Vol. 6, No. 1, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Multiplicative mimicry and improvements to the Pólya–Vinogradov inequality

Leo Goldmakher

Vol. 6 (2012), No. 1, 123–163
Abstract

We study exponential sums whose coefficients are completely multiplicative and belong to the complex unit disc. Our main result shows that such a sum has substantial cancellation unless the coefficient function is essentially a Dirichlet character. As an application we improve current bounds on odd-order character sums. Furthermore, conditionally on the generalized Riemann hypothesis we obtain a bound for odd-order character sums which is best possible.

Keywords
Dirichlet characters, character sums, exponential sums, multiplicative functions
Mathematical Subject Classification 2000
Primary: 11L40
Secondary: 11L03, 11L07
Milestones
Received: 21 October 2010
Accepted: 29 December 2010
Published: 15 June 2012

Proposed: Andrew Granville
Seconded: Peter Sarnak
Authors
Leo Goldmakher
University of Toronto
Department of Mathematics
40 St. George Street
Toronto, ON  M5S 2E4
Canada
http://www.math.toronto.edu/lgoldmak