are called
the punctual ι-weights of F0. A complex K0 ∈ W (X0,Q`) is said to be ι-mixed
if all the cohomology sheaves Hi K0 are ι-mixed. Let Wm(X0,Q`) (respectively
Dm(X0,Q`)) be the full subcategory of ι-mixed complexes in W (X0,Q`) (respec-
tively Dc(X0,Q`)).

One can also define punctually pure sheaves, mixed sheaves and mixed com-
plexes for algebraic stacks.

2.4.4. Twists. For b∈Q
∗

` , let Q
(b)
` be the Weil sheaf on Spec Fq of rank one, where

F acts by multiplication by b. This is an étale sheaf if and only if b is an `-adic unit
[Deligne 1980, 1.2.7]. For an algebraic stack X0/Fq , we also denote by Q

(b)
` the

inverse image on X0 of the above Weil sheaf via the structural map. If F0 is a sheaf
on X0, we denote by F(b)

0 the tensor product F0⊗Q
(b)
` , and say that F(b)

0 is deduced
from F0 by a generalized Tate twist. Note that the operation F0 7→ F(b)

0 adds the
weights by wq(b). For an integer d , the usual Tate twist Q`(d) is Q

(q−d )

` . We
denote by 〈d〉 the operation (d)[2d] on complexes of sheaves, where [2d] means
shifting 2d to the left. Note that ι-mixedness is stable under the operation 〈d〉.

Lemma 2.5. Let X0 be an Fq -algebraic stack.

(i) If F0 is an ι-mixed sheaf on X0, then so is every subquotient of F0.

(ii) If 0→ F′0 → F0 → F′′0 → 0 is an exact sequence of sheaves on X0, and F′0
and F′′0 are ι-mixed, then so is F0.

(iii) The full subcategory Wm(X0,Q`) (respectively Dm(X0,Q`)) of W (X0,Q`)

(respectively Dc(X0,Q`)) is a triangulated subcategory with induced standard t-
structure.
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(iv) If f is a morphism of Fq -algebraic stacks, then f ∗ on complexes of sheaves
preserves ι-mixedness.

(v) If j :U0 ↪→ X0 is an open immersion and i : Z0 ↪→ X0 is its complement, then
K0 ∈W (X0,Q`) is ι-mixed if and only if j∗K0 and i∗K0 are ι-mixed.

Proof. (i) If F0 is punctually ι-pure of weight β, then so is every subquotient of it.
Now suppose F0 is ι-mixed and F′0 is a subsheaf of F0. Let W be a finite filtration

0⊂ · · · ⊂ Fi−1
0 ⊂ Fi

0 ⊂ · · · ⊂ F0

of F0 such that GrW
i F0 :=Fi

0/F
i−1
0 is punctually ι-pure for every i . Let W ′ be the

induced filtration W ∩F′0 of F′0. Then GrW ′
i F′0 is the image of

Fi
0 ∩F′0 ⊂ Fi

0 � GrW
i F0,

so it is punctually ι-pure. Let F′′0 = F0/F
′

0 be a quotient of F0, and let W ′′ be the
induced filtration of F′′0, namely (F′′0)

i
:= Fi

0/(F
i
0 ∩F′0). Then

GrW ′′
i F′′0 = Fi

0/(F
i−1
0 +Fi

0 ∩F′0),

which is a quotient of Fi
0/F

i−1
0 =GrW

i F0, so it is punctually ι-pure. Hence every
subquotient of F0 is ι-mixed.

(ii) Let W ′ and W ′′ be finite filtrations of F′0 and F′′0 respectively, such that GrW ′
i F′0

and GrW ′′
i F′′0 are punctually ι-pure for every i . Then W ′ can be regarded as a finite

filtration of F0 such that every member of the filtration is contained in F′0, and W ′′

can be regarded as a finite filtration of F0 such that every member contains F′0.
Putting these two filtrations together, we get the desired filtration for F0.

(iii) Being a triangulated subcategory means [Deligne 1977, p. 271] that if the
sequence K ′0→ K0→ K ′′0 → K ′0[1] is an exact triangle in W (X0,Q`), and two of
the three complexes are ι-mixed, then so is the third. By the rotation axiom of a
triangulated category, we can assume K ′0 and K ′′0 are ι-mixed. We have the exact
sequence

· · · −→Hn K ′0 −→Hn K0 −→Hn K ′′0 −→ · · · ,

and by (i) and (ii) we see that Hn K0 is ι-mixed.
Wm(X0,Q`) has the induced t-structure because if K0 is ι-mixed, then its trun-

cations τ≤n K0 and τ≥n K0 are ι-mixed.

(iv) On sheaves, f ∗ preserves stalks, so it is exact and preserves punctual ι-purity
on sheaves. Let f : X0 → Y0. Given an ι-mixed sheaf F0 on Y0, let W be
a finite filtration of F0 such that each GrW

i F0 is punctually ι-pure. Then f ∗W
gives a finite filtration of f ∗F0 and each Gr f ∗W

i f ∗F0 = f ∗GrW
i F0 is punctually

ι-pure. So the sheaf f ∗F0 is ι-mixed. For an ι-mixed complex K0 on Y0, note that
Hn( f ∗K0)= f ∗Hn(K0), hence f ∗K0 is ι-mixed.
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(v) One direction follows from (iv). For the other direction, note that j! and i∗
are exact and preserve punctual ι-purity on sheaves. If F0 is an ι-mixed sheaf on
U0, with a finite filtration W such that each GrW

i F0 is punctually ι-pure, then for
the induced filtration j!W of j!F0, we see that Gr j!W

i j!F0 = j!GrW
i F0 is punctu-

ally ι-pure, so j!F0 is ι-mixed. For an ι-mixed complex K0 on U0, we use that
Hn( j!K0) = j!Hn(K0). Similarly i∗ also preserves ι-mixedness on complexes.
Finally the result follows from (iii) and the exact triangle

j! j∗K0 −→ K0 −→ i∗i∗K0 −→ . �

To show that ι-mixedness is stable under the six operations, we need to show that
ι-mixedness of complexes on stacks can be checked locally on their presentations.
To descend a filtration on a presentation to the stack, we generalize the structure
theorem of ι-mixed sheaves to algebraic spaces. Recall the following theorem of
Deligne [1980, 3.4.1].

Theorem 2.6. Let F0 be an ι-mixed sheaf on a scheme X0 over Fq .

(i) F0 has a unique decomposition F0 =
⊕

b∈R/Z F0(b), called the decomposition
according to the weights mod Z, such that the punctual ι-weights of F0(b) are
all in the coset b. This decomposition, in which almost all the F0(b) are zero, is
functorial in F0. Note that each F0(b) is deduced by twist from an ι-mixed sheaf
with integer punctual weights.

(ii) If the punctual weights of F0 are integers and F0 is lisse, F0 has a unique
finite increasing filtration W by lisse subsheaves, called the filtration by punctual
weights, such that GrW

i F0 is punctually ι-pure of weight i . This filtration is functo-
rial in F0. More precisely, any morphism between ι-mixed lisse sheaves of integer
punctual weights is strictly compatible with their filtrations by punctual weights.

(iii) If F0 is lisse and punctually ι-pure, and X0 is normal, then the sheaf F on X
is semisimple.

Remark 2.6.1. (i) If C is an abelian category and D is an abelian full subcategory
of C, and C is an object in D, then every direct summand of C in C lies in D (or
isomorphic to some object in D). This is because the kernel of the composition

A⊕ B
prA
−−→ A

i A
↪−→ A⊕ B

is B. So direct summands of a lisse sheaf are lisse. If F0 in Theorem 2.6 (i) is
lisse, then each F0(b) is lisse.

(ii) If the Q`-sheaf F0 is defined over some finite subextension Eλ of Q`/Q`, then
its decomposition in Theorem 2.6 (i) and filtration in Theorem 2.6 (ii) are defined
over Eλ. This is because the Eλ-action commutes with the Galois action.
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(iii) Deligne [1980] made the assumption that all schemes are separated, at least
in order to use Nagata compactification to define f!. After the work of Laszlo
and Olsson [2008a, 2008b], one can remove this assumption, and many results in
[Deligne 1980], for instance this one and (3.3.1), remain valid. For [Deligne 1980,
3.4.1] one can take a cover of a not necessarily separated scheme X0 by open
affines (which are separated), and use the functoriality to glue the decomposition
or filtration on intersections.

Lemma 2.7. Let X0 be an Fq -algebraic space, and F0 an ι-mixed sheaf on X0.

(i) F0 has a unique decomposition F0 =
⊕

b∈R/Z F0(b), the decomposition ac-
cording to the weights mod Z, with the same property as in Theorem 2.6 (i). This
decomposition is functorial in F0.

(ii) If the punctual ι-weights of F0 are integers and F0 is lisse, F0 has a unique
finite increasing filtration W by lisse subsheaves, called the filtration by punctual
weights, with the same property as in Theorem 2.6 (ii). This filtration is functorial
in F0.

Proof. Let P : X ′0→ X0 be an étale presentation, and let F′0= P∗F0, which is also
ι-mixed by Lemma 2.5 (iv). Let X ′′0 be the fiber product

X ′′0 X ′0×X0 X ′0 X ′0

X ′0 X0.

=
p1

p2 P

P

Then X ′′0 is an Fq -scheme of finite type.

(i) Applying Theorem 2.6 (i) to F′0 we get a decomposition F′0 =
⊕

b∈R/Z F′0(b).
For j = 1, 2, applying p∗j we get a decomposition

p∗j F
′

0 =
⊕

b∈R/Z

p∗j F
′

0(b).

Since p∗j preserves weights, by the uniqueness in Theorem 2.6 (i), this decom-
position is the decomposition of p∗j F

′

0 according to the weights mod Z. By the
functoriality in Theorem 2.6 (i), the canonical isomorphismµ : p∗1F′0→ p∗2F′0 takes
the form

⊕
b∈R/Z µb, where µb : p∗1F′0(b)→ p∗2F′0(b) is an isomorphism satisfying

cocycle condition as µ does. Therefore the decomposition F′0 =
⊕

b∈R/Z F′0(b)
descends to a decomposition F0 =

⊕
b∈R/Z F0(b). We still need to show each

direct summand F0(b) is ι-mixed.
Fix a coset b and consider the summand F0(b). Twisting it appropriately, we

can assume that its inverse image F′0(b) is ι-mixed with integer punctual ι-weights.
By Lemma 2.5 (v) and noetherian induction, we can shrink X0 to a nonempty
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open subspace and assume F0(b) is lisse. Then F′0(b) is also lisse, and applying
Theorem 2.6 (ii) we get a finite increasing filtration W ′ of F′0(b) by lisse subsheaves
F′0(b)

i , such that each GrW ′
i F′0(b) is punctually ι-pure of weight i . Pulling back

this filtration via p j , we get a finite increasing filtration p∗j W ′ of p∗j F
′

0(b), and
since

Gr
p∗j W ′

i p∗j F
′

0(b)= p∗j GrW ′
i F′0(b)

is punctually ι-pure of weight i , it is the filtration by punctual weights given by
Theorem 2.6 (ii), hence it is functorial. It follows that the canonical isomorphism
µb : p∗1F′0(b)→ p∗2F′0(b)maps p∗1F′0(b)

i isomorphically onto p∗2F′0(b)
i , satisfying

cocycle condition. Therefore the filtration W ′ of F′0(b) descends to a filtration W of
F0(b), and P∗GrW

i F0(b)= GrW ′
i F′0(b) is punctually ι-pure of weight i . Note that

P is surjective, so every point x ∈ X0(Fqv ) can be lifted to a point x ′ ∈ X ′0(Fqnv )

after some base extension Fqnv of Fqv . This shows GrW
i F0(b) is punctually ι-

pure of weight i , therefore F0(b) is ι-mixed. This proves the existence of the
decomposition in (i).

For uniqueness, let F0 =
⊕

F̃0(b) be another decomposition with the desired
property. Then their restrictions to X ′0 are both equal to the decomposition of F′0,
which is unique Theorem 2.6 (i), so they are both obtained by descending this
decomposition, and so they are isomorphic, that is, for every coset b there exists
an isomorphism making the diagram commute:

F0(b) F̃0(b)

F0.

∼

For functoriality, let G0=
⊕

G0(b) be another ι-mixed sheaf with decomposition
on X0, and let ϕ : F0→ G0 be a morphism of sheaves. Pulling ϕ back via P we
get a morphism ϕ′ : F′0→ G′0 on X ′0, and the diagram

p∗1F′0 p∗2F′0

p∗1G′0 p∗2G′0

µF0

p∗1ϕ
′ p∗2ϕ

′

µG0

commutes. By Theorem 2.6 (i) ϕ′=
⊕
ϕ′(b) for morphisms ϕ′(b) :F′0(b)→G′0(b),

and the diagram
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p∗1F′0(b) p∗2F′0(b)

p∗1G′0(b) p∗2G′0(b)

can

p∗1ϕ
′ p∗2ϕ

′

can

commutes for each b. It follows that the morphisms ϕ′(b) descend to morphisms
ϕ(b) : F0(b)→ G0(b) such that ϕ =

⊕
ϕ(b).

(ii) The proof is similar to part (i). Applying Theorem 2.6 (ii) to F′0 on X ′0 we get a
finite increasing filtration W ′ of F′0 by lisse subsheaves F′i0 with desired property.
Pulling back this filtration via p j : X ′′0 → X ′0 we get the filtration by punctual
weights of p∗j F

′

0. By functoriality in Theorem 2.6 (ii), the canonical isomorphism
µ : p∗1F′0→ p∗2F′0 maps p∗1F′i0 isomorphically onto p∗2F′i0 satisfying cocycle con-
dition, therefore the filtration W ′ descends to a finite increasing filtration W of F0

by certain subsheaves Fi
0. By Olsson [2007, 9.1] they are lisse subsheaves.

For uniqueness, if W̃ is another filtration of F0 by certain subsheaves F̃i
0 with

desired property, then their restrictions to X ′0 are both equal to the filtration W ′ by
punctual weights, which is unique Theorem 2.6 (ii), so they are both obtained by
descending this filtration W ′, and therefore they are isomorphic.

For functoriality, let G0 be another lisse ι-mixed sheaf with integer punctual ι-
weights, and let V be its filtration by punctual weights, and let ϕ : F0→ G0 be a
morphism. Pulling ϕ back via P we get a morphism ϕ′ : F′0→ G′0 on X ′0, and the
diagram

p∗1F′0 p∗2F′0

p∗1G′0 p∗2G′0

µF0

p∗1ϕ
′ p∗2ϕ

′

µG0

commutes. By Theorem 2.6 (ii) we have ϕ′(F′i0 )⊂ G′i0 , and the diagram

p∗1F′i0 p∗2F′i0

p∗1G′i0 p∗2G′i0

µF0

p∗1ϕ
′ p∗2ϕ

′

µG0

commutes for each i . Let ϕ′i :F′i0→G′i0 be the restriction of ϕ′. Then they descend
to morphisms ϕi

: Fi
0→ Gi

0, which are restrictions of ϕ. �

Remark 2.7.1. One can prove a similar structure theorem of ι-mixed sheaves on
algebraic stacks over Fq : the proof of Lemma 2.7 carries over verbatim to the
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case of algebraic stacks, except that for a presentation X ′0→ X0, the fiber product
X ′′0 = X ′0×X0 X ′0 may not be a scheme, so we use the case for algebraic spaces and
replace every “2.6” in the proof by “2.7”. It turns out that Theorem 2.6 (iii) also
holds for algebraic stacks, as a consequence of the proof of Theorem 1.4. As we
will not use these results in this paper, we do not give the proof in detail here, but
refer to [Sun 2012, 2.1].

Proposition 2.8. Let X0 be an Fq -algebraic stack, and let P : X0 → X0 be a
presentation (that is, a smooth surjection with X0 a scheme). Then a complex
K0 ∈W (X0,Q`) is ι-mixed if and only if P∗K0 (respectively P !K0) is ι-mixed.

Proof. We consider P∗K0 first. The “only if” part follows from Lemma 2.5 (iv).
For the “if” part, since P∗ is exact on sheaves and so Hi (P∗K0)= P∗Hi (K0), we
reduce to the case when K0 =F0 is a sheaf. So we assume the sheaf F′0 := P∗F0

on X0 is ι-mixed, and want to show F0 is also ι-mixed. The proof is similar to the
argument in Lemma 2.7.

Let X ′′0 be the fiber product

X ′′0 X0×X0 X0 X0

X0 X0.

=
p1

p2 P

P

Then X ′′0 is an algebraic space of finite type. Applying Theorem 2.6 (i) to F′0 we
get a decomposition F′0 =

⊕
b∈R/Z F′0(b). For j = 1, 2, applying p∗j we get a

decomposition

p∗j F
′

0 =
⊕

b∈R/Z

p∗j F
′

0(b),

which is the decomposition of p∗j F
′

0 according to the weights mod Z. By the
functoriality in Lemma 2.7 (i), the canonical isomorphism µ : p∗1F′0→ p∗2F′0 takes
the form

⊕
b∈R/Z µb, where µb : p∗1F′0(b)→ p∗2F′0(b) is an isomorphism satis-

fying cocycle condition as µ does. Therefore the decomposition of F′0 descends
to a decomposition F0 =

⊕
b∈R/Z F0(b). The ι-weights of the local Frobenius

eigenvalues of F0(b) at each point of X0 are in the coset b. Next we show that
F0(b)’s are ι-mixed.

Replacing F0 by a direct summand F0(b) and then twisting it appropriately, we
may assume its inverse image F′0 is ι-mixed with integer punctual ι-weights. By
Lemma 2.5 (v) we can shrink X0 to a nonempty open substack and assume F0 is
lisse. Then F′0 is also lisse, and applying Theorem 2.6 (ii) we get a finite increasing
filtration W ′ of F′0 by lisse subsheaves F′i0 , such that each GrW ′

i F′0 is punctually
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ι-pure of weight i . Pulling back this filtration via p j , we get a finite increasing
filtration p∗j W ′ of p∗j F

′

0, and since

Gr
p∗j W ′

i p∗j F
′

0 = p∗j GrW ′
i F′0

is punctually ι-pure of weight i , it is the filtration by punctual weights given by
Lemma 2.7 (ii). By functoriality, the canonical isomorphism µ : p∗1F′0 → p∗2F′0
maps p∗1F′i0 isomorphically onto p∗2F′i0 , satisfying cocycle condition. Therefore
the filtration W ′ of F′0 descends to a filtration W of F0, and P∗GrW

i F0 = GrW ′
i F′0

is punctually ι-pure of weight i . Since π is surjective, GrW
i F0 is also punctually

ι-pure of weight i , therefore F0 is ι-mixed.
Next we consider P !K0. We know that P is smooth of relative dimension d , for

some function d : π0(X0)→ N. Let X0
0 be a connected component of X0. Since

π0(X0) is finite, X0
0 is both open and closed in X0, so

f : X0
0

j
−→ X0

P
−→ X0

is smooth of relative dimension d(X0
0). Then P∗K0 is ι-mixed if and only if

f ∗K0 = j∗P∗K0 is ι-mixed for the inclusion j of every connected component,
if and only if f !K0 = f ∗K0〈d(X0

0)〉 is ι-mixed, if and only if P !K0 is ι-mixed,
since f ! = j !P ! = j∗P !. �

Remark 2.8.1. As a consequence of Lafforgue’s theorem on the Langlands cor-
respondence for function fields and a Ramanujan–Petersson type of result, one
deduces that all complexes on any Fq -algebraic stack is ι-mixed, for any ι. To
see this, by Proposition 2.8 and Lemma 2.5 (ii,v), we reduce to the case of an
irreducible lisse sheaf on a smooth (in particular, normal) Fq -scheme. By [Deligne
1980, 1.3.6] we reduce to the case where the determinant of the lisse sheaf has
finite order, and Lafforgue’s result [Laumon 2002, 1.3] applies. In the following,
when we want to emphasize the assumption of ι-mixedness, we will still write
Wm(X0,Q`)

′′, although it equals the full category W (X0,Q`).

Next we show the stability of ι-mixedness, first for a few operations on com-
plexes on algebraic spaces, and then for all the six operations on stacks. Denote
by DX0 or just D the dualizing functor RHom(−, KX0), where KX0 is a dualizing
complex on X0 [Laszlo and Olsson 2008b, §7].

2.9. Recall [Kiehl and Weissauer 2001, II 12.2] that, for Fq -schemes and bounded
complexes of sheaves on them, the operations f∗, f!, f ∗, f !, D and −⊗L

− all
preserve ι-mixedness. Since we are working with Q`-coefficients, ⊗L

=⊗.

Lemma 2.10. Let f : X0→ Y0 be a morphism of Fq -algebraic spaces. Then the
operations −⊗−, DX0, f∗ and f! all preserve ι-mixedness, namely, they induce
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functors

−⊗− :W−m (X0,Q`)×W−m (X0,Q`)−→W−m (X0,Q`),

D :Wm (X0,Q`)−→Wm (X0,Q`)
op,

f∗ :W+m (X0,Q`)−→W+m (Y0,Q`),

f! :W−m (X0,Q`)−→W−m (Y0,Q`).

Proof. We will reduce to the case of unbounded complexes on schemes, and then
prove the scheme case. Let P : X ′0→ X0 be an étale presentation.

Reduction for ⊗. For objects K0 and L0 in W−m (X0,Q`), we have that

P∗(K0⊗ L0)= (P∗K0)⊗ (P∗L0),

and the reduction follows from Proposition 2.8.
Reduction for D. For K0 ∈ Wm(X0,Q`), we have P∗DK0 = D P !K0, so the

reduction follows from Proposition 2.8.
Reduction for f∗ and f!. By definition [Laszlo and Olsson 2008b, 9.1] we have

f∗ = D f!D, so it suffices to prove the case for f!. Let K0 ∈ W−m (X0,Q`), and let
P ′ : Y ′0→ Y0 and X ′0→ X0×Y0 Y ′0 be étale presentations:

X ′0 (X0)Y ′0 Y ′0

X0 Y0.

P

f ′

h P ′

f

g

By smooth base change [Laszlo and Olsson 2008b, 12.1] we get P ′∗ f!K0= f ′
!
h∗K0.

Replacing f by f ′ we can assume Y0 is a scheme. Let j : U0→ X0 be an open
dense subscheme [Knutson 1971, II 6.7], with complement i : Z0→ X0. Applying
f! to the exact triangle

j! j∗K0 −→ K0 −→ i∗i∗K0 −→

we get
( f j)! j∗K0 −→ f!K0 −→ ( f i)!i∗K0 −→

By Lemma 2.5 (iii) and noetherian induction, we can replace X0 by U0, and reduce
to the case where f is a morphism between schemes.

This finishes the reduction to the case of unbounded complexes on schemes, and
now we prove this case.

For the Verdier dual DX0 , since the dualizing complex K X0 has finite quasi-
injective dimension, for every K0 ∈ Wm(X0,Q`) and every integer i , there exist
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integers a and b such that

Hi (DX0 K0)'Hi (DX0τ[a,b]K0),

and by 2.9, we see that DX0 K0 is ι-mixed.
Next we prove the case of ⊗. For K0 and L0 ∈W−m (X0,Q`), we have

Hr (K0⊗ L0)=
⊕

i+ j=r

Hi (K0)⊗H j (L0).

The result follows from 2.9.
Finally we prove the case of f∗ and f!. Let K0 ∈ W+m (X0,Q`). Then we have

the spectral sequence

E i j
2 = Ri f∗(H j K0)H⇒ Ri+ j f∗K0,

and the result follows from 2.9 and Lemma 2.5 (i,ii). The case for f! = D f∗D also
follows. �

Finally we prove the main result of this section. This generalizes [Behrend 2003,
6.3.7].

Theorem 2.11. Let f : X0→ Y0 be a morphism of Fq -algebraic stacks. Then the
operations f∗, f!, f ∗, f !, DX0,−⊗− and RHom(−,−) all preserve ι-mixedness,
namely, they induce functors

f
∗
:W+m (X0,Q`)−→W+m (Y0,Q`), f

!
:W−m (X0,Q`)−→W−m (Y0,Q`),

f ∗ :Wm (Y0,Q`)−→Wm (X0,Q`), f ! :Wm (Y0,Q`)−→Wm (X0,Q`),

RHom(−,−) :W−m (X0,Q`)
op
×W+m (X0,Q`)−→W+m (X0,Q`),

⊗ :W−m (X0,Q`)×W−m (X0,Q`)−→W−m (X0,Q`),

D :Wm(X0,Q`)−→Wm(X0,Q`)
op.

Proof. Recall from [Laszlo and Olsson 2008b, 9.1] that we have f! := D f∗D and
f ! :=D f ∗D. By [ibid., 6.0.12, 7.3.1], for K0∈W−(X0,Q`) and L0∈W+(X0,Q`),
we have

D(K0⊗ DL0)= RHom(K0⊗ DL0, KX0)= RHom(K0, RHom(DL0, KX0))

= RHom(K0, DDL0)= RHom(K0, L0).

Therefore it suffices to prove the result for f∗, f ∗, D and −⊗−. The case of f ∗

is proved in Lemma 2.5 (iv).
For D: Let P : X0→X0 be a presentation. Since P∗D= D P !, the result follows

from Proposition 2.8 and Lemma 2.10.
For ⊗: Since we have P∗(K0⊗ L0) = P∗K0⊗ P∗L0, the result follows from

Proposition 2.8 and Lemma 2.10.
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For f∗ and f!: We will start with f!, in order to use smooth base change to reduce
to the case when Y0 is a scheme, and then turn to f∗ in order to use cohomological
descent.

Let K0 ∈W−m (X0,Q`), and let P : Y0→Y0 be a presentation and the following
diagram be 2-Cartesian:

(X0)Y0 Y0

X0 Y0

f ′

P ′ P
f

We have [ibid., 12.1] that P∗ f!K0 = f ′
!

P ′∗K0, so by 2.8 we can assume Y0 = Y0

is a scheme.
Now we switch to f∗, where f :X0→ Y0, and K0 ∈W+m (X0,Q`). Let X0→X0

be a presentation. Then it gives a strictly simplicial smooth hypercover X0,• of X0:

X0,n := X0×X0 · · · ×X0 X0︸ ︷︷ ︸
n+1 factors

,

where each X0,n is an Fq -algebraic space of finite type. Let fn : X0,n→ Y0 be the
restriction of f to X0,n . Then we have the spectral sequence [Laszlo and Olsson
2008b, 10.0.9]

E i j
1 = R j fi∗(K0|X0,i )H⇒ Ri+ j f∗K0.

Since fi ’s are morphisms of algebraic spaces, the result follows from Lemma 2.10
and Lemma 2.5 (i, ii). �

Remark 2.12. In fact, we can take the dualizing complex KX0 to be mixed, and
results in this section hold (and can be proved verbatim) for mixed complexes. In
particular, mixedness is preserved by the six operations and the Verdier dualizing
functor for stacks (if we take a mixed dualizing complex).

3. Stratifiable complexes

In this section, we use the same notations and hypotheses in 2.1. For the purpose
of this article, it suffices to take S to be Spec k for an algebraically closed field k
of characteristic not equal to `, but we want to work in the general setting (namely,
that of any scheme that satisfies (LO)) for future applications; for instance, when
proving the generic base change. Let X,Y, . . . be S-algebraic stacks of finite type.
By “sheaves” we mean “lisse-étale sheaves”. “Locally constant constructible” is
abbreviated as “lcc”. A stratification S of an S-algebraic stack X is a finite set of
disjoint locally closed substacks that cover X. If F is a lcc (3n)X-module, a decom-
position series of F is a filtration by lcc 3X-subsheaves, such that the successive
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quotients are simple 3X-modules. Note that the filtration is always finite, and
the simple successive quotients, which are (30)X-modules, are independent (up
to order) of the decomposition series chosen. They are called the Jordan–Hölder
components of F.

Definition 3.1. (i) A complex K = (Kn)n ∈Dc(A) is said to be stratifiable if there
exists a pair (S,L), where S is a stratification of X and L is a function that assigns
to every stratum U ∈ S a finite set L(U) of isomorphism classes of simple (that is,
irreducible) lcc 30-modules on Ulis-ét, such that for each pair (i, n) of integers the
restriction of the sheaf Hi (Kn) ∈ Modc(Xlis-ét,3n) to each stratum U ∈ S is lcc,
with Jordan–Hölder components (as a 3U-module) contained in L(U). We say
that the pair (S,L) trivializes K (or K is (S,L)-stratifiable), and denote the full
subcategory of (S,L)-stratifiable complexes by DS,L(A). The full subcategory of
stratifiable complexes in Dc(A) is denoted by Dstra

c (A).

(ii) Let Dstra
c (X,3) be the essential image of Dstra

c (A) in Dc(X,3), and we call the
objects of Dstra

c (X,3) stratifiable complexes of sheaves.

(iii) Let Eλ be a finite extension of Q` with ring of integers Oλ. Then the definition
above applies to 3 = Oλ. Let Dstra

c (X, Eλ) be the essential image of Dstra
c (X,Oλ)

in Dc(X, Eλ). Finally we define

Dstra
c (X,Q`)= 2-colimEλ Dstra

c (X, Eλ).

Remark 3.1.1. (i) This notion is due to Beilinson, Bernstein and Deligne [1982],
and Behrend [2003] used it to define his derived category for stacks. Many results
in this section are borrowed from [Behrend 2003], but reformulated and reproved
in terms of the derived categories defined in [Laszlo and Olsson 2008b].

(ii) Let F be a 3n-sheaf trivialized by a pair (S,L), and let G be a subquotient
sheaf of F. Then G is not necessarily trivialized by (S,L). But if G is lcc on each
stratum in S, then it is necessarily trivialized by (S,L).

3.2. We say that the pair (S′,L′) refines the pair (S,L), if S′ refines S, and for
every V ∈ S′, U ∈ S and L ∈ L(U), such that V ⊂ U, the restriction L|V is
trivialized by L′(V). Given a pair (S,L) and a refined stratification S′ of S, there
is a canonical way to define L′ such that (S′,L′) refines (S,L): for every V ∈S′,
we take L′(V) to be the set of isomorphism classes of Jordan–Hölder components
of the lcc sheaves L|V for L ∈ L(U), where U ranges over all strata in S that
contains V. It is clear that the set of all pairs (S,L) form a filtered direct system.

A pair (S,L) is said to be tensor closed if for every U ∈ S and L ,M ∈ L(U),
the sheaf tensor product L ⊗30 M has Jordan–Hölder components in L(U).

For a pair (S,L), a tensor closed hull of this pair is a tensor closed refinement.

Lemma 3.3. Every pair (S,L) can be refined to a tensor closed pair (S′,L′).
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Proof. First we show that for a lcc sheaf of sets F on Xlis-ét, there exists a finite
étale morphism f : Y → X of algebraic S-stacks such that f −1F is constant.
Consider the total space [F] of the sheaf F. Precisely, this is the category fibered
in groupoids over (Aff/S) with the underlying category described as follows. Its
objects are triples (U ∈obj(Aff/S), u ∈obj X(U ), s ∈ (u−1F)(U )), and morphisms
from (U, u, s) to (V, v, t) are pairs ( f :U→V, α :v f ⇒u) such that t is mapped to
s under the identification α : f −1v−1F∼= u−1F. The map (U, u, s) 7→ (U, u) gives
a map g : [F]→X, which is representable finite étale (because it is so locally). The
pullback sheaf g−1F on [F] has a global section, so the total space breaks up into
two parts, one part being mapped isomorphically onto the base [F]. By induction
on the degree of g we are done.

Next we show that for a fixed representable finite étale morphism Y→X, there
are only finitely many isomorphism classes of simple lcc 30-sheaves on X that
become constant when pulled back to Y. We can assume that both X and Y are
connected. By the following Lemma 3.3.1, we reduce to the case where Y→ X

is Galois with group G, for some finite group G. Then simple lcc 30-sheaves on
X that become constant on Y correspond to simple left 30[G]-modules, which are
cyclic and hence isomorphic to30[G]/I for left maximal ideals I of30[G]. There
are only finitely many such ideals since 30[G] is a finite set.

Also note that a lcc subsheaf of a constant constructible sheaf on a connected
stack is also constant. Let L be a lcc subsheaf on X of the constant sheaf associated
to a finite set M . Consider their total spaces. We have an inclusion of substacks
i : [L] ↪→

∐
m∈M Xm , where each part Xm is identified with X. Then i−1(Xm)→Xm

is finite étale, and is the inclusion of a substack, hence is either an equivalence or
the inclusion of the empty substack, since X is connected. It is clear that L is also
constant, associated to the subset of those m ∈ M for which i−1(Xm) 6=∅.

Finally we prove the lemma. Refining S if necessary, we assume all strata are
connected stacks. For each stratum U ∈ S, let Y→ U be a representable finite
étale morphism, such that all sheaves in L(U) become constant on Y. Then define
L′(U) to be the set of isomorphism classes of simple lcc 30-sheaves on Ulis-ét

which become constant on Y. For any L and M ∈L′(U), since all lcc subsheaves
of L⊗30 M are constant on Y, we see that L⊗30 M has Jordan–Hölder components
in L′(U) and hence (S,L′) is a tensor closed refinement of (S,L). �

Lemma 3.3.1. Let Y→ X be a representable finite étale morphism between con-
nected S-algebraic stacks. Then there exists a morphism Z→ Y, such that Z is
Galois over X, that is, it is a G-torsor for some finite group G.

Proof. Assume X is nonempty, and take a geometric point x → X. Let C be the
category FÉt(X) of representable finite étale morphisms to X, and let

F : C→ FSet
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be the fiber functor to the category of finite sets, namely F(Y) = HomX(x,Y).
Note that this Hom, which is a priori a category, is a finite set, since Y→ X is
representable and finite. Then one can verify that (C, F : C→ FSet) satisfies the
axioms of Galois formalism in [Grothendieck and Raynaud 1971, Exp. V, 4], and
use the consequence g) on p. 121 in (loc. cit.) For the reader’s convenience, we
follow Olsson’s suggestion and explain the proof briefly. Basically, we will verify
certain axioms of (G1)–(G6), and deduce the conclusion as in (loc. cit.).

First note that C, which is a priori a 2-category, is a 1-category. This is because
for any 2-commutative diagram

Y Z

X

f

where Y and Z are in C, the morphism f is also representable (and finite étale),
so HomX(Y,Z) is discrete. By definition, the functor F preserves fiber-products,
and F(X) is a one-point set.

Let f :Y→Z be a morphism in C, then it is finite étale. So if the degree of f is
1, then f is an isomorphism. This implies that the functor F is conservative, that
is, f is an isomorphism if F( f ) is. In particular, f is a monomorphism if and only
if F( f ) is. This is because f is a monomorphism if and only if p1 :Y×Z Y→Y

is an isomorphism, and F preserves fiber-products.
Since f :Y→ Z is finite étale, its image stack Y′ ⊂ Z is both open and closed,

hence Y′→ Z is a monomorphism that is an isomorphism onto a direct summand
of Z (that is, Z=Y′

∐
Y′′ for some other open and closed substack Y′′⊂Z). Also,

since Y→Y′ is epic and finite étale, it is strictly epic, that is, for every Z ∈C, the
diagram

Hom(Y′,Z)→ Hom(Y,Z)⇒ Hom(Y×Y′ Y,Z)

is an equalizer.
Every object Y in C is artinian: for a chain of monomorphisms

· · · → Yn→ · · · → Y2→ Y1→ Y,

we get a chain of injections

· · · → F(Yn)→ · · · → F(Y1)→ F(Y),

which is stable since F(Y) is a finite set, and so the first chain is also stable since
F is conservative.

Since F is left exact and every object in C is artinian, by [Grothendieck 1960,
3.1] the functor F is strictly pro-representable, that is, there exists a projective
system P = {Pi ; i ∈ I } of objects in C indexed by a filtered partially ordered set I ,
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with epic transition morphisms ϕi j : Pj → Pi (i ≤ j), such that there is a natural
isomorphism of functors

F −→∼ Hom(P,−) := colimI Hom(Pi ,−).

Let ψi : P→ Pi be the canonical projection in the category Pro(C) of pro-objects
of C. We may assume that every epimorphism Pj → Z in C is isomorphic to
Pj

ϕi j
−→ Pi for some i ≤ j . This is because one can add Pj→Z into the projective

system P without changing the functor it represents. Also one can show that the
Pi ’s are connected [Grothendieck 1960], and morphisms in C between connected
stacks are strictly epic.

Given Y ∈C, now we show that there exists an object Z→X that is Galois and
factors through Y. Since F(Y) is a finite set, there exists an index j ∈ I such that
all maps P→ Y factors through P −→ψj Pj . This means that the canonical map

P→ YJ
:= Y×X · · · ×X Y︸ ︷︷ ︸

#J factors

, where J := F(Y)= HomPro(C)(P,Y)

factors as

P
ψ j
−→ Pj

A
−→ YJ .

Let Pj→ Pi
B
→YJ be the factorization of A into a composition of an epimorphism

and a monomorphism B. We claim that Pi is Galois over X.
Since F(Pi ) is a finite set, there exists an index k ∈ I such that all maps P→ Pi

factors through P −→ψk Pk . Fix any v : Pk→ Pi . To show Pi is Galois, it suffices to
show that Aut(Pi ) acts on F(Pi )= Hom(Pk, Pi ) transitively, that is, there exists a
σ ∈ Aut(Pi ) making the triangle commute:

Pk Pi

Pi

v

ϕik
σ

For every u ∈ J = Hom(Pi ,Y), we have u ◦ v ∈ Hom(Pk,Y), so there exists a
u′ ∈ Hom(Pi ,Y) making the diagram commute:

Pk Pi

Pi Y.

v

ϕik u

u′

Since v is epic, the function u 7→ u′ : J → J is injective, hence a bijection. Let
α : YJ

→ YJ be the isomorphism induced by the map u 7→ u′. Then the diagram
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PiPk YJ

Pi YJ

Bv

α

B

ϕik

commutes. By the uniqueness of the factorization of the map Pk → YJ into the
composition of an epimorphism and a monomorphism, there exists a σ ∈ Aut(Pi )

such that σ ◦ v = ϕik . This finishes the proof. �

We give some basic properties of stratifiable complexes.

Lemma 3.4. (i) Dstra
c (A) (respectively Dstra

c (X,3)) is a triangulated subcategory
of Dc(A) (respectively Dc(X,3)) with the induced standard t-structure.

(ii) If f :X→Y is an S-morphism, then f ∗ :Dc(A(Y))→Dc(A(X)) (respectively
f ∗ : Dc(Y,3)→ Dc(X,3)) preserves stratifiability.

(iii) If S is a stratification of X, then K ∈ Dc(A(X)) is stratifiable if and only if
K |V is stratifiable for every V ∈ S.

(iv) Let P : X → X be a presentation, and let K = (Kn)n ∈ Dc(A(X)). Then K is
stratifiable if and only if P∗K is stratifiable.

(v) Dstra
c (X,3) contains Db

c (X,3), and the heart of Dstra
c (X,3) is the same as that

of Dc(X,3) in Remark 2.2.1 (i).

(vi) Let K ∈ Dc(A) be a normalized complex [Laszlo and Olsson 2008b, 3.0.8].
Then K is trivialized by a pair (S,L) if and only if K0 is trivialized by this pair.

(vii) Let K ∈ Dstra
c (A). Then its Tate twist K (1) is also stratifiable.

Proof. (i) To show Dstra
c (A) is a triangulated subcategory, it suffices to show

[Deligne 1977, p. 271] that for every exact triangle K ′ → K → K ′′ → K ′[1]
in Dc(A), if K ′ and K ′′ are stratifiable, so also is K .

Using refinement we may assume that K ′ and K ′′ are trivialized by the same
pair (S,L). Consider the cohomology sequence of this exact triangle at level n,
restricted to a stratum U ∈S. By Olsson [2007, 9.1], to show that a sheaf is lcc on
U, one can pass to a presentation U of the stack U. Then by Milne [2008, 20.3]
and the five-lemma, we see that the Hi (Kn)’s are lcc on U, with Jordan–Hölder
components contained in L(U). Therefore Dstra

c (A) (and hence Dstra
c (X,3)) is a

triangulated subcategory.
The t-structure is inherited by Dstra

c (A) (and hence by Dstra
c (X,3)) because, if

K ∈ Dc(A) is stratifiable, so also are its truncations τ≤r K and τ≥r K .

(ii) The functor f ∗ is exact on the level of sheaves, and takes a lcc sheaf to a lcc
sheaf. If (Kn)n ∈ Dc(A(Y)) is trivialized by (S,L), then ( f ∗Kn)n is trivialized
by ( f ∗S, f ∗L), where f ∗S= { f −1(V )|V ∈ S} and ( f ∗L)( f −1(V )) is the set of
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isomorphism classes of Jordan–Hölder components of f ∗L , L ∈ L(V ). The case
of Dc(−,3) follows easily.

(iii) The “only if” part follows from (ii). The “if” part is clear: if (SV ,LV ) is a
pair on V that trivializes (Kn|V )n , then the pair (SX,L) on X, where SX = ∪SV

and L= {LV }V∈S, trivializes (Kn)n .

(iv) The “only if” part follows from (ii). For the “if” part, assume P∗K is trivialized
by a pair (SX ,LX ) on X . Let U ∈ SX be an open stratum, and let V ⊂ X be
the image of U [Laumon and Moret-Bailly 2000, 3.7]. Recall that for every T in
Aff/S, V (T ) is the full subcategory of X(T ) consisting of objects x that are locally
in the essential image of U (T ), that is, such that there exists an étale surjection
T ′→ T in Aff/S and u′ ∈U (T ′), such that the image of u′ in X(T ′) and x |T ′ are
isomorphic. Then V is an open substack of X (hence also an algebraic stack) and
P|U :U→ V is a presentation. Replacing P : X→ X by P|U :U→ V and using
noetherian induction and (iii), we may assume SX = {X}.

It follows from a theorem of Gabber [Illusie et al. 2008] that P∗ takes a bounded
complex to a bounded complex. In fact, using base change by P , we may assume
that P : Y→ X is a morphism from an S-algebraic space Y to an S-scheme X . Let
j : U → Y be an open dense subscheme of Y with complement i : Z → Y . For a
bounded complex L of 3n-sheaves on Y , we have the exact triangle

(Pi)∗i !L −→ P∗L −→ (P j)∗ j∗L −→ .

Gabber’s theorem implies that (P j)∗ j∗L is bounded, since P j :U → X is a mor-
phism between schemes. Note that the dualizing functor preserves boundedness,
so does i ! = DZ i∗DY , and therefore we may assume that (Pi)∗i !L is bounded by
noetherian induction. It follows that P∗L is bounded.

Now take a pair (S,L) on X that trivializes all P∗L’s, for L ∈LX ; this is possible
since each P∗L is bounded and LX is a finite set. We claim that K is trivialized
by (S,L).

For each sheaf F on X, the natural map F → R0 P∗P∗F is injective. This
follows from the sheaf axioms for the lisse-lisse topology, and the fact that the
lisse-étale topos and the lisse-lisse topos are the same. Explicitly, to verify the
injectivity on XU → U , for any u ∈ X(U ), since the question is étale local on U ,
one can assume P : XU → U has a section s : U → XU . Then the composition
FU → R0 P∗P∗FU → R0 P∗R0s∗s∗P∗FU = FU of the two adjunctions is the
adjunction for P ◦ s = id, so the composite is an isomorphism, and the first map is
injective.

We take F to be the cohomology sheaves Hi (Kn). Since P∗Hi (Kn) is an it-
erated extension of sheaves in LX , we see that P∗P∗Hi (Kn), and in particular
R0 P∗P∗Hi (Kn), are trivialized by (S,L) by (i). Since Hi (Kn) is lcc [Olsson
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2007, 9.1], by Remark 3.1.1 (ii) we see that Hi (Kn) (hence K ) is trivialized by
(S,L).

(v) By part (i) and Remark 2.2.1 (i) it is enough to show that all adic systems
M = (Mn)n ∈ A are stratifiable. By (iv) we may assume X = X is an S-scheme.
Since X is noetherian, there exists a stratification [Illusie 1977, VI, 1.2.6] of X
such that M is lisse on each stratum. By (iii) we may assume M is lisse on X .

Let L be the set of isomorphism classes of Jordan–Hölder components of the
30-sheaf M0. We claim that L trivializes Mn for all n. Suppose it trivializes Mn−1

for some n≥1. Consider the sub-3n-modules λMn⊂Mn[λ
n
]⊂Mn , where Mn[λ

n
]

is the kernel of the map λn
: Mn→ Mn . Since M is adic, we have exact sequences

of 3X -modules

0 λMn Mn M0 0,

0 Mn[λ
n
] Mn λn Mn 0,

0 λn Mn Mn Mn−1 0.

The natural surjection Mn/λMn → Mn/Mn[λ
n
] implies that L trivializes λn Mn ,

and therefore it also trivializes Mn . By induction on n we are done.
Since Db

c ⊂ Dstra
c ⊂ Dc, and Db

c and Dc have the same heart, it is clear that Dstra
c

has the same heart as them.

(vi) Applying−⊗L
3n

Kn to the following exact sequence, viewed as an exact triangle
in D(X,3n)

0−→3n−1
17→λ
−−−→3n −→30 −→ 0,

we get an exact triangle by Laszlo and Olsson [2008b, 3.0.10]

Kn−1 −→ Kn −→ K0 −→ .

By induction on n and Remark 3.4.1 below, we see that K is trivialized by (S,L)

if K0 is.

(vii) Let K = (Kn)n . Recall that the Tate twist K (1) is defined to be the system
(Kn(1))n , where Kn(1) = Kn ⊗

L
3n
3n(1). Note that the sheaf 3n(1) is a flat 3n-

module: to show that −⊗3n 3n(1) preserves injections, one can pass to stalks at
geometric points, over which we have a trivialization 3n '3n(1).

Suppose K is (S,L)-stratifiable. Using the isomorphism

Hi (Kn)⊗3n 3n(1)=Hi (Kn ⊗
L
3n
3n(1)),

it suffices to show the existence of a pair (S,L′) such that for each U ∈ S, the
Jordan–Hölder components of the lcc sheaves L ⊗3n 3n(1) lie in L′(U), for all
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L ∈ L(U). Since L is a 30-module, we have

L ⊗3n 3n(1)= (L ⊗3n 30)⊗3n 3n(1)= L ⊗3n (30⊗3n 3n(1))

= L ⊗3n 30(1)= L ⊗30 30(1),

and we can take L′(U) to be a tensor closed hull of {30(1), L ∈ L(U)}. �

Remark 3.4.1. In fact the proof of Lemma 3.4 (i) shows that DS,L(A) is a trian-
gulated subcategory with induced standard t-structure, for each fixed pair (S,L).
Let DS,L(X,3) be the essential image of DS,L(A) in Dc(X,3), and this is also a
triangulated subcategory with induced standard t-structure.

Also if E i j
r H⇒ En is a spectral sequence in the category A(X), and the E i j

r ’s
are trivialized by (S,L) for all i, j , then all the En’s are trivialized by (S,L).

We denote by D†,stra
c (X,3), for † = ±, b, the full subcategory of †-bounded

stratifiable complexes, using the induced t-structure.
The following is a key result for showing the stability of stratifiability under

the six operations later. Recall that M 7→ M̂ = Lπ∗Rπ∗M is the normalization
functor, where π :XN

→X is the morphism of topoi in [Laszlo and Olsson 2008b,
2.1], mentioned in 2.3.

Proposition 3.5. For a pair (S,L) on X, if M ∈DS,L(A), then M̂ ∈DS,L(A), too.
In particular, if K ∈ Dc(X,3), then K is stratifiable if and only if its normalization
K̂ ∈ Dc(A) is stratifiable.

Proof. First, we will reduce to the case where M is essentially bounded (that
is, Hi M is AR-null for |i | � 0). Let P : X → X be a presentation. The `-
cohomological dimension of Xét is finite, by the assumption (LO) on S. Therefore,
by Laszlo and Olsson [2008b, 2.1.i], the normalization functor for X has finite
cohomological dimension, and the same is true for X since P∗M̂ = P̂∗M , by
[ibid., 2.2.1, 3.0.11]. This implies that for each integer i , there exist integers a and
b with a ≤ b, such that Hi (M̂)=Hi (τ̂[a,b]M). Since τ[a,b]M is also trivialized by
(S,L), we may assume M ∈ Db

S,L(A(X)).
Since M̂ is normalized, by Lemma 3.4 (vi), it suffices to show that (M̂)0 is

trivialized by (S,L). Using projection formula and the flat resolution of 30

0−→3
λ
−→3

ε
−→30 −→ 0,

we have [ibid., p.176]

(M̂)0 =30⊗
L
3 Rπ∗M = Rπ∗(π∗30⊗

L
3•

M),

where π∗30 is the constant projective system defined by 30. Let C ∈ D(A) be
the complex of projective systems π∗30 ⊗

L
3•

M ; it is a λ-complex, and we have
Cn =30⊗

L
3n

Mn ∈ Dc(X,30).
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Recall [Illusie 1977, V, 3.2.3] that a projective system (Kn)n ringed by 3• in an
abelian category is AR-adic if and only if

• it satisfies the condition (MLAR) [Illusie 1977, V, 2.1.1], hence (ML), and denote
by (Nn)n the projective system of the universal images of (Kn)n;

• there exists an integer k≥0 such that the projective system (Ln)n := (Nn+k⊗3n)n

is adic.

Moreover, (Kn)n is AR-isomorphic to (Ln)n . Now for each i , the projective
system Hi (C) is AR-adic Remark 2.2.1 (i). Let N i

= (N i
n)n be the projective

system of the universal images of Hi (C), and choose an integer k ≥ 0 such that the
system L i

= (L i
n)n = (N

i
n+k⊗3n)n is adic. Since N i

n+k ⊂Hi (Cn+k) is annihilated
by λ, we have L i

n = N i
n+k , and the transition morphism gives an isomorphism

L i
n ' L i

n ⊗3n 3n−1 −→
∼ L i

n−1.

This means the projective system L i is the constant system π∗L i
0. By Laszlo and

Olsson [2008b, 2.2.2] we have Rπ∗Hi (C) ' Rπ∗L i , which is just L i
0 by [ibid.,

2.2.3].
The spectral sequence

R jπ∗H
i (C)H⇒Hi+ j ((M̂)0)

degenerates to isomorphisms L i
0 'Hi ((M̂)0), so we only need to show that L i

0 is
trivialized by (S,L). Using the periodic 3n-flat resolution of 30

· · · −→3n
λ
−→3n

λn

−→3n
λ
−→3n

ε
−→30 −→ 0,

we see that 30⊗
L
3n

H j (Mn) is represented by the complex

· · · −→H j (Mn)
λn

−→H j (Mn)
λ
−→H j (Mn)−→ 0,

so Hi (30⊗
L
3n

H j (Mn)) are trivialized by (S,L), for all i, j . Since M is essentially
bounded, we have the spectral sequence

Hi (30⊗
L
3n

H j (Mn))H⇒Hi+ j (Cn),

from which we deduce (by Remark 3.4.1) that the Hi (Cn)’s are trivialized by
(S,L). The universal image N i

n is the image of Hi (Cn+r )→ Hi (Cn) for some
r � 0, therefore the N i

n’s (and hence the L i
n’s) are trivialized by (S,L).

For the second claim, let K ∈ Dc(X,3). Since K is isomorphic to the image of
K̂ under the localization Dc(A)→ Dc(X,3) [Laszlo and Olsson 2008b, 3.0.14],
we see that K is stratifiable if K̂ is. Conversely, if K is stratifiable, which means
that it is isomorphic to the image of some M ∈ Dstra

c (A), then K̂ = M̂ is also
stratifiable. �
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3.5.1. For K ∈ Dc(X,3), we say that K is (S,L)-stratifiable if K̂ is, and then
Proposition 3.5 implies that K ∈ DS,L(X,3) (see Remark 3.4.1) if and only if K
is (S,L)-stratifiable.

Corollary 3.6. (i) If S is a stratification of X, then K ∈ Dc(X,3) is stratifiable if
and only if K |V is stratifiable for every V ∈ S.

(ii) Let K ∈ Dc(X,3). Then K is stratifiable if and only if its Tate twist K (1) is.

(iii) Let P : X→X be a presentation, and let K ∈ Dc(X,3). Then K is stratifiable
if and only if P∗K (respectively P !K ) is stratifiable.

Proof. (i) The “only if” part follows from Lemma 3.4 (ii). For the “if” part, we
first prove the following.

Lemma 3.6.1. For an S-algebraic stack X locally of finite type, let

N
u
−→ M −→ C −→ N [1]

be an exact triangle in Dc(A), where N is a normalized complex and C is almost
AR-null. Then the morphism u is isomorphic to the natural map M̂→ M.

Proof. Consider the following diagram

N̂ M̂ Ĉ N̂ [1]

N̂ M C N [1].

û

u
'

Since C is almost AR-null, we have Ĉ = 0 by Laszlo and Olsson [2008b, 2.2.2],
and so û is an isomorphism. �

Now let f :V→X be a morphism of S-algebraic stacks, and let M ∈Dc(A(X)).
We claim that f ∗M̂ ' f̂ ∗M . Applying f ∗ to the exact triangle

M̂ −→ M −→ C −→

we get
f ∗M̂ −→ f ∗M −→ f ∗C −→ .

By Laszlo and Olsson [2008a, 4.3.2], M̂n = hocolimN τ≤N M̂n , and −⊗L
3n
3n−1

and f ∗ preserve homotopy colimit because they preserve infinite direct sums. Now
that τ≤N M̂n and 3n−1 are bounded above complexes, we have

f ∗(τ≤N M̂n ⊗
L
3n
3n−1)' f ∗τ≤N M̂n ⊗

L
3n
3n−1

(see the proof of [ibid., 4.5.3]). Hence applying f ∗ to the isomorphism

M̂n ⊗
L
3n
3n−1 −→ M̂n−1
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we get an isomorphism

f ∗M̂n ⊗
L
3n
3n−1 −→ f ∗M̂n−1,

and by [ibid., 3.0.10], f ∗M̂ is normalized. Also it is clear that f ∗C is AR-null.
By Lemma 3.6.1 we have f ∗M̂ ' f̂ ∗M .

Therefore, the “if” part follows from Lemma 3.4 (iii) and Proposition 3.5, since
K̂ |V ' (̂K |V ).

(ii) This follows from Lemma 3.4 (vii), since K̂ (1)= K̂ (1).

(iii) For P∗K , the “only if” part follows from Lemma 3.4 (ii), and the “if” part fol-
lows from Lemma 3.4 (iv) and Proposition 3.5, since P∗ K̂ = (̂P∗K ) [ibid., 2.2.1,
3.0.11].

Since P is smooth of relative dimension d , for some function d : π0(X)→ N,
we have P !K ' P∗K (d)[2d], so by (ii), P∗K is stratifiable if and only if P !K
is. �

Before proving the main result of this section, we prove some special cases.

3.7. Let f : X → Y be a morphism of S-schemes. Then the 3n-dualizing com-
plexes K X,n and KY,n of X and Y respectively have finite quasi-injective dimen-
sions, and are bounded by some integer independent of n. Together with the
base change theorem for f!, we see that there exists an integer N > 0 depending
only on X, Y and f , such that for any integers a, b and n with n ≥ 0 and any
M ∈D[a,b]c (X,3n), we have f∗M ∈D[a,b+N ]

c (Y,3n). This implies that for each n,
the functor (defined using K -injective resolutions, see [Spaltenstein 1988, 6.7])

f∗ : D(X,3n)→ D(Y,3n)

restricts to
f∗ : Dc(X,3n)→ Dc(Y,3n).

Moreover, for M ∈D(A(X)) with constructible H j (Mn)’s (for all j and n) and for
each i ∈ Z, there exist integers a < b such that

Ri f∗M ' Ri f∗τ[a,b]M.

In particular, if M is a λ-complex on X , then Ri f∗M is AR-adic for each i , and
hence f∗M = ( f∗Mn)n is a λ-complex on Y .

This enables us to define

f∗ : Dc(X,3)→ Dc(Y,3)

to be K 7→ Q f∗ K̂ , where Q : Dc(A(Y ))→ Dc(Y,3) is the localization functor.
It agrees with the definition in [Laszlo and Olsson 2008b, 8] when restricted to
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D+c (X,3), and for each i ∈ Z and K ∈ Dc(X,3), there exist integers a < b such
that Ri f∗K ' Ri f∗τ[a,b]K .

Lemma 3.8. (i) If f : X → Y is a morphism of S-schemes, and K ∈ Dc(X,3) is
trivialized by ({X},L) for some L, then f∗K is stratifiable.

(ii) Let X be an S-algebraic stack that has a connected presentation (that is, there
exists a presentation P : X→X with X a connected S-scheme). Let KX and K ′X be
two3-dualizing complexes on X, and let D and D′ be the two associated dualizing
functors, respectively. Let K ∈ Dc(X,3). If DK is trivialized by a pair (S,L),
where all strata in S are connected, then D′K is trivialized by (S,L′) for some
other L′. In particular, for stacks with connected presentation, the property of the
Verdier dual of K being stratifiable is independent of the choice of the dualizing
complex.

(iii) Let X be an S-algebraic stack that has a connected presentation, and assume
that the constant sheaf 3 on X is a dualizing complex. If K ∈ Dc(X,3) is trivial-
ized by a pair ({X},L), then DX K is trivialized by ({X},L′) for some L′.

Proof. (i) Since f∗K is the image of f∗ K̂ , it suffices to show that f∗ K̂ is stratifiable.
Since f∗L is bounded for each L ∈ L, there exists a pair (SY ,LY ) on Y that
trivializes f∗L , for all L ∈ L. We claim that this pair trivializes Ri f∗ K̂n , for each
i and n.

Since Ri f∗ K̂n = Ri f∗τ[a,b] K̂n for some a < b, and τ[a,b] K̂n is trivialized by
({X},L), we may assume K̂n is bounded. The claim then follows from the spectral
sequence

R p f∗Hq((K̂ )n)H⇒ R p+q f∗((K̂ )n)

and Remark 3.4.1.

(ii) Recall that the dualizing complex KX (respectively K ′X) is defined to be the
image of a normalized complex KX,• (respectively K ′X,•), where each KX,n (re-
spectively K ′X,n) is a 3n-dualizing complex. See [ibid., 7.2.3, 7.2.4].

Let P : X→X be a presentation where X is a connected scheme. Then we have

P∗RHom(KX,n, K ′X,n)= RHom(P∗KX,n, P∗K ′X,n)= RHom(P !KX,n, P !K ′X,n).

Since P !KX,n and P !K ′X,n are 3n-dualizing complexes on X , by [Illusie 1977,
Exp. I, 2], we see that P∗RHom(KX,n, K ′X,n) (and hence RHom(KX,n, K ′X,n)) is
cohomologically concentrated in one degree, therefore it is quasi-isomorphic to
this nontrivial cohomology sheaf, once it has been appropriately shifted. So let
RHom(KX,n, K ′X,n) ' Ln[rn] for some sheaf Ln and integer rn . Since P∗Ln is
invertible and hence lcc (see [Illusie 1977, p. 19]), the sheaf Ln is lcc [Olsson
2007, 9.1].
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For every stratum U∈S, let L0(U) be the union of L(U) and the set of isomor-
phism classes of the Jordan–Hölder components of the lcc sheaf L0|U. Since all
strata in S are connected, there exists a tensor closed hull of (S,L0) of the form
(S,L′), that is, they have the same stratification S.

By Laszlo and Olsson [2008b, 4.0.8], the system

(Ln[rn])n = RHom((KX,n)n, (K ′X,n)n)

is normalized, so by Lemma 3.6.1, D̂′KX= (Ln[rn])n , and by Lemma 3.4 (vi), it is
trivialized by (S,L′). Since DK is trivialized by (S,L′), so also is D′K , because
D̂′K ' D̂K ⊗L D̂′KX.

(iii) The assumption implies in particular that X is connected, so by (ii), the ques-
tion is independent of the choice of the dualizing complex. By definition, K̂ is triv-
ialized by ({X},L), so are truncations of K̂ . The essential image of RHom(K̂ ,3•)
in Dc(X,3) is DK , so by 3.5.1 it suffices to show that RHom(K̂ ,3•)∈D{X},L′(A)

for some L′.
Since X is quasi-compact, each3n-dualizing complex is of finite quasi-injective

dimension, so for each integer i , there exist integers a and b such that

Hi RHom(K̂n,3n)=Hi RHom(τ[a,b] K̂n,3n).

Using truncation triangles, we may further replace τ[a,b] K̂n by the cohomology
sheaves H j K̂n , and hence by their Jordan–Hölder components. Therefore, it suf-
fices to find an L′ that trivializes Hi RHom(L ,30), for all i ∈ Z and L ∈ L. Note
that RHom(L ,30) = Hom(L ,30) = L∨ is a simple 30-sheaf, so one can take
L′ = {L∨|L ∈ L}. �

Remark 3.8.1. For any S-algebraic stack X, the Verdier dual of a complex K in
Dc(X,3) being stratifiable or not is independent of the choice of the dualizing
complex. Let KX and K ′X be two dualizing complexes on X, defining dualizing
functors D and D′, respectively. Let P : X→X be a presentation, let K X = P !KX

and let K ′X = P !K ′X, defining dualizing functors DX and D′X on X , respectively.
Suppose DK is stratifiable. To show D′K is also stratifiable, by Corollary 3.6 (iii)
it suffices to show P !D′K = D′X P∗K is stratifiable. Since DX P∗K = P !DK
is stratifiable by assumption, we may assume X = X is a scheme. Since X is
noetherian, it has finitely many connected components, each of which is both open
and closed. Then the result follows from Corollary 3.6 (i) and Lemma 3.8 (ii).

Next we prove the main result of this section.

Theorem 3.9. Let f : X→ Y be a morphism of S-algebraic stacks. Then the op-
erations f∗, f!, f ∗, f !, DX,−⊗

L
− and RHom(−,−) all preserve stratifiability,
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namely, they induce functors

f∗ : D+,stra
c (X,3)−→ D+,stra

c (Y,3), f! : D−,stra
c (X,3)−→ D−,stra

c (Y,3),

f ∗ : Dstra
c (Y,3)−→ Dstra

c (X,3), f ! : Dstra
c (Y,3)−→ Dstra

c (X,3),

RHom(−,−) : D−,stra
c (X,3)op

× D+,stra
c (X,3)−→ D+,stra

c (X,3),

⊗
L
: D−,stra

c (X,3)× D−,stra
c (X,3)−→ D−,stra

c (X,3),

D : Dstra
c (X,3)−→ Dstra

c (X,3)op.

Proof. We may assume all stacks involved are reduced.
We consider the Verdier dual functor D first. Let P : X→ X be a presentation.

Since P∗D = D P !, by Corollary 3.6 (iii) we can assume X = X is a scheme. Let
K be a complex on X trivialized by (S,L). Refining if necessary, we may assume
all strata in S are connected and regular. Let j : U → X be the immersion of an
open stratum in S with complement i : Z→ X . Shrinking U if necessary, we may
assume there is a dimension function on U [Riou 2007, Définition 2.1], hence by
a result of Gabber [ibid., Théorème 0.2], the constant sheaf 3 on U is a dualizing
complex. Consider the exact triangle

i∗DZ (K |Z )−→ DX K −→ j∗DU (K |U )−→ .

By Lemma 3.8 (iii) we see that DU (K |U ) is trivialized by ({U },L′) for some
L′, so j∗DU (K |U ) is stratifiable by Lemma 3.8 (i). By noetherian induction we
may assume DZ (K |Z ) is stratifiable, and it is clear that i∗ preserves stratifiability.
Therefore by Lemma 3.4 (i), DX K is stratifiable.

The case of f ∗ (and hence f !) is proved in Lemma 3.4 (ii).
Next we prove the case of ⊗L . For i = 1, 2, let Ki ∈ D−c (X,3), trivialized

by (Si ,Li ). Let (S,L) be a common tensor closed refinement (by Lemma 3.3)
of (Si ,Li ), i = 1, 2. The total tensor product K1 ⊗

L K2 is defined to be the
image in Dc(X,3) of K̂1⊗

L
3•

K̂2, which by Laszlo and Olsson [2008b, 3.0.10] is
normalized, so it suffices to show (by Lemma 3.4 (vi)) that

K̂1,0⊗
L
30

K̂2,0 = K̂1,0⊗30 K̂2,0

is trivialized by (S,L). This follows from

Hr (K̂1,0⊗30 K̂2,0)=
⊕

i+ j=r

Hi (K̂1,0)⊗30 H j (K̂2,0)

and the assumption that (S,L) is tensor closed.
The case of RHom(K1, K2)= D(K1⊗

L DK2) follows.
Finally we prove the case of f∗ and f!. Let f : X→ Y be a morphism of S-

algebraic stacks, and let K ∈ D−S,L(X,3) for some pair (S,L). We want to show
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f!K is stratifiable. Let j :U→ X be the immersion of an open stratum in S, with
complement i : Z→ X. From the exact triangle

( f j)! j∗K −→ f!K −→ ( f i)!i∗K −→

we see that it suffices to prove the claim for f j and f i . By noetherian induction
we can replace X by U. By Corollary 3.6 (iii) and smooth base change [Laszlo and
Olsson 2008b, 12.1], we can replace Y by a presentation Y , and by Corollary 3.6 (i)
and [ibid., 12.3] we can shrink Y to an open subscheme. After these reductions,
we assume that Y=Y is a regular irreducible affine S-scheme that has a dimension
function on it, that K is trivialized by ({X},L), and that the relative inertia stack
I f := X×1,X×Y X,1 X is flat and has components over X [Behrend 2003, 5.1.14].
Therefore by [ibid., 5.1.13], f factors as

X
g
−→ Z

h
−→ Y,

where g is gerbe-like and h is representable (see [ibid., 5.1.3–5.1.6] for relevant
notions). So we reduce to two cases: f is representable, or f is gerbe-like.

Case when f is representable. By shrinking the S-algebraic space X we can
assume X= X is a regular connected scheme that has a dimension function, so that
the constant sheaf 3 on X is a dualizing complex. By Lemma 3.8 (iii) we see that
DK is trivialized by some ({X},L′), and by Lemma 3.8 (i), f∗DK is stratifiable.
Therefore f!K = D f∗DK is also stratifiable.

Case when f is gerbe-like. In this case f is smooth [Behrend 2003, 5.1.5],
hence étale locally on Y it has a section. Replacing Y by an étale cover, we may
assume that f is a neutral gerbe, so f : B(G/Y )→Y is the structural map, for some
flat group space G of finite type over Y [Laumon and Moret-Bailly 2000, 3.21]. By
[ibid., 5.1.1] and Corollary 3.6 (i) we may assume G is a Y -group scheme. Next
we reduce to the case when G is smooth over Y .

By assumption Y is integral. Let k(Y ) be the function field of Y and k(Y ) an
algebraic closure. Then Gk(Y ),red is smooth over k(Y ), so there exists a finite ex-
tension L over k(Y ) such that GL ,red is smooth over L . Let Y ′ be the normalization
of Y in L , which is a scheme of finite type over S, and the natural map Y ′→ Y is
finite surjective. It factors through Y ′→ Z → Y , where Z is the normalization of
Y in the separable closure of k(Y ) in L = k(Y ′). So Z → Y is generically étale,
and Y ′→ Z is purely inseparable, hence a universal homeomorphism, so Y ′ and
Z have equivalent étale sites. Replacing Y ′ by Z and shrinking Y we can assume
Y ′→ Y is finite étale. Replacing Y by Y ′ (by Corollary 3.6 (ii)) we assume Gred

over Y has smooth generic fiber, and by shrinking Y we assume Gred is smooth
over Y .

Gred is a subgroup scheme of G [Grothendieck and Demazure 1970, Exposé
VIA, 0.2]; we write h : Gred ↪→ G for the associated closed immersion. Then



82 Shenghao Sun

Bh : B(Gred/Y )→ B(G/Y ) is faithful and hence representable. It is also radicial:
consider the diagram where the square is 2-Cartesian

Y G/Gred Y

B(Gred/Y ) B(G/Y ).

i g

P

Bh

The map i is a nilpotent closed embedding, so g is radicial. Since P is faithfully
flat, Bh is also radicial. This shows that

(Bh)∗ : D−c (B(G/Y ),3)→ D−c (B(Gred/Y ),3)

is an equivalence of categories. Replacing G by Gred we assume G is smooth over
Y , and hence P : Y → B(G/Y ) is a connected presentation.

Let d be the relative dimension of G over Y . By assumption, the constant sheaf
3 on Y is a dualizing complex, and so f !3 = 3〈−d〉 (and hence the constant
sheaf3 on X) is a dualizing complex on X. By Lemma 3.8 (iii), we see that DK is
trivialized by a pair of the form ({X},L′). To show f!K is stratifiable is equivalent
to showing that D f!K = f∗DK is stratifiable. So replacing K by DK , it suffices
to show that f∗K is stratifiable, where K ∈ D+

{X},L(X,3) for some L.
Consider the strictly simplicial smooth hypercover associated to the presentation

P : Y → B(G/Y ), and let fi :
∏

i G→ Y be the structural map. As in the proof
of Lemma 3.8 (i), it suffices to show the existence of a pair (SY ,LY ) on Y that
trivializes Rn f∗L , for all L ∈ L and n ∈ Z. From the spectral sequence [Laszlo
and Olsson 2008b, 10.0.9]

E i j
1 = R j fi∗ f ∗i P∗L H⇒ Ri+ j f∗L ,

we see that it suffices for the pair (SY ,LY ) to trivialize all the E i j
1 -terms. Assume

i ≥ 1. If we regard the map fi :
∏

i G→ Y as the product map∏
i

f1 :
∏

i

G→
∏

i

Y,

where the products are fiber products over Y , then we can write f ∗i P∗L as

f ∗1 P∗L �30 30 �30 · · ·�30 30.

Note that the scheme Y satisfies the condition (LO). By Künneth formula [Laszlo
and Olsson 2008b, 11.0.14] we have

fi∗ f ∗i P∗L = f1∗ f ∗1 P∗L ⊗30 f1∗30⊗30 · · · ⊗30 f1∗30.
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Since f1∗ f ∗1 P∗L and f1∗30 are bounded complexes (by a theorem of Gabber [Il-
lusie et al. 2008]), there exists a tensor closed pair (SY ,LY ) that trivializes them,
for all L ∈ L. The proof is finished. �

Consequently, the theorem also holds for Q`-coefficients.
Finally we give a lemma which will be used in the next section. This will play

the same role as [Behrend 2003, 6.3.16].

Lemma 3.10. Let X be a connected variety over an algebraically closed field k
of characteristic not equal to `, and let L be a finite set of isomorphism classes
of simple lcc 30-sheaves on X. Then there exists an integer d (depending only on
L) such that, for every lisse 3-adic sheaf F on X trivialized by L, and for every
integer i , we have

dimE H i
c (X,F⊗3 E)≤ d · rankE(F⊗3 E),

where E is the fraction field of 3.

Proof. Since L is finite and 0 ≤ i ≤ 2 dim X , there exists an integer d > 0 such
that dim30 H i

c (X, L)≤ d · rank30 L , for every i and every L ∈L. For a short exact
sequence of lcc 30-sheaves

0−→ G′ −→ G−→ G′′ −→ 0

on X , the cohomological sequence

· · · −→ H i
c (X,G′)−→ H i

c (X,G)−→ H i
c (X,G′′)−→ · · ·

implies that dim30 H i
c (X,G)≤ dim30 H i

c (X,G′)+dim30 H i
c (X,G′′). So it is clear

that if G is trivialized by L, then dim30 H i
c (X,G)≤ d · rank30 G, for every i .

Since we only consider F⊗3 E , we may assume F = (Fn)n is flat, of some
constant rank over 3 (since X is connected), and this 3-rank is equal to

rank30 F0 = rankE(F⊗3 E).

Recall that H i
c (X,F) is a finitely generated 3-module [Illusie 1977, VI, 2.2.2], so

by Nakayama’s lemma the minimal number of generators of the module is at most
dim30(30 ⊗3 H i

c (X,F)). Similar to ordinary cohomology groups [Milne 2008,
19.2], we have an injection

30⊗3 H i
c (X,F) ↪→ H i

c (X,F0)

of 30-vector spaces. Therefore, dimE H i
c (X,F⊗3 E) is less than or equal to the

minimal number of generators of H i
c (X,F) over 3, which is at most

dim30(30⊗3 H i
c (X,F))≤ dim30 H i

c (X,F0)

≤ d · rank30 F0 = d · rankE(F⊗3 E). �
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4. Convergent complexes and finiteness

We return to Fq -algebraic stacks X0,Y0, . . . of finite type. A complex K0 in
W (X0,Q`) is said to be stratifiable if K on X is stratifiable, and we denote by
W stra(X0,Q`) the full subcategory of such complexes. Note that if K0 is a lisse-
étale complex, and it is stratifiable on X0, then it is geometrically stratifiable (that
is, K on X is stratifiable). In turns out that in order for the trace formula to hold,
it suffices to make this weaker assumption of geometric stratifiability. So we will
only discuss stratifiable Weil complexes. Again, by a sheaf we mean a Weil Q`-
sheaf.

Definition 4.1. (i) Let K ∈ Dc(Q`) and ϕ : K → K an endomorphism. The pair
(K , ϕ) is said to be an ι-convergent complex (or just a convergent complex, since
we fixed ι) if the complex series in two directions∑

n∈Z

∑
Hn(K ),Hn(ϕ)

|α|s

is convergent, for every real number s > 0. In this case let Tr(ϕ, K ) be the abso-
lutely convergent complex series∑

n

(−1)nιTr(H n(ϕ), H n(K ))

or its limit.

(ii) Let K0 ∈ W−(X0,Q`). We call K0 an ι-convergent complex of sheaves (or
just a convergent complex of sheaves), if for every integer v ≥ 1 and every point
x ∈ X0(Fqv ), the pair (Kx , Fx) is a convergent complex. In particular, all bounded
complexes are convergent.

(iii) Let K0 ∈W−(X0,Q`) be a convergent complex of sheaves. Define

cv(X0, K0)=
∑

x∈[X0(Fqv )]

1
# Autx Fqv

Tr(Fx , Kx) ∈ C,

and define the L-series of K0 to be the formal power series

L(X0, K0, t)= exp
(∑
v≥1

cv(X0, K0)
tv

v

)
∈ C[[t]].

The zeta function Z(X0, t) in Definition 1.2 is a special case of this definition
as Z(X0, t)= L(X0,Q`, t). It has rational coefficients.

Notation 4.1.1. We sometimes write cv(K0) for cv(X0, K0), if it is clear that K0

is on X0. We also write cv(X0) for cv(X0,Q`).
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Remark 4.1.2. (i) Behrend [2003, 6.2.3] defined convergent complexes with re-
spect to arithmetic Frobenius elements, and our definition is for geometric Frobe-
nius, and it is essentially the same as Behrend’s definition, except we work with
ι-mixed Weil complexes (which means all Weil complexes, by Remark 2.8.1) for
an arbitrary isomorphism ι : Q` → C, while Behrend [2003] works with pure
or mixed lisse-étale sheaves with integer weights. Also our definition is a little
different from that in [Olsson 2008a]; the condition there is weaker.

(ii) Recall that Autx is defined to be the fiber over x of the inertia stack I0→ X0.
It is a group scheme of finite type [Laumon and Moret-Bailly 2000, 4.2] over k(x),
so Autx k(x) is a finite group.

(iii) If we have the following commutative diagram

Spec Fqvd Spec Fqv

X0,

x ′
x

then (Kx , Fx) is convergent if and only if (Kx ′, Fx ′) is convergent, because we have
Fx ′ = Fd

x and s 7→ sd : R>0
→ R>0 is a bijection. In particular, for a lisse-étale

complex of sheaves, the property of being a convergent complex is independent
of q and the structural morphism X0→ Spec Fq . Also note that, for every integer
v ≥ 1, a complex K0 on X0 is convergent if and only if K0 ⊗ Fqv on X0 ⊗ Fqv is
convergent.

We restate the main theorem in [Behrend 2003] using compactly supported co-
homology as follows. It generalizes Theorem 1.1. We will prove it in this section
and the next.

Theorem 4.2. Let f : X0 → Y0 be a morphism of Fq -algebraic stacks, and let
K0 ∈W−,stra

m (X0,Q`) be a convergent complex of sheaves. Then:

(i) (Finiteness) f!K0 is a convergent complex of sheaves on Y0.

(ii) (Trace formula) cv(X0, K0)= cv(Y0, f!K0) for every integer v ≥ 1.

First we give a few lemmas.

Lemma 4.3. Let

K ′ K K ′′ K ′[1]

K ′ K K ′′ K ′[1].

ϕ′ ϕ ϕ′′ ϕ′[1]

be an endomorphism of an exact triangle K ′→ K → K ′′→ K ′[1] in D−c (Q`). If
any two of the three pairs (K ′, ϕ′), (K ′′, ϕ′′) and (K , ϕ) are convergent, then so is
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the third, and
Tr(ϕ, K )= Tr(ϕ′, K ′)+Tr(ϕ′′, K ′′).

Proof. By the rotation axiom we can assume (K ′, ϕ′) and (K ′′, ϕ′′) are convergent.
We have the exact sequence

· · · −→ H n(K ′)−→ H n(K )−→ H n(K ′′)−→ H n+1(K ′)−→ · · · .

Since H n(K ) is an extension of a subobject of H n(K ′′) by a quotient object of
H n(K ′), we have ∑

Hn(K ),ϕ

|α|s ≤
∑

Hn(K ′),ϕ′
|α|s +

∑
Hn(K ′′),ϕ′′

|α|s

for every real s > 0, so (K , ϕ) is convergent.
Since the series

∑
n∈Z(−1)n

∑
Hn(K ),ϕ ια converges absolutely, we can change

the order of summation, and the second assertion follows if we split the long exact
sequence above into short exact sequences. �

Corollary 4.4. If K ′0→ K0→ K ′′0 → K ′0[1] is an exact triangle in W−(X0,Q`),
and two of the three complexes K ′0, K ′′0 and K0 are convergent complexes, then so
is the third, and cv(K0)= cv(K ′0)+ cv(K ′′0 ).

Proof. For every x ∈ X0(Fqv ), we have an exact triangle

K ′x −→ Kx −→ K ′′x −→

in D−c (Q`), equivariant under the action of Fx . Then apply Lemma 4.3. �

Lemma 4.5. Theorem 4.2 holds for f : Spec Fqd → Spec Fq .

Proof. We have an equivalence of triangulated categories

W−(Spec Fq ,Q`)−→
∼ D−c (RepQ`

G),

where G is the Weil group FZ of Fq . Let H be the subgroup FdZ, the Weil group
of Fqd . Since f : Spec Fqd → Spec Fq is finite, we have f! = f∗, and it is the
induced-module functor

HomQ`[H ]

(
Q`[G],−

)
: D−c (RepQ`

H)−→ D−c (RepQ`
G),

which is isomorphic to the coinduced-module functor Q`[G] ⊗Q`[H ]−. In partic-
ular, f! is exact on the level of sheaves.

Let A be a Q`-representation of H , and B = Q`[G] ⊗Q`[H ] A. Let x1, . . . , xm

be an ordered basis for A with respect to which Fd is an upper triangular matrixα1 ∗ ∗

. . . ∗

αm
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with eigenvalues α1, . . . , αm . Then B has an ordered basis

1⊗ x1, F ⊗ x1, · · · , Fd−1
⊗ x1,

1⊗ x2, F ⊗ x2, · · · , Fd−1
⊗ x2,

...
...

. . .
...

1⊗ xm, F ⊗ xm, · · · , Fd−1
⊗ xm,

with respect to which F is the matrix

M1 ∗ ∗

. . . ∗

Mm

 , where Mi =


0 · · · 0 αi

1
. . . 0 0
. . .

. . .
...

1 0

 .
The characteristic polynomial of F on B is

∏m
i=1(t

d
−αi ).

Let K0 be a complex of sheaves on Spec Fqd . The eigenvalues of the Frobenius
F on Hn( f!K )= f!Hn(K ) are all the d-th roots of the eigenvalues of Fd on Hn(K ),
so for every s > 0 we have∑

n

∑
Hn( f!K ),F

|α|s = d
∑

n

∑
Hn(K ),Fd

|α|s/d .

This shows that f!K0 is a convergent complex on Spec Fq if and only if K0 is a
convergent complex on Spec Fqd .

Next we prove

cv(Spec Fqd , K0)= cv(Spec Fq , f!K0)

for every v≥ 1. Since H n( f!K )= f!H n(K ), and both sides are absolutely conver-
gent series so that one can change the order of summation without changing the
limit, it suffices to prove it when K = A is a single representation concentrated in
degree 0. Let us review this classical calculation. Use the notation above. For each
i , fix a d-th root α1/d

i of αi , and let ζd be a primitive d-th root of unity. Then the
eigenvalues of F on B are ζ k

d α
1/d
i , for i = 1, . . . ,m and k = 0, . . . , d − 1.

If d - v, then HomFq (Fqd , Fqv )=∅, so cv(Spec Fqd , A)= 0. On the other hand,

cv(Spec Fq , f!A)= Tr(Fv, B)=
∑
i,k

ζ vk
d α

v/d
i =

∑
i

α
v/d
i

d−1∑
k=0

ζ vk
d = 0.

If d|v, then HomFq (Fqd , Fqv )= HomFq (Fqd , Fqd )= Z/dZ. So

cv(Fqd , A)= d Tr(Fv, A)= d
∑

i

α
v/d
i .
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On the other hand,

cv(Fq , B)= Tr(Fv, B)=
∑
i,k

ζ vk
d α

v/d
i =

∑
i,k

α
v/d
i = d

∑
i

α
v/d
i . �

Next, we consider BG0, for a finite group scheme G0 over Fq .

Lemma 4.6. Let G0 be a finite Fq -group scheme, and let F0 be a sheaf on BG0.
Then H r

c (BG,F)= 0 for all r 6= 0, and H 0
c (BG,F)' H 0(BG,F) has dimension

at most rank(F). Moreover, the set of ι-weights of H 0
c (BG,F) is a subset of the

ι-weights of F0.

Proof. By [Olsson 2008a, 7.12–7.14] we can replace G0 by its maximal reduced
closed subscheme, and assume G0 is reduced, hence étale. Then G0 is the same as a
finite group G(F) with a continuous action of Gal(Fq) [Milne 2012, XII, 2.11]. We
will also write G for the group G(F), if there is no confusion. Since Spec F→ BG
is surjective, we see that there is no nontrivial stratification on BG. In particular,
all sheaves on BG are lisse, and they are just Q`-representations of G.

BG is quasi-finite and proper over F, with finite diagonal, so by [Olsson 2008a,
5.8], H r

c (BG,F) = 0 for all r 6= 0. From [ibid., 5.1], we see that if F is a sheaf
on BG corresponding to the representation V of G, then H 0

c (BG,F) = VG and
H 0(BG,F)= V G , and there is a natural isomorphism

v 7→
∑
g∈G

gv : VG −→ V G .

Therefore
h0

c(BG,F)= dim VG ≤ dim V = rank(F),

and the weights of VG form a subset of the weights of V (counted with multiplic-
ities). �

4.7. (i) If k is a field, by a k-algebraic group G we mean a smooth k-group scheme
of finite type. If G is connected, then it is geometrically connected [Grothendieck
and Demazure 1970, Exposé VIA, 2.1.1].

(ii) For a connected k-algebraic group G, let a : BG → Spec k be the structural
map. Then

a∗ :3-Sh(Spec k)−→3-Sh(BG)

is an equivalence of categories. This is because
•BG has no nontrivial stratifications (it is covered by Spec k which has no non-

trivial stratifications), and therefore
• any constructible 3-adic sheaf on BG is lisse, given by an adic system (Mn)n

of sheaves on Spec k with G-actions, and these actions are trivial since G is con-
nected, see [Behrend 2003, 5.2.9].
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(iii) Let G0 be a connected Fq -algebraic group. By a theorem of Lang [1956,
Theorem 2], every G0-torsor over Spec Fq is trivial, with automorphism group G0,
therefore

cv(BG0)=
1

cv(G0)
=

1
#G0(Fqv )

.

Recall the following theorem of Borel as in [Behrend 2003, 6.1.6].

Theorem 4.8. Let k be a field and G a connected k-algebraic group. Consider the
Leray spectral sequence given by the projection f : Spec k→ BG,

Ers
2 = H r (BGk)⊗ H s(Gk)H⇒Q`.

Let N s
= E0,s

s+1 ⊂ H s(Gk) be the transgressive subspaces, for s ≥ 1, and let N be
the graded Q`-vector space

⊕
s≥1 N s . We have:

(a) N s
= 0 if s is even.

(b) The canonical map
∧

N→H∗(Gk) is an isomorphism of graded Q`-algebras.

(c) The spectral sequence above induces an epimorphism of graded Q`-vector
spaces H∗(BGk)� N [−1]. Any section induces an isomorphism

Sym∗(N [−1])−→∼ H∗(BGk).

Remark 4.8.1. (i) The Ers
2 -term in Theorem 4.8 should be H r (BGk, Rs f∗Q`),

and Rs f∗Q` is a constructible sheaf on BG. By 4.7 (ii), the sheaf Rs f∗Q` is
isomorphic to a∗ f ∗Rs f∗Q`= a∗H s(Gk), where a : BG→ Spec k is the structural
map and H s(Gk) is the Gal(k)-module regarded as a sheaf on Spec k. Therefore
by projection formula, Ers

2 = H r (BGk)⊗ H s(Gk).

(ii) Since the spectral sequence converges to Q` sitting in degree 0, all Ers
∞

are
zero, except E00

∞
. For each s ≥ 1, consider the differential map

d0,s
s+1 : E

0,s
s+1 −→ E s+1,0

s+1

on the (s+1)st page. This map must be injective (respectively surjective) because
it is the last possibly nonzero map from E0,s

∗
(respectively into E s+1,0

∗
). Therefore,

it is an isomorphism. Here N s
= E0,s

s+1 is a subspace of E0,s
2 = H s(Gk), and E s+1,0

s+1
is a quotient of E s+1,0

2 = H s+1(BGk). We get the surjection H s+1(BGk)→ N s

by using the isomorphism d0,s
s+1.

4.8.2. Let G0 be a connected Fq -algebraic group of dimension d. We intend to ap-
ply Theorem 4.8 to investigate the compact support cohomology groups H∗c (BG).

We have graded Galois-invariant subspaces N =
⊕

r≥1 N r
⊂
⊕

r≥0 H r (G) con-
centrated in odd degrees, such that the induced map∧

N −→ H∗(G)
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is an isomorphism, and such that H∗(BG) ∼= Sym∗N [−1]. Let nr = dim N r , and
let vr1, . . . , vrnr be a basis for N r with respect to which the Frobenius acting on
N r is upper triangular αr1 ∗ ∗

. . . ∗

αrnr


with eigenvalues αr1, . . . , αrnr . By Deligne [1980, 3.3.5], the weights of H r (G)
are ≥ r , so |αri | ≥ qr/2 > 1. We have

H∗(BG)= Sym∗Q`〈vi j | for all i, j〉 =Q`[vi j ],

with deg(vi j ) = i + 1. Note that all i + 1 are even. In particular, H 2r−1(BG) = 0
and

H 2r (BG)= {homogeneous polynomials of degree 2r in vi j }

=Q`

〈∏
i, j

v
mi j
i j ;

∑
i, j

mi j (i + 1)= 2r
〉
.

With respect to an appropriate order of the basis, the matrix representing F acting
on H 2r (BG) is upper triangular, with eigenvalues∏

i, j

α
mi j
i j , for

∑
i, j

mi j (i + 1)= 2r.

By Poincaré duality, the eigenvalues of F acting on H−2r−2d
c (BG) are

q−d
∏
i, j

α
−mi j
i j , where

∑
i, j

mi j (i + 1)= 2r.

Here (mi j )i, j are tuples of nonnegative integers. Therefore the reciprocal charac-
teristic polynomial of F on H−2r−2d

c (BG) is

P−2r−2d(BG0, t) =
∏

mi j≥0∑
i, j mi j (i+1)=2r

(
1− q−d

∏
i, j

α
−mi j
i j · t

)
.

In the following two lemmas we prove two key cases of Theorem 4.2 (i).

Lemma 4.9. Let G0 be an Fq -group scheme of finite type. Then Theorem 4.2 (i)
holds for the structural map f : BG0 → Spec Fq and any convergent complex
K0 ∈W−(BG0,Q`).

Proof. By Olsson [2008a, 7.12–7.14] we may assume that G0 is reduced (hence
smooth), so that the natural projection Spec Fq→ BG0 is a presentation. Note that
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then the assumptions of ι-mixedness and stratifiability on K0 are verified automat-
ically, by Proposition 2.8 and Corollary 3.6 (iii), even though we will not use them
explicitly in the proof.

Let G0
0 be the identity component of G0 and consider the exact sequence of

algebraic groups

1−→ G0
0 −→ G0 −→ π0(G0)−→ 1.

The fibers of the induced map BG0 → Bπ0(G0) are isomorphic to BG0
0, so we

reduce to prove two cases: G0 is finite étale (or even a finite constant group scheme,
by Remark 4.1.2 (iii)), or G0 is connected and smooth.

Case of G0 finite constant. Let G0/Fq be the finite constant group scheme
associated with a finite group G, and let K0 ∈ W−(BG0,Q`). Again we denote
by G both the group scheme G0 ⊗ F and the finite group G0(F), if no confusion
arises. Let y be the unique point in Spec Fq ,

BG BG0

Spec F Spec Fq

fy f

y

is identified with the coinvariance functor

( )G : D−c (RepQ`
G)−→ D−c (Q`),

which is exact on the level of modules, since the category RepQ`
G is semisimple.

So ( f!K0)y = ( fy)!K = KG and Hn(KG)=Hn(K )G . Therefore∑
Hn(( fy)!K ),F

|α|s ≤
∑

Hn(K ),F

|α|s

for every n ∈ Z and s > 0. Therefore, if K0 is a convergent complex, so is f!K0.
Case of G0 smooth and connected. In this case

f ∗ :Q`-Sh(Spec Fq)−→Q`-Sh(BG0)

is an equivalence of categories by 4.7 (ii). Let d = dim G0, and let F0 be a sheaf
on BG0, corresponding to a representation V of the Weil group W (Fq), with
β1, . . . , βm as eigenvalues of F . By the projection formula [Laszlo and Olsson
2008b, 9.1.i] we have H n

c (BG,F) ' H n
c (BG)⊗ V , and by 4.8.2 the eigenvalues

of F on H−2r−2d
c (BG)⊗ V are (using the notation in 4.8.2)

q−dβk

∏
i, j

α
−mi j
i j ,
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for k = 1, . . . ,m and tuples (mi j ) such that
∑

i, j mi j (i+1)= 2r . For every s > 0,∑
n∈Z

∑
Hn

c (BG)⊗V,F

|α|s =
∑
mi j ,k

q−ds
∣∣βk
∣∣s ∏

i, j

∣∣α−mi j
i j

∣∣s
=

( m∑
k=1

∣∣βk
∣∣s)(∑

mi j

q−ds
∏
i, j

∣∣αi j
∣∣−mi j s

)
,

which converges to

q−ds
( m∑

k=1

|βk |
s
)∏

i, j

1
1−|αi j |

−s ,

since |αi j |
−s < 1 and the product above is taken over finitely many indices.

Let K0 be a convergent complex on BG0, and for each k ∈Z, let Vk be a W (Fq)-
module corresponding to Hk K0. For every x ∈ BG0(Fq) (for instance the trivial
G0-torsor), the pair (Hk(K )x , Fx) is isomorphic to (Vk, F). Consider the W (Fq)-
equivariant spectral sequence

H r
c (BG,Hk(K ))H⇒ H r+k

c (BG, K ).

We have ∑
n∈Z

∑
Hn

c (BG,K ),F

|α|s ≤
∑
n∈Z

∑
r+k=n

∑
H r

c (BG,Hk K ),F

|α|s

=

∑
r,k∈Z

∑
H r

c (BG)⊗Vk ,F

|α|s

=

∑
k∈Z

∑
r∈Z

∑
H r

c (BG)⊗Vk ,F

|α|s

=

∑
k∈Z

q−ds
(∑

Vk ,F

|α|s
)∏

i, j

1
1−|αi j |

−s

=

(∑
k∈Z

∑
Vk ,F

|α|s
)(

q−ds
∏
i, j

1
1−|αi j |

−s

)
,

where the first factor is convergent by assumption, and the product in the second
factor is taken over finitely many indices. This shows that f!K0 is a convergent
complex. �

Let Eλ be a finite subextension of Q`/Q` with ring of integers 3 and residue
field30, and let (S,L) be a pair on X defined by simple lcc30-sheaves on strata. A
complex K0 ∈W (X0,Q`) is said to be (S,L)-stratifiable (or trivialized by (S,L)),
if K is defined over Eλ, with an integral model over 3 trivialized by (S,L).
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Lemma 4.10. Let X0/Fq be a geometrically connected variety, Eλ a finite subex-
tension of Q`/Q` with ring of integers 3, and let L be a finite set of simple
lcc 30-sheaves on X. Then Theorem 4.2 (i) holds for the structural morphism
f : X0→ Spec Fq and all lisse ι-mixed convergent complexes K0 on X0 that are
trivialized by ({X},L).

Proof. Let N = dim X0. From the spectral sequence

Erk
2 = H r

c (X,Hk K )H⇒ H r+k
c (X, K )

we see that∑
n∈Z

∑
Hn

c (X,K ),F

|α|s ≤
∑
n∈Z

∑
r+k=n

∑
H r

c (X,Hk K ),F

|α|s =
∑

0≤r≤2N
k∈Z

∑
H r

c (X,Hk K ),F

|α|s,

therefore it suffices to show that the series
∑

k∈Z

∑
H r

c (X,Hk K ),F |α|
s converges for

each 0≤ r ≤ 2N .
Let d be the number in Lemma 3.10 for L. Each cohomology sheaf Hn K0 is

ι-mixed and lisse on X0, so by Theorem 2.6 (i) we have the decomposition

Hn K0 =
⊕

b∈R/Z

(Hn K0)(b)

according to the weights mod Z, defined over Eλ, see Remark 2.6.1 (ii). For
each coset b, we choose a representative b0 ∈ b, and take a b1 ∈ Q

∗

` such that
wq(b1)=−b0. Then the sheaf (Hn K0)(b)(b1) deduced by twist is lisse with integer
punctual weights. Let W be the filtration by punctual weights Theorem 2.6 (ii) of
(Hn K0)(b)(b1). For every v ≥ 1 and x ∈ X0(Fqv ), and every real s > 0, we have∑

n∈Z

∑
(Hn K0)x ,Fx

|α|s/v =
∑
n∈Z

b∈R/Z

∑
(Hn K0)(b)x ,Fx

|α|s/v

=

∑
n∈Z

b∈R/Z

∑
(Hn K0)(b)(b1)

x ,Fx

|α/bv1|
s/v

=

∑
n∈Z

b∈R/Z

qb0s/2
∑

(Hn K0)(b)(b1)
x ,Fx

|α|s/v

=

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

∑
GrW

i ((H
n K0)(b)(b1))x ,Fx

|α|s/v

=

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

q is/2
· rank GrW

i (H
n K0)(b)(b1).

Since K0 is a convergent complex, this series is convergent.



94 Shenghao Sun

For each n ∈ Z, every direct summand (Hn K0)(b) of Hn K0 is trivialized by
({X},L). The filtration W of each (Hn K0)(b)(b1) gives a filtration of (Hn K0)(b)
(also denoted W ) by twisting back, and it is clear that this latter filtration is de-
fined over Eλ. We have GrW

i ((H
n K0)(b)(b1)) = (GrW

i (H
n K0)(b))(b1), and each

GrW
i (H

n K0)(b) is trivialized by ({X},L). By Lemma 3.10,

hr
c
(
X,GrW

i
(
(Hn K )(b)(b1)

))
= hr

c(X,GrW
i (H

n K )(b))

≤ d · rank GrW
i (H

n K )(b)

= d · rank GrW
i
(
(Hn K )(b)(b1)

)
,

where the first equality follows from [Laszlo and Olsson 2008b, 9.1.i]. Therefore∑
n∈Z

∑
H r

c (X,Hn K ),F

|α|s =
∑
n∈Z

b∈R/Z

∑
H r

c (X,(Hn K )(b)),F

|α|s

=

∑
n∈Z

b∈R/Z

∑
H r

c (X,(Hn K )(b)(b1)),F

|b−1
1 α|s

≤

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

∑
H r

c (X,GrW
i ((H

n K )(b)(b1))),F

|α|s

≤

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

q(i+r)s/2
· hr

c
(
X,GrW

i
(
(Hn K )(b)(b1)

))
≤ qrs/2d

∑
n∈Z

b∈R/Z

qb0s/2
∑
i∈Z

q is/2
· rank GrW

i
(
(Hn K )(b)(b1)

)
,

and it converges. �

Now we prove Theorem 4.2 (i) in general.

Proof. We may assume all stacks involved are reduced. From Theorem 2.11 and
Theorem 3.9 we know that f!K0 ∈W−,stra

m (Y0,Q`).
Let y ∈ Y0(Fqv ), we want to show that (( f!K0)y, Fy) is a convergent complex.

Since the property of being convergent depends only on the cohomology sheaves,
by base change [Laszlo and Olsson 2008b, 12.5.3] we reduce to the case when
Y0 = Spec Fqv . Replacing q by qv, we may assume v = 1. By Remark 4.1.2 (iii)
we only need to show that (R0c(X, K ), F) is convergent.

If j :U0 ↪→X0 is an open substack with complement i :Z0 ↪→X0, then we have
an exact triangle

j! j∗K0 −→ K0 −→ i∗i∗K0 −→
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in W−(X0,Q`), which induces an exact triangle

R0c(U0, j∗K0)−→ R0c(X0, K0)−→ R0c(Z0, i∗K0)−→

in W−(Spec Fq ,Q`). So by Corollary 4.4 and noetherian induction, it suffices to
prove Theorem 4.2 (i) for a nonempty open substack. By [Behrend 2003, 5.1.14]
we may assume that the inertia stack I0 is flat over X0. Then we can form the
rigidification π : X0 → X0 with respect to I0 [Olsson 2008b, §1.5], where X0

is an Fq -algebraic space of quasi-compact diagonal. X0 contains an open dense
subscheme [Knutson 1971, II, 6.7]. Replacing X0 by the inverse image of this
scheme, we can assume X0 is a scheme.

If Theorem 4.2 (i) holds for two composable morphisms f and g, then it holds
for their composition g ◦ f . Since R0c(X0,−) = R0c(X0,−) ◦ π!, we reduce
to proving Theorem 4.2 (i) for these two morphisms. For every x ∈ X0(Fqv ),
the fiber of π over x is a gerbe over Spec k(x). Extending the base k(x) (see
Remark 4.1.2 (iii)) one can assume it is a neutral gerbe (in fact all gerbes over
a finite field are neutral; see [Behrend 2003, 6.4.2]). This means the following
diagram is 2-Cartesian:

B Autx X0

Spec Fqv X0.

π

x

So we reduce to two cases: X0 = BG0 for an Fq -algebraic group G0, or X0 = X0

is an Fq -scheme. The first case is proved in Lemma 4.9.
For the second case, given a convergent complex K0 ∈W−,stra

m (X0,Q`), defined
over some Eλ with ring of integers 3, and trivialized by a pair (S,L) (L being
defined over 30) on X , we can refine this pair so that every stratum is connected,
and replace X0 by models of the strata defined over some finite extension of Fq

Remark 4.1.2 (iii). This case is proved in Lemma 4.10. �

5. Trace formula for stacks

We prove two special cases of Theorem 4.2 (ii) in the following two propositions.

Proposition 5.1. Let G0 be a finite étale group scheme over Fq , and F0 a sheaf on
BG0. Then

c1(BG0,F0)= c1(Spec Fq , R0c(BG0,F0)).

Proof. This is a special case of [Olsson 2008a, 8.6] on correspondences given by
group homomorphisms. �
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Proposition 5.2. Let G0 be a connected Fq -algebraic group, and let F0 be a sheaf
on BG0. Then

c1(BG0,F0)= c1(Spec Fq , R0c(BG0,F0)).

Proof. Let f : BG0→ Spec Fq be the structural map and d = dim G0. By 4.7 (ii),
the sheaf F0 on BG0 takes the form f ∗V , for some sheaf V on Spec Fq . By 4.7 (iii),
we have

c1(BG0,F0)=
1

#G0(Fq)
Tr(Fx ,Fx)=

Tr(F, V )
#G0(Fq)

.

By the projection formula we have H n
c (BG,F)' H n

c (BG)⊗ V , so

Tr(F, H n
c (BG,F))= Tr(F, H n

c (BG)) ·Tr(F, V ).

Then

c1(Spec Fq , R0c(BG0,F0))=
∑

n

(−1)n Tr(F, H n
c (BG,F))

= Tr(F, V )
∑

n

(−1)n Tr(F, H n
c (BG)),

so we can assume F0 =Q`. Using the notations in 4.8.2 we have∑
n

(−1)n Tr(F, H n
c (BG))=

∑
r≥0

Tr(F, H−2r−2d
c (BG))

=

∑
r≥0

∑
∑

mi j (i+1)=2r
mi j≥0

q−d
∏
i, j

α
−mi j
i j = q−d

∑
mi j≥0

∏
i, j

α
−mi j
i j

= q−d
∏
i, j

(
1+α−1

i j +α
−2
i j + · · ·

)
= q−d

∏
i, j

1
1−α−1

i j

.

It remains to show that

#G0(Fq)= qd
∏
i, j

(
1−α−1

i j

)
.

In 4.8.2, we saw that if each N i has an ordered basis vi1, . . . , vini with respect
to which F is upper triangular, then since H∗(G)=

∧
N , H i (G) has a basis

vi1 j1 ∧ vi2 j2 ∧ · · · ∧ vim jm ,

such that
∑m

r=1 ir = i, ir ≤ ir+1, and if ir = ir+1, then jr < jr+1. The eigenvalues
of F on H i (G) are αi1 j1 · · ·αim jm for such indices. By Poincaré duality, the eigen-
values of F on H 2d−i

c (G) are qd(αi1 j1 · · ·αim jm )
−1. Note that all the ir are odd,

so
2d − i ≡ i =

m∑
r=1

ir ≡ m mod 2.
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Applying the classical trace formula to G0, we have

#G0(Fq)=
∑

(−1)mqdα−1
i1 j1 · · ·α

−1
im jm = qd

∏
i, j

(
1−α−1

i j

)
.

This finishes the proof. �

5.2.1. Note that in Propositions 5.1 and 5.2 we did not make explicit use of the
fact that F0 is ι-mixed.

Now we prove Theorem 4.2 (ii) in general.

Proof. Since cv(X0, K0) = c1(X0 ⊗ Fqv , K0 ⊗ Fqv ), we can assume v = 1. We
shall reduce to proving Theorem 4.2 (ii) for all fibers of f over Fq -points of Y0,
following the approach of Behrend [2003, 6.4.9].

Let y ∈ Y0(Fq) and (X0)y be the fiber over y. Then (X0)y(Fq) is the groupoid
of pairs (x, α), where x ∈ X0(Fq) and α : f (x)→ y is an isomorphism in Y0(Fq).
Suppose (X0)y(Fq) 6= ∅, and fix an x ∈ (X0)y(Fq). Then Isom( f (x), y)(Fq) is
a trivial left Auty(Fq)-torsor. There is also a natural right action of Autx(Fq) on
Isom( f (x), y)(Fq), namely ϕ ∈ Autx(Fq) takes α to α ◦ f (ϕ). Under this action,
for α and α′ to be in the same orbit, there should be a ϕ ∈ Autx(Fq) such that the
diagram

f (x) f (x)

y

f (ϕ)

α′ α

commutes; by definition this means (x, α) is isomorphic to (x, α′) in (X0)y(Fq). So
the set of orbits Isom( f (x), y)(Fq)/Autx(Fq) is identified with the inverse image
of the class of x along the map [(X0)y(Fq)] → [X0(Fq)]. The stabilizer group
of α ∈ Isom( f (x), y)(Fq) is Aut(x,α)(Fq), the automorphism group of (x, α) in
(X0)y(Fq).

In general, if a finite group G acts on a finite set S, then we have∑
[x]∈S/G

# G
# StabG(x)

=

∑
[x]∈S/G

# OrbG(x)= #S.

Now for S = Isom( f (x), y)(Fq) and G = Autx(Fq), we have∑
(x,α)∈[(X0)y(Fq )]

(x,α) 7→x

# Autx(Fq)

# Aut(x,α)(Fq)
= # Isom( f (x), y)(Fq)= # Auty(Fq);

the last equality follows from the fact that S is a trivial Auty(Fq)-torsor.
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If we assume Theorem 4.2 (ii) holds for the fibers fy : (X0)y → Spec Fq of f ,
for all y ∈ Y0(Fq), then

c1(Y0, f!K0) =
∑

y∈[Y0(Fq )]

Tr(Fy, ( f!K )y)

# Auty(Fq)

=

∑
y∈[Y0(Fq )]

Tr(Fy, ( fy!K )y)

# Auty(Fq)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
(x,α)∈[(X0)y(Fq )]

Tr(Fx , Kx)

# Aut(x,α)(Fq)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
x∈[X0(Fq )]

x 7→y

( ∑
(x,α)∈[(X0)y(Fq )]

(x,α) 7→x

Tr(Fx , Kx)

# Aut(x,α)(Fq)

)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
x∈[X0(Fq )]

x 7→y

1
# Autx(Fq)( ∑

(x,α)∈[(X0)y(Fq )]

(x,α) 7→x

# Autx(Fq)

# Aut(x,α)(Fq)

)
Tr(Fx , Kx)

=

∑
y∈[Y0(Fq )]

1
# Auty(Fq)

∑
x∈[X0(Fq )]

x 7→y

Tr(Fx , Kx)

# Autx(Fq)
# Auty(Fq)

=

∑
x∈[X0(Fq )]

Tr(Fx , Kx)

# Autx(Fq)
=: c1(X0, K0).

Here the second equality follows from [Laszlo and Olsson 2008b, 12.5.3]. Thus
we reduce to the case when Y0 = Spec Fq .

If K ′0 → K0 → K ′′0 → K ′0[1] is an exact triangle of convergent complexes in
W−,stra

m (X0,Q`), then by Corollary 4.4 and Theorem 4.2 (i) we have

c1(X0, K0)= c1(X0, K ′0)+ c1(X0, K ′′0 ) and

c1(Y0, f!K0)= c1(Y0, f!K ′0)+ c1(Y0, f!K ′′0 ).

If j :U0→ X0 is an open substack with complement i : Z0→ X0, then

c1(X0, j! j∗K0)= c1(U0, j∗K0) and c1(X0, i∗i∗K0)= c1(Z0, i∗K0).

By noetherian induction we can shrink X0 to a nonempty open substack. So we
may assume the inertia stack I0 is flat over X0, with rigidification π : X0→ X0,
where X0 is a scheme. If Theorem 4.2 (ii) holds for two composable morphisms
f and g, then it holds for g ◦ f . So we reduce to two cases as before: X0 = X0
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is a scheme, or X0 = BG0, where G0 is either a connected algebraic group, or a
finite étale algebraic group over Fq . We may assume X0 is separated, by further
shrinking (for instance to an affine open subscheme).

For a complex of sheaves K0 and an integer n, we have an exact triangle

τ<n K0 −→ τ<n+1K0 −→Hn(K0)[−n] −→,

so
c1(τ<n+1K0)= c1(τ<n K0)+ c1(H

n(K0)[−n])

= c1(τ<n K0)+ (−1)nc1(H
n(K0)).

Since K0 is bounded above, τ<N K0 ' K0 for N � 0. Since K0 is convergent,
c1(τ<n K0) → 0 absolutely as n → −∞, so the series

∑
n∈Z(−1)nc1(H

n(K0))

converges absolutely to c1(K0).
Applying R0c we get an exact triangle

R0c(X0, τ<n K0)−→ R0c(X0, τ<n+1K0)−→ R0c(X0,Hn K0)[−n] −→

in W−(Spec Fq ,Q`). We claim that, for X0 = X0 a scheme, or BG0, we have

lim
n→−∞

c1(Spec Fq , R0c(X0, τ<n K0))= 0

absolutely. Recall that c1(R0c(τ<n K0)) =
∑

i∈Z(−1)i ιTr(F, H i
c (X, τ<n K )), so

we need to show that∑
i∈Z

∑
H i

c (X,τ<n K ),F

|α| → 0 as n→−∞.

From the spectral sequence

H r
c (X,Hkτ<n K )H⇒ H r+k

c (X, τ<n K )

we see that∑
i∈Z

∑
H i

c (X,τ<n K ),F

|α| ≤
∑
i∈Z

∑
r+k=i

∑
H r

c (X,H
kτ<n K ),F

|α| =
∑
i∈Z

∑
r+k=i

k<n

∑
H r

c (X,H
k K ),F

|α|.

Let d = dim X0 (see 9.1). In the cases where X0 is a scheme or BG0, we have
H r

c (X,F)= 0 for every sheaf F unless r ≤ 2d (see 4.8.2 and Lemma 4.6). There-
fore ∑

i∈Z

∑
r+k=i

k<n

∑
H r

c (X,H
k K ),F

|α| ≤
∑

i<n+2d

∑
r+k=i

∑
H r

c (X,H
k K ),F

|α|,

and it suffices to show that the series∑
i∈Z

∑
r+k=i

∑
H r

c (X,H
k K ),F

|α|
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converges. We already proved this for BG0 in Lemma 4.9, and for schemes X0 in
Lemma 4.10 (we may shrink X0 so that the assumption in Lemma 4.10 is satisfied).

Note that in the two cases X0= X0 or BG0, Theorem 4.2 (ii) holds when K0 is a
sheaf concentrated in degree 0. For separated schemes X0, this is a classical result
of Grothendieck [1965] and Verdier [1967]; for BG0, this is done in Propositions
5.1 and 5.2. Therefore, for a general convergent complex K0, we have

c1(R0c(τ<n+1K0))= c1(R0c(τ<n K0))+ c1(R0c(H
n K0)[−n])

= c1(R0c(τ<n K0))+ (−1)nc1(H
n K0),

and so

c1(R0c(K0))=
∑
n∈Z

(−1)nc1(H
n K0)+ lim

n→−∞
c1(R0c(τ<n K0))= c1(K0). �

Corollary 5.3. Let f : X0 → Y0 be a morphism of Fq -algebraic stacks, and let
K0 ∈W−,stra

m (X0,Q`) be a convergent complex of sheaves. Then

L(X0, K0, t)= L(Y0, f!K0, t).

6. Infinite products

For a convergent complex K0 on X0, the series
∑

v≥1 cv(K0)tv/v (and hence the
L-series L(X0, K0, t)) usually has a finite radius of convergence. For instance, we
have the following lemma.

Lemma 6.1. Let X0/Fq be a variety of dimension d. Then the radius of conver-
gence of

∑
v≥1 cv(X0)tv/v is 1/qd .

Proof. Let fX0(t)=
∑

v≥1 cv(X0)tv/v. Let Y0 be an irreducible component of X0

with complement U0. Then cv(X0)=cv(Y0)+cv(U0), and since all the cv-terms are
nonnegative, we see that the radius of convergence of fX0(t) is the minimum of that
of fY0(t) and that of fU0(t). Since max{dim(Y0), dim(U0)} = d , and U0 has fewer
irreducible component than X0, by induction we can assume X0 is irreducible.

Then there exists an open dense subscheme U0⊂ X0 that is smooth over Spec Fq .
Let Z0 = X0−U0, then dim(Z0) < dim(X0)= d. From the cohomology sequence

H 2d−1
c (Z)−→ H 2d

c (U )−→ H 2d
c (X)−→ H 2d

c (Z)

we see that H 2d
c (X) = H 2d

c (U ) = Q`(−d). The Frobenius eigenvalues {αi j } j on
H i

c (X) have ι-weights ≤ i , for 0≤ i < 2d [Deligne 1980, 3.3.4]. By the fixed point
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formula,

cv(X0)

cv+1(X0)
=

qvd
+
∑

0≤i<2d(−1)i
∑

j α
v
i j

q(v+1)d +
∑

0≤i<2d(−1)i
∑

j α
v+1
i j

=

1
qd +

1
qd

∑
0≤i<2d(−1)i

∑
j

(αi j

qd

)v
1+

∑
0≤i<2d(−1)i

∑
j

(αi j

qd

)v+1 ,

which converges to 1/qd as v→∞, therefore the radius of convergence of fX0(t)
is

lim
v→∞

cv(X0)/v

cv+1(X0)/(v+ 1)
=

1
qd . �

In order to prove the meromorphic continuation of Theorem 8.1, we want to
express the L-series as a possibly infinite product. For schemes, if we consider only
bounded complexes, the L-series can be expressed as a finite alternating product of
polynomials Pn(X0, K0, t), so it is rational [Grothendieck 1965]. In the stack case,
even for the sheaf Q`, there might be infinitely many nonzero compact cohomology
groups, and we need to consider the issue of convergence of the coefficients in an
infinite products.

Definition 6.2. Let fn(t)=
∑

k≥0 ank tk
∈C[[t]] be a sequence of power series over

C. The sequence is said to be convergent term by term, if for each k, the sequence
(ank)n converges, and the series

lim
n→∞

fn(t) :=
∑
k≥0

tk lim
n→∞

ank

is called the limit of the sequence ( fn(t))n .

6.2.1. Strictly speaking, a series (respectively infinite product) is defined to be a
sequence (an)n , usually written as an “infinite sum” (respectively “infinite prod-
uct”) so that (an)n is the sequence of finite partial sums (respectively finite partial
products) of it. So the definition above applies to series and infinite products.

Recall that log(1+ g)=
∑

m≥1(−1)m+1gm/m for g ∈ tC[[t]].

Lemma 6.3. (i) Let fn(t)= 1+
∑

k≥1 ank tk
∈C[[t]] be a sequence of power series.

Then ( fn(t))n is convergent term by term if and only if (log fn(t))n is convergent
term by term, and

lim
n→∞

log fn(t)= log lim
n→∞

fn(t).

(ii) Let f and g be two power series with constant term 1. Then

log( f g)= log( f )+ log(g).
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(iii) Let fn(t) ∈ 1+ tC[[t]] be a sequence as in (i). Then the infinite product∏
n≥1 fn(t) converges term by term if and only if the series

∑
n≥1 log fn(t) con-

verges term by term, and ∑
n≥1

log fn(t)= log
∏
n≥1

fn(t).

Proof. (i) We have

log fn(t)=
∑
m≥1

(−1)m+1(∑
k≥1

ank tk)m
/m

= t · an1+ t2(an2−
1
2a2

n1
)
+ t3(an3− an1an2+

1
3a3

n1
)

+t4(an4− an1an3−
1
2a2

n2+ a2
n1an2

)
+ · · · =:

∑
k≥1

Ank tk .

In particular, for each k, the function Ank−ank=h(an1, . . . , an,k−1) is a polynomial
in an1, . . . , an,k−1 with rational coefficients. So if (ank)n converges for each k,
then (Ank)n also converges, and by induction the converse also holds. If we have
limn→∞ ank = ak , then limn→∞ Ank = ak + h(a1, . . . , ak−1), and

log lim
n→∞

fn(t)= log
(
1+

∑
k≥1

ak tk)
=

∑
k≥1

(ak+h(a1, . . . , ak−1))tk
= lim

n→∞
log fn(t).

(ii) log and exp are inverse to each other on power series, so it suffices to prove
that for f and g ∈ tC[[t]], we have

exp( f + g)= exp( f ) exp(g).

This follows from the binomial formula:

exp( f + g)=
∑
n≥0

( f + g)n/n! =
∑
n≥0

1
n!

n∑
k=0

(
n
k

)
f k gn−k

=

∑
n≥0

n∑
k=0

f k

k!
·

gn−k

(n− k)!

=

∑
i, j≥0

f i

i !
·

g j

j !
=

(∑
i≥0

f i/ i !
)(∑

j≥0

g j/j !
)
= exp( f ) exp(g).

(iii) Let FN (t) =
∏N

n=1 fn(t). Applying (i) to the sequence (FN (t))N , we see
that the infinite product

∏
n≥1 fn(t) converges term by term if and only if (by defi-

nition) (FN (t))N converges term by term, if and only if the sequence (log FN (t))N

converges term by term, if and only if (by definition) the series
∑

n≥1 log fn(t)
converges term by term, since by (ii)

log
N∏

n=1

fn(t)=
N∑

n=1

log fn(t)
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Also

log
∏
n≥1

fn(t)= log lim
N→∞

FN (t)= lim
N→∞

log FN (t)

= lim
N→∞

N∑
n=1

log fn(t)=:
∑
n≥1

log fn(t). �

6.4. For a complex of sheaves K0 on X0 and n ∈ Z, define

Pn(X0, K0, t) := det(1− Ft, H n
c (X, K )).

We regard Pn(X0, K0, t)±1 as a complex power series with constant term 1 via ι.

Proposition 6.5. For every convergent complex of sheaves K0 ∈ W−,stra
m (X0,Q`),

the infinite product ∏
n∈Z

Pn(X0, K0, t)(−1)n+1

is convergent term by term to the L-series L(X0, K0, t).

Proof. The complex R0c(X, K ) is bounded above, so Pn(X0, K0, t)= 1 for n� 0,
and the infinite product is a one-direction limit, namely n→−∞.

Let αn1, . . . , αnmn be the eigenvalues (counted with multiplicity) of the mor-
phism F on H n

c (X, K ), regarded as complex numbers via ι, so that

Pn(t)= Pn(X0, K0, t)= (1−αn1t) · · · (1−αnmn t).

By Lemma 6.3 (iii) it suffices to show that the series∑
n∈Z

(−1)n+1 log Pn(t)

converges term by term to
∑

v≥1 cv(K0)tv/v.
We have∑

n∈Z

(−1)n+1 log Pn(t)=
∑
n∈Z

(−1)n+1 log
∏

i

(1−αni t)

=

∑
n∈Z

(−1)n
∑

i

∑
v≥1

αvni t
v

v
=

∑
v≥1

tv

v

∑
n∈Z

(−1)n
∑

i

αvni =
∑
v≥1

tv

v
cv(R0c(K0)),

which converges term by term by Theorem 4.2 (i), and is equal to
∑

v≥1 cv(K0)tv/v
by Theorem 4.2 (ii). �

Remark 6.5.1. In particular we have

Z(X0, t)=
∏
n∈Z

Pn(X0, t)(−1)n+1
,
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where Pn(X0, t)= Pn(X0,Q`, t). This generalizes the classical result for schemes
[Grothendieck 1965, 5.1]. When we want to emphasize the dependence on the
prime `, we will write Pn,`(X0, t).

If G0 is a connected Fq -algebraic group, 4.8.2 shows that the zeta function of
BG0 is given by

Z(BG0, t)=
∏
r≥0

∏
mi j≥0∑

i, j mi j (i+1)=2r

(
1−q−d

∏
i, j

α
−mi j
i j ·t

)−1
=

∏
mi j≥0

(
1−q−d

∏
i, j

α
−mi j
i j ·t

)−1
.

7. Examples of zeta functions

In this section we compute the zeta functions of some stacks, and in each example
we do it in two ways: by counting rational points and by computing cohomology
groups. Also we investigate some analytic properties.

Example 7.1. BGm . By 4.7 (iii) we have cv(BGm)= 1/cv(Gm), so the zeta func-
tion is

Z(BGm, t)= exp
(∑
v≥1

cv(BGm)
tv

v

)
= exp

(∑
v≥1

1
qv−1

tv

v

)
.

Using Borel’s theorem 4.8 one can show (or see [Laumon and Moret-Bailly 2000,
19.3.2]) that the cohomology ring H∗(BGm) is a polynomial ring Q`[T ], generated
by a variable T of degree 2, and that the Frobenius action on cohomology is given
by FT n

= qnT n . So by Poincaré duality, we have

Tr(F, H−2n−2
c (BGm))= Tr(F, H−2n−2

c (BGm,Q`(−1)))/q

= Tr(F−1, H 2n(BGm))/q = q−n−1.

This gives ∏
n∈Z

Pn(BGm, t)(−1)n+1
=

∏
n≥1

(1− q−nt)−1.

It is easy to verify the result in Remark 6.5.1 directly:

exp
(∑
v≥1

1
qv − 1

tv

v

)
= exp

(∑
v≥1

1/qv

1− 1/qv
tv

v

)
= exp

(∑
v≥1

tv

v

∑
n≥1

1
qnv

)
=

∏
n≥1

exp
(∑
v≥1

(t/qn)v

v

)
=

∏
n≥1

(1− t/qn)−1.

There is also a functional equation

Z(BGm, qt)= 1
1−t

Z(BGm, t),
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which implies that Z(BGm, t) has a meromorphic continuation to the whole com-
plex plane, with simple poles at t = qn , for n ≥ 1.

H−2n−2
c (BGm) is pure of weight −2n − 2. A natural question is if Deligne’s

theorem of weights [Deligne 1980, 3.3.4] still holds for algebraic stacks. Olsson
told me that it does not hold in general, as the following example shows.

Example 7.2. B E , where E is an elliptic curve over Fq . Again by 4.7 (iii) we have

cv(B E)= 1/#E(Fqv ).

Let α and β be the roots of the reciprocal characteristic polynomial of the Frobenius
on H 1(E):

x2
− (1+ q − c1(E))x + q = 0. (7.2.1)

Then for every v ≥ 1, we have cv(E)= 1−αv −βv + qv = (1−αv)(1−βv). So

cv(B E)= 1
(1−αv)(1−βv)

=
α−v

1−α−v
·
β−v

1−β−v

=

(∑
n≥1

α−nv
)(∑

m≥1

β−nv
)
=

∑
n,m≥1

( 1
αnβm

)v
,

and the zeta function is

Z(B E, t)= exp
(∑
v≥1

cv(B E) t
v

v

)
= exp

( ∑
n,m≥1
v≥1

( t
αnβm

)v/
v

)
=

∏
n,m≥1

(
1− t

αnβm

)−1
.

To compute its cohomology, one can apply Borel’s theorem 4.8 to E , and we
have N = N 1

= H 1(E), so N [−1] is a 2-dimensional vector space sitting in degree
2, on which F has eigenvalues α and β. Then H∗(B E) is a polynomial ring
Q`[a, b] in two variables, both sitting in degree 2, and the basis a, b can be chosen
so that the Frobenius action F on H 2(B E) is upper triangular (or even diagonal)[

α γ

β

]
.

Then F acting on

H 2n(B E)= Symn N [−1] =Q`〈an, an−1b, . . . , bn
〉

can be represented by 
αn

∗ ∗ ∗

αn−1β ∗ ∗

. . . ∗

βn

 ,
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with eigenvalues αn, αn−1β, . . . , βn . So the eigenvalues of F on H−2−2n
c (B E) are

q−1α−n , q−1α1−nβ−1, . . . , q−1β−n and∏
n∈Z

Pn(B E, t)(−1)n+1
= 1

/
(1− q−1t) ·

[
(1− q−1α−1t)(1− q−1β−1t)

]
·
[
(1− q−1α−2t)(1− q−1α−1β−1t)(1− q−1β−2t)

]
· · · .

Note that the right hand side is the same as Z(B E, t) above (since αβ = q).
Let Z1(t) := Z(B E, qt). Its radius of convergence is 1, since by Lemma 6.1

lim
v→∞

cv(B E)
cv+1(B E)

= lim
v→∞

cv+1(E)
cv(E)

= q.

There is also a functional equation

Z1(αt)= 1
1−αt

Z1(t) Z2(t),

where
Z2(t)=

1
(1−αβ−1t)(1−αβ−2t)(1−αβ−3t) · · ·

.

Z2(t) is holomorphic in the open unit disk and satisfies the functional equation

Z2(βt)= 1
1−αt

Z2(t).

Therefore Z2(t), and hence Z(B E, t), has a meromorphic continuation to the
whole complex t-plane with the obvious poles.

Remark 7.2.1. H−2−2n
c (B E) is pure of weight −2− n, which is not ≤ −2− 2n

unless n = 0. So the upper bound of weights for schemes fails for B E . This also
leads to the failure of the decomposition theorem for B E ; see [Sun 2012, §1], for
the example of a pure complex on B E which is not geometrically semisimple.

Also note that, the Equation (7.2.1) is independent of `, so the polynomials
Pn,`(B E, t) are independent of `.

Example 7.3. BG0, where G0 is a finite étale Fq -group scheme, corresponding to
a finite group G and a Frobenius automorphism σ on it. Then BG0(Fqv )'G/ρ(v),
where ρ(v) is the right action of G on the set G given by h : g 7→ σ v(h−1)gh. So

cv(BG0)=
∑

[g]∈G/ρ(v)

1
# Stabρ(v)(g)

=
#G
#G
= 1,

and the zeta function is
Z(BG0, t)= 1

1−t
.

Its cohomology groups are given in Lemma 4.6: H 0
c (BG)=Q`, and other H i

c = 0.
This verifies Remark 6.5.1.
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Note that Z(BG0, t) is the same as the zeta function of its coarse moduli space
Spec Fq . As a consequence, for every Fq -algebraic stack X0, with finite inertia
I0 → X0 and coarse moduli space π : X0 → X0 [Conrad 2005, 1.1], we have
Z(X0, t)= Z(X0, t), and hence it is a rational function. This is because for every
x ∈ X0(Fqv ), the fiber π−1(x) is a neutral gerbe over Spec k(x), and from the above
we see that cv(π−1(x))= 1, and hence cv(X0)= cv(X0). The fact that Z(X0, t) is
a rational function follows from [Knutson 1971, II, 6.7] and noetherian induction.
More generally, we have the following.

Proposition 7.3.1. Let X0 be an Fq -algebraic stack. Suppose that X0 either has
finite inertia, or is Deligne–Mumford (not necessarily separated). Then for every
K0 ∈W b(X0,Q`), the L-series L(X0, K0, t) is a rational function.

Proof. It suffices to show that Theorem 4.2 holds for the structural morphism
X0→ Spec Fq and K0 ∈W b(X0,Q`) in these two cases. We will not make explicit
use of the fact from Remark 2.8.1 that K0 is ι-mixed.

Case when X0 has finite inertia. Let π : X0→ X0 be its coarse moduli space.
For any sheaf F0 on X0, we have isomorphisms H r

c (X, R0π!F) ' H r
c (X,F) by

Lemma 4.6, so R0c(X0,F0) is a bounded complex, hence a convergent complex.
To prove the trace formula for X0→ Spec Fq and the sheaf F0, it suffices to prove
it for X0→ X0 and X0→Spec Fq . The first case, when passing to fibers, is reduced
to BG0, and when passing to fibers again, it is reduced to the two subcases: when
G0 is finite, or when G0 is connected. In both of these two cases as well as the
case of an algebraic space X0→ Spec Fq , the trace formula can be proved without
using ι-mixedness 5.2.1. Therefore, Theorem 4.2 holds for X0→ Spec Fq and any
sheaf, hence any bounded complex, on X0.

The trace formula is equivalent to the equality of power series

L(X0, K0, t)=
∏
i∈Z

Pi (X0, K0, t)(−1)i+1
,

and the right-hand side is a finite product, because R0c(X0, K0) is bounded. There-
fore, L(X0, K0, t) is rational.

Case when X0 is Deligne–Mumford. For both (i) and (ii) of Theorem 4.2, we
may replace X0 by a nonempty open substack, hence by [Laumon and Moret-Bailly
2000, 6.1.1] we may assume X0 is the quotient stack [X ′0/G], where X ′0 is an affine
Fq -scheme of finite type and G is a finite group acting on X ′0. This stack has finite
diagonal, and hence finite inertia, so by the previous case we are done. Also, we
know that R0c(X0, K0) is bounded, therefore L(X0, K0, t) is rational. �

If one wants to use Poincaré duality to get a functional equation for the zeta
function, [Olsson 2008a, 5.17] and [Laszlo and Olsson 2008b, 9.1.2] suggest that
we should assume X0 to be proper smooth and of finite diagonal. Under these
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assumptions, one gets the expected functional equation for the zeta function, as
well as the independence of ` for the coarse moduli space, which is proper but
possibly singular. Examples of such stacks include the moduli stack of pointed
stable curves Mg,n over Fq .

Proposition 7.3.2. Let X0 be a proper smooth Fq -algebraic stack of equidimension
d , with finite diagonal, and let π : X0 → X0 be its coarse moduli space. Then
Z(X0, t) satisfies the usual functional equation

Z
(

X0,
1

qd t

)
=± qdχ/2tχ Z(X0, t),

where χ :=
∑2d

i=0(−1)i deg Pi,`(X0, t). Moreover, H i (X) is pure of weight i , for
every 0≤ i ≤ 2d , and the reciprocal roots of each Pi,`(X0, t) are algebraic integers
independent of `.

Proof. First we show that the adjunction map Q` → π∗π
∗Q` = π∗Q` is an iso-

morphism. Since π is quasi-finite and proper [Conrad 2005, 1.1], we have π∗= π!
[Olsson 2008a, 5.1] and Rrπ!Q`=0 for r 6=0 [Olsson 2008a, 5.8]. The natural map
Q`→ R0π∗Q` is an isomorphism, since the geometric fibers of π are connected.

Therefore R0(X0,Q`)= R0(X0, π∗Q`)= R0(X0,Q`), and hence

H i (X)' H i
c (X)' H i (X)' H i

c (X)

for all i [Olsson 2008a, 5.17]. Let Pi (t) = Pi (X0, t) = Pi (X0, t). Since X0 is an
algebraic space of dimension d, Pi (t) = 1 if i /∈ [0, 2d]. Since X0 is proper and
smooth, Poincaré duality gives a perfect pairing

H i (X)× H 2d−i (X)−→Q`(−d).

Following the standard proof for proper smooth varieties, see [Milne 2008, 27.12],
we get the expected functional equation for Z(X0, t)= Z(X0, t).

H i (X) is mixed of weights ≤ i [Deligne 1980, 3.3.4], so by Poincaré duality,
it is pure of weight i . Following the proof in [Deligne 1974a, p. 276)], this purity
implies that the polynomials Pi,`(X0, t) have integer coefficients independent of
`. �

Remark 7.3.3. Weizhe Zheng suggested Proposition 7.3.1 to me. He also sug-
gested that we give a functional equation relating L(X0, DK0, t) and L(X0, K0, t),
for K0 ∈W b(X0,Q`), where X0 is a proper Fq -algebraic stack with finite diagonal,
of equidimension d , but not necessarily smooth. Here is the functional equation:

L(X0, K0, t−1)= tχc · Q · L(X0, DK0, t),
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where χc =
∑2d

i=0(−1)i hi
c(X, K ) and Q = (tχc L(X0, K0, t))|t=∞. Note that the

rational function L(X0, K0, t) has degree−χc, hence Q is well-defined. The proof
is similar to the above.

Example 7.4. BGL N . We have

# GL N (Fqv )=
(
qvN
− 1

)(
qvN
− qv

)
· · ·
(
qvN
− qv(N−1)),

so one can use cv(BGL N )= 1/cv(GL N ) to compute Z(BGL N , t). One can also
compute the cohomology groups of BGL N using Borel’s theorem 4.8. We refer
to [Behrend 1993, 2.3.2] for the result. Let us consider the case N = 2 only. The
general case is similar.

We have

cv(BGL2)=
1

q4v

(
1+ 1

qv
+

2
q2v +

2
q3v +

3
q4v +

3
q5v + · · ·

)
,

and therefore

Z(BGL2, t)= exp
(∑

v

(t/q4)v

v

)
· exp

(∑
v

(t/q5)v

v

)
· exp

(∑
v

2(t/q6)v

v

)
· · ·

=
1

1−t/q4 ·
1

1−t/q5 ·

( 1
1−t/q6

)2
·

( 1
1−t/q7

)2
·

( 1
1−t/q8

)3
· · · .

So Z(BGL2, qt)= Z(BGL2, t) · Z1(t), where

Z1(t)=
1

(1−t/q3)(1−t/q5)(1−t/q7)(1−t/q9) · · ·
.

Z1(t) satisfies the functional equation

Z1(q2t)= 1
1−t/q

· Z1(t),

So Z1(t), and hence Z(BGL2, t), has a meromorphic continuation with the obvi-
ous poles.

The nonzero compactly supported cohomology groups of BGL2 are given as
follows:

H−8−2n
c (BGL2)=Q`(n+ 4)⊕

(
b n

2c+1
)
, n ≥ 0.

This gives∏
n∈Z

Pn(BGL2, t)(−1)n+1
=

1
(1−t/q4)(1−t/q5)(1−t/q6)2(1−t/q7)2 · · ·

,

and Remark 6.5.1 is verified. Note that the eigenvalues are 1/qn+4, which are
independent of `.
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8. Analytic continuation

We state and prove a generalized version of Theorem 1.3.

Theorem 8.1. Let X0 be an Fq -algebraic stack, and let K0 ∈ W−,stra
m (X0,Q`)

be a convergent complex. Then L(X0, K0, t) has a meromorphic continuation to
the whole complex t-plane, and its poles can only be zeros of the polynomials
P2n(X0, K0, t) for some integers n.

We need a preliminary lemma. For an open subset U ⊂ C, let O(U ) be the set
of analytic functions on U . There exists a sequence {Kn}n≥1 of compact subsets
of U such that U =

⋃
n Kn and Kn ⊂ (Kn+1)

◦. For f and g in O(U ), define

ρn( f, g)= sup{| f (z)− g(z)|; z ∈ Kn} and ρ( f, g)=
∞∑

n=1

( 1
2

)n ρn( f, g)
1+ ρn( f, g)

.

Then ρ is a metric on O(U ) and the topology it induces is independent of the subsets
{Kn}n chosen (see [Conway 1973, VII, §1]).

The following lemma is from [Conway 1973, p. 167, 5.9].

Lemma 8.2. Let U ⊂ C be connected and open and let ( fn)n be a sequence in
O(U ) such that no fn is identically zero. If

∑
n( fn(z)− 1) converges absolutely

and uniformly on compact subsets of U , then
∏

n≥1 fn(z) converges in O(U ) to an
analytic function f (z). If z0 is a zero of f , then z0 is a zero of only a finite number
of the functions fn , and the multiplicity of the zero of f at z0 is the sum of the
multiplicities of the zeros of the functions fn at z0.

Now we prove Theorem 8.1.

Proof. Factorize Pn(X0, K0, t) as
∏mn

j=1(1− αnj t) in C. Since R0c(X0, K0) is a
convergent complex by Theorem 4.2 (i), the series

∑
n, j |αnj | converges.

By Proposition 6.5 we have

L(X0, K0, t)=
∏
n∈Z

( mn∏
j=1

(1−αnj t)
)(−1)n+1

as formal power series. Take U to be the region C−{α−1
nj ; n even}with the intention

of applying Lemma 8.2. Take the lexicographical order on the set of all factors

1−αnj t, for n odd; 1
1−αnj t

, for n even.

Each factor is an analytic function on U . The sum
∑

n( fn(z)− 1) here is equal to∑
n odd, j

(−αnj t) +
∑

n even, j

αnj t
1−αnj t

.
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Let

gn(t)=



mn∑
j=1

|αnj t |, n odd,

mn∑
j=1

|αnj t |
|1−αnj t |

, n even.

We need to show that
∑

n gn(t) is pointwise convergent, uniformly on compact
subsets of U . Precisely, we want to show that for any compact subset B ⊂U , and
for any ε > 0, there exists a constant NB ∈ Z such that∑

n≤N

gn(t) < ε

for all N ≤ NB and t ∈ B. Since gn(t) are nonnegative, it suffices to do this for
N = NB . There exists a constant MB such that |t | < MB for all t ∈ B. Since∑

n, j |αnj | converges, |αnj | → 0 as n→−∞, and there exists a constant L B ∈ Z

such that |αnj |< 1/(2MB) for all n < L B . So

gn(t)≤ 2
mn∑
j=1

|αnj t |

for all n < L B and t ∈ B. There exists a constant NB < L B such that∑
n≤NB

∑
j

|αnj |< ε/(2MB)

and hence ∑
n≤NB

gn(t)≤ 2
∑

n≤NB

∑
j

|αnj t | ≤ 2MB

∑
n≤NB

∑
j

|αnj |< ε.

By Lemma 8.2, L(X0, K0, t) extends to an analytic function on U . By the second
part of Lemma 8.2, the α−1

nj ’s, for n even, are at worst poles rather than essential
singularities, therefore the L-series is meromorphic on C. �

Now L(X0, K0, t) can be called an “L-function”.

9. Weight theorem for algebraic stacks

9.1. We prove Theorem 1.4 in this section. For the reader’s convenience, we briefly
review the definition of the dimension of a locally noetherian S-algebraic stack X

from [Laumon and Moret-Bailly 2000, Chapter 11].
If X is a locally noetherian S-algebraic space and x is a point of X , the dimension

dimx X of X at x is defined to be dimx ′ X ′, for any pair (X ′, x ′) where X ′ is an
S-scheme étale over X and x ′ ∈ X ′ maps to x . This is independent of the choice of
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the pair. If f : X → Y is a morphism of S-algebraic spaces, locally of finite type,
and x is a point of X with image y in Y , then the relative dimension dimx f of f
at x is defined to be dimx X y .

Let P : X→X be a presentation of an S-algebraic stack X, and let x be a point
of X . Then the relative dimension dimx P of P at x is defined to be the relative
dimension at (x, x) of the smooth morphism pr1 : X ×X X → X of S-algebraic
spaces.

If X is a locally noetherian S-algebraic stack and if ξ is a point of X, the dimen-
sion of X at ξ is defined to be dimξ X= dimx X −dimx P , where P : X→X is an
arbitrary presentation of X and x is an arbitrary point of X lying over ξ . This defini-
tion is independent of all the choices made. At last one defines the dimension of X

by dim X= supξ dimξ X. For quotient stacks we have dim [X/G]=dim X−dim G.

Now we prove Theorem 1.4.

Proof. If j :U0→ X0 is an open substack with complement i : Z0→ X0, then we
have an exact sequence

· · · −→ H n
c (U, j∗F)−→ H n

c (X,F)−→ H n
c (Z, i∗F)−→ · · · .

If both H n
c (U, j∗F) and H n

c (Z, i∗F) are zero (respectively have all ι-weights ≤m
for some number m), then so is H n

c (X,F). Since the dimensions of U0 and Z0 are
no more than that of X0, and the set of punctual ι-weights of i∗F0 and of j∗F0 is
the same as that of F0, we may shrink X0 to a nonempty open substack. We can
also make any finite base change on Fq . To simplify notation, we may use twist
(see 2.4) and projection formula to assume w = 0. As before, we reduce to the
case when X0 is geometrically connected, and the inertia f : I0→ X0 is flat, with
rigidification π : X0→ X0, where X0 is a scheme. The squares in the following
diagram are 2-Cartesian:

B Autx B Autx X0 Spec Fqv

I0 Auty

Spec F Spec Fqv X0

y

x x

f

πx πx π

We have (Rkπ!F0)x = H k
c (B Autx ,F). Since f is representable and flat, and X0

is connected, all automorphism groups Autx have the same dimension, say d .
Assume Theorem 1.4 holds for all BG0, where G0 are Fq -algebraic groups.

Then Rkπ!F0 = 0 for k > −2d , and for k ≤ −2d , the punctual ι-weights of
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Rkπ!F0 are ≤ k
2 − d, hence by [Deligne 1980, 3.3.4], the punctual ι-weights of

H r
c (X, Rkπ!F) are ≤ k

2 − d + r . Consider the Leray spectral sequence

Erk
2 = H r

c (X, Rkπ!F)H⇒ H r+k
c (X,F).

If we maximize k
2 − d + r under the constraints

r + k = n, 0≤ r ≤ 2 dim X0 and k ≤−2d,

we find that H n
c (X,F)= 0 for n> 2 dim X0−2d = 2 dim X0, and for n≤ 2 dim X0,

the punctual ι-weights of H n
c (X,F) are ≤ dim X0+

n
2 − d = dim X0+

n
2 .

So we reduce to the case X0= BG0. By Lemma 4.6 the Leray spectral sequence
for h : BG0→ Bπ0(G0) degenerates to isomorphisms

H 0
c (Bπ0(G), Rnh!F)' H n

c (BG,F).

The fibers of h are isomorphic to BG0
0, so by base change and Lemma 4.6 we

reduce to the case when G0 is connected. Let d = dim G0 and f : BG0→ Spec Fq

be the structural map. In this case, F0 ∼= f ∗V for some Q`-representation V of
W (Fq), and hence F0 and V have the same punctual ι-weights. Using the natural
isomorphism H n

c (BG)⊗ V ' H n
c (BG,F), we reduce to the case when F0 =Q`.

In 4.8.2 we see that, if αi1, . . . , αini are the eigenvalues of F on N i , i ≥ 1 odd,
then the eigenvalues of F on H−2k−2d

c (BG) are

q−d
∏
i, j

α
−mi j
i j , where

∑
i, j

mi j (i + 1)= 2k.

Since i ≥ 1, we have
∑

imi j ≥ k; together with |αi j | ≥ q i/2 one deduces∣∣q−d
∏
i, j

α
−mi j
i j

∣∣≤ q(−k−2d)/2,

so the punctual ι-weights of H−2k−2d
c (BG) are ≤−k−2d for k ≥ 0, and the other

compactly supported cohomology groups are zero.
It is clear from the proof and [Deligne 1980, 3.3.10] that the weights of H n

c (X,F)

differ from the weights of F0 by integers.
Recall that H 2k(BG) is pure of weight 2k, for a linear algebraic group G0 over

Fq [Deligne 1974b, 9.1.4]. Therefore, H−2k−2d
c (BG) is pure of weight −2k− 2d,

and following the same proof as above, we are done. �

Remark 9.2. When X0 = X0 is a scheme, and n ≤ 2 dim X0, we have

dim X0+
n
2
+w ≥ n+w,
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so our bound for weights is worse than the bound in [Deligne 1980, 3.3.4]. For an
Fq -abelian variety A, our bound for the weights of H n

c (B A) is sharp: the weights
are exactly dim(B A)+ n

2 , whenever the cohomology group is nonzero.

We hope Theorem 1.4 has useful and interesting applications, for instance for
generalizing the decomposition theorem of Beilinson–Bernstein–Deligne–Gabber
(see [Sun 2012]) to stacks with affine stabilizers, and for studying the Hasse–Weil
zeta functions of Artin stacks over number fields. For instance, it implies that the
Hasse–Weil zeta function is analytic in some right half complex s-plane.

Using Theorem 1.4 we can show certain stacks have Fq -points.

Example 9.3. Let X0 be a form of BGm , that is, X ∼= BGm,F over F. Then all
the automorphism group schemes in X0 are affine, and for any n ≥ 0 we have
h−2−2n

c (X)=h−2−2n
c (BGm)=1. Let α−2−2n be the eigenvalue of F on H−2−2n

c (X).
Then by Theorem 1.4 we have |α−2−2n| ≤ q−1−n . Smoothness is fppf local on the
base, so X0 is smooth and connected, hence H−2

c (X)=Q`(1) and α−2 = q−1. So

#X0(Fq)=
∑
n≥0

Tr(F, H−2−2n
c (X))= q−1

+α−4+α−6+ · · ·

≥ q−1
− q−2

− q−3
+ · · · = q−1

−
q−1

q − 1
> 0

when q 6=2. In fact, since there exists an integer r ≥1 such that X0⊗Fqr ∼= BGm,Fqr ,
we see that all cohomology groups H−2−2n

c (X) are pure, that is, |α−2−2n| = q−1−n .
In fact, one can classify the forms of BGm,Fq as follows. If X0 is a form, then it

is also a gerbe over Spec Fq , hence a neutral gerbe BG0 for some algebraic group
G0 by Behrend [2003, 6.4.2]. By comparing the automorphism groups, we see that
G0 is a form of Gm,Fq . There is only one nontrivial form of Gm,Fq , because

H 1(Fq ,Aut(Gm))= H 1(Fq ,Z/2Z)= Z/2Z,

and this form is the kernel R1
Fq2/Fq

Gm,Fq2 of the norm map

RFq2/Fq Gm,Fq2 −−−→
Nm

Gm,Fq ,

where RFq2/Fq is the operation of Weil’s restriction of scalars. Therefore, the only
nontrivial form of BGm,Fq is B(R1

Fq2/Fq
Gm,Fq2 ). In particular, they all have Fq -

points, even when q = 2.

Example 9.4. Consider the projective line P1 with the following action of Gm : it
acts by multiplication on the open part A1

⊂ P1, and leaves the point∞ fixed. So
we get a quotient stack [P1/Gm] over Fq . Let X0 be a form of [P1/Gm]. We want to
find an Fq -point on X0, or even better, an Fq -point on X0 which, when considered
as a point in X(F)∼= [P1/Gm](F), lies in the open dense orbit [Gm/Gm](F).



L-series of Artin stacks over finite fields 115

9.4.1. Consider the following general situation. Let G0 be a connected Fq -alge-
braic group, and let X0 be a proper smooth variety with a G0-action over Fq . Let

[X0/G0]
f
−→ BG0

g
−→ Spec Fq

be the natural maps, and let X0 be a form of [X0/G0]. Then f is representable and
proper. For every k, Rk f∗Q` is a lisse sheaf, and takes the form g∗Vk for some
sheaf Vk on Spec Fq . Consider the Leray spectral sequence

Erk
2 = Rr g!Rk f∗Q` H⇒ Rr+k(g f )!Q`.

Since Rr g!Rk f∗Q` = Rr g!(g∗Vk)= (Rr g!Q`)⊗ Vk , we have

hn
c (X)= hn

c ([X/G])≤
∑

r+k=n

hr
c(BG) · dim Vk =

∑
r+k=n

hr
c(BG) · hk(X).

Now we return to [P1/Gm]. Since h0(P1) = h2(P1) = 1 and h−2i
c (BGm) = 1

for i ≥ 1, we see that hn
c (X)= 0 for n odd and

h2n
c (X)≤ h0(P1) h2n

c (BGm)+ h2(P1) h2n−2
c (BGm)=


0, n ≥ 1,

1, n = 0,

2, n < 0.

Since X0 is connected and smooth of dimension 0, we have H 0
c (X) = Q`. By

Theorem 1.4, the ι-weights of H 2n
c (X) are ≤ 2n. The trace formula gives

#X0(Fq)=
∑
n≤0

Tr(F, H 2n
c (X))= 1+

∑
n<0

Tr(F, H 2n
c (X))

≥ 1− 2
∑
n<0

qn
= 1−

2
q − 1

> 0

when q ≥ 4.
In order for the rational point to be in the open dense orbit, we need an upper

bound for the number of Fq -points on the closed orbits. When passing to F, there
are 2 closed orbits, both having stabilizer Gm,F. So in [X0(Fq)] there are at most 2
points whose automorphism groups are forms of the algebraic group Gm,Fq . From
the cohomology sequence

1−→ (R1
Fq2/Fq

Gm,Fq2 )(Fq)−→ F∗q2 −−−→
Nm

F∗q

we see that
#(R1

Fq2/Fq
Gm,Fq2 )(Fq)= q + 1.

Since 1/(q + 1) ≤ 1/(q − 1), the space that the closed orbits can take is at most
2/(q − 1), and equality holds only when the two closed orbits are both defined
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over Fq with stabilizer Gm . In order for there to exist an Fq -point in the open dense
orbit, we need

1− 2
q−1

>
2

q−1
,

and this is so when q ≥ 7.

10. About independence of `

The coefficients of the expansion of the infinite product

Z(X0, t)=
∏
i∈Z

Pi,`(X0, t)(−1)i+1

are rational numbers and are independent of `, because the cv(X0)’s are rational
numbers independent of `. A famous conjecture is that this is also true for each
Pi,`(X0, t). First we show that the roots of Pi,`(X0, t) are Weil q-numbers. Note
that Pi,`(X0, t) ∈Q`[t].

Definition 10.1. An algebraic number is called a Weil q-number if all of its con-
jugates have the same weight relative to q , and this weight is a rational integer. It
is called a Weil q-integer if in addition it is an algebraic integer. A number in Q`

is called a Weil q-number if it is a Weil q-number via ι.

For α ∈Q`, being a Weil q-number or not is independent of ι; in fact the images
in C under various ι’s are conjugate.

For an Fq -variety X0, not necessarily smooth or proper, [Deligne 1980, 3.3.4]
implies all Frobenius eigenvalues of H i

c (X) are Weil q-integers. The following
lemma generalizes this.

Lemma 10.2. For every Fq -algebraic stack X0, and a prime number ` 6= p, the
roots of each Pi,`(X0, t) are Weil q-numbers. In particular, the coefficients of
Pi,`(X0, t) are algebraic numbers in Q` (that is, algebraic over Q).

Proof. For an open immersion j : U0 → X0 with complement i : Z0 → X0, we
have an exact sequence

· · · −→ H i
c (U)−→ H i

c (X)−→ H i
c (Z)−→ · · · ,

thus we may shrink to a nonempty open substack. In particular, Lemma 10.2 holds
for algebraic spaces, by Knutson [1971, II 6.7] and Deligne [1980, 3.3.4].

We may assume X0 is smooth and connected. By Poincaré duality, it suffices to
show that the Frobenius eigenvalues of H i (X) are Weil q-numbers, for all i . Take
a presentation X0 → X0 and consider the associated strictly simplicial smooth
covering X•0→ X0 by algebraic spaces. Then there is a spectral sequence [Laszlo
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and Olsson 2008b, 10.0.9]

Erk
1 = H k(X r )H⇒ H r+k(X),

and the assertion for X0 follows from the assertion for algebraic spaces. �

Problem 10.3. Is each

Pi,`(X0, t)= det(1− Ft, H i
c (X,Q`))

a polynomial with coefficients in Q, and the coefficients are independent of `?

Remark 10.3.1. (i) Note that, unlike the case for varieties, we cannot expect the
coefficients to be integers (for instance, for BGm , the coefficients are 1/q i ).

(ii) Problem 10.3 is known to be true for smooth proper varieties [Deligne 1980,
3.3.9], and (coarse moduli spaces of) proper smooth algebraic stacks of finite diag-
onal (see Proposition 7.3.2). It remains open for general varieties. Even the Betti
numbers are not known to be independent of ` for a general variety, see [Illusie
2006].

Let us give positive answer to Problem 10.3 in some special cases of algebraic
stacks. In Section 7 we see that it holds for B E and BGL N . We can generalize
these two cases as follows.

Lemma 10.4. Problem 10.3 has a positive answer for:

(i) B A, where A is an Fq -abelian variety.

(ii) BG0, where G0 is a linear algebraic group over Fq .

Proof. (i) Let g= dim A. Then N = H 1(A) is a 2g-dimensional vector space, with
eigenvalues α1, . . . , α2g for the Frobenius action F , and N is pure of weight 1. Let
a1, . . . , a2g be a basis for N so that F is given by the upper-triangular matrixα1 ∗ ∗

. . . ∗

α2g

 .
Then H∗(B A) = Sym∗N [−1] = Q`[a1, . . . , a2g], where each ai sits in degree 2.
In degree 2n, H 2n(B A)=Q`〈ai1 · · · ain | 1≤ i1, . . . , in ≤ 2g〉, and the eigenvalues
are αi1 · · ·αin . By Poincaré duality

H−2n−2g
c (B A)= H 2n(B A)∨⊗Q`(g)

we see that the eigenvalues of F on H−2g−2n
c (B A) are

q−g
·α−1

i1
· · ·α−1

in
.
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Each factor
P−2g−2n(qgt) =

∏
1≤i1,...,in≤2g

(
1− (αi1 · · ·αin )

−1t
)

stays unchanged if we permute the αi ’s arbitrarily, so the coefficients are symmetric
polynomials in the α−1

i ’s with integer coefficients, hence are polynomials in the
elementary symmetric functions, which are coefficients of

∏2g
i=1(t − α

−1
i ). The

polynomial
2g∏

i=1

(1−αi t)= det
(
1− Ft, H 1(A,Q`)

)
also has roots α−1

i , and this is a polynomial with integer coefficients, independent
of `, since A is smooth and proper. Let m =±qg be leading coefficient of it. Then

2g∏
i=1

(t −α−1
i )=

1
m

2g∏
i=1

(1−αi t).

This verifies Problem 10.3 for B A.
(ii) Let d = dim G0. For every k ≥ 0, H 2k(BG) is pure of weight 2k [Deligne

1974b, 9.1.4], hence H−2d−2k
c (BG) is pure of weight−2d−2k by Poincaré duality.

The entire function
1

Z(BG0, t)
=

∏
k≥0

P−2d−2k(BG0, t) ∈Q[[t]]

is independent of `, and invariant under the action of Gal(Q) on the coefficients of
the Taylor expansion. Therefore the roots of P−2d−2k(BG0, t) can be described as

“zeros of 1
Z(BG0, t)

that have weight 2d + 2k relative to q ,”

which is a description independent of `, and these roots (which are algebraic num-
bers) are permuted under Gal(Q). Hence P−2d−2k(BG0, t) has rational coeffi-
cients. �

The following proposition generalizes Proposition 7.3.2 and Lemma 10.4 (ii).

Proposition 10.5. Let X0 be the coarse moduli space of a proper smooth Fq -
algebraic stack of finite diagonal, and let G0 be a linear Fq -algebraic group that
acts on X0, and let X0 be a form of the quotient stack [X0/G0]. Then Problem 10.3
is verified for X0.

Proof. It suffices to show that H n
c (X) is pure of weight n, for every n. To show

this, we can make a finite extension of the base field Fq , so we may assume that
X0 = [X0/G0]. Let

X0
f
−→ BG0

h
−→ Bπ0(G0)



L-series of Artin stacks over finite fields 119

be the natural maps.
Let d = dim G0. Consider the spectral sequence

H−2d−2r
c (BG, Rk f!Q`)H⇒ H−2d−2r+k

c (X).

The E2-terms can be computed from the degenerate Leray spectral sequence for
h:

H−2d−2r
c (BG, Rk f!Q`)' H 0

c (Bπ0(G), R−2d−2r h!Rk f!Q`).

We remark that the restriction of R−2d−2r h!Rk f!Q` along the natural projection
Spec Fq→ Bπ0(G0) is isomorphic to the Galois module H−2d−2r

c (BG0, Rk f!Q`),
and since G0

0 is connected, (Rk f!Q`)|BG0
0

is the inverse image of some sheaf Vk

via the structural map BG0
0→ Spec Fq . By base change, we see that the sheaf Vk ,

regarded as a Gal(Fq)-module, is H k(X). By projection formula we have

H−2d−2r
c (BG0, Rk f!Q`)' H−2d−2r

c (BG0)⊗ H k(X)

as representations of Gal(Fq), and by Proposition 7.3.2, the right hand side is pure
of weight −2d − 2r + k. By Lemma 4.6, H−2d−2r

c (BG, Rk f!Q`) is also pure of
weight −2d − 2r + k, therefore H n

c (X) is pure of weight n, for every n. �

10.6. Finally, let us consider the following much weaker version of independence
of `. For X0 and i ∈ Z, let 9(X0, i) be the following property: the Frobenius
eigenvalues of H i

c (X,Q`), counted with multiplicity, for all ` 6= p, are contained
in a finite set of algebraic numbers with multiplicities assigned, and this set together
with the assignment of multiplicity, depends only on X0 and i . In particular it is
independent of `. In other words, there is a finite decomposition of the set of all
prime numbers ` 6= p into disjoint union of some subsets, such that the Frobenius
eigenvalues of H i

c (X,Q`) depends only on the subset that ` belongs to. If this
property holds, we also denote such a finite set of algebraic numbers (which is not
unique) by 9(X0, i), if there is no confusion.

Proposition 10.6.1. The property 9(X0, i) holds for every X0 and i .

Proof. If U0 is an open substack of X0 with complement Z0, and properties
9(U0, i) and 9(Z0, i) hold, then 9(X0, i) also holds, and the finite set 9(X0, i)
a subset of 9(U0, i)∪9(Z0, i).

Firstly we prove this for schemes X0. By shrinking X0 we can assume it is
a connected smooth variety. By Poincaré duality it suffices to prove the similar
statement 9∗(X0, i) for ordinary cohomology, that is, with H i

c replaced by H i , for
all i . This follows from [de Jong 1996] and [Deligne 1980, 3.3.9]. Therefore it
also holds for all algebraic spaces.

For a general algebraic stack X0, by shrinking it we can assume it is connected
smooth. By Poincaré duality, it suffices to prove 9∗(X0, i) for all i . This can be
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done by taking a hypercover by simplicial algebraic spaces, and considering the
associated spectral sequence. �
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