
Algebra &
Number
Theory

Volume 6

2012
No. 2

mathematical sciences publishers



Algebra & Number Theory
msp.berkeley.edu/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Ronald Solomon Ohio State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Andrei Zelevinsky Northeastern University, USA

Efim Zelmanov University of California, San Diego, USA

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2012 is US $175/year for the electronic version, and $275/year (+$40 shipping outside the US) for
print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should
be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840,
USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University
of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2012 by Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:contact@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org
http://msp.org/


msp
ALGEBRA AND NUMBER THEORY 6:2(2012)

Arithmetic of singular Enriques surfaces
Klaus Hulek and Matthias Schütt

Dedicated to the memory of Eckart Viehweg

We study the arithmetic of Enriques surfaces whose universal covers are singular
K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model
over the ring class field H(d). Our main theorem is that the same holds true
for any Enriques quotient of X . It is based on a study of Néron–Severi groups
of singular K3 surfaces. We also comment on Galois actions on divisors of
Enriques surfaces.

1. Introduction

Enriques surfaces have formed a vibrant research area over the last 30 years. In
many respects, they share the properties of K3 surfaces, yet in other aspects they
behave differently. This twofold picture is illustrated in this paper which investi-
gates arithmetic aspects of Enriques surfaces.

The arithmetic of Enriques surfaces is only partially well-understood. For in-
stance, Bogomolov and Tschinkel [1998] proved that potential density of rational
points holds on Enriques surfaces. The cited work predates all substantial progress
on K3 surfaces in the same direction. In fact, until now the corresponding statement
for K3 surfaces has not been proved in full generality.

In this paper, we investigate the arithmetic of those Enriques surfaces whose uni-
versal covers are singular K3 surfaces, i.e., K3 surfaces with Picard number ρ=20.
We will refer to them as singular Enriques surfaces. Singular K3 surfaces are
closely related to elliptic curves with complex multiplication (CM). These struc-
tures will be crucial to our investigations; often they explain arithmetic properties
of singular K3 surfaces (see Sections 3 and 6).

We point out one particular property that illustrates these relations: the field
of definition. A singular K3 surface of discriminant d has a model over the ring
class field H(d) just like elliptic curves with CM in an order of discriminant d, by
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MSC2000: primary 14J28; secondary 11E16, 11G15, 11G35, 14J27.
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196 Klaus Hulek and Matthias Schütt

[Schütt 2007, Proposition 4.1]. Our main theorem states how this property carries
over to Enriques surfaces:

Theorem 1.1. Let Y be an Enriques surface whose universal cover X is a singular
K3 surface. Let d < 0 denote the discriminant of X. Then Y admits a model over
the ring class field H(d).

The proof of Theorem 1.1 consists in two steps: first we establish a general result
for automorphisms of K3 surfaces over number fields (Proposition 2.1); then we
extend the afore-mentioned results for fields of definition of singular K3 surfaces
to include their Néron–Severi groups (Theorem 2.4). Here we combine two ap-
proaches that both rely on elliptic fibrations. In Section 3 we review the theory of
singular K3 surfaces and use Inose’s pencil and the theory of Mordell–Weil lattices
to deduce Theorem 2.4 for most singular K3 surfaces (see Remark 3.8). On the
other hand, Section 4 provides a direct approach for those singular K3 surfaces
which are Kummer (Corollary 4.2). Through Shioda–Inose structures, we then
connect the two partial results and are thus able to give a full proof of Theorem 2.4
(see4F).

In Section 5 we address explicit questions. Lattice theoretically one can deter-
mine all singular K3 surfaces that admit an Enriques involution. With 61 or 62
exceptions, we give an explicit geometric construction of an Enriques involution
on these singular K3 surfaces. This construction combines Shioda–Inose structures
(3B) and the base change approach from [Hulek and Schütt 2011, §3].

In Section 6 we discuss the problem of Galois action on Néron–Severi groups.
In this context, a different picture arises for Enriques surfaces than for K3 sur-
faces. The paper concludes with a formulation of several interesting classification
problems for Enriques surfaces and K3 surfaces.

2. Automorphisms of K3 surfaces

2A. Basics about K3 surfaces and Enriques surfaces. This paper is concerned
with complex algebraic K3 surfaces and Enriques surfaces. Here we briefly review
their basic properties. For details the reader is referred to [Barth et al. 2004, Chapter
VIII]; information and examples relevant for this paper can also be found in [Hulek
and Schütt 2011].

A K3 surface X is a smooth projective surface with trivial canonical bundle
ωX ∼= OX that is simply connected. The classical example consists in a smooth
quartic in P3; here we will mostly work with elliptic K3 surfaces and Kummer
surfaces.

In terms of the Enriques–Kodaira classification of algebraic surfaces, a com-
plex Enriques surface Y is a smooth projective surface with vanishing irregularity
q(Y )= h1(Y,OY )= 0 and ω⊗2

Y = OY , but ωY 6= OY . Equivalently Y is the quotient
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of a K3 surface X by a fixed point free involution τ . Conversely the K3 surface X
can be recovered as the universal covering of Y .

The Néron–Severi group NS(S) of an algebraic surface S is the group of divisors
up to algebraic equivalence. Here we identify divisors moving in families such as
fibres of a fibration. The Néron–Severi group is finitely generated abelian; its rank
is called the Picard number and denoted by ρ(S). In essence, NS(S) encodes the
discrete structure of the Picard group of S. The intersection pairing endows NS(S)
with a quadratic form that also induces the notion of numerical equivalence.

On a K3 surface algebraic and numerical equivalence coincide, and NS(S) is
torsion-free. Equipped with the intersection form, it becomes an even lattice of
signature (1, ρ(S)−1), the Néron–Severi lattice. On an Enriques surface, however,
algebraic and numerical equivalence do not coincide, as in NS(Y ) there is two-
torsion represented by the canonical divisor KY . The quotient gives the torsion-free
group of divisors up to numerical equivalence:

Num(Y )= NS(Y )/{0, KY }.

The intersection pairing endows Num(Y ) with a lattice structure. Contrary to the
K3 case, this lattice has always the same rank and abstract shape:

Num(Y )=U + E8(−1), rank(Num(Y ))= 10

where U denotes the hyperbolic plane Z2 with intersection pairing
(

0 1
1 0

)
and E8

is the unique even unimodular positive-definite lattice of rank 8. The −1 indicates
that the sign of the intersection form is reversed so that Num(Y ) has signature
(1, 9) as predicted by the Hodge index theorem.

The Torelli theorem [Piatetski-Shapiro and Shafarevich 1971] reduces many
investigations of complex K3 surfaces X to a study of H 2(X) with its different
structures as lattice or Hodge structure. By the cycle class map, H 2(X) contains
an algebraic part coming from NS(X). The orthogonal complement of NS(X) in
H 2(X,Z) is called the transcendental lattice:

T (X)= NS(X)⊥ ⊂ H 2(X,Z).

As another characterisation, T (X) is the smallest primitive sublattice of H 2(X,Z)

that contains the (up to scalar unique) 2-form ηX after complexifying.

2B. Surfaces over number fields. We will consider complex surfaces S that admit
a model over some number field. This arithmetic setting brings up the natural
question whether geometric objects such as NS(S) or the automorphism group
Aut(S) are defined over the same field. The problem is as follows:
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Let X be a complex K3 surface defined over a number field L . The action of its
absolute Galois group GL =Gal(L̄/L) on NS(X) factors through a finite extension
M/L . We say that NS(X) is defined over L if M = L , i.e., if GL acts trivially
on NS(X). Throughout this paper, we will verify this property by exhibiting a
set of generators of NS(X) each of which is defined over L . In fact, for elliptic
surfaces with section (which we will mostly be concerned with), both conditions
are equivalent.

The same terminology is employed for an Enriques surface Y by saying that
NS(Y ) or Num(Y ) is defined over a number field L if GL acts trivially.

Let ψ be an automorphism of a complex K3 surface X . Since we assumed X
to be algebraic, the induced automorphism ψ∗ acts as multiplication by a root of
unity ζ on the holomorphic 2-form ηX . We assume that X is defined over some
number field. The next proposition gives a criterion for the field of definition of
ψ . This criterion will be crucial for the proof of Theorem 1.1.

Proposition 2.1. Let X be a K3 surface over some number field L. Letψ ∈Aut(X)
and ζ ∈ Q̄ such that ψ∗ηX = ζηX . Assume that NS(X) is defined over L and ζ ∈ L.
Then ψ is defined over L.

Proof. We first need to show that ψ is defined over some number field. Essentially
this holds true because the automorphism group of any algebraic K3 surface is
discrete by [Sterk 1985, Theorem 0.1]. The general idea is well-known: if the
field of definition of ψ were to require a transcendental extension of L , then the
transcendental generators of this extension could be turned into parameters, so that
ψ would come in a nondiscrete family of automorphisms.

Now suppose that ψ is defined over some finite extension M/L . We want to
apply the Torelli theorem [Piatetski-Shapiro and Shafarevich 1971] to ψ and its
conjugates to deduce that M = L . For this purpose, we assume without loss of
generality that M/L is Galois. Let σ ∈ Gal(M/L). Then ψσ ∈ Aut(X), and we
claim that ψ = ψσ . Explicitly we can write

ψσ = σ ◦ψ ◦ σ−1.

By the Torelli theorem, it suffices to verify the claim for the induced action on
NS(X) and T (X). For NS(X) this follows directly from the fact that σ and σ−1

act trivially by assumption. For T (X), it suffices to check the action on the holo-
morphic 2-form. One has

(ψσ )∗(ηX )= (σ
−1)∗ ◦ψ∗(ηX )= (σ

−1)∗(ζηX )= ζ
σηX = ψ

∗(ηX )

since ζ ∈ L . Hence ψ∗= (ψσ )∗ on H 2(X,Z), and the claim ψ =ψσ follows from
the Torelli theorem [Piatetski-Shapiro and Shafarevich 1971]. In consequence, ψ
is defined over L . �
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Remark 2.2. The conditions of Proposition 2.1 are sufficient, but not necessary.
For instance, we exhibited a K3 surface with an Enriques involution over Q, but
with NS(X) defined over Q(

√
−3) in [Hulek and Schütt 2011, §5.3] (see also6C).

2C. Enriques involutions. Proposition 2.1 has an immediate impact on involu-
tions, and in particular on Enriques involutions. Namely for an involution ψ , the
eigenvalue of ηX can only be ζ =±1, so Proposition 2.1 only requires the Néron–
Severi group of the covering K3 surface to be defined over L:

Corollary 2.3. Let X be a K3 surface over some number field L. If NS(X) is
defined over L , then so is every involution on X. In particular, this holds for
Enriques involutions.

Theorem 1.1 requires some concepts that we will discuss in detail in the next
section. It concerns K3 surfaces with Picard number 20, the so-called singular
K3 surfaces (see3A). By definition, the discriminant of a singular K3 surface X
is the determinant of the intersection form on NS(X). For a singular K3 surface,
the discriminant d gives rise to a very particular number field, the ring class field
H(d) as we discuss in3D. In order to deduce Theorem 1.1, it suffices to combine
Corollary 2.3 with the following result for any singular K3 surface (admitting an
Enriques involution):

Theorem 2.4. Let X be a singular K3 surface of discriminant d. Consider the
ring class field H(d). Then X admits a model over H(d) with NS(X) defined over
H(d).

The statement about a model over the ring class field H(d) has been known
before (cf. [Schütt 2007, Proposition 4.1]), but the extension for the Néron–Severi
group seems to have gone unnoted until now. A proof will be given in the next two
sections after reviewing the previous relevant results on singular K3 surfaces. We
conclude this section with a direct corollary:

Corollary 2.5. Let Y be an Enriques surface whose universal cover X is a singular
K3 surface. Let d < 0 denote the discriminant of X. Then Y admits a model over
the ring class field H(d) with Num(Y ) defined over H(d).

The corresponding statement for NS(Y ) does not hold true in general, as we will
discuss within the framework of Galois actions on divisors in6D. See Example 6.10
and Corollary 6.14.

3. Arithmetic of singular K3 surfaces

This section will review those parts of the theory of singular K3 surface that are
relevant to our issues. The section culminates in Lemma 3.7, the main step towards
the proof of Theorem 2.4. It is based on Shioda–Inose structures and Inose’s fibra-
tion. All the required techniques will be explained along the way.
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3A. Singular K3 surfaces. A complex K3 surface X is called singular if its Picard
number ρ(X)= rank NS(X) equals the maximum number allowed by Lefschetz’s
theorem:

ρ(X)= h1,1(X)= 20.

Singular K3 surfaces involve no moduli, so the terminology "singular" should be
understood in the sense of exceptional (just like for singular j-invariants of elliptic
curves with complex multiplications, a similarity that will become clear very soon).
We will discuss fields of definition of singular K3 surfaces in3D. Recently singular
K3 surfaces over Q have gained some prominence due to modularity; namely,
in analogy with the Eichler–Shimura correspondence between modular forms of
weight 2 and elliptic curves over Q, for any suitable modular form of weight 3
there is a singular K3 surface over Q associated (cf. [Elkies and Schütt 2008b]).

By the Torelli theorem [Piatetski-Shapiro and Shafarevich 1971; Shioda and
Inose 1977], singular K3 surfaces are classified up to isomorphism by their tran-
scendental lattices. For a singular K3 surface, the transcendental lattice is even and
positive definite of rank two and endowed with an orientation. Up to conjugation
in SL2(Z), we identify it with the quadratic intersection form

Q(X)=
(

2a b
b 2c

)
(1)

with integer entries a, c ∈ N, b ∈ Z and discriminant d = b2
− 4ac < 0. This

number equals the determinant of the intersection form on NS(X); we refer to it as
the discriminant of X . By the Torelli theorem [Piatetski-Shapiro and Shafarevich
1971; Shioda and Inose 1977] two singular K3 surfaces are isomorphic if and
only if the transcendental lattices admit an isometry preserving the orientation (or
equivalently the quadratic forms are conjugate in SL2(Z)).

The classical example for a singular K3 surface is the Fermat quartic in P3. Here
we give an alternative example in terms of an elliptic fibration that will reappear
later in another context (5G). Our treatment draws on the theory of elliptic surfaces;
all relevant concepts can be found in [Schütt and Shioda 2010] for instance.

Example 3.1. Consider the universal elliptic curve for 01(6):

E : y2
+ (t − 2)xy− t (t − 1)y = x3

− t x2.

Here a point of order six is given by (0, 0). E gives rise to a rational elliptic
surface S over P1. By Tate’s algorithm [1975], S has the following singular fibres
in Kodaira’s notation:

fibre I6 I3 I2 I1

t ∞ 0 1 −8
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Any quadratic base change f of P1 gives rise to a K3 surface X . We generally
have ρ(X)≥ 18 by the Shioda–Tate formula [Shioda 1990, Corollary 5.3], but one
can increase the Picard number conveniently by inferring ramification points at
singular fibres. For instance, setting t =−8s2/(s2

−1) yields an elliptic K3 surface
X with three singular fibres of type I2 and I6 each, and thus ρ(X) = 20 over C

again by the Shioda–Tate formula and the Lefschetz inequality ρ(X) ≤ h1,1(X).
On X , there are two additional two-torsion sections with x-coordinate

−4s2(3s± 1)(s∓ 1)/(s2
− 1)2.

General theory shows that the singular fibres do not allow any further torsion in the
Mordell–Weil group. Over C one obtains MW(X)=Z/2Z×Z/6Z. It follows that
X is the universal elliptic curve for the group 01(6)∩0(2). By [Schütt and Shioda
2010, 11.10 (22)], NS(X) has discriminant −12. With the discriminant form à la
Nikulin [1980, Proposition 1.6.1 and Corollary 1.9.4], one can then compute the
transcendental lattice with intersection form Q(X)= diag(2, 6) (in agreement with
the tables in [Shimada and Zhang 2001]).

3B. Shioda–Inose structure. In order to prove the surjectivity of the period map,
mathematicians first considered Kummer surfaces. However, singular abelian sur-
faces (with ρ(A) = 4) cannot possibly yield all singular K3 surfaces as Kummer
surfaces because the transcendental lattice of a Kummer surface is always two-
divisible as an even lattice. In detail, the intersection form is obtained from T (A)
by multiplication by 2:

T (Km(A))= T (A)(2).

This problem of nonprimitivity was overcome by Shioda and Inose [1977]. Gener-
ally they considered two elliptic curves E, E ′. Their product is an abelian surface
A= E× E ′ and yields the Kummer surface X ′=Km(E× E ′). Over C, the Picard
numbers depend on whether E and E ′ are isogenous (E ∼ E ′) or have complex
multiplication (CM):

ρ(A)=


2 if E 6∼ E ′,

3 if E ∼ E ′ without CM,

4 if E ∼ E ′ with CM,

ρ(X ′)= ρ(A)+ 16.

(2)

The Kummer surface X ′ admits several jacobian elliptic fibrations. For instance,
the projections onto the factors E and E ′ induce two isotrivial elliptic fibrations
on the Kummer surface X ′ that we will analyse in Section 4. In [Shioda and Inose
1977, §2], a jacobian elliptic fibration with a fibre of type II ∗ was found on X ′. It
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has exactly two further reducible fibres of the following types:

2I ∗0 E 6∼= E ′,
I ∗0 , I ∗1 E ∼= E ′, j (E) 6= 0, 123,

2I ∗1 j (E)= j (E ′)= 123,

I ∗0 , I V ∗ j (E)= j (E ′)= 0.

Starting from this elliptic fibration, we proceed with the quadratic base change

f : P1
→ P1

that ramifies exactly at the above two reducible singular fibres. Since both ramified
fibres are nonreduced, the base change applied to X ′ results in another elliptic K3
surface X . By construction, the elliptic K3 surface X has two fibres of type II ∗

and possibly some reducible fibres of type I2 or I V depending on the above cases.
The Kummer surface X ′ can be recovered from X as (the desingularisation of) the
quotient by the involution of the double cover X 99K X ′. (In [Hulek and Schütt
2011] we abused terminology by referring to this involution as deck transformation,
but here we will call it base change involution.) The base change involution is a
Nikulin involution that composes the involution on the base curve P1 with the
hyperelliptic involution on the fibres:

A

%%KKKKKK X

yys
s

s
s

s

Km(A)= X ′

The gist of this construction is that the K3 surface X recovers the transcendental
lattice of the abelian surface A:

T (X)= T (X ′)(1/2)= T (A). (3)

Morrison coined the terminology Shioda–Inose structure for such a setting: abelian
surface and K3 surface with the same transcendental lattice such that Kummer
quotient and Nikulin involution yield the same Kummer surface. He developed
lattice theoretic criteria to decide which K3 surfaces of Picard number ρ ≥ 17
admit a Shioda–Inose structure [Morrison 1984, §6].

3C. Surjectivity of the period map. The surjectivity of the period map requires
to exhibit singular K3 surfaces for any quadratic form Q as in (1). By the above
considerations, this can be achieved by exhibiting a singular abelian surface A with
Q(A) = Q because then the Shioda–Inose structure provides a suitable singular
K3 surface X with Q(X)= Q.
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Chronologically, the corresponding surjectivity statement for singular abelian
surfaces was already established before Shioda–Inose’s work by Shioda and Mitani
[1974]. Namely, it was shown that any singular abelian surface has product type.
Given the quadratic form Q(A) with coefficients as in (1), the abelian surface A
admits the representation A = E × E ′ with the following elliptic curves given as
complex tori Eτ = C/(Z+ τZ):

E = Eτ , τ =
−b+

√
d

2a
, E ′ = Eτ ′, τ ′ =

b+
√

d
2

. (4)

Note that this representation need not be unique, and in fact there can be arbitrarily
many distinct representations for the same singular abelian surface (and thus also
for singular K3 surfaces).

Example 3.2. The K3 surface X from Example 3.1 is not a Kummer surface, since
T (X) is not two-divisible as an even lattice. Through the Shioda–Inose structure,
X arises from the self-product of the elliptic curve E√

−3 with j-invariant 243353.

3D. Fields of definition. We have seen that every singular abelian surface A is the
product of two elliptic curves with CM in the same field. CM elliptic curves are
well-understood thanks to the connection to class field theory (cf. [Shimura 1971,
§5]). Indeed both curves in (4) are defined over the ring class field H(d). This
field is an abelian Galois extension of the imaginary quadratic field K = Q(

√
d)

with prescribed ramification and Galois group isomorphic to the class group Cl(d)
(see [Cox 1989, §9]). We recall one way to describe Cl(d): it consists of SL2(Z)-
conjugacy classes of primitive 2× 2 matrices Q as in (1) of discriminant d < 0
together with Gauss composition (cf. [Cox 1989, §3] for instance). By [Shimura
1971, Theorem 5.7], H(d) is generated over K by adjoining the j-invariant of E ′,
or in fact of any elliptic curve with CM by the given order in K of discriminant
d . Here Cl(d) acts naturally as a permutation on all these CM elliptic curves –
abstractly on the complex tori, but also in a compatible way through the Galois
action on H(d) permuting j-invariants.

Shioda–Inose used these CM properties to deduce that any singular K3 surface
is defined over some number field. Namely, the Kummer quotient X ′ respects the
base field (a property that we will exploit in Section 4). Hence the only step in
the Shioda–Inose structure that may require increasing the base field concerns the
elliptic fibration with a fibre of type II ∗.

Subsequently Inose [1978] exhibited an explicit model for X over a specific
extension of H(d). This model is expressed purely in terms of the j-invariants
j, j ′ of the elliptic curves E, E ′ from (4):

X : y2
= x3
− 3At4x + t5(t2

− 2Bt + 1), (5)
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where A3
= j j ′/126 and B2

= (1− j/123)(1− j ′/123). Thus we know that any
singular K3 surface X of discriminant d admits a model over a degree six extension
of H(d). In [Schütt 2007, Proposition 4.1] it was then noted that the above fibration
can be twisted in such a way that it is defined over H(d) (cf. (14) in case AB 6= 0):

Theorem 3.3. Let X be a singular K3 surface of discriminant d. Then X has a
model over the ring class field H(d).

In practice, the given field of definition can be far from optimal, that is, X may
admit a model over a much smaller number field. In fact, the modularity converse
in [Elkies and Schütt 2008b] required to exhibit models of singular K3 surfaces
over Q where the ring class field had degree as large as 32 over Q. We can already
detect a similar behaviour on the level of the elliptic curves E, E ′ in (4): because
of the Galois action of the class group Cl(d), the elliptic curve E ′ can at best be
defined over a quadratic subfield of H(d). The factor E , however, may be defined
over Q even for large d by inspection of the denominators in (4).

3E. Néron–Severi group. In the remainder of this section, we derive an important
intermediate result for the proof of Theorem 2.4. The remaining steps will be done
in4F. We have recalled in Theorem 3.3 that any singular K3 surface X admits a
model over the ring class field H(d). Here d denotes the discriminant of T (X) as
usual. It remains to show that there always is a model of X with NS(X) defined
over H(d) as well.

The basic idea for the proof is to work with a model of Inose’s pencil (5) over
H(d) as in the proof of [Schütt 2007, Proposition 4.1]:

X : y2
= x3
+ at4x + t5(b2t2

+ b1t + b0), a, bi ∈ H(d). (6)

Note that fibres of type II ∗ do not admit any inner Galois action (i.e. on fibre
components). Hence these two singular fibres of X together with the zero section
generate a sublattice U + 2E8(−1) ⊂ NS(X) that is fully defined over the base
field H(d). It remains to study the Galois action on the remaining generators of
NS(X) (there are two generators remaining, since ρ(X) = 20). Looking at the
other reducible singular fibres, we distinguish four cases as in3B:

Reducible fibres other than II ∗ rank(MW) case

− 2 E 6∼= E ′

I2 1 E ∼= E ′, j (E) 6= 0, 123

2I2 0 E ∼= E ′, j (E)= 123

I V 0 E ∼= E ′, j (E)= 0

Table 1. Singular fibres and MW-rank of Inose’s pencil.
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Lemma 3.4. If the singular K3 surface X admits an Inose pencil (5) of MW-rank
at most one, then X has a model with NS(X) defined over H(d).

Proof. For the last two surfaces in Table 1 (MW-rank zero), there are explicit
models with NS(X) defined over Q (cf. [Schütt 2010, §10]). For the case of MW-
rank one with an I2 fibre, it is also easy to see that NS(X) can be defined over
L=H(d). The fibre does not admit any Galois action, since the identity component
is fixed by Galois. By the formula of Shioda–Tate, the Mordell–Weil group has
rank one. The Mordell–Weil generator P can only be either fixed or mapped to its
inverse by Galois. But if the latter is the case, then the section P is defined over
some quadratic extension of L . More precisely, it is given in x, y-coordinates as
P = (U,

√
γ V ) for some γ ∈ L ,U, V ∈ L(t). Consider the quadratic twist of X

with respect to this quadratic extension of L:

γ y2
= x3
+ at4x + t5(b2t2

+ b1t + b0).

This is an alternative model of the fixed elliptic fibration (6) on X over L such that
both models become isomorphic over L(

√
γ ). This quadratic twist transforms the

section to (U, V ) (defined over L) without introducing any Galois action on the
singular fibres (since they only have types I1, I2, II, II ∗). Thus the Néron–Severi
group of the new model of X is defined over L = H(d). �

Remark 3.5. If T (X) is primitive and lies in the principal genus, then it is possible
to replace the CM-curves E, E ′ by opposite Galois conjugates that are isomorphic:
Eσ ∼= (E ′)σ

−1
. By [Schütt 2007, §6] (which combines [Shimura 1971] and [Shioda

and Mitani 1974]), one has T (Eσ × (E ′)σ
−1
)= T (E × E ′). According to Table 1,

the induced Inose pencil on X has MW-rank one. By Lemma 3.4 this produces a
model of X with NS(X) defined over H(d).

3F. Mordell–Weil lattices. A similar argument goes through for almost all in-
stances of the case where E 6∼= E ′. Here we can argue with the Mordell–Weil lattice
MWL(X) of the fibration. In general, the Mordell–Weil lattice of an elliptic surface
S→ C with section was defined in [Shioda 1990] as follows. In NS(S) consider
the trivial lattice Triv(S) generated by the zero section and fibre components. By
[Shioda 1990, Theorem 1.3] there is an isomorphism

MW(S)∼= NS(S)/Triv(S).

The torsion in MW(S) is contained in (and determined by) the primitive closure
Triv(S)′ of Triv(S) inside NS(S). The quotient MW(S)/MW(S)tor is endowed
with a lattice structure by means of the orthogonal projection ϕ in NS(S)Q with
respect to Triv(S). Here tensoring with Q is required unless Triv(S)′ is unimodu-
lar. By construction ϕ(MW(S))(−1) is a positive definite, though not necessarily
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integral lattice that one refers to as Mordell–Weil lattice MWL(S). The Mordell–
Weil lattice satisfies functorial properties for base change and Galois actions. For
details the reader is referred to [Shioda 1990] or the survey paper [Schütt and
Shioda 2010].

In the present situation the only reducible fibres have type II ∗. The nonidentity
fibre components generate the root lattice E8(−1), so Triv(X) = U + 2E8(−1).
Hence MWL(X) is a positive definite even integral lattice of rank two that fits into
the decomposition

NS(X)=U + 2E8(−1)+MWL(X)(−1).

Since Triv(X) is unimodular, the discriminant forms of NS(X) and MWL(X)
agree up to sign. By [Nikulin 1980, Corollary 1.9.4], this implies that T (X) and
MWL(X) lie in the same genus (or in the same isogeny class).

3G. Binary even quadratic forms. To understand the possible Galois actions on
MWL(X), we shall need a simple observation about the automorphisms of such
lattices. It will be phrased in terms of the corresponding quadratic form Q as in
(1). Multiplication by ±1 gives the trivial automorphisms of Q; any other au-
tomorphism will be called nontrivial. The problem whether Q admits nontrivial
automorphisms depends on its order in the class group of even positive definite
binary quadratic forms with given discriminant and degree of primitivity:

Lemma 3.6. The positive-definite quadratic form Q admits a nontrivial automor-
phism if and only if it is two-torsion in its class group.

The proof is elementary, so we will omit it here although we did not find a
concise reference. For later use, we shall give the possible automorphism groups.
Recall that any quadratic form Q as in (1) can be transformed by conjugation in
SL2(Z) to a reduced form where the coefficients satisfy−a< b≤ a≤ c (and b≥ 0
if a = c). The inverse of a quadratic form is obtained by replacing b by −b. A
reduced quadratic form is two-torsion if and only if

b = 0 or a = b or a = c.

We obtain the following nontrivial automorphism groups where D2n denotes the
dihedral group of order 2n:

3H. Intermediate step. We conclude this section with an intermediate result to-
wards the proof of Theorem 2.4. In the next section, we will use the Shioda–Inose
structure to complete the proof.

Lemma 3.7. In all cases of MW-rank two in Table 1, the model (5) admits a twist
such that there is an H(d)-rational section.
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Q
(

2a 0
0 2c

) (
2a a
a 2c

) (
2a b
b 2a

) (
2a 0
0 2a

) (
2a a
a 2a

)
a < c a < c 0< b < a

Aut(Q) (Z/2Z)2 (Z/2Z)2 (Z/2Z)2 D8 D12

Table 2. Quadratic forms with nontrivial automorphisms groups.

Proof. If the automorphism group of MWL is only two-torsion, then the lemma
follows after a quadratic twist for one of the MW generators. This leaves the cases
of the last two quadratic forms in Table 2. Here the class number of Q is one. Hence
T (X) has exactly the intersection form Q. In the Shioda–Inose structure, we can
choose E by (4) with j-invariant j = 123 resp. j = 0. The extra automorphism of
E induces an extra automorphism on X that respects the elliptic fibration (5):

(x, y, t) 7→ (−x, iy,−t) resp. (x, y, t) 7→ (%x, y, t)

where %, i denote primitive third resp. fourth roots of unity. The respective auto-
morphism makes MWL(X) into a module of rank one over Z[i] resp. Z[%]. This
identification is compatible with the Galois action over H(d), since the automor-
phisms are defined over H(d). Hence it suffices to study the Galois action on
the given modules of rank one. Their only automorphisms are the units in Z[i]
resp. Z[%], i.e. the group of fourth resp. sixth roots of unity. On the elliptic curves
with CM by these rings, it is well-known that such a Galois action can be accounted
for by biquadratic or sextic twisting (see [Silverman 1994, §II, Example 10.6 and
Exercises 2.33, 2.34] or [Schütt 2008, §8]). Thanks to the special shape of the
present Weierstrass form (5) with A = 0 or B = 0, this translates directly into
twists of X . Thus there is a twist with MWL(X) defined over H(d). �

Remark 3.8. If MWL admits no nontrivial automorphisms, then Lemma 3.7 al-
ready settles Theorem 2.4 completely. By the proof of Lemma 3.7, this also holds
for MWL with nonabelian automorphism group (the last two entries in Table 2). It
is the two-torsion cases of Table 2 that require an extra argument.

In the next section, we will use the Shioda–Inose structures and study Kummer
surfaces of product type in detail. In this case, although we may not have any
automorphisms on the Kummer surface to relate the MW-generators, we can use
the endomorphisms of the abelian surface instead. This approach will enable us to
complete the proof of Theorem 2.4 in4F.

4. Singular Kummer surfaces of product type

Let E, E ′ be isogenous complex elliptic curves with CM. Then the abelian surface
A = E × E ′ is singular (ρ(A) = 4)). Let d denote its discriminant (that is the
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discriminant of T (A)). Then E, E ′ have models over the ring class field H(d)
(obtained from the CM-field by adjoining the j-invariants).

Throughout this section, we only consider the case where E 6∼= E ′ (MW-rank
two) and no j-invariant equals 0 or 123 (no extra automorphisms). The same results
hold in the other cases, but we would have to distinguish more subcases and also
consider biquadratic/sextic twisting etc. Note that for the excluded cases we have
already given a full proof of Theorem 2.4 in Lemma 3.4 (for E ∼= E ′) and in the
proof of Lemma 3.7 (for j or j ′ ∈ {0, 123

}; cf. Remark 3.8). Thus the cases con-
sidered explicitly in this section will suffice to complete the proof of Theorem 2.4.

4A. Consider the Kummer surface X ′ = Km(A). Recall the isotrivial elliptic fi-
brations on X ′ that are induced by the projections onto E and E ′ from3B. These
are naturally defined over H(d) as follows. Fix Weierstrass models

E : y2
= f (x), E ′ : y2

= g(x) (7)

with cubic polynomials f, g ∈ H(d)[x]. Then X ′ admits a birational model

X ′ : f (t)y2
= g(x) (8)

with the structure of an elliptic curve over the function field H(d)(t). We denote
the corresponding elliptic fibration by the pair (X ′, π). This fibration has singular
fibres of type I ∗0 at∞ and at the zeroes of f (t). Over Q̄ we have MW(X ′, π) =
Z2
× (Z/2Z)2 with torsion sections given by the roots of g(x).

Proposition 4.1. The elliptic fibration (X ′, π) admits a model over H(d) such that
MW is generated by two-torsion and sections defined over H(d). In particular,
MWL is generated by sections defined over H(d).

Proof. By the Shioda–Tate formula, the Mordell–Weil lattice has rank two since
ρ(X ′)= 20. Due to the singular fibre types MWL(X ′, π) will not be integral, but
it is positive-definite. Hence the results from3G and3H apply directly to prove the
claim with the exception of the first three special cases from Table 2. Here we
pursue an alternative uniform approach based on the fact that as in Lemma 3.7 we
can find a quadratic twist with at least one MW-generator P over H(d).

The crucial ingredient is the following lattice isomorphism which Shioda estab-
lished in [Shioda 2007, Proposition 3.1]:

Hom(E, E ′)∼=MWL(X ′, π). (9)

Here Hom(E, E ′) is endowed with a norm given by the degree. The isomorphism
takes a homomorphism φ : E→ E ′ as input. Via its graph 0φ in A and the image
0̄φ in X ′, one associates to φ the element R̄φ in MWL(X ′, π) corresponding to 0̄ϕ
under the orthogonal projection NS(X ′)→MWL(X ′, π) (see3F).



Arithmetic of singular Enriques surfaces 209

Shioda [2007] worked over an algebraically closed field, so that the isomorphism
(9) is independent of the chosen model. However, for the specified models in (7),
(8) the isomorphism (9) is clearly Galois-equivariant.

Following Lemma 3.7, we apply a quadratic twist on X ′ such that there is an
H(d)-rational section P (nontorsion). That is, for some c ∈ H(d) we consider the
H(d)(

√
c)-isomorphic model

X ′ : c f (t)y2
= g(x).

In terms of the elliptic curves E, E ′, this is accounted for by twisting one elliptic
curve by

√
c, say:

E : y2
= f (x), E ′ : cy2

= g(x). (10)

For these models, the isomorphism (9) is by construction again Galois-equivariant.
Hence the section P corresponds to a homomorphism φ : E→ E ′ over H(d). Now
pick any endomorphism ε of E ′ that is not multiplication by an integer. By CM-
theory, ε is defined over H(d), and together φ, ε◦φ generate the lattice Hom(E, E ′)
up to finite index. In conclusion, (9) gives a section Rε◦φ over H(d) that is inde-
pendent of P . By construction, these sections generate MWL(X ′, π) up to finite
index. Proposition 4.1 thus follows. �

4B. Néron–Severi group of Kummer surfaces. We collect a few consequences of
Proposition 4.1. We start with a version of Theorem 6.3 for singular Kummer sur-
faces. Note that since T (X ′)= T (A)(2), the Kummer surface X ′ has discriminant
4d.

Corollary 4.2. The singular Kummer surface X ′ has a model over H(d) with
NS(X ′) defined over H(4d).

Proof. Fix the model of the elliptic fibration (X ′, π) from Proposition 4.1 with
MW-rank two over H(d). In order to generate NS(X ′), we have to add to these
H(d)-rational sections the two-torsion sections and the components of the I ∗0 fi-
bres. These rational curves are defined over the splitting field of the polynomials
f (t), g(x) over H(d). That is, we adjoin to H(d) the x-coordinates of the two-
torsion points of E and E ′. By the analogue of the Kronecker–Weber theorem
for imaginary quadratic number fields [Silverman 1994, §II Theorem 5.6], these
algebraic numbers generate exactly H(4d) over H(d). �

4C. Isogenous CM-elliptic curves. Before continuing with the proof of Theorem
2.4, we note another implication of Proposition 4.1. Here we are concerned with
the field of definition of the isogeny between E and E ′. By the classical theory, any
two elliptic curves with CM in the same field K have models over some minimal
ring class field H ; moreover they are isogenous over Q̄. Here we ask whether they
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admit H -isogenous models, i.e. models over H with isogeny defined over H as
well. When the CM-curves are Q-curves, this property comes for free, but this
situation does not always persist (cf. Remark 4.4). The following result might be
well-known to the experts, but we could not find a reference.

Corollary 4.3. Let E, E ′ be elliptic curves with CM by orders in the same imagi-
nary quadratic field K . Let H = K ( j (E), j (E ′)). Then E, E ′ have H-isogenous
models.

Proof. We can start with any two Weierstrass forms over H as in (7). The proof of
Proposition 4.1 exhibits a quadratic twist of E ′ with a nontrivial homomorphism
φ : E→ E ′. �

Remark 4.4. Corollary 4.3 only seemingly conflicts with a result of Gross [1980,
§11]. Namely, Gross found that there are CM-elliptic curves which are not Q-
curves, i.e. E is not H -isogenous to all its conjugates. Here we let E ′ = Eσ be a
conjugate of E . If E, Eσ are not H -isogenous (so that E is not a Q-curve), then
Corollary 4.3 provides us with a quadratic twist of Eσ which is H -isogenous to E .
But then the quadratic twist of Eσ and E are not conjugate any more, so there is
no contradiction to E’s failure of being a Q-curve.

4D. Auxiliary elliptic fibration. Recall the singular K3 surface X with Inose’s
elliptic fibration (5). By [Shioda 2006] the quadratic base change t = u2 recovers
the Kummer surface X ′. Since X also dominates X ′ by the Shioda–Inose structure,
Shioda alluded to this picture as X being sandwiched by the Kummer surface X ′.
In the base change, the two fibres of type II ∗ are replaced by fibres of type I V ∗.
Let us explain how to find this base changed fibration on the previous model of X ′:

X ′ : c f (t)y2
= g(x).

Projection onto the affine coordinate u = y endows X ′ with the structure of an
elliptic fibration π ′ since the fibres are plane cubics in x, t . Write (X ′, π ′) for X ′

with this fixed elliptic fibration. Visibly (X ′, π ′) is the quadratic base change of
the rational elliptic surface S′ obtained by setting u2

= v. S′ has singular fibres of
type I V at v = 0,∞; in X ′ they are replaced by fibres of type I V ∗ as alluded to
before. Here S′ is given as a cubic pencil whose base points form sections. Recall
that these sections are all defined over H(4d).

By base change MWL(S)(2) embeds into MWL(X ′, π ′). Consider the orthog-
onal complement

L = [MWL(S′)(2)]⊥ ⊂MWL(X ′, π ′).

By construction, L is exactly the invariant sublattice of MWL(X ′, π ′) for the in-
volution corresponding to the base change X ′→ X , i.e. L =MWL(X)(2).
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Over Q̄ (or in fact algebraically closed fields of characteristic 6= 2, 3), Shioda
used a similar argument as for the isomorphism (9) to derive an isomorphism

L ∼= Hom(E, E ′)(4), so that MWL(X)∼= Hom(E, E ′)(2). (11)

Compared to the previous argument that gave (9), there is one subtlety here: For
φ ∈ Hom(E, E ′), the orthogonal projection onto LQ maps the divisor 0̄φ to 1

2 L .
This holds true since the quotient MWL(X ′, π ′)/(L+L⊥) need not be trivial (hence
we tensor L with Q a priori), but due to the quadratic base change the quotient is
always isomorphic to a finite number of copies of Z/2Z. Now instead of 0̄φ , one
takes the image of the divisor 20̄φ in L . Computing intersection numbers using
the theory of Mordell–Weil lattices, Shioda verifies the isomorphism (11). In our
setting, the main problem is to find models which make the isomorphisms (11)
Galois-equivariant over a suitable field.

4E. Galois equivariance. We know that E, E ′ admit H(d)-isogenous models, so
that Hom(E, E ′) is generated by isogenies over H(d). The elliptic fibration π ′ on
X ′ is defined over H(d) as well, but in order to endow it with a section (a base
point of the cubic pencil), we may have to increase the base field to H(4d). This
makes the isomorphisms in (11) for the specified models Galois-equivariant over
H(4d). For X , however, we need a model with MWL over H(d), so we have to
throw in some more information. We distinguish two cases according to the degree
h of the Galois extension H(4d)/H(d). Note that with the Legendre symbol (·/2)
at 2, one obtains from the class number formula

h = deg(H(4d)/H(d))=


1 if (d/2)= 1 or d =−3,−4;

2 if 2 | d, d 6= −4;

3 if (d/2)=−1, d 6= −3.

4E.1. First case: h = 1, 2. This case is very simple. By assumption, both poly-
nomials f, g have a root over H(d). A base point of the cubic pencil gives an
H(d)-rational section of the elliptic fibration (X ′, π ′). Due to the singular fibre
types and the involution u 7→ −u, we obtain a Weierstrass form

X ′ : y′2 = x ′3− 3au4x ′+ u4(b2u4
− 2b1u2

+ b0). (12)

As quotient by the base change involution u 7→−u of X ′→ S′ composed with the
hyperelliptic involution y′ 7→ −y′, we obtain a model of X over H(d). Compared
to (5), this Weierstrass form is not yet normalised with respect to b0, b2.

By construction, the isomorphisms (11) are H(d)-Galois equivariant for these
specific models of E, E ′, X ′, X . That is, we have exhibited a model of X over
H(d) with fibration of type (5) and MW-rank two over H(d). It follows that this
model has NS(X) defined over H(d).
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4E.2. Second case: h = 3. In this case, we compare two Q̄-isomorphic models
that we denote by X1, X2. From (12), we obtain a model over H(4d) as quotient
by the Nikulin involution (x ′, y′, u) 7→ (x ′,−y′,−u):

X1 : y′2 = x ′3− 3au4x ′+ u5(b2u2
− 2b1u+ b0) (13)

with MWL(X1) defined over H(4d) by the Galois-equivariant isomorphism (11).
From (5), we derive a model over H(d)

X2 : y2
= x3
− 3c2 B2 A3t4x + c3 B2 A3t5(B2t2

− 2B2t + 1). (14)

Here B2, A3
∈ H(d) as given in3B. By Lemma 3.7, we can choose c ∈ H(d) in

such a way that X2 has an H(d)-rational section P and an orthogonal section Q
defined over some quadratic extension M of H(d). We assume that M 6= H(d) and
derive a contradiction from the above two models. Essentially, this works because
we compare a quadratic and a cubic extension of H(d).

By assumption, we can choose Q anti-invariant under conjugation in M/H(d)
(so that P, Q generate MW(X2) up to finite index). Hence there are rational func-
tions xQ, yQ ∈ H(d)(t) and some constant cQ ∈ H(d) such that

Q = (xQ,
√

cQ yQ) and M = H(d)(
√

cQ).

We work out an isomorphism of the two elliptic fibrations X1, X2. This can only
take the shape

(x, y, t) 7→ (x ′, y′, u)= (γ α2x, α3γ 3/2 y, αt). (15)

Thus we require

a = γ 2(c2 B2 A3), b1 = γ
3(c3 B4 A3), αb2 = γ

3(c3 B4 A3), b0 = αγ
3(c3 B2 A3).

The first two relations give γ = b1/(acB2) ∈ H(4d), so that also α ∈ H(4d). The
section P on X2 with H(d)-rational y-coordinate yP(t) pulls back to a section
P1 with y′-coordinate γ 3/2α3 yP(αt). By construction, P1 is H(4d)-rational, so
γ 3/2
∈ H(4d). But here H(4d) has degree three over H(d), so γ 3/2

∈ H(d). In
other words, the isomorphism (15) is defined over H(4d).

In consequence, Q pulls-back to a section on X1 with y′-coordinate √cQ times
an H(4d)-rational function. The same argument as for γ 3/2 then shows that√cQ ∈

H(d). This gives the required contradiction.

4F. Proof of Theorem 2.4. We collect all results necessary to prove Theorem 2.4.
Let X be a singular K3 surface of discriminant d . We decided to work with Inose’s
pencil over H(d) as in (14). Thus it suffices to check the field of definition of
MW(X) to verify Theorem 2.4. In many cases, this was achieved in Lemma 3.4
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or in the intermediate Lemma 3.7 (as explained in Remark 3.8). For the remain-
ing K3 surfaces, we considered the Kummer surface X ′ from the Shioda–Inose
structure which actually sandwiches X (4D). Note that for Kummer surfaces we
exhibited a proof of Theorem 2.4 that only uses the techniques from Lemma 3.7
(Proposition 4.1, Corollary 4.2). Thanks to the interplay between H(d) and H(4d),
this suffices to deduce that MW(X) is defined over H(d) by4E. This completes the
proof of Theorem 2.4. �

5. Enriques surfaces of base change type

This section provides a technique to construct explicit examples of Enriques sur-
faces whose covers are singular K3 surfaces. In the sequel, we refer to them as
singular Enriques surfaces. The main idea is to invoke the base change construc-
tion from [Hulek and Schütt 2011, §3] for singular K3 surfaces. We will review
the concept in5B and then relate it to the Shioda–Inose structures from3B.

5A. Singular K3 surfaces with Enriques involution. Our first problem concerns
K3 surfaces: Which singular K3 surfaces admit an Enriques involution? Keum’s
result [1990] gives a partial answer for all singular K3 surfaces that are Kummer
surfaces (i.e. with transcendental lattice two-divisible). The full problem can also
be solved by purely lattice-theoretic means in terms of the transcendental lattice. In
fact, one finds that the discriminant almost suffices to reach a decision: it suffices
for non-Kummer surfaces while for Kummer surfaces we know the answer any-
way from [Keum 1990]. Sertöz [2005] gave the solution based on the techniques
developed by Keum:

Theorem 5.1. Let X be a singular K3 surface of discriminant d. Then X does not
admit an Enriques involution exactly in the following cases:

(i) d ≡−3 mod 8,

(ii) d =−4,−8,

(iii) d =−16 and X is not Kummer, i.e. Q(X)= diag(2, 8).

Note that the discriminants in case (ii) determine unique singular K3 surfaces up to
isomorphism. In case (iii), we have to exempt the Kummer surface Km(Ei × Ei )

with transcendental lattice of intersection form Q = diag(4, 4) which admits an
Enriques involution by [Keum 1990].

Sertöz’s proof is purely lattice theoretic and based on machine computations.
In particular, for those singular K3 surfaces admitting some Enriques involution, it
does not give any explicit geometric description of any such involution. Here we
shall combine the ideas from [Hulek and Schütt 2011, §3] and Section 3 to derive
explicit Enriques involutions on almost all singular K3 surfaces possible according
to Theorem 5.1.
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5B. Enriques involutions of base change type. We start by reviewing the set-up
from [Hulek and Schütt 2011, §3]:

S rational elliptic surface
f quadratic base change of P1 (not ramified at nonreduced fibres of S)
X base change of S by f : K3 surface
ı base change involution
(−1) hyperelliptic involution
�P translation by a section P ∈MW(X)

In this situation, the composition  = ı ◦(−1) defines a Nikulin involution on X ,
i.e.  has eight isolated fixed points and leaves the holomorphic two-form invariant.
The quotient X/ has a resolution X ′ that is again K3. X ′ is the quadratic twist of
S at the ramification points of the base change f : The induced action of ı and 
gives a decomposition of MW(X) up to some 2-power index:

MW(X)Q ∼=MW(S)Q+MW(X ′)Q. (16)

Let P ′ ∈MW(X ′) and P denote the induced section on X . By construction, P is
anti-invariant for ı∗. In consequence,

τ :=�P ◦ ı

is an involution on X . By definition, this involution can only have fixed points on
the fixed fibres of ı . If these fibres are smooth, one has

Fix(τ )=∅ ⇐⇒ P ∩ O ∩Fix(ı)=∅.

The latter condition can be checked with P ′ on the ramified fibres of X ′ (generally
of type I ∗0 ). Here P ′ has to meet nonidentity components.

Example 5.2. The prototype example for this construction is a two-torsion section
P induced from X ′ (or equivalently from S since two-torsion is not affected by
quadratic twisting). Outside characteristic two, such a section is always disjoint
from O . For τ to have fixed points, one of the ramified fibres has to be singular
such that it is additive or P meets the identity component.

The latter occurs for Example 3.1: There is exactly one two-torsion section
induced from S. This section (t−1, t−1) meets both ramified fibres (at 0 and∞)
at their identity components. The other two-torsion sections are interchanged by ı
(which is why (16) only holds after tensoring with Q).

5C. We ask which singular K3 surfaces admit an Enriques involution of base
change type. For now we only exclude 62 or 63 singular K3 surfaces as specified
in Exception 5.5 (62 assuming some special cases of ERH; see5E).
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Proposition 5.3. Let X be a singular K3 surface admitting an Enriques involution.
Assume that X is not among the 62 or 63 K3 surfaces from Exception 5.5. Then X
has an Enriques involution τ of base change type where the Nikulin quotient X ′ is
a Kummer surface.

The proof of the proposition will be given in5E and5F. It is based on the Shioda–
Inose structure of singular K3 surfaces to that we will return next.

One word about Exception 5.5: we do not believe this exception to be necessary,
but we have not found a general argument to overcome it (cf. Remark 5.6). To
illustrate this, we will show in5G that Example 3.1 which falls under Exception 5.5
does indeed admit an Enriques involution of base change type (but we did not check
whether the quotient X ′ is a Kummer surface).

5D. Enriques involutions and Shioda–Inose structures. Let E, E ′ denote elliptic
curves and consider the corresponding Shioda–Inose structure as in3B. Then X ′ =
Km(E × E ′) admits an Enriques involution by [Keum 1990], but how about the
K3 surface X from3B that recovers the transcendental lattice of the abelian surface
E × E ′?

If E and E ′ are not isogenous, then X has Picard number ρ(X) = 18 and the
fibration (5) of Mordell–Weil rank zero yields

NS(X)=U + 2E8(−1).

This lattice does not admit any primitive embedding of the Enriques lattice U (2)+
E8(−2) because of the 2-length. Hence the K3 surface X cannot have an Enriques
involution. We now consider the case where E and E ′ are isogenous, possibly with
CM.

Here is our main tool to construct explicit Enriques involutions: the Shioda–
Inose structure falls under the settings studied in5B. We already chose the notation
to indicate this: there is a K3 surface X with a Nikulin involution yielding the
Kummer surface X ′. Conversely, X is obtained from X ′ by a quadratic base change.
In terms of the elliptic fibration (5) on X , the Nikulin involution is given as

 : (x, y, t) 7→ (x/t4,−y/t6, 1/t).

Thus the quotient X/ attains singularities in the fibres at t =±1 whose minimal
resolution is X ′. In general, the quotient results in fibres of type I ∗0 , but there
are other possibilities as sketched in3B. Concretely, there is another involution
corresponding to the base change P1

→ P1 induced by X→ X ′:

ı =  ◦ (−1) : (x, y, t) 7→ (x/t4, y/t6, 1/t).

The quotient X/ ı gives a rational elliptic surface S. It extends the Shioda–Inose
structure to the following diagram (where we could also add the induced elliptic
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fibrations):

E × E ′

((PPPPPP X

xxp p p p p p

��=
=

=
=

Km(E × E ′)= X ′ S

By construction, S has a singular fibre of type II ∗. From the Shioda–Tate formula
[Shioda 1990, Corollary 5.3], it follows that S is extremal, i.e., it has finite Mordell–
Weil group. Since a singular fibre of type II ∗ does not admit any torsion sections
(of order relatively prime to the characteristic), we infer that MW(S) = {O}. By
[Shioda 1990, Proposition 8.12] (cf. (16)), this implies that

MWL(X)=MWL(X ′)(2).

Hence as soon as the Mordell–Weil rank of X is positive, there is a section P
(induced from X ′) and an involution τ as in5B. In order to exhibit an Enriques
involution on X , it remains to determine whether τ is fixed point free. In general
there are three cases of positive Mordell–Weil rank to be distinguished according
to the types of singular fibres. For nonsingular K3 surfaces, i.e., Mordell–Weil
rank one with E 6∼= E ′ and ρ = 19, this has been done in [Hulek and Schütt 2011,
§4.2] (without referring to Shioda–Inose structures). The property whether τ is
fixed point free or not depends on the parity of the height of the Mordell–Weil
generator modulo 4. In the next sections, we will treat the singular cases and thus
prove Proposition 5.3.

Remark 5.4. There is a natural continuation of this connection between Enriques
involutions of base change type and Shioda–Inose structures. Recall from Section 4
that the K3 surface X is sandwiched by the Kummer surface X ′ in the following
sense: X ′ can also be recovered from X by the quadratic base change u 7→ t = u2

applied to (5). As in5B, each section of X induces an involution τ of base change
type on the Kummer surface X ′. Here we ask whether τ is an Enriques involution.
We have seen that the base change replaces the fibres of type II ∗ by type I V ∗ (so
these are fixed by τ ). However, none of these fibre types admits a free involution,
so there cannot be an Enriques involution on X ′ as in5B for the specified base
change.

5E. Mordell–Weil rank one and E ∼= E′. In this case, E is a CM elliptic curve
with j (E) 6= 0, 123. The elliptic fibration (5) on X has exactly one reducible fibre
of type I2 at t = 1 in addition to the two fibres of type II ∗. Together with the
Mordell–Weil generator P , we can write

NS(X)=U + 2E8(−1)+〈A1(−1), P〉.
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We consider two cases according to the intersection behaviour of the section P and
the fibre of type I2.

If P meets the nonidentity component of the I2 fibre, then P has height

h(P)= 4+ 2(P · O)− 1/2.

Equivalently, the discriminant d =−2h(P) of X is odd. Clearly, P and O do not
intersect on the I2 fibre which is one of the two fixed fibres of the base change
involution ı . Here translation by P exchanges the fibre components including the
nodes, so it acts freely on the singular fibre. It remains to check for the specialisa-
tion of P on the other fixed fibre at t =−1. Note that P is induced from a section
P ′ on the Nikulin quotient X ′, so

P · O = 2(P ′ · O ′)+ #P ∩ O ∩Fix(ı).

Since P and O can only possibly intersect on the irreducible fixed fibre of ı at
t = −1, the parity of the intersection number P · O depends only the intersec-
tion behaviour at that fibre. In consequence, the discriminant d of X satisfies the
congruence

d ≡−7 mod 8 ⇐⇒ P ∩ O ∩Fix(ı)=∅ ⇐⇒ Fix(τ )=∅.

In comparison, Theorem 5.1 states that a singular K3 surface of odd discrimi-
nant d admits an Enriques involution if and only if d ≡ −7 mod 8. This proves
Proposition 5.3 for all odd discriminants and MW rank one cases. (As explained
in3H such fibrations exist on X if and only if the transcendental lattice is primitive
and lies in the principal genus.)

We now consider the case where X has even discriminant, i.e., the section P
meets the identity component of the I2 fibre. Then τ fixes both fibre components.
As they are isomorphic to P1, there are fixed points. (In fact one can see that τ
fixes one component pointwise.) In conclusion, the given elliptic fibration (5) on
X does not admit an Enriques involution of base change type.

This failure to produce an Enriques involution poses the problem how it can be
overcome for the singular K3 surfaces in consideration for Proposition 5.3. Recall
that we are in the special case where the fibration (5) corresponds to E ∼= E ′. The
principal idea now is to choose an alternative elliptic fibration of the same kind
on X , but for a pair (E, E ′) such that E 6∼= E ′ (resembling our approach in3H).
Whenever this is possible, the new fibration falls under the next case of Mordell–
Weil rank two, and Proposition 5.3 can be proved along those lines. Here we can
vary the pair (E, E ′) by conjugates (Eσ , (E ′)σ

−1). This fails to return a fibration of
MW rank two if and only Eσ ∼= Eσ

−1
for all Galois elements σ . Equivalently, the

class group is only two-torsion. Note that E ∼= E ′ implies that T (E×E ′)= T (X) is
primitive and lies in the principal genus. Since the same applies to all conjugates,
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we derive the following abstract characterisation of the singular K3 surfaces where
the Shioda–Inose structure does not produce an Enriques involution of base change
type:

Exception 5.5. A singular K3 surface X of even discriminant d does not admit an
elliptic fibration (5) of Mordell–Weil rank two if and only if T (X) is primitive
and gives the full principal genus of its class group. In other words Q(X) =
diag(2, |d|/2) and the class group Cl(d) is only two-torsion.

There are 101 known discriminants d < 0 such that Cl(d) is only two-torsion;
the discriminant of biggest absolute value is d = −7392. By [Weinberger 1973],
there could be one more such discriminant of size > 1010, but this is ruled out by
the extended Riemann hypothesis for odd real Dirichlet characters. Out of the 101
known discriminants, 65 are even (they were already studied by Euler, cf. [Cox
1989]) and −4,−8,−16 are ruled out by Theorem 5.1, so the above exception
concerns 62 or 63 singular K3 surfaces. We consider one of them in detail in5G
after completing the proof of Proposition 5.3.

Remark 5.6. For each of the 62 known singular K3 surfaces from Exception 5.5,
one could try to exhibit an Enriques involution as in5B for a different base change
than in the Shioda–Inose structure. However, there does not seem to be a universal
way to achieve this. Notably, the general K3 surface X arising from the Shioda–
Inose structure for the present case E ∼= E ′ only admits four essentially different
jacobian elliptic fibrations. To see this, one can argue with a gluing technique
of Kneser–Witt that has been successfully applied to K3 surfaces in [Nishiyama
1996]. For these four fibrations, the fibre types reveal that only (5) and one other
fibration can arise through a quadratic base change. The latter pulls back from the
unique rational elliptic surface with a singular fibre of type I9 and MW=Z/3Z by
the one-dimensional family of quadratic base changes that ramify at the reducible
fibre. A case-by-case analysis (exactly as above) shows that a singular elliptic K3
surface within this family can only have an Enriques involution of base change
type if it does not fall under Exception 5.5.

5F. Mordell–Weil rank two. In this case, E and E ′ are isogenous, but nonisomor-
phic elliptic curves with CM. Both fixed fibres for the base change involution ı at
t = ±1 are smooth. On the Nikulin quotient X ′, they correspond to fibres of type
I ∗0 . As explained, the fibration (5) on X has integral even Mordell–Weil lattice
MWL(X)=MWL(X ′)(2)= Hom(E, E ′)(2), and

NS(X)=U + 2E8(−1)+MWL(X)(−1).

For an Enriques involution τ on X , we ask that some section P ∈MWL(X) meets
both fixed fibres at nonidentity components. Equivalently, there is a section P ′ ∈
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MWL(X ′) (inducing P) that meets both ramified fibres (type I ∗0 ) at nonidentity
components.

Assumption: There is no such section P ′ ∈MWL(X ′). Equivalently, since the
simple components of a fibre admit a group structure, the nonidentity components
of one of the I ∗0 fibres are fully avoided by MW(X ′). Correspondingly, NS(X ′)
admits an orthogonal summand D4(−1) which we single out in the following de-
composition:

NS(X ′)=U + E8(−1)+ D4(−1)+〈D4(−1),MWL(X ′)(−1)〉.

Hence the discriminant group of NS(X ′) contains two copies of Z/2Z (coming
from D∨4 /D4). Indeed, since the length is bounded by the rank of the transcendental
lattice, which is two, this gives the full 2-part of the discriminant group:

2-part(NS(X ′)∨/NS(X ′))∼= D∨4 /D4 ∼= (Z/2Z)2. (17)

Right away, we deduce that NS(X ′) has discriminant d ′ equalling four times an
odd integer. By (3), this odd integer is exactly the discriminant d = d ′/4 of X . In
particular, if d is even, MWL(X ′) cannot fully avoid the nonidentity components
of either of the I ∗0 fibres. Thus there is a section of the fibration (5) inducing an
Enriques involution τ on X .

To complete the proof of Proposition 5.3, we return to the case of odd discrim-
inant d. The isomorphism (17) gives an equality of discriminant forms

−qD4 = qD4 =
(
qNS(X ′)

)
|2-part.

By [Nikulin 1980], there is an equality qNS(X ′) = −qT (X ′). Hence it suffices to
compare the discriminant forms of T (X ′) and D4. In the present situation, T (X ′)
has the quadratic form (

4a 2b
2b 4c

)
with odd b. Hence its discriminant form takes the following values on a set of
representatives of the 2-part of T (X ′)∨/T (X ′):

0, a, c, a+ b+ c mod 2Z.

In comparison, qD4 does exclusively attain the value 1 mod 2Z on the nonzero
elements of D∨4 /D4. For T (X ′), this can only happen if all a, b, c are odd. Equiv-
alently, the discriminant satisfies d ≡ −3 mod 8. This is exactly the main case
excluded by Theorem 5.1.

Conversely, we deduce that a singular K3 surface X admits an Enriques invo-
lution if it has an elliptic fibration (5) of Mordell–Weil rank two and if either d is
even or d ≡ −7 mod 8. The latter can be achieved unless T (X) is primitive and



220 Klaus Hulek and Matthias Schütt

corresponds to the principal class in its class group which is only two-torsion (cf.
Exception 5.5). This completes the proof of Proposition 5.3.

5G. Appendix: More on Example 3.1. In this subsection, we will show that the
singular K3 surface X from Example 3.1 (which falls under Exception 5.5) does
admit an alternative elliptic fibration with an Enriques involution of base change
type. We will pursue an abstract approach following ideas of Kneser and Witt as
worked out for elliptic K3 surfaces by Nishiyama [1996].

Lemma 5.7. X has an elliptic fibration with Z/3Z ⊂ MW and two fibres of type
I9.

Proof. By [Nishiyama 1996, §6] the elliptic fibrations on X are classified by primi-
tive embeddings of a certain partner lattice M of T (X) into Niemeier lattices. Here
we can take M = A1(−1)+A5(−1) since M and T (X) have the same discriminant
form. Consider the Niemeier lattice N with root lattice

Nroot = A8(−1)3 and quotient N/Nroot = (Z/3Z)3.

Embedding M primitively into one summand A8(−1), we obtain the essential lat-
tice of an elliptic fibration of X as orthogonal complement M⊥ ⊂ N . The singular
fibres of this fibration are encoded in the roots of M⊥, i.e., in (M⊥)root= A8(−1)2.
The torsion in MW for this fibration is isomorphic to the quotient of the primitive
closure of (M⊥)root in N by (M⊥)root, i.e., MWtor ∼= Z/3Z. �

The given elliptic fibration is not isotrivial due to the singular fibres of type
I9. The torsion in MW then implies that X is a base change of the universal
elliptic curve with 3-torsion section and j-invariant not identical zero. This el-
liptic surface has singular fibres I1, I3, I V ∗, so necessarily the base change factors
through the intermediate rational elliptic surface S′ with configuration I1, I1, I1, I9

and MW(S′) = Z/3Z. In particular, X arises from S′ by a quadratic base change.
Hence we are in the set-up of5B with base change involution ı etc.

Now we consider the quadratic twist X ′. It is the desingularisation of the quo-
tient of X by the Nikulin involution  = ı ◦ (−1). We claim that this quotient
exhibits another Shioda–Inose structure on X :

Lemma 5.8. X ′ is a Kummer surface with T (X ′)= T (X)(2).

Proof. It suffices to prove that  is a Morrison–Nikulin involution; i.e., ∗ ex-
changes two copies of E8(−1) in NS(X). Here we argue with the above elliptic
fibration:  exchanges the two reducible fibres of type I9 and the three-torsion
sections Q,�Q. Consider these 20 rational curves on X . Omitting the component
of one I9 fibre met by Q and the component of the other I9 fibre met by �Q, we
find two disjoint configurations of type Ẽ8(−1) that are interchanged by  . The
lemma now follows from [Morrison 1984, Theorem 5.7]. �
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The induced elliptic fibration on X ′ has singular fibres I1, I1, I1, I9, I ∗0 , I ∗0 . Since
ρ(X)= 20, both X and X ′ have MW-rank two. In particular, there are plenty of ı∗-
anti-invariant sections on X (induced from X ′). As in5B, each such section gives
an involution τ .

Lemma 5.9. There is a fixed-point free involution τ on X as above.

Proof. We verify the claim on X ′ by assuming the contrary. This means that for one
of the I ∗0 fibres all nonidentity components are avoided by MW(X ′). As in5F, this
implies that X ′ has discriminant four times an odd integer. But we have seen that
X ′ has T (X ′)= T (X)(2) with discriminant −48. This gives a contradiction. �

Remark 5.10. This example also shows that not every singular Enriques surface
arises by the canonical Shioda–Inose structure from5D. This fact can also be seen
in terms of Enriques surfaces with finite automorphism group. Kondō classified
these exceptional Enriques surfaces in [Kondō 1986]. Some are singular, but do
not admit an elliptic fibration with a II ∗ fibre.

5H. Brauer groups. In [Hulek and Schütt 2011], we also answered a question by
Beauville about Brauer groups. Namely Beauville asked for explicit examples of
complex Enriques surfaces Y where the Brauer group Br(Y ) ∼= Z/2Z pulls back
identically zero to the covering K3 surface X via the universal cover π : X → Y .
He also raised the question whether such an example exists over Q.

In [Hulek and Schütt 2011, §5], we gave affirmative solutions for both questions.
Our basic objects were the singular K3 surfaces X with

NS(X)=U + 2E8(−1)+〈−4M〉+ 〈−2N 〉 (18)

where M, N ∈ N and N > 1 is odd. The above decomposition corresponds to an
elliptic fibration (5) on X with MW-rank two. As in5B, the section P of height 4M
induces an Enriques involution τ on X . Clearly the orthogonal section of height
2N gives an anti-invariant divisor for τ ∗. By [Beauville 2009], this implies the
vanishing of π∗ Br(Y ).

Previously we determined one surface (for M = 1, N = 3) with a model of (5)
and Enriques involution τ defined over Q. Here we want to point out that for any
other surface X as above, this can be achieved over the class field H(−8M N ) by
Theorem 1.1.

6. Classification problems

We conclude this paper by formulating classification problems for singular En-
riques surfaces. In addition to fields of definition, we also consider Galois actions
on divisors. First we review the situation for singular K3 surfaces.



222 Klaus Hulek and Matthias Schütt

6A. Obstructions for singular K3 surfaces. Although singular K3 surfaces can
often be descended from the ring class field H(d) to some smaller number field,
there are certain obstructions to this descent. In this section we shall discuss two of
them. The first comes from the transcendental lattice. Since the Néron–Severi lat-
tice of a general K3 surface is determined by intersection numbers, it is a geometric
invariant; that is, conjugate surfaces have the same NS. Since T (X) and NS(X)
are related as orthogonal complements in the K3 lattice 3, they share the same
discriminant form up to sign by [Nikulin 1980, Proposition 1.6.1]. In particular,
this fixes the genus of T (X) (sometimes also called the isogeny class).

Theorem 6.1 [Shimada 2009; Schütt 2007]. Let X be a singular K3 surface X
over some number field. The transcendental lattices of X and its Galois conjugates
cover the full genus of T (X).

This result has an immediate consequence on the fields of definition:

Corollary 6.2. Let X be a singular K3 surface X of discriminant d over a number
field L. Let K =Q(

√
−d) and L̄ the Galois closure of L over K . Denote by G(X)

the genus of T (X). Then
#G(X) | degK L .

In particular, one deduces that a singular K3 surface X can only be defined over Q

if the genus of T (X) consists of a single class.
The second obstruction stems from the Galois action on the divisors. Namely,

even if a singular K3 surface X admits a model over a smaller field than H(d), the
ring class field is preserved through the Galois action on NS(X):

Theorem 6.3 [Schütt 2010]. Let X be a singular K3 surface of discriminant d over
some number field L. Assume that NS(X) is generated by divisors defined over L.
Then the extension L(

√
d) contains the ring class field H(d).

In other words, Theorem 2.4 is not far from being optimal: at best, there is a
model with NS(X) defined over a quadratic subfield of H(d).

Theorem 6.3 provides a direct proof of the following natural generalisation from
CM elliptic curves, from [Shafarevich 1996]: Fixing n ∈N, there are only finitely
many singular K3 surfaces over all number fields of degree bounded by n (up
to complex isomorphism). The problem of explicit classifications, however, is
still wide open. Even in the simplest case, it is not clear yet how many singular
K3 surfaces there are over Q — only that there are many, cf. [Elkies and Schütt
2008b]. In contrast, the restrictive setting of Theorem 6.3 is much more accessi-
ble. For instance there are exactly 13 singular K3 surfaces up to Q̄-isomorphism
with NS defined over Q. By [Schütt 2010, Theorem 1], they stand in bijective
correspondence with the discriminants d of class number one.
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We shall now discuss how these obstructions turn out for singular Enriques
surfaces. Then we formulate analogous classification problems.

6B. Fields of definition of singular Enriques surfaces. We start by pointing out
that Theorem 6.1 carries over to singular Enriques surfaces directly. This fact is
due to the universal property that defines the covering K3 surface X of an Enriques
surface Y . Explicitly, X can be defined universally as

X = Spec(OY ⊕KY ).

As this construction respects the base field, the obstructions from Theorem 6.1 on
the field of definition of a singular K3 surface X carry over to each singular En-
riques surface that is covered by X . Recall that a K3 surface may admit (arbitrarily)
finitely many distinct Enriques quotients by [Ohashi 2007, Theorem 0.1], while the
universal cover associates a unique K3 surface to a given Enriques surface.

Corollary 6.4. Let n ∈N. There are only finitely many singular Enriques surfaces
over all number fields of degree at most n up to complex isomorphism.

Problem 6.5. The following two questions concern singular Enriques surfaces up
to Q̄-isomorphism:

(1) For n ∈N, find all singular Enriques surfaces over number fields L of degree
at most n over Q.

(2) Specifically classify all singular Enriques surfaces over Q.

6C. Galois action on divisors. Upon translating the obstructions for singular K3
surfaces from6A to singular Enriques surfaces, we saw in6B that Theorem 6.1 and
its corollary carry over directly to the Enriques quotients. In contrast, Theorem 6.3
has to be weakened on the Enriques side. Generally speaking, this weakening is
due to the fact that (part of) the Galois action can be accommodated by a sublattice
of NS(X) that is killed by the Enriques involution. In support of these ideas, we
shall review an example from [Hulek and Schütt 2011] (which draws heavily from
[Elkies and Schütt 2008a]).

Consider the following family X of elliptic K3 surfaces

X : y2
= x3
+ t2x2

+ t3(t − a)2x, a 6= 0. (19)

This elliptic fibration has reducible singular fibres of type III ∗ at 0 and∞ and I4

at t = a. The general member has Picard number ρ(X)= 19 with

MW(X)= {O, (0, 0)} ∼= Z/2Z.
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Note that X is of base change type – apply the base change s = (t − a)2/t to the
rational elliptic surface S with Weierstrass form

S := y2
= x3
+ x2
+ sx .

As in5B, the two-torsion section induces an Enriques involution τ (unless the other
singular fibres degenerate, i.e., unless a =−1/16). Denote the family of Enriques
quotients by Y. We first study the Galois action on Num(Y):

Lemma 6.6. Let Ya ∈ Y (a 6= −1/16). Then Num(Ya) is defined over Q(a).

Proof. Since Num(Ya) is torsion-free, the Galois action on Num(Ya) coincides
with that on the invariant part of NS(Xa). In the present situation, the I4 fibre of X

is split-multiplicative, i.e., all fibre components are defined over Q(a). The same
holds trivially for the fibres of type III ∗. Together with the sections O and (0, 0),
these rational curves generate NS(Xa)

τ ∗ up to finite index. As this holds regardless
of the Picard number of Xa (being 19 or 20), the lemma follows. �

Remark 6.7. It is crucial that the lemma holds for all members of the family Y,
including the singular ones. Compare the situation for singular K3 surfaces in the
family X where Theorem 6.3 will often enforce a Galois action on the additional
generator of NS. For the specialisations over Q with ρ = 20, see6E.

6D. Néron–Severi group. We point out that in this specific setting, Lemma 6.6
gives a stronger statement than Corollary 2.5. The situation gets more complicated
if we consider NS(Y)with its two-torsion because this can admit a quadratic Galois
action. In particular, we can only conjecture an analogue of Corollary 2.5 for
NS(Y ) that is more precise than saying that NS(Y ) is defined over some quadratic
extension of H(d) (Conjecture 6.11).

The main problem here lies in similar subtleties as encountered in the context of
cohomologically and numerically trivial involutions (see [Hulek and Schütt 2011,
§4] and the references therein). Namely, to decide about NS(Y ) it is necessary to
work out generators of the full group (see Remark 6.9). We work this out for the
family Y in detail:

Proposition 6.8. If Ya ∈Y (a 6= −1/16), then NS(Ya) is defined over Q(a,
√
−a).

Proof. The next remark will indicate that it is not sufficient to argue with the elliptic
fibration (19) on X. Instead, we consider Inose’s fibration (5) for the given family.
The following Weierstrass form was derived in [Hulek and Schütt 2011, §5.3]:

X : y′2 = x ′3+ (9a− 1)x ′/9+
(

27
(

u− a3

u

)
+ 81a+ 2

)
/27.
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There is a section P of height 4 (thus disjoint from the zero section) with x ′-
coordinate

Px ′(u)= (3u4
+ 12u3a+ 6u2a3

+ 4u2a2
− 12ua4

+ 3a6)/(12a2u2).

The section P is anti-invariant for the base change involution ı of the Shioda–Inose
structure on X:

ı : (x ′, y′, u) 7→ (x ′, y′,−a3/u).

The base change involution composed with translation by P defines an Enriques
involution τ ′ on X by5B. Denote the family of Enriques quotients by Y′. By
Kondō’s classification in [Kondō 1986], Y′ has finite automorphism group, and
in particular τ and τ ′ are conjugate in Aut(X) so that Y∼= Y′.

We continue by determining an explicit basis of NS(Y′). The induced elliptic
fibration on Y′ has a singular fibre of type II ∗, a bisection R (the push-down of O
and P) and two multiple smooth fibres F1 = 2G1, F2 = 2G2. We claim that these
twelve curves generate NS(Y′). To see this, note that by construction R meets the
simple component of the II ∗ fibre twice. The remaining fibre components form
the root lattice of type E8(−1). Orthogonally in NS(Y′), we find R,G1,G2. Since
R2
=−2, R·Gi =1, we know that R,G1 generate the hyperbolic plane U . Thus we

have determined a unimodular lattice L =U+E8(−1) inside NS(Y′) – necessarily
of index two due to its rank being ten. Since G2 6∈ L , it follows that L and G2

generate all of NS(Y′).
We now consider the Galois action on these generators of NS(Y ′a) for some

Y ′a ∈ Y′. Clearly the II ∗ fibre and the bisection R are defined over Q(a). The
multiple fibres sit at the ramification points of the base change on the base curve P1,
i.e., at the roots of u2

+ a3. Proposition 6.8 follows and cannot be improved since
the conjugation of Q(

√
−a)/Q(a) permutes the multiple fibres if

√
−a 6∈ Q(a),

and thus gives a nontrivial Galois action on NS(Y ′a). �

Remark 6.9. Note that the above Galois action is not visible on the elliptic fi-
bration (19) of X yielding Y. The multiple fibres of the induced elliptic fibration
on Y have different type 2I0, 2I2. Hence they cannot be interchanged by Galois.
Nonetheless there can be a nontrivial Galois action on NS(Ya). This goes unde-
tected in the above model because the push-down of fibre components and torsion
sections from X to Y generate NS(Y) only up to index two.

6E. CM-points. Concretely, the family X is parametrised by the Fricke modular
curve X0(2)+. In [Elkies and Schütt 2008a], we list all Q-rational CM-points. Two
of them give singular K3 surfaces without Enriques involution (discriminant −8 at
a = −1/16 and discriminant −4 at a = 0 for a suitable alternative model of X).
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The other 14 discriminants are:

−7,−12,−16,−20,−24,−28,−36,−40,−52,−72,−88,−100,−148,−232.

For the discriminants of class number two, the additional section can only be de-
fined over a quadratic extension of Q by Theorem 6.3. So there are indeed singular
Enriques surfaces with Num defined over Q where the same does not hold for the
covering K3 surfaces. A detailed example where this holds even for NS is provided
by the surfaces at a = −1/144 which corresponds to the discriminant −24 (as
mentioned in5H). Details can be found in [Hulek and Schütt 2011, §5.3]. We work
out one example from the list where Num is defined over Q, but NS is neither
defined over Q nor over H(d):

Example 6.10. The specialisation X with discriminant d = −12 sits at a = 1/9.
In terms of the elliptic fibration (19), there is a section of height 3 over H(d) =
Q(
√
−3) with x-coordinate −12t3/(9t − 1)2. One finds that X has transcenden-

tal lattice two-divisible, so X is the Kummer surface of E × E for E with j-
invariant zero. In particular X is different from the singular K3 surface studied
in Example 3.1 and5G.

The Enriques quotient Y has multiple fibres at ±
√
−1/27. Compared with

Num(Y )which is defined over Q, complex conjugation acts on NS(Y ) as nontrivial
Galois action. Note that H(d)(

√
−1)= H(4d) in the present situation.

6F. In the above example (and in fact for all specialisations over Q with ρ = 20),
we have seen that NS(Y ) is defined over the ring class field H(4d). We conjecture
that this is always the case which would give an analogue of Corollary 2.5:

Conjecture 6.11. Let Y be an Enriques surface whose universal cover X is a sin-
gular K3 surface. Let d < 0 denote the discriminant of X . Then Y admits a model
over the ring class field H(d) with NS(Y ) defined over H(4d).

The above one-dimensional family provides small evidence for this conjecture.
Our main motivation stems from the base change construction of Enriques involu-
tions in the framework of Shioda–Inose structures as investigated in Section 5. By
Proposition 5.3, almost every possible singular K3 surface admits such an Enriques
involution. In terms of the model (14), the Enriques quotient Y attains multiple
fibres at the ramification points of the underlying base change, i.e., at ±2B. Re-
call from (5) that B2

= (1 − j/123)(1 − j ′/123), so there is a quadratic Galois
action on NS(Y ) unless B ∈ H(d). Note that B can be interpreted in terms of the
Weber function

√
j − 123 where j now denotes the usual modular function. The

values of Weber functions at CM-point have been studied extensively starting from
Weber. In the present situation, Schertz [1976] proved that for singular j-values,√

j − 123 ∈ H(4d). This implies:
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Lemma 6.12 (Schertz). In the above setting, one has B ∈ H(4d).

We sketch an alternative proof of Lemma 6.12. It is based on a geometric
approach that will also carry information about the Enriques surface Y (and its
elliptic fibration with fibre of type II ∗). Consider the Kummer surface X ′ from
the Shioda–Inose structure. In general, it has fibres of type I ∗0 where Y has the
multiple fibres (if E ∼= E ′, there could be fibres of type I ∗1 or I V ∗; see3B). By
Corollary 4.2, X ′ has a model with NS(X ′) defined over H(4d). In particular,
every elliptic fibration of X ′ can be defined over H(4d) with all of NS defined
there as well. We apply this argument to the elliptic fibration on X ′ induced from
(14):

X ′ : y2
= x3
− 3c2 B2 A3(t2

− 4B2)2x + c3 B2 A3(t − 2B2)(t2
− 4B2)3. (20)

Assume that B 6∈ H(d) and denote L = H(d)(B). By [Shioda 2006], the singular
fibres of X ′ predict the Weierstrass form (20) (in case AB 6= 0) up to Möbius trans-
formation. This property holds generally for constants A, B, c, but in the present
situation, A and B are related to the j-invariants of E, E ′ by (5). Upon applying
Möbius transformations, one can thus show that the above jacobian elliptic fibration
does not admit a model over H(d) without Gal(L/H(d))-action interchanging the
I ∗0 fibres. By Corollary 4.2, one obtains that B ∈ H(4d). This proves Lemma 6.12.

Corollary 6.13. Conjecture 6.11 holds true for any singular Enriques surface aris-
ing from the Shioda–Inose structure as in Section 5.

The geometric proof of Lemma 6.12 is of particular interest to us, since the
statement about the Galois action on the I ∗0 fibres of X ′ carries over to the multiple
fibres of the corresponding elliptic fibration of the Enriques surface Y and vice
versa. Centrally, we use once again that a model of a K3 or Enriques surface with
NS defined over a fixed field has all elliptic fibrations (with or without section)
defined over this field as well. Hence we can move freely between models and
elliptic fibrations. Thus we obtain:

Corollary 6.14. If B 6∈ H(d), then any model over H(d) of the Enriques surface
Y admits a nontrivial Galois action of Gal(H(4d)/H(d)) on NS(Y ).

We have seen an instance of this phenomenon in Example 6.10. The same
reasoning implies a nontrivial action of Gal(Q(a,

√
−a)/Q(a)) on NS(Ya) for all

Q(a)-models of members Ya of the family Y.
The above results allow us to draw an analogy to the study of automorphisms

of Enriques surfaces; cf. [Barth and Peters 1983; Mukai and Namikawa 1984].
Namely we have exhibited two kind of singular Enriques surfaces over H(d)—
one with cohomologically trivial Galois action and one with numerically, but not
cohomologically trivial Galois action.
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6G. We conclude this paper with the corresponding classification problem for sin-
gular Enriques surfaces. Note that by the above reasoning, at least the second
problem is more complicated than for K3 surfaces (as solved in [Schütt 2010]).

Problem 6.15. The following two questions concern singular Enriques surfaces
either up to Q̄- or up to L-isomorphism:

(1) For a given number field L (or all number fields of bounded degree), classify
all singular Enriques surfaces with Num or NS defined over L .

(2) Determine all singular Enriques surfaces over L=Q with trivial Galois action
on Num or NS.
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An upper bound on the Abbes–Saito
filtration for finite flat group schemes

and applications
Yichao Tian

Let OK be a complete discrete valuation ring of residue characteristic p> 0, and
G be a finite flat group scheme over OK of order a power of p. We prove in this
paper that the Abbes–Saito filtration of G is bounded by a linear function of the
degree of G. Assume OK has generic characteristic 0 and the residue field of OK

is perfect. Fargues constructed the higher level canonical subgroups for a “near
from being ordinary” Barsotti–Tate group G over OK . As an application of our
bound, we prove that the canonical subgroup of G of level n ≥ 2 constructed by
Fargues appears in the Abbes–Saito filtration of the pn-torsion subgroup of G.

Let OK be a complete discrete valuation ring with residue field k of characteristic
p > 0 and fraction field K . We denote by vπ the valuation on K normalized by
vπ (K×)= Z. Let G be a finite and flat group scheme over OK of order a power of
p such that G⊗K is étale. We denote by (Ga, a ∈Q≥0) the Abbes–Saito filtration
of G. This is a decreasing and separated filtration of G by finite and flat closed
subgroup schemes. We refer the readers to [Abbes and Saito 2002; 2003; Abbes
and Mokrane 2004] for a full discussion, and to Section 1 for a brief review of
this filtration. Let ωG be the module of invariant differentials of G. The generic
étaleness of G implies that ωG is a torsion OK -module of finite type. Thus, there
exist nonzero elements a1, . . . , ad ∈ OK such that

ωG '

d⊕
i=1

OK /(ai ).

We put deg(G)=
∑d

i=1 vπ (ai ), and call it the degree of G. The aim of this note is
to prove the following:

Theorem 1. Let G be a finite and flat group scheme over OK of order a power of
p such that G⊗ K is étale. Then we have Ga

= 0 for a > p/(p− 1) deg(G).

This research was supported by a grant DMS-0635607 from the National Science Foundation.
MSC2000: primary 14L15; secondary 14G22, 11S15.
Keywords: finite flat group schemes, ramification filtration, canonical subgroups.
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Our bound is optimal when G is killed by p. Let Eδ =Spec(OK [X ]/(X p
−δX))

be the group scheme of Tate–Oort over OK . We have deg(Eδ)= vπ (δ), and an easy
computation by Newton polygons gives [Fargues 2009, Lemme 5]:

Ea
δ =

{
Eδ if 0≤ a ≤ p/(p− 1) deg(Eδ),
0 if a > p/(p− 1) deg(Eδ).

However, our bound may be improved when G is not killed by p or G contains
many identical copies of a closed subgroup. In [2006, Theorem 7], Hattori proves
that if K has characteristic 0 and G is killed by pn , then the Abbes–Saito filtration
of G is bounded by that of the multiplicative group µpn , i.e., we have Ga

= 0 if
a> en+e/(p−1) where e is the absolute ramification index of K . Compared with
Hattori’s result, our bound has the advantage that it works in both characteristic 0
and characteristic p, and that it is good if deg(G) is small.

The basic idea used to prove Theorem 1 is approximation of general power
series over OK by linear functions. First, we choose a “good” presentation of the
algebra of G such that the defining equations of G involve only terms of total
degree m(p− 1)+ 1 with m ∈ Z≥0; see Proposition 1.6. The existence of such a
presentation is a consequence of the classical theory on p-typical curves of formal
groups. With this good presentation, we can prove in Lemma 1.9 that the neutral
connected component of the a-tubular neighborhood of G is isomorphic to a closed
rigid ball for a > p/(p−1) deg(G), and the only zero of the defining equations of
G in the neutral component is the unit section.

The motivation of our theorem comes from the theory of canonical subgroups.
We assume that K has characteristic 0, and the residue field k is perfect of charac-
teristic p≥ 3. Let G be a Barsotti–Tate group of dimension d ≥ 1 over OK . Abbes
and Mokrane [2004] were the first to construct the canonical subgroup of level 1 of
G in the case where G comes from an abelian scheme over OK . Then, Tian [2010]
generalized their result to the Barsotti–Tate case. More specifically, it was shown
that if a Barsotti–Tate group G over OK is “near from being ordinary”, a condition
expressed explicitly as a bound on the Hodge height of G (see Section 2.1), then
a certain piece of the Abbes–Saito filtration of G[p] lifts the kernel of Frobenius
of the special fiber of G [Tian 2010, Theorem 1.4]. Later on, Fargues [2009] gave
another construction of the canonical subgroup of level 1 using Hodge–Tate maps,
and his approach also allowed us to construct by induction the canonical subgroups
of level n ≥ 2, i.e., the canonical lifts of the kernel of the n-th iteration of the
Frobenius. He proved that the canonical subgroup of higher level appears in the
Harder–Narasimhan filtration of G[pn

], which was introduced by him in [Fargues
2007]. It is conjectured that the canonical subgroup of higher level also appears
in the Abbes–Saito filtration of G[pn

]. In this paper, we prove this conjecture
as a corollary, Theorem 2.5, of Theorem 1. Fargues’s result on the degree of the
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quotient of G[pn
] by its canonical subgroup of level n (see Theorem 2.4(i)) will

play an essential role in our proof.

Notation. In this paper, OK will denote a complete discrete valuation ring with
residue field k of characteristic p> 0 and fraction field K . Let π be a uniformizer
of OK , and vπ be the valuation on K normalized by vπ (π) = 1. Let K be an
algebraic closure of K , K sep be the separable closure of K contained in K , and
GK be the Galois group Gal(K sep/K ). We also denote by vπ the unique extension
of the valuation to K .

1. Proof of Theorem 1

First, we recall the definition of the filtration of Abbes–Saito for finite flat group
schemes according to [Abbes and Mokrane 2004; Abbes and Saito 2003].

1.1. We denote the Jacobson radical of a semilocal ring R by mR . An algebra R
over OK is called formally of finite type if R is semilocal, complete with respect
to the mR-adic topology, Noetherian, and R/mR is finite over k. We say an OK -
algebra R formally of finite type is formally smooth if each of the factors of R is
formally smooth over OK .

Let FEAOK be the category of finite, flat, and generically étale OK -algebras, and
SetGK be the category of finite sets endowed with a discrete action of the Galois
group GK . We have the fiber functor

F : FEAOK → SetGK ,

which associates to an object A of FEAOK the set Spec(A)(K ) equipped with the
natural action of GK . We define a filtration on the functor F as follows. For each
object A in FEAOK , we choose a presentation

0→ I →A→ A→ 0, (1)

where A is an OK -algebra formally of finite type and formally smooth. For any
a = m/n ∈ Q>0 with m prime to n, we define Aa to be the π -adic completion
of the subring A[I n/πm

] ⊂ A ⊗OK K generated over A by all the f/πm with
f ∈ I n . The OK -algebra Aa is topologically of finite type, and the tensor product
Aa
⊗OK K is an affinoid algebra over K [Abbes and Saito 2003, Lemma 1.4]. We

put Xa
= Sp(Aa

⊗OK K ), which is a smooth affinoid variety over K [Abbes and
Saito 2003, Lemma 1.7]. We call it the a-th tubular neighborhood of Spec(A)
with respect to the presentation (1). The GK -set of the geometric connected com-
ponents of Xa , denoted by π0(Xa(A)K ), depends only on the OK -algebra A and
the rational number a, but not on the choice of the presentation [Abbes and Saito
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2003, Lemma 1.9.2]. For rational numbers b > a > 0, we have natural inclu-
sions of affinoid varieties Sp(A⊗OK K ) ↪→ Xb ↪→ Xa , which induce natural mor-
phisms Spec(A)(K )→ π0(Xb(A)K )→ π0(Xa(A)K ). For a morphism A→ B in
FEAOK , we can choose presentations of A and B so that we have a functorial map
π0(Xa(B)K )→ π0(Xa(A)K ). Hence we get, for any a ∈ Q>0, a (contravariant)
functor

Fa
: FEAOK → SetGK

given by A 7→ π0(Xa(A)K ). We have natural morphisms of functors φa :F→Fa

and φa,b : F
b
→ Fa for rational numbers b > a > 0 with φa = φb,a ◦ φb. For any

A in FEAOK , we have

F(A)
∼
−→ lim
←−

a∈Q>0

Fa(A)

[Abbes and Saito 2002, 6.4]; if A is a complete intersection over OK , the map
F(A)→ Fa(A) is surjective for any a [Abbes and Saito 2002, 6.2].

1.2. Let G = Spec(A) be a finite and flat group scheme over OK such that G⊗ K
is étale over K , and a ∈Q>0. The group structure of G induces a group structure
on Fa(A), and the natural map G(K ) = F(A)→ Fa(A) is a homomorphism of
groups. Hence, the kernel Ga(K ) of G(K )→Fa(A) is a GK -invariant subgroup of
G(K ), and it defines a closed subgroup scheme Ga

K of the generic fiber G⊗K . The
scheme theoretic closure of Ga

K in G, denoted by Ga , is a closed subgroup of G
finite and flat over OK . Putting G0

=G, we get a decreasing and separated filtration
(Ga, a ∈ Q≥0) of G by finite and flat closed subgroup schemes. We call it the
Abbes–Saito filtration of G. For any real number a≥ 0, we put Ga+

=
⋃

b∈Q>a
Ga .

Assume G is connected, i.e., the ring A is local. Let

0→ I → OK [[X1, . . . , Xd ]] → A→ 0 (2)

be a presentation of A by the ring of formal power series such that the unit section
of G corresponds to the point (X1, . . . , Xd)= (0, . . . , 0). Since A is a relative com-
plete intersection over OK , I is generated by d elements f1, . . . , fd . For a ∈Q>0,
the K -valued points of the a-th tubular neighborhood of G are given by

Xa(K )=
{
(x1, . . . , xd) ∈md

K
| vπ ( fi (x1, . . . , xd))≥ a for 1≤ i ≤ d

}
, (3)

where mK is the maximal ideal of OK . The subset G(K ) ⊂ Xa(K ) corresponds
to the zeros of the fi ’s. Let Xa

0 be the connected component of Xa containing 0.
Then the subgroup Ga(K ) is the intersection of Xa

0(K ) with G(K ).
The basic properties of Abbes–Saito filtration that we need are summarized as

follows.
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Proposition 1.3 [Abbes and Mokrane 2004, 2.3.2, 2.3.5]. Let G and H be finite
and flat group schemes, generically étale over OK , and f :G→ H be a homomor-
phism of group schemes.

(i) The closed subgroup G0+ is the connected component of G, and we have
(G0+)a = Ga for any a ∈Q>0.

(ii) Given a ∈ Q>0, f induces a canonical homomorphism f a
: Ga
→ Ha . If f

is flat and surjective, then f a(K ) : Ga(K )→ Ha(K ) is surjective.

Now we return to the proof of Theorem 1.

Lemma 1.4. Let R be a Zp-algebra, X be a formal group of dimension d over R
such that Lie(X) is a free R-module of rank d. Then

(i) the ring Zp acts naturally on X, and its image in EndR(X) lies in the center of
EndR(X);

(ii) there exist parameters (X1, . . . , Xd) of X such that

[ζ ](X1, . . . , Xd)= (ζ X1, . . . , ζ Xd)

for any (p−1)-st root of unity ζ ∈ Zp.

Proof. This is actually a classical result on formal groups. In the terminology
of [Hazewinkel 1978], the formal group X comes from the base change of Xuniv

defined by the d-dimensional universal p-typical formal group law (denoted by
FV (X, Y ) in [Hazewinkel 1978, 15.2.8]) over

Zp[V ] = Zp[Vi ( j, k); i ∈ Z≥0, j, k = 1, . . . , d],

where the Vi ( j, k) are free variables. So we are reduced to proving the lemma
for Xuniv. If X and Y stand for the column vectors (X1, . . . , Xd) and (Y1, . . . , Yd)

respectively, the formal group law on Xuniv is determined by

FV (X, Y )= f −1
V ( fV (X)+ fV (Y )), with fV (X)=

∞∑
i=0

ai (V )X pi
,

where the ai (V ) are certain d×d matrices with coefficients in Qp[V ] with a1(V )
invertible, X pi

stands for (X pi

1 , . . . , X pi

d ), and f −1
V is the unique d-tuple of power

series in (X1, . . . , Xd) with coefficients in Qp[V ] such that f −1
V ◦ fV = 1; see

[Hazewinkel 1978, 10.4]. We note that FV (X, Y ) is a d-tuple of power series
with coefficient in Zp[V ], although fV (X) has coefficients in Qp[V ] [Hazewinkel
1978, 10.2(i)]. Via approximation by integers, we see easily that the operation
of multiplication by an element ξ ∈ Zp given by [ξ ](X) = f −1

V (ξ fV (X)) is well
defined. This proves (i). Statement (ii) is an immediate consequence of the fact
that fV (X) contains only p-powers of X . �
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Remark 1.5. The referee gives the following alternative proof of this lemma via
the Cartier theory of formal groups. Let X be the formal group over R as in the
lemma. We denote by X(R[[T ]]) the group of R[[T ]]-valued points of X whose
reduction modulo T is the neutral element 0 ∈ X(R). A formal group law over
X is a datum (X; γ1, . . . , γd), where γ1, . . . , γd ∈ X(R[[T ]]) are such that their
image in X(R[T ]/T 2) forms a basis for Lie(X). In particular, (γi )1≤i≤d estab-
lish an isomorphism X' Spf(R[[X1, . . . , Xd ]]) of formal schemes over R. Recall
that X(R[[T ]]) is the Cartier module associated with X over the big Cartier ring
(denoted by Cart(R) in [Chai 2004, 2.3]). Since R is a Zp-algebra, the Cartier
theory [Chai 2004, 4.3, 4.4] implies that there exists a p-typical formal group law
(X; γ1, . . . , γd) over X, i.e., we have εp · γi = 0, where

εp =
∏
` prime
(`,p)=1

(1− 1
`
V`F`)

is Cartier’s idempotent in Cart(R); see [Chai 2004, 4.1]. Let 1 : Zp = W (Fp)→

W (Zp) be the Cartier homomorphism given by (x0, x1, . . . ) 7→ ([x0], [x1], . . . ),
where xn ∈ Fp and [xn] denotes its Teichmüller lift. Then we get a natural map
u : Zp

1
−→W (Zp)→W (R). For a (p−1)-st root of unity ζ ∈ Zp, we have u(ζ )=

[ζ ] ∈W (R). Note that for any a ∈ R and 1≤ i ≤ d, the p-typical curve [a]·γi is the
image of γi under the map X(R[[T ]])→X(R[[T ]]) induced by T 7→ aT . Applying
this fact to u(ζ ) · γi = [ζ ] · γi , one obtains the lemma immediately.

Proposition 1.6. Let G = Spec(A) be a connected finite and flat group scheme
over OK of order a power of p. Then there exists a presentation of A of type (2)
such that the defining equations fi for 1≤ i ≤ d have the form

fi (X1, . . . , Xd)=

∞∑
|n|≥1

ai,n Xn with ai,n = 0 if (p− 1) - (|n| − 1),

where n= (n1, . . . , nd)∈ (Z≥0)
d are multiindexes, |n| =

∑d
j=1 n j , and Xn is short

for
∏d

j=1 Xn j
j .

Proof. By a theorem of Raynaud [Berthelot et al. 1982, 3.1.1], there is a projective
abelian variety V over OK , and an embedding of group schemes j : G ↪→ V . Let
V ′ be the quotient of V by G. Let X, Y be, respectively, the formal completions
of V and V ′ along their unit sections. They are formal groups over OK . Since
G is connected, it is identified with the kernel of the natural isogeny φ : X→ Y.
Let (X1, . . . , Xd) (respectively (Y1, . . . , Yd )) be parameters of X (respectively Y)
satisfying the preceding lemma. The isogeny φ is thus given by

(X1, . . . , Xd) 7→ ( f1(X1, . . . , Xd), . . . , fd(X1, . . . , Xd)),
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where fi =
∑
|n|≥1 ai,n Xn

∈ OK [[X1, . . . , Xd ]]. Since for any (p − 1)-th root of
unity ζ ∈ Zp we have fi (ζ X1, . . . , ζ Xd) = ζ fi (X1, . . . , Xd), it’s easy to see that
ai,n = 0 if (p− 1) - (|n| − 1). �

Remark 1.7. As pointed out by the referee, we can avoid using Raynaud’s deep
theorem to realize G as the kernel of an isogeny of formal groups over OK . In fact,
by the biduality formula G ' (G D)D , where G D denotes the Cartier dual of G, we
have a canonical closed embedding u :G ↪→U =ResG D/S(Gm) of group schemes
over S = Spec(OK ). Here, “ResG D/S” means Weil’s restriction of scalars, so U is
an affine smooth group scheme over S. Since the quotient of an affine scheme by a
finite flat group scheme is always representable by a scheme [Raynaud 1967], we
can consider the quotient U ′ = U/G and the formal groups X,Y associated with
U and U ′, so that G is the kernel of the natural isogeny φ : X→ Y.

1.8. Proof of Theorem 1. Let H = G0+ be the connected component of G. By
1.3(i), we have Ga

= Ha for a ∈ Q>0. The exact sequence of finite flat group
schemes 0→ H → G→ G/H → 0 induces a long exact sequence of finite OK -
modules

0→ H−1(`G/H )→ H−1(`G)→ H−1(`H )→ ωG/H → ωG→ ωH → 0,

where `G means the co-Lie complex of G [Berthelot et al. 1982, 3.2.9]. Since
the generic fiber of G/H is étale, it’s easy to see that Thus, it follows that 0→
ωG/H→ωG→ωH→0 is exact. Since G/H is étale, we have ωG/H =0 and hence
deg(G)= deg(H). Up to replacing G by H , we may assume that G = Spec(A) is
connected.

We choose a presentation of A as in Proposition 1.6 so that we have an isomor-
phism of OK -algebras

A ' OK [[X1, . . . , Xd ]]/( f1, . . . , fd)

where

fi (X1, . . . , Xd)=

d∑
j=1

ai, j X j +
∑
|n|≥p

ai,n Xn.

As A is finite as an OK -module, we have

�1
A/OK
= �̂1

A/OK
'

( d⊕
i=1

A d X i

)
/(d f1, . . . , d fd).

Since ωG ' e∗(�1
A/OK

), where e is the unit section of G, we get

ωG '

( d⊕
i=1

OK d X i

) / ( ∑
1≤ j≤d

ai, j d X j

)
1≤i≤d

.
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In particular, if U denotes the matrix (ai, j )1≤i, j≤d , then deg(G)= vπ (det(U )).
For any rational number λ, we denote by Dd(0, |π |λ) (respectively D̊d(0, |π |λ))

the rigid analytic closed (respectively open) disk of dimension d over K consisting
of points (x1, . . . , xd) with vπ (xi )≥ λ (respectively vπ (xi ) > λ) for 1≤ i ≤ d; we
put Dd(0, 1)=Dd(0, |π |0) and D̊d(0, 1)= D̊d(0, |π |0). Let a> p/(p−1) deg(G)
be a rational number, Xa be the a-th tubular neighborhood of G with respect to the
chosen presentation. By (3), we have a cartesian diagram of rigid analytic spaces

Xa � � //

f
��

D̊d(0, 1)

f=( f1,..., fd )

��
Dd(0, |π |a) � � // D̊d(0, 1),

(4)

where f (y1, . . . , yd) = ( f1(y1, . . . , yd), . . . , fd(y1, . . . , yd)) and horizontal ar-
rows are inclusions. Let Xa

0 be the connected component of Xa containing 0.
By the discussion below (3), we just need to prove that 0 is the only zero of the fi

contained in Xa
0 .

Let V = (bi, j )1≤i, j≤d be the unique d × d matrix with coefficients in OK such
that U V = V U = det(U )Id , where Id is the d × d identity matrix. If Ad

K denotes
the d-dimensional rigid affine space over K , then V defines an isomorphism of
rigid spaces

g : Ad
K → Ad

K , (x1, . . . , xd) 7→
( d∑

j=1

b1, j x j , . . . ,

d∑
j=1

bd, j x j

)
.

It’s clear that g(D̊d(0, 1)) ⊂ D̊d(0, 1), so that f is defined on g(D̊d(0, 1)). The
composite morphism f ◦ g : D̊d(0, 1)→ D̊d(0, 1) is given by

(x1, . . . , xd) 7→ (det(U )x1+ R1, . . . , det(U )xd + Rd), (5)

where Ri =
∑
|n|≥p ai,n

∏d
j=1(

∑d
k=1 b j,k xk)

n j involves only terms of order ≥ p for
1≤ i ≤ d. For 1≤ i ≤ d, we have basic estimations

vπ (det(U )xi )= deg(G)+ vπ (xi ) and vπ (Ri )≥ p min
1≤ j≤d

{vπ (x j )}. (6)

Lemma 1.9. For any rational number a > p/(p− 1) deg(G), the map g induces
an isomorphism of affinoid rigid spaces

g : Dd(0, |π |a−deg(G))
∼
−→ Xa

0 .

Assuming this lemma for a moment, we can complete the proof of Theorem 1
as follows. Consider the composite

h = f ◦ g|Dd (0,|π |a−deg(G)) : Dd(0, |π |a−deg(G))
∼
−→ Xa

0 ↪→ Xa f
−→ Dd(0, |π |a).
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To complete the proof of Theorem 1, we just need to prove that h−1(0)= {0}. Let
(x1, . . . , xd) be a point of Dd(0, |π |a−deg(G)), and (z1, . . . , zd) = h(x1, . . . , xd).
We may assume vπ (x1) = min1≤i≤d{vπ (xi )}. We have vπ (x1) ≥ a − deg(G) >
1/(p− 1) deg(G) by the assumption on a. It follows thus from (6) that

vπ (R1)≥ pvπ (x1) > deg(G)+ vπ (x1)= vπ (det(U )x1).

Hence, we deduce from (5) that vπ (z1)= deg(G)+vπ (x1). In particular, z1 = 0 if
and only if x1 = 0. Therefore, we have h−1(0) = {0}. This achieves the proof of
Theorem 1.

Proof of Lemma 1.9. Let ε be any rational number with

0< ε < (p− 1)/pa− deg(G).

We will prove that

Dd(0, |π |a−deg(G))= Dd(0, |π |a−deg(G)−ε)∩ g−1(Xa).

This will imply that Dd(0, |π |a−deg(G)) is a connected component of g−1(Xa).
Since g : Ad

K → Ad
K is an isomorphism, the lemma will follow immediately.

We prove first the inclusion ⊂. It suffices to show g(Dd(0, |π |a−deg(G)))⊂ Xa .
Let (x1, . . . , xd) be a point of Dd(0, |π |a−deg(G)). By (4), we have to check that
(z1, . . . , zd) = f (g(x1, . . . , xd)) lies in Dd(0, |π |a). We obtain from (6) that
vπ (det(U )xi ) = deg(G) + vπ (xi ) ≥ a and vπ (Ri ) ≥ p(a − deg(G)). As a >
p/(p− 1) deg(G), we have vπ (Ri ) > a. It follows from (5) that

vπ (zi )≥min{vπ (det(U )xi ), vπ (Ri )} ≥ a.

This proves (z1, . . . , zd)⊂ Dd(0, |π |a); hence g(Dd(0, |π |a−deg(G)))⊂ Xa .
To prove the inclusion ⊃, we just need to verify that every point which is in

Dd(0, |π |a−deg(G)−ε) but outside Dd(0, |π |a−deg(G)) does not lie in g−1(Xa). Let
(x1, . . . , xd) be such a point. We may assume that

a−deg(G)−ε≤vπ (x1)<a−deg(G) and vπ (xi )≥a−deg(G)−ε for 2≤ i≤d.
(7)

Let
(z1, . . . , zd)= (det(U )x1+ Rd , . . . , det(U )xd + Rd)

be the image of (x1, . . . , xd) under the composite f ◦ g. According to (4), the
proof will be completed if we can prove that (z1, . . . , zd) is not in Dd(0, |π |a).
From (6) and (7), we get vπ (det(U )x1) = deg(G) + vπ (x1) < a and vπ (R1) ≥

p(a−deg(G)−ε). Thanks to the assumption on ε, we have p(a−deg(G)−ε)>a,
so vπ (z1) = vπ (det(U )x1) < a. This shows that (z1, . . . , zd) is not in g−1(Xa);
hence the proof of the lemma is complete. �
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2. Applications to canonical subgroups

In this section, we suppose the fraction field K has characteristic 0 and the residue
field k is perfect of characteristic p ≥ 3. Let e be the absolute ramification index
of OK . For any rational number ε > 0, we denote by OK ,ε the quotient of OK by
the ideal consisting of elements with p-adic valuation greater or equal to ε.

2.1. First we recall some results on the from [Abbes and Mokrane 2004; Tian
2010; Fargues 2009]. Let vp : OK /p→ [0, 1] be the truncated p-adic valuation
(with vp(0)= 1). Let G be a truncated Barsotti–Tate group of level n ≥ 1 nonétale
over OK , and G1 = G⊗OK (OK /p). The Lie algebra of G1 denoted by Lie(G1) is
a finite free OK /p-module. The Verschiebung homomorphism VG1 : G

(p)
1 → G1

induces a semilinear endomorphism ϕG1 of Lie(G1). We choose a basis of Lie(G1)

over OK /p, and let U be the matrix of ϕ under this basis. We define the Hodge
height of G, denoted by h(G), to be the truncated p-adic valuation of det(U ). We
note that the definition of h(G) does not depend on the choice of U . The Hodge
height of G is an analog of the Hasse invariant in mixed characteristic, and we
have h(G)= 0 if and only if G is ordinary.

Theorem 2.2 [Fargues 2009, théorème 4]. Let G be a truncated Barsotti–Tate
group of level 1 over OK of dimension d ≥ 1 and height h. Assume h(G) < 1/2 if
p ≥ 5 and h(G) < 1/3 if p = 3.

(i) For any rational number ep/(p− 1)h(G) < a ≤ ep/(p− 1)(1− h(G)), the
finite flat subgroup Ga of G given by the Abbes–Saito filtration has rank pd .

(ii) Let C be the subgroup Gep/(p−1)(1−h(G)) of G. We have deg(G/C)= e h(G).

(iii) The subgroup C ⊗ OK ,1−h(G) coincides with the kernel of the Frobenius ho-
momorphism of G ⊗ OK ,1−h(G). Moreover, for any rational number ε with
h(G)/(p− 1) < ε ≤ 1− h(G), if H is a finite and flat closed subgroup of G
such that H ⊗ OK ,ε coincides with the kernel of Frobenius of G ⊗ OK ,ε , then
we have H = C.

The subgroup C in this theorem, when it exists, is called the canonical subgroup
(of level 1) of G.

Remark 2.3. The conventions here are slightly different from those in [Fargues
2009]. The Hodge height is called Hasse invariant there, while we choose to follow
the terminologies in [Abbes and Mokrane 2004] and [Tian 2010]. Our index of
Abbes–Saito filtration and the degree of G are e times those in [Fargues 2009].

Part (iii) of Theorem 2.2 is not explicitly stated in [Fargues 2009, théorème 4],
but it’s an easy consequence of Proposition 11 in that paper.

For the canonical subgroups of higher level, we have this:
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Theorem 2.4 [Fargues 2009, théorème 6]. Let G be a truncated Barsotti–Tate
group of level n over OK of dimension d ≥ 1 and height h. Assume h(G) < 1/3n if
p = 3 and h(G) < 1/(2pn−1) if p ≥ 5.

(i) There exists a unique closed subgroup of G that is finite and flat over OK and
satisfies the following:

• Cn(K ) is free of rank d over Z/pnZ.
• For each integer i with 1 ≤ i ≤ n, let Ci be the scheme theoretic closure

of Cn(K )[pi
] in G. Then the subgroup Ci ⊗OK ,1−pi−1h(G) coincides with

the kernel of the i-th iterated Frobenius of G⊗OK ,1−pi−1h(G).

(ii) We have deg(G/Cn)= e(pn
− 1)/(p− 1) h(G).

The subgroup Cn in the theorem above is called the canonical subgroup of level n
of G. Fargues actually proves that Cn is a certain piece of the Harder–Narasimhan
filtration of G. The aim of this section is to show that Cn appears also in the
Abbes–Saito filtration.

Theorem 2.5. Let G be a truncated Barsotti–Tate group of level n over OK satis-
fying the assumptions in Theorem 2.4, and Cn be its canonical subgroup of level n.
Then for any rational number a satisfying

ep(pn
− 1)/(p− 1)2h(G) < a ≤ ep/(p− 1)(1− h(G)),

we have Ga
= Cn .

Proof. We proceed by induction on n. If n= 1, this is Theorem 2.2(i). We suppose
n ≥ 2 and the theorem is valid for truncated Barsotti–Tate groups of level n − 1.
For each integer i with 1 ≤ i ≤ n, let Gi denote the scheme theoretic closure
of G(K )[pi

] in G, and Ci the scheme theoretic closure of Cn(K )[pi
] in Cn . By

Theorem 2.4(i), it’s clear that Ci is the canonical subgroup of level i of Gi . Let a be
a rational number with (ep(pn

−1)/(p−1)2)h(G) < a ≤ (ep/(p−1))(1−h(G)).
By the induction hypothesis and the functoriality of Abbes–Saito filtration 1.3(ii),
we have Cn−1(K ) = Ga

n−1(K ) ⊂ Ga(K ), and the image of Ga(K ) in G1(K ) is
exactly C1(K )= Ga

1(K ). Note that we have a commutative diagram

0 // Cn−1(K ) //
� _

��

Cn(K ) //
� _

��

C1(K ) //
� _

��

0

0 // Gn−1(K ) // G(K )
×pn−1

// G1(K ) // 0,

where the rows are exact sequences of groups and the vertical arrows are natural
inclusions. So we have Cn(K )⊂Ga(K ). On the other hand, Theorems 1 and 2.4(ii)
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imply that (G/Cn)
a(K )= 0 since

a >
ep(pn

− 1)
(p− 1)2

h(G)=
p

p− 1
deg(G/Cn).

Therefore, we get Ga(K ) ⊂ Cn(K ) by Proposition 1.3(ii). This completes the
proof. �
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On the smallest number of generators and
the probability of generating an algebra
Rostyslav V. Kravchenko, Marcin Mazur and Bogdan V. Petrenko

In this paper we study algebraic and asymptotic properties of generating sets of
algebras over orders in number fields. Let A be an associative algebra over an
order R in an algebraic number field. We assume that A is a free R-module of fi-
nite rank. We develop a technique to compute the smallest number of generators
of A. For example, we prove that the ring M3(Z)

k admits two generators if and
only if k ≤ 768. For a given positive integer m, we define the density of the set
of all ordered m-tuples of elements of A which generate it as an R-algebra. We
express this density as a certain infinite product over the maximal ideals of R,
and we interpret the resulting formula probabilistically. For example, we show
that the probability that 2 random 3×3 matrices generate the ring M3(Z) is equal
to (ζ(2)2ζ(3))−1, where ζ is the Riemann zeta function.
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1. Introduction

Let R be a commutative ring with 1. Recall that a set S generates an associative
unital R-algebra A if the set of all monomials in the elements of S (including the
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degree-zero monomial 1) spans A as an R-module. This paper lays a foundation
for our program to investigate properties of the sets of generators of R-algebras A
whose additive group is a finitely generated R-module. A substantial part of our
results grew out of the following question: given a ring A whose additive group is
a free abelian group of finite rank and a positive integer k, what is the probability
that k random elements of A generate it as a Z-algebra? We will show that this
question can be stated in a rigorous way and that it has a very interesting answer.
The following formulas, in which ζ denotes the Riemann zeta function, are special
cases of our results (see Theorem 8.1):

• The probability that m random 2×2 matrices generate the ring M2(Z) is equal
to 1/(ζ(m− 1)ζ(m)).

• The probability that 2 random 3×3 matrices generate the ring M3(Z) is equal
to 1/(ζ(2)2ζ(3)).

• The probability that 3 random 3×3 matrices generate the ring M3(Z) is equal
to

1
ζ(2)ζ(3)ζ(4)

∏
p

(
1+

1
p2 +

1
p3 −

1
p5

)
,

where the product is taken over all prime numbers.

Our main results are obtained for algebras A over an order R in some number
field such that A is a free R-module of finite rank. It is not hard though to extend the
results to the case when R is an order in a global field of positive characteristic (we
will address this in a follow-up paper). Roughly speaking, a choice of an integral
basis of R and of a basis of A over R allows us to introduce integral coordinates
on all Cartesian powers Ak , k ∈N. For any subset S of Ak and any N we consider
the finite set S(N ) of all points whose coordinates are in the interval [−N , N ]. We
define the density den(S) of S as the limit

lim
N→∞

|S(N )|
|Ak(N )|

(we do not claim that it always exists). Our goal is to calculate the density of the
set of generators of A.

Definition 1.1. Let A be an algebra over a commutative ring R, and let k be a
positive integer. We define the set Genk(A, R) as follows:

Genk(A, R)= {(a1, . . . , ak) ∈ Ak
: a1, . . . , ak generate A as an R-algebra}.

For the rest of the introduction, we assume that R is an order in a number field
K and A is an R-algebra which is free of finite rank m as an R-module (unless
stated otherwise).
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In Theorem 3.2 we prove that the set Genk(A, R) has density, which we denote
by denk(A), and that it can be computed locally as follows:

denk(A)=
∏

p∈m-Spec R

|Genk(A/pA, R/p)|
|R/p|mk , (1)

where m-Spec R denotes the set of all maximal ideals of R. In order to prove
Theorem 3.2 we had to extend this local-to-global formula for density to a sub-
stantially larger class of sets. This led us to Theorem 3.3, which is of independent
interest and has potential applications to various other questions. Theorem 3.3
deals with a finite set f1, . . . , fs of polynomials in R[x1, . . . , xn] and the set S of
all a ∈ Rn such that the ideal generated by f1(a), . . . , fs(a) is R. It asserts that
the set S has density den(S) given by the formula

den(S)=
∏

p∈m-Spec R

(
1−

tp
|R/p|n

)
,

where tp is the number of common zeros in (R/p)n of the polynomials f1 . . . , fs

considered as polynomials over the field R/p.
As a first application of our results we answer in Section 3A the following ques-

tion posed by Ilya Kapovich: what is the probability that m random elements of
a free abelian group of rank n ≤ m generate the group? Our results provide a
rigorous proof of the following answer: the probability in question is equal to(∏m

k=m−n+1 ζ(k)
)−1, where ζ is the Riemann zeta function (when m = n this

product should be interpreted as 0).
In Section 5 we show how (1) can be used to get information about the smallest

number of generators of an R-algebra A.

Definition 1.2. Let A be a finitely generated R-algebra. By r(A, R) we denote the
smallest number of generators of A as an R-algebra.

In Theorem 5.2 we prove that if k is an integer such that k− 1≥ r0 := r(A⊗R

K , K ) and k≥ rp := r(A/pA, R/pR) for every maximal ideal p of R then denk(A)
> 0. Let r f be the largest among the numbers rp. Clearly, if denk(A) > 0 then
A can be generated by k elements. Using this remark and Theorem 5.2 we show
in Theorem 5.5 that the smallest number of generators of A coincides with rf if
rf >r0 and is either r0 or r0+1 otherwise. A special case of this result, when R=Z,
was kindly communicated to us by H. W. Lenstra (private communication, 2007).
Note that when rf = r0, we only know that r is either r0 or r0+1. Nevertheless, it
is often possible to prove that denr0(A) > 0 and conclude that r = r0. For example,
we have been unable for a long time to find the largest integer n such that the
product M3(Z)

n of n copies of the matrix ring M3(Z) admits two generators as
a Z-algebra. We knew that n ≤ 768, but any attempts to construct explicitly two
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generators for such large values of n have been beyond our computational ability.
It turns out, though, that we can prove that den2(M3(Z)

768) > 0, hence we get a
(nonconstructive) proof that n = 768 (see Theorem 8.2).

In Theorem 5.7 we extend Lenstra’s original approach to obtain a similar for-
mula for the smallest number of generators of algebras over any commutative ring
R of dimension at most 1. This formula is reminiscent of the Forster–Swan theo-
rem on the number of generators of modules over Noetherian commutative rings
[Matsumura 1986, Theorem 5.8]. By analogy with this result, in Conjecture 5.8
we propose an extension of our formula to algebras over general Noetherian rings.

In order to use (1) in concrete cases one needs to be able to compute the num-
bers |Genk(A/pA, R/p)|. This leads us to the results of Sections 6 and 7, where
we study these numbers under the assumption that A/pA is a product of matrix
algebras. After various reductions in Section 6 we derive explicit formulas for
|Genk(Mn(F), F)|, where F is a finite field and n=2, 3. Furthermore, we get a lower
bound when n > 3 (Proposition 7.9). As a corollary, we prove that if m ≥ 2 then
the probability that m matrices in Mn(Fq), chosen under the uniform distribution,
generate the Fq -algebra Mn(Fq) tends to 1 as q+m+n→∞ (see Corollary 7.10).
This result proves and vastly generalizes the conjectural formula [Petrenko and
Sidki 2007, (17), p. 27]. The case of n = 2 and some of the results of Section 6
have been discussed earlier in [Kravchenko and Petrenko 2006], which was the
starting point for the present work. This part of our paper has been influenced by
ideas of Philip Hall [1936].

In Section 8 the results of Sections 6 and 7 are applied to finite products of
matrix algebras over the ring of integers in a number field.

To state some of our remaining results, we need the following notation.

Definition 1.3. Let m, n ≥ 1 be integers and let A be an R-algebra. We introduce
the following notation:

(i) genm(A, R) is the largest k ∈ Z∪ {∞} such that r(Ak, R)≤ m;

(ii) genm,n(q)= genm(Mn(Fq), Fq);

(iii) gm,n(q)= |Genm(Mn(Fq), Fq)|.

We show in Proposition 6.2 that

genm,n(q)=
gm,n(q)
|PGLn(Fq)|

and r(Mn(Fq)
1+genm,n(q), Fq)= m+ 1 by Corollary 2.15.

Here are some special cases of our results in Section 8:

(1) genm,2(q)=
q2m−1(qm

− 1)(qm
− q)

q2− 1
.
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(2) genm(M2(Z),Z)= genm,2(2)=
22m−1(2m

− 2)(2m
− 1)

3
.

(3) genm,3(q)=
q3m−3(qm

− 1)(qm
− q)(qm

+ q)

(q − 1)2(q + 1)(q2+ q + 1)
×(q3m

− qm+2
+ q2m

− 2qm+1
− qm

+ q3
+ q2).

(4) genm(M3(Z),Z)= genm,3(2)

=
(2m
−2)(2m

−1)(2m
+2)(23m

+22m
−2m+3

−2m
+12)23m−3

21
.

The techniques we have developed so far can be applied to any finitely generated
Z-algebra whose reduction modulo every prime is a direct sum of matrix rings over
finite fields. However, among maximal orders in semisimple algebras over Q the
only such algebras are the maximal orders in matrix rings by the Hasse–Brauer–
Noether–Albert theorem. In order to extend our results to maximal orders in other
semisimple algebras we need to obtain formulas for the number of generators of
algebras over finite fields which have nontrivial Jacobson radical. This will be
done in a subsequent paper. Let us just mention here a special case, when A is
a maximal order in the quaternion algebra Q(i, j) (i2

= −1 = j2). For any odd
prime p we have A/p A ∼= M2(Fp), so A and M2(Z) differ only at the prime 2
and at infinity. Note that A/2A is a commutative algebra over F2 whose quotient
modulo the Jacobson radical is the field F4. Since F16

4 cannot be generated by two
elements, we see that A16 requires at least three generators. It can be verified that
A15 admits two generators. So A can be distinguished from M2(Z) by counting
the smallest number of generators of powers of these two algebras. Note that for
the integral quaternions Z[i, j] already Z[i, j]4 requires at least three generators.
In a subsequent paper we will extend these observations to a much larger class of
orders.

In another work in progress we apply the techniques developed in the present
paper to study generators of various nonassociative algebras. Our technique ap-
plies to any finitely generated R-module equipped with an R-bilinear form, but we
focus mainly on Lie algebras and Jordan algebras. For example, we show that the
probability that m random elements generate the Lie ring sl2(Z) of 2× 2 integer
matrices with zero trace is equal to

1
ζ(m− 1)ζ(m)

.

2. Preliminary results

Let R be a commutative ring with 1. Unless stated otherwise, all R-algebras are
assumed to be associative, unital, and finitely generated as an R-module.
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In this section we collect several fairly straightforward observations which are
used through the paper. Let A be an R-algebra. Recall that elements a1, . . . , ak

generate A as an R-algebra if all the (noncommutative) monomials in a1, . . . , ak ,
including the degree-zero monomial 1, generate A as an R-module. We say that
a1, . . . , ak strongly generate A as an R-algebra if already all the (noncommutative)
monomials in a1, . . . , ak of positive degree generate A as an R-module.

Lemma 2.1. Suppose that there exists no R-algebra homomorphism A → R/I
for any proper ideal I of R. Then any set that generates A as an R-algebra also
strongly generates A.

Proof. Suppose that a1, . . . , ak generate A as an R algebra and let J be the R
submodule of A generated by all the (noncommutative) monomials in a1, . . . , ak

of positive degree. Then R · 1+ J = A. Since J is closed under multiplication, it
is a two-sided ideal of A and A/J ∼= R/(R∩ J ). By our assumption, R∩ J cannot
be a proper ideal of R, so R · 1⊂ J and J = A. �

Example 2.2. Let the algebra A =
∏n

i=1 Mmk (R) be a finite product of matrix
algebras over R, with each mi≥2. Then any set which generates A as an R-algebra
also strongly generates A. This is a direct consequence of Lemma 2.1 and the
remark that A has no nontrivial commutative quotients.

In this paper we decided to focus on unital algebras and we do not discuss strong
generators. However most of our results can be easily modified to sets of strong
generators and algebras which are not necessarily unital. One can also reduce
questions about strong generators to generators using the following observation.
Recall that if A is an R-algebra (unital or not) we can construct a unital algebra
A(1) which is R⊕ A as an R-module with multiplication defined by (r, a)(s, b)=
(rs, ab+ rb+ sa). We have the following lemma.

Lemma 2.3. Let a1, . . . , ak ∈ A. Then the following conditions are equivalent:

(1) a1, . . . , ak strongly generate A as an R-algebra.

(2) (r1, a1), . . . , (rk, ak) generate A(1) as an R-algebra for any elements r1, . . . ,

rk ∈ R.

(3) (r1, a1), . . . , (rk, ak) generate A(1) as an R-algebra for some elements r1, . . . ,

rk ∈ R.

Proof. We identify A with the ideal {0}⊕ A in A(1). Assume (1) and let r1, . . . , rk

be in R. Since (0, ai ) = (ri , ai )− ri (1, 0), the R-subalgebra B of A(1) generated
by (r1, a1), . . . , (rk, ak) contains all monomials in (0, a1), . . . , (0, ak), hence it
contains A. Since B also contains R⊕{0}, we see that A(1)= B. Thus condition (1)
indeed implies (2). Condition (3) is clearly a consequence of (2). Assume (3)
and let C be the subalgebra of A strongly generated by a1, . . . , ak . Note that
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any monomial of positive degree in (r1, a1), . . . , (rk, ak) is of the form (r, c) for
some r ∈ R and c ∈ C . By the assumption in (3), for any a ∈ A there is r ∈ R
such that (r, a) is an R-linear combination of monomials of positive degree in
(r1, a1), . . . , (rk, ak). It follows that a ∈ C . Thus C = A, which shows that (1)
follows from (3). �

The following observation is straightforward.

Lemma 2.4. Let A be an R-algebra. For any ideal I of R we have

A(1)/I A(1) = (A/I A)(1),

where the adjunction of unity on the right is in the category of R/I -algebras.

Definition 2.5. For an R-algebra A and positive integer k we denote by Genk(A, R)
the set of all k-tuples (a1, . . . , ak) ∈ Ak which generate A as an R-algebra. When
there is no danger of confusion, we write Genk(A) for Genk(A, R).

Lemma 2.6. The elements a1, . . . , ak generate A as an R-algebra if and only if
for every maximal ideal m of R the images of a1, . . . , ak in A⊗R R/m = A/mA
generate A/mA as an R/m-algebra.

Proof. Let J be the R submodule of A generated by all the (noncommutative)
monomials in a1, . . . , ak . By [Matsumura 1986, Theorem 4.8], A = J if and only
if A/J ⊗R R/m= 0 for every maximal ideal m of R. The result follows from the
simple remark that A/J ⊗R R/m = 0 if and only if the images of a1, . . . , ak in
A/mA generate it as an R/m-algebra. �

Lemma 2.7. Let R be a field and let A be an R-algebra of dimension m. The ele-
ments a1, . . . , ak generate A as an R-algebra if and only if the (noncommutative)
monomials in a1, . . . , ak of degree < m span A as an R-vector space.

Proof. Let Ai be the subspace of A spanned by all the monomials in a1, . . . , ak of
degree ≤ i . Clearly A0 ⊆ A1 ⊆ A2 ⊆ . . . . We also see that

Ai+1 = Ai + a1 Ai + a2 Ai + · · ·+ ak Ai ,

for any i . It follows that if Ai = Ai+1 for some i , then A j = Ai for all j ≥ i . Since
dimR Am ≤ m, we must have Ai = Ai+1 for some i < m. Thus Ai = Am−1 for
all i ≥ m. This proves that a1, . . . , ak generate A as an R-algebra if and only if
A = Am−1. �

Lemma 2.8. Suppose that A can be generated by m elements as an R-module. The
elements a1, . . . , ak generate A as an R-algebra if and only if the (noncommuta-
tive) monomials in a1, . . . , ak of degree < m generate A as an R-module.
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Proof. Suppose that a1, . . . , ak generate A as an R-algebra and let Ai be the
R-submodule of A generated by all the monomials in a1, . . . , ak of degree ≤ i .
For any maximal ideal m of R the dimension of A/mA over R/m does not exceed
m. Thus A/Am−1 ⊗R R/m = 0 for every maximal ideal m of R by Lemma 2.7.
Hence A = Am−1 by [Matsumura 1986, Theorem 4.8]. �

Recall that Spec R is the set of all prime ideals of R equipped with the Zariski
topology and m-Spec R is the subspace of Spec R consisting of all maximal ideals.
For p ∈ Spec R we denote by Rp the localization of R at the prime ideal p and we
set Ap = Rp⊗R A. The residue field Rp/pRp is denoted by κ(p). Recall that κ(p)
coincides with the field of fractions of R/p.

Definition 2.9. We say that the elements a1, . . . , ak generate A at a prime ideal p of
R if their images in κ(p)⊗R A generate κ(p)⊗R A as a κ(p)-algebra. Equivalently,
a1, . . . , ak generate A at p if their images in Ap generate Ap as an Rp-algebra.

Lemma 2.10. Let a1, . . . , ak ∈ A. The set of all prime ideals p such that a1, . . . , ak

generate A at p is open.

Proof. Let B be the R submodule of A generated by all monomials in a1, . . . , ak

of degree < m, where m is such that A can be generated by m elements as an
R-module. By Lemma 2.8, the images of a1, . . . , ak in Ap generate Ap as an
Rp-algebra if and only if (A/B)p = 0. Since the support of a finitely generated
R-module is closed, the result follows. �

Corollary 2.11. For any positive integer k the set

Uk = {p ∈ Spec R : Ap can be generated by k elements as an Rp-algebra}

is open.

Proof. Suppose that Ap is generated by k elements as an Rp-algebra. We may
choose elements a1, . . . , ak in A which generate A at p. By Lemma 2.10, there is
an open neighborhood of p such that a1, . . . , ak generate A at q for each q in this
neighborhood. This shows that Uk is open. �

Proposition 2.12. Suppose that A=
∏s

i=1 Ai is a product of R-algebras A1, . . . , As

such that for any maximal ideal m of R and any i 6= j the R/m-algebras Ai⊗R R/m
and A j⊗R R/m do not have isomorphic quotients. Then Genk(A)=

∏s
i=1Genk(Ai)

under the natural identifications.

Proof. The proposition says that a sequence a1, . . . , ak of elements in A generates
A as an R-algebra if and only if for every i the projection of these sequence to
Ai generates Ai as an R-algebra. The implication to the right is clear. Since
A⊗R R/m =

∏s
i=1(Ai ⊗R R/m), Lemma 2.6 reduces the proof to the case when

R is a field. Suppose that a sequence a1, . . . , ak of elements in A has the property
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that for every i the projection of these sequence to Ai generates Ai as an R-algebra.
Let B be the R-subalgebra of A generated by a1, . . . , ak . By our assumption, the
projection πi : B → Ai is surjective. Let Ji = kerπi . Since Ai and A j have
no isomorphic quotients for i 6= j , we conclude that Ji + J j = B for i 6= j (for
otherwise, J = Ji+ J j would be a proper ideal of B and B/J would be isomorphic
to a quotient of Ai and a quotient of A j ). The Chinese remainder theorem implies
now that B = A. �

Example 2.13. Let Ai = Mni (R)
mi be the product of mi copies of the ni × ni

matrix ring over R, where ni 6= n j for i 6= j . Then for any maximal ideal m

of R we have Ai ⊗R R/m = Mni (R/m)
mi . Consider two distinct indices i, j . If

the R/m-algebras Ai ⊗R R/m and A j ⊗R R/m had isomorphic quotients, they
would have isomorphic quotients which are simple R/m-algebras. Clearly any
simple quotient of Mni (R/m)

mi is isomorphic to Mni (R/m). Since Mni (R/m)
and Mn j (R/m) are not isomorphic (they have different dimensions over R/m), we
see that the R/m-algebras Ai ⊗R R/m and A j ⊗R R/m do not have isomorphic
quotients. Therefore the assumptions of Proposition 2.12 are satisfied and

Genk

( s∏
i=1

Mni (R)
mi
)
=

s∏
i=1

Genk
(
Mni (R)

mi
)
.

Recall that in Definition 1.3 we defined genm(A, R) as the largest k such that
Ak admits m generators as an R-algebra. The following proposition implies that if
genm(A, R) is finite then genm+1(A, R) > genm(A, R).

Proposition 2.14. Let A be an R-algebra and let n be a positive integer. If An can
be generated by m elements as an R-algebra then An+1 can be generated by m+1
elements.

Proof. Let ai = (ai,1, . . . , ai,n), with i = 1, . . . ,m, generate An . Let bi = (ai,1, . . . ,

ai,n, ai,1), i = 1, . . . ,m, and set bm+1= (0, . . . , 0, 1). For any w= (w1, . . . , wn)∈

An there is a noncommutative polynomial p(x1, . . . , xm) with coefficients in R
such that w= p(a1, . . . , am). Then p(b1, . . . , bm)= (w1, . . . , wm, w1). It follows
that bm+1 p(b1, . . . , bm)= (0, . . . , 0, w1) and p(b1, . . . , bm)−bm+1 p(b1, . . . , bm)

= (w1, . . . , wm, 0). Thus the algebra generated by b1, . . . , bm+1 coincides with
An+1. �

Corollary 2.15. Let A be an R-algebra. If genm(A, R) is finite then

r(A1+genm(A,R), R)= m+ 1.

We end this section with a discussion of an effective method of checking if
given elements generate an R-algebra A. The key observation is contained in the
following simple lemma:
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Lemma 2.16. Let A be an R-algebra generated as an R-module by elements
u1, . . . , um and let k ≥ 1 be an integer. For every monomial M = M(x1, . . . , xk) in
k noncommuting variables x1, . . . , xk there are polynomials pM

j (x1,1, . . . , xk,m) ∈

R[x1,1, . . . , xk,m], j = 1, . . . ,m, such that the degree of each pM
j does not exceed

the degree of M and

M(a1, . . . , ak)=

m∑
i=1

pM
i (a1,1, . . . , ak,m)ui

whenever ai, j ∈ R satisfy ai =
∑m

j=1 ai, j u j .

Proof. There exist elements ci, j,s ∈ R, 1≤ i, j, s≤m, such that ui u j=
∑m

s=1 ci, j,sus .
Note that these elements are not unique, unless A is a free R-module with basis
u1, . . . , um (this is the case we are mainly interested in). We fix some choice of
elements ci, j,s and call them the structure constants for A. Furthermore, choose
and fix ri ∈ R, i = 1, . . . ,m, such that 1 =

∑
ri ui . We prove the lemma by

induction on the degree of M . If degree of M is 0 then M = 1 and we can choose
constant polynomials pM

i = ri . Suppose that the lemma holds for all monomials
of degree less than n and let M be a monomial of degree n. Then M = N xt for
some monomial N of degree n− 1 and some t ∈ {1, . . . , k}. If ai =

∑m
j=1 ai, j u j ,

with ai, j ∈ R, 1≤ i ≤ k, then

M(a1, . . . , ak)= N (a1, . . . , ak)

m∑
j=1

at, j u j

=

( m∑
i=1

pN
i (a1,1, . . . , am,k)ui

)( m∑
j=1

at, j u j

)
=

m∑
i=1

m∑
j=1

pN
i (a1,1, . . . , am,k)at, j

m∑
s=1

ci, j,sus

=

m∑
s=1

( m∑
i=1

m∑
j=1

pN
i (a1,1, . . . , am,k)at, j ci, j,s

)
us .

This proves that the polynomials

pM
s =

m∑
i=1

m∑
j=1

ci, j,s pN
i xt, j , s = 1, . . . ,m,

have the required properties. �

Lemma 2.17. Let A be an R-algebra which is a free R-module with a basis
u1, . . . , um and let k≥ 1 be an integer. There is a finite set T ⊆ R[x1,1, . . . , xk,m] of
polynomials of degree not exceeding m2 such that for any commutative R-algebra
S the following two conditions are equivalent:
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(i) The elements ai =
∑m

j=1 ai, j ⊗ u j , 1 ≤ i ≤ k, of S ⊗R A, where ai, j ∈ S,
generate S⊗R A as an S-algebra.

(ii) The ideal of S generated by all the values f (a1,1, . . . , ak,m), where f ∈ T ,
coincides with S.

Proof. Consider polynomials pM
j described in Lemma 2.16. It is clear that the same

polynomials (or rather their images in S[x1,1, . . . , xk,m]) work for the S algebra
S⊗R A and its generators 1⊗u1, . . . , 1⊗um . Let M=M(xi, j ) be the matrix whose
rows are labeled in some way by the monomials M of degree<m in noncommuting
variables x1, . . . , xk , and whose row with label M is(

pM
1 (x1,1, . . . , xk,m), . . . , pM

m (x1,1, . . . , xk,m)
)
.

The m × m minors of M are polynomials in R[x1,1, . . . , xk,m] of degree ≤ m2.
Consider the set T of all these minors. Consider elements ai =

∑m
j=1 ai, j ⊗ u j

in S ⊗R A, where ai, j ∈ S and 1 ≤ i ≤ k. Let B be the set of all elements of
the form M(a1, . . . , ak), where M is a monomial of degree < m. By Lemmas 2.8
and 2.6, the elements a1, . . . , ak generate S⊗R A as an S-algebra if and only if for
every maximal ideal m of S, the image of the set B in S⊗R A/m(S⊗R A) spans
the S/m-vector space S ⊗R A/m(S ⊗R A). This is equivalent to saying that the
reduction modulo m of the matrix M(ai, j ) has rank m, which in turn is equivalent
to the condition that at least one of the m×m minors of M(ai, j ) does not belong to
m. Thus the set T of all the m×m minors of M(xi, j ) has the required property. �

3. The density of the set of ordered k-tuples which generate an algebra

The results of this section arose from our attempt to answer the following question:
what is the probability that k random elements of a ring A, whose additive group is
free of finite rank, generate A as a ring. Before we answer this question, we need
to make it more precise. We will discuss it in a slightly more general context.

Throughout this section K will be a number field of degree d over Q, with the
ring of integers OK . We work with an order R in K , that is, R is a subring of K
which is free of rank d as a Z-module. We fix an integral basis w1, . . . , wd of R
over Z. Any element r of R can be uniquely written as r =

∑
riwi with ri ∈ Z.

For a positive integer N we denote by R(N ) the set of all r ∈ R such that |ri | ≤ N
for all i . Clearly |R(N )| = (2N + 1)d .

Let A be an R-algebra which is free of finite rank m as an R-module. Fix a
basis e1, . . . , em of A over R. This choice allows us to identify A and Rm . Using
this identification we define A(N ) as Rm(N ), so |A(N )| = (2N +1)dm . We define
the density denk(A) of the set of k generators of A as an R-algebra as follows.

Definition 3.1. denk(A)= lim
N→∞

|Genk(A)∩ A(N )k |
(2N + 1)dmk .
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At the moment it is not clear whether the limit on the right in the last formula
exists. We will show, however, that it exists and is independent of the choice of an
integral basis of R and the choice of a basis of A over R.

Consider a maximal ideal p of R. We denote by Fp the field R/p and by N(p)
its cardinality. Recall that we say that elements a1, . . . , ak of A generate A at p if
their images in A⊗R Fp generate A⊗R Fp as an Fp-algebra. Let gk(p, A) be the
cardinality of the set Genk(A⊗R Fp). In other words, gk(p, A) is the number of
k-tuples of elements of A⊗R Fp which generate A⊗R Fp as an Fp-algebra. It is
not hard to see that the density of the set Genk(p, A) of all k-tuples in Ak which
generate A at p is

lim
N→∞

|Genk(p, A)∩ A(N )k |
(2N + 1)dmk =

gk(p, A)
N (p)mk .

Note that by Lemma 2.6, a given k-tuple of elements of A generates it as an
R-algebra if and only if it generates A at p for every maximal ideal p of R. Suppose
now that the events “generate at p” are independent for different maximal ideals
(we use this notion in a very intuitive sense here, just to motivate our result). It
would mean that the probability that random k elements of A generate it as an
R-algebra is the product of the numbers gk(p, A)/N(p)mk over all maximal ideals
p of R. One of the main results of this section is a rigorous proof that this is indeed
true. In other words, we prove the following theorem.

Theorem 3.2. Let A be an R-algebra which is free of rank m as an R-module and
let k > 0 be an integer. For a maximal ideal p of R denote by gk(p, A) the number
of k-tuples of elements of A⊗R Fp which generate A⊗R Fp as an Fp-algebra. Then

denk(A)=
∏

p∈m-Spec R

gk(p, A)
N(p)mk . (2)

This result establishes in particular the existence and independence of all the
choices of the limit defining the quantity denk(A).

We will derive Theorem 3.2 as a consequence of a more general result. To
this end consider the set T = { f1, . . . , fs} of polynomials in R[x1,1, . . . , xk,m]

established in Lemma 2.17 (under our choice of a basis of A over R). We identify
Ak with the set Rmk so that a tuple (a1, . . . , ak) ∈ Ak corresponds to (ai, j ) ∈ Rmk

if and only if ai =
∑m

j=1 ai, j e j . Note that according to Lemma 2.17, the element
a = (ai, j ) ∈ Rmk corresponds to a k-tuple in Genk(A) if and only if the ideal
of R generated by the elements f1(a), . . . , fs(a) coincides with R. Moreover, a
corresponds to a k-tuple which generates A at p if and only if fi (a) 6∈ p for some i .
It follows that gk(p, A) = N(p)mk

− tp, where tp is the number of solutions to
f1 = · · · = fs = 0 over the finite field Fp. It is clear now that Theorem 3.2 is a
consequence of the following result.



Smallest number of generators and the probability of generating an algebra 255

Theorem 3.3. Let R be an order in a number field K and let T = { f1, . . . , fs} ⊂

R[x1, . . . , xn] be a finite set of polynomials. Define

S= S(T )={x= (x1, . . . , xn)∈ Rn
: the ideal generated by f1(x), . . . , fs(x) is R}.

For each maximal ideal p of R let tp be the number of solutions to f1= · · ·= fs = 0
over the finite field Fp = R/p. For a positive integer N let SN = SN (T )= {x ∈ S :
xi ∈ R(N ), i = 1, 2, . . . , n}. Then

lim
N→∞

|SN |

(2N + 1)dn =
∏

p∈m-Spec R

(
1−

tp
N(p)n

)
. (3)

A proof of Theorem 3.3 is given in the next section. Note that for s = 2, R = Z,
and polynomials f1 and f2 that do not have a nonconstant common factor this
result was proved in [Poonen 2003] in a slightly more general form (there the limit
is taken over boxes whose sides all increase to infinity; here we only deal with boxes
which are cubes). Poonen’s result was inspired by [Ekedahl 1991], where a similar
result has been established. Arnold [2009] considers the set of pairs of relatively
prime integers as a subset of Z2 and proves that its density can be computed by
using sets of the form nG, where G is any polygon (so our case corresponds to G
being the square |x | ≤ 1, |y| ≤ 1). He calls subsets of Z2 (or, more generally, of
Zn) which have this property uniformly distributed. In a subsequent paper we will
discuss uniform distribution of sets of the type S(T ).

We end this section with an application of our theorems.

3A. The probability that k random elements generate the group Zn. In his work
on generic properties of one-relator groups Ilya Kapovich was led to the following
question: what is the probability that several randomly chosen elements generate
the group Zn . Even though there is a fairly simple heuristic argument which leads
to an answer, neither Kapovich nor we have been able to find a reference containing
a proof. The techniques developed in this paper allow us, in particular, to give a
rigorous answer to Kapovich’s question. The key observation is contained in the
following lemma.

Lemma 3.4. Let V be an n-dimensional vector space over the finite field Fq . The
number αm,n = αm,n(q) of m-tuples of elements in V that span V is equal to∏n−1

i=0 (q
m
− q i ).

Proof. For m < n the formula is obviously true as it yields 0 and there are no
m-tuples which span V . The number αn,n equals the number of bases of V , which
is well known to be equal to |GLn(Fq)| =

∏n−1
i=0 (q

n
− q i ). This establishes the

result for m = n. Note now that v1, . . . , vm span V if and only if the images of
v2, . . . , vm in V/〈v1〉 span V/〈v1〉. Given v ∈ V , we count the number of m-tuples
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which span V and start with v1 = v. If v = 0 this number is clearly αm−1,n . If
v 6= 0, then there are αm−1,n−1 (m − 1)-tuples which span V/〈v〉 and each such
tuple lifts to qm−1 (m − 1)-tuples from V . Thus we get qm−1αm−1,n−1 m-tuples
which span V and start at v. Since there are qn

−1 nonzero elements in V , we get
the following recursive formula:

αm,n = αm−1,n + qm−1(qn
− 1)αm−1,n−1.

The recursive formula and a straightforward induction on m+n finish the proof. �

Theorem 3.5. Let R be an order in a number field. Define

ζR(s)=
∏

p∈m-Spec(R)

(1− |R/p|−s)−1.

For any k ≥ n the density of the set of k-tuples that generate the R-module Rn is
equal to

k∏
m=k−n+1

ζR(m)−1.

Proof. Consider Rn as an R-algebra with trivial multiplication and let A be obtained
from Rn by the construction of adjunction of unity (in the category of R-algebras).
By Lemma 2.3 we see that the density of the set of k-tuples which generate the
R-module Rn is the same as the density denk(A) of the set of k-tuples which gener-
ate the R-algebra A. By Lemmas 2.3 and 2.4, we have gk(p, A)=N(p)kαk,n(N(p)).
By Theorem 3.2 and Lemma 3.4 we obtain the formula

denk(A)=
∏

p∈m-Spec R

∏n−1
i=0 (N(p)

k
−N(p)i )

N(p)nk =

k∏
m=k−n+1

ζR(m)−1. �

The answer to Ilya Kapovich’s question is therefore given by the following
corollary.

Corollary 3.6. The probability that k randomly chosen elements generate the group
Zn is equal to

∏k
m=k−n+1 ζ(m)

−1, where ζ is the Riemann zeta function.

This corollary can also be derived directly from Theorem 3.3.

4. Proof of Theorem 3.3

Let us start by recalling some of the notation set down in the previous section.
R is an order in a number field K . The degree of K over Q is d and OK is the
ring of integers of K (that is, the integral closure of R in K ). We fix an integral
basis w1, . . . , wd of R over Z. Any element r of R can be uniquely written as
r =

∑d
i=1 riwi with ri ∈ Z. For a positive integer N we denote by R(N ) the set

of all r ∈ R such that |ri | ≤ N for all i . Clearly |R(N )| = (2N + 1)d . The norm
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map from K to Q is denoted by NK/Q. For an ideal I of R we set NK/Q(I ) for
the nonnegative integer which is the greatest common divisor of the norms of all
elements in I . We write N(I ) for the cardinality of R/I . If p is a maximal ideal
of R then we write Fp for the field R/p.

The following lemma is well known but for the readers convenience we include
a short proof.

Lemma 4.1. Let F be a finite field with q elements and let f (x1, . . . , xn) be a
nonzero polynomial in F[x1, . . . , xn]. Then the number of solutions of the equation
f (x1, . . . , xn)= 0 in Fn does not exceed (deg f )qn−1.

Proof. We proceed by induction on n. For n = 1 this is just the statement that a
polynomial f in one variable over a field has at most deg f roots. Suppose now that
the result holds for polynomials in less than n variables and let f (x1, . . . , xn) =∑d

i=0 fi (x1, . . . , xn−1)x i
n be a polynomial in n variables with fd 6= 0. By the

inductive assumption, the number of solutions to fd = 0 in Fn does not exceed
(deg fd) · qn−2

· q = (deg fd)qn−1. For each (a1, . . . , an−1) ∈ Fn−1 such that
fd(a1, . . . , an−1) 6= 0 there are at most d solutions to f (a1, . . . , an−1, xn) = 0.
Thus we have at most (deg fd)qn−1

+dqn−1
≤ (deg f )qn−1 solutions to f = 0. �

Proposition 4.2. Let f (x1, . . . , xn) ∈ Z[x1, . . . , xn] be a nonzero polynomial. Set

Z( f, N )= {(x1, . . . , xn) ∈ Zn
: |xi | ≤ N and f (x1, . . . , xn)= 0}.

Then |Z( f, N )| ≤ (deg f )(2N + 1)n−1.

Proof. We proceed by induction on n. For n = 1 the result is straightforward.
Now assume the results for polynomials in less than n variables and consider a
polynomial f (x1, . . . , xn)=

∑d
i=0 fi (x1, . . . , xn−1)x i

n in n variables with fd 6= 0.
By the inductive assumption, the number of elements in Z( f, N ) for which fd = 0
does not exceed (deg fd) · (2N + 1)n−2

· (2N + 1). For each (a1, . . . , an−1) such
that fd(a1, . . . , an−1) 6= 0 there are at most d solutions to f (a1, . . . , an−1, xn)= 0.
Thus we have at most (deg fd)(2N+1)n−1

+d(2N+1)n−1
≤ (deg f )(2N+1)n−1

elements in Z( f, N ). �

Corollary 4.3. Let f ∈ R[x1, . . . , xn] be a polynomial of positive degree deg f >0.
For a nonzero ideal J of R define

I ( f, J, N )= {(x1, . . . , xn) ∈ R(N )n : J ⊆ f (x1, . . . , xn)R}.

Then |I ( f, J, N )| ≤ δ(J )d(deg f )(2N + 1)dn−1, where δ(J ) is the number of in-
tegral divisors of the norm NK/Q(J ).
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Proof. Write xi =
∑d

j=1 yi, jw j . If J ⊆ f (x1, . . . , xn)R then NK/Q( f (x1, . . . , xn))

divides NK/Q(J ). There is a polynomial g(yi, j ) ∈ Z[y1,1, y1,2, . . . , yn,d ] of degree
(deg f )d in dn variables such that

NK/Q
(

f (x1, . . . , xn)
)
= g(yi, j ).

The result follows now from Proposition 4.2 applied to each of the polynomials
g− k, where k varies over all divisors of NK/Q(J ). �

Theorem 4.4. Let f ∈ R[x1, . . . , xn] be a polynomial of positive degree. For each
maximal ideal p of R let fp be the number of solutions to f = 0 over the finite
field Fp. Then the series

∑
p∈m-Spec R

fp/N(p)n diverges.

Proof. Replacing R by OK changes only a finite number of terms in the sum∑
p fp/N(p)n . It suffices then to prove the theorem under the additional assump-

tion that R = OK .
Let L be a number field containing K , with ring of integers S, and such that

f has an absolutely irreducible divisor g ∈ S[x1, . . . , xn] of positive degree (so
f/g ∈ L[x1, . . . , xn]). It is known that the reduction of g modulo all but a finite
number of prime ideals of S is absolutely irreducible (see [Schmidt 1976, V.2]).
For a maximal ideal P of S let gP be the number of solutions to g = 0 in (S/P)n .
By [Schmidt 1976, V, Theorem 5A], we have

gP ≥
1
2 |S/P|n−1

=
1
2 N(P)n−1

provided the reduction of g modulo P is absolutely irreducible and N(P) is suffi-
ciently large, which holds for all but a finite number of maximal ideals of S.

Let 8 be the set of maximal ideals of S which have inertia degree one over R
and let 9 be the set of all prime ideals of R which lie under the ideals of 8. Let
P ∈8 be a prime ideal of S over p ∈9. Then S/P = Fp. It follows that fp ≥ gP

except possibly for a finite number of P for which f/g is not P-integral. Since
each maximal ideal of R lies under at most [L : K ] prime ideals of S we get that∑
p∈m-Spec R

fp
N(p)n

≥

∑
p∈9

fp
N(p)n

≥
1

[L : K ]

∑
P∈8

N(P)�0

gP

N(P)n
≥

1
2[L : K ]

∑
P∈8

N(P)�0

1
N(P)

.

It is well known that the set 8 has Dirichlet density equal to 1 [Narkiewicz 1990,
7.2, Corollary 3]; in particular

∑
P∈8 1/N(P) diverges. �

Corollary 4.5. Under the assumptions of Theorem 3.3, if the polynomials in T
have a common divisor of positive degree in K [x1, . . . , xn] then both sides of (3)
are 0. In particular, Theorem 3.3 is true in this case.
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Proof. Let f ∈ R[x1, . . . , xn] be a polynomial of positive degree which divides
all fi in the ring K [x1, . . . , xn]. There is a nonzero a in R such that a fi/ f is in
R[x1, . . . , xn] for all i . It follows that SN (T )⊆ I ( f, a R, N ). By Corollary 4.3,

|SN |

(2N + 1)dn ≤
|I ( f, a R, N )|
(2N + 1)dn ≤

δ(a R)d(deg f )
2N + 1

,

so the left-hand side of (3) is 0.
For any maximal ideal p of R which does not divide a we have tp ≥ fp. It

follows from Theorem 4.4 that
∑

p∈m-Spec R tp/N(p)n diverges. This is equivalent
to the right-hand side of (3) being 0. �

Lemma 4.6. Let p be a maximal ideal of R with N(p) = ps , where p is the char-
acteristic of Fp. Then any element of Fp lifts to at most (2N + 1)d−s(1+ 2N/p)s

elements in R(N ).

Proof. We may assume (after renumbering, if necessary) that w1, . . . , ws is a basis
of Fp over Fp. Consider a residue class a∈Fp. To get an element

∑d
i=1 yiwi ∈ R(N )

in the given residue class a we may choose arbitrarily integers ys+1, . . . , yd in
[−N , N ] and then the residue classes of y1, . . . , ys modulo p are uniquely deter-
mined. Thus each yi , i ≤ s, can be chosen in at most 1+ 2N/p ways. �

Lemma 4.7. Let f ∈ R[x1, . . . , xn−1], g= g0xk
n+· · ·+gk ∈ R[x1, . . . , xn], where

g0, . . . , gk ∈ R[x1, . . . , xn−1] and g0 6= 0. Consider the set

D(N )=
{
(x1, . . . , xn) ∈ R(N )n : f (x1, . . . , xn−1) 6= 0 and there exists

a maximal ideal p with N(p) > N and such that f (x1, . . . , xn−1) ∈ p,

g(x1, . . . , xn) ∈ p, and g0(x1, . . . , xn−1) 6∈ p
}
.

Then there is a constant c such that |D(N )| ≤ c(2N + 1)dn−1 for all N .

Proof. There are positive integers w and c1 such that

|NK/Q f (x1, . . . , xn−1)| ≤ c1 Nw,

for any N ≥ 1 and any xi ∈ R(N ), i = 1, . . . , n−1. If N > c1 and f (x1, . . . , xn−1)

is nonzero, then f (x1, . . . , xn−1) belongs to at most w maximal ideals p such that
N(p) > N . In fact, if there were more than w maximal ideals in R with norm
exceeding N which contain f (x1, . . . , xn−1) then f (x1, . . . , xn−1) would belong
to at least w+1 maximal ideals of OK of norm exceeding N and this would imply
that |NK/Q f (x1, . . . , xn−1)|> Nw+1, which is not possible. Let

G(N , p)=
{
(x1, . . . , xn−1) ∈ R(N )n−1

: f (x1, . . . , xn−1) ∈ p−{0}
}
.

Thus, if N > c1 and (x1, . . . , xn−1) ∈ R(N )n−1, then there are at most w maximal
ideals p such that N(p) > N and (x1, . . . , xn−1) ∈ G(N , p). Let N > c1. Fix a
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point (x1, . . . , xn−1) ∈ R(N )n−1 and let p be a maximal ideal such that N(p) > N
and (x1, . . . , xn−1) ∈ G(N , p). We want to find an upper bound for the number
of xn ∈ R(N ) such that g(x1, . . . , xn) ∈ p and g0(x1, . . . , xn−1) 6∈ p. All such xn

split into at most k residue classes modulo p (which correspond to the roots of
g(x1, . . . , xn−1, x)= 0 in Fp). Let N(p)= ps , where p= char Fp. By Lemma 4.6,
the number of xn ∈ R(N ) which belong to a given residue class modulo p is at
most

(2N + 1)d−s max
(
2, 2(2N + 1)/p

)s
≤max

(
2s(2N + 1)d−s, 2s(2N + 1)s/ps)

≤ 3 · 2s
· (2N + 1)d−1

(we have used the inequalities 1+ 2N/p ≤ max(2, 2(2N + 1)/p) and ps > N ≥
(2N + 1)/3). It follows that there are at most w · k · 3 · 2s(2N + 1)d−1 values of
xn ∈ R(N ) such that (x1, . . . , xn) ∈ D(N ). Hence, if N > c1, then

|D(N )| ≤ (2N + 1)d(n−1)
·w · k · 3 · 2s

· (2N + 1)d−1
≤ c(2N + 1)dn−1,

where c = 3 · 2s
· w · k. We can increase c if necessary so that the inequality

|D(N )| ≤ c(2N + 1)dn−1 holds for all N . �

Lemma 4.8. Let f be a nonzero polynomial in R[x1, . . . , xn−1] and let

g = g0xk
n + · · ·+ gk ∈ R[x1, . . . , xn],

where g0, . . . , gk ∈ R[x1, . . . , xn−1], g0 6= 0. For a maximal ideal p of R consider
the set

Dp(N )= {(x1, . . . , xn) ∈ R(N )n : f (x1, . . . , xn−1) ∈ p,

g(x1, . . . , xn) ∈ p, and g0(x1, . . . , xn−1) 6∈ p}.

Then, if N(p)≤ N and the reduction of f modulo p is not zero, we have

|Dp(N )| ≤ 2nd(deg f )k(2N + 1)nd/N(p)2.

Proof. The image Zp of Dp(N ) in Fn
p consists of (some) solutions to f =0= g in Fn

p

(we use the same notation for a polynomial and its reduction modulo p). Now f =0
has at most (deg f )N(p)n−2 solutions in Fn−1

p (Lemma 4.1) and each such solution
extends to at most k solutions of g=0, g0 6=0 in Fn

p. Thus |Zp|≤ (deg f )k N(p)n−2.
Each element of Zp lifts to no more that [(2N + 1)d−s(1+ 2N/p)s]n elements of
Dp(N ) by Lemma 4.6, where N(p)= ps . Thus

|Dp(N )| ≤ (deg f )k N(p)n−2
[(2N + 1)d−s(1+ 2N/p)s]n

≤ (deg f )k N(p)n−2(2N + 1)n(d−s)
[2s(2N + 1)s/ps

]
n

≤ 2nd(deg f )k N(p)n−2(2N + 1)nd/N(p)n

= 2nd(deg f )k(2N + 1)nd/N(p)2. �
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Proposition 4.9. Let f, g ∈ R[x1, . . . , xn] be polynomials which are relatively
prime as polynomials in K [x1, . . . , xn]. Define

WM =WM( f, g)= {r= (r1, . . . , rn) ∈ Rn
: there is a maximal ideal p of R,

with N(p) > M and such that f (r) ∈ p and g(r) ∈ p}.

There is a constant c > 0 such that

|WM ∩ R(N )n| ≤ c
(2N + 1)nd

M
for any integers N > M ≥ 1.

Proof. We use induction on the number n of variables. Note that if f and g are
polynomials in n variables for which the result holds, then it also holds for f and
g considered as polynomials in n + 1 variables. When n = 0 the result is clear.
Suppose the result is true for less than n ≥ 1 variables. Consider two relatively
prime (in K [x1, . . . , xn]) polynomials f, g ∈ R[x1, . . . , xn].

The first step is to establish the proposition under the additional assumption
that f is irreducible in K [x1, . . . , xn] and does not depend on xn (that is, f is in
R[x1, . . . , xn−1]). Let g = g0xk

n + · · · + gk , where g0, . . . , gk ∈ R[x1, . . . , xn−1],
g0 6= 0. We fix f and proceed by induction on the degree k of g in xn . If k = 0
then g ∈ R[x1, . . . , xn−1] and the result follows by our inductive assumption that
the proposition holds for polynomials in n− 1 variables. Suppose that k > 0 and
the result holds for all polynomials g whose degree in xn is less than k (and which
are relatively prime to f ). We may write ag =

∏
hi for some nonzero a in R and

polynomials hi ∈ R[x1, . . . , xn] which are irreducible in K [x1, . . . , xn]. Note that
WM( f, g) ⊆

⋃
WM( f, hi ). Thus, if we show the proposition for each pair f, hi ,

then it will also hold for the pair f, g. In other words, we may assume that g is
irreducible in K [x1, . . . , xn]. If f |g0 in K [x1, . . . , xn−1], then there is a nonzero
u ∈ R such that f |ug0 in R[x1, . . . , xn−1]. It follows that

WM( f, g)⊆WM( f, u(g− g0xk
n))

for all M . Since u(g− g0xk
n) has degree in xn smaller than k, the result holds for

f, u(g− g0xk
n) by our inductive assumption and therefore it also holds for the pair

f, g. Thus we may assume that f does not divide g0 in K [x1, . . . , xn−1]. Since f
is irreducible, f and g0 are relatively prime in K [x1, . . . , xn−1]. For N > M we
have

WM( f,g)∩ R(N )n⊆(WM( f,g0)∩ R(N )n)∪ Z( f,N )∪D(N )∪
⋃

p:M<N(p)≤N

Dp(N ),

where
Z( f, N )= {r= (r1, . . . , rn) ∈ R(N )n : f (r)= 0},
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D(N )=
{
r ∈ R(N )n : there is a maximal ideal p such that N(p) > N ,

f (r) ∈ p−{0}, g(r) ∈ p, and g0(r) 6∈ p
}
,

Dp(N )= {r ∈ R(N )n : f (r) ∈ p, g(r) ∈ p, g0(r) 6∈ p}.

By our inductive assumption that the proposition holds for polynomials in n − 1
variables, there is c1 > 0 such that |WM( f, g0)∩ R(N )n| ≤ c1(2N + 1)dn/M for
any integers N > M ≥ 1. Note that if f (r)= 0 then ( f − 1)(r)R = R. It follows
by Corollary 4.3 applied to the polynomial f − 1 and the ideal J = R that

|Z( f, N )| ≤ δ(R)d(deg f )(2N + 1)dn−1
≤ c2

(2N + 1)dn

M

for some c2 > 0 and all N > M ≥ 1. Lemma 4.7 assures the existence of c3 > 0
such that |D(N )| ≤ c3(2N + 1)dn−1

≤ c3(2N + 1)dn/M . Finally, by Lemma 4.8,
there are constants c4 > 0, c5 > 0 such that∣∣∣∣ ⋃
p:M<N(p)≤N

Dp(N )
∣∣∣∣≤ ∑

p:M<N(p)≤N

|Dp(N )| ≤
∑

p:M<N(p)≤N

2nd(deg f )d
(2N + 1)nd

N(p)2

≤ c4(2N + 1)nd
∑

p:M<N(p)

N(p)−2
≤ c4(2N + 1)ndd

∑
m>M

1
m2 ≤ c5

(2N + 1)nd

M
.

It follows that |WM( f, g)∩R(N )n| ≤ c(2N+1)nd/M , where c= c1+c2+c3+c5.
This completes our first step, that is, establishes the proposition under the additional
assumption that f is irreducible in K [x1, . . . , xn] and does not depend on xn .

Our second step is to prove the proposition when both f and g are irreducible
in K [x1, . . . , xn]. Consider f and g as polynomials in xn with coefficients in
R[x1, . . . , xn−1]. If one of these polynomials does not depend on xn , the proposi-
tion holds by our first step. Suppose that the degrees with respect to xn of both f
and g are positive. Let r =Res( f, g) be the resultant of f and g, so r is a nonzero
polynomial in R[x1, . . . , xn−1]. Recall that r = a f + bg for some polynomials
a, b ∈ R[x1, . . . , xn] (see [Cox et al. 2005, §3.1] for a nice account of properties
of resultants). It follows that WM( f, g) ⊆ WM( f, r) ∩ WM(g, r). Since f and
g are irreducible, g and r have no common factor in K [x1, . . . , xn] (otherwise g
would not depend on xn). We may write ar =

∏
ri , where ri ∈ R[x1, . . . , xn−1]

are irreducible in K [x1, . . . , xn−1] and a ∈ R is nonzero. Clearly WM( f, g) ⊆
WM(r, g) ⊆

⋃
WM(ri , g). Since the proposition holds for each pair ri , g by the

first step, it also holds for the pair f, g.
Finally, without any additional assumptions, we may write a f =

∏
fi , bg =∏

gi , where fi , g j ∈ R[x1, . . . , xn] are irreducible in K [x1, . . . , xn] and a, b ∈
R− {0}. Clearly WM( f, g) ⊆

⋃
WM( fi , g j ). Since the result holds for each pair

fi , g j , it also holds for f, g. �
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Corollary 4.10. Let T={ f1, . . . , fs} be a finite set of polynomials in R[x1, . . . , xn]

which do not have any common nonconstant divisor in K [x1, . . . , xn]. Define

WM =WM(T )= {r= (r1, . . . , rn) ∈ Rn
: there is a maximal ideal p of R

with N(p) > M and such that f (r) ∈ p for every f ∈ T }.

There is a constant c > 0 such that |WM ∩ R(N )n| ≤ c(2N + 1)nd/M for any
integers N > M ≥ 1.

Proof. We may write di fi =
∏

fi, j , where fi, j ∈ R[x1, . . . , xn] are irreducible in
K [x1, . . . , xn] and di ∈ R are nonzero. Then

WM ⊆
⋃

WM( f, g),

where the union is over all pairs f, g such that f and g are among the polynomials
fi, j and are relatively prime. Thus the result follows by Proposition 4.9. �

Corollary 4.10 is the main ingredient in our proof of Theorem 3.3. In fact, the
proof now reduces to a fairly straightforward application of the inclusion-exclusion
formula and the Chinese remainder theorem. For the benefit of the reader we
provide a detailed argument.

Lemma 4.11. Let I be a nonzero ideal of R. If m is a positive integer such that
m R ⊆ I then

(2N −m)d

N(I )
≤ |(a+ I )∩ R(N )| ≤

(2N +m)d

N(I )

for any a ∈ R and any N such that 2N ≥ m.

Proof. The ideal I is a union of md/N(I ) cosets of m R. Thus any coset of I is
also a union of md/N(I ) cosets of m R. Any coset H of m R is of the form

d∑
i=1

aiwi +m R,

where 0 ≤ ai < m. The elements of H ∩ R(N ) are exactly those of the form∑d
i=1(ai +mbi )wi with |ai +mbi | ≤ N . Thus (−N − ai )/m ≤ bi ≤ (N − ai )/m.

Recall now that an interval of length l has at least l − 1 and at most l + 1 integers
in it. It follows that (2N/m−1)d ≤ |H ∩ R(N )| ≤ (2N/m+1)d . Since a+ I is a
disjoint union of md/N(I ) cosets of m R, the result follows. �

Lemma 4.12. Let I be a nonzero ideal of R. If V is a subset of (R/I )n and V (N )
is the set of elements of R(N )n whose image in (R/I )n belongs to V then

lim
N→∞

|V (N )|
(2N + 1)nd =

|V |
N(I )n

.
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Proof. Since both sides of the equality are additive for disjoint unions, it suffices
to prove the lemma for sets V which contain only one element. In this case, there
are cosets a1+ I, . . . , an + I of I such that

V (N )=
(
(a1+ I )∩ R(N )

)
× · · ·×

(
(an + I )∩ R(N )

)
.

There is a positive integer m such that m R ⊆ I . By Lemma 4.11, we have

(2N −m)dn

N(I )n
≤ |V (N )| ≤

(2N +m)dn

N(I )n

provided 2N ≥m. Dividing by (2N+1)dn and passing to the limit when N→∞,
we get the result. �

Proof of Theorem 3.3. If the polynomials in T have a common divisor in K [x1, . . . ,

xn] the theorem holds by Corollary 4.5. Thus we may assume that elements of T
do not have any common nonconstant divisor in K [x1, . . . , xn]. For a prime ideal
p of R define

Dp = {r= (r1, . . . , rn) ∈ Rn
: f (r) ∈ p for every f ∈ T }.

Let 8 be a finite set of maximal ideals of R. For any subset 9 of 8 we denote by
I (9) the intersection of all the ideals in 9. Note that

D9 :=

⋂
p∈9

Dp = {r= (r1, . . . , rn) ∈ Rn
: f (r) ∈ I (9) for every f ∈ T }.

Let V9 be the image of D9 in (R/I (9))n . Thus V9 is simply the set of all com-
mon zeros in (R/I (9))n of the polynomials in T . By the Chinese remainder
theorem, we have R/I (9) ∼=

∏
p∈9 R/p and under this identification we have

V9 =
∏

p∈9 Vp. It follows that |V9 | =
∏

p∈9 tp. Applying Lemma 4.12 to the set
V9 and observing that V9(N )= D9 ∩ R(N )n we get

lim
N→∞

|D9 ∩ R(N )n|
(2N + 1)nd =

∏
p∈9 tp

N(I (9))n
=

∏
p∈9

tp
N(p)n

.

Let W8 be the complement of the union
⋃

p∈8 Dp in Rn . The inclusion-exclusion
principle yields the following formula:

|W8 ∩ R(N )n| =
∑
9⊆8

(−1)|9||D9 ∩ R(N )n|

(where D∅ = Rn), from which we immediately conclude that

lim
N→∞

|W8 ∩ R(N )n|
(2N + 1)nd =

∑
9⊆8

(−1)|9|
∏
p∈9

tp
N(p)n

=

∏
p∈8

(
1−

tp
N(p)n

)
.



Smallest number of generators and the probability of generating an algebra 265

Suppose now that 8 is the set of all prime ideals of norm ≤ M . Note that

S(T )⊆W8 ⊆ S(T )∪WM(T ),

where WM(T ) is defined in Corollary 4.10 and S(T ) in Theorem 3.3. Thus

|W8 ∩ R(N )n| − |WM(T )∩ R(N )n| ≤ |S(T )∩ R(N )n| ≤ |W8 ∩ R(N )n|.

Note that Corollary 4.10 implies that

0≤ lim inf
N→∞

|WM(T )∩ R(N )n|
(2N + 1)dn ≤ lim sup

N→∞

|WM(T )∩ R(N )n|
(2N + 1)dn ≤

c
M
.

This yields∏
p:N(p)≤M

(
1−

tp
N(p)n

)
−

c
M
≤ lim inf

N→∞

|S(T )∩ R(N )n|
(2N + 1)dn

≤ lim sup
N→∞

|S(T )∩ R(N )n|
(2N + 1)dn ≤

∏
p:N(p)≤M

(
1−

tp
N(p)n

)
.

Letting M go to infinity we see that

lim
N→∞

|S(T )∩ R(N )n|
(2N + 1)dn =

∏
p∈m-Spec R

(
1−

tp
N(p)n

)
. �

5. The smallest number of generators

Let us return to our discussion of generators of algebras. We first show an appli-
cation of Theorem 3.2. Let A be an algebra over a commutative ring R, which is
finitely generated as an R-module.

Definition 5.1. We denote by r = r(A)= r(A, R) the smallest number of elements
which are needed to generate A as an R-algebra.

For a prime ideal p of R define

rp = rp(A)= r
(

A⊗R κ(p), κ(p)
)
,

where κ(p)= Rp/pRp is the field of fractions of R/p.

Note that rp is the smallest number of generators of Ap as an Rp-algebra by
Lemma 2.6. Clearly rp ≤ r for every p ∈ Spec R and rp ≤ rq whenever p ⊆ q by
Corollary 2.11. The first main result of this section is the following theorem.

Theorem 5.2. Let R be an order in a number field K and let A be an R-algebra
which is free as an R-module. Suppose that k ≥ rp for all prime ideals p of R and
k ≥ 1+ r0. Then denk(A) > 0. In particular, k ≥ r .
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Our proof of Theorem 5.2 will use the following nice result, often called the
Loomis–Whitney inequality [Loomis and Whitney 1949].

Lemma 5.3. Let T be a finite set, D a subset of T s , and let Di be the projection of
D to T s−1 along the i-th coordinate. Then |D|s−1

≤
∏s

i=1|Di |.

As a corollary we get the following lemma.

Lemma 5.4. Let F be a finite field with q elements. Suppose that an m-dimensional
F-algebra A can be generated by r elements as an F-algebra. For k ≥ r let ngk
be the number of k-tuples in Ak which do not generate A as an F-algebra. Then
ngk ≤ m2k/r qmk−k/r for any k > r .

Proof. Let D(k) ⊆ Ak be the set of all k-tuples which do not generate A as an
F-algebra. For each i the projection D(k)i ⊆ Ak−1 of D(k) along the i-th coordinate
is contained in D(k−1). By the Loomis–Whitney inequality (Lemma 5.3) we have

ngk−1
k ≤ ngk

k−1.

A straightforward induction yields now the inequality

ngk ≤ ngk/r
r .

The set D(r) is contained in the set of all zeros of some nonzero polynomial of
degree ≤ m2 in rm variables by Lemma 2.17. It follows that |D(r)| = ngr ≤

m2qmr−1 by Lemma 4.1. Consequently,

ngk ≤ ngk/r
r ≤ m2k/r qkm−k/r . �

Proof of Theorem 5.2. Recall that by Theorem 3.2 we have

denk(A)=
∏

p∈m-Spec R

gk(p, A)
N(p)mk ,

where m is the rank of the free R-module A. Since k≥ rp, we see that gk(p, A)> 0
for all maximal ideals p. It suffices therefore to show that∏ gk(p, A)

N(p)mk > 0,

where the product is over all maximal ideals with sufficiently large norm. Since
the set of all prime ideals p of R such that rp = r0 is open and contains the zero
ideal, we have rp = r0 for all but a finite number of maximal ideals p. Since
k ≥ r0 + 1, Lemma 5.4 implies that gk(p, A) ≥ N(p)km

−m2k/r0 N(p)km−k/r0 for
every p ∈m-Spec R such that r0 = rp. It follows that

gk(p, A)
N(p)mk ≥ 1−

m2k/r0

N(p)k/r0
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for all but a finite number of maximal ideals p. It suffices therefore to show that∏(
1−

m2k/r0

N(p)k/r0

)
> 0,

where the product is over all maximal ideals with sufficiently large norm. This in
turn is equivalent to showing that the series∑

p∈m-Spec R

m2k/r0

N(p)k/r0

converges, which is indeed true since k/r0 > 1. �

As an immediate corollary of Theorem 5.2 we get the following.

Theorem 5.5. Let R be an order in a number field K and let A be an R-algebra
which is free as an R-module. If r0 < rp for some maximal ideal p of R then
r =max{rp : p ∈ m-Spec R}. If r0= rp for all maximal ideals p then r0≤ r ≤ 1+r0.

A special case of Theorem 5.5 when R = Z was shown to us by H. W. Lenstra
(private communication, 2007). His proof of this result is purely algebraic and does
not provide any way to handle the ambiguity for r when r0 = rp for all maximal
ideals p. It is known that in this case both r = r0 and r = r0+ 1 are possible. For
example, there are infinitely many number fields in which the ring of integers A
considered as a Z-algebra has rp= 1 for all prime ideals p but r = 2. As an explicit
example one can take the ring of integers in the cubic field Q(

3
√

198) [Pleasants
1974, p. 167]. Later, we will see examples where denr0(A) > 0, hence r = r0, even
though we are unable to find generators.

Question 5.6. Let R be an order in a number field. Suppose that A is an R-algebra
which is finitely generated and projective as an R-module. The right-hand side of
the formula in Theorem 3.2 makes perfect sense for A and we will continue to
denote it by denk A. Is it true that if denk A > 0 then A can be generated by k
elements as an R-algebra? We believe that the answer is positive. Perhaps there is
a notion of density in this case which makes Theorem 3.2 valid?

We have the following generalization of the original result of Lenstra.

Theorem 5.7. Let R be a commutative ring of dimension ≤ 1 such that m-Spec R
is Noetherian and let A be an R-algebra finitely generated as an R-module. Let h
be the smallest nonnegative integer such that h ≥ rp for all but a finite number of
maximal ideals p of R. Suppose that k ≥ rp for all maximal ideals p and k ≥ 1+h.
Then A can be generated by k elements as an R-algebra.

Proof. Since m-Spec R is Noetherian, it has a finite number of irreducible compo-
nents. Note that if an irreducible component of m-Spec R is finite then it consists
of a single maximal ideal. Otherwise it contains infinitely many maximal ideals
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and the intersection of all these ideals is a prime ideal which we call the generic
ideal of the component. Let T be the set of all prime ideals which are generic
ideals of some infinite irreducible component of m-Spec R. Thus T is a finite set
of minimal prime ideals of R (it can be empty). Note that if p ∈ T then rp ≤ rq for
any maximal ideal q containing p and the equality holds for all but a finite number
of such maximal ideals by Corollary 2.11. It follows that h =max{rp : p ∈ T }. For
each prime p ∈ T choose a maximal ideal q ⊇ p such that rp = rq and denote this
set of chosen maximal ideals by M .

We call a sequence a1, . . . , am of elements of A M-generic if it generates A at
p for every p ∈ M . Note that an M-generic sequence generates A at p for all but a
finite number of maximal ideals p. We claim that there is an M-generic sequence of
length h. Indeed, for each q ∈ M there are h elements in A which generate A at q.
By the Chinese remainder theorem for modules, we may find elements a1, . . . , ah

in A which generate A at q for all q ∈ M . Thus a1, . . . , ah is M-generic.
We will now show that for every i ≤h there is an M-generic sequence b1, . . . , bh

such that for every maximal ideal q the elements b1, . . . , bi can be completed to
a set of k elements which generate A at q. Our argument is by induction on i . It
is clearly true for i = 0 (any M-generic sequence of length h works). Suppose
that b1, . . . , bh is a generic sequence which works for some i . We seek a generic
sequence working for i + 1 which is of the form b1, . . . , bi , b, bi+2, . . . , bh for
some b ∈ A. Note that if b is such that b − bi+1 ∈ qA for all q ∈ M then
b1, . . . , bi , b, bi+2, . . . , bh is M-generic. Also, there is a finite set W of maximal
ideals, disjoint from M , such that for any maximal ideal q 6∈W and any b ∈ A, the
sequence b1, . . . , bi , b, bi+1, . . . , bh generates A at q. Since k > h, for any q 6∈W
and any b ∈ A, the elements b1, . . . , bi , b can be completed to a set of k elements
which generate A at q. So in our choice of b we only need to worry about maximal
ideals in W . For every q ∈ W there is bq ∈ A such that b1, . . . , bi , bq extends to
a set of k elements which generate A at q. By the Chinese remainder theorem
for modules, we may choose b ∈ A such that b − bi+1 ∈ qA for all q ∈ M and
b−bq ∈ qA for all q ∈W . For any such b the sequence b1, . . . , bi , b, bi+2, . . . , bh

has the required properties for i + 1.
Let a1, . . . , ah be an M-generic sequence good for i = h. Thus, for any maximal

ideal q outside some finite set U the elements a1, . . . , ah generate A at q. For each
q ∈ U , there are elements ah+1(q), . . . , ak(q) in A such that a1, . . . , ah, ah+1(q),

. . . , ak(q) generate A at q. By the Chinese remainder theorem for modules, there
are elements ah+1, . . . , ak in A such that ai − ai (q) ∈ qA for all q ∈ U and all
i = h+ 1, . . . , k. Thus the elements a1, . . . , ak generate A at q for every maximal
ideal q, hence they generate A as an R-algebra by Lemma 2.6. �

The reader familiar with the results of Forster and Swan on the number of
generators of modules over Noetherian commutative rings should recognize the
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similarities between Theorem 5.7 and Swan’s theorem [Matsumura 1986, Theo-
rem 5.8]. Unlike the result of Swan, Theorem 5.7 only treats the case of rings
of dimension ≤ 1. So far we have not been able to get similar results for rings
of higher dimension but we believe that the following conjectural generalization
should be true. In order to state it we need to recall briefly some notions (see
[Matsumura 1986, p. 35–37] for more details). We denote by j-Spec R the subspace
of Spec R which consists of those prime ideals which are intersections of some set
of maximal ideals of R. We assume that m-Spec R is a Noetherian space. It turns
out that this is equivalent to j-Spec R being Noetherian, and then both spaces have
the same combinatorial dimension. When p ∈ j-Spec R, we write j-dim p for the
combinatorial dimension of the closure of {p} in j-Spec R. For p ∈ j-Spec R define

b(p, A)=

{
0 if Ap = 0,

j-dim p+ rp(A) if Ap 6= 0.

Conjecture 5.8. Suppose that R is a commutative ring such that m-Spec R is a
Noetherian space. Let A be an R-algebra finitely generated as an R-module. If
sup{b(p, A) : p ∈ m-Spec R} = n <∞ then A can be generated as an R-algebra
by n elements.

6. Generators of matrix algebras over finite fields

It is clear from the results of Section 3 that the key step towards understanding
the smallest number of generators of an algebra over a commutative ring is to
handle the case of algebras over fields. Among the finite-dimensional algebras over
fields the best understood class is the class of separable algebras. It was proved in
[Mazur and Petrenko 2009] that any separable algebra over an infinite field is two-
generated. This is no longer true over finite fields. In this case, separable algebras
coincide with finite products of matrix algebras.

By Proposition 2.12, understanding the structure of generators of a semisimple
F-algebra reduces to algebras of the form Am , where A is a simple F-algebra. We
have the following result:

Theorem 6.1. Let F be a field, A a finite-dimensional simple F-algebra, and
k, m, n positive integers. Then k elements of Am , say a1 = (a11, . . . , a1m), . . . ,
ak = (ak1, . . . , akm), generate Am as an F-algebra if and only if the following two
conditions are satisfied:

(1) For any i = 1, . . . ,m, the elements a1i , . . . , aki generate A as an F-algebra.

(2) There does not exist a pair of different indices i, j for which there is an auto-
morphism 9 of the F-algebra A such that

a1i =9(a1 j ), . . . , aki =9(ak j ).
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Proof. Let B denote the subalgebra of Am generated by a1, . . . , ak . Recall that
there is a unique (up to isomorphism) simple A-module M and it is faithful. Let
Mi be the pull-back of M via the projection πi : B→ A on the i-th coordinate. Thus
Mi is a B-module which coincides with M as an F-vector space, and for b ∈ B
and m ∈ Mi = M we have bm = πi (b)m. Since πi is surjective by (1), each Mi is
a simple B module. We claim that these B-modules are pairwise nonisomorphic.
Indeed, suppose that for some i 6= j the B-modules Mi and M j are isomorphic and
let 8 : Mi → M j be an isomorphism of these B-modules. For any a ∈ A there is
b ∈ B such that πi (b)= a. Set 9(a)= π j (b). We claim that 9 is well-defined and
an automorphism of the F-algebra A. Indeed, if b1∈ B is another element such that
πi (b1)= a then for any m ∈ Mi we have bm = b1m. Applying 8 to this equality,
we see that b8(m) = b18(m) for any m ∈ Mi . Since 8 is an isomorphism, we
conclude that bn=b1n for any n∈M j , that is, π j (b)m=π j (b1)m for every m ∈M .
Since M is a faithful A-module, we conclude that π j (b) = π j (b1). This shows
that 9 is well-defined. It is now straightforward to see that 9 respects addition
and multiplication and that it is F-linear. It follows that 9 is an isomorphism of
F-algebras. This however is in contradiction with our assumption (2). It follows
that Mi and M j are not isomorphic as B-modules for i 6= j . Note that

⊕m
i=1 Mi is

a semisimple, faithful B-module. It follows that B is semisimple and every simple
B-module is isomorphic to one of the Mi ’s. By Wedderburn–Artin theory, B is
isomorphic to the product

∏m
i=1 Bi , where Bi = Mni (Di ), Di = EndB(Mi ), and

ni dimF (Di )= dimF (Mi )= dimF M . Note that Di = EndB(Mi )= EndA(M) and
therefore A is isomorphic to Bi for each i , again by Wedderburn–Artin theory. This
proves that dimF Am

= dimF B, and consequently Am
= B. �

As a simple corollary we get the following.

Proposition 6.2. Let A be a simple finite-dimensional algebra over a field F. For
any k > 0 the group AutF (A) of F-algebra automorphisms of A acts freely on the
set Genk(A, F). The algebra Am can be generated by k elements as an F-algebra
if and only if there are at least m different orbits of the action of AutF (A) on
Genk(A, F).

Proof. The action of AutF (A) on Genk(A, F) is the restriction of the coordinate-
wise action of AutF (A) on Ak . If 9 ∈ AutF (A) fixes an element of Genk(A, F),
then it fixes each member of a set of generators of A as an F-algebra, so 9 is
the identity. This explains why the action is free. Theorem 6.1 says that elements
a1 = (a11, . . . , a1m), . . . , ak = (ak1, . . . , akm) generate Am as an F-algebra if and
only if the elements (a11, . . . , ak1), . . . , (a1m, . . . , akm) belong to different orbits
of the action of AutF (A) on Genk(A, F). �

Suppose now that F = Fq is a finite field with q elements. Then simple finite-
dimensional Fq -algebras are exactly algebras of the form Mn(Fqs ) for some positive
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integers n, s. Now, by the Skolem–Noether theorem, the group of automorphisms
of the Fq -algebra Mn(Fqs ) is the semidirect product of the group PGLn(Fqs ) and
the Galois group Gal(Fqs/Fq ). Thus we get the following.

Theorem 6.3. Let A =Mn(Fqs ). Then Am can be generated by k elements as an
Fq -algebra if and only if

m ≤
|Genk(A, Fq)|

s|PGLn(Fqs )|
.

Furthermore, |Genk(Am, Fq)| =
m−1∏
i=0

(
|Genk(A, Fq)| − i · s · |PGLn(Fqs )|

)
.

Proof. As we noted above, AutFq (A) has s|PGLn(Fqs )| elements. Since AutFq (A)
acts freely on Genk(A, Fq), the number of orbits of this action is equal to

|Genk(A, Fq)|

s|PGLn(Fqs )|
.

The first part of the theorem is now an immediate consequence of Proposition 6.2.
To prove the second part note that according to Proposition 6.2 the elements

of Genk(Am, Fq) are in bijective correspondence with sequences of length m of
elements from Genk(A, Fq), with no two elements in the same orbit of AutFq (A).
In order to count these sequences, let o be the number of orbits of the action of
AutFq (A) on Genk(A, Fq) and let t be the size of each orbit. We can choose
a sequence of m different orbits O1, . . . , Om in m!

(o
m

)
ways and the number of

sequences g1, . . . , gm such that gi ∈ Oi for i = 1, . . . ,m is tm . Thus

|Genk(Am, Fq)| = m!
(

o
m

)
tm
=

m−1∏
i=0

(ot − i t).

The second part of the theorem follows now immediately from the equalities ot =
|Genk(A, Fq)| and t = s|PGLn(Fqs )|. �

For a simple separable algebra A over any field F the sets Genk(A, F) are
nonempty for any k ≥ 2. In other words, we have the following.

Theorem 6.4. Let A be a simple separable algebra over a field F. Then A can be
generated by two elements as an F-algebra.

Proof. For infinite fields F the result has been proved in [Mazur and Petrenko
2009]. When F = Fq is a finite field with q elements then A is isomorphic to
Mn(Fqs ) for some positive integers n and s. Let u be a generator of the multiplica-
tive group of Fqs , so in particular Fqs = Fq [u]. For 1 ≤ i, j ≤ n let Ei j denote
the matrix whose (i, j) entry is 1 and all other entries are 0. Let A = uE11 and
B = E1n+

∑n−1
i=1 Ei+1,i . Then uk Ei j = Bi−1 Ak Bn+1− j for all 1≤ i, j ≤ n and all

k ≥ 0. It follows that A and B generate the Fq -algebra Mn(Fqs ). �
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7. The numbers |Genk(Mn(Fq), Fq)|

In this section we will study the numbers |Genk(Mn(Fq), Fq)|. In particular, we
will compute them when n ≤ 3. To simplify the notation, we make the following
definition.

Definition 7.1. Let m and n be positive integers and let q be a prime power. We
introduce the following notation:

(i) Gm,n(Fq)= Genm(Mn(Fq), Fq).

(ii) gm,n(q)= |Gm,n(Fq)|.

(iii) genm,n(q)=
gm,n(q)
|PGLn(Fq)|

.

Note that by Theorem 6.3, the number genm,n(q) is equal to the largest k ∈ Z

such that r(Mn(Fq)
k, Fq) ≤ m. Thus our notation agrees with that introduced in

Definition 1.3.
When n=1, an m-tuple generates Fq if and only if it contains a nonzero element.

It follows that gm,1(q)=qm
−1. From now on in this section we assume that n≥ 2,

unless stated otherwise.
Our attempt at computing the numbers gm,n(q) is based on the following simple

observation: a set of matrices does not generate the whole algebra Mn(Fq) if and
only if there is a maximal subalgebra of Mn(Fq) that contains this set. Thus the
following is true:

Gm,n(Fq)=Mn(Fq)
m
−
⋃
{Am
:A is a maximal subalgebra of Mn(Fq)}. (4)

Let D be the subalgebra of scalar matrices of Mn(Fq). Since any subalgebra of
Mn(Fq) contains D, we can subtract Dm in the above formula and get that Gm,n(Fq)

is equal to

Mn(Fq)
m
−Dm

−
⋃
{Am
−Dm

:A is a maximal subalgebra of Mn(Fq)}.

Since |Mn(Fq)| = qn2
and |D| = q , the inclusion-exclusion formula yields

gm,n(q)= qmn2
− qm

+

∑
(−1)k |(Am

i1
−Dm)∩ · · · ∩ (Am

ik
−Dm)|,

where the sum is taken over all nonempty subsets {Ai1, . . . ,Aik } of the set of
all maximal subalgebras of Mn(Fq). Since D is contained in every subalgebra of
Mn(Fq), we have

(Am
i1
−Dm)∩ · · ·∩ (Am

ik
−Dm)=Am

i1
∩ · · ·∩Am

ik
−Dm

= (Ai1 ∩ · · ·∩Aik )
m
−Dm,

and therefore

gm,n(q)= qmn2
− qm

+

∑
(−1)k

(
|Ai1 ∩ · · · ∩Aik |

m
− qm), (5)
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where the sum is taken over all nonempty subsets {Ai1, . . . ,Aik } of the set of all
maximal subalgebras of Mn(Fq).

In order to evaluate the right-hand side of (5), it is necessary to have a description
of all maximal subalgebras of Mn(Fq). It is quite easy to produce one type of
maximal subalgebras of Mn(Fq). In fact, we have the following result.

Lemma 7.2. For a proper nontrivial vector subspace U of Fn
q let AU be the set

of all matrices from Mn(Fq) that leave U invariant. Then AU is a maximal sub-
algebra of Mn(Fq). Moreover, each AU is uniquely determined by U , that is, if
AU =AU ′ then U =U ′.

Proof. First note that the center of AU consists of scalar matrices. In fact, if
a matrix A is in the center of AU then it acts as a scalar λ on U . The matrix
B = A− λI annihilates U and is in the center of AU . Suppose that Bv 6= 0 for
some v. Then there is a projection5 onto U such that5(Bv) 6= 0. Since5∈AU ,
we have 0 6= 5Bv = B5v = 0, a contradiction. Thus B = 0 and A is a scalar
matrix.

Now note that if U 6= U ′ then there is A ∈ AU −AU ′ . In fact, if U ′ ( U then
such an A clearly exists since AU is transitive on U . If there exists v ∈ U ′ −U
then for any w there is an A ∈ AU such that Av = w. Taking w 6∈ U ′ yields the
required A. This, in particular, proves the second assertion.

Take any matrix A not in AU and let A′ be the algebra generated by A and
AU . Note that A′ cannot fix any nontrivial subspace V of Fn

q . In fact, if V 6= U
then, as we have seen above, AU is not contained in AV and A does not take U
into U . Thus Fn

q is a simple and faithful A′-module. It follows that A′ is a simple
central Fq -algebra with a simple module of dimension n over Fq , hence it must be
isomorphic to Mn(Fq). It follows that AU is maximal. �

The following lemma describes a second type of maximal subalgebras of Mn(Fq).

Lemma 7.3. Let s be a prime divisor of n and let m = n/s. Any Fq -subalgebra of
Mn(Fq) isomorphic to Mm(Fqs ) is maximal. Any two such subalgebras are conju-
gate in Mn(Fq) and their number is equal to

s−1
∏

s -i,1≤i<n

(qn
− q i ).

Proof. Let A be a Fq -subalgebra of Mn(Fq) isomorphic to Mm(Fqs ). Thus Fn
q is

an A-module of dimension m over the center of A (which is isomorphic to Fqs ).
It follows that Fn

q is a simple A-module. Suppose that A′ is a Fq -subalgebra of
Mn(Fq) containing A. Then Fn

q is a simple and faithful A′-module. It follows
that A′ is simple, hence it is isomorphic to Mk(Fqr ), where kr = n and r is the
dimension of the center of A′ over Fq . Clearly, the center of A′ is contained in
the center of A. It follows that r |s, and therefore r = 1 or r = s (recall that s is
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a prime). In the former case we get A′ = Mn(Fq) and in the latter case we have
A′ =A. This shows that A is maximal.

For the existence of an Fq -subalgebra of Mn(Fq) isomorphic to Mm(Fqs ) con-
sider the (unique up to isomorphism) simple Mm(Fqs )-module V . It has dimension
m as a vector space over Fqs , so as a Fq -vector space it is isomorphic to Fn

q . Thus the
action of Mm(Fqs ) on V induces an Fq -algebra embedding of Mm(Fqs ) into Mn(Fq).

Fix now a Fq -subalgebra A of Mn(Fq) isomorphic to Mm(Fqs ). By the Noether–
Skolem theorem, any Fq -algebra homomorphism of A into Mn(Fq) is given by
conjugation with some invertible element of Mn(Fq). This means that the group
GLn(Fq) acts transitively on the set of subalgebras of Mn(Fq)which are isomorphic
to Mm(Fqs ). Since A is maximal, the subgroup C of elements which act trivially
on A coincides with the multiplicative group of the center of A. The quotient of
the stabilizer of A by C is, again by the Noether–Skolem theorem, isomorphic to
the group of all automorphisms of the Fq -subalgebra A. We have seen earlier that
the group of Fq -algebra automorphisms of Mm(Fqs ) has s|PGLm(Fqs )| elements
(see the discussion directly before Theorem 6.3). Therefore the stabilizer of A

has |C | · s · |PGLm(Fqs )| = s|GLm(Fqs )| elements. Consequently, the number of
Fq -subalgebras A of Mn(Fq) isomorphic to Mm(Fqs ) is equal to

|GLn(Fq)|

s|GLm(Fqs )|
= s−1

∏
s -i,1≤i<n

(qn
− q i ). �

It turns out that the maximal subalgebras described in Lemmas 7.2 and 7.3 ex-
haust all possible maximal subalgebras. In other words, we have the following
result.

Proposition 7.4. Let A be a maximal Fq -subalgebra of Mn(Fq). Then either A=

AU for some subspace U of Fn
q or A is isomorphic to Mm(Fqs ) for some prime

divisor s of n = ms.

Proof. Suppose that A fixes some proper nontrivial subspace U of Fn
q . Then A is

contained in AU , hence A = AU . If no proper nontrivial subspace of Fn
q is fixed

by A then Fn
q is a simple and faithful A-module. It follows that A is simple and

therefore it is isomorphic to Mk(Fqr ), where kr = n. Let s be a prime divisor of r .
The center of A contains a subfield F isomorphic to Fqs . The centralizer of F in
Mn(Fq) consists exactly of those linear transformations of Fn

q which are F-linear.
Thus it is a subalgebra of Mn(Fq) isomorphic to Mm(Fqs ), where ms = n. On the
other hand, this subalgebra contains A, hence it must be equal to A. �

In order to carry out our strategy to compute the numbers gm,n(q) we need to
understand the intersections of maximal subalgebras of Mn(Fq). This appears to
be a very challenging combinatorial problem and so far we have only succeeded
in completing the computations for n ≤ 3. One of the complications in the general



Smallest number of generators and the probability of generating an algebra 275

case is that the maximal subalgebras are of two different types. This difficulty
disappears when n is a prime by the following observation.

Lemma 7.5. Let n be a prime number. If A is a maximal subalgebra of Mn(Fq)

isomorphic to Fqn , then its intersection with any other maximal subalgebra is equal
to D, the algebra of scalar matrices.

Proof. Since n is prime, Fqn has only two subfields, itself and Fq . In other words,
A has only two subalgebras, A and D. Since the intersection cannot be equal to
A, it is equal to D. �

For the rest of this section we assume that n is a prime number. Thus Lemma 7.5
tells us that if the set {Ai1, . . . ,Aik } of maximal subalgebras of Mn(Fq) includes a
subalgebra isomorphic to Fqn , and k≥ 2, then the intersection of the subalgebras in
this set is equal to D, and so the corresponding term in (5), |Ai1∩· · ·∩Aik |

m
−qm ,

is equal to 0. It follows that we can rewrite (5) in the following way:

gm,n(q)= qmn2
− qm

−

∑
A∼=Fqn

(|A|m − qm)+
∑

(−1)k(|AU1 ∩ · · · ∩AUk |
m
− qm),

where the second sum is over all nonempty sets {U1, . . . ,Uk} of nontrivial proper
subspaces of Fn

q . By Lemma 7.3, the first sum consists of n−1∏n−1
i=1 (q

n
−q i ) terms,

each term being qmn
− qm . Thus we get the following formula:

gm,n(q)= qmn2
− qm

− n−1(qmn
− qm)

n−1∏
i=1

(qn
− q i )

+

∑
(−1)k(|AU1 ∩ · · · ∩AUk |

m
− qm), (6)

where the sum is over all nonempty sets {U1, . . . ,Uk} of nontrivial proper sub-
spaces of Fn

q .
Let F be the set of all subalgebras of Mn(Fq) which are intersections of some

of the maximal algebras of the form AU . For each A ∈ F, define the degree d(A)
of A by

d(A)=
∑

(−1)k, (7)

where the sum is over all sets {U1, . . . ,Uk} of nontrivial proper subspaces of Fn
q

such that AU1 ∩ · · · ∩AUk =A. Thus (6) can be stated as

gm,n(q)= qmn2
−qm

−n−1(qmn
−qm)

n−1∏
i=1

(qn
−q i )+

∑
A∈F

d(A)(|A|m−qm). (8)

The following simple lemma will be useful for our analysis of elements of F.

Lemma 7.6. Let F be a field, V be a vector space over F , and let v1, . . . , vk ∈ V
be a minimal linearly dependent collection of vectors (so any k − 1 of them are
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linearly independent). Then any linear endomorphism of V that scales v1, . . . , vk

is a scalar operator when restricted to the linear span of v1, . . . , vk .

Proof. Let f be a linear endomorphism of V such that f (vi ) = αivi for some
αi ∈ F and i = 1, . . . , k. The assumptions of the lemma imply that

vk = β1v1+ · · ·+βk−1vk−1

for some nonzero β1, . . . , βk−1∈ F . By expressing f (vk) in two ways, as β1α1v1+

· · · + βk−1αk−1vk−1 and as αkvk , we obtain βiαi = βiαk for all i . Since none of
the βi ’s is 0, we have αi = αk for i = 1, . . . , k. �

7A. The case n = 2. In this subsection we evaluate (8) in the case n = 2. Any
element A ∈ F is of the form AU1 ∩ · · · ∩AUk , where k ≥ 1 and U1, . . . ,Uk are
distinct lines in F2

q . Note that by Lemma 7.6, A = D if k ≥ 3 and in this case A

does not contribute anything to (8). It follows that if A is an element of F different
from D, then it can be expressed as the intersection of maximal subalgebras in a
unique way and it is either of the form AU or of the form AU1∩AU2 . In the former
case, we have |A| = q3 and d(A)=−1. In the latter case, |A| = q2 and d(A)= 1.
Since the number of lines in F2

q is q + 1, (8) takes the following form:

gm,2(q)= q4m
− qm

− 2−1(q2m
− qm)(q2

− q)

−(q + 1)(q3m
− qm)+ 2−1(q + 1)q(q2m

− qm),

which simplifies to

gm,2(q)= q2m+1(qm−1
− 1)(qm

− 1). (9)

7B. The case n = 3. In this subsection we evaluate (8) for n = 3. This is substan-
tially more difficult than the case n= 2, but we are still able to analyze all elements
of F. The following combinatorial lemma will help us evaluate the degree of some
of the algebras in F.

Lemma 7.7. Let X be a finite set. Consider a family S of subsets of X such that if
Y ∈ S and Y ⊆ Y ′ ⊆ X , then Y ′ also belongs to S. Suppose furthermore that one
of the following two conditions is true.

(1) There is x ∈ X such that X ′−{x} ∈ S for any X ′ ∈ S.

(2) There are x, y ∈ X such that if X ′ ∈ S and X ′−{x} 6∈ S then

(a) X ′−{y} ∈ S and
(b) (X ′ ∪ {y})−{x} 6∈ S.

Then
∑
Y∈S

(−1)|Y | = 0.
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Proof. Let S0 be the family of those subsets from S that do not contain x and let
S1 be the family of those subsets that contain x . The map t : Y 7→ Y ∪ {x} is an
injection from S0 to S1. Let S2 = S1− t (S0). We have∑

Y∈S

(−1)|Y | =
∑

Y∈S0

(−1)|Y |+
∑

Y∈ t (S0)

(−1)|Y |+
∑

Y∈S2

(−1)|Y |.

Since |t (Y )| = 1+|Y |, the first two sums on the right annihilate each other, and so∑
Y∈S

(−1)|Y | =
∑

Y∈S2

(−1)|Y |.

Condition (1) exactly means that S2 is empty, hence
∑

Y∈S(−1)|Y | = 0. If
condition (2) holds, we write S2 as a disjoint union S2 = S20 ∪ S21, where S20

consists of those elements of S2 which do not contain y. By (b), the map s : Y 7→
Y ∪ {y} maps S20 into S21 and (a) implies that s is onto. Thus s : S20→ S21 is a
bijection and∑
Y∈S2

(−1)|Y | =
∑

Y∈S20

(−1)|Y |+
∑

Y∈S21

(−1)|Y | =
∑

Y∈S20

(
(−1)|Y |+ (−1)|s(Y )|

)
= 0. �

We apply Lemma 7.7 as follows. Given A ∈F, the set X = XA will consists of
all proper nontrivial subspaces of F3

q fixed by A and the family S= SA will consist
of all subsets {U1, . . . ,Uk} of X such that AU1 ∩ · · · ∩AUk =A. If conditions (1)
or (2) hold for SA, then Lemma 7.7 tells us that d(A)= 0.

Before we start the analysis of elements in F let us recall that the dot product
v ·w= v1w1+v2w2+v2w3 is a nondegenerate symmetric bilinear form on F3

q . The
adjoint operator with respect to this bilinear form is the transposition. It follows
that if AU1 ∩ · · · ∩AUk =A ∈ F then

AU⊥1
∩ · · · ∩AU⊥k

=At
:= {At

: A ∈A} ∈ F,

where At is the transpose of A and U⊥ is the subspace orthogonal to U with respect
to the dot product. We will often call At the dual of A. It is clear that A and At

have the same number of elements and the same degree.

Definition 7.8. Let A ∈ F. Then

LA = {U : dim U = 1 and A⊆AU }

is the set of all lines fixed by A and

PA = {U : dim U = 2 and A⊆AU }

is the set of all planes fixed by A.
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Note that LAt = {π⊥ : π ∈ PA} and PAt = {l⊥ : l ∈ LA}. Also, XA = LA ∪PA.

Consider an algebra A ∈ F, A 6= D. Then A falls into exactly one of the
following cases.

Case I: LA contains three lines in general position. Recall that we say that three
lines in F3

q are in general position if they are not contained in any plane. Dually,
three planes are in general position if they do not share any common line. Let
l1, l2, l3 ∈ LA be three lines in general position. Let πi be the plane spanned by l j

and lk , where {i, j, k} = {1, 2, 3}.

Subcase Ia: LA = {l1, l2, l3}. In this case PA = {π1, π2, π3}. The algebra A is
conjugate to the algebra of all diagonal matrices. In particular, |A| = q3. Further-
more, XA = LA ∪ PA and a subset of XA belongs to SA if and only if it contains
one of the following sets: {l1, l2, l3}, {π1, π2, π3}, {l1, l2, π1, π2}, {l1, l3, π1, π3}, or
{l2, l3, π2, π3}. Thus SA has two members of cardinality 3, nine members of cardi-
nality 4, six members of cardinality 5 and one element of cardinality 6. Therefore,
d(A)=−2+ 9− 6+ 1= 2.

Note that the algebras in this subcase are in bijective correspondence with sets
of three lines in general position. Recall that F3

q has q2
+q+1 lines, and each plane

has q + 1 lines. It follows that the number of ordered triples of lines in general
position is (q2

+ q + 1)(q2
+ q)q2. Thus, the number of algebras in this subcase

is q3(q + 1)(q2
+ q + 1)/6. Consequently, the algebras in this subcase contribute

the quantity
3−1qm+3(q + 1)(q2

+ q + 1)(q2m
− 1)

to the sum
∑

A∈F d(A)(|A|m − qm).

Subcase Ib: LA⊇{l1, l2, l3, l4}, where l4 is a line not contained in any of the planes
π1, π2, π3. In this case, by Lemma 7.6, we have A=D, and A does not contribute
anything to the sum

∑
A∈F d(A)(|A|m − qm).

It remains to consider the case when LA contains a line l4 which is contained
in one of the planes π1, π2, π3. Changing the numbering if necessary, we may
assume that l4 belongs to π1. If there is a line l5 (different from l1, . . . , l4) which is
contained in π2, the planes through l4, l1 and through l5, l2 intersect along a line l6

which does not belong to any of the planes π1, π2, π3. Thus we are in Subcase Ib.
The same argument shows that there is no line in LA different from l1, . . . , l4 and
contained in π3. Since A fixes three different lines in π1, it acts as a scalar on π1

by Lemma 7.6. In particular, LA contains all the lines in π1. We will write π for
π1 and l for l1. We see that all the remaining algebras in Case I fall in the following
subcase.

Subcase Ic: LA = {l} ∪ {all lines in π}. It is easy to see that in this case PA =

{π} ∪ {all planes through l}. We will show that d(A)= 0 by applying Lemma 7.7
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to X = XA, S = SA. We need to verify that x = l, y = π satisfy condition (2).
Suppose that X ′ ∈ SA and X ′ − {l} 6∈ SA. We claim that X ′ contains at most
one plane through l. For suppose otherwise, that there are two planes containing
l in X ′. Their intersection is l. Thus a matrix fixes all elements of X ′− {l} if and
only if it fixes all elements of X ′, that is, X ′ − {l} ∈ SA, a contradiction. This
proves that indeed X ′ contains at most one plane different from π . We claim that
X ′ contains at least two lines contained in π . Otherwise, there would be at most
one such line in X ′, so X ′ would be a subset of a set of the form {l, l ′, π, π ′} for
some line l ′ contained in π and some plane π ′ containing l. Thus A would contain
the algebra A′ =Al ∩Al ′ ∩Aπ ∩Aπ ′ . This is, however, not possible, since A′ has
an element which is not a scalar on π and all elements of A act as scalars on π .
Indeed, if the line l ′′= π ∩π ′ is different from l ′ then A′ equals Al ∩Al ′∩Al ′′ and
contains the matrix which is the identity on l and l ′ and is 0 on l ′′. If l ′′ = l ′ then
A′ =Al ∩Al ′ ∩Aπ contains the algebra Al ∩Al ′ ∩Al ′1 for any line l ′1 in π which
is different from l ′.

Thus there are two lines in X ′ which are contained in π . These two lines span
π , so X ′−{π} ∈ SA. Also, (X ′∪{π})−{l} and X ′−{l} are fixed by the same set
of matrices, so (X ′ ∪ {π})− {l} 6∈ SA. This verifies condition (2) of Lemma 7.7,
so d(A)= 0. Consequently, the algebras of Subcase Ic do not contribute anything
to the sum

∑
A∈F d(A)(|A|m − qm).

Note that if PA contains three planes in general position, then the three lines
obtained by intersecting pairs of these planes are in general position and belong
to LA. Thus from now on we assume that LA does not contain three lines in
general position and that PA does not contain three planes in general position. If
LA contains more than two elements, then all of the lines in LA must be contained
in some plane π and then, by Lemma 7.6, LA = {all lines in π}. Similarly, by
duality, if PA contains more than two elements, then all the planes in PA share a
common line l and PA = {all planes which contain l}. This leads to the following
two cases.

Case II: There is a plane π such that LA = {all lines in π}. By Lemma 7.6, every
element of A acts as a scalar on π . In particular, π ∈ PA. Note that all the planes
in PA must share a common line l (if PA = {π}, pick any line in π for l). In fact,
suppose that there are π1, π2∈PA such that the lines π∩π1 and π∩π2 are different.
Then the line π1∩π2 belongs to LA and is not contained in π , which is not possible.
Thus, PA ⊆ {all planes which contain l}. We claim that any X ∈ SA contains at
least two lines in π different from l. In fact, if the lines in X are contained in {l, l1}

then consider a plane π1 which does not contain l but contains l1. There is a matrix
A which is 0 on l and is the identity on π1 and this matrix fixes every plane passing
through l. Thus A fixes all elements of X , yet A is not a scalar on π . This means
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that A 6∈ A, and consequently X 6∈ SA, a contradiction. Now any two lines in X
span π . It follows that any matrix which fixes all elements of X−{π} also fixes π ,
that is, X−{π} ∈ SA. This means that the family SA of subsets of XA satisfies the
assumptions of Lemma 7.7, condition (1), with x =π . It follows that d(A)= 0 and
the algebras in this case do not contribute anything to

∑
A∈F d(A)(|A|m − qm).

Case III: There is a lane l such that PA = {all planes through l}. Any algebra in
this case is dual to an algebra in Case II, hence it has degree 0. Thus algebras in
this case do not contribute anything to

∑
A∈F d(A)(|A|m − qm).

It remains to analyze algebras A such that both LA and PA have at most two
elements.

Case IV: |LA| = 2 = |PA|. We may assume that LA = {l, l ′} and PA = {π, π
′
},

where π ′ is spanned by l, l ′ and π ∩π ′ = l. It is easy to see that the family SA has
three elements: {l, l ′, π}, {l ′, π, π ′}, and {l, l ′, π, π ′}. Thus d(A)=−2+ 1=−1.
Choosing nonzero vectors v1 ∈ l ′, v2 ∈ l, and v3 ∈ π − l we get a basis of F3

q and
A ∈A if and only if the matrix of the linear transformation given by A, expressed
in the basis v1, v2, v3, has the form∗ 0 0

0 ∗ ∗
0 0 ∗

 .
In other words, A is conjugate to the algebra of all the matrices of the form∗ 0 0

0 ∗ ∗
0 0 ∗

 .
In particular, |A| = q4. To count the number of algebras in Case IV, note that these
algebras are in bijective correspondence with triples l, l ′, π , where π is a plane and
l and l ′ are lines such that l ⊂ π and l ′ 6⊂ π . There are q2

+ q + 1 choices for π
and for each π we have q + 1 choices of l and q2 choices of l ′. Thus the number
of algebras in Case IV is q2(q+1)(q2

+q+1). Consequently, the algebras in this
case contribute

−qm+2(q + 1)(q2
+ q + 1)(q3m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Case V: |LA|=2 and |PA|=1. Thus LA={l, l ′} and PA={π}, where π is spanned
by l, l ′. It is straightforward to see that SA has two elements: {l, l ′} and {l, l ′, π}.
It follows that d(A) = 0 and therefore algebras in this case contribute nothing to∑

A∈F d(A)(|A|m − qm).
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Case V⊥: |LA| = 1 and |PA| = 2. Algebras in this case are dual to algebras in
Case V, so they have degree 0 and contribute nothing to

∑
A∈F d(A)(|A|m −qm).

Case VI: LA = {l} and PA = {π}, where l 6⊂ π . It is clear that SA has exactly one
element: {l, π}. Thus d(A)= 1. Choosing a basis v1 of l and v2, v3 of π we easily
see that A is conjugate to the algebra of all the matrices of the form∗ 0 0

0 ∗ ∗
0 ∗ ∗

 .
In particular, |A| = q5. To count the number of algebras in Case VI, note that these
algebras are in bijective correspondence with pairs l, π , where π is a plane and l
is a line not contained in π . There are q2

+q+1 choices for π and for each π we
have q2 choices of l. Thus the number of algebras in Case VI is q2(q2

+ q + 1).
Consequently, the algebras in this case contribute

qm+2(q2
+ q + 1)(q4m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Case VII: LA = {l} and PA = {π}, where l ⊂ π . It is clear that SA has exactly one
element: {l, π}. Thus d(A)= 1. Choosing a basis v1 of l, v1, v2 of π , and a vector
v3 6∈ π , we easily see that A is conjugate to the algebra of all the matrices of the
form ∗ ∗ ∗0 ∗ ∗

0 0 ∗

 .
In particular, |A|=q6. To count the number of algebras in Case VII, note that these
algebras are in bijective correspondence with pairs l, π , where π is a plane and l
is a line contained in π . There are q2

+q+1 choices for π and for each π we have
q+1 choices of l. Thus the number of algebras in Case VII is (q+1)(q2

+q+1).
Consequently, the algebras in this case contribute

qm(q + 1)(q2
+ q + 1)(q5m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Case VIII: A=Al for some line l. The family SA has exactly one element: {l}, so
d(A) = −1. It is easy to see that A is conjugate to the algebra of all the matrices
of the form ∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 .
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In particular, |A| = q7. Algebras in this case are in bijection with lines, so we have
q2
+ q + 1 such algebras. Thus the algebras in this case contribute

−qm(q2
+ q + 1)(q6m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

The following case is the last to consider.

Case VIII⊥: A = Aπ for some plane π . This case consists of algebras dual to
algebras of Case VIII, so they also contribute

−qm(q2
+ q + 1)(q6m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Putting together all the contributions to
∑

A∈F d(A) (|A|m − qm) we arrive at
the formula∑
A∈F

d(A)(|A|m−qm)= 3−1qm+3(q+1)(q2
+q+1)(q2m

−1)

−qm+2(q+1)(q2
+q+1)(q3m

−1)+ qm+2(q2
+q+1)(q4m

−1)

+ qm(q+1)(q2
+q+1)(q5m

−1)− 2qm(q2
+q+1)(q6m

−1).

After inserting this into (8) and simplifying we arrive at the following formula
for gm,3(q):

gm,3(q)= q3m+4(qm−1
− 1)(qm−1

+ 1)(qm
− 1)

× (q3m−2
+ q2m−2

− qm
− 2qm−1

− qm−2
+ q + 1). (10)

7C. Lower bound for gm,n(q). So far we have been unable to obtain exact for-
mulas for gm,n(q) for any n ≥ 4. We have however the following lower bound.

Proposition 7.9. Let m and n be positive integers and let q be a power of a prime
number. Then

gm,n(q)≥ qmn2
− 2(n+6)/2qn2m−(m−1)(n−1). (11)

Proof. By (4), we have the following inequality:

gm,n(q)≥ qmn2
−
∑
|A|m,

where the sum is taken over all maximal subalgebras A of Mn(Fq). We use the
description of maximal subalgebras given by Proposition 7.4. Let 1 ≤ k < n. The
number of k-dimensional subspaces of Fn

q is

k−1∏
i=0
(qn
− q i )

k−1∏
i=0
(qk
− q i )−1.
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For any such subspace V the algebra AV has qn2
−nk+k2

elements. Let

Sk =
∑
|AV |

m,

where the sum is taken over all k-dimensional subspaces V of Fn
q . It follows that

Sk = q(n
2
−nk+k2)m

k−1∏
i=0
(qn
− q i )

k−1∏
i=0
(qk
− q i )−1.

Using the inequality
qn
− q i

qk − q i ≤ qn−k q
q−1

we get

Sk ≤ qn2m−(m−1)k(n−k)
( q

q−1

)k
.

Note that Sk = Sn−k (by duality). Since q
q−1

≤ 2 and k(n− k)≥ n− 1, we have

6a :=

n−1∑
k=1

Sk ≤ 2
bn/2c∑
k=1

Sk ≤ 2(n+4)/2qn2m−(m−1)(n−1).

For a prime divisor s of n define Ts as the sum
∑
|A|m , where the sum is over all

subalgebras of Mn(Fq) isomorphic to Mn/s(Fqs ). By Lemma 7.3, we have

Ts = q(n
2/s)m
· s−1
·

∏
s -i

1≤i<n

(qn
− q i )≤ s−1

· q(n
2/s)m
· qn(n−n/s)

≤ s−1
· qn2(m+1)/2.

Let6b=
∑

Ts , where the sum is over all prime divisors s of n. It is easy to see that
the sum

∑
s−1 of all reciprocals of prime divisors of n does not exceed 2(n+4)/2.

Furthermore, qn2(m+1)/2
≤ qn2m−(m−1)(n−1). It follows that

6b ≤ 2(n+4)/2qn2m−(m−1)(n−1).

By Proposition 7.4 we have 6a +6b =
∑
|A|m , where the sum is taken over all

maximal subalgebras A of Mn(Fq). Thus,

gm,n(q)≥ qmn2
− 2(n+6)/2qn2m−(m−1)(n−1). �

As an immediate consequence of Proposition 7.9 we get the following corollary.

Corollary 7.10. Let m, n ≥ 2. The probability that m matrices in Mn(Fq), cho-
sen under the uniform distribution, generate the Fq -algebra Mn(Fq) tends to 1 as
q +m+ n→∞.

Corollary 7.10 proves and vastly generalizes the conjectural formula [Petrenko
and Sidki 2007, (17), p. 27].
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8. Finite products of matrix algebras over rings of algebraic integers

Let R be the ring of integers in a number field K . In this final section we apply the
techniques developed in our paper to investigate generators of R-algebras A which
are products of a finite number of matrix algebras over R. Thus we have

A ∼=
s∏

i=1

Mni (R)
mi ,

where 1 ≤ n1 < n2 < · · · < ns and mi are positive integers. As we have seen in
Example 2.13, the algebra A is k-generated if and only if all the algebras Mni (R)

mi

are k-generated. Thus, we may and will focus on the case when A ∼=Mn(R)m for
some positive integers n,m. We have the following theorem.

Theorem 8.1. Let R be the ring of integers in a number field K . Suppose that
either n ≥ 3 or k ≥ 3 and let A =Mn(R)m for some positive integer m. Then the
following conditions are equivalent.

(i) The R-algebra A admits k generators.

(ii) For every maximal ideal p of R the R/p-algebra Mn(R/p)m admits k genera-
tors.

(iii) The density denk(A) is positive.

Furthermore, the following formulas, in which ζK denotes the Dedekind zeta func-
tion of K , hold for every k ≥ 2:

(a) den2(M2(R)m)= 0 for every m;

(b) denk(M2(R))=
1

ζK (k− 1)ζK (k)
;

(c) denk(M3(R))=
1

ζK (2k− 2)ζK (k)

∏
p∈m-Spec R

(
1+

φk(N(p))
N(p)3k−2

)
, where φk(x)=

x2k−2
− xk
− 2xk−1

− xk−2
+ x + 1.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are clear. When k ≥ 3, the
implication (ii)⇒ (iii) is an immediate consequence of Theorem 5.2 and the fact
that the K-algebra Mn(K )m is 2-generated [Mazur and Petrenko 2009]. Suppose
now that k = 2, n ≥ 3, and (ii) holds. Consider a maximal ideal p of R and
let q = N(p). By Theorem 6.3, the number g2(p, A) of pairs of elements which
generate Mn(R/p)m is given by

g2(p, A)=
m−1∏
i=0

(
g2,n(q)− i · |PGLn(Fq)|

)
.
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By (ii), we have g2(p, A) > 0. Note that |PGLn(Fq)| ≤ qn2
−1
≤ q2n2

−n+1. Further-
more, we have g2,n(q)≥ q2n2

− 2nq2n2
−n+1 by Proposition 7.9. Hence

g2(p, A)≥
(
N(p)2n2

− (2n
+m)N(p)2n2

−n+1)m
,

provided N(p) > 2n
+m. By Theorem 3.2, we have

den2(A)=
∏

p∈m-Spec R

g2(p, A)
N(p)2mn2 .

Since all the factors in the product on the right are positive and all but a finite
number of them satisfy the inequality

g2(p, A)
N(p)2mn2 ≥

(
1−

m+ 2n

N(p)n−1

)m

,

the product converges to a positive number. In other words, den2(A) > 0. This
completes the proof of the implication (ii)⇒ (iii).

In order to establish formulas (b) and (c) note that

denk
(
Mn(R)

)
=

∏
p∈m-Spec R

gk,n(N(p))

N(p)kn2

by Theorem 3.2. Formulas (b) and (c) follow now from (9) and (10), respectively.
To justify (a) note that g2(p,M2(R)m) ≤ g2,2(N(p))

m for every maximal ideal p.
It follows that den2(M2(R)m) ≤ den2(M2(R))m . Since by (b) with k = 2 we have
den2(M2(R))= 0, the equality in (a) follows. �

Recall now that by Theorem 6.3, the R/p-algebra Mn(R/p)m is k-generated if
and only if m ≤ genk,n(N(q)), where genk,n(q)= gk,n(q)/|PGLn(Fq)|. Using (10)
we get the following theorem.

Theorem 8.2. Let R be the ring of integers in a number field and let p be a maximal
ideal of R with smallest norm. Define polynomials fk(x) by f1(x)= 0 and

fk(x)=
x3k+1(xk−1

− 1)(xk−1
+ 1)(xk

− 1)
(x2+ x + 1)(x − 1)2(x + 1)

× (x3k−2
+ x2k−2

− xk
− 2xk−1

− xk−2
+ x + 1) (12)

for any k ≥ 2. Let k ≥ 2 and m be positive integers. Then the following conditions
are equivalent:

(i) r(M3(R)m, R)= k;

(ii) fk−1(N(p)) < m ≤ fk(N(p)).

In particular, the Z-algebra M3(Z)
m is 2-generated if and only if m ≤ 768.
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Proof. By (10), we have genk,3(q) = fk(q) for any k ≥ 2. By Theorem 8.1, the
R-algebra M3(R)m is k-generated if and only if m ≤ fk(N(q)) for every maximal
ideal q of R. It is easy to see that fk(x) is increasing on [2,∞). It follows that
M3(R)m is k-generated if and only if m ≤ fk(N(p)). This establishes the equiva-
lence of (i) and (ii). The last claim follows now from the fact that f2(2)= 768. �

Even though in (9) we established a formula for genk,2(q), getting an analog of
Theorem 8.2 for products of copies of M2(R) is more complicated. The difficulty
is that the density den2(M2(R)m) is 0 and we have to find a way to deal with the
ambiguity in Theorem 5.5 when k = 2. So far we can overcome this difficulty only
when R has a maximal ideal of norm 2. We have the following theorem.

Theorem 8.3. Let R be the ring of integers in a number field and let p be a maximal
ideal of R with smallest norm. Define polynomials hk(x) by h1(x)= 0 and

hk(x)=
x2k(xk−1

− 1)(xk
− 1)

(x − 1)(x + 1)
(13)

for any k ≥ 2. Let k > 3 and m be positive integers. Then the following conditions
are equivalent:

(i) r(M2(R)m, R)= k;

(ii) hk−1(N(p)) < m ≤ hk(N(p)).

Furthermore, there exists an integer t such that 16 ≤ t ≤ h2(N(p)), M2(R)m is
2-generated if and only if m ≤ t , and r(M2(R)m, R) = 3 if and only if t < m ≤
h3(N(p)). In particular, if N(p) = 2, then t = 16, so in this case (i) and (ii) are
equivalent for all k ≥ 2.

Proof. By (9), we have genk,2(q) = hk(q) for any k ≥ 2. Suppose that k ≥ 3. By
Theorem 8.1, the R-algebra M2(R)m is k-generated if and only if m≤ hk(N(q)) for
every maximal ideal q of R. It is easy to see that hk(x) is increasing on [2,∞). It
follows that when k ≥ 3 then M2(R)m is k-generated if and only if m ≤ hk(N(p)).
This, in particular, justifies the equivalence of (i) and (ii) when k>3. It also implies
the existence of t having all the required properties except possibly the estimate t ≥
16. In order to show that t ≥ 16, we need to establish that M2(R)16 is 2-generated
as an R-algebra. It suffices to prove that M2(Z)

16 admits two generators as a
Z-algebra. This will be done in Proposition 8.9. Finally, the equality t = 16 when
N(p)= 2 follows from the fact that h2(2)= 16. �

In order to improve on Theorem 8.3 and extend it to matrix algebras of size
n ≥ 3 the following two questions need to be answered.

Question 8.4. Is it true that t = h2(N(p))?

Question 8.5. Given positive integers k and n, is genk,n(q) an increasing function
of q?
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It order to complete our proof of Theorem 8.3 we have to show that M2(Z)
16

admits two generators. For that we need several observations, which seem of in-
dependent interest.

Proposition 8.6. Let S be a commutative ring. Two matrices A, B ∈M2(S) gen-
erate M2(S) as an S-algebra if and only if det(AB− B A) is invertible in S.

Proof. First we prove the result under the additional assumption that S is a field. Let
N = AB− B A and let T be the subalgebra generated by A and B. If T is a proper
subalgebra then its dimension is at most 3. It follows that T/J (T ) is a semisimple
algebra of dimension ≤ 3 (recall that J (T ) denotes the Jacobson radical of T ).
Thus T/J (T ) is abelian and therefore N ∈ J (T ). Since the Jacobson radical is
nilpotent, N is nilpotent, hence det N = 0.

Conversely, suppose that det N = 0. Recall that any 2× 2 matrix X satisfies
the identity X2

= tX X − dX I , where tX is the trace and dX is the determinant of
X . Since the trace of N is 0, we have N 2

= 0. If N = 0 then T is commutative,
and hence a proper subalgebra of M2(S). If N 6= 0, the null-space of N is one-
dimensional. Using the identity A2

= tA A−dA I we easily see that AN+N A= tA N .
It follows that the null-space of N is A-invariant. Similarly, the null-space of N is
B-invariant. It follows that the null-space of N is T-invariant, hence T is a proper
subalgebra of M2(S). This completes our proof in the case when S is a field.

If S is any commutative ring then, by Lemma 2.6, the matrices A and B generate
M2(S) if and only if for any maximal ideal M of S the S/M-algebra M2(S/M)
is generated by the images of A and B. By the just established field case of the
result, this is equivalent to the condition that det(AB − B A) 6∈ M for all maximal
ideals M , which in turn is equivalent to claiming that det(AB − B A) is invertible
in S. �

The following observation is due to H. W. Lenstra.

Lemma 8.7. Let A, B ∈ M2(Z) be two matrices with all entries in {0, 1}. Then
A, B generate M2(Z) if and only if their reductions modulo 2 generate M2(F2).

Proof. By Proposition 8.6, we need to prove that det(AB− B A) is odd if and only
if it is ±1. The “if” part is clear. Suppose then that

A =
(

a1 a2

a3 a4

)
and B =

(
b1 b2

b3 b4

)
are such that ai , b j ∈ {0, 1} and det(AB− B A) is odd. Note that

AB− B A =
(

a2b3− a3b2 a2(b4− b1)+ b2(a1− a4)

a3(b1− b4)+ b3(a4− a1) a3b2− a2b3

)
.

The diagonal entries of this matrix are in {0,±1} and the off-diagonal entries are
in the set {0,±1,±2}. If a2b3 − a3b2 = 0 then the off-diagonal entries must be



288 Rostyslav V. Kravchenko, Marcin Mazur and Bogdan V. Petrenko

odd and hence are ±1. It follows that det(AB− B A)=±1. The same conclusion
holds if one of the off-diagonal entries is 0. Suppose now that a2b3− a3b2 = ±1
and the off-diagonal entries are not 0. Then one of the off-diagonal entries, say
a3(b1−b4)+b3(a4−a1), must be even and nonzero (the other possibility is handled
in the same way). This can only happen if a3= b3= 1 and b1−b4= a4−a1=±1.
It follows that one of a2, b2 is 0 and the other is 1. Thus det(AB − B A) = −1−
(∓1)(±2)= 1. �

Lemma 8.8. Let A, B, A′, B ′ ∈M2(Z) be matrices with all entries in {0, 1} such
that each pair A, B and A′, B ′ generates M2(Z). If there is an odd prime p such
that the reductions modulo p of (A, B) and (A′, B ′) are conjugate in M2(Fp) then
the pairs (A, B) and (A′, B ′) are conjugate in M2(Z).

Proof. For a pair of 2× 2 matrices X and Y define

conj(X, Y )=
(
tr(X), det(X), tr(Y ), det(Y ), tr(XY )

)
.

It follows from [Mazur and Petrenko 2009, Theorem 2] that for any principal ideal
domain R and any two pairs (X, Y ) and (X ′, Y ′) of elements in M2(R) which
generate M2(R) as an R-algebra we have conj(X, Y )= conj(X ′, Y ′) if and only if
X ′ = C XC−1 and Y ′ = CY C−1 for some invertible matrix C ∈M2(R) (in [Mazur
and Petrenko 2009] the fifth component of conj is det(X + Y ) but it is equivalent
to the version above by the following identity for 2× 2 matrices:

tr(X) tr(Y )− tr(XY )+ det(X)+ det(Y )− det(X + Y )= 0.)

Under the assumptions of the lemma, the traces of A, B, A′, B ′ are in {0, 1, 2}
and the determinants of these matrices are in {−1, 0, 1}. Our assumption that
conj(A, B) ≡ conj(A′, B ′) (mod p) implies then that tr A = tr A′, det A = det A′,
tr B = tr B ′, and det B = det B ′. It remains to prove that tr(AB)= tr(A′B ′). Let

A =
(

a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
, A′ =

(
a′1 a′2
a′3 a′4

)
, B ′ =

(
b′1 b′2
b′3 b′4

)
.

Then tr(AB) = a1b1 + a2b3 + a3b2 + a4b4 and tr(A′B ′) = a′1b′1 + a′2b′3 + a′3b′2 +
a′4b′4. Both these numbers belong to {0, 1, 2, 3, 4}. Suppose that these numbers
are different. Since they are congruent modulo p, we see that p = 3 and one of
these numbers is in {0, 4}. If tr(AB) = 4 then all the entries ai and b j must be
1 so A = B, which is not possible. Thus we may assume that tr(AB) = 0 and
then tr(A′B ′) = 3. If tr(A) = 0 then tr(A′) = 0, so a′1 = a′4 = 0 and therefore
tr(A′B ′) ≤ 2, a contradiction. Thus tr(A) 6= 0 and in the same way we show that
tr(B) 6= 0. If tr(A) = 2 then a1 = a4 = 1 so b1 = b4 = 0 and tr(B) = 0, which
we have just proved impossible. This shows that tr(A)= 1 and a similar argument
yields tr(B) = 1. Thus tr(A′) = 1 = tr(B ′). It follows that one of a′1 and a′4 is
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0. We may assume that a′1 = 0 (the same argument works when a′4 = 0). Then
a′2 = a′3 = a′4 = b′2 = b′3 = b′4 = 1 and consequently b′1 = 0 and A′ = B ′, a
contradiction. �

We have now the following curious proposition.

Proposition 8.9. Let x and y be two elements of M2(Z)
k such that every com-

ponent of x and y is a matrix whose all entries are in {0, 1}. Suppose that x, y,
considered as elements of M2(F2)

k , generate the algebra M2(F2)
k . Then x, y gen-

erate M2(Z)
k as a ring. In particular, the ring M2(Z)

16 admits two generators.

Proof. Let x = (X1, . . . , Xk), y = (Y1, . . . , Yk). By Lemma 8.7, each pair (X i , Yi )

generates M2(Z). According to Lemma 2.6 and Theorem 6.1, it suffices to prove
that for any prime p and any 1≤ i < j ≤ k, the pairs (X i , Yi ) and (X j , Y j ) are not
conjugate modulo p. For p=2 this follows from our assumptions and Theorem 6.1.
Consequently, the pairs (X i , Yi ) and (X j , Y j ) are not conjugate in M2(Z)whenever
i 6= j . By Lemma 8.8, the pairs (X i , Yi ) and (X j , Y j ) are not conjugate modulo p
for any odd prime p. This proves the first part of the proposition.

Since gen2,2(2) = 16 by (9), the algebra M2(F2)
16 is two-generated. It follows

from the first part of the proposition that M2(Z)
16 admits two generators. �

Remark 8.10. We would like to point out that one should not expect any analogs
of Proposition 8.9 for matrix rings of size larger than 2. For example, consider the
matrices

A =

0 0 0
0 0 0
0 1 1

 and B =

0 0 1
1 0 1
0 0 1

 .
Considered as matrices over the field F3 with three elements they have a common
eigenvector (1,−1, 1)t . Thus these matrices do not generate M3(F3), hence they
do not generate M3(Z). Consider now these matrices as matrices over F2. If they do
not generate M3(F2), then they are contained in a maximal subalgebra of M3(F2).
By Proposition 7.4, the maximal subalgebra is either a field or it fixes a nontrivial
proper subspace. Since A2

= A, the former case is not possible. In the latter case,
A and B have a common eigenvector either in their action on column vectors or in
their action on row vectors. It is however a straightforward verification to see that
no such common eigenvector exists. Thus A and B generate the algebra M3(F2).
In fact, in the same way one can see that they generate M3(Fp) for any prime p
different from 3. With a bit more work, one can see that the subalgebra of M3(Z)

generated by A and B has index 9. Note that by (10), there are 129024 ordered
pairs of 3 × 3 matrices with entries in {0, 1}, which considered as elements of
M3(F2) generate the algebra M3(F2). Tsvetomira Radeva, at our request, performed
computations using Java and GAP and found that among them exactly 9132 pairs
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do not generate M3(Z). The computations are based on a result of [Paz 1984] and
use the LLL algorithm [Lenstra et al. 1982; Pohst 1987].

We end with the following curious observation. In Theorem 8.1 we defined a
family of polynomials φk(x), k ≥ 2. The polynomial x3k−2

+ φk(x) is a factor of
the polynomial fk defined in Theorem 8.2. Define polynomials ψk(x) as follows:

ψk(x)=



x3k−2
+φk(x)

x − 1
if k ≡ 0, 4 (mod 6),

x3k−2
+φk(x)

x2− 1
if k ≡ 1, 3 (mod 6),

x3k−2
+φk(x)

x3− 1
if k ≡ 2 (mod 6),

x3k−2
+φk(x)

(x + 1)(x3− 1)
if k ≡ 5 (mod 6).

(14)

Computations with Maxima show that the polynomials φk and ψk are irreducible
for k ≤ 250. While the polynomials φk have only six nonzero coefficients, the
polynomials ψk have complicated structure. For example,

ψ12(x)= x33
+ x32

+ x31
+ x30

+ x29
+ x28

+ x27
+ x26

+ x25
+ x24

+ x23
+ x22

+ 2x21
+ 2x20

+ 2x19
+ 2x18

+ 2x17
+ 2x16

+ 2x15
+ 2x14

+ 2x13
+ 2x12

+ x11
− x10

− 2x9
− 2x8

− 2x7
− 2x6

− 2x5
− 2x4

− 2x3
− 2x2

− 2x − 1.

Nevertheless, it seems that all the coefficients of ψk are in the set {−2,−1, 0, 1, 2}.
Even though we do not have at present any conceptual reason for it, we propose
the following intriguing conjecture.

Conjecture 8.11. The polynomials φk and ψk are irreducible.
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Moving lemma for additive
higher Chow groups

Amalendu Krishna and Jinhyun Park

We study additive higher Chow groups with several modulus conditions. Apart
from exhibiting the validity of all known results for the additive Chow groups
with these modulus conditions, we prove the moving lemma for them: for a
smooth projective variety X and a finite collection W of its locally closed alge-
braic subsets, every additive higher Chow cycle is congruent to an admissible
cycle intersecting properly all members of W times faces. This is the additive
analogue of the moving lemma for the higher Chow groups studied by S. Bloch
and M. Levine.

As an application, we prove that any morphism from a quasiprojective variety
to a smooth projective variety induces a pull-back map of additive higher Chow
groups. More important applications of this moving lemma are derived in two
separate papers by the authors.

1. Introduction

Working with algebraic cycles, formal finite sums of closed subvarieties of a vari-
ety, often requires some forms of moving results, as differential geometry often re-
quires Sard’s lemma. A classical example is Chow’s moving lemma [1956], which
moves algebraic cycles under rational equivalence. A modern version for higher
Chow groups [Bloch 1994; Levine 1998] shows that, for a smooth quasiprojective
variety X and a finite set of locally closed subvarieties of X , one can move (modulo
boundaries) admissible cycles to other admissible cycles that intersect a given finite
set of subvarieties in the right codimensions. Any such result on moving of cycles
is generally referred to as a moving lemma. Such moving results have played a
very crucial role in the development and application of the theory of higher Chow
groups. For instance, one major application was the construction of a triangulated
category of mixed motives over k [Hanamura 2004].

The primary goal of this paper is to prove this latter kind of moving lemma
for additive higher Chow groups of a smooth and projective variety, which will

MSC2000: primary 14C25; secondary 19E15.
Keywords: Chow group, algebraic cycle, moving lemma.
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serve as an important technical tool in the study of additive higher Chow groups.
Already, this moving lemma for additive Chow groups has been crucially used in
[Krishna and Park 2011; 2012] for proving some important results about additive
higher Chow groups. We expect that this will have many more applications in the
future study of additive Chow groups and the infinitesimal K-theory of smooth
varieties.

Additive Chow groups of 0-cycles on a field were first introduced in [Bloch and
Esnault 2003b] in an attempt to describe the K-theory and motivic cohomology
of the ring of dual numbers via algebraic cycles. Bloch and Esnault [2003a] later
defined these groups by putting a modulus condition on additive Chow cycles in
the hope of describing the K-groups of any given truncated polynomial ring over
a field. The additive higher Chow groups of any given variety were defined in the
most general form in [Park 2009] and were later studied in more detail in [Krishna
and Levine 2008], where many nice properties of these groups were established.

The most crucial part of existing definitions of additive higher Chow groups,
which makes them distinct from the higher Chow groups, is the modulus condition
on the admissible additive cycles. This condition also brings an extra subtlety
which does not appear in the theory of higher Chow groups. As conjectured in
[Krishna and Levine 2008; Park 2009], additive higher Chow groups are expected
to complement higher Chow groups for nonreduced schemes so as to obtain the
right motivic cohomology groups. In particular, for a smooth projective variety X ,
one expects an Atiyah–Hirzebruch spectral sequence

TH−q(X,−p− q;m)⇒ K nil
−p−q(X;m), (1-1)

where K nil(X;m) is the homotopy fiber of the restriction map

K(X ×Spec(k[t]))→ K (X ×Spec(k[t]/tm+1)).

Since these statements are still conjectural, it is not clear if the modulus condi-
tions used to study additive higher Chow groups of varieties in the literature are
the right ones to give the correct motivic cohomology, for example, ones which
would satisfy (1-1). One goal of this paper is to exhibit that the modulus condition
(which we call Msup in this paper) used in [Krishna and Levine 2008] may not be
the best possible one.

We study the theory of additive Chow groups based on two other modulus con-
ditions in this paper: M = Msum is based on the modulus condition used in [Bloch
and Esnault 2003a; Rülling 2007], and M = Mssup is a new modulus condition
introduced in this paper. Although this new modulus condition Mssup may appear
to be mildly stronger than the one used in [Krishna and Levine 2008; Park 2009],
it turns out that the resulting additive Chow groups have all the properties known
for the additive Chow groups of [Bloch and Esnault 2003a; Krishna and Levine
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2008; Park 2009]. In addition, we prove many other crucial structural properties
of additive higher Chow groups based on the modulus conditions Msum and Mssup.
More important properties are discussed in [Krishna and Park 2011; 2012].

As in the case of higher Chow groups, any theory of additive motivic cohomol-
ogy which would compute the K-theory as in (1-1) is expected to have a form of
moving lemma to make it more amenable to deeper study. The central result of the
paper is the following moving lemma:

Theorem 4.1. For a smooth projective variety X and a finite collection W of its
locally closed algebraic subsets, every additive higher Chow cycle is congruent to
an admissible cycle intersecting properly all members of W times faces. In other
words, the inclusion of complexes

TZq
W(X, · ;m) ↪→ TZq(X, · ;m)

is a quasiisomorphism.

This is the additive analogue of the moving lemma for the higher Chow groups
studied by S. Bloch and M. Levine.

It is known that the moving lemma for all smooth quasiprojective varieties in-
directly implies other properties such as A1-homotopy invariance and localization
sequences. But these clearly fail for the additive Chow groups. This suggests
that the above moving lemma may not be valid for some smooth quasiprojective
varieties. A concrete quasiprojective example, where the standard arguments fail,
is given in Example 8.2.

Our proof of the above result is broadly speaking based on the techniques of
[Bloch 1986; Levine 1998] where the analogous result for the higher Chow groups
is proven. However, the main difficulty with the techniques of both these works
is that their arguments are mostly intersection theoretic and are not equipped to
handle the more delicate modulus condition of additive Chow cycles. So these
arguments cannot be directly transported to the additive world. This has made
people believe that the additive Chow group may not satisfy the moving lemma.

We achieve the goal by our new containment-type argument (see Proposition 2.4)
and construction of the additive version of a chain homotopy variety in Section 5.
Using these results and Proposition 5.2, we show that we can keep track of the mod-
ulus condition whenever we need to move an additive cycle. On the log-additive
higher Chow groups of [Krishna and Levine 2008], one can prove the moving
lemma for any general smooth quasiprojective varieties using our main theorem.

As the first application of the moving lemma, we establish the contravariant
functoriality property of the additive higher Chow groups in the most general form:

Theorem 7.1. For a morphism f : X→ Y of quasiprojective varieties over a field
k, where Y is smooth and projective, there is a pull-back map
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f ∗ : THq(Y, n;m)→ THq(X, n;m),

and this satisfies the expected composition law.

If X is also smooth and projective, the pull-back map on the additive Chow
groups was constructed in [Krishna and Levine 2008] using the action of the higher
Chow groups on the additive ones. However, the contravariant functoriality in
this general form as above is new, and it is based on a crucial use of the moving
lemma (Theorem 4.1) as in the case of general pull-back maps of higher Chow
groups [Bloch 1986, Theorem 4.1], and another use of our containment argument
to establish the Gysin chain map for regular embeddings. Even in the special case
of X being smooth and projective, our proof is different and more direct than the
one in [Krishna and Levine 2008].

We give applications of the results in this paper elsewhere. In [Krishna and Park
2011] we investigate the structure of differential graded algebras on the additive
higher Chow groups of smooth projective varieties. When X = Spec(k), this was
done in [Rülling 2007]. Higher-dimensional varieties X require involved calcula-
tions and arguments as well as the moving lemma and the containment lemma of
this paper. As another application of the moving lemma, we showed in [Krishna
and Park 2011] that there is an additive analogue of Bloch’s normalized cycle
complex and it is quasiisomorphic to the additive cycle complex. This fact is used
to propose and study a motivic cyclic homology theory by constructing a mixed
complex in the sense of A. Connes (see [Loday 1998]) from additive higher Chow
complexes.

In [Krishna and Park 2012] we apply the moving lemma to construct a tri-
angulated category DM(k;m) of mixed motives over k[t]/(tm+1). This category
extends the category of [Hanamura 2004], and some “augmented motives” in the
category compute the usual higher Chow groups and the additive higher Chow
groups at the same time, as desired originally in [Bloch and Esnault 2003a, §4].

We now outline the structure of this paper. In Section 2, we define our basic
objects, the additive higher Chow groups with various modulus conditions. We also
prove some preliminary results used repeatedly in the paper. In Section 3, we prove
basic properties of these additive Chow groups. In particular, we demonstrate, for
the additive higher Chow groups based on the modulus condition Mssup, all those
results which are known for the additive higher Chow groups of [Bloch and Esnault
2003a; Krishna and Levine 2008; Park 2009] with slightly different modulus con-
ditions Msum and Msup. Section 4 gives the proofs of further preliminary results
needed to prove our moving lemma for the additive higher Chow groups. The
subsequent Sections 5 and 6 are devoted to our main result, the moving lemma
for additive higher Chow groups. In Section 7, we apply the moving lemma to
prove the general contravariant functoriality theorem, Theorem 7.1. In Section 8,
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we append some calculations of the additive higher Chow groups we found in the
process of working on the problem. This suggests some kind of “pseudo”-A1-
homotopy properties of additive higher Chow groups.

Throughout this paper, a k-scheme, or a scheme over k, is always a separated
scheme of finite type over a perfect field k. A k-variety is an integral k-scheme.

2. Additive higher Chow groups

In this section, we define additive higher Chow groups from a more unified perspec-
tive than those in the literature by Bloch and Esnault, Rülling, Krishna and Levine,
and Park, treating the modulus conditions as “variables”. We also prove some
elementary results that are needed to study and compare additive Chow groups
based on various modulus conditions.

We begin by fixing some notations which will be used throughout this paper.
We write Sch /k, Sm /k, and SmProj /k for the categories of k-schemes, smooth
quasiprojective varieties, and smooth projective varieties, respectively. We shall
let Sch′ /k denote the category of k-schemes with only proper maps. D−(Ab) is
the derived category of bounded-above complexes of abelian groups. Recall from
[Krishna and Levine 2008; Park 2009] that for a normal variety X over k, and
a finite set of Weil divisors {Y1, . . . , Ys} on X , the supremum of these divisors,
denoted by sup1≤i≤s Yi , is the Weil divisor defined to be

sup1≤i≤s Yi = sumY∈Pdiv(X)(max
1≤i≤s

ordY (Yi ))[Y ], (2-1)

where Pdiv(X) is the set of all prime Weil divisors of X . One observes that the
set of all Cartier divisors on a normal scheme X is contained in the set of all Weil
divisors, and the supremum of a collection of Cartier divisors may not remain a
Cartier divisor in general, unless X is factorial. We shall need some elementary
results about Cartier and Weil divisors on normal varieties:

Lemma 2.1. Let X be a normal variety and let D1 and D2 be effective Cartier
divisors on X such that D1 ≥ D2 as Weil divisors. Let Y ⊂ X be a closed subset
which intersects D1 and D2 properly. Let f : Y N

→ X be the composite of the
inclusion and the normalization of Yred. Then f ∗(D1)≥ f ∗(D2).

Proof. For any effective Cartier divisor D on X , let ID denote the sheaf of ideals
defining D as a locally principal closed subscheme of X . We first claim that D1 ≥

D2 if and only if ID1 ⊂ ID2 . We only need to show the “only if” part, as the
other implication is obvious. Now, D1 ≥ D2 implies that D= D1−D2 is effective
as a Cartier divisor since the group of Cartier divisors forms a subgroup of Weil
divisors on a normal scheme. Since ID1 ⊂ ID2 is a local question, we can assume
that X = Spec(A) is a local normal integral scheme and IDi = (ai ). Put a = a1/a2
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as an element of the function field of X . We need to show that a ∈ A. Since A
is normal, it suffices to show that a ∈ Ap for every height-one prime ideal p of A.
But this is precisely the meaning of D1 ≥ D2. This proves the claim.

Since Di intersect Y properly, we see that f ∗(Di ) is a locally principal closed
subscheme of Y N for i = 1, 2. The lemma now follows directly from the above
claim. �

The following is a refinement of [Krishna and Levine 2008, Lemma 3.2].

Lemma 2.2. Let f : Y→ X be a surjective map of normal integral k-schemes. Let
D be a Cartier divisor on X such that f ∗(D)≥ 0 on Y . Then D ≥ 0 on X.

Proof. As is implicit in the proof of Lemma 2.1, we can localize at the generic
points of Supp(D) and assume that X = Spec(A), where A is a discrete valuation
ring which is essentially of finite type over k. The divisor D is then given by
a rational function a ∈ K , where K is the field of fractions of A. Choosing a
uniformization parameter π of A, we can write a uniquely as a = uπn , where
u ∈ A× and n ∈ Z.

Since f is surjective, there is a closed point y ∈ Y such that f (y) is the closed
point of X . Since Y is integral, the surjectivity of f also implies that the generic
point of Y (which is also the generic point of Spec(OY,y)) must go to the generic
point of X under f . Hence the map Spec(OY,y)→ X is surjective. This implies in
particular that the image of π in OY,y is a nonzero element of the maximal ideal
m of the local ring OY,y . On the other hand, f ∗(D) ≥ 0 implies that as a rational
function on Y , a actually lies in OY,y . Since u ∈ O×Y,y and π ∈ m, this can happen
only when n ≥ 0. That is, D is effective. �

We will assume that a k-scheme X is equidimensional to define the additive
Chow groups, although one can easily remove this condition by writing the ad-
ditive Chow cycles in terms of their dimensions rather than their codimensions.
Throughout this paper, for any such scheme X , we shall denote the normalization
of Xred by X N. Thus X N is the disjoint union of the normalizations of all the
irreducible components of Xred.

Set A1
:= Spec k[t], Gm := Spec k[t, t−1

], P1
:= Proj k[Y0, Y1], and let y :=

Y1/Y0 be the standard coordinate function on P1. We set �n
:= (P1

\ {1})n . For
n ≥ 1, let Bn = Gm ×�n−1, B̃n = A1

×�n−1, Bn = A1
× (P1)n−1

⊃ B̃n , and
B̂n = P1

× (P1)n−1
⊃ Bn . We use the coordinate system (t, y1, . . . , yn−1) on B̂n ,

with yi := y ◦ qi , where qi : B̂n→ P1 is the projection onto the i-th P1.
Let F1

n,i , for i = 1, . . . , n− 1, be the Cartier divisor on B̂n defined by {yi = 1}
and Fn,0⊂ B̂n the Cartier divisor defined by {t = 0}. Notice that the divisor Fn,0 is
in fact contained in Bn ⊂ B̂n . Let F1

n denote the Cartier divisor sumn−1
i=1 F1

n,i on B̂n .



Moving lemma for additive higher Chow groups 299

A face of Bn is a subscheme F defined by equations of the form

yi1 = ε1, . . . , yis = εs (ε j ∈ {0,∞}).

For ε = 0,∞, and i = 1, . . . , n− 1, let ιn,i,ε : Bn−1→ Bn be the inclusion

ιn,i,ε(t, y1, . . . , yn−2)= (t, y1, . . . , yi−1, ε, yi , . . . , yn−2). (2-2)

We now define the modulus conditions that we shall consider for defining our
additive higher Chow groups.

2A. Modulus conditions.

Definition 2.3. Let X be a k-scheme as above and let V be an integral closed
subscheme of X × Bn . Let V denote the closure of V in X × B̂n and let

ν : V
N
→ X × B̂n

denote the induced map from the normalization of V . We fix an integer m ≥ 1.

(1) We say that V satisfies the modulus m condition Msum (or the sum-modulus
condition) on X × Bn if as Weil divisors on V

N
,

(m+ 1)[ν∗(Fn,0)] ≤ [ν
∗(F1

n )].

This condition was used in [Bloch and Esnault 2003a; Rülling 2007] to study
additive Chow groups of 0-cycles on fields.

(2) We say that V satisfies the modulus m condition Msup (or the sup-modulus
condition) on X × Bn if as Weil divisors on V

N
,

(m+ 1)[ν∗(Fn,0)] ≤ sup1≤i≤n−1[ν
∗(F1

n,i )].

This condition was used by in [Krishna and Levine 2008; Park 2009] to define
their additive higher Chow groups.

(3) We say that V satisfies the modulus m condition Mssup (or the strong sup-
modulus condition) on X × Bn if there exists an integer 1 ≤ i ≤ n − 1 such
that

(m+ 1)[ν∗(Fn,0)] ≤ [ν
∗(F1

n,i )]

as Weil divisors on V
N

.

Since the modulus conditions are defined for a given fixed integer m, we shall
often simply say that V satisfies a modulus condition M without mentioning the
integer m. Notice that since V is contained in X × Bn , its closure V intersects all
the Cartier divisors Fn,0 and F1

n,i (1≤ i ≤ n−1) properly in X× B̂n . In particular,
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their pull-backs of Fn,0 and F1
n,i are all effective Cartier divisors on V

N
. Notice

also that
Mssup⇒ Msup⇒ Msum. (2-3)

The following restriction property of the modulus conditions Msum and Mssup

will be used repeatedly in this paper.

Proposition 2.4 (containment lemma). Let X be a k-scheme, and let W ⊂ V be
irreducible closed subvarieties of X × Bn . If V satisfies Msum, then so does W ; if
V satisfies Mssup, then so does W .

Proof. Let V and W be the Zariski closures of V and W in X× B̂n and let W
j
↪→ V

be the closed embedding. Let ν1 : V N
→ V ↪→ X× B̂n be the normalization of V :

W N
1

f N

��

ḡ
// W1

f
��

j̄
// V

N

��
ν1

��

W N
g

//

ν2 ))

W � �
j

// V
� _

��

X × B̂n.

(2-4)

Let W1 be W ×V V N, and let f and j̄ be the natural projections. Let g and ḡ
be the normalizations. The map ν2 is defined so that the lower triangle commutes.
By the universal property of normalization, we have a finite surjective morphism
f N
: W N

1 → W N of normal integral k-schemes that makes the above diagram
commutative.

Since V ∩ Fn,0 =∅ and W 6=∅, we see that Fn,0 and F1
n,i intersect W properly.

Now, if V satisfies the modulus condition Mssup, then Lemma 2.1 implies that there
is an integer 1 ≤ i ≤ n− 1 such that ḡ∗ ◦ j̄∗[ν∗1 (F

1
n,i − (m + 1)Fn,0)] ≥ 0 on W N

1 .
In particular, by commutativity, we get ( f N )∗[ν∗2 (F

1
n,i− (m+1)Fn,0)] ≥ 0 on W N

1 .
Since f N is a finite and surjective map of normal varieties, from Lemma 2.2 we
have [ν∗2 (F

1
n,i − (m+ 1)Fn,0)] ≥ 0 on W N, that is, W satisfies Mssup too.

The case of Msum follows exactly the same way using F1
n instead of F1

n,i , noting
that F1

n is also an effective Cartier divisor. �

As one can see from the above proposition, although the modulus condition
Msup lies between the other two modulus conditions Msum and Mssup, the additive
higher Chow groups based on the latter modulus conditions have better structural
properties.

In this paper, we study the additive higher Chow groups based on the modulus
conditions Msum and Mssup. We shall show in the next section that the additive
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Chow groups based on our new modulus condition Mssup satisfy all the properties
known to be satisfied by the additive higher Chow groups of Krishna and Levine,
Park, Bloch and Esnault, and Rülling.

2B. Additive cycle complex. We define the additive cycle complex based on the
above modulus conditions.

Definition 2.5. Let M be a modulus condition — either Msum or Mssup. Let X be
a k-scheme, and let r and m be integers with m ≥ 1.

(0) TZ r (X, 1;m)M is the free abelian group on integral closed subschemes Z of
X ×Gm of dimension r .

For n> 1, TZ r (X, n;m)M is the free abelian group on integral closed subschemes
Z of X × Bn of dimension r + n− 1 such that:

(1) (Good position) For each face F of Bn , Z intersects X × F properly:

dim(Z ∩ (X × F))≤ r + dim(F)− 1, and

(2) (Modulus condition) Z satisfies the modulus m condition M on X × Bn .

As our scheme X is equidimensional of dimension d over k, we write for q ≥ 0

TZq(X, n;m)M = TZ d+1−q(X, n;m)M .

We now observe that the good-position condition on Z implies that the cycle
(idX ×ιn,i,ε)

∗(Z), that we denote by ∂εi (Z), is well-defined and each component
satisfies the good-position condition. Moreover, letting Y = X × F for F =
ιn,i,ε(Bn−1) in Proposition 2.4, we first of all see that Y intersects X × Fn,0 and
X × F1

n properly in X × B̂n , and each component of (idX ×ιn,i,ε)
∗(Z) satisfies the

modulus condition M on X× Bn−1. We thus conclude that if Z ⊂ X× Bn satisfies
the above conditions (1) and (2), then every component of ιn,i,ε∗(Z) also satisfies
these conditions on X × Bn−1. In particular, we have the cubical abelian group
n 7→ TZq(X, n;m)M .

Definition 2.6. The additive cycle complex TZq(X, · ;m)M of X in codimension q
and with modulus m condition M is the nondegenerate complex associated to the
cubical abelian group n 7→ TZq(X, n;m)M , that is,

TZq(X, n;m)M :=
TZq(X, n;m)M

TZq(X, n;m)M,degn
,

where the group of degenerate cycles TZq(X, n;m)M,degn is generated by the pull-
backs of the cycles under the projections X × Bn→ X × Bn−1 given by

(x, t, y1, . . . , yn−1) 7→ (x, t, y1, . . . , yi−1, yi+1, . . . , yn−1).
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The boundary map of this complex at level n is given by

∂ = sumn−1
i=1 (−1)i (∂∞i − ∂

0
i ),

which satisfies ∂2
= 0. The homology

THq(X, n;m)M := Hn(TZq(X, · ;m)M), n ≥ 1,

is the additive higher Chow group of X with modulus m condition M .

From now on, we shall drop the subscript M from the notations and it will be
understood that the additive cycle complex or the additive higher Chow group in
question is based on the modulus condition M , where M could be either Msum or
Mssup. The reader should however always bear in mind that these two are different
objects.

A few comments are in order. We could also have defined our additive cycle
complex by taking TZ r (X, n;m) to be the free abelian group generated by inte-
gral closed subschemes of X× B̃n which have the good-intersection property with
respect to the faces of B̃n , and which satisfy the modulus condition on X×Bn (see
[Krishna and Levine 2008; Park 2009]). However, the following easy consequence
of the modulus condition shows that this does not change the cycle complex.

Lemma 2.7. Let M be a modulus condition in Definition 2.3.
Then, there is a canonical bijection between the set of irreducible closed sub-

varieties V ⊂ X × Bn satisfying M and the set of irreducible closed subvarieties
W ⊂ X × B̃n satisfying M.

Here, the correspondence is actually given by the identity map. In other words,
any closed subvariety satisfying M on X × B̃n is in fact a closed subvariety of the
smaller space X × Bn .

Proof. First of all, since for any integral closed subscheme V of X × B̂n , the pull-
back ν∗(Fn,0) on V N is contained in the open subset ν−1(X× Bn), we can replace
B̂n by Bn in the definition of the modulus conditions.

Now, if 6 and 6̃ are the two sets in the statement, then the modulus condition
forces that if V ∈ 6, then V is the same as its closure in X × B̃n . Conversely, if
V ∈ 6̃, then the modulus condition again forces V to be contained in X × Bn . �

Let TZq(X, · ;m)sup be the additive cycle complex as defined in [Krishna and
Levine 2008; Park 2009]. This complex is based on the modulus condition Msup

above. It follows from (2-3) that there are natural inclusions of cycle complexes

TZq(X, · ;m)ssup ↪→ TZq(X, · ;m)sup ↪→ TZq(X, · ;m)sum (2-5)

and hence there are natural maps

THq(X, · ;m)ssup→ THq(X, · ;m)sup→ THq(X, · ;m)sum. (2-6)
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One drawback of the cycle complex based on Msup is that the underlying mod-
ulus condition for a cycle is not necessarily preserved when it is restricted to a
face of Bn . This forces one to put an extra induction condition in the definition of
TZq(X, · ;m)sup that requires for cycles to be admissible, not only must the cycles
themselves satisfy Msup on X×Bn , but also all their intersections with various faces
must satisfy Msup. In particular, as n gets large, this condition gets more serious,
and it might be a very tedious job to find admissible cycles. On the other hand,
the definition of our cycle complexes shows that this extra induction induction
condition is superfluous for complexes based on Msum or Mssup. Based on this
discussion and all the results of this paper, one is led to guess that even though the
modulus condition Mssup may appear mildly stronger (and Msum weaker) than the
modulus condition Msup, the following conjecture could be true.

Conjecture 2.8. For a smooth projective variety X over k, the natural inclusions
of cycle complexes TZq(X, · ;m)ssup ↪→ TZq(X, · ;m)sup ↪→ TZq(X, · ;m)sum are
quasiisomorphisms.

In Section 3, combined with previously known results, we check that when
S = Spec(k), for groups of 0-cycles, part of the conjecture holds, but we do not
yet know how much of this conjecture holds true in general.

3. Basic properties of THq(X, · ;m)

In this section, our aim is to demonstrate that the additive higher Chow groups
defined above for Msum and Mssup have all the properties (except Theorem 3.6
which we do not know for Msum) which are known to be true for the additive
Chow groups for Msup of [Krishna and Levine 2008; Park 2009]. Since most of the
arguments in the proofs can be given either by quoting these references verbatim
or by straightforward modifications of the same, we only give the sketches of the
proofs with minimal explanations whenever deemed necessary. We begin with the
following structural properties of our additive Chow groups.

Theorem 3.1. Let f : Y → X be a morphism of k-schemes.

(1) If f is projective, there is a natural map of cycle complexes

f∗ : TZr(Y, · ;m)→ TZr (X, · ;m)

that induces the analogous push-forward map on the homology.

(2) If f is flat, there is a natural map of cycle complexes

f ∗ : TZr (X, · ;m)→ TZr (Y, · ;m)

that induces the analogous pull-back map on the homology. These pull-back
and push-forward maps satisfy the obvious functorial properties.
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(3) If X is smooth and projective, there is a product

∩X : CHr (X, p)⊗THs(X, q;m)→ THs−r (X, p+ q;m),

natural with respect to flat pull-back, that satisfies the projection formula

f∗( f ∗(a)∩X b)= a ∩Y f∗(b)

for f : X → Y a morphism of smooth projective varieties. If f is flat in
addition, we have an additional projection formula:

f∗(a ∩X f ∗(b))= f∗(a)∩Y b.

(4) If X is smooth and quasiprojective, there is a product

∩X : CHr (X)⊗THs(X, q;m)→ THs−r (X, q;m),

natural with respect to flat pull-back, that satisfies the projection formula

f∗( f ∗(a)∩X b)= a ∩Y f∗(b)

for f : X → Y a projective morphism of smooth quasiprojective varieties. If
f is flat in addition, we have an additional projection formula

f∗(a ∩X f ∗(b))= f∗(a)∩Y b.

Furthermore, all products are associative.

Proof. This follows from the arguments in [Krishna and Levine 2008]. Granting the
flat pull-back and the projective push-forward, the theorem is a direct consequence
of Lemmas 4.7 and 4.9 of that article, whose proofs are independent of the choice
of the modulus conditions of Definition 2.3, as the interested reader may verify.
The proofs of the flat pull-back and projective push-forward maps on the level of
cycle complexes also follow in the same way as in [Krishna and Levine 2008] using
our Lemma 2.2. �

Theorem 3.2 (projective bundle and blow-up formulae). Let X be a smooth quasi-
projective variety and let V be a vector bundle on X of rank r+1. Let p :P(V )→ X
be the associated projective bundle over X. Let η ∈ CH1(P(V )) be the class of the
tautological line bundle O(1). Then for any q, n ≥ 1 and m ≥ 2, the map

θ :

r⊕
i=0

THq−i (X, n;m)→ THq(P(V ), n;m)

given by
(a0, . . . , ar ) 7→

r
sum
i=0

ηi
∩P(V ) p∗(ai )

is an isomorphism.
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Suppose that i : Z→ X is a closed immersion of smooth projective varieties and
µ : X Z→ X is the blow-up of X along Z with iE : E→ X Z the exceptional divisor
with morphism q : E→ Z. Then the sequence

0→THs(X,n;m)
(i∗,µ∗)
−−−−→THs(Z ,n;m)⊕THs(X Z ,n;m)

q∗−i∗E
−−−→THs(E,n;m)→0

is split exact.

Proof. In view of Theorem 3.1, the proof of the theorem is exactly the same as
the proofs of [Krishna and Levine 2008, Theorems 5.6 and 5.8]. The basic point
is that there is a similar decomposition of the motives of the projective bundle and
the blow-up in the triangulated category Motk of motives over k [ibid., Section 2].
On the other hand, Theorem 3.1 implies that for each integer p≥ 1, the assignment
(X, n) 7→ THn(X, p;m) is a functor from Motk to the category of graded abelian
groups for any modulus M . We refer the reader to [ibid., Section 5] for details. �

Recall from [ibid., Section 2.4] that K b(Z SmProj /k) is the homotopy cate-
gory of the bounded complexes in the additive category Z SmProj /k generated
by SmProj /k. We denote the complex concentrated in degree 0 associated to an
X ∈ SmProj /k by [X ]. Sending X to [X ] defines the functor

[−] : SmProj /k→ K b(Z SmProj /k).

Let i : Z → X be a closed immersion in SmProj /k, µ : X Z → X the blow-up
of X along Z , and iE : E → X Z the exceptional divisor with structure morphism
q : E→ Z . Let C(µ) be the complex

[E]
(iE ,−q)
−−−−→ [X Z ]⊕ [Z ]

µ+i
−−→ [X ]

with [X ] in degree 0. The category Dhom(k) is the localization of the triangulated
category K b(Z SmProj /k) with respect to the thick subcategory generated by the
complexes C(µ).

Theorem 3.3. Assume that k admits resolution of singularities. Then the functor
TZr (−;m) : SmProj /k→ D−(Ab) extends to a functor

TZlog
r (−;m) : Sch /k→ D−(Ab)

together with a natural transformation of functors TZlog
r (−;m)→ TZr (−;m) sat-

isfying:

(1) Let µ : Y→ X be a proper morphism in Sch /k, i : Z→ X a closed immersion.
Suppose that µ : µ−1(X \ Z)→ X \ Z is an isomorphism. Set E := µ−1(Z) with
maps iE : E → Y , q : E → Z. There is a canonical extension of the sequence in
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D−(Ab):

TZlog
r (E;m)

(iE∗,−q∗)
−−−−−→ TZlog

r (Y ;m)⊕TZlog
r (Z;m)

µ∗+i∗
−−−→ TZlog

r (X;m)

to a distinguished triangle in D−(Ab).

(2) Let i : Z→ X be a closed immersion in Sch /k, j :U→ X the open complement.
Then there is a canonical distinguished triangle in D−(Ab):

TZlog
r (Z;m)

i∗
−→ TZlog

r (X;m)
j∗
−→ TZlog

r (U ;m)→ TZlog
r (Z;m)[1],

which is natural with respect to proper morphisms of pairs (X,U )→ (X ′,U ′).

(3) For any X ∈ Sch /k, the natural map THlog
r (X, n;m)→ THlog

r+p(X×Ap, n;m)
is an isomorphism.

Proof. The proof of this theorem is exactly the same as the proof of [Krishna and
Levine 2008, Corollary 6.2]. By [ibid., Lemma 2.8], the motive functor

mhom : SmProj /k→ Dhom(k)

is a category of homological descent in the sense of [Guillén and Navarro Aznar
2002]. Theorem 3.2 immediately implies that TZr (−;m) : SmProj /k→ D−(Ab)
extends to a functor TZr (−;m) : Dhom(k) → D−(Ab). On the other hand, the
functor mhom extends to a functor Mhom : Sch′ /k → Dhom(k) by [Krishna and
Levine 2008, Theorem 2.9]. The functor TZlog

r (−;m) is the composite TZr (−;m)◦
Mhom. All the desired properties of TZlog

r (−;m) follow from the similar properties
of Mhom as shown in the same reference. �

Next we study the question of the existence of the regulator maps from our addi-
tive higher Chow groups to the modules of absolute Kähler differentials. First we
prove the following result of [Bloch and Esnault 2003a; Rülling 2007] on 0-cycles
for the modulus condition Mssup.

Theorem 3.4. Assume that char(k) 6= 2 and let Wm�
•

k denote the generalized
de Rham–Witt complex of Hesselholt and Madsen (see [Rülling 2007]). Then there
is a natural isomorphism

Rn
0,m : THn(k, n;m)→Wm�

n−1
k .

Proof. This is already known for Msum. For the modulus condition Mssup, we first
note that the map Rn

0,m is the composite map

THn(k, n;m)ssup→ THn(k, n;m)sum
θ
−→Wm�

n−1
k ,

where θ is constructed in [Rülling 2007] and this coincides with the regulator map
of Bloch and Esnault for m = 1. Furthermore for m = 1, Bloch and Esnault define
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the inverse map�n−1
k →THn(k, n; 1)sum using a presentation of�n−1

k . The reader
can easily check from the proof of [Bloch and Esnault 2003a, Proposition 6.3] that
the inverse map is actually defined from �n−1

k to THn(k, n; 1)ssup. This completes
the proof when m = 1.

For m ≥ 2, Rülling’s proof for THn(k, n; 1)sum has these main steps:

(1) The existence of map Rn
0,m

(2) The isomorphism of R1
0,m .

(3) The existence of transfer maps on the additive higher Chow groups for finite
extensions of fields.

(4) Showing that pro-group {THn(k, n;m)}n,m≥1 is an example of a restricted Witt
complex; see [Rülling 2007, Remark 4.22].

We have already shown (1) for our THn(k, n;m)ssup. The proof of (3) is a simple
consequence of Theorem 3.1. The surjectivity part of (2) follows from the result
of Rülling and the isomorphism TZn(k, n;m)ssup = TZn(k, n;m)sum. To prove
injectivity, we follow the proof of [Rülling 2007, Corollary 4.6.1] and observe that
if there is a cycle ζ ∈ TZ1(k, 1;m) such that R1

0,m(ζ ) = 0, then ζ is the boundary
of a curve C which is an admissible cycle with the modulus condition Msum. But
then C is an admissible cycle also with the modulus condition Mssup since one has
Mssup = Msup = Msum when n = 2 by definition. This proves (2). Note that this
does not need any assumptions on the characteristic of the ground field.

For the proof of (4), one checks that Lemma 4.17 of [ibid.] works without
change.

Rülling showed that these four ingredients and the universality of the de Rham–
Witt complex imply that there is a map

Wm�
n−1
k

Sn
0,m
−−→ THn(k, n;m)

which is surjective. On the other hand, one checks from the construction of the
map Rn

0.m in [ibid.] that Rn
0.m ◦ Sn

0.m is the identity. �

The following result is an immediate consequence of the results of Rülling and
Theorem 3.4. This gives evidence for Conjecture 2.8.

Corollary 3.5. For every n,m ≥ 1, the natural maps

THn(k, n;m)ssup→ THn(k, n;m)sup→ THn(k, n;m)sum

are isomorphisms.

We finally turn to the regulator maps for 1-cycles as considered in [Park 2009].
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Theorem 3.6. Suppose that k is of characteristic zero and assume the modulus
condition to be Mssup. Then there is a natural nontrivial regulator map

Rn
1,m : THn−1(k, n;m)ssup→�n−3

k . (3-1)

This map is surjective if k is, moreover, algebraically closed.

Proof. Let Rn
1,m be the composite map

THn(k, n;m)ssup→ THn(k, n;m)sup
θ
−→�n−3

k ,

where θ is constructed in [Park 2009]. For the nontriviality of Rn
1,m , Park constructs

a 1-cycle 0 (see [Park 2007, Proposition 1.9] and [Krishna and Levine 2008, 7.11])
and shows (see [Park 2007, Lemmas 1.7 and 1.9]) that each component of 0 in
fact satisfies the modulus condition Mssup. Hence Rn

1,m is nontrivial. If k = k̄, then
the proof of the surjectivity in [Krishna and Levine 2008, §7] follows from the
following:

(1) An action of k× on THn(k, n;m),

(2) Suitable k×-equivariance of R3
1,m up to a scalar,

(3) The surjectivity of R3
1,m , and

(4) The cap product CHn(k, n)⊗Z TH2(k, 3;m)→ THn+2(k, n+ 3;m).

The action of k× on our additive higher Chow groups is given as in [Park 2007;
Krishna and Levine 2008] by

a ∗ (x, t1, . . . , tn−1)= (x/a, t1, . . . , tn−1). (3-2)

This action extends to an action of k× on B̂n . The proof of (2) now follows from
the k×-equivariance of the natural map TZr (k, n;m)ssup → TZr (k, n;m)sup and
the results of [Krishna and Levine 2008]. The proof of (3) is a direct consequence
of (1), (2), and the fact that k is algebraically closed field of characteristic zero.
Finally, (4) is already shown in Theorem 3.1. �

We do not yet know if this theorem holds for Msum because the regulator map
Rn

1,m in [Park 2007] is not immediately defined on the set of all Msum-admissible
1-cycles. In fact, this was one main obstruction that led to the introduction of the
Msup modulus condition in that work. See Section 8A for a related discussion on
how one may potentially get around this issue.

4. Preliminaries for moving lemma

The underlying additive cycle complexes and additive higher Chow groups in all
the results in the rest of this paper will be based on the modulus condition Msum or
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Mssup, unless one of these is specifically mentioned. Our next three sections will
be devoted to proving our first main result of this paper:

Theorem 4.1. Let X be a smooth projective variety over a perfect field k. Let W

be a finite collection of locally closed subsets of X. Then, the inclusion of additive
higher Chow cycle complexes (see below for definitions)

TZq
W(X, · ;m) ↪→ TZq(X, · ;m)

is a quasiisomorphism. In other words, every admissible additive higher Chow cy-
cle is congruent to another admissible cycle intersecting properly all given finitely
many locally closed subsets of X times faces.

In this section, we set up our notations and machinery that are needed to prove
this theorem, and prove some preliminary steps. Let X be a smooth projective
variety over k and we fix an integer m ≥ 1. Let W be a finite collection of locally
closed algebraic subsets of X . If a member of W is not irreducible, we always
replace it by all of its irreducible components so that we assume all members of
W are irreducible. For a locally closed subset Y ⊂ X , recall that the codimension
codimX Y is defined to be the minimum of codimX Z for all irreducible components
Z of Y .

Definition 4.2. We define TZq
W(X, n;m) to be the subgroup of TZq(X, n;m) gen-

erated by integral closed subschemes Z ⊂ X × Bn such that

(1) Z is in TZq(X, n;m) and

(2) codimW×F (Z ∩ (W × F))≥ q for all W ∈W and all faces F of Bn .

It is easy to see that TZq
W(X, · ;m) forms a cubical subgroup of TZq(X, · ;m),

giving us the subcomplex

TZq
W(X, · ;m)=

TZq
W(X, · ;m)

TZq
W(X, · ;m)degn

⊂ TZq(X, · ;m).

Let THq
W(X, · ;m) denote the homology of the complex TZq

W(X, · ;m). Then the
above inclusion induces a natural map of homology,

THq
W(X, · ;m)→ THq(X, · ;m). (4-1)

More generally, if e : W→ Z≥0 is a set-theoretic function, then one can define
subcomplexes TZq

W,e(X, · ;m) replacing condition (2) above by

(2e) codimW×F (Z ∩ (W × F))≥ q − e(W ).

In this generality, the subcomplex TZq
W(X, · ;m) is the same as TZq

W,0(X, · ;m).
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Remark 4.3. Let 8 be the set of all set-theoretic functions e :W→ Z≥0. Give a
partial ordering on 8 by declaring e′ ≥ e if e′(W ) ≥ e(W ) for all W ∈W. If two
functions e, e′ ∈ 8 satisfy e′ ≥ e, then for any irreducible admissible subvariety
Z ∈ TZq

W,e(X, n;m), we have

codimW×F (Z ∩ (W × F))≥ q − e(W )≥ q − e′(W ) (4-2)

for all W ∈W and all faces F ⊂ Bn . Thus, we have

TZq
W,e(X, n;m)⊂ TZq

W,e′(X, n;m) for e ≤ e′. (4-3)

Note that if e ∈ 8 satisfies e ≥ q where q is considered as a constant function in
8, then automatically

TZq
W,q(X, n;m)= TZq

W,e(X, n;m)= TZq(X, n;m). (4-4)

Since 0≤ e for all e ∈8, for each triple e, e′, e′′ such that e≤ e′ ≤ q ≤ e′′, we have

TZq
W(X, n;m)⊂ TZq

W,e(X, n;m)⊂ TZq
W,e′(X, n;m)

⊂ TZq
W,q(X, n;m)= TZq

W,e′′(X, n;m)= TZq(X, n;m).

All these (in)equalities are equivariant with respect to the boundary maps.

Remark 4.4. The main theorem is equivalent to saying that the inclusion

TZq
W(X, n;m)⊂ TZq(X, n;m)

induces an isomorphism THq
W(X, n;m) ' THq(X, n;m) for the given modulus

condition M .

Our remaining objective in this section is to prove an additive analogue of the
spreading argument, which originates from Bloch’s arguments. We begin with the
following results.

Lemma 4.5. Let f : X→ Y be a dominant morphism of integral normal varieties
and let η denote the generic point of Y . Consider the fiber diagram

Xη
jη //

��

X
f

��
{η} // Y.

(4-5)

Let D be a Weil divisor on X such that j∗η (D) is effective. Then there is a nonempty
open subset U ⊂ Y such that if j : f −1(U )→ X denotes the open inclusion, then
j∗(D) is also effective.
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Proof. Let D = sum ni Di . Then j∗η (D) is effective if and only if for every i with
ni < 0, one has Di ∩ Xη = ∅. Since D is a finite sum, it suffices to show that if
D is a prime divisor on X such that D ∩ Xη = ∅, then there is a nonempty open
subset U ⊂ Y such that D ∩ f −1(U )=∅.

Our hypothesis implies that f (D) is a proper closed subset of Y . Thus U =
Y\ f (D) is the desired open subset of Y . �

Lemma 4.6. Let X be a quasiprojective k-variety and let W be a finite collection
of locally closed subsets of X. Let K be a finite field extension of k. Let X K be
the base extension X K = X ×Spec(k) Spec(K ), and let WK be the set of the base
extensions of the varieties in W. Then there are natural maps

p∗ :
TZq(X, · ;m)
TZq

W(X, · ;m)
→

TZq(X K , · ;m)
TZq

WK
(X K , · ;m)

,

p∗ :
TZq(X K , · ;m)

TZq
WK
(X K , · ;m)

→
TZq(X, · ;m)
TZq

W(X, · ;m)

such that p∗ ◦ p∗ = [K : k] · id.

Proof. By Theorem 3.1, one also has the flat pull-back and finite push-forward maps
TZq

W′(X, · ;m)→ TZq
W′K
(X K , · ;m) and TZq

W′K
(X K , · ;m)→ TZq

W′(X, · ;m) for
any W′. Taking for W′ the collection {X} and then W, and then taking the quotient
of the two, we get the desired maps. The last property of the composite map is
obvious from the construction of the pull-back and the push-forward maps on the
additive cycle complexes; see [Krishna and Levine 2008]. �

Proposition 4.7 (spreading lemma). Let k ⊂ K be a purely transcendental exten-
sion. For a smooth projective variety X over k and any finite collection W of
locally closed algebraic subsets of X , let X K and WK be the base extensions as
before. Let pK : X K → Xk be the natural map. Then, the pull-back map

p∗K :
TZq(X, · ;m)
TZq

W(X, · ;m)
→

TZq(X K , · ;m)
TZq

WK
(X K , · ;m)

is injective on homology.

Proof. First, suppose the proposition holds for all infinite fields, and let k be a
finite field. Let Z be a cycle on the left quotient group whose pull-back via k→ K
dies. Then, for two different primes `1 and `2 and for pro-`i extensions k→ ki , the
images of Z under the respective pull-backs are zero. Hence, by the norm argument
in Lemma 4.6, there exist integers Ni such that `Ni

i Z = 0 in the left group. This
implies that Z = 0, thus the proposition holds for the finite field k. Hence, we can
assume that k is infinite.

Since the additive Chow group of X K is an inductive limit of the additive Chow
groups of X L , where L ⊂ K range over purely transcendental extension of k of
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finite transcendence degree over k, we can assume that the transcendence degree
of K over k is finite.

Now let Z ∈ TZq(X, n;m) be a cycle such that ∂Z ∈ TZq
W(X, n− 1;m) where

there are admissible cycles BK ∈ TZq(X K , n+ 1;m) and VK ∈ TZq
WK
(X K , n;m)

satisfying Z K = ∂(BK )+ VK .
We first consider the natural inclusion of complexes

TZq(X, · ;m) ↪→ zq(X ×A1
k , · − 1).

Since K is the function field of some affine space Ar
k , we can use the specialization

argument for Bloch’s cycle complexes [1986, Lemma 2.3] to find an open subset
U ′ ⊂ Ar

k and cycles

BU ′ ∈ zq(X ×U ′×A1
k , n), VU ′ ∈ zq

W×U ′×A1
k
(X ×U ′×A1

k , n− 1)

such that BK and VK are the restrictions of BU ′ and VU ′ to the generic point of U ′

and Z ×U ′ = ∂(BU ′)+VU ′ , respectively. In particular, all components of BU ′ and
VU ′ intersect all faces of X ×U ′× Bn+1 and X ×U ′× Bn properly. To make BU ′

and VU ′ admissible additive cycles, we modify them using our Lemma 4.5.
To check the modulus condition for our cycles, let η denote the generic point

Spec(K ) of U ′. Let B̂ N
U ′ and V̂ N

U ′ denote the normalizations of the closures of BU ′

and VU ′ in X ×U ′× B̂n+1 and X ×U ′× B̂n , respectively.
We first prove the admissibility under the modulus condition Mssup which is

a priori more difficult than Msum. The admissibility of BK and VK implies that
there are integers 1≤ i ≤ n and 1≤ i ′ ≤ n−1 such that in (4-5), the Weil divisors
j∗η(F

1
n+1,i − (m+ 1)Fn+1,0) and j∗η (F

1
n,i ′− (m+ 1)Fn,0) are effective on B̂ N

U ′,η and
V̂ N

U ′,η, respectively. Since X and B̂n are projective, the maps B̂ N
U ′, V̂ N

U ′ → U ′ are
projective. These maps are dominant since BK and VK are nonzero-cycles. Thus
we can apply Lemma 4.5 to find an open subset U ⊂U ′ such that

j∗U (F
1
n+1,i − (m+ 1)Fn+1,0)

and j∗U (F
1
n,i ′ − (m+ 1)Fn,0) are also effective. The same argument applies for the

modulus condition Msum as well. We just have to replace the Cartier divisors F1
n+1,i

and F1
n,i ′ by F1

n+1 and F1
n , respectively. Lemma 4.5 applies in this case, too.

Replacing U ′ by U , we see that

BU ∈ TZq(X ×U, n+ 1;m), VU ∈ TZq
W×U (X ×U, n;m),

Z ×U = ∂(BU )+ VU .
(4-6)

Next, (4-6) implies that for a k-rational point u ∈U (k) (which exists because k is
infinite) such that the restrictions of BU and VU to X×{u} give well-defined cycles
in zq(X × A1, n) and zq

W×A1
k
(X × A1

k , n − 1), one has Z = ∂(i∗u (BU ))+ i∗u (VU ),
where iu : X ×{u} → X ×U is the closed immersion.
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We now only need to show that i∗u (BU ) and i∗u (VU ) satisfy the modulus condition
on X × {u}. But this follows directly from (4-6) and the containment lemma,
Proposition 2.4. �

5. Moving lemma for projective spaces

We follow the strategy of Bloch and Levine to prove the moving lemma for the
additive higher Chow groups. This involves proving the moving lemma first for
the projective spaces and then deducing the same for general smooth projective
varieties using the techniques of linear projections. This section is devoted to the
proof of the moving lemma for the projective spaces. We use the following tech-
nique from [Bloch 1986, Lemma 1.1] a few times to prove the proper-intersection
properties of moved cycles with the prescribed algebraic sets.

Lemma 5.1. Let X be an algebraic k-scheme and G a connected algebraic k-group
acting on X. Let A, B⊂ X be closed subsets, and assume that the fibers of the map

G× A→ X (g, a) 7→ g · a

all have the same dimension and that this map is dominant. Then, there exists a
nonempty open subset U ⊂ G such that for all extension fields L of k and for all
g ∈U (L), the intersection g(AL)∩ BL is proper in X L .

Proposition 5.2 (admissibility of projective image). Let f : X→ Y be a projective
morphism of quasiprojective varieties over a field k. Let Z ∈ TZr (X, n;m) be an
irreducible admissible cycle and let V = f (Z). Then V ∈ TZs(Y, n;m), where s is
the codimension of V in Y × Bn .

Proof. We prove this in several steps.

Claim 1. V intersects all codimension-one faces F of Bn properly in Bn .

Consider F = Fεn,i = ιn,i,ε(Bn−1) for some i ∈ {1, 2, . . . , n−1}, ε ∈ {0,∞}, and
consider the diagram

X × Bn−1
ιn,i,ε //

fn−1
��

X × Bn

fn
��

Y × Bn−1
ιn,i,ε // Y × Bn.

Since F is a divisor in Bn , that V intersects Y × F properly is equivalent to that
Y × F 6⊃ V . Towards contradiction, suppose that V ⊂ Y × F . Then,

Z ⊂ f −1
n ( fn(Z))= f −1

n (V )⊂ f −1
n (Y × F)= ιn,i,ε( f −1

n−1(Y × Bn−1)= X × F.

By assumption, Z intersects X × F properly so that we must have Z 6⊂ X × F .
This contradiction proves the claim.
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Claim 2. V intersects all lower-dimensional faces of Bn properly.

By the admissibility assumption, all cycles ∂εi (Z) = Z ∩ (X × Fεn,i ) are admis-
sible. Moreover, it is easy to see that ∂εi (V )= fn−1(∂

ε
i (Z)). Thus we can replace

Z by ∂εi (Z) and apply the same argument as above; inductively we see that V has
the good-intersection property.

Claim 3. For each face F of Bn , including the case F = Bn , the cycle V ∩(Y ×F)
has the modulus condition.

For any face F = ι(Bi ) ⊂ Bn , where ι : Bi ↪→ Bn is a face map, and for the
projections fi : X × Bi → Y × Bi , note that V ∩ (Y × F) = fn(Z ∩ (X × F)) =
fi (Z |X×F ). But the admissibility of Z implies that Z |X×F is also admissible (see
Proposition 2.4). Hence, replacing Z |X×F by Z , we only need to prove it for
F = Bn , that is, we just need to show that V satisfies the modulus condition.
Consider the diagram

X × Bn //

fn= f

��

X × B̂n

f̄n= f̄
��

Y × Bn // Y × B̂n .

Subclaim. Let V be the closure of V in Y × B̂n and let Z be the closure of Z in
X × B̂n . Then V = f̄ (Z).

Since Z ⊂ f −1(V ) ⊂ f̄ −1(V ) and V is closed, we have Z ⊂ f̄ −1(V ). Hence,
f̄ (Z)⊂ V . For the other inclusion, note that V = f (Z)⊂ f̄ (Z) and f̄ (Z) is closed
because f̄ is projective. Hence V ⊂ f̄ (Z). This proves this subclaim.

To prove the modulus condition for V , we take the normalizations νZ : Z
N
→ Z

and νV : V
N
→ V of Z and V , and consider the following diagram:

Z N

f N
Z

��

νZ // Z
ι1 //

fZ= f̄ |Z
��

X × B̂n
f̄

��

V
N

νV // V
ι2 // Y × B̂n ,

where ι1 and ι2 are the inclusions, and f N
Z is given by the universal property of

the normalization νV for dominant morphisms. Note that f N
Z

is automatically
projective and surjective because fZ is so. Let qZ := ι1 ◦ νZ and qV = ι2 ◦ νV .

Suppose Z satisfies the modulus condition Mssup and consider on B̂n the Cartier
divisors Di := F1

n,i−(m+1)Fn,0 for 1≤ i ≤n−1. That the cycle Z has the modulus
condition means that [q∗Z ◦ f̄ ∗(Di )] ≥ 0 for an index i . By the commutativity
of the above diagram, this means that the Cartier divisor f N

Z
∗
[q∗

V
(Di )] ≥ 0. By

Lemma 2.2, this implies that [q∗
Z
(Di )] ≥ 0, which is the modulus condition for V .
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If Z satisfies the modulus condition Msum, we use the same argument by replacing
F1

n,i with F1
n . This finishes the proof of the proposition. �

Remark 5.3. In Proposition 5.2, if X is projective, Y = Spec(k), and n = 1, then
V is always a single point. To see this, let Z ⊂ X× B1= X×Gm be an admissible
irreducible closed subvariety. Let V = p(Z), where p : X × Gm → Gm is the
projection.

Since X is complete, p is a closed map. Hence, V = p(Z) is an irreducible
closed subvariety of Gm . But the only closed subvarieties of Gm are finite subsets
or all of Gm . On the other hand, if Z is the closure of Z in X × A1, then the
modulus condition implies that Z ∩ |X × {t = 0}| = ∅. This implies that V must
be a proper subset and hence a finite subset. Since V is irreducible, consequently
V must be a nonzero single point.

Hence Z =W×{∗} for a closed subvariety W ⊂ X , and a closed point {∗} ∈Gm .
Conversely, any such variety is admissible. This classifies all admissible cycles Z
when X is projective and n = 1.

For n> 1, all we can say is that Z is contained in X×V , where V is admissible
in TZs(k, n;m) for a suitable s.

5A. Homotopy variety. Now we want to construct the “homotopy variety”. First,
we need the following simple result:

Lemma 5.4. Let SLr+1,k be the (r + 1)× (r + 1) special linear group over k, and
let η be the generic point of the k-variety SLr+1,k . Let K be its function field (this
is a purely transcendental extension of k). Let SLr+1,K := SLr+1,k ⊗k K be base
change. Then, there is a morphism of K-varieties φ :�1

K→SLr+1,K such that φ(0)
is the identity element, and φ(∞) is the generic point η considered as a K-rational
point.

Proof. By a general result on the special linear groups, every element of SLr+1,K

is generated by the transvections Ei j (a), i 6= j , a ∈ K , that are (r + 1)× (r + 1)
matrices where the diagonal entries are 1, the (i, j)-entry is a and all other entries
are zero.

For each pair (i, j), the collection {Ei j (a) | a ∈ K } forms a one-parameter
subgroup of SLr+1,K isomorphic to Ga,K . Thus, for each fixed b ∈ K , define
φb

i j : A
1
K → SLr+1,K by φb

i j (y) := Ei j (by).
Express the K-rational point η of SLr+1,K as the (ordered) product

η =

p∏
l=1

Eil jl (al), for some il, jl ∈ {1, 2, . . . , r + 1} and al ∈ K ,
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and define φ′ :A1
K→SLr+1,K by φ′=

∏p
l=1 φ

al
il jl . By definition, we have φ′(0)= Id

and φ′(1)= η. Composing with the automorphism σ : P1
K → P1

K given by

y 7→ y
y−1

,

which isomorphically maps �1
K to A1

K , we obtain φ = φ′ ◦ σ : �1
K → SLr+1,K .

This φ satisfies the desired properties. �

Recall that one consequence of Lemma 2.7 is that the additive cycle complex
with modulus m can also be defined as a complex whose level-n term is the free
abelian group of the integral closed subschemes Z ⊂ X× B̃n which have the good-
intersection property with all faces, and which satisfy the appropriate modulus
condition on X × B̂n . The following lemma uses this particular definition of the
additive cycle complex.

Lemma 5.5. Let K be the function field of SLr+1,k , and φ :�1
K → SLr+1,K be as

in the previous lemma. Let SLr+1,K act on Pr
K naturally. Consider the composition

Hn = pK/k ◦ pr′K ◦µφ of morphisms

Pr
×A1
×�n

K

µφ // Pr
×A1
×�n

K

pr′K // Pr
×A1
×�n−1

K

pK/k // Pr
×A1
×�n−1

k ,

where 
µφ(x, t, y1, . . . , yn) := (φ(y1)x, t, y1, . . . , yn),

pr′K (x, t, y1, . . . , yn−1) := (x, t, y2, . . . , yn−1),

pK/k : base change.

Then for any Z ∈ TZq(Pr
k , n;m), the cycle H∗n (Z) = µ

∗

φ ◦ pr′K
∗
(Z K ) is admis-

sible, hence it is in TZq(Pr
K , n + 1;m). Similarly, H∗n carries TZq

W(P
r
k, n;m) to

TZq
WK
(Pr

K , n+ 1;m).

Proof. It is enough to prove the second assertion, that for any irreducible admis-
sible Z in TZq

W(P
r , n;m), the variety Z ′ := H∗n (Z), that we informally call the

“homotopy variety” of Z , satisfies the admissibility conditions of Definition 2.5.

Claim 1. The variety Z ′ intersects W × FK properly for all W ∈W and for each
face F of Bn+1.

Proof. This follows from the arguments of [Bloch 1986, Lemma (2.2)] and [Levine
1998, Lemma 3.5.11] without any modification. We provide its proof for the sake
of completeness. We may assume that W contains only one nonempty algebraic
set W . There are two cases to consider.

Case 1. Suppose FK comes from F = A1
×{0}× F ′ for some face F ′ ⊂�n−1. In

this case, Z ′∩ (W × FK ) is nothing but Z K ∩ (W ×A1
× F ′K ) because φ(0)= Id ∈

SLr+1,K . So, proper intersection is obvious in this case.
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Case 2. Suppose FK does not come from faces of the form in Case 1. We apply
Lemma 5.1 with G=SLr+1,k , X=Pr

×F , A=W×F , and B=pr′k
∗
(Z)∩(Pr

×F),
where G acts on X by acting trivially on F and acting naturally on Pr . By
Lemma 5.1, there is a nonempty open subset U ⊂ SLr+1 such that for all g ∈ U ,
the intersection g(A)∩ B is proper. By shrinking U if necessary, we may assume
that U is invariant under taking the multiplicative inverses. Take g = η−1

∈ U ,
the inverse of the generic point. Thus, after base extension to K , the intersec-
tion of η−1(WK × FK ) with pr′K

∗
(Z K ) ∩ (P

r
× FK ) is proper, which means that

η(pr′K
∗
(Z K )∩ (P

r
× FK )) intersects properly with WK × FK . But the intersection

pr′K
∗
(Z K )∩ (P

r
× FK ) is proper, as Z was admissible. Hence, η(pr′K

∗
(Z K )) inter-

sects with WK×FK properly. Since F is not of the form A1
×{0}×F ′, FK intersects

the first component �1
K at {∞} nontrivially. In particular, η(pr′K

∗
(Z K )) is the

same as µ∗φ(pr′K
∗
(Z K )) = Z ′ by Lemma 5.4. We conclude that Z ′ intersects with

WK × FK properly. This proves the claim and hence Z ′ has the good-intersection
property. Thus we only need to show the modulus condition for Z ′ to complete the
proof of the lemma.

Claim 2. Z ′ satisfies the modulus condition on Pr
× B̃n+1,K .

Proof. We prove this using our containment lemma. In the following, we ca-
sually drop the automorphism τ : Pr

× A1
× �n

→ Pr
× A1

× �n that maps
(x, t, y1, . . . , yn) to (x, t, y2, . . . , yn, y1) from our notations for simplicity.

Take V = p(Z), where p : Pr
× B̃n → B̃n is the projection. Because Z ⊂

p−1(p(Z))= Pr
× V , we have

Z ′ = µ∗φ(Z ×�1
K )⊂ µ

∗

φ(P
r
× V ×�1

K )= Pr
× V ×�1

K =: Z1, say. (5-1)

Now, Proposition 5.2 implies that V is an irreducible admissible closed subva-
riety of B̃n . The flat pull-back property in turn implies that p∗([V ]) = Pr

× V is
an irreducible admissible closed subvariety of Pr

× B̃n . In particular, the modulus
condition holds for Pr

× V . If V is the closure of V in B̂n , then commutativity of
the diagram

Z
N
1 = Pr

× V
N
×P1

K
//

��

Pr
× B̂n+1,K

//

��

B̂n+1,K

��

Pr
× V

N // Pr
× B̂n

// B̂n

now implies that Z1 satisfies the modulus condition on Pr
× B̃n+1,K even though

it is a degenerate additive cycle. Furthermore, the admissibility of Z and the fact
that µφ is an automorphism imply that Z ′ intersects the Cartier divisors F1

n+1 and
Fn+1,0 properly. Thus we can use (5-1) and apply Proposition 2.4 to conclude that
Z ′ satisfies the modulus condition. This completes the proof of the lemma. �
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Lemma 5.6. The collection H∗
•
: TZq(Pr

k , · ;m)→ TZq(Pr
K , · + 1;m) is a chain

homotopy satisfying ∂H∗+ H∗∂ = Z K − η(Z K ). The same is true for TZq
W.

Proof. It is enough to prove the second assertion. This is straightforward: let
Z ∈ TZq

W(P
r
k , n;m). Then

H∗∂Z =H∗sumn−1
i=1 (−1)i (∂∞i −∂

0
i )Z = sumn−1

i=1 (−1)i (µ∗φ(pr′K)
∗ p∗K/k)(∂

∞

i −∂
0
i )Z

= sumn−1
i=1 (−1)i (∂∞i+1−∂

0
i+1)µ

∗

φ(pr′K)
∗Z K =−sumn

i=2(−1)i (∂∞i −∂
0
i )H

∗Z ,

∂H∗Z = sumn
i=1(−1)i (∂∞i − ∂

0
i )H

∗Z = sumn
i=1(−1)i (∂∞i − ∂

0
i )H

∗Z

= (−1)(∂∞1 − ∂
0
1 )H

∗Z + sumn
i=2(−1)i (∂∞i − ∂

0
i )H

∗Z .

Hence, (∂H∗+ H∗∂)Z = (∂0
1 − ∂

∞

1 )H
∗Z = Z K − η(Z K ). �

5B. Proof of the moving lemma for projective spaces. We are now ready to finish
the proof of Theorem 4.1 for Pr .

By Lemma 5.6, the base extension

p∗K/k :
TZq(Pr

k , · ;m)
TZq

W(P
r
k , · ;m)

→
TZq(Pr

K , · ;m)
TZq

WK
(Pr

K , · ;m)

is homotopic to the map ηp∗K/k . Note for each admissible cycle Z ∈TZq(Pr
k , n;m),

the cycle η(Z K ) lies in TZq
W(P

r
K , n;m). Part of the proof of Claim 1 of Lemma 5.5

is similar to the proof of this assertion:
We may assume that W has only one nonempty algebraic set, say W . Let F be

a face of Bn . In Lemma 5.1, take G = SLr+1 and X =Pr
× F where G acts on Pr

naturally and Bn trivially. Let A=W×F and B= Z∩(Pr
×F). Since SLr+1 acts

transitively on Pr , the map G×A→ X is surjective. Hence, by Lemma 5.1, there is
a nonempty open subset U ⊂G such that for all g ∈U , the intersection g(A)∩B is
proper in X . By shrinking U further, we may assume that U is closed under taking
multiplicative inverses. Taking g = η−1, the inverse of the generic point, we see
that after base extension to K , the intersection of η−1(W×F)with Z K ∩(P

r
×FK )

is proper, which means η(Z K ∩ (P
r
× FK )) intersects WK × FK properly. Since

Z K intersects with Pr
× FK properly by the assumption, we conclude that η(Z K )

intersects WK ×FK properly. Thus, η(Z K )∈ TZq
W(P

r
K , n;m). Hence, the induced

map on the quotient

ηp∗K/k :
TZq(Pr

k , · ;m)
TZq

W(P
r
k , · ;m)

→
TZq(Pr

K , · ;m)
TZq

WK
(Pr

K , · ;m)

is zero. Hence the base extension p∗K/k induces a zero map on homology since it
is homotopic to the zero map.

On the other hand, by the spreading lemma, Proposition 4.7, the chain map p∗K/k
is injective on homology, so the quotient complex TZq(Pr

k , · ;m)/TZq
W(P

r
k , · ;m)

must be acyclic. This proves Theorem 4.1 for the projective spaces. �
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6. Generic projections and moving lemma for projective varieties

6A. Generic projections. This section begins with a review of some facts about
linear projections. In combination with the moving lemma for Pr , that we saw in
the previous section, we prove the moving lemma for general smooth projective
varieties.

Lemma 6.1. Consider two integers N > r > 0. Then for each linear subvariety
L ⊂ PN of dimension N − r − 1, there exists a linear projection morphism πL :

PN
\L→ Pr .

Proof. Fix the coordinates x = (x0; . . . ; xN ) of PN . A linear subvariety L is given
by (r+1) homogeneous linear equations in x whose corresponding (N+1)×(r+1)
matrix A has the full rank r + 1. Take the reduced row echelon form of A whose
rows are the linear homogeneous functions P0(x), . . . , Pr (x) in x .

For x ∈PN
\L , define πL(x) := (P0(x); . . . ; Pr (x)). Since x 6∈ L , we have some

Pi (x) 6= 0 so that the map πL is well-defined. By elementary facts about reduced
row echelon forms and row equivalences, the subvariety L uniquely decides this
map πL in this process. �

Let X be a smooth projective k-variety. Let r = dim X . Suppose that we have
an embedding X ↪→ PN for some N > r . Consider πL : P

N
\L→ Pr . Whenever

L ∩ X = ∅, we have a finite morphism πL ,X := πL |X : X → Pr . Such L’s form
a nonempty open subset Gr(N−r−1, N )X of the Grassmannian Gr(N−r−1, N ).
Such a map πL is automatically flat since X is smooth [Hartshorne 1977, Exer-
cise III-10.9, p. 276]. In particular, the pull-back π∗L ,X and push-forward πL ,X∗ are
defined by Theorem 3.1.

For any closed integral admissible cycle Z on X × Bn , define L̃(Z) to be

L̃(Z) := π∗L ,X (πL ,X ∗([Z ]))− [Z ].

Extending this map linearly, this defines a morphism of complexes

L̃ : TZq(X, · ;m)→ TZq(X, · ;m).

6B. Chow’s moving lemma. Recall that for two locally closed subsets A and B
of pure codimension a and b, the excess of the intersection of A and B on X is
defined to be

e(A, B) :=max{a+ b− codimX (A∩ B), 0}.

That the intersection A ∩ B is proper on X means e(A, B) = 0. If A and B are
cycles, then we define e(A, B) := e(Supp(A),Supp(B)). The excess measures
how far an intersection is from being proper.

Lemma 6.2 [Krishna and Levine 2008, Lemma 1.12]. Let X ⊂ PN be a smooth
closed projective k-subvariety of dimension r. Let Z and W be cycles on X. Then
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there is a nonempty open subscheme UZ ,W ⊂Gr(N−r−1, N )X such that for each
field extension K ⊃ k and each K-point L of UZ ,W , we have

e(L̃(Z),W )≤max{e(Z ,W )− 1, 0}.

For its proof, see [Roberts 1972, Main Lemma, p. 93], or [Levine 1998, Lemma
3.5.4, p. 96] for a slightly different but equivalent version. The point of the pro-
jection business is the following lemma:

Lemma 6.3. Let X be a smooth projective k-variety, and let W be a finite set of
locally closed algebraic subsets of X. Let m, N ≥ 1, and q ≥ 0 be integers. Let
e :W→ Z≥0 be a set-theoretic function. Define e− 1 :W→ Z≥0 by

(e− 1)(W ) :=max{e(W )− 1, 0}.

Let K be the function field of Gr(N−r−1, N ), and let Lgen∈Gr(N−r−1, N )X (K )
be the generic point. Then, the map

L̃gen : TZq(X, · ;m)→ TZq(X K , · ;m)

maps TZq
W,e(X, · ;m) to TZq

WK ,e−1(X K , · ;m).

Proof. The arguments of [Krishna and Levine 2008, Lemma 1.13, p. 84] or [Levine
1998, §3.5.6, p. 97] work in this additive context without change. The central idea
is to use a variation of Chow’s moving lemma as in Lemma 6.2. �

6C. Proof of the moving lemma.

Proof of Theorem 4.1. Let Lgen be the generic point of the Grassmannian Gr(N −
r − 1, N ) as in Lemma 6.3. Then, for each function e :W→ Z≥0, the morphism

L̃gen = π
∗

Lgen
◦πLgen∗

− p∗K/k :
TZq

W,e(X, · ;m)

TZq
W,e−1(X, · ;m)

→
TZq

WK ,e(X K , · ;m)

TZq
WK ,e−1(X K , · ;m)

is zero. Hence π∗Lgen
◦πLgen∗ is equal to the base extension morphism p∗K/k on the

quotient complex.
On the other hand, π∗Lgen

◦πLgen∗ is written in detail as

TZq
W,e(X, · ;m)

TZq
W,e−1(X, · ;m)

πLgen ∗
−→

TZq
W′K ,e

′(P
r
K , · ;m)

TZq
W′K ,e

′−1(P
r
K , · ;m)

π∗Lgen
−→

TZq
WK ,e(X K , · ;m)

TZq
WK ,e−1(X K , · ;m)

,

where W′ and e′ are defined as follows: for each W ∈W, the constructible subset
πLgen(W ) can be written as

πLgen(W )=W ′1 ∪ · · · ∪W ′iW

for some iW∈N and locally closed irreducible sets W ′j in Pr
K . Let d j=codimPn

K
(W ′j )

− codimX (W ). Let W′ = {W ′j | W ∈ W}. Define e′ : W′ → Z≥0 by the rule
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e′(W ′j ) := e(W )+d j . We have already shown in Section 5B that the moving lemma
is true for all projective spaces. In particular, for all functions e′ :W′→ Z≥0, the
complex in the middle

TZq
W′K ,e

′(P
r
K , · ;m)

TZq
W′K ,e

′−1(P
r
K , · ;m)

is acyclic (see Remark 4.4). Hence, the base extension map

p∗K/k :
TZq

W,e(X, · ;m)

TZq
W,e−1(X, · ;m)

→
TZq

WK ,e(X K , · ;m)

TZq
WK ,e−1(X K , · ;m)

is zero on homology. Consequently, by induction, the base extension map

p∗K/k :
TZq(X, · ;m)
TZq

W(X, · ;m)
→

TZq(X K , · ;m)
TZq

WK
(X K , · ;m)

is zero on homology. On the other hand, this map is also injective on homology
by Proposition 4.7. This happens only when

TZq(X, · ;m)
TZq

W(X, · ;m)

is acyclic, i.e., the inclusion TZq
W(X, · ;m)→TZq(X, · ;m) is a quasiisomorphism.

�

7. Application to contravariant functoriality

In this section, we prove the following general contravariance property of the ad-
ditive higher Chow groups as an application of the moving lemma.

Theorem 7.1. Let f : X → Y be a morphism of quasiprojective varieties over k,
where Y is smooth and projective. Then there is a pull-back map

f ∗ : THq(Y, n;m)→ THq(X, n;m)

such that for a composition X
f
−→ Y

g
−→ Z with Y and Z smooth and projective, we

have
(g ◦ f )∗ = f ∗ ◦ g∗ : THq(Z , n;m)→ THq(X, n;m).

Before proving this functoriality, we mention one more consequence of our con-
tainment lemma (Proposition 2.4).

Corollary 7.2. Let X
i
−→ Y be a regular closed embedding of quasiprojective but

not necessarily smooth varieties over k. Then there is a Gysin chain map of additive
cycle complexes

i∗ : TZq
{X}(Y, · ;m)→ TZq(X, · ;m).
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Proof. Let ι : Z ⊂Y×Bn be a closed irreducible admissible subvariety in the group
TZq
{X}(Y, n;m). By assumption, Z intersects all faces X × F properly. Hence the

abstract intersection product of cycles (X×Bn) · Z = [ι∗(X×Bn)] ∈ zq(X×Bn) is
well-defined. Moreover, the intersection formula for the regular embedding implies
that this intersection product commutes with the boundary maps [Fulton 1998, §2.3
and §6.3]. We want this cycle to be i∗(Z). Thus we only need to show that each
component of Z ∩ (X × Bn) satisfies the modulus condition in order for i∗ to be
a map of additive cycle complexes. Since X × B̂n clearly intersects F1

n and Fn,0

properly on Y × B̂n , this modulus condition follows directly from Proposition 2.4,
for Z has the modulus condition. �

Proof of Theorem 7.1. We do this by imitating the proof of Theorem 4.1 in [Bloch
1986]. So, let f : X → Y be a map as in Theorem 7.1. Such a morphism can be
factored as the composition

X
gr f
→ X × Y

pr2
→ Y,

where gr f is the graph of f and pr2 is the projection. Notice that pr2 is a flat map
and moreover, the smoothness of Y implies that gr f is a regular closed embedding.
Let 0 f ⊂ X × Y denote the image of gr f which is necessarily closed.

For 0 ≤ i ≤ dim X , let Yi be the Zariski closure of the collection of all points
y ∈ Y such that dim f −1(y) ≥ i . We use the convention that dim ∅ = −1. Let
W be the collection of the irreducible components of all Yi . Then W is a finite
collection.

Claim. Let Z ∈ TZq
W(Y, n;m) be an irreducible admissible closed subvariety of

Y × Bn . Then (pr2× IdBn )
−1(Z) = X × Z in X × Y × Bn is an admissible closed

subset that intersects 0 f × F properly in X × Y × Bn for all faces F ⊂ Bn . This
gives a chain map

pr2
∗
: TZq

W(Y, · ;m)→ TZq
{0 f }

(X × Y, · ,m).

That (pr2× IdBn )
−1(Z)= X×Z is admissible is obvious by [Krishna and Levine

2008, §3.4]. Since Z intersects W × F properly for all W ∈W and faces F ⊂ Bn ,
we have dim Z̃i ≤ dim Yi + dim F − q, where Z̃i := Z ∩ (Yi × F).

Now, (X× Z)∩ (0 f × F)=
⋃

i X× Z̃i , and for each i we have dim(X× Z̃i )=

dim X + dim Z̃i ≤ dim X + dim F − q = dim(0 f × F) − q . We conclude that
codim0 f×F (X × Z)∩ (0 f × F)≥ q , thus obtaining the desired map

pr2
∗
: TZq

W(Y, n;m)→ TZq
{0 f }

(X × Y, n;m)

for each n ≥ 1. That this gives a chain map is obvious since f ∗ clearly commutes
with the boundary maps. This proves the claim.
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The pull-back map f ∗ is now given by composing pr∗2 with the Gysin map gr∗

of Corollary 7.2 and then using the moving lemma, Theorem 4.1. The composition
law can be checked directly from the construction of f ∗. This completes the proof
of Theorem 7.1. �

8. Remarks and computations

8A. Moving modulus conditions. We saw that Msum and Mssup seem to have
much better structural behavior than the modulus condition Msup of [Krishna and
Levine 2008; Park 2009], and this makes the former better suited for being a mo-
tivic cohomology. On the other hand, in the main theorem of [Park 2009], the
regulators on 1-cycles were defined with the modulus condition Msup. Although
we have seen that this regulator map does exist and has good properties with the
modulus condition Mssup, its construction doesn’t automatically generalize to the
groups with Msum. So, one may ask the following.

Question 8.1. Given an Msum-admissible cycle ξ with ∂ξ = 0, can one find an
Msup-admissible cycle η and an Msum-admissible cycle 0 such that ξ = η+ ∂0?

A positive answer to this question will immediately solve one part of Conjecture
2.8. This is a kind of deeper moving lemma than we have proved in this paper. This
moving lemma allows one to move the modulus as well as the proper intersection
property when we move a cycle. On the other hand, the moving lemma of this
paper does not allow changing the modulus conditions. We expect the answer to
the above question to be much harder.

8B. Examples.

Example 8.2. We give a simple example where the homotopy used in [Bloch 1986;
Levine 1998] doesn’t preserve the modulus conditions for additive higher Chow
groups of quasiprojective varieties.

Take X = A1
k and n = 1, so we are interested in admissible cycles in X × B̃1 =

X × A1
k . Admissible closed subvarieties Z ⊂ X × A1

k are given by the condition
Z ∩ (X × {0}) = ∅. Let Ga,k = A1

k act on X by translation, and take its function
field K = k(s), s transcendental over k. Take the line φ : �1

K → Ga,K defined by
y 7→ sy/(y−1) that sends 0 to 0 and∞ to the k-generic point s of Ga,k , which is
K-rational in Ga,K .

Take Z given by the ideal (xt+1)⊂k[x, t], which is in TZ1(A1, 1;m). Then, Z K

is given by (xt+1)⊂ K [x, t] and pr′∗Z K is given by (xt+1)⊂ K [x, t, y/(y− 1)].
Pulling back through µφ , we get (x + sy/(y− 1))t + 1 = 0. This is the equation
for our homotopy variety Z ′. Rewriting it as 1− y = t ((y − 1)x + sy), we see
that it doesn’t satisfy any of the given modulus conditions Msum, Msup, Mssup. For
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instance, for a given m ≥ 1, we need 1− y to be divisible by at least t1+m where
m ≥ 1, which is obviously false in this case. Hence Z ′ 6∈ TZ1(A1

K , 2;m).

Example 8.3. Recall from Remark 5.3 that if X is projective, then admissible
cycles in X× B̃1= X×A1 have a very simple description: an admissible irreducible
closed subvariety Z should be of the form Y × {∗} ⊂ X × A1 for some closed
subvariety Y ⊂ X , and a closed point {∗} 6= {0} of A1. This variety obviously
satisfies all of the modulus conditions.

Note that the admissible variety Z in Example 8.2 is not of the form Y × {∗}:
this happens because X = A1

k is not complete.
These two examples seem to suggest that one should possibly modify the def-

inition of the additive higher Chow groups of a quasiprojective variety in such a
way that it takes into account the behavior at infinity in any compactification of the
underlying variety.

8C. A computation. We finish the paper with a calculation of some additive higher
Chow groups, which the authors completed while working on this paper. The fol-
lowing extends [Bloch and Esnault 2003a, Theorem 6.4, p. 153] to affine spaces.

Theorem 8.4. Assume that 1
6 ∈ k. Let M be a modulus condition Msum, Msup, or

Mssup. Let X = Ar
k , and let m = 1. Then, the additive higher Chow groups of

zero-dimensional cycles of X are the absolute Kähler differentials of k:

THr+n(X, n; 1)'�n−1
k/Z .

Remark 8.5. Note that, although it looks similar, this theorem does not imply
that additive higher Chow groups have A1-homotopy invariance. For the structure
morphism Ar

k → Spec(k), the pull-backs of 0-cycles on Spec(k)× B̃n to X × B̃n

are r -cycles, not 0-cycles.

Proof. The proof is very similar to that of [Bloch and Esnault 2003a, Theorem 6.4,
p. 153]. For a closed point p ∈ X × B̃n that does not intersect the faces and the
divisor {t = 0}, we define a homomorphism by setting

ψ(p) := Trk(p)/k

(
1
t

dy1

y1
∧ · · · ∧

dyn−1

yn−1

)
(p) ∈�n−1

k/Z .

In other words, we ignore the coordinate of X . This defines a homomorphism
ψ : TZr+n(X, n; 1)→�n−1

k/Z .

Claim 1. The composition

ψ ◦ ∂ : TZr+n(X, n+ 1; 1)
∂
→ TZr+n(X, n; 1)

ψ
→�n−1

k/Z

is zero.

Proof. This follows from [Bloch and Esnault 2003a, Proposition 6.2, p. 150]. �
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Claim 2. Any two closed admissible points p, p′ ∈ X × B̃n for which only the
coordinates of X differ are equivalent as additive higher Chow cycles.

Proof. Note that the points p, p′ are not assumed to be k-rational. Under the
natural projections π? : X × B̃n →?, where ? = X,A1 and the i-th projection
πi : X× B̃n→�, if one has πX (p)= a ∈ X , πA1(p)= b ∈A1, and πi (p)= si ∈�,
for not necessarily k-rational closed points a ∈ X, 0 6= b ∈A1, 0,∞ 6= si ∈�, then
one writes p = (a, b, s1, . . . , sn−1). Similarly, under the assumptions of Claim 2,
one can write p′ as p′ = (a′, b, s1, . . . , sn−1), where a′ is another closed point of
X . Consider a parametrized line given in terms of the above notation,

C =
{(

a y
y−1
+ a′

(
1− y

y−1

)
, b, y, s1, . . . , sn−1

)
∈ X × B̃n+1

∣∣∣ y ∈�1
}
,

which is a closed 1-dimensional subvariety of X × B̃n+1. This 1-cycle satisfies all
the modulus conditions Msum, Msup, and Mssup having b 6= 0, and it intersects all
faces properly having constant yi -coordinate values si . Thus C is admissible.

By direct calculations, ∂0
1 (C) = p′, ∂∞1 (C) = p, and ∂εi (C) = 0 for i ≥ 2 and

ε ∈ {0,∞}. Hence, ∂(C)= p′− p proving Claim 2.
Given Claim 2, by [Bloch and Esnault 2003a, Proposition 6.3] and the rest of

the arguments of [Bloch and Esnault 2003a, Theorem 6.4] for which 1
6 ∈ k is used,

the theorem follows. �

We remark that the same arguments work for any variety X as long as we can
prove Claim 2. In particular, for any connected union of affine spaces, irreducible
or not, we can conclude the same results.
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Fusion rules for abelian extensions
of Hopf algebras

Christopher Goff

We investigate the representation theory and fusion rules of a class of cocentral
abelian (quasi-)Hopf extensions of Hopf algebras which includes twisted (gen-
eralized) quantum doubles of finite groups, and a certain quasi-Hopf algebra of
Schauenburg associated to group-theoretical fusion categories. We then present
a nontrivial example with noncommutative fusion rules.

1. Introduction

We present here a “ground-up” approach to attaining the fusion rules for a class
of cocentral abelian extensions of Hopf algebras. Moreover, by not requiring strict
coassociativity of the coproduct in the extension, our results are applicable not only
to cocentral abelian (Hopf) extensions of Hopf algebras, but also to certain quasi-
Hopf extensions as well. One such example, from [Schauenburg 2002], arises in
the study of group-theoretical fusion categories (see also [Natale 2005]). (For a
definition of group-theoretical fusion categories and basic properties, see [Etingof
et al. 2005].) Another family of examples includes the twisted quantum double of
a finite group, introduced in [Dijkgraaf et al. 1991], and the generalization which
is defined in [Goff and Mason 2010].

In Section 2, we review definitions and notation, largely following [Kashina
et al. 2002; Witherspoon 2004]. (For more information on extensions of Hopf
algebras, consult [Andruskiewitsch 1996; Montgomery 1993], or, for quasi-Hopf
extensions, [Masuoka 2002].) Then, Section 3 contains explicit formulas for irre-
ducible characters and central idempotents for such extensions, as well as the inner
product for which the irreducible characters form an orthonormal set. In Section 4,
we write down the character of the tensor product representation and combine it
with the inner product to deduce the fusion coefficients. The main result containing
the fusion coefficients for irreducible representations, Theorem 4.5, is anticipated
in [Witherspoon 2004] but is presented in this note without reference to Hochschild

MSC2000: primary 16S40, 18D10; secondary 16W30.
Keywords: fusion rules, Hopf algebras, quasi-Hopf, abelian extensions, group-theoretical fusion

categories.
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cohomology per se. Corollary 4.6 points out the connection to the K0-ring of a
group-theoretical fusion category. Then, in Section 5, we apply these formulas to
a generalized twisted quantum double of a finite group [Goff and Mason 2010].
Indeed, our Section 5 supersedes [Goff and Mason 2010, Section 3]. Finally,
Section 6 contains a nontrivial example of a cocentral abelian extension having
noncommutative fusion rules.

2. Cocentral abelian extensions

We follow closely the notation of [Kashina et al. 2002] with a few exceptions.
First, our action is a right action, consistent with [Andruskiewitsch and Natale
2003]. Second, our modules will be right modules rather than left.

Let L and G be finite groups and let F be an algebraically closed field of char-
acteristic not dividing |G||L|. An abelian extension H is of the form

0→ (FG)∗→ H → FL→ 0,

where H = (FG)∗#τσFL , σ : FL ⊗ FL → (FG)∗ is a group 2-cocycle, and τ :
(FG)∗→ FL⊗FL is the dual of a group 2-cocycle. The condition on F assures that
H is semisimple and cosemisimple. We specialize to a cocentral abelian extension,
meaning that (FL)∗⊆ Z(H∗), and thus that the coaction FL→FL⊗(FG)∗ inherent
in the extension is trivial. The cocentrality also has consequences for the tensor
product structure on irreducible modules, as we will see in Section 4.

There is a right action of FL on (FG)∗ which induces an action on FG via
( f ↼ `)(g) := f (g ↼ `−1) for g ∈ G, ` ∈ L , and extended linearly. Since L acts
as automorphisms of (FG)∗, L permutes the idempotents of the dual basis. Thus,
the action can be viewed as an action of L on G, also by automorphisms. For the
basis {pg | g ∈ G}, we have pg ↼`= pg↼`. Moreover, let Lg be the stabilizer of
g in L and O(g) the orbit of g under the action of L . That is,

Lg = {` ∈ L | g ↼`= g} and O(g)= {g ↼` | ` ∈ L}.

Let Tg be a complete set of right coset representatives for Lg in L . That is, L =⋃
y∈Tg

Lg y. Note that O(g)= {g ↼ y | y ∈ Tg}.
We can write σ and τ in terms of the dual basis via

σ(x, y)=
∑

g∈G
σg(x, y)pg and τ(x)=

∑
g,h∈G

τg,h(x)(pg ⊗ ph),

where σg(x, y), τg,h(x) ∈ F. There are many identities satisfied by σ and τ , such
as

σg↼z(x, y)σg(z, xy)= σg(z, x)σg(zx, y) (1)
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and

τg,h(x)τg↼x,h↼x(y)σg(x, y)σh(x, y)= τg,h(xy)σgh(x, y), (2)

for all g, h ∈ G, x, y, z ∈ L .
Writing pg#x as pg x̄ , we can write multiplication in H as

pk z̄ ph ȳ = δk↼z,hσk(z, y)pkzy,

for all h, k ∈G, y, z ∈ L . We also occasionally write pg for pg1̄ and x̄ for
∑

g pg x̄ ,
whence x̄ pg = pg↼x−1 x̄ . The unit element is 1̄.

For a cocentral abelian extension, the comultiplication is

1(pg x̄)=
∑
h∈G

τh,h−1g(x)ph x̄ ⊗ ph−1g x̄,

for all g ∈ G, x ∈ L . The counit ε satisfies ε(pg x̄)= δg,1. Finally, the antipode S
is given by

S(pg x̄)= σg−1↼x(x
−1, x)−1τg−1,g(x)

−1 pg−1↼x x−1.

Remark 2.1. For H to be a Hopf algebra, 1 must be coassociative, which implies
a certain condition on τ . We require only quasicoassociativity, which implies the
existence of other structures, and a related condition on τ . We omit these details
here, as all of our examples are proved elsewhere [Dijkgraaf et al. 1991; Natale
2005; Andruskiewitsch 1996] to be either coassociative or quasicoassociative.

3. Modules and characters

Irreducible modules for H are induced from irreducible modules for the group
algebra of Lg, but twisted by the 2-cocycle σg. Select one g from each orbit under
the action of L , then select Tg, a set of right coset representatives. Let

Hg := (FG)∗#σFLg.

If V is a right projective σg-representation space for Lg, then V ⊗ pg is a right
Hg-module via

(v⊗ pg) · (ph x̄)= δg,h(v · x ⊗ pg)

for all v ∈ V, h ∈ G, x ∈ Lg.
The irreducible modules for H are induced from these. Let V̂ = (V⊗ pg)⊗Hg H ,

which is then a right H -module under right multiplication by H . In other words,

V̂ =
∑
y∈Tg

(v⊗ pg)⊗ ȳ,
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with action given by

[(v⊗ pg)⊗ ȳ] · ph x̄ = (v⊗ pg)σh↼y−1(y, x)ph↼y−1 yx

= (v⊗ pg)δg,h↼y−1σg(y, x)pgwy′

= (v⊗ pg)δg,h↼y−1σg(y, x)σg(w, y′)−1(pgw̄)(y′)

= δg,h↼y−1
σg(y, x)
σg(w, y′)

[(v ·w⊗ pg)⊗ y′],

where w ∈ Lg, y′ ∈ Tg are chosen so that wy′ = yx .
We introduce the notation V(g,ϕ) to represent the H -module induced from the

projective σg-representation of Lg that has character ϕ, and we let ρ(g,ϕ) be the
representation of V(g,ϕ), and χ(g,ϕ) its character. Then one calculates

χ(g,ϕ)(ph x̄)= δg↼y,hδyxy−1∈Lg

σg(y, x)
σg(yxy−1, y)

ϕ(yxy−1), (3)

where y is the unique element of Tg that maps g to h. We reiterate that V(g,ϕ) is
irreducible if and only if ϕ is.

Remark 3.1. This can be seen as

χ(g,ϕ)(ph x̄)= δg↼y,hδx∈Lhϕ
(y)(x), (4)

where ϕ(y) is a projective representation of Lh = L y
g (conjugate to ϕ) with cocycle

σg↼y = σh . See [Costache 2009, Lemma 59] for a similar calculation.

Before writing down the central idempotents, we first note that the character
χreg of the regular representation ρreg on H satisfies χreg(ph x̄)= δx,1|O(h)||Lh| =

δx,1|L|, and that, from the semisimplicity of H ,

ρreg =
⊕
(h,ψ)

χ(h,ψ)(1H )ρ(h,ψ),

where h ranges over the orbits and ψ ranges over the irreducible projective σh-
representations of Lh . Let z(g,ϕ) denote the central idempotent corresponding to
the representation ρ(g,ϕ). Then ρ(h,ψ)(z(g,ϕ))= δg,hδϕ,ψ(dimϕ)|L : Lg| id.

Set z(g,ϕ) =
∑

c∈G,d∈L αc,d pcd̄. We find the αc,d by determining the value of
the regular character on S(pa−1 b̄)z(g,ϕ) two ways. First,

χreg(S(pa−1 b̄)z(g,ϕ))=
∑

c∈G, d∈L

σa↼b(b−1, b)−1τa,a−1(b)−1αc,dχreg(pa↼bb−1 pcd̄)

= τa,a−1(b)−1αa,b|L|.

On the other hand, we have

ρreg(S(pa−1 b̄)z(g,ϕ))= (dimϕ)|L : Lg|ρ(g,ϕ)(S(pa−1 b̄)),
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which means

χreg(S(pa−1 b̄)z(g,ϕ))= (dimϕ)|L : Lg|σa↼b(b−1, b)−1τa,a−1(b)−1χ(g,ϕ)(pa↼bb−1)

Solving for αa,b, we obtain

z(g,ϕ) =
(dimϕ)

|Lg|

∑
a∈G, b∈L

1
σa↼b(b−1, b)

χ(g,ϕ)(pa↼bb−1)(pa b̄).

Simplifying somewhat using the delta functions within χ(g,ϕ), we have:

Lemma 3.2. The central idempotent of H corresponding to V(g,ϕ) is

z(g,ϕ) =
(dimϕ)

|Lg|

∑
a∈G

∑
b∈La

1
σa(b−1, b)

χ(g,ϕ)(pab−1)(pa b̄). �

Note that the first sum could be over a ∈ O(g), as χ = 0 otherwise.

Proposition 3.3. Letting

〈α, β〉 =
1
|L|

∑
a∈G

∑
b∈La

1
σa(b−1, b)

α(pab−1)β(pa b̄), (5)

where α, β are characters of H, defines an inner product on the space of characters
of H. The irreducible characters form an orthonormal basis with respect to this
inner product.

We give three proofs to demonstrate the consistency with the character theory
of projective representations of finite groups, and to demonstrate the relationship
between certain conjugates of projective representations.

First proof. Clearly, (5) is linear in each component. The symmetry of (5) follows
from (1) because b ∈ La . Using Lemma 3.2, we have

〈
χ(g,ϕ), χ(h,ψ)

〉
=

1
|L|

∑
a∈G

∑
b∈La

1
σa(b−1, b)

χ(g,ϕ)(pab−1)χ(h,ψ)(pa b̄)

=
1
|L|
χ(h,ψ)

(
|Lg|

dimϕ
z(g,ϕ)

)
=

(
1
|L|
|Lg|

dimϕ

)
(dimϕ)|L : Lg| · δg,hδϕ,ψ = δg,hδϕ,ψ . �

Second proof. From (3), we obtain that a ∈ O(g)∩O(h) and thus g = h or else the
inner product is zero. Thus
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χ(g,ϕ), χ(h,ψ)

〉
=
δg,h

|L|

∑
a∈O(g)
[a=g↼y]

∑
b∈La

σg(y, b−1)σg(y, b)
σa(b−1, b)σg(yb−1y−1,y)σg(yby−1,y)

ϕ(yb−1y−1)ψ(yby−1)

=
δg,h

|L|

∑
a∈O(g)
[a=g↼y]

∑
b∈La

1
σg(yb−1y−1,yby−1)

ϕ(yb−1y−1)ψ(yby−1)

by repeated application of (1). Hence〈
χ(g,ϕ), χ(h,ψ)

〉
=
δg,h

|Lg|

∑
c∈Lg

1
σg(c−1, c)

ϕ(c−1)ψ(c)= δg,h〈ϕ,ψ〉Lg = δg,hδϕ,ψ .

Here, 〈 · , · 〉Lg denotes the usual inner product for projective σg-representations of
Lg. See [Nauwelaerts and Van Oystaeyen 1991, Proposition 2.8], for instance. �

Third proof. Using Remark 3.1,〈
χ(g,ϕ), χ(h,ψ)

〉
=
δg,h

|L|

∑
a∈O(g)
[a=g↼y]

∑
b∈La

1
σa(b−1, b)

ϕ(y)(b−1)ψ (y)(b)

=
δg,h

|L|

∑
a∈O(g)

|La|〈ϕ
(y), ψ (y)〉La = δg,hδϕ,ψ .

It is clear that ϕ(y) = ψ (y) if and only if ϕ = ψ . �

4. Fusion rules

The character of the tensor product representation (via 1) is

χ(g,ϕ)⊗(h,ψ)(pa b̄)

=

∑
f ∈G

[ f ∈O(g), f −1a∈O(h)]
[ f=g↼y, f −1a=h↼w]

δb∈L f ∩L f−1a
ϕ(yby−1)ψ(wbw−1)

τ f, f −1a(b)σg(y, b)σg(w, b)
σg(yby−1, y)σg(wbw−1, b)

=

∑
f ∈G

[ f ∈O(g), f −1a∈O(h)]
[ f=g↼y, f −1a=h↼w]

δb∈L f ∩L f−1a
τ f, f −1a(b)ϕ

(y)(b)ψ (w)(b)

=

∑
f ∈G

[ f ∈O(g), f −1a∈O(h)]
[ f=g↼y, f −1a=h↼w]

δb∈L f ∩L f−1a

[
ϕ(y)⊗ψ (w)τ f, f −1a

]
(b),
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where
[
ϕ(y)⊗ψ (w)τ f, f −1a

]
is a projective representation (of L f ∩ L f −1a ≤ La)

with cocycle σa . As explained in [Witherspoon 2004, (4.7)], the cocentrality of the
extension, and the fact that the coproduct 1 is an algebra map, together imply that
σa is cohomologous to σ f ·σ f −1a on L f ∩ L f −1a via τ f, f −1a . This is the content of
Equation (2), which depends on the assumption of cocentrality.

Remark 4.1. If h=1, then χ(g,ϕ)⊗(1,ψ)=χ(g,ϕ⊗ψ↓Lg )
. If g=1 the result is similar.

Hence, the irreducible representations induced from 1 ∈ G are in the center of the
fusion algebra and their tensor products with other modules can be reduced to a
calculation in the appropriate stabilizer. This generalizes a similar result in [Goff
and Mason 2010].

We need two lemmas before calculating the fusion coefficients.

Lemma 4.2. Let a, f ∈ G, y ∈ L.

(1) Let α and β be projective σ f -representations of L f . Then

〈α, β〉L f = 〈α
(y), β(y)〉L y

f
.

Note that α(y) and β(y) are σ f↼y-representations of L f↼y = L y
f .

(2) Let α be a σ f -representation of L f and let β be a σ f −1a-representation of
L f −1a . Then [

α⊗βτ f, f −1a
](y)
=
[
α(y)⊗β(y)τ f↼y, f −1a↼y

]
as σa↼y-representations of L y

f ∩ L y
f −1a ≤ L y

a .

Proof. The proof is straightforward, using (4), (1), and (2). �

We need a way to calculate products of L-orbits in CG. The following formula
appears in [Witherspoon 2004, Proof of Theorem 4.8], where the author relies
on standard trace map properties of the L-algebra ZG, citing general results of
[Thévenaz 1995]. Our proof is specific to group actions on sets. Recall that if L
acts on G, then L also acts on G×G diagonally: (g1, g2)↼ `= (g1 ↼`, g2 ↼`)

for ` ∈ L , g1, g2 ∈ G.

Lemma 4.3. Let g, h ∈ G. Then

O(g)O(h)=
∑
x∈D

|L(g↼x)h : Lg↼x ∩ Lh|O((g ↼ x)h),

where D is a complete set of Lg\L/Lh double coset representatives.

Proof. Consider the orbits of the diagonal action of L on G × G. Evidently,
y ∈ Lgx Lh if and only if OL((g ↼ x, h)) = OL((g ↼ y, h)). Now pick x ∈ D
and consider the image of OL((g ↼ x, h)) in G under the product map. Clearly,
the product (g ↼ x)h is fixed by L(g↼x)h but also each component is fixed by
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L x
g ∩ Lh ≤ L(g↼x)h . So, the number of distinct ordered pairs (g ↼ xw, h ↼ w)

such that (g ↼ xw)(h ↼w) = (g ↼ x)h is |L(g↼x)h : L x
g ∩ Lh|. Since L acts by

automorphisms, this is also the number of times O((g ↼ x)h) appears in this term
of the sum. �

Remark 4.4. The right hand side in Lemma 4.3 cannot generally be interpreted
as a summation over distinct orbits. There may be y /∈ Lgx Lh for which O((g ↼
x)h)= O((g ↼ y)h).

Anticipated in [Witherspoon 2004, Theorem 4.8], the following theorem gives
the fusion coefficients for irreducible representations of H .

Theorem 4.5. Let g, h, k ∈ G and let ϕ be a σg-representation of Lg, ψ a σh-
representation of Lh , and γ a σk-representation of Lk and consider the corre-
sponding induced modules of H. Then

〈χ(k,γ ), χ(g,ϕ)⊗(h,ψ)〉 =
∑
x∈D

(g↼x)h∈O(k)
[(g↼xw′)(h↼w′)=k]

〈
γ,
[
ϕ(xw

′)
⊗ψ (w

′)τg↼xw′,h↼w′
]〉

Lxw′
g ∩Lw′h

where D is a set of those Lg\L/Lh double coset representatives x satisfying

(g ↼ x)h ∈ O(k),

and the inner product on L xw′
g ∩ Lw

′

h ≤ Lk is of projective σk-representations.

Proof. Using the inner product (5), we have

〈χ(k,γ ), χ(g,ϕ)⊗(h,ψ)〉

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

∑
b∈La∩L f

γ (zb−1z−1)ϕ(yby−1)ψ(wbw−1)

·
τ f, f −1a(b)σk(z, b−1)σg(y, b)σh(w, b)

σa(b−1, b)σk(zb−1z−1, z)σg(yby−1, y)σh(wbw−1, w)

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

∑
b∈La∩L f

τ f, f −1a(b)
σa(b−1, b)

γ (z)(b−1)ϕ(y)(b)ψ (w)(b)

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

|L f ∩ L f −1a|
〈
γ (z),

[
ϕ(y)⊗ψ (w)τ f, f −1a

]〉
L f ∩L f−1a

.
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By Lemma 4.2 this is equal to

=
1
|L|

∑
a∈O(k)
[a=k↼z]

∑
f ∈O(g)

f −1a∈O(h)
[ f=g↼y]
[ f −1a=h↼w]

|L f ∩ L f −1a|

·
〈
γ,
[
ϕ(yz−1)

⊗ψ (wz−1)τ f↼z−1, f −1a↼z−1
]〉

L z−1
f ∩L z−1

f−1a

=
1
|Lk |

∑
f ∈O(g)

f −1k∈O(h)
[ f=g↼y′]
[ f −1k=h↼w′]

|L f ∩ L f −1k |
〈
γ,
[
ϕ(y

′)
⊗ψ (w

′)τ f, f −1k
]〉

L f ∩L f−1k
,

and by Lemma 4.3 this can further be written as

=
1
|Lk |

∑
x∈D

(g↼x)h∈O(k)
[(g↼xw′)(h↼w′)=k]

∣∣L xw′
g ∩ Lw

′

h

∣∣ ∣∣L(g↼x)h : L x
g ∩ Lh

∣∣
·
〈
γ,
[
ϕ(xw

′)
⊗ψ (w

′)τ f, f −1k
]〉

Lxw′
g ∩Lw′h

=

∑
x∈D

(g↼x)h∈O(k)
[(g↼xw′)(h↼w′)=k]

〈
γ,
[
ϕ(xw

′)
⊗ψ (w

′)τg↼xw′,h↼w′
]〉

Lxw′
g ∩Lw′h

,

where D is a set of Lg\L/Lh double coset representatives with (g ↼ x)h ∈ O(k).
Thus, the fusion rules for H modules can be determined from the fusion rules for
projective σk-representations restricted to certain subgroups of Lk . �

As stated before, the theorem holds for certain quasi-Hopf extensions, including
the examples in the following corollary and the next section.

Corollary 4.6. The fusion rules in Theorem 4.5 describe the K0-ring for the group-
theoretical module category C(G o L , ω, L , 1), where ω ∈ H 3(G o L , F∗) is the 3-
cocycle associated to [σ, τ ] in the relevant Kac exact sequence. See [Schauenburg
2002; Natale 2003; Masuoka 2002] for further cohomological details.

Proof. Indeed, the theorem holds whenever the structure maps and (1) and (2) hold,
even if H is a quasi-Hopf algebra (with coassociator 8), because the fusion rules
for H do not depend on the associativity constraint (determined by 8) in the cate-
gory of right H -modules, Mod-H . Thus these fusion rules hold for a certain quasi-
Hopf algebra of Schauenburg, denoted (Aop,8) by Natale [2005], in the case when
A= (FG)∗#τσFL , and the left actionB of G on L is trivial; i.e., when GL =G o L .
(In this case, the structure maps and cocycles are exactly as in Section 2.) Natale,
in the proof of her Theorem 4.4, cites [Schauenburg 2002] to demonstrate that
(Aop,8)-Mod is tensor-equivalent to C(GoL , ω, L , 1), where ω∈ H 3(GoL , F∗)

is the 3-cocycle associated to [σ, τ ] in the Kac exact sequence. �
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5. Example: generalized twisted quantum doubles of finite groups

Other examples of abelian extensions satisfying the structure maps of Section 2
(and hence having fusion rules determined by Theorem 4.5) include twisted quan-
tum doubles of finite groups [Dijkgraaf et al. 1991] and generalized twisted doubles
of finite groups [Goff and Mason 2010]. We expand on the latter, but using right
modules here. As mentioned earlier, this section supersedes [Goff and Mason 2010,
Section 3].

Let G be a finite group, N a normal subgroup, and G := G/N . We use the
bar notation for elements in Ḡ, i.e., if g ∈ G then ḡ = gN ∈ Ḡ. Then G acts
naturally on G via conjugation, namely ḡ ↼ x := x−1ḡx = ḡx

= gx = x̄−1ḡx̄ , for
all x ∈ G, ḡ ∈ Ḡ.

In addition, let ω ∈ H 3(G, F∗), and let ω′ := InflG
G
ω. In analogy with σ and τ ,

define θ : FG⊗ FG→ FḠ∗ and γ : FḠ∗→ FG⊗ FG via

θ =
∑
ḡ∈Ḡ

θḡ and γ =
∑

x,y∈Ḡ

γ()(x, y),

where

θḡ(x, y)=
ω(ḡ, x̄, ȳ)ω(x̄, ȳ, ḡxy)

ω(x̄, ḡx , ȳ)
, γḡ(x, y)=

ω(x̄, ȳ, ḡ)ω(ḡ, x̄g, ȳg)

ω(x̄, ḡ, ȳg)
.

Notice that θḡ and γḡ could be thought of as functions from FḠ⊗ FḠ to F∗ since
they pass to the quotient Ḡ. The generalized twisted double is then Dω(G,G) =
(FG)∗#γθ (FG). The maps θ and γ satisfy (1) and (2), mutatis mutandis [Dijkgraaf
et al. 1991].

The irreducible (right) modules of Dω(G, Ḡ) are induced from irreducible pro-
jective representations of centralizers. In particular, the character of the irreducible
projective θḡ-representation ϕ of CG(ḡ) is given by

χ̂(ḡ,ϕ)(e(h̄) FG x)= δḡy ,h̄δyxy−1∈CG(ḡ)
θḡ(y, x)

θḡ(yxy−1, y)
ϕ(yxy−1)

= δḡy ,h̄δx∈CG(h̄)ϕ
(y)(x).

Consistent with (5), the inner product on characters is given by

〈α, β〉 =
1
|G|

∑
k̄∈G

∑
x∈CG(k̄)

1
θk̄(x̄−1, x̄)

α(e(k̄) FG x−1)β(e(k̄) FG x),

and thus the fusion coefficients are given by〈
χ̂(k̄,λ), χ̂(ḡ,ϕ)⊗(h̄,ψ)

〉
=

∑
x∈D

[ḡxw′ h̄w
′
=k̄]

〈
λ,
[
ϕ(xw

′)
⊗ψ (w

′)γ()(ḡxw′, h̄w
′

)
]〉

CG(ḡxw′ )∩CG(h̄w
′
)
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where D is a set of CG(ḡ)\G/CG(h̄) double coset representatives with ḡx h̄ ∈O(k̄),
and the inner product on CG(ḡxw′)∩CG(h̄w

′

)≤ CG(k̄) is of θk̄-representations.

6. Example: noncommutative fusion rules

Noncommutative fusion rules for cocentral abelian extensions are not rare: choose
L = 1, σ and τ trivial, and any nonabelian G, for instance. Also, see [Kosaki et al.
1997; Nikshych 1998; Zhu 2001]. We give here an example with σ , τ trivial, but
nontrivial action of L . Let G be the dihedral group of order 18, and let

L ≤ Aut D9 ∼= Z9 o Z∗9.

Namely, L = 〈3〉×〈4〉 ∼=Z3×Z3. [The first factor of L is with respect to addition,
the second, multiplication.] If we let G = 〈x, y | x2

= y9
= e, yx = xy−1

〉, then

(xc yd) ↼ (a, b) := xc yac+bd .

We choose L-orbit representatives S = {e, y3, y6, y, y2, x, xy, xy2
} with their re-

spective stabilizers. Since L is abelian, χ (`)(g,ϕ) = χ(g,ϕ) for all ` ∈ L . Note that in
the decomposition of the product of orbits, we have

O(x)O(y)= 3O(xy) and O(y)O(x)= 3O(xy2),

which suffices to guarantee noncommutative fusion rules.

Theorem 6.1. Let M(g, α) denote the irreducible representation of (FG)∗#(FL)
induced from α, an irreducible representation of Lg for g ∈ S. The first five rules
are commutative.

i. M(s, α)⊗M(t, β)= M(st, α⊗β) for s, t ∈ 〈y3
〉.

ii. M(s, α)⊗M(g, β)= M(g, α ↓Lg ⊗β) for s ∈ 〈y3
〉, g ∈ {y, y2, x, xy, xy2

}.

iii. M(g, α)⊗M(g, β)= 3M(h, α⊗β) if {g, h} = {y, y2
}.

iv. M(y, α)⊗M(y2, β)=
⊕

s∈〈y3〉

⊕
γ↓L y=α⊗β

M(s, γ ).

v. M(g, α)⊗M(g, β)=
⊕

s∈〈y3〉

⊕
γ↓Lg=α⊗β

M(s, γ ) for g ∈ {x, xy, xy2
}.

The rest of the list holds for all α, β, δ, ε, ζ, η, µ, ν.

vi. M(y, α)⊗M(x, β)=
⊕
all γ

M(xy2, γ )= M(x, δ)⊗M(y2, ε)

= M(y2, ζ )⊗M(xy, η)= M(xy, µ)⊗M(y, ν).
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vii. M(y, α) ⊗ M(xy, β) =
⊕
all γ

M(x, γ )= M(xy, δ)⊗M(y2, ε)

= M(y2, ζ )⊗M(xy2, η)= M(xy2, µ)⊗M(y, ν).

viii. M(y, α)⊗M(xy2, β)=
⊕
all γ

M(xy, γ )= M(xy2, δ)⊗M(y2, ε)

= M(y2, ζ )⊗M(x, η)= M(x, µ)⊗M(y, ν).

ix. M(x, α) ⊗ M(xy, β) =
⊕
all γ

M(y, γ )= M(xy, δ)⊗M(xy2, ε)

= M(xy2, ζ )⊗M(x, η).

x. M(x, α)⊗M(xy2, β)=
⊕
all γ

M(y2, γ )= M(xy2, δ)⊗M(xy, ε)

= M(xy, ζ )⊗M(x, η).

Proof. Straightforward. �
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Uniformly rigid spaces
Christian Kappen

We define a new category of nonarchimedean analytic spaces over a complete
discretely valued field, which we call uniformly rigid. It extends the category of
rigid spaces, and it can be described in terms of bounded functions on products of
open and closed polydiscs. We relate uniformly rigid spaces to their associated
classical rigid spaces, and we transfer various constructions and results from
rigid geometry to the uniformly rigid setting. In particular, we prove an analog
of Kiehl’s patching theorem for coherent ideals, and we define the uniformly
rigid generic fiber of a formal scheme of formally finite type. This uniformly
rigid generic fiber is more intimately linked to its model than the classical rigid
generic fiber obtained via Berthelot’s construction.
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1. Introduction

Let K be a nonarchimedean field, and let R be its valuation ring, equipped with the
valuation topology. Grothendieck had suggested that rigid spaces over K should
be viewed as generic fibers of formal schemes of topologically finite (tf) type over
R, that is, of formal schemes which are locally isomorphic to formal spectra of
quotients of strictly convergent power series rings in finitely many variables

R〈T1, . . . , Tn〉.

He envisaged that rigid spaces should, in a suitable sense, be obtained from these
formal schemes by tensoring over R with K . In accordance with this point of view,
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Keywords: semiaffinoid, uniformly rigid, formally finite type, rigid geometry, formal geometry,

Berthelot construction.
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there is a generic fiber functor

rig :
(

formal R-schemes
of locally tf type

)
→ (rigid K -spaces)

characterized by the property that it maps affine objects to affinoid spaces such
that, on the level of functions, it corresponds to the extension of scalars functor
·⊗R K . This functor was more closely studied first by Raynaud and later by Bosch
and Lütkebohmert; they proved that it induces an equivalence between the category
of quasiparacompact and quasiseparated rigid K -spaces and the category of quasi-
paracompact admissible formal R-schemes, localized with respect to the class of
admissible blowups [Raynaud 1974; Bosch and Lütkebohmert 1993a; Bosch 2005,
Theorem 2.8/3].

From now on, let us assume that the absolute value on K is discrete, so that
R is noetherian. Berthelot has extended the generic fiber functor to the class of
formal R-schemes of locally formally finite (ff) type, which are locally isomorphic
to formal spectra of topological quotients of mixed formal power series rings in
finitely many variables

R[[S1, . . . , Sm]]〈T1, . . . , Tn〉,

where an ideal of definition is generated by the maximal ideal of R and by the
Si ; see [Rapoport and Zink 1996, Section 5.5; Berthelot 1996, 0.2; de Jong 1995,
7.1–7.2]. This extension of rig is characterized by the property that it maps admis-
sible blowups to isomorphisms, where a blowup is called admissible if it is defined
by an ideal that locally contains a power of a uniformizer of R; see [Temkin 2008,
2.1]. The extended rig functor no longer maps affine formal schemes to affinoid
spaces; for example, the generic fiber of the affine formal R-scheme Spf R[[S]] is
the open rigid unit disc over K , which is not quasicompact.

While Raynaud’s generic fiber functor is precisely described in terms of admis-
sible blowups, Berthelot’s extended generic fiber functor is less accessible: for
example, let us consider an unbounded function f on the open rigid unit disc D1

K .
The resulting morphism ϕ from D1

K to the rigid projective line does not extend to
models of ff type; indeed, the domain of a model of ϕ cannot be quasicompact, for
otherwise f would be bounded. In particular, there exists no admissible blowup
of Spf R[[S]] admitting an extension of ϕ, and the schematic closure of the graph
of ϕ in the fibered product of Spf R[[S]] and P1

R over Spf R does not exist. This
phenomenon presents a serious obstacle if one tries for example to develop a theory
of Néron models of ff type.

The main object of this article is to present a new category of nonarchimedean
analytic spaces, the category of uniformly rigid spaces, which are better adapted
to formal schemes of locally ff type than Tate’s rigid analytic spaces. Intuitively
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speaking, uniformly rigid spaces and their morphisms are described in terms of
bounded functions on finite products of open and closed unit discs. Like rigid K -
spaces, uniformly rigid K -spaces are locally ringed G-topological K -spaces, where
the letter G indicates that the underlying set of physical points is not equipped with
a topology, but with a Grothendieck topology. Let us give a brief overview of our
definitions and results.

We say that a K -algebra is semiaffinoid if it is obtained from an R-algebra of
ff type via the extension of scalars functor · ⊗R K . In other words, semiaffinoid
K -algebras are quotients of K -algebras of the form

(R[[S1, . . . , Sm]]〈T1, . . . , Tn〉)⊗R K .

We define the category of semiaffinoid K -spaces as the opposite of the category
of semiaffinoid K -algebras, where a morphism of semiaffinoid K -algebras is sim-
ply a K -algebra homomorphism. Semiaffinoid K -spaces play the role of “build-
ing blocks” for uniformly rigid K -spaces, such that we effectively implement
Grothendieck’s original point of view in the ff type situation. Semiaffinoid K -
algebras can be studied via the universal properties of the free semiaffinoid K -
algebras, which we establish in Theorem 2.13.

We define a G-topology on the category of semiaffinoid K -spaces equipped with
its physical points functor by considering compositions of admissible blowups,
completion morphisms and open immersions on flat affine models of ff type; see
Definitions 2.22 and 2.31. These formal-geometric constructions define semiaffi-
noid subdomains, which may be regarded as nested rational subdomains involving
strict or nonstrict inequalities in semiaffinoid functions. In contrast to the classical
rigid case, we cannot avoid nested constructions; this is essentially due to the fact
that admissible blowups defined on open formal subschemes need not extend; see
Remark 2.23. Just like in rigid geometry, the disconnected covering of the closed
semiaffinoid unit disc sSp K 〈S〉 by the open semiaffinoid unit disc sSp K [[S]] and
the semiaffinoid unit circle sSp K 〈S, S−1

〉 is not admissible in the uniformly rigid
G-topology; see Example 2.42. In particular, contrary to the rigid-analytic situa-
tion, finite coverings of semiaffinoid spaces by semiaffinoid subdomains need not
be admissible.

Using methods from formal geometry, we prove a uniformly rigid acyclicity
theorem, which in particular implies the following:

Theorem 1.1 (2.41). The presheaf of semiaffinoid functions is a sheaf for the uni-
formly rigid G-topology.

The resulting functor from the category of semiaffinoid K -spaces to the category
of locally G-ringed K -spaces is fully faithful; hence global uniformly rigid K -
spaces can be defined; see Definition 2.46. They can be constructed by means of
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standard gluing techniques; this is possible because uniformly rigid spaces satisfy
the properties (G0)–(G2) listed in [Bosch et al. 1984, p. 339]. It follows that the
category of uniformly rigid K -spaces admits fibered products and that there is a
natural generic fiber functor urig from the category of formal R-schemes of lo-
cally ff type to the category of uniformly rigid K -spaces. The final picture can be
described as follows:

Theorem 1.2 (Section 2D1). Let RigK , uRigK and FFR denote the categories of
rigid K -spaces, of uniformly rigid K -spaces and of formal R-schemes of locally ff
type respectively. Let moreover Rig′K ⊆RigK be the full subcategory of rigid spaces
that are quasiparacompact and quasiseparated. There is a diagram of functors

Rig′K

uRigK
r -

�

ur

⊃

RigK

?

∩

FFR

rig

-
�

urig

commuting up to isomorphism, where

(i) the functor r is defined by applying the functor rig locally to models of ff type,
where

(ii) the functor ur is defined by applying urig to a global Raynaud-type model of
locally tf type

and where the following holds:

(i) The functor ur is a full embedding.

(ii) The functor r is faithful, yet not fully faithful.

(iii) For each X ∈ uRigK , there is a comparison morphism compX : X
r
→ X that is

final among all morphisms of locally G-ringed K -spaces from rigid K -spaces
to X ; it is a bijection on physical points, and it induces isomorphisms of stalks.

For X ∈ uRigK , we say that X r is the underlying rigid space of X . Conversely,
for Y ∈ Rig′K we say that Y ur is the Raynaud-type uniformly rigid structure on Y .
Via the comparison morphisms, uniformly rigid spaces and their underlying rigid
spaces are locally indistinguishable; we may thus view a uniformly rigid space as a
rigid space equipped with an additional global uniform structure which is encoded
in terms of a coarser G-topology and a smaller sheaf of analytic functions. Let us
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point out that the open rigid unit disc carries two canonical uniform structures, the
one given by a Raynaud model of locally tf type and the one given by the canonical
affine model Spf R[[S]] of ff type. The corresponding uniformly rigid spaces are
distinct, since one is not quasicompact while the other one is quasicompact. The
fact that r is not fully faithful is seen by the example of an unbounded function f on
the rigid open unit disc which we considered above: The rigid-analytic morphism
ϕ defined by f does not extend to a morphism of uniformly rigid spaces from
(Spf R[[S]])urig to (P1,an

K )ur.
In Section 3, we study coherent modules on uniformly rigid K -spaces. We

prove the existence of schematic closures of coherent submodules; see Theorem 3.5.
Using the resulting models of coherent ideals, we prove the following analog of
Kiehl’s theorem A in rigid geometry [Kiehl 1967]:

Theorem 1.3 (3.6). Coherent ideals on semiaffinoid spaces are associated to their
ideals of global functions.

In particular, closed uniformly rigid subspaces are well-behaved; see Proposition
3.11. Using fibered products and closed uniformly rigid subspaces, we define the
notion of separatedness for uniformly rigid K -spaces, and we define the graph of
a morphism f : Y → X of uniformly rigid K -spaces whose target is separated;
see Section 3A1. Using Theorem 3.5, we show that if X and Y are flat formal
R-schemes of locally ff type such that Xurig is separated and if f :Yurig

→ Xurig

is a morphism of uniformly rigid generic fibers, then the schematic closure of the
graph of f in Y×X exists. As we have noted above, the corresponding statement
is false if urig is replaced by Berthelot’s generic fiber functor rig.

Semiaffinoid algebras and some associated locally G-ringed K -spaces have al-
ready been studied in [Lipshitz and Robinson 2000], where the terminology quasi-
affinoid is used. The approach in that book includes the situation where R is not
discrete and where the machinery of locally noetherian formal geometry is not
available. However, no global theory is developed there, and the connection to
formal geometry is not discussed. The proof of Theorem 2.13 in the case of a
possibly nondiscrete valuation, given in [Lipshitz and Robinson 2000, I.5.2.3], is
technically more involved, and it relies upon methods different from ours. The
definition of the G-topology in [ibid., III.2.3.2] is less explicit than our definition,
so that a deep quantifier elimination theorem [ibid., II, Theorem 4.2] is needed in
order to prove an acyclicity theorem. Our approach avoids quantifier elimination.

It is unclear how to reflect uniformly rigid structures on the level of Berkovich’s
analytic spaces or on the level of Huber’s analytic adic spaces; see Section 4. Semi-
affinoid K -algebras are equipped with unique K -Banach algebra structures, so that
one may consider their valuation spectra. For instance, the spectrum M(R[[S]]⊗R K )
is the closure of the Berkovich open unit disc within the Berkovich closed unit
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disc; it is obtained by adding the Gauss point. However, inclusions of semiaffinoid
subdomains need not induce injective maps of valuation spectra, so the formation
of the valuation spectrum does not globalize. This corresponds to the fact that in
the ff type situation, the functor · ⊗R K does not commute with complete localiza-
tion. Nonetheless, we suggest that a uniformly rigid K -space X should be viewed
as a compactification of its underlying rigid space X r. This point of view might
be useful in order to obtain a better understanding of the quasicompactifications
considered in [Strauch 2008, 3.1] and in [Huber 2007, 3]; it should be further
developed within the framework of topos theory. We propose the study of the
uniformly rigid topos as a topic for future research.

The author has used uniformly rigid spaces in his doctoral thesis [Kappen 2009],
in order to lay the foundations for a theory of formal Néron models of locally ff
type. The search for such a theory was strongly motivated by work of C.-L. Chai
[2003], who had suggested that Néron models of ff type could be used to study
the base change conductor of an abelian variety with potentially multiplicative
reduction over a local field. Chai and the author are currently working on further
developing the methods of [Chai 2003] within the framework of uniformly rigid
spaces.

2. Uniformly rigid spaces

Let R be a discrete valuation ring with residue field k and fraction field K , and let
π ∈ R be a uniformizer.

2A. Formal schemes of formally finite type. A morphism of locally noetherian
formal schemes is said to be of locally formally finite (ff) type if the induced mor-
phism of smallest subschemes of definition is of locally finite type. Equivalently,
any induced morphism of subschemes of definition is of locally finite type. A
morphism of locally noetherian formal schemes is called of ff type if it is of locally
ff type and quasicompact. If A is a noetherian adic ring and if B is a noetherian adic
topological A-algebra, then Spf B is of ff type over Spf A if and only if B is a topo-
logical quotient of a mixed formal power series ring A[[S1, . . . , Sm]]〈T1, . . . , Tn〉,
where A[[S1, . . . , Sm]] carries the a+ (S1, . . . , Sm)-adic topology for any ideal of
definition a of A [Berkovich 1996, Lemma 1.2]. In this case, we say that the
topological A-algebra B is of ff type. Morphisms of locally ff type are preserved
under composition, base change and formal completion.

We say that an R-algebra is of formally finite (ff) type if it admits a ring topology
such that it becomes a topological R-algebra of ff type in the above sense, where
R carries the π -adic topology. Equivalently, an R-algebra is of ff type if it admits
a presentation as a quotient of a mixed formal power series ring, as above. If S
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and T are finite systems of variables and if ϕ : R[[S]]〈T 〉 → A is a surjection, then
the ϕ-image of (S, T ) will be called a formal generating system for A.

Lemma 2.1. If A is a topological R-algebra of ff type, then the biggest ideal
of definition of A coincides with the Jacobson radical of A. Moreover, any R-
homomorphism of topological R-algebras of ff type is continuous.

Proof. Let a denote the biggest ideal of definition of A; then a is contained in every
maximal ideal of A since A is a-adically complete. On the other hand, A/a is a
Jacobson ring since it is of finite type over the residue field k of R; it follows that a

coincides with the Jacobson radical of A, as claimed. In particular, the topology on
A is determined by the ring structure of A. Let now A→ B be a homomorphism
of R-algebras of ff type; by what we have seen so far, it suffices to see that ϕ
is continuous for the Jacobson-adic topologies. However, for any maximal ideal
n ⊆ B, the preimage m := n ∩ A of n in A is maximal, since k ⊆ A/m ⊆ B/n,
where B/n is a finite field extension of k because the quotient B/jac B is of finite
type over k. �

In particular, the topology on A an be recovered from the ring structure on A,
and the category of R-algebras of ff type is canonically equivalent to the category
of topological R-algebras of ff type. Lemma 2.1 implies that the category of R-
algebras of ff type admits amalgamated sums ⊗̂.

2B. Semiaffinoid algebras. We define semiaffinoid K -algebras as the generic fibers
of R-algebras of ff type, and we define the category of semiaffinoid K -spaces as
the dual of the category of semiaffinoid K -algebras:

Definition 2.2. Let A be a K -algebra.

(i) An R-model of A is an R-subalgebra A ⊆ A such that the natural homomor-
phism A⊗R K → A is an isomorphism.

(ii) The K -algebra A is called semiaffinoid if it admits an R-model of ff type.
(iii) A homomorphism of semiaffinoid K -algebras is a homomorphism of under-

lying K -algebras.
(iv) The category of semiaffinoid K -spaces is the dual of the category of semi-

affinoid K -algebras. If A is a semiaffinoid K -algebra, we write sSp A to
denote the corresponding semiaffinoid K -space, and if ϕ : sSp B→ sSp A is a
morphism of semiaffinoid K -spaces, we write ϕ∗ to denote the corresponding
K -algebra homomorphism.

By Definition 2.2(i) above, any R-model of a K -algebra is flat over R.
There exists no general analog of the Noether normalization theorem for semi-

affinoid K -algebras [Lipshitz and Robinson 2000, I.2.3.5]. However, if A is a semi-
affinoid K -algebra admitting a local R-model of ff type, then there exist finitely
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many variables S1, . . . , Sm and a finite K -monomorphism

R[[S1, . . . , Sm]]⊗R K ↪→ A.

Indeed, if A is a local R-model of ff type for A with maximal ideal m and if
s0, . . . , sm is a system of parameters for A such that s0 = π , then there exists a
unique continuous R-homomorphism ϕ : R[[S1, . . . , Sm]] → A sending Si to si , for
1≤ i ≤ m. If r denotes the maximal ideal of R[[S1, . . . , Sm]], then A/rA is k-finite
because A/mA is k-finite and because r is m-primary. By the formal version of
Nakayama’s Lemma, cf [Eisenbud 1995, Example 7.2], it follows that ϕ is finite;
here we use that R[[S1, . . . , Sm]] is r-adically complete and that A is r-adically
separated. Since R[[S1, . . . , Sm]] and A have the same dimension, it follows that ϕ
is finite, so we obtain the desired finite monomorphism by extending scalars from
R to K .

2B1. The specialization map. The following statement may be compared with
[de Jong 1995, 7.1.9]:

Lemma 2.3. Let A be a semiaffinoid K -algebra, and let A ⊆ A be an R-model of
ff type. If m is a maximal ideal in A, then

spA(m) :=
√
(A∩m)+π A

is a maximal ideal in A, and A/m is a finite extension of K .

Proof. Let us write p := m∩ A; then (A/p)π = A/m is a field, and by the Artin–
Tate theorem [Grothendieck 1964, 0.16.3.3] it follows that A/p is a semilocal ring
of dimension ≤ 1. Moreover, A/p is of ff type over R and, hence, π-adically
complete. Since A/p ⊆ A/m is R-flat and since (A/p)π is local, it thus follows
from Hensel’s Lemma that (A/p)/π(A/p) is local as well [Bourbaki 1998, III.4.6
Proposition 8]. Since pA =m, the class of π in A/p is nonzero, and so the local
noetherian ring (A/p)/π(A/p) is zero-dimensional. Thus its quotient modulo its
nilradical is a field, and it follows that the radical of p+π A is maximal in A, as
desired.

To prove that A/m is finite over K , it suffices to show that A/p is finite over
R. Since R is π-adically complete and since A/p is π-adically separated, it thus
suffices to show that A/(p+ π A) is finite over k [Eisenbud 1995, Example 7.2].
The ring A/(p+π A) is noetherian; hence its nilradical is nilpotent, and it thereby
suffices to see that the quotient of A modulo the maximal ideal

√
p+π A is k-

finite. Since A is of ff type over R, since maximal ideals are open and since field
extensions of finite type are finite, the desired statement follows. �

Definition 2.4. If A is a semiaffinoid K -algebra, we call |X | :=Max A the set of
physical points of its corresponding semiaffinoid K -space X . We will often write
X instead of |X | if no confusion is likely to result.
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Remark 2.5. Lemma 2.3 implies that a morphism ϕ : sSp A→ sSp B induces a
map on sets of physical points such that for R-models of ff type A and B with
ϕ∗(B)⊆ A, the specialization maps spA and spB are compatible with respect to ϕ
and the induced morphism ϕ : Spf A→ Spf B. This functoriality implies that spA is
surjective onto the set of maximal ideals in A. Indeed, let r⊆ A be a maximal ideal,
and let A|r denote the r-adic completion of A; then Max (A|r⊗R K ) is nonempty,
and any element in this set maps to an element in Max (A) that maps to r under
spA. Let us moreover remark that for x ∈ X = sSp A with specialization n ⊆ A,
the valuation ring of the residue field of A in x coincides with the integral closure
of An in that residue field, so that the intersection of An with the valuation ideal is
precisely nAn.

2B2. Power-boundedness and topological quasinilpotency. Let X be a semi-affinoid
K -space with corresponding semiaffinoid K -algebra A. By Lemma 2.3, A/m is
K -finite for m⊆ A maximal; hence the discrete valuation on K extends uniquely
to A/m, so we can define | f (x)| ∈ R≥0 for any f ∈ A, x ∈ X .

Definition 2.6. An element f ∈ A is called power-bounded if | f (x)| ≤ 1 for all
x ∈ X . It is called topologically quasinilpotent if | f (x)|< 1 for all x ∈ X . We let
Å ⊆ A denote the R-subalgebra of power-bounded functions, and we let Ǎ ⊆ Å
denote the ideal of topologically quasinilpotent functions.

For example, S ∈ A = R[[S]] ⊗R K is topologically quasinilpotent, while the
supremum of the absolute values |S(x)|, with x ranging over X , is equal to 1.
Thus we see that the classical maximum principle fails for semiaffinoid K -algebras.
However, the maximum principle holds if we let x vary in the Berkovich spectrum
M(A) of A, where A is equipped with its unique K -Banach algebra topology; see
Section 4. Indeed, this follows trivially from the fact that M(A) is compact.

Remark 2.7. If A is a nonreduced semiaffinoid K -algebra, then Å cannot be of
ff type over R: If f ∈ A is a nonzero nilpotent function, then f ∈ Å is infinitely
π -divisible in Å, but R-algebras of ff type are π -adically separated.

Remark 2.8. If A ⊆ A is an R-model of ff type, then A ⊆ Å, and Ǎ ∩ A ⊆ A is
the biggest ideal of definition. Indeed, by Lemma 2.1 and its proof, the biggest
ideal of definition of A is given by the Jacobson radical, and hence it suffices to
observe that for any f ∈ A and any x ∈ sSp A with specialization n⊆ A, we have
| f (x)| ≤ 1, where | f (x)|< 1 if and only if f ∈ n. This however is clear from the
final statement in Remark 2.5.

For the notion of normality for formal R-schemes of locally ff type, we refer to
the discussion in [Conrad 1999, 1.2], which is based on the fact that R-algebras
of ff type are excellent. This excellence result is a consequence of [Valabrega
1975, Proposition 7] if R has equal characteristic, and it follows from [Valabrega
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1976, Theorem 9] if R has mixed characteristic. In the following, excellence of
R-algebras of ff type will be used without further comments.

The following result is fundamental:

Proposition 2.9. Let A be a semiaffinoid K -algebra. If A admits a normal R-
model of ff type, then this model coincides with Å.

Proof. Let A be a normal R-model of ff type for A. By [de Jong 1995, 7.1.8],
we may view A as a subring of the ring of global functions on (Spf A)rig, and by
[de Jong 1995, 7.4.1; 1998], A coincides with the ring of power-bounded global
functions under this identification. �

Corollary 2.10. Let A be a semiaffinoid K -algebra, and let A ⊆ A be an R-model
of ff type; then the inclusion A ⊆ Å is integral. If moreover A is reduced, then this
inclusion is finite.

Proof. Let ϕ : A→ B denote the normalization of A. Then ϕ is finite since A
is excellent, and hence B is of ff type over R. Extension of scalars yields an
induced homomorphism of semiaffinoid K -algebras ϕ : A→ B. Since ϕ factors
through an injective R-homomorphism A/rad(A) ↪→ B, since K is R-flat and since
rad(A)= rad(A)A, we see that ϕ factors through an injective K -homomorphism
A/rad(A) ↪→ B. By Proposition 2.9, B coincides with the ring of power-bounded
functions in B. Let us consider a power-bounded function f in A; then ϕ( f ) ∈ B.
Since ϕ is finite, there exists an integral equation P(T )∈ A[T ] for ϕ( f ) over A. By
the factorization of ϕ mentioned above, we conclude that P( f ) ∈ A is nilpotent. If
s ∈N is an integer such that P( f )s = 0; then P(T )s ∈ A[T ] is an integral equation
for f over A. Finally, if A is reduced, then ϕ is injective, and hence Å is an A-
submodule of the finite A-module B. Since A is noetherian, it follows that Å is a
finite A-module. �

We immediately obtain the following:

Corollary 2.11. The ring of power-bounded functions in a reduced semiaffinoid
K -algebra is a canonical R-model of ff type containing any other R-model of ff
type.

We conclude that any R-model of ff type can be enlarged so that it contains any
given finite set of power-bounded functions:

Corollary 2.12. Let A be an R-model of ff type in a semiaffinoid K -algebra A,
and let M ⊆ A be a finite set of power-bounded functions. Then the A-subalgebra
A[M] generated by M over A is finite over A and, hence, an R-model of ff type for
A.

Proof. The ring extension A ⊆ A[M] is finite since it is generated by finitely many
integral elements. �
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2B3. Free semiaffinoid algebras. Using the results of Section 2B2, we can now
establish the universal properties of free semiaffinoid K -algebras; these are semi-
affinoid K -algebras of the form R[[S]]〈T 〉⊗R K , for finite systems of variables S
and T :

Theorem 2.13. Let m and n be natural numbers. The semiaffinoid K -algebra
R[[S1, . . . , Sm]]〈T1, . . . , Tn〉 ⊗R K , together with the pair of tuples of functions
((S1, . . . , Sm), (T1, . . . , Tn)), is initial among all semiaffinoid K -algebras A equip-
ped with a pair (( f1, . . . , fm), (g1, . . . , gn)) satisfying the property that the g j are
power-bounded and that the fi are topologically quasinilpotent.

Proof. Let us write S and T to denote the systems of the Si and the T j . By
Corollary 2.12, A admits an R-model of ff type A containing the fi and the g j .
By Remark 2.8, the fi are topologically nilpotent in A; hence there exists a unique
R-homomorphism ϕ : R[[S]]〈T 〉 → A sending Si to fi and T j to g j for all i and j ,
and so ϕ := ϕ⊗R K is a K -homomorphism with the desired properties. It remains
to show that these properties determine ϕ uniquely. Let ϕ′ : R[[S]]〈T 〉⊗R K → A
be any K -homomorphism sending Si to fi and T j to g j for all i and j , and let us
set A′ := ϕ′(R[[S]]〈T 〉) which is of ff type over R. If ϕ = ϕ′, then A′ ⊆ A. On the
other hand, to show that ϕ = ϕ′, it suffices to see that, after possibly enlarging A,
we have A′ ⊆ A, in virtue of the universal property of R[[S]]〈T 〉. If A is reduced,
Corollary 2.10 says that we may set A equal to the ring of power-bounded functions
in A; in this case the inclusion A′ ⊆ A is obvious. In the general case, we let N
denote the nilradical of A; then, by what we have shown so far,

A′/(A′ ∩ N ) ⊆ A/(A∩ N ) (∗)

within Å/N . The ideal A′ ∩ N is finitely generated since A′ is noetherian; after
enlarging A using Corollary 2.12, we may thus assume that A contains a generating
system n1, . . . , nr of A′∩ N . The inclusion (∗) shows that every element a′ ∈ A′ is
the sum of an element a ∈ A and a linear combination

∑r
i=1 a′i ni with coefficients

a′i ∈ A′. Let us write the coefficients a′i in the analogous way, and let us iterate
the procedure. Using the fact that the ni lie in A, the only summands possibly
not lying in A after s-fold iteration are multiples of products of the ni involving
s factors. Since the ni are nilpotent, these summands are zero for s big enough;
hence A′ ⊆ A, as desired. �

With the universal property of the free semiaffinoid K -algebras at hand, we can
now describe the category of semiaffinoid K -algebras in terms of the category of
R-models of ff type. Let us recall that a formal blowup in the sense of [Temkin
2008, 2.1] is called admissible if it can be defined by a π-adically open coherent
ideal.

Corollary 2.14. Let ϕ : A→ B be a homomorphism of semiaffinoid K -algebras.
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(i) Let A1, A2 be R-models of ff type for A. If A2 contains a formal generating
system of A1, then A1 is contained in A2.

(ii) An inclusion of R-models of ff type for A corresponds to a finite admissible
blowup of associated formal spectra.

(iii) Let A ⊆ A, B ⊆ B be R-models of ff type such that there exists a formal
generating system of A mapping to B via ϕ. Then ϕ(A)⊆ B.

(iv) Let A be an R-model of ff type for A. There exists an R-model of ff type B for
B such that ϕ(A) ⊆ B. Moreover, if B ′ is any R-model of ff type for B, we
can choose B such that B ′ ⊆ B.

Proof. To prove the first statement, let us fix a formal generating system ( f, g) of A1

that is contained in A2. The components of f are topologically quasinilpotent in A;
since A2 is an R-model of ff type for A, they are topologically nilpotent in A2. Let
α : R[[S]]〈T 〉 → A1 and β : R[[S]]〈T 〉 → A2 be the associated R-homomorphisms,
where α is surjective because ( f, g) formally generates A1. By Theorem 2.13,
α⊗R K and β⊗R K coincide as homomorphisms from R[[S]]〈T 〉⊗R K to A, so
we conclude that A1 ⊆ A2: given a ∈ A1, we choose an α-preimage a′ of a; then
a = α(a′)= β(a′) ∈ A2.

To prove the second claim, let A1 ⊆ A2 be an inclusion of R-models of ff type
for A, and let M ⊆ A2 be a finite set whose elements are the components of a
formal generating system for A2 over R. Then by Corollary 2.12, A1[M] ⊆ A2 is
an R-model of ff type for A which is finite over A1. By statement (i), A2 = A1[M]
and hence A2 is finite over A1. Arguing exactly as in the proof of [Bosch and
Lütkebohmert 1993a, 4.5], we see that A1 ⊆ A2 corresponds to an admissible
formal blowup.

To prove part (iii), let us choose a formal generating system ( f, g) of A such that
the components of ϕ( f ) and ϕ(g) are contained in B. The components of ϕ( f )
are topologically nilpotent in B since they are topologically quasinilpotent in B.
Let α : R[[S]]〈T 〉 → A and β : R[[S]]〈T 〉 → B be the R-homomorphisms defined
by ( f, g) and (ϕ( f ), ϕ(g)) respectively; then α is surjective, and Theorem 2.13
shows that β⊗R K coincides with ϕ ◦ (α⊗R K ). As is the proof of statement (i),
we conclude that ϕ(A)⊆ B.

To prove statement (iv), let us choose a formal generating system ( f, g) of A.
The components of ϕ( f ) are topologically quasinilpotent, and the components of
ϕ(g) are power-bounded in B. According to Corollary 2.12, there exists an R-
model B of ff type for B containing B ′ and the components of ϕ( f ) and ϕ(g); by
statement (iii), ϕ(A)⊆ B, as desired. �

We can now show that R-models of ff type for affinoid K -algebras are automat-
ically of tf type:
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Corollary 2.15. Let A be an affinoid K -algebra, and let A ⊆ A be an R-model of
ff type. Then A is of tf type over R.

Proof. Let A′ be an R-model of tf type for A, and let A′′ be an R-model of ff type
for A containing both A and A′; such an A′′ exists by Corollary 2.14(iv) applied
to the identity on A. By Corollary 2.14(ii), A′′ is finite over A′ and, hence, an
R-algebra of tf type. After replacing A′ by A′′, we may thus assume that A ⊆ A′.
Again by Corollary 2.14(ii), this inclusion is finite. We now mimic the proof of the
classical Artin–Tate lemma: Let a1, . . . , am be a system of topological generators
of A′ over R, and for each i let Pi ∈ A[T ] be an integral equation for ai over A. Let
b1, . . . , bn be the coefficients of the Pi in some ordering. Since the R-algebra A is
of ff type, it is π -adically complete; hence there exists a unique R-homomorphism
R〈T1, . . . , Tn〉 → A sending T j to b j for 1≤ j ≤ n. Let B ⊆ A denote its image;
then B is an R-algebra of tf type. Since the ai topologically generate A′ over R,
they also topologically generate A′ over B. The ai are, by construction, integral
over B; hence A′ is in fact finite over B. Since B is noetherian, the B-submodule
A of A′ is finite as well, and it follows that A is of tf type as a B-algebra. We
conclude that A is of tf type over R. �

2B4. Amalgamated sums.

Proposition 2.16. The category of semiaffinoid K -algebras admits amalgamated
sums. More precisely speaking, if ϕ1 : A→ B1 and ϕ2 : A→ B2 are homomor-
phisms of semiaffinoid K -algebras, then the colimit of the resulting diagram is
represented by (B1⊗̂A B2)⊗R K , where A and the Bi are R-models of ff type for
A and the Bi respectively such that ϕ(A)⊆ B1, B2.

Proof. By Corollary 2.14(iv), we may choose R-models A, B1 and B2 as in the
statement of the proposition. Let C be a semiaffinoid K -algebra, and for i = 1, 2 let
τi : Bi→C be a K -homomorphism such that τ1◦ϕ1= τ2◦ϕ2. By Corollary 2.14(iv),
there exists an R-model C of ff type for C such that τi (Bi )⊆ C for i = 1, 2; we
let τ i : Bi → C denote the induced R-homomorphism. Then τ 1 ◦ ϕ1

= τ 2 ◦ ϕ2
,

since the same holds after inverting π and since π is not a zero divisor in A. By
the universal property of the complete tensor product in the category of R-algebras
of ff type, there exists a unique R-homomorphism τ : B1⊗̂A B2 → C such that
τ i = τ ◦ σ i for i = 1, 2, where σ i : Bi → B1⊗̂A B2 is the i th coprojection. Setting
τ := τ ⊗R K and σi := σ i ⊗R K , we obtain τi = τ ◦σi for i = 1, 2. We must show
that τ is uniquely determined by this property. Let

τ ′ : (B1⊗̂A B2)⊗R K → C

be any K -homomorphism satisfying τi = τ
′
◦σi for i = 1, 2. By Corollary 2.14(iv),

there exists an R-model C ′ of ff type for C containing C such that τ ′ restricts to
an R-morphism τ ′ : B1⊗̂A B2→ C ′; then τ ′ = τ ′⊗R K . It suffices to show that
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τ ′ coincides with τ composed with the inclusion ι : C ⊆ C ′. For i = 1, 2, the
compositions τ ′ ◦ σ i and ι ◦ τ ◦ σ i coincide after inverting π , hence they coincide
because π is not a zero divisor in Bi , for i = 1, 2. The universal property of
(B1⊗̂A B2, σ 1, σ 2) implies that τ ′ = ι ◦ τ , as desired. �

Passing to the opposite category, we see that the category of semiaffinoid K -
spaces has fibered products.

2B5. The Nullstellensatz.

Proposition 2.17. Semiaffinoid K -algebras are Jacobson rings.

Proof. Any quotient of a semiaffinoid K -algebra is again semiaffinoid; hence it
suffices to show that if A is a semiaffinoid K -algebra and if f ∈ A is a semiaffinoid
function such that f (x)= 0 for all x ∈ sSp A, then f is nilpotent. We may divide
A by its nilradical and thereby assume that A is reduced. Let A be an R-model
of ff type for A, and let X = (Spf A)rig denote the rigid-analytic generic fiber of
Spf A. Since A is excellent, being a localization of the excellent ring A, and since
rigid K -spaces are excellent [Conrad 1999, 1.1], it follows from [de Jong 1995,
Lemma 7.1.9] that the space X is reduced and that we may view A as a subring of
0(X,OX ) such that the value of f in a point x ∈ X agrees with the value of f in
the corresponding maximal ideal of A. Since f (x)= 0 for all x ∈ X , we see that
f = 0 as a function on X and, hence, in A. �

2C. Semiaffinoid spaces.

2C1. The rigid space associated to a semiaffinoid K -space. Let X = sSp A be a
semiaffinoid K -space. An affine flat formal model of ff type for X is an affine flat
formal R-scheme of ff type X together with an identification of 0(X,OX) with an
R-model of ff type for A. By Definition 2.2, every semiaffinoid K -space admits an
affine flat model of ff type. There is an obvious generic fiber functor urig from the
category of affine flat formal R-schemes of ff type to the category of semiaffinoid
K -spaces, given by

(Spf A)urig
:= sSp(A⊗R K ).

Let X be a flat affine R-model of ff type for X . Berthelot’s construction yields a
rigid K -space X r := Xrig together with a K -homomorphism

ϕ : A→ 0(X r,OX r);

see [de Jong 1995, 7.1.8]. By our discussion in Section 2B1 and by [ibid., 7.1.9]
the homomorphism ϕ induces a bijection |X r

| → |X | and local homomorphisms
Am→ OX r,x which are isomorphisms on maximal-adic completions, where x is
a point of X r and where m ∈Max A is the image of x under the above bijection.
We say that X r is the rigid space associated to X via Berthelot’s construction.
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It is independent of the choice of X, the pair (X r, ϕ) being characterized by the
following universal property:

Proposition 2.18. Let Y be a rigid K -space, and let ψ : A → 0(Y,OY ) be a
K -algebra homomorphism. There exists a unique morphism of rigid K -spaces
σ : Y → X r such that ψ = 0(σ ]) ◦ϕ.

Proof. Uniqueness of σ follows from the above-mentioned fact that ϕ induces a
bijection of points and isomorphisms of completed stalks; we may thus assume
that Y is affinoid, Y = Sp B. Let A⊆ A be the R-model of ff type corresponding to
X. By Corollary 2.14(iv) and Corollary 2.15, ψ restricts to an R-homomorphism
ψ : A→ B, where B is a suitable R-model of tf type for B; now σ := (Spf ψ)rig

has the required properties. �

If τ : Y→X is a morphism of affine flat formal R-schemes of ff type and if τ urig

denotes the induced morphism of associated semiaffinoid K -spaces, we easily see
that the unique morphism (τ urig)r provided by Proposition 2.18 is given by τ rig.

2C2. Semiaffinoid subdomains. Closed subspaces of semiaffinoid K -spaces are
easily defined in the usual way:

Definition 2.19. A morphism of semiaffinoid K -spaces is called a closed immer-
sion if it corresponds to a surjective homomorphism of semiaffinoid K -algebras.
A closed semiaffinoid subspace of a semiaffinoid K -space is an equivalence class
of closed immersions, where two closed immersions of uniformly rigid K -spaces
i1 : Y1→ X and i2 : Y2→ X are called equivalent if there exists an isomorphism
ϕ : Y1

∼
→ Y2 such that i1 = i2 ◦ϕ.

If A is a semiaffinoid K -algebra and if I ⊆ A is an ideal, then the natural closed
immersion sSp A/I → sSp A is clearly injective onto the set of maximal ideals
containing I . Moreover, if A→ C is a homomorphism of semiaffinoid K -algebras,
then A/I ⊗̂AC = C/I C , because this quotient already represents the amalgamated
sum of C and A/I over A in the category of all K -algebras. In particular, closed
immersions of semiaffinoid K -spaces are stable under the formation of fibered
products.

To define a reasonable structure of G-topological K -space on the set of physical
points of a semiaffinoid K -space X , it is natural to consider subsets U of X that
canonically inherit a structure of semiaffinoid K -space:

Definition 2.20. A subset U in a semiaffinoid K -space X is called representable
if there exists a morphism of semiaffinoid K -spaces to X whose image lies in U
and which is final with this property. Such a morphism is said to represent all
semiaffinoid morphisms to X with image in U .
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Remark 2.21. Here we differ from the terminology used in the author’s PhD the-
sis; there the representable subsets are called semiaffinoid presubdomains [Kappen
2009, Section 1.3.3].

Clearly X and ∅ are representable subsets of X . Copying the proof of [Bosch
et al. 1984, 7.2.2/1], we see that a morphism representing a subset U ⊆ X is
injective with image U and that it induces isomorphisms of infinitesimal neigh-
borhoods of points. Using the existence of fibered products in the category of
semiaffinoid K -spaces, we see that representable subsets are preserved under pull-
back with respect to morphisms of semiaffinoid spaces. The universal property
of representable subsets yields a presheaf OX in semiaffinoid K -algebras on the
category of representable subsets in X .

In the category of affinoid K -spaces, the representable subsets are called affinoid
subdomains [Bosch et al. 1984, 7.2.2/2], and they play a predominant role in the
foundations of rigid geometry. In the uniformly rigid setting, we are unable to
handle general representable subsets; for instance, we do not know whether repre-
sentable subsets induce admissible open subsets via the functor r which is induced
by Berthelot’s construction. We will thus only consider representable subsets of a
specific kind, which we call semiaffinoid subdomains:

Definition 2.22. A subset U of a semiaffinoid K -space X is called a semiaffinoid
subdomain if there is an affine flat R-model of ff type X for X and a finite composi-
tion of open immersions, completion morphisms and admissible blowups ϕ :U→X

such that U is affine and such that U is equal to the image of ϕurig. We say that ϕ
represents U as a semiaffinoid subdomain in X . We say that U is an elementary
semiaffinoid subdomain in X if ϕ can be chosen as an open immersion into an
admissible blowup, and we say that U is a retrocompact semiaffinoid subdomain
in X if ϕ can be chosen as a composition of open immersions and admissible
blowups; such a ϕ is said to represent U as an elementary or as a retrocompact
semiaffinoid subdomain in X respectively.

In Corollary 2.25, we will see that semiaffinoid subdomains are actually repre-
sentable in the sense of Definition 2.20.

Open immersions of formal R-schemes of ff type induce retrocompact open im-
mersions of rigid generic fibers [de Jong 1995, 7.2.2 and 7.2.4(d)]. Moreover, com-
pletion morphisms induce (possibly nonretrocompact) open immersions of rigid
generic fibers [de Jong 1995, 7.2.5], and admissible blowups induce isomorphisms
of rigid generic fibers; see [Nicaise 2009, 2.19]. Hence a semiaffinoid subdomain
U ⊆ X is admissibly open in X r. In particular, the K -homomorphism ϕurig,∗ cor-
responding to ϕurig is flat, since flatness is seen on the level of completions of
stalks. Semiaffinoid subdomains may be regarded as nested rational subdomains
defined in terms of strict or nonstrict inequalities involving semiaffinoid functions.
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For example, the blowup of X = Spf R[[S]] in the ideal (π, S) is covered by the
affine open formal subschemes X1 = Spf (R[[S]]〈V 〉/(πV − S))∼= Spf R〈V 〉 and
X2 = Spf (R[[S]]〈W 〉/(SW − π)); the completion of X1 along the ideal (π, V )
represents the open disc with radius |π | within the open unit disc, while the com-
pletion of X2 along (π,W ) defines the open annulus |π |< |S|< 1.

Remark 2.23. It is necessary to consider iterations as in Definition 2.22 because
if U is an open subset of a flat formal R-scheme of ff type X, then an admissible
blowup of U needs not extend to an admissible blowup of X; see [Kappen 2009,
Example 1.1.3.12].

In order to understand semiaffinoid subdomains, it will be useful to interpret
strict transforms with respect to admissible blowups as pullbacks:

Lemma 2.24. Let Y→ X be a morphism of flat formal R-schemes of locally ff
type, let X′→ X be an admissible blowup, and let Y′→ Y denote the induced
admissible blowup of Y, that is, the strict transform of Y. The resulting square

Y′ - X′

Y
?

- X
?

is cartesian in the category of flat formal R-schemes of locally ff type.

Proof. The universal property of the fibered product in the category of flat formal
R-schemes of locally ff type is readily verified using the universal property of
admissible blowups, the fact that the functor rig maps admissible blowups to iso-
morphisms and the fact that rig is faithful on the category of flat formal R-schemes
of locally ff type. �

In the following, we write ×′ to denote the fibered product in the category of flat
formal R-schemes of locally ff type. It is obtained from the usual fibered product
by dividing out the coherent ideal of π-torsion; in particular, fibered products of
affine flat formal R-schemes of ff type in the category of flat formal R-schemes of
locally ff type are again affine.

As we have just observed, admissible blowups of flat formal R-schemes are
preserved under pullback in the category of flat formal R-schemes of locally ff
type. The same is true for open immersions and completion morphisms, since they
are flat and since they are preserved under pullback in the category of all formal
R-schemes of locally ff type.

Corollary 2.25. Let X be a semiaffinoid K -space, let U ⊆ X be a semiaffinoid
subdomain, and let Y → X be a morphism of semiaffinoid K -spaces.

(i) The preimage of U in Y is a semiaffinoid subdomain in Y .
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(ii) If U→ X represents U as a semiaffinoid subdomain in X and if Y→ X is a
model of Y → X , then the projection U×′X Y→Y represents the preimage
of U as a semiaffinoid subdomain in Y .

(iii) If ϕ represents U as a semiaffinoid subdomain in X , then ϕurig represents all
semiaffinoid morphisms to X with image in U. In particular, semiaffinoid
subdomains are representable in the sense of Definition 2.20.

The analogous statements hold if we consider retrocompact or elementary semiaffi-
noid subdomains and their retrocompact or elementary representations.

Proof. Statement (ii) implies statement (i) in view of Corollary 2.14(iv). To show
(ii), let us consider a factorization

U
ϕn
−→ Un

ϕn−1
−→ · · ·

ϕ1
−→ U1

ϕ0
−→ X (†)

of U→ X, where the ϕi are admissible blowups, open immersions or completion
morphisms. By the remarks preceding this Corollary, we see that the projection
U×′X Y→Y defines a semiaffinoid subdomain in Y . Passing to associated rigid
spaces, we see that this semiaffinoid subdomain coincides with the preimage of U
in Y . To prove (iii), let us write ϕ to denote U→X, and let us assume that the image
of Y → X lies in U ; we must show that Y → X factors uniquely through ϕurig.
Since ϕurig induces an injection of physical points and isomorphisms of completed
stalks, uniqueness follows from Krull’s Intersection theorem. Let us show that the
desired factorization exists. Again, Corollary 2.14(iv) shows that Y → X admits a
model Y→ X with target X. Let us consider the pullback

Yn+1
ψn
−→Yn

ψn−1
−→ · · ·

ψ1
−→Y1

ϕ0
−→Y

of (†) under Y→ X in the category of flat formal R-schemes of locally ff type;
then Yn+1 is affine, and all ψi that are open immersions or completion morphisms
are isomorphisms: Indeed, Y → X factors through U , specialization maps are
surjective onto the sets of closed points of flat formal R-schemes of locally ff type,
and the closed points lie very dense in formal R-schemes of this type. Hence, the
composition Yn+1→Y is a composition of admissible blowups; by [Temkin 2008,
2.1.6], it is an admissible blowup. Since Yn+1 is affine, [Grothendieck 1961b,
3.4.2] shows that Yn+1→ Y is a finite admissible blowup. After applying urig,
we thus obtain the desired factorization of Y → X . �

By Corollary 2.25(iii), every semiaffinoid subdomain may be viewed as a semi-
affinoid K -space in a natural way.

Question 2.26. One may ask whether every representable subset of a semiaffinoid
K -space is in fact a semiaffinoid subdomain. Unfortunately, we do not know the
answer.



Uniformly rigid spaces 359

Corollary 2.27. Let X be a semiaffinoid K -space, let U ⊆ X be a semiaffinoid
subdomain, and let X be a flat affine R-model of ff type for X. Then there exists a
representation of U as a semiaffinoid subdomain in X with target X.

Proof. Let U′→ X′ be a representation of U as a semiaffinoid subdomain in X ,
let us write X = sSp A, and let A, A′ ⊆ A be the R-models of ff type of A corre-
sponding to X and X′ respectively. By Corollary 2.14(iv) applied to the identity
on A, there exists an R-model of ff type A′′ of A containing both A and A′. By
Corollary 2.14(ii), the inclusions A ⊆ A′′ and A′ ⊆ A′′ correspond to finite admis-
sible blowups X′′→ X and X′′→ X′. By Corollary 2.25(ii), the strict transform
U′′→ X′′ of U′→ X′ under X′′→ X′ represents U as a semiaffinoid subdomain in
X . Composing this representation with the admissible blowup X′′→ X, we obtain
a representation U′′→ X of U as a semiaffinoid subdomain in X with target X, as
desired. �

Remark 2.28. One can easily show that if U ⊆ X is a semiaffinoid subdomain
and if Y→ X is a model of the inclusion of U into X , then there exists a finite
admissible blowup Y′ of Y such that the composition Y′→ X represents U as a
semiaffinoid subdomain in X ; this fact will not be needed in the following.

Corollary 2.29. Let X be a semiaffinoid K -space.

(i) Let U ⊆ X be a semiaffinoid subdomain, and let V be a subset of U. Then V
is a semiaffinoid subdomain in U if and only if it is a semiaffinoid subdomain
in X.

(ii) The set of semiaffinoid subdomain in X is stable under the formation of finite
intersections.

Proof. If V is semiaffinoid in X , then V = V ∩ U is semiaffinoid in U by
Corollary 2.25(i). Conversely, assume that V is semiaffinoid in U , and let U→ X

be a representation of U as a semiaffinoid subdomain in X . By Corollary 2.27,
there exists a representation V→ U of V as a semiaffinoid subdomain in U ; the
composition V→ U→ X represents V as a semiaffinoid subdomain in X . This
settles the first statement. To show (ii), let us consider two semiaffinoid subdomains
U and V in X . By Corollary 2.25(i), U ∩ V is a semiaffinoid subdomain in U ; by
part (i), U ∩ V is thus a semiaffinoid subdomain in X . �

These results obviously remain true if we only consider retrocompact semi-
affinoid subdomains instead of general semiaffinoid subdomains. Similarly, el-
ementary semiaffinoid subdomains are preserved under pullback with respect to
morphisms of semiaffinoid spaces. However, if U is an elementary semiaffinoid
subdomain in a semiaffinoid K -space X and if V is an elementary semiaffinoid
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subdomain in U , then V needs not be elementary in X . Likewise, if U is a semi-
affinoid subdomain in X and if V is a retrocompact semiaffinoid subdomain in U ,
then V needs not be retrocompact in X .

We conclude this section by identifying retrocompact semiaffinoid subdomains
in affinoid K -spaces:

Lemma 2.30. Let A be an affinoid K -algebra; then a retrocompact semiaffinoid
subdomain U in sSp A is an affinoid subdomain in Sp A.

Proof. Let ϕ : Y→ X be a morphism defining U as a retrocompact semiaffinoid
subdomain in X . By Corollary 2.15, X is of tf type over R. Since ϕ is adic, Y

is of tf type over R as well, such that ϕrig is a morphism of affinoid K -spaces.
By Corollary 2.25(iii), ϕ represents all semiaffinoid maps with image in U ; in
particular it represents all affinoid maps with image in U . Hence, U is an affinoid
subdomain in Sp A. �

Conversely, it is clear that for any affinoid K -algebra A, the rational subdomains
in Sp A define semiaffinoid subdomains in sSp A. Let U ⊆ Sp A be a general
affinoid subdomain in Sp A. By the theorem of Gerritzen and Grauert [Bosch et al.
1984, 7.3.5/1], U is a finite union of rational subdomains. Let X be any affine flat
formal R-model of tf type for Sp A. By [Bosch and Lütkebohmert 1993a, Lemma
4.4], there exist an admissible formal blowup X′→ X of X and an open formal
subscheme U ⊆ X′ such that U = Urig. However, we do not know whether U is
affine, so we do not know whether a general affinoid subdomain U in Sp A is a
semiaffinoid subdomain or even a representable subset in sSp A. Nonetheless, we
will see that affinoid subdomains in Sp A are admissible open in the uniformly rigid
G-topology on sSp A; see Proposition 2.34.

2C3. G-topologies on semiaffinoid spaces. We first define an auxiliary G-topo-
logy Taux on the category of semiaffinoid K -spaces equipped with the physical
points functor; see [Bosch et al. 1984, 9.1.2]. The Taux-admissible subsets of a
semiaffinoid K -space are the semiaffinoid subdomains of that space. If I is a
rooted tree and if i ∈ I is a vertex, we let ch(i) denote the set of children of i .

Definition 2.31. Let X be a semiaffinoid K -space, and let (X i )i∈I be a finite family
of semiaffinoid subdomains in X .

(i) We say that (X i )i∈I is an elementary covering of X if there exist an affine flat
R-model of ff type X for X , an admissible blowup X′→X and an affine open
covering (Xi )i∈I of X′ such that for each i ∈ I , Xi ⊆ X′→ X represents X i

as a semiaffinoid subdomain in X .

(ii) We say that (X i )i∈I is a treelike covering of X if there exists a rooted tree
structure on I such that Xr = X , where r is the root of I , and such that
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(X j ) j∈ch(i) is an elementary covering of X i for all i ∈ I which are not leaves.
A rooted tree structure on I with these properties is called suitable for (X i )i∈I .

(iii) We say that (X i )i∈I is a leaflike covering if it extends to a treelike covering
(X i )i∈J , J ⊇ I , where J admits a suitable rooted tree structure such that I is
identified with the set of leaves of J .

(iv) We say that (X i )i∈I is Taux-admissible if it admits a leaflike refinement.

If (X i )i∈I is an elementary, treelike or leaflike covering of X , then by definition
all X i are retrocompact in X . For trivial reasons, condition (iv) in Definition 2.31
can be checked after refinement.

Arguing as in the proof of Corollary 2.27, we see that an elementary covering can
be represented with respect to any flat affine R-model of ff type X of X . It follows
that any treelike covering (X i )i∈I together with a suitable rooted tree structure on
I admits a model with respect to X; that is, we have

(i) for each i ∈ I , an affine flat R-model of ff type Xi for X i such that Xr = X,
where r denotes the root of I ,

(ii) for each inner i ∈ I , an admissible blowup X′i → Xi and

(iii) for each inner i ∈ I and for each child j of i , an open immersion X j ↪→ X′i
such that X j ⊆ X′i → Xi represents X j as a semiaffinoid subdomain in X i .

Arguing as in the proof of Corollary 2.25, we see that elementary, treelike and
leaflike coverings, suitable rooted tree structures and models in the above sense
are preserved under pullback with respect to morphisms Y → X of semiaffinoid
K -spaces and their models Y→ X, where Y and X are flat affine models of ff
type for Y and X respectively.

Lemma 2.32. Let X be a semiaffinoid K -space, let (Ui )i∈I be a covering of X by
semiaffinoid subdomains, and for each i ∈ I , let (Vi j ) j∈Ji be a covering of Ui . If
all of these coverings are leaflike or Taux-admissible, then the same holds for the
covering (Vi j )i∈I, j∈Ji of X.

Proof. Let us first consider the case where the given coverings are leaflike. Let us
choose a treelike covering (Ui )i∈I ′ of U extending (Ui )i∈I together with a suitable
rooted tree structure on I ′ such that I ⊆ I ′ is the set of leaves. Similarly, for each
i ∈ I we choose a treelike covering (Vi j ) j∈J ′i extending (Vi j ) j∈Ji together with a
suitable rooted tree structure on J ′i such that Ji ⊆ J ′i is identified with the set of
leaves for all i ∈ I . For each i ∈ I , we glue the rooted tree J ′i to the rooted tree I ′

by identifying the root of J ′i with the leaf i of I ′. We obtain a rooted tree J ′ whose
set of leaves is identified with the disjoint union of the sets Ji , i ∈ I . For each i ∈ I ,
Ui = Viri , where ri is the root of J ′i ; hence we obtain a covering (V j ) j∈J ′ such that
the given rooted tree structure on J ′ is suitable for (V j ) j∈J ′ ; indeed, this can be
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checked locally on the rooted tree J ′. We conclude that the composite covering
(Vi j )i∈I, j∈Ji of X is leaflike. The statement for Taux-admissible coverings now
follows by passing to leaflike refinements. �

Combining Lemma 2.32 and the fact that Taux-admissible coverings are stable
under pullback, we see that the semiaffinoid subdomains and the Taux-admissible
coverings define a G-topology on the category of semiaffinoid K -spaces equipped
with the physical points functor. The following proposition suggests that Taux

should be viewed as an analog of the weak G-topology in rigid geometry. We first
define:

Definition 2.33. A retrocompact covering of a semiaffinoid K -space X is a finite
family of retrocompact semiaffinoid subdomains of X that covers X on the level
of physical points.

If I is a rooted tree, we write lv(I ) to denote the set of leaves of that tree, and
we write v(I ) denote the volume of the tree, that is, its number of vertices.

Proposition 2.34. Retrocompact coverings of semiaffinoid spaces are Taux-admis-
sible.

Proof. Let X be a semiaffinoid K -space, and let (X i )i∈I be a finite family of retro-
compact semiaffinoid subdomains in X covering X on the level of sets; we have
to show that (X i )i∈I is Taux-admissible. For each i ∈ I , we choose a retrocompact
representation ϕi of X i in X , such that the targets of the ϕi all coincide with a fixed
flat affine target X. For each i ∈ I , we choose a factorization

ϕi = βi1 ◦ψi1 ◦ · · · ◦βini ◦ψini ,

where the ψi j are open immersions and the βi j are admissible blowups,

Xi j
ψi j
↪→ X′i j

βi j
→ Xi, j−1,

with Xi0 = X. Let v denote the sum of the ni ; we say that v is the total length
of the given retrocompact representation. Let X′→ X be an admissible blowup
dominating all βi1 : X

′

i1→ X, and let Ui ⊆ X′ denote the preimage of Xi1 ⊆ X′i1.
The X

rig
i1 cover Xrig, the specialization map spX′ is surjective onto the closed points

of X′, and the closed points in X′ lie very dense; hence X′ is covered by the Ui .
For each i ∈ I , we consider the pullback ψ ′i of

βi2 ◦ψi2 ◦ · · · ◦βini ◦ψini

under Ui ⊆ X′→ X′i1, and moreover for each j ∈ I different from i we consider
the pullback ϕ′i j of

ϕ j = β j1 ◦ψ j1 ◦ · · · ◦β jn j ◦ψ jn j
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under Ui ⊆ X′→ X, both in the category of flat formal R-schemes of ff type. For
each i ∈ I , we choose a finite affine covering of Ui . For each constituent Vis of this
covering with semiaffinoid generic fiber Vis , we choose finite affine coverings of
(ψ ′i )

−1(Vis) and of (ϕ′i j )
−1(Vis), for j ∈ I \{i}. We obtain a retrocompact covering

of Vis , together with retrocompact representations as above of total length v− 1. If
we let i and s vary, the resulting retrocompact covering of X refines (X i )i∈I . Since
the Vis , for varying i and s, form an elementary covering of X , it suffices to see
that the given retrocompact covering of Vis is Taux-admissible, which now follows
by induction on v; the case v = 1 is trivial. �

Definition 2.35. Let Turig denote the finest G-topology on the category of semiaffi-
noid K -spaces which is slightly finer than Taux in the sense of [Bosch et al. 1984,
9.1.2/1].

The G-topology Turig is called the uniformly rigid G-topology. It exists by
[Bosch et al. 1984, 9.2.1/2], and it is saturated in the sense that it satisfies conditions
(G0)–(G2) in [Bosch et al. 1984, 9.1.2], saying that Turig-admissibility of subsets
can be checked locally with respect to Turig-admissible coverings and that admis-
sibility of a covering by Turig-admissible subsets can be checked after refinement.

As a corollary of [BGR] 9.1.2/3, we obtain the following explicit description of
the uniformly rigid G-topology on a semiaffinoid K -space:

Proposition 2.36. Let X be a semiaffinoid K -space.

(i) A subset U ⊆ X is Turig-admissible if and only if it admits a covering (Ui )i∈I

by semiaffinoid subdomains such that for any morphism ϕ : Y → X of semi-
affinoid K -spaces with ϕ(Y ) ⊆ U , the induced covering of Y has a leaflike
refinement.

(ii) A covering (Ui )i∈I of a Turig-admissible subset U in X by Turig-admissible
subsets is Turig-admissible if and only if for any morphism ϕ : Y → X of
semiaffinoid K -spaces with ϕ(Y )⊆U , the induced covering of Y has a leaflike
refinement.

Corollary 2.37. Let X be a semiaffinoid K -space.

(i) For any semiaffinoid subdomain U of X , the uniformly rigid G-topology on X
restricts to the uniformly rigid G-topology on U.

(ii) If U ⊆ X is a finite union of retrocompact semiaffinoid subdomains in X ,
then U is Turig-admissible, and every finite covering of U by retrocompact
semiaffinoid subdomains in X is Turig-admissible.

Proof. By Corollary 2.29(i), the semiaffinoid subdomains in U are the semiaffi-
noid subdomains in X contained in U , and by Corollary 2.25(iii) the semiaffinoid
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morphisms to X with image in U correspond to the semiaffinoid morphisms to U .
Hence, statement (i) follows from parts (i) and (ii) of Proposition 2.36.

To prove the second statement, let (Ui )i∈I be a finite family of retrocompact
semiaffinoid subdomains of X such that U is the union of the Ui . Let Y be any semi-
affinoid K -space, and let ϕ : Y → X be any semiaffinoid morphism whose image is
lies in U . Then (ϕ−1(Ui ))i∈I is a retrocompact covering of Y ; by Proposition 2.34,
it admits a leaflike refinement. By Proposition 2.36(i), we conclude that U is a
Turig-admissible subset of X , and by Proposition 2.36(ii) we see that the covering
(Ui )i∈I of U is Turig-admissible. �

In particular, Corollary 2.37(ii) and the theorem of Gerritzen and Grauert [Bosch
et al. 1984, 7.3.5/1] show that if A is an affinoid K -algebra and if U ⊆ Sp A is an
affinoid subdomain, then U ⊆ sSp A is Turig-admissible.

Remark 2.38 (quasicompactness). Proposition 2.36(ii) shows that semiaffinoid K -
spaces are quasicompact in Turig, see [Bosch et al. 1984, p. 337]. By the maximum
principle for affinoid K -algebras; it follows that sSp (R[[S]] ⊗R K ) has no Turig-
admissible covering by semiaffinoid subdomains whose rings of functions are affi-
noid. In particular, the covering of sSp (R[[S]] ⊗R K ) provided by Berthelot’s
construction is not Turig-admissible.

Remark 2.39 (bases for Turig). Proposition 2.36 implies that the semiaffinoid sub-
domains form a basis for the uniformly rigid G-topology on a semiaffinoid K -
space [Bosch et al. 1984, p. 338]. The retrocompact semiaffinoid subdomains in
sSp (K 〈S〉) do not form a basis for Turig: Indeed, sSp (R[[S]]⊗R K ) is a semiaffi-
noid subdomain in sSp (K 〈S〉); by Lemma 2.30 and Remark 2.38, it does not
admit a Turig-admissible covering by retrocompact semiaffinoid subdomains in
sSp (K 〈S〉). Thus, even though the K -algebra K 〈S〉 is affinoid, the uniformly rigid
G-topology on sSp (K 〈S〉) turns out to be strictly coarser than the rigid G-topology
on Sp (K 〈S〉). We do not know whether this discrepancy already appears on the
level of admissible subsets.

We conclude our discussion of the uniformly rigid G-topology Turig by showing
that it is finer than the Zariski topology TZar which, on a semiaffinoid K -space X ,
is generated by the nonvanishing loci D( f ) of semiaffinoid functions f on X :

Proposition 2.40. The uniformly rigid G-topology Turig is finer than the Zariski
topology TZar.

Proof. Let X = sSp A be a semiaffinoid K -space, let U ⊆ X be a Zariski-open
subset, and let f1, . . . , fn ∈ A be semiaffinoid functions such that U is the union
of the Zariski-open subsets D( fi )= {x ∈Max A ; fi (x) 6= 0}. Let Y be a nonempty
semiaffinoid K -space, and let ϕ : Y → X be a semiaffinoid morphism whose image
is contained in U . For each i , the preimage ϕ−1(D( fi )) is the set of points y ∈ Y
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where ϕ∗ fi 6= 0. Since Y is covered by the ϕ−1(D( fi )), the ϕ∗ fi generate the unit
ideal in B. That is, there exist elements b1, . . . , bn in B such that b1ϕ

∗ f1+ . . .+

bnϕ
∗ fn = 1. Let us set γ := (maxi |bi |sup)

−1; this number is well-defined since
the bi are bounded functions on Y without a common zero. By the strict triangle
inequality, maxi |ϕ

∗ fi (y)| ≥ γ for all y ∈ Y . For each i , let Yi ⊆ Y denote the set
of points y ∈ Y where |ϕ∗ fi (y)| ≥ γ ; then (Yi )1≤i≤n is a retrocompact covering
of Y refining (ϕ−1(D( fi )))1≤i≤n . By Proposition 2.34, retrocompact coverings are
Turig-admissible; hence U ⊆ X is Turig-admissible. If (U j ) j∈J is a Zariski-covering
of U , we may pass to a refinement and assume that for all j ∈ J , U j = D(g j )⊆ X
for some semiaffinoid function g j on X ; we can then argue along the same lines
to prove that (U j ) j∈J is a Turig-admissible covering of U . �

The above argument works even though the maximum principle might fail on Y .
Let us point out that our proof shows the following: If f1, . . . , fn are semiaffinoid
functions on X , if

U =
n⋃

i=1

D( fi )

is the associated Zariski-open subset of X , and if we set

U≥ε =
n⋃

i=1

{x ∈ X ; | fi (x)| ≥ ε}

for ε ∈
√
|K ∗|, then the resulting covering (U≥ε)ε of U by finite unions of retro-

compact semiaffinoid subdomains of X is Turig-admissible. In particular, Zariski-
open subsets in semiaffinoid spaces need not be quasicompact in the uniformly
rigid G-topology. As a consequence, the sheaf of uniformly rigid functions on a
semiaffinoid K -space, to be defined in the following section, may have unbounded
sections on Zariski-open subsets.

2C4. The acyclicity theorem. Let X be a semiaffinoid K -space. We show that
the presheaf OX that we introduced after Definition 2.20 is a sheaf for Taux and,
hence, extends uniquely to a sheaf for Turig. More generally, we show that every
OX -module associated to a finite module over the ring of global functions on X is
acyclic for any Turig-admissible covering of X in the sense of [Bosch et al. 1984]
p. 324. Adopting methods from [Lütkebohmert 1990], we derive our acyclicity
theorem from results in formal geometry; we also use ideas from [Lipshitz and
Robinson 2000, III.3.2].

Let us recall from [Bosch et al. 1984, p. 324] that if F is a presheaf in OX -
modules on Taux, a covering (X i )i∈I of X by semiaffinoid subdomains is called F-
acyclic if the associated augmented Čech complex is acyclic. The covering (X i )i∈I
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is called universally F-acyclic if (X i ∩U )i∈I is F|U -acyclic for any semiaffinoid
subdomain U ⊆ X .

Theorem 2.41. For a semiaffinoid K -space X , Taux-admissible coverings are OX -
acyclic.

Proof. Let us first consider an elementary covering (X i )i∈I . Let us choose a for-
mal representation (X, β : X′→ X, (Xi )i∈I ) of (X i )i∈I , where β is an admissible
blowup and where (Xi )i∈I is a finite affine covering of X′ such that Xi ⊆ X′→ X

represents X i in X . By the ff type transcription of [Lütkebohmert 1990, 2.1],
β]⊗R K is an isomorphism; hence β induces a natural identification of augmented
Čech complexes

C•aug((X i )i∈I ,OX )∼= C•aug((Xi )i∈I ,OX′ ⊗R K ).

We have to show that the complex on the right hand side is acyclic. Since OX′⊗R K
is a sheaf on X′, it suffices to show that

Ȟq((Xi )i∈I ,OX′ ⊗R K ) = 0

for all q ≥ 1. Since I is finite, we have an identification

Ȟq((Xi )i∈I ,OX′ ⊗R K ) = Ȟq((Xi )i∈I ,OX′)⊗R K .

By the comparison theorem [Grothendieck 1961b, 4.1.5 and 4.1.7] and by the van-
ishing theorem [Grothendieck 1961b, 1.3.1], the higher cohomology groups of a
coherent sheaf on an affine noetherian formal scheme vanish. Since the Xi are
affine, Leray’s theorem implies that

Ȟq((Xi )i∈I ,OX′) = Hq(X′,OX′).

By [Grothendieck 1961b, 1.4.11], Hq(X′,OX′) = 0(X, Rqβ∗OX′), and by the ff
type transcription of [Lütkebohmert 1990, 2.1] this module is π-torsion. We have
thus finished the proof in the case where (X i )i∈I is an elementary covering.

Let us turn towards the general case. By definition, every Taux-admissible cov-
ering of X has a leaflike refinement; by [Bosch et al. 1984, 8.1.4/3] it is enough
to show that the leaflike coverings of X are universally OX -acyclic. Since leaflike
coverings are preserved with respect to pullback under morphisms of semiaffinoid
K -spaces, it suffices to show that any leaflike covering (X i )i∈I of X is OX -acyclic.

Let (X j ) j∈J be a treelike covering of X extending (X i )i∈I , and let us choose
a suitable rooted tree structure on J such that I ⊆ J is identified with the set of
leaves of J . We argue by induction on the volume of J . If J has only one vertex,
the covering (X i )i∈I is trivial and, hence, OX -acyclic. Let us assume that J has
more than one vertex. Let ι ∈ I be a leaf of J such that the length l(ι) of the path
from ι to the root is maximal in {l(i) ; i ∈ I }. Let ι′ := par(ι) denote the parent of ι.
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By maximality of l(ι), all siblings i ∈ ch(ι′) of ι are leaves of J . Let J ′ := J \ch(ι′)
be the rooted subtree of J that is obtained by removing the siblings of ι (including
ι itself). Then

(i) the set of leaves of J ′ is I ′ := (I \ ch(ι′))∪ {ι′},
(ii) (X j ) j∈J ′ is a treelike covering of X , and

(iii) v(J ′) < v(J ).

By our induction hypothesis, the covering (X i )i∈I ′ is OX -acyclic. Since (X i )i∈I is
a refinement of (X i )i∈I ′ , [Bosch et al. 1984, 8.1.4/3] says that it suffices to prove
that for any r ≥ 0 and any tuple (i0, . . . , ir )∈ (I ′)r+1, the covering (X i ∩ X i0···ir )i∈I

of X i0···ir is OX -acyclic, where X i0···ir denotes the intersection X i0 ∩ . . .∩ X ir . Let
us assume that there exists some 0 ≤ s ≤ r such that is 6= ι

′. Then is ∈ I . Since
X i0···ir ⊆ X is , we see that the trivial covering of X i0···ir refines (X i ∩ X i0···ir )i∈I .
Since trivial coverings restrict to trivial coverings and since trivial coverings are
acyclic, we deduce from [Bosch et al. 1984, 8.1.4/3] that (X i ∩ X i0···ir )i∈I is acyclic.
It remains to consider the case where all is , 0 ≤ s ≤ r , coincide with ι′. That is,
it remains to see that the covering (X i ∩ X ι′)i∈I of X ι′ is OX -acyclic. It admits
the elementary covering (X i )i∈ch(ι′) as a refinement. Since elementary coverings
restrict to elementary coverings and since elementary coverings are OX -acyclic
by what we have shown so far, we conclude by [Bosch et al. 1984, 8.1.4/3] that
(X i ∩ X ι′)i∈I is OX -acyclic, as desired. �

By [Bosch et al. 1984, 9.2.3/1], OX extends uniquely to a sheaf for Turig which
we again denote by OX and which we call the structural sheaf or the sheaf of
uniformly rigid functions. We can now easily discuss a fundamental example of
a nonadmissible finite covering of a semiaffinoid K -space by semiaffinoid subdo-
mains:

Example 2.42. The canonical covering of the semiaffinoid closed unit disc

sSp (K 〈T 〉)

by the semiaffinoid open unit disc sSp (R[[T ]]⊗R K ) and the semiaffinoid unit circle
sSp (K 〈T, T−1

〉) is not Turig-admissible and, hence, not Taux-admissible. Indeed,
the two covering sets are nonempty and disjoint, while the ring of functions K 〈T 〉
on the closed semiaffinoid unit disc has no nontrivial idempotents.

If X is a semiaffinoid K -space with ring of global functions A and if M is a
finite A-module, the presheaf M ⊗OX sending a semiaffinoid subdomain U in X
to M ⊗A OX (U ) is an OX -module, which we call the OX -module associated to M .
A presheaf F equipped with an OX -module structure is called associated if it is
isomorphic to M ⊗ OX for some finite A-module M . We sometimes abbreviate
M̃ := M ⊗OX .
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Corollary 2.43. Let X be a semiaffinoid K -space, and let F be an associated OX -
module. Then every Taux-admissible covering (X i )i∈I of X is F-acyclic.

Proof. By [Bosch et al. 1984, 8.1.4/3], we may assume that I is finite. Using
Theorem 2.41, the proof is now literally the same as the proof of [Bosch et al.
1984, 8.2.1/5]. �

In particular, M ⊗OX is a Taux-sheaf. By [Bosch et al. 1984, 9.2.3/1], M ⊗OX

extends uniquely to a Turig-sheaf on X which we again denote by M ⊗OX or by
M̃ and which we call the sheaf associated to M .

Remark 2.44. If U ⊆ X is a representable subset that is Turig-admissible, then
OX (U )= OU (U ). Indeed, U admits a Turig,X -admissible covering by semiaffinoid
subdomains in X ; since morphisms of semiaffinoid spaces are continuous for Turig,
this covering is also Turig,U -admissible, so the statement follows from the fact that
both OX and OU are Turig-sheaves. However, it is not clear whether Turig,X restricts
to Turig,U ; for example, we do not know whether a semiaffinoid subdomain of U
is Turig,X -admissible. Of course, this does not affect our theory since we do not
deal with general representable subsets.

The category of abelian sheaves on (X,Turig|X ) has enough injective objects,
so the functor 0(X, ·) from the category of abelian sheaves on X to the category
of abelian groups has a right derived functor H•(X, ·). By the acyclicity theorem
and its Corollary 2.43, this right derived functor can, for associated OX -modules,
be calculated in terms of Čech cohomology:

Corollary 2.45. Let X be a semiaffinoid K -space, and let F be an associated
OX -module. Then the natural homomorphism Ȟq(U,F)→ Hq(U,F) is an iso-
morphism for all Turig-admissible subsets U ⊆ X. In particular, Hq(U,F) = 0
for all q > 0 and all semiaffinoid subdomains U ⊆ X.

Proof. The system S of semiaffinoid subdomains in X satisfies the following prop-
erties:

(i) S is stable under the formation of intersections,
(ii) every Turig-admissible covering (Ui )i∈I of a Turig-admissible subset U ⊆ X

admits a Turig-admissible refinement by sets in S, and
(iii) Ȟq(U,F) vanishes for all q > 0 and all U ∈ S;

hence the statement follows by means of the standard Čech spectral sequence ar-
gument. �

Transcribing the proof of [Bosch et al. 1984, 7.3.2/1], we see that if A is a
semiaffinoid K -algebra with associated semiaffinoid K -space X and if m⊆ A is
a maximal ideal corresponding to a point x ∈ X , then the stalk OX,x is local with
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maximal ideal mOX,x which coincides with the ideal of germs of functions vanish-
ing in x . The arguments in the proof of [ibid., 7.3.2/3] are also seen to work in our
situation, showing that the natural homomorphisms A/mn+1

→ OX,x/m
n+1OX,x are

isomorphisms for all n ∈ N. The rings OX,x are noetherian, which can for example
be seen by imitating the proof of [ibid., 7.3.2/7].

Transcribing the discussion at the beginning of [ibid., 9.3.1], we see that the
uniformly rigid G-topology and the sheaf of uniformly rigid functions define a
functor from the category of semiaffinoid K -spaces to the category of locally ringed
G-topological K -spaces. The proof of [ibid., 9.3.1/2] carries over verbatim to the
semiaffinoid situation, showing that this functor is fully faithful. We call a locally
ringed G-topological K -space semiaffinoid if it lies in the essential image of this
functor.

2D. Uniformly rigid spaces. We are now able to define the category of uniformly
rigid K -spaces:

Definition 2.46. Let X be a locally ringed G-topological K -space.

(i) An admissible semiaffinoid covering of X is an admissible covering (X i )i∈I

of X such that for each i ∈ I , (X i ,OX |X i ) is a semiaffinoid K -space.

(ii) The space X is called uniformly rigid if it satisfies conditions (G0)–(G1) in
[Bosch et al. 1984, 9.1.2] and if it admits an admissible semiaffinoid covering.

(iii) An admissible open subset U of a uniformly rigid K -space X is called an
open semiaffinoid subspace of X if (U,OX |U ) is a semiaffinoid K -space.

Remark 2.47. In the author’s PhD thesis, open semiaffinoid subspaces were sim-
ply called semiaffinoid subspaces [Kappen 2009, Section 1.3.9]

The category uRigK of uniformly rigid K -spaces is a full subcategory of the
category of locally G-topological K -spaces, and it contains the category of semi-
affinoid K -spaces as a full subcategory.

Remark 2.48. We do not know whether an open semiaffinoid subspace U of a
semiaffinoid K -space X is necessarily a semiaffinoid subdomain in X . However,
one easily verifies that U is a representable subset in X . Moreover, one sees that U
is locally a semiaffinoid subdomain in X ; see Lemma 2.52 for a precise statement.
In rigid geometry, the open affinoid subvarieties [Bosch et al. 1984, p. 357] of an
affinoid space are precisely the affinoid subdomains, which means that there is no
need to distinguish between the two notions in the affinoid setting.

Remark 2.49. Let X = sSp A be a semiaffinoid K -space, and let U = sSp B be
an open semiaffinoid subspace of X ; then the restriction homomorphism A→ B
is flat. Indeed, for every maximal ideal n⊆ B with corresponding point x ∈U and
preimage m⊆ A, the induced homomorphism Am→ Bn induces an isomorphism of



370 Christian Kappen

maximal-adic completions; by the flatness criterion [Bourbaki 1998, III.5.2, The-
orem 1], we conclude that A→ Bn is flat for all maximal ideals n in B, which
implies that A→ B is flat.

Lemma 2.50. The open semiaffinoid subspaces of a uniformly rigid K -space X
form a basis for the G-topology on X.

Proof. Let (X i )i∈I be an admissible semiaffinoid covering of X , and let U ⊆ X be
an admissible open subset. Then (X i ∩U )i∈I is an admissible covering of U . For
each i ∈ I , X i ∩U is admissible open in X i and, hence, admits an admissible cov-
ering by semiaffinoid subdomains of X i . Hence, U has an admissible semiaffinoid
covering. �

It follows that if X is a uniformly rigid K -space and if U ⊆ X is an admissible
open subset, then (U,OX |U ) is a uniformly rigid K -space, again.

It is now clear that the gluing theorem [Bosch et al. 1984, 9.3.2/1] and its proof
carry over verbatim to the uniformly rigid setting. Similarly, a morphism of uni-
formly rigid spaces can be defined locally on the domain; this is the uniformly rigid
version of [ibid., 9.3.3/1], and again the proof is obtained by literal transcription.
Furthermore, a uniformly rigid K -space is determined by its functorial points with
values in semiaffinoid K -spaces.

We can also copy the proof of [ibid., 9.3.3/2] to see that if X is a semiaffinoid
K -space and if Y is a uniformly rigid K -space, then the set of morphisms from Y
to X is naturally identified with the set of K -algebra homomorphisms from OX (X)
to OY (Y ).

Let X be an affine formal R-scheme of ff type with semiaffinoid generic fiber
X . The associated specialization map spX which we discussed in Section 2B1 is
naturally enhanced to a morphism of G-ringed R-spaces spX : X→ X. Morphisms
of uniformly rigid K -spaces being defined locally on the domain, we see that spX is
final among all morphisms of G-ringed R-spaces from uniformly rigid K -spaces to
X. Using this universal property, we can invoke gluing techniques to construct the
uniformly rigid generic fiber Xurig of a general formal R-scheme of locally ff type
X, together with a functorial specialization map spX : X

urig
→X which is universal

among all morphisms of G-ringed R-spaces from uniformly rigid K -spaces to X;
this process does not involve Berthelot’s construction. It is easily seen that urig
is faithful on the category of flat formal R-schemes of locally ff type. A formal
R-model of a uniformly rigid K -space X is a formal R-scheme X of locally ff
type together with an isomorphism X ∼= Xurig. The map spX is surjective onto
the closed points of X whenever X is flat over R. This follows from Remark 2.5,
together with the remark that the underlying topological space of X is a Jacobson
space [Grothendieck and Dieudonné 1971, 0.2.8 and 6.4], so that the condition on
a point in X of being closed is local.
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Question 2.51. Under what conditions does a uniformly rigid K -space admit a
formal R-model?

By Proposition 2.16, the category of semiaffinoid K -spaces has fibered products;
following the method outlined in [Bosch et al. 1984, 9.3.5], we see that the category
of uniformly rigid K -spaces has fibered products as well and that these are con-
structed by gluing semiaffinoid fibered products of open semiaffinoid subspaces. It
is clear from this description that the urig-functor preserves fibered products.

Open semiaffinoid subspaces of semiaffinoid spaces can be described in the style
of the Gerritzen–Grauert theorem [ibid., 7.3.5/3]:

Lemma 2.52. Let X be a semiaffinoid K -space, and let U ⊆ X be an open semi-
affinoid subspace. Then U admits a leaflike covering (Ui )i∈I such that each Ui is
a semiaffinoid subdomain in X.

Proof. By Lemma 2.50, U admits an admissible covering (V j ) j∈J by semiaffinoid
subdomains V j of X ; by Proposition 2.36, this covering is refined by a leaflike
covering (Ui )i∈I of U . Via pullback, the V j are semiaffinoid subdomains of U .
Let ϕ : I → J denote a refinement map. By Corollary 2.29(i), for each i ∈ I the
set Ui is a semiaffinoid subdomain in Vϕ(i) and, hence, in X , as desired. �

A morphism of uniformly rigid K -spaces is called flat in a point of its domain
if it induces a flat homomorphism of stalks in this point, and it is called flat if it is
flat in all points. Clearly a morphism of semiaffinoid K -spaces is flat in this sense
if and only if the underlying homomorphism of rings of global sections is flat.

2D1. Comparison with rigid geometry. In Section 2C1, we have defined the rigid
space X r associated to a semiaffinoid K -space X = sSp A together with a universal
K -homomorphism A→ 0(X r,OX r) which induces a bijection X r

→ X of physical
points and isomorphisms of completed stalks. We will show that this universal
homomorphism extends to a morphism compX : X

r
→ X of locally G-ringed K -

spaces which is final among all morphisms from rigid K -spaces to X . To do so, we
first show that the above bijection is continuous, that is, that the rigid G-topology
Trig is finer than Turig. We will need the following elementary fact from rigid
geometry; the proof is left as an exercise to the reader:

Lemma 2.53. Let X be an affinoid K -space, and let U ⊆ X be a subset admitting
a covering (Ui )i∈I by admissible open subsets Ui ⊆ X such that for any affinoid
K -space Y and any morphism ϕ : Y → X with image in U , the induced covering
(ϕ−1(Ui ))i∈I of Y has a refinement which is a finite covering by affinoid subdo-
mains. Then U ⊆ X is admissible.

Proposition 2.54. The rigid G-topology Trig on X is finer than the uniformly rigid
G-topology Turig.
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Proof. It is clear that Taux-admissible subsets and Taux-admissible coverings are
Trig-admissible. Let U ⊆ X be a Turig-admissible subset. To check that U is Trig-
admissible, we may work locally on X r. Let V ′ ⊆ X r be an affinoid subspace;
by Proposition 2.18, the open immersion V ′ ↪→ X r corresponds to a morphism
V → X , where V denotes the semiaffinoid K -space associated to V ′ such that
V ′ = V r. After pulling U back under this morphism, we may thus assume that
the K -algebra of global functions on X is affinoid. Let (Ui )i∈I be a covering of
U by semiaffinoid subdomains in X such that condition (i) of Proposition 2.36 is
satisfied. Let Y be an affinoid K -space, and let ϕ : Y → X r be a morphism of
rigid spaces that factors through U . By Proposition 2.18, we may also view ϕ as
a morphism of semiaffinoid K -spaces. By assumption, the covering (ϕ−1(Ui ))i∈I

of Y has a leaflike refinement; by Lemma 2.30, this refinement is affinoid. It now
follows from Lemma 2.53 that U ⊆ X is Trig-admissible.

Let now (Ui )i∈I be a Turig-admissible covering of U by Turig-admissible subsets
Ui . We have seen that U and the Ui are Trig-admissible; we claim that the covering
(Ui )i∈I is Trig-admissible as well. Again, we may work locally on X r and thereby
assume that the K -algebra of functions on X is affinoid. Let Y be an affinoid K -
space, and let ϕ : Y → X r be a morphism of affinoid K -spaces, which we may also
view as a morphism of semiaffinoid K -spaces. Since (Ui )i∈I is Turig-admissible,
we see by Proposition 2.36(ii) that (ϕ−1(Ui ))i∈I has a leaflike and, hence, affinoid
refinement. It follows that (Ui )i∈I is Trig-admissible. �

If U ⊆ X is a semiaffinoid subdomain, then the morphism U r
→ X r provided by

Proposition 2.18 is an open immersion onto the preimage of U under the continuous
bijection compX : X

r
→ X ; hence compX extends to a morphism of G-ringed K -

spaces with respect to Taux, which then again extends uniquely to a morphism of
G-ringed K -spaces with respect to Turig. One easily verifies that compX is local.

Proposition 2.55. The morphism compX is final among all morphisms from rigid
K -spaces to X.

Proof. Let Y be a rigid K -space, and let ψ : Y → X be a morphism of locally
G-ringed K -spaces. By Proposition 2.18, there is a unique morphism ψ r

: Y → X r

such that ψ and compX ◦ψ
r coincide on global sections. Since the points and the

completed stalks of X are recovered from the K -algebra of global sections of X ,
it follows that ψ and compX ◦ψ

r coincide. �

Let X be any uniformly rigid K -space. Since the open semiaffinoid subspaces of
X form a basis for the G-topology on X , we can use standard gluing arguments to
show that the comparison morphisms attached to these open semiaffinoid subspaces
glue to a universal comparison morphism

compX : X r
→ X
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from a rigid K -space to X .

Remark 2.56. The functor X 7→ X r is faithful, yet not fully faithful. For example,
it is easily seen that an unbounded function on the rigid open unit disc induces a
morphism to the rigid projective line over K which is not induced by a morphism
from the semiaffinoid open unit disc sSp (R[[S]]⊗R K ) to the uniformly rigid pro-
jective line over K . Likewise, the functor r forgets the distinction between the
semiaffinoid open unit disc just mentioned and the uniformly rigid open unit disc
that is the generic fiber of a quasiparacompact formal R-model of locally tf type
for the rigid open unit disc. One can prove that X 7→ X r is fully faithful on the full
subcategory of reduced semiaffinoid K -spaces.

Remark 2.57. The functor X 7→ X r preserves fibered products. Indeed, this may
be checked in the semiaffinoid situation, where it follows from the fact that fibered
products of semiaffinoid spaces are uniformly rigid generic fibers of fibered prod-
ucts of affine flat formal R-models, together with the fact that Berthelot’s generic
fiber functor preserves fibered products [de Jong 1995, 7.2.4(g)]. In particular,
X 7→ X r preserves group structures.

Remark 2.58. We have seen that compX induces isomorphisms of completed
stalks. Examining Berthelot’s construction, one easily sees that compX in fact
already induces isomorphisms of noncompleted stalks; the proof of this statement
is left as an exercise.

We have seen that every uniformly rigid K -space X has an underlying classical
rigid K -space X r such that X and X r share all local properties. That is, a uniformly
rigid K -space can be seen as a rigid K -space equipped with an additional global
uniform structure. Every quasiparacompact and quasiseparated rigid K -space car-
ries a canonical uniformly rigid structure, which may be called the Raynaud-type
uniform structure: let C temporarily denote the category of quasiparacompact flat
formal R-schemes of locally tf type, and let CBl denote its localization with respect
to the class of admissible formal blowups. It follows easily from the definitions that
the functor urig|C : C→ uRigK factors through a functor ur′ : CBl→ uRigK . By
[Bosch 2005, Theorem 2.8/3], the functor rig induces an equivalence rigBl between
CBl and the category Rig′K of quasiparacompact and quasiseparated rigid K -spaces.
The functor rigBl will be called the Raynaud equivalence. Composing ur′ with a
quasiinverse of rigBl, we obtain a functor ur : Rig′K → uRigK ; if Y is in Rig′K , we
say that Y ur := ur(Y ) is the uniformly rigid K -space associated to Y . Of course, it
depends on the choice of a quasiinverse of the Raynaud equivalence.

Proposition 2.59. The composite functor r ◦ ur is quasiisomorphic to the identity
on Rig′K .
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Proof. Let rig−1
Bl denote the chosen inverse of the Raynaud equivalence. Let Y

be an object of Rig′K ; then rig−1
Bl (Y ) is a quasiparacompact flat formal R-model of

locally tf type for Y , and Y ur
= rig−1

Bl (Y )
urig, which implies that (Y ur)r= rig−1

Bl (Y )
rig,

functorially in Y . That is, r ◦ ur= rig ◦ rig−1
Bl , which is isomorphic to the identity

functor. �

In particular, after choosing an isomorphism r ◦ ur ∼= id, the comparison mor-
phisms compY ur induce functorial comparison morphisms

compY : Y ∼= (Y ur)r → Y ur

for all quasiparacompact and quasiseparated rigid K -spaces Y .

Corollary 2.60. For Y ∈ Rig′K , the morphism compY is the initial morphism from
Y to a uniformly rigid K -space.

Proof. Let X be a uniformly rigid K -space, and let ψ : Y → X be a morphism
of locally G-ringed K -spaces. The morphism compY is a bijection on points, and
it induces isomorphisms of stalks; hence the morphism Y ur

→ X that we seek is
unique if it exists. If Y is affinoid and X is semiaffinoid, there is nothing to show.
Let (X i )i∈I be an admissible semiaffinoid covering of X , and let (Y j ) j∈J be an
admissible affinoid covering of Y refining (ψ−1(X i ))i∈I . It suffices to see that
(Y ur

j ) j∈J is an admissible covering of Y ur. By [Bosch 2005, Lemma 2.8/4], there
exists a flat quasiparacompact R-model of locally tf type Y for Y such that (Y j ) j∈J

is induced by an open covering of Y. Since Yurig
= Y ur, it follows that (Y ur

j ) j∈J

is an admissible covering of Y ur, as desired. �

Corollary 2.61. The functor ur is fully faithful.

Proof. Let X and Y be objects in Rig′K . By Proposition 2.59, by the global variant
of Proposition 2.55 and by Corollary 2.60, we have functorial bijections

Hom(Y, X)∼= Hom(Y, (Xur)r)∼= Hom(Y, Xur)∼= Hom(Y ur, Xur). �

Of course, if X is any uniformly rigid K -space, then the comparison morphism

compX : X r
→ X

is not initial all morphisms from X r to uniformly rigid K -spaces. For example, if
X is the semiaffinoid open unit disc sSp (R[[S]]⊗R K ), then the natural morphism
compX r from the rigid open unit disc X r to its uniform rigidification (X r)ur does
not extend to a morphism X→ (X r)ur. Indeed, such a morphism would have to be
the identity on points, but X is quasicompact, while (X r)ur is not quasicompact.

The functor Y 7→ Y ur does not respect arbitrary open immersions. For example,
if Y ′ ⊆ Y is the inclusion of the open rigid unit disc into the closed rigid unit disc,
the morphism (Y ′)ur

→ Y ur is not an open immersion: its image is the semiaffinoid
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open unit disc, while (Y ′)ur is not quasicompact. However, it follows from [Bosch
and Lütkebohmert 1993b, 5.7] that ur preserves open immersions of quasicompact
rigid K -spaces.

Quasiseparated rigid K -spaces are obtained from affinoid K -spaces by gluing
along quasicompact admissible open subspaces, it thus follows that ur preserves
fibered products. Indeed, this can now be checked in an affinoid situation, where
the statement is clear from the construction of semiaffinoid fibered products. In
particular, Y 7→ Y ur preserves group structures.

3. Coherent modules on uniformly rigid spaces

Let X be a G-ringed K -space, and let F be an OX -module. Let us recall some
standard definitions concerning the coherence property [Bosch 2005, 1.14/2] :

(i) F is called of finite type if there exists an admissible covering (X i )i∈I of X
together with exact sequences

Osi
X |X i → F|X i → 0.

(ii) F is called coherent if F is of finite type and if for any admissible open
subspace U ⊆ X , the kernel of any morphism Os

X |U → F|U is of finite type.

If X is a semiaffinoid K -space with ring of functions A, then the functor M 7→ M̃
on the category of finite A-modules is well-behaved, as it is shown by the following
lemma. The proof of Lemma 3.1 is identical to the proof of [Bosch 2005, 1.14/1];
one uses the fact that the restriction homomorphisms associated to semiaffinoid
subdomains are flat:

Lemma 3.1. The functor M 7→ M̃ from the category of finite A-modules to the
category of OX -modules is fully faithful, and it commutes with the formation of
kernels, images, cokernels and tensor products. Moreover, a sequence of finite
A-modules

0→ M ′→ M→ M ′′→ 0

is exact if and only if the associated sequence

0→ M̃ ′→ M̃→ M̃ ′′→ 0

of OX -modules is exact.

For a semiaffinoid K -space X = sSp A, we have Or
X = Ar

⊗ OX . Since A is
noetherian, it follows from Lemma 3.1 that kernels and cokernels of morphisms of
type Or

X → Os
X are associated. We thus conclude that an OX -module on a uniformly

rigid K -space X is coherent if and only if there exists an admissible semiaffinoid
covering (X i )i∈I of X such that F|X i is associated for all i ∈ I .
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In particular, the structural sheaf OX of any uniformly rigid K -space X is coher-
ent. Moreover, it follows from Lemma 3.1 that kernels and cokernels of morphisms
of coherent OX -modules are coherent.

Lemma 3.2. Let ϕ : Y → X be a morphism of uniformly rigid K -spaces, and let
F be a coherent OX -module. Then ϕ∗F is a coherent OY -module.

Proof. Indeed, we may assume that X and Y are semiaffinoid, with X = sSp A
and Y = sSp B, and that F is associated to a finite A-module M . Then ϕ∗F is
associated to M ⊗A B, where B is an A-algebra via ϕ∗. �

Definition 3.3. Let X be a uniformly rigid K -space. An OX -module F is called
strictly coherent if for any open semiaffinoid subspace U ⊆ X , the restriction F|U
is an associated module.

For example, the structural sheaf of a uniformly rigid K -space is strictly coher-
ent. Since we do not know whether an open semiaffinoid subspace of a semiaffinoid
K -space is a semiaffinoid subdomain, it is not a priori clear whether any associated
module on a semiaffinoid K -space is strictly coherent. In Corollary 3.6, however,
we will show that this is indeed the case.

Let X be a uniformly rigid K -space. We will be interested in coherent OX -
modules F with the property that there exists an injective OX -homomorphism F ↪→

Or
X for some r ∈ N. This property is clearly satisfied by coherent ideals, and it is

preserved under pullback with respect to flat morphisms of uniformly rigid spaces.
We will study integral models of such F, and we will show that any such F is
strictly coherent.

If X is a formal R-scheme of locally ff type and if F is a coherent OX-module,
we obtain a coherent OX -module Furig on Xurig which we call the uniformly rigid
generic fiber of F. If X is a uniformly rigid K -space, if F is a coherent OX -module
and if X is a flat formal R-model of locally ff type for X , then an R-model of F

on X is a coherent OX-module F together with an isomorphism Furig ∼= F that is
compatible with the given identification Xurig ∼= X . Sometimes we will not mention
the isomorphism Furig ∼= F explicitly. Clearly

spX,∗(F) = F⊗R K ,

and urig factors naturally through the functor F 7→ F⊗R K . Let us abbreviate
FK := F⊗R K .

For any r ∈ N, the coherent OX -module Or
X admits the natural model Or

X on
every flat formal R-model of locally ff type X for X . We will show that coherent
submodules F⊆ Or

X inherit this property by taking schematic closures. Let us first
consider the affine situation:

Lemma 3.4. Let A be an R-algebra, let M be an A-module, and let N ⊆ M ⊗R K
be an A⊗R K -submodule. Then there exists a unique A-submodule N ⊆ M such
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that the natural homomorphism N ⊗R K → M ⊗R K is an isomorphism onto N
and such that M/N is R-flat.

Proof. Let us abbreviate M := M ⊗R K , and let us set

N := ker (M→ M/N );

then N is an A-submodule of M . For any n ∈ N , there exists an s ∈ N such that
π sn lies in the image of M in M ; the natural K -homomorphism N ⊗R K → N is
thus bijective. As an A-submodule of M/N , the quotient M/N is free of π -torsion
and, hence, R-flat.

If N ′⊆M is another A-submodule whose image in M generates N as an A⊗R K -
module, then N ′ lies in the kernel N of M → M/N . If in addition M/N ′ is flat
over R, then the natural homomorphism M/N ′→M/N ′⊗R K =M/N is injective,
which proves that N ′ coincides with this kernel. �

Theorem 3.5. Let X be a uniformly rigid K -space, let F′ ⊆ F be an inclusion of
coherent OX -modules, and let X be an R-model of locally ff type for X such that F

admits be an R-model F on X. Then there exists a unique coherent OX-submodule
F′ ⊆ F such that F/F′ is R-flat and such that the given isomorphism Furig ∼= F

identifies (F′)urig with F′.

Proof. We may work locally on X and thereby assume that X is affine. Uniqueness
of F′ is a consequence of Lemma 3.4. Since F′ is coherent, there exists a treelike
covering (X i )i∈I of X such that F′|X i is associated for all i ∈ lv(I ). Let us choose
a model of this covering, that is,

(i) for each i ∈ I , an affine flat R-model of ff type Xi for X i ,

(ii) for each inner i ∈ I an admissible blowup βi : X
′

i → Xi and

(iii) for each inner i ∈ I and for each child j of i an open immersion ϕ j :X j ↪→X′i
such that X j ⊆ X′i → Xi represents X j in X i .

For each i ∈ I , we let F|Xi denote the pullback of F to Xi , and for each inner
vertex i ∈ I , we let F|X′i denote the pullback of F to X′i . Let i be an inner vertex of
I , and let us assume that for each child j of i , we are given a coherent submodule

F′j ⊆ F|X j

such that F|X j /F
′

j is R-flat and such that (F′j )
urig
= F′|X j . By Lemma 3.4, this

assumption is satisfied if all children of i are leaves in I . Using the uniqueness
assertion in Lemma 3.4, we see that the F′j glue to a unique coherent submodule

Gi ⊆ F|X′i .

The quotient F|X′i /Gi is R-flat; by [Grothendieck 1961b, 3.4.2], βi∗(F|X′i /Gi ) thus
is a coherent R-flat OXi -module. By definition, F|X′i = β

∗

i F|Xi , so we have a natural
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homomorphism of coherent OX j -modules

F|Xi → βi∗F|X′i → βi∗(F|X′i /Gi ).

Let F′i denote its kernel; the resulting exact sequence of coherent OXi -modules

0→ F′i → F|Xi → βi∗(F|X′i /Gi )

shows that F|Xi /F
′

i is R-flat. We claim that the coherent X i -module F′|X i = G
urig
i

is associated to F′i . To prove this, it suffices to show that the morphism

(β∗i F′i )K → (β∗i βi∗Gi )K → Gi,K (‡)

induced by the natural morphism F′i → βi∗Gi is an isomorphism. By the ff type
variant of [Lütkebohmert 1990, 2.1], the second morphism in (‡) is an isomorphism,
so we must show that the first morphism is an isomorphism as well. Let X i be
the spectrum of the ring of global functions on Xi , and let bi : X ′i → X i be the
admissible blowup such that βi = b∧i , where we use a wedge to denote the formal
completion with respect to an ideal of definition of X. Let Fi , Fi

′ and Gi denote
the algebraizations of F|Xi , F′i and Gi respectively, which exist by [Grothendieck
1961b, 5.1.4]; then

F|X′i = (b
∗

j Fi )
∧.

By [Grothendieck 1961b, 4.1.5],

βi∗(F|X′i /Gi ) = (bi∗((b∗i Fi )/Gi )))
∧,

so we have a short exact sequence

0→ F ′i → Fi → bi∗((b∗i Fi )/Gi ))

which under · ⊗R K induces a short exact sequence

0→ F ′i,K → Fi,K → (bi,K )∗((b∗i,K Fi,K )/Gi,K )).

Since bi,K is an isomorphism and, hence, flat, we obtain an induced short exact
sequence

0→ b∗i,K F ′i,K → b∗i,K Fi,K → b∗i,K (bi,K )∗((b∗i,K Fi,K )/Gi,K ));

since b∗i,K (bi,K )∗ is naturally isomorphic to the identity functor, this shows that
b∗i,K F ′i,K = Gi,K . Hence, the natural morphism

b∗i F ′ j → b∗i bi∗G j
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becomes an isomorphism under · ⊗R K . That is, its kernel and cokernel are π-
torsion. It follows that kernel and cokernel of the completed morphism

β∗i F′i → β∗i βi∗Gi

are π -torsion as well, which yields our claim.
Let us now prove the statement of the proposition by induction on the volume

v(I ) of I . We may assume that I has more than one vertex. Let j be a leaf of I
whose path to the root has maximal length, and let i be the parent of j . Then all chil-
dren of i are leaves of I , so the assumption in the argument above is satisfied. By
what we have shown so far, F′|X i is associated to a unique coherent OXi -submodule
F′i ⊆ F|Xi such that F|Xi /F

′

i is R-flat. We may thus replace subt(i) by {i}. By
induction on v(I ), the desired statement follows. �

Corollary 3.6. We conclude:

(i) A coherent submodule of an associated module on a semiaffinoid K -space is
associated.

(ii) Coherent submodules and coherent quotients of strictly coherent modules are
strictly coherent.

(iii) An associated module on a semiaffinoid K -space is strictly coherent.

Proof. Let us first show (i). Let X = sSp A be a semiaffinoid K -space, let A ⊆ A
be an R-model of ff type, and let F′ be a coherent submodule of an associated
module M̃ . Since M̃ admits a model M over Spf A, Theorem 3.5 implies that
F′ ∼= (F′)urig for a coherent module F′ on Spf A. Since coherent modules on affine
formal schemes are associated, it follows that F′ is associated.

Let us prove statement (ii). Let X be a uniformly rigid K -space, let F be a
strictly coherent OX -module and let F′ ⊆ F be a coherent submodule. For every
open semiaffinoid subspace U ⊆ X , the restriction F′|U is a coherent submodule
of F|U , and F|U is associated by assumption on F. It follows from (i) that F′|U
is associated; hence F′ is strictly coherent. Let now F′′ be a coherent quotient of
F. Then the kernel F′ of the projection F→ F′′ is a coherent submodule of F

and, hence, strictly coherent by what we have seen so far. Let U ⊆ X be an open
semiaffinoid subspace; then we have a short exact sequence

0→ F′|U → F|U → F′′|U → 0

where the first two modules are associated. It follows from Lemma 3.1 that F′′|U
is associated as well.

Finally, statement (iii) follows from statement (ii) because by Lemma 3.1, an
associated module is a quotient of a finite power of the structural sheaf. �

If X is a flat formal R-scheme of locally ff type and if F is a coherent OX-module,
we do not know in general whether Furig is strictly coherent. In particular, we
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unfortunately do not know whether the analog of Kiehl’s theorem [Kiehl 1967, 1.2]
holds in general, that is to say whether every coherent module on a semiaffinoid K -
space is associated. Let us point out that the analogous question for quasicoherent
modules on rigid spaces was open for a long time; it was finally settled in the
negative by O. Gabber [Conrad 2006, Example 2.1.6].

Conjecture 3.7. The general uniformly rigid analog of Kiehl’s theorem does not
hold.

Remark 3.8. The general uniformly rigid analog of Kiehl’s theorem is equivalent
to the following statement: let X be an admissible blowup of a flat affine formal
R-scheme of ff type, and let F be a coherent sheaf on X = Xurig that admits flat
models Fi locally with respect to an affine open covering (Xi )i∈I of X; then F

admits a model on X. Indeed, this equivalence follows by arguing as in the proof
of [Lütkebohmert 1990, Theorem 2.3]. However, it seems impossible in general
to modify the models Fi such that they glue to a model of F on X: Let us assume
that I = {1, 2}. After multiplying F1 by a suitable power of π , we may assume
that F1 is contained in F2 on the intersection X12 of X1 and X2. Let n ∈ N be
big enough such that πnF2 ⊆F1 on X12; then G :=F1|X12/π

nF2|X12 is a coherent
subsheaf of (F2/π

nF2)|X12 ; see the proof of [Lütkebohmert 1990, Lemma 2.2]. If
X is of tf type over R, then the closed formal subscheme of X cut out by πn is a
scheme, and by chasing denominators [Grothendieck and Dieudonné 1960, 9.4.7]
one can extend G to a coherent subsheaf, again denoted by G, on all of X2. Let
F′2 denote the preimage of G under the projection F2→ F2/π

nF2; then F′2 is a
model of F on X2 which glues to F1, and we obtain a model of F on all of X.
In our situation, however, X2 might not be of tf type, and hence the closed formal
subscheme of X2 cut out by πn might not be a scheme. On a formal scheme though
it is in general not possible to extend coherent subsheaves because of convergence
problems. Thus, Lütkebohmert’s proof of Kiehl’s theorem fails in the uniformly
rigid situation. Similar problems occur if one tries to carry over Kiehl’s original
proof.

3A. Closed uniformly rigid subspaces.

Definition 3.9. A morphism of uniformly rigid K -spaces ϕ : Y → X is called a
closed immersion if there exists an admissible semiaffinoid covering (X i )i∈I of X
such that for each i ∈ I , the restriction ϕ−1(X i )→ X i of ϕ is a closed immersion
of semiaffinoid K -spaces in the sense of Definition 2.19.

We easily see that closed immersions are injective on the level of physical points.

Lemma 3.10. Let ϕ : Y → X be a closed immersion of uniformly rigid K -spaces.
Then ϕ] : OX → ϕ∗OY is an epimorphism of sheaves. Moreover, the OX -modules
ϕ∗OY and ker ϕ] are strictly coherent.
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Proof. The OX -module OX is strictly coherent. By Corollary 3.6(ii), it thus suffices
to show that ϕ] is an epimorphism and that both ker ϕ] and ϕ∗OY are coherent.
Considering an admissible semiaffinoid covering (X i )i∈I of X such that for all
i ∈ I , the restriction ϕ−1(X i )→ X i of ϕ is a closed immersion of semiaffinoid
K -spaces, we reduce to the case where both X and Y are semiaffinoid and where
ϕ corresponds to a surjective homomorphism of semiaffinoid K -algebras. Now the
desired statements follow from Lemma 3.1. �

Proposition 3.11. Let ϕ : Y → X be a morphism of uniformly rigid K -spaces.
Then the following are equivalent:

(i) ϕ is a closed immersion.
(ii) For each open semiaffinoid subspace U ⊆ X , the restriction ϕ−1(U )→U is

a closed immersion of semiaffinoid K -spaces in the sense of Definition 2.19.

Proof. The implication (ii)⇒ (i) is trivial, the open semiaffinoid subspaces forming
a basis for the G-topology on X . Let us assume that (i) holds, let I denote the kernel
of ϕ], and let U ⊆ X be an open semiaffinoid subspace; then ϕ induces a short
exact sequence

0→ I|U → OU → ϕ∗OY |U → 0.

Let A denote the ring of functions on U . By Lemma 3.10, I and ϕ∗OY are strictly
coherent; hence the above short exact sequence is associated to a short exact se-
quence of A-modules

0→ I → A→ B→ 0.

Since morphisms from uniformly rigid K -spaces to semiaffinoid K -spaces corre-
spond to K -homomorphisms of rings of global functions, we can now mimic the
proof of [Bosch et al. 1984, 9.4.4/1] to see that the restriction ϕ−1(U )→U of ϕ
is associated to the projection A→ B: it suffices to see that the natural morphism
ϕ−1(U )→ sSp B is an isomorphism. This can be checked locally on sSp B with
respect to the preimage under sSp B→U of a leaflike refinement of (U ∩ X i )i∈I ,
where (X i )i∈I is an admissible semiaffinoid covering of X satisfying the conditions
of Definition 3.9. �

Remark 3.12. The proof of [Bosch et al. 1984, 9.4.4/1] resorts to [ibid., 8.2.1/4].
However, as our argument above shows, this is in fact unnecessary — which is to
our advantage, because the statement of 8.2.1/4 fails to hold in the semiaffinoid sit-
uation: Example 2.42 yields a bijective morphism of semiaffinoid K -spaces which
induces isomorphisms of stalks and which is not an isomorphism.

In particular, a morphism of semiaffinoid K -spaces is a closed immersion in
the sense of Definition 3.9 if and only if it is a closed immersion of semiaffinoid
K -spaces in the sense of Definition 2.19. We can now define a closed uniformly
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rigid subspace as an equivalence class of closed immersions, in the usual way. By
standard gluing arguments, we see that the closed uniformly rigid subspaces of a
uniformly rigid K -space X correspond to the coherent OX -ideals. We easily see that
closed immersions of uniformly rigid K -spaces are preserved under base change.

It is clear that closed immersions of formal R-schemes of locally ff type induce
closed immersions on uniformly rigid generic fibers. Conversely, given a uniformly
rigid K -space X together with an R-model of locally ff type X and a closed uni-
formly rigid subspace V ⊆ X , there exists a unique R-flat closed formal subscheme
V⊆ X such that the given isomorphism Xurig ∼= X identifies Vurig with V . Indeed,
this is an immediate consequence of Theorem 3.5. We say that V is the schematic
closure of V in X.

The comparison functors studied in Section 2D1 preserve closed immersions.
This can be verified in the semiaffinoid and affinoid situations respectively. In
the case of the functor ur, there is nothing to show. In the case of the functor
r, the statement follows by looking at schematic closures and using the fact that
Berthelot’s construction preserves closed immersions [de Jong 1995, 7.2.4(e)].

3A1. Separated uniformly rigid spaces. As usual, a morphism ϕ : Y → X of uni-
formly rigid K -spaces is called separated if its diagonal morphism

1ϕ : Y → Y ×X Y

is a closed immersion. A uniformly rigid K -space X is called separated if its
structural morphism X→ sSp K is separated. If X is a uniformly rigid K -space,
we let 1X denote the diagonal of its structural morphism.

Semiaffinoid K -spaces are visibly separated. Moreover, uniformly rigid generic
fibers of separated morphisms of formal R-schemes of locally ff type are separated,
since functor urig preserves fibered products and closed immersions. Similarly, the
comparison functors studied in Section 2D1 preserve the separatedness property.

Lemma 3.13. Let X be a separated uniformly rigid K -space. The intersection of
two open semiaffinoid subspaces in X is an open semiaffinoid subspace in X.

Proof. Let U and V be open semiaffinoid subspaces in X . We easily see, using
points with values in finite field extensions of K , that U ∩ V is the 1X -preimage
of U ×sSp K V which is an open semiaffinoid subspace of X ×sSp K X . Since 1X

is a closed immersion by assumption on X , it follows from Proposition 3.11 that
U ∩ V is an open semiaffinoid subspace of X . �

Corollary 3.14. Let X be a separated uniformly rigid K -space, and let F be a
coherent OX -module. Then the natural morphism

Ȟq(X,F)
∼
→ Hq(X,F)

is an isomorphism for all q ≥ 0.
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Proof. Let S denote the set of open semiaffinoid subspaces U in X with the property
that F|U is associated. By Lemma 3.13, this set is stable under the formation of
intersections. It is clearly a basis for the G-topology on X , and Ȟq(U,F) = 0
for any U in S and any q ≥ 0 by Corollary 2.43. We conclude by the usual Čech
spectral sequence argument. �

If X is a separated uniformly rigid K -space and if ϕ : Y → X is a morphism
of uniformly rigid K -spaces, then the graph 0ϕ : Y → Y × X of ϕ is a closed
immersion since it is obtained from 1X via pullback. In particular, if X and Y are
R-models of locally ff type for X and Y respectively, the schematic closure of 0ϕ
in Y×X is well-defined. Here fibered products without indication of the base are
understood over sSp K or Spf R respectively.

4. Comparison with the theories of Berkovich and Huber

The category of formal R-schemes of locally ff type is a full subcategory of Huber’s
category of adic spaces [Huber 1996]. If X is a formal R-scheme of locally ff
type, viewed as an adic space, then by [Huber 1996, 1.2.2] the fibered product
X×Spa(R,R) Spa(K , R) is the adic space associated to the rigid generic fiber Xrig

of X. That is, the uniform structure induced by X is lost. In fact, we do not see a
way to view the category of uniformly rigid spaces as a full subcategory of Huber’s
category of adic spaces. The main obstacle lies in the fact that if A is an R-algebra
of ff type, equipped with its natural Jacobson-adic topology, and if A = A⊗R K ,
then the pair (A, A) is in general not an f-adic ring in the sense of [Huber 1996].
For example, for A = R[[S]] there exists no ring topology on A such that A is open
in this topology: There is a unique such group topology, but multiplication by π−1

in A is not continuous because there is no n ∈N such that π−1Sn
∈ R[[S]]⊗R K is

contained in R[[S]].
The situation is different if we consider the π-adic topology on R-algebras

of ff type. If Aπ denotes the ring A equipped with its π-adic topology, then
the pair (A, Aπ ) is an f-adic ring in the sense of Huber. The induced topology
on A is in fact a K -Banach algebra topology; if, for f ∈ A nonzero, we set
vA(F) := max{n ∈ N ; π−n f ∈ A}, then | f |A := |π |vA( f ) defines a K -Banach
algebra norm on A which induces the topology defined by Aπ . If A = R[[S]]〈T 〉
is a mixed formal power series ring in finitely many variables, then | · |R[[S]]〈T 〉
is the Gauss norm, and it coincides with the supremum seminorm taken over all
points in Max A. Using [Bosch et al. 1984, 3.7.5/2], one proves that all K -Banach
algebra structures on A are equivalent; in particular, the valuation spectrum M(A)
in the sense of [Berkovich 1990, 1.2] is well defined. One shows that reduced
semiaffinoid K -algebras are Banach function algebras, and one verifies that the
supremum seminorm, taken over all points in Max A or, equivalently, over all
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points in M(A), takes values in
√
|K |. For a more detailed discussion, including

proofs, we refer to [Kappen 2009, Section 1.2.5].
The topological space M(A) may be viewed as a compactification of the rigid

space (sSp A)r. To illustrate this idea in terms of an example, let us first explain
how the specialization map extends to valuation spectra. If A is a semiaffinoid K -
algebra and if A is an R-model of ff type for A, there exists a natural specialization
map

spA : M(A)→ Spec(A/π A)

extending the specialization map which we discussed in Section 2B1: let x be a
point in M(A), represented by a character χx : A→ K with values in some valued
field extension K of K ; then spA(x) := ker (χ̃x : A/π A→ K̃), where K̃ is the
residue field of K and where χ̃x is the reduction of χx .

Lemma 4.1. The map spA is surjective onto Spec(A/π A). If A/π A is a domain,
the residue norm | · |A is multiplicative and, hence, defines a point in M(A). This
point specializes to the generic point of Spec(A/π A), and it is the only point in
M(A) with this property.

Proof. Surjectivity of spA follows from [Grothendieck 1961a, 7.1.7]. If A/π A is a
domain, then | · |A ∈ M(A) clearly specializes to π A. Moreover, the local ring Aπ A

is then a discrete valuation ring, such that every character χ of a point x ∈ M(A)
specializing to the generic point of Spec A/π A is equivalent to the character given
by the natural homomorphism from A to the fraction field of the π -adic completion
of Aπ A. It follows that x equals | · |A. �

One can easily verify that when A/π A is a domain, then {| · |A} is the Shilov
boundary of M(A) [Kappen 2009, 1.2.5.12]; we will not use this fact in the fol-
lowing. Let us now discuss the example of the open unit disc sSp (R[[S]]⊗R K ):

Example 4.2. The set M(R[[S]] ⊗R K ) is naturally identified with the closure of
the Berkovich open unit disc within M(K 〈S〉), which is obtained by adding the
Gauss point.

Proof. To understand the continuous map i : M(R[[S]] ⊗R K ) → M(K 〈S〉) in-
duced by the natural isometry K 〈S〉 ↪→ R[[S]] ⊗R K , we distinguish the points
in M(R[[S]]⊗R K ) with respect to their specializations to the scheme Spec k[[S]].
Applying Lemma 4.1 to A = R[[S]], we see that the unique point above the generic
point of Spec k[[S]] is the Gauss point | · |Gauss , which maps to the Gauss point
in M(K 〈S〉) via i . If x ∈ M(R[[S]] ⊗R K ) is a point specializing to the spe-
cial point of Spec k[[S]], then for any character χx representing x , the induced
R-homomorphism χ̊x : R[[S]] → K̊ is continuous for the (π, S)-adic topology on
R[[S]] and the valuation topology on K̊. In particular, χx is determined by the χx -
image of the variable S. We conclude that the map i is injective and that it maps
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the complement of the Gauss point onto the Berkovich open unit disc. The image
of i is the continuous image of a compact set and, hence, compact. Since M(K 〈S〉)
is Hausdorff, it follows that the image of i is closed in M(K 〈S〉). �

Remark 4.3. Given a complete nontrivially valued nonarchimedean field K with
valuation ring R, one may wonder whether the points of the rigid open unit disc
over K lie dense in M(R[[S]] ⊗R K ); this question is called the one-dimensional
nonarchimedean Corona problem. It is yet unanswered; see the introduction of
[Deninger 2010] for a brief survey including other versions of nonarchimedean
Corona problems. If K is discretely valued (which is the overall assumption in
this paper), our discussion of Example 4.2 above shows that the Corona question
has a positive answer: indeed, let Z ⊆ M(R[[S]]⊗R K ) be the closure of the set of
classical points; then the image of Z under the natural map i to the K -analytic space
M(K 〈S〉) is closed. Working locally on M(K 〈S〉), we see that i(Z) contains the
Berkovich open unit disc and, hence, its closure. We have seen in Example 4.2 that
i is injective onto that closure; thus it follows that Z = M(R[[S]]⊗R K ). The one-
dimensional nonarchimedean Corona problem is significantly more challenging
when K is not discretely valued: then the ring R[[S]]⊗R K is not noetherian, it has
maximal ideals of infinite height [van der Put 1974, Corollary 4.9], and it contains
functions with infinitely many zeros on the rigid open unit disc.

It is natural to ask whether one can associate a topological space to a uniformly
rigid K -space such that, in the semiaffinoid case, one recovers the construction
sSp A 7→ M(A) which we described above. However, the formation of M(A) does
not behave well with respect to localization; see the following example. This is not
surprising: the Banach K -algebra structure on A restricts to the π-adic topology
on an R-model of ff type A for A, and complete localization of A with respect
to the π-adic topology does in general not agree with complete localization with
respect to the topology defined by the Jacobson radical. Similarly, the extended
specialization map spA maps onto the algebraization Spec(A/π A) of the special
fiber Spf(A/π A) of Spf A whose formation, again, does in general not commute
with localization.

Example 4.4. If A = R〈X, Y 〉[[Z ]]/(XY − Z), equipped with the Jacobson-adic
topology, and if B = A{X−Y }, then the induced map M(B)→ M(A) is not injective.

Proof. Let us write X := Spf A, and let X0 := Spec k[X, Y ]/(XY ) denote the
smallest subscheme of definition of X. Since X is formally smooth over R, its
special fiber Xk is formally smooth over k. The underlying topological space |Xk | =

|X0| is connected; hence the ring A/π A is a domain. By Lemma 4.1, there exists
a unique point | · |A of M(A) specializing to the generic point of the algebraization
Xπk := Spec(A/π A) of the special fiber Xk = Spf (A/π A) of X. On the other
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hand, let us consider the open formal subscheme U := Spf B of X. Its underlying
smallest subscheme of definition U0 is

U0 = Spec (k[X, Y ]/(XY ))X−Y = Spec(k[X, X−1
])qSpec(k[Y, Y−1

]),

so U has exactly two connected components. We conclude that B is a nontriv-
ial direct sum B1 ⊕ B2 of flat R-algebras of ff type. Since U is formally R-
smooth, we see that Bi/πBi is a domain for i = 1, 2. We obtain an induced
nontrivial decomposition B = B1 ⊕ B2 and, hence, a nontrivial decomposition
M(B) = M(B1)q M(B2). By the proof of the statement in Example 4.2, there
exist unique elements | · |Bi ∈ M(Bi ), i = 1, 2, specializing to the respective generic
point of Uπi,k := Spec Bi/πBi . To prove that the natural map M(B)→M(A) is not
injective, it suffices to see that it maps the elements | · |B1 , | · |B2 in M(B) to | · |A. By
functoriality of the specialization map, it thus suffices to observe that the natural
morphism Uπi,k→ Xπk maps the generic point to the generic point. However, this is
clear because A/π A→ Bi/πBi is injective. Indeed, it is a flat homomorphism of
domains, where flatness follows from the fact that Ui,k→Xk is an open immersion
of formal schemes. �

In the light of Example 4.4, it is unclear how to define a global analog of M(A).
Nonetheless, we think that a quasicompact uniformly rigid K -space X should be
viewed as a compactification of its underlying rigid K -space X r. This should be
made more precise by studying the topos of X .
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On a conjecture of Kontsevich and
Soibelman
Lê Quy Thuong

Dedicated to Professor Hà Huy Vui on the occasion of his sixtieth birthday

We consider a conjecture of Kontsevich and Soibelman which is regarded as a
foundation of their theory of motivic Donaldson–Thomas invariants for noncom-
mutative 3d Calabi–Yau varieties. We will show that, in some certain cases, the
answer to this conjecture is positive.

1. Introduction

Kontsevich and Soibelman [2008] introduce and give discussions on the motivic
Donaldson–Thomas invariants which are defined for noncommutative 3d Calabi–
Yau varieties and take values in certain Grothendieck groups of algebraic varieties.
One of the main objectives of Kontsevich and Soibelman’s paper is to define the
motivic Hall algebra which generates Toën’s notion [2006] of the derived Hall
algebra. For C an ind-constructible triangulated A∞-category over a field κ , the
motivic Hall algebra H(C) is constructed to become a graded associative algebra,
which admits for each strict sector V an element AHall

V invertible in the completed
motivic Hall algebra and satisfying the factorization property. It is believed that,
in the case of 3d Calabi–Yau category, there is a homomorphism 8 of the motivic
Hall algebra into the motivic quantum torus defined in terms of the motivic Milnor
fiber of the potential. Then the motivic Donaldson–Thomas invariants appear as
the collection of the images of AHall

V under the homomorphism 8.
In fact, the following conjecture plays a central role in the existence of 8. As-

sume that the characteristic of κ is zero. Let F be a formal series on the affine
space Ad

κ = Ad1
κ ×κ Ad2

κ ×κ Ad3
κ , depending in a constructible way on finitely many

extra parameters, such that F(0, 0, 0) = 0 and F has degree zero with respect to
the diagonal action of the multiplicative group Gm,κ with the weights (1,−1, 0).
In particular, F(x, 0, 0) is the zero function on Ad1

κ . We denote by X0(F) the set
of the zeros of F on Ad

κ . Consider the natural inclusions

MSC2010: primary 14B05; secondary 14B07, 14J17, 32S05, 32S30, 32S55.
Keywords: arc spaces, motivic Milnor fiber, motivic zeta function, Newton polyhedron.
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390 Lê Quy Thuong

i1 : A
d1
κ ×κ Gm,κ→ X0(F)×κ Gm,κ and i0 : {0}×κ Gm,κ→ X0(F)×κ Gm,κ .

Consider the motivic Milnor fiber SF of F in the ring M
Gm,κ
X0(F)×κGm,κ

, the localization
of the relative Grothendieck ring defined in [Guibert et al. 2005; 2006]. Denote by
h the function on Ad3

κ defined by h(z)= F(0, 0, z). We write Sh,0 for the pullback
i∗0 Sh . We denote by the integral

∫
A

d1
κ

the pushforward of the canonical morphism
π : Ad1

κ ×κ Gm,κ→ Spec(k)×κ Gm,κ .

Conjecture 1.1 [Kontsevich and Soibelman 2008]. With the previous notations
and hypotheses, the following formula holds in M

Gm,κ
Gm,κ

:∫
A

d1
κ

i∗1 SF = Ld1Sh,0.

In this paper, we consider the conjecture in some special (actually quite general)
cases, namely, when F is a composition of a polynomial in two variables and a
pair of two regular functions (Theorem 5.1), or F has the form

F(x, y, z)= g(x, y, z)+ h(z)`

with ` sufficiently large (function of Steenbrink type, Theorem 5.6) under some
additional conditions of nondegeneracy with respect to its Newton polyhedron (this
would be the general case for the conjecture if we did not assume ` sufficiently
large). For these cases, we use previous results of Guibert, Loeser and Merle
[Guibert et al. 2006; 2009] for the motivic Milnor fiber of composite functions or
functions of Steenbrink type. We also use in an important way, via Proposition 4.8,
the explicit computation of the motivic Milnor fiber of a regular function via its
Newton polyhedron (suggested by [Guibert 2002]). These lead to the positive
answer to the conjecture in the cases considered.

2. Motivic zeta function and motivic Milnor fiber

Let us recall some basic notations in the theory of motivic integration which will
be used in this paper. For references, we follow [Denef and Loeser 1998, 1999a;
2001; Guibert 2002; Guibert et al. 2005; 2006].

2A. Let κ be a field of characteristic zero. For a variety X over κ , we denote by
Lm(X) the space of m-arcs on X , and by L(X) a limit of the projective system
of spaces Lm(X) and (canonical) morphisms Ll(X)→ Lm(X) (l ≥ m). In this
paper, we use the notation πm for the canonical morphism L(X)→ Lm(X). The
Gm,κ -action on Lm(X) and L(X) is given by a · ϕ(t) = ϕ(at). The notation MX

can be found in [Guibert et al. 2006]. As in [Guibert et al. 2005], we denote by
M

Gm,κ
X×κGm,κ

the localization at L of the relative Grothendieck ring of Gm,κ -equivariant
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morphisms Y → X ×κ Gm,κ endowed with a monomial Gm,κ -action, where L is
the class of the line bundle A1

X×κGm,κ
.

From now on, the group scheme Gm,κ = Spec(κ[t, t−1
]) will be written simply

as G.

2B. Motivic zeta function and motivic Milnor fiber. Let X be a smooth variety
over κ of pure dimension n, and let g : X → A1

κ be a function on X , with zero
locus X0(g). For m ≥ 1, we define

Xm(g) := {ϕ ∈ Lm(X) | ordt g(ϕ)= m}.

Note that this variety is invariant by the G-action on Lm(X). Furthermore, g in-
duces a morphism gm :Xm(g)→G, assigning to a point ϕ in Lm(X) the coefficient
ac(g(ϕ)) of tm in g(ϕ(t)), which we also denote by ac(g)(ϕ). This morphism is
a diagonally monomial of weight m with respect to the G-action on Xm(g) since
g(s · ϕ) = sm gm(ϕ). We thus consider the class [Xm(g)] of Xm(g) in MG

X0(g)×κG
.

We can now consider the motivic zeta function

Zg(T ) :=
∑
m≥1

[Xm(g)]L−mnT m

in MG
X0(g)×κG

[[T ]]. Note that Zg = 0 if g = 0 on X .
By using a log-resolution of X0(g), Denef and Loeser [1998; 2001] proved that

Zg(T ) is a rational series in MG
X0(g)×κG

[[T ]]sr (see next paragraph) and they also
showed that one can consider the limit limT→∞ Zg(T ) in MG

X0(g)×κG
. Then the

motivic Milnor fiber of g is defined as

Sg := − lim
T→∞

Zg(T ).

2C. Rational series and their limits. Let A be one of the rings

Z[L, L−1
], Z[L, L−1, (1/(1− L−i ))i>0], MG

S×κG.

We denote by A[[T ]]sr the A-submodule of A[[T ]] generated by 1 and by finite
products of terms pe,i (T )= LeT i/(1−LeT i ) with e in Z and i in N>0. There is a
unique A-linear morphism

lim
T→∞

: A[[T ]]sr → A

such that
lim

T→∞

(∏
i∈I

pei , ji (T )
)
= (−1)|I |

for every family ((ei , ji ))i∈I in Z×N>0 with I finite (possibly empty).
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We will use the notation

RI
≥0 := {a = (a1, . . . , an) ∈ Rn

≥0 | ai = 0 for i 6∈ I },

RI
>0 := {a = (a1, . . . , an) ∈ Rn

≥0 | ai = 0⇐⇒ i 6∈ I },

for I a subset of {1, . . . , n}. The sets ZI
≥0, ZI

>0 and NI
>0 are defined similarly.

Let 1 be a rational polyhedral convex cone in RI
>0 and let 1 denote its closure

in RI
≥0 with I a finite set. Let l and l ′ be two integer linear forms on ZI positive

on 1 \ {0}. Consider the series

S1,l,l ′(T ) :=
∑

k∈1∩NI
>0

L−l ′(k)T l(k)

in Z[L, L−1
][[T ]].

Lemma 2.1 [Guibert 2002]. With previous notations and hypotheses, assuming
that1 is open in its linear span1, the series S1,l,l ′(T ) lies in Z[L, L−1

][[T ]]sr and

lim
T→∞

S1,l,l ′(T )= (−1)dim(1).

3. The Newton polyhedron of a regular function

3A. Newton polyhedra. Let g(x) =
∑

α∈Nn aαxα be a polynomial in n variables
x= (x1, . . . , xn) such that g(0)=0. We denote by supp(g) the set of exponents α in
Nn with aα 6=0. The Newton polyhedron0 of g is the convex hull of supp(g)+Rn

≥0.
For a compact face γ of 0, we denote by gγ the quasihomogenous polynomial

gγ (x)=
∑
α∈γ

aαxα.

We say g is nondegenerate with respect to its Newton polyhedron 0 if, for every
compact face γ of 0, the face function gγ is smooth on Gn .

To the Newton polyhedron 0 we associate a function l0 which assigns to a vector
a in Rn

≥0 the value infb∈0〈a, b〉, with 〈a, b〉 being the standard inner product of a
and b. For a in Rn

≥0, we denote by γa the face of 0 on which the restriction of the
function 〈a, .〉 on 0 attains its minimum, i.e., b ∈ 0 is in γa if and only if

〈a, b〉 = l0(a)=min
b∈0
〈a, b〉.

For a = 0 in Rn
≥0, γa = 0. If a 6= 0, γa is a proper face of 0. Furthermore, γa

is a compact face of 0 if and only if a is in Rn
>0. For any face γ of the Newton

polyhedron 0, we denote by σ(γ ) the cone {a ∈Rn
≥0 | γa = γ }. Its closure is given

by σ(γ )= {a ∈ Rn
≥0 | γa ⊃ γ }.

A fan F is a finite set of rational polyhedral cones such that every face of a cone
of F is also a cone of F, and the intersection of two arbitrary cones of F is the
common face of them.
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3B. Partition of R
n1
≥0 × R

n2
>0 with respect to g. Write n = n1 + n2 with n1 ≥ 0,

n2≥ 0. Let g be a function on An
κ that is nondegenerate with respect to the Newton

polyhedron 0 of g. Let γ be a compact face of 0. A proper face ε of 0 is said to
lean on γ if there exists a subset I of {1, . . . , n} such that

ε = γ +RI
≥0 = {a+ b | a ∈ γ, b ∈ RI

≥0}.

Note that dim(ε) = dim(γ ) + |I |. Clearly, the face ε is noncompact when I is
nonempty. The following lemmas are trivial.

Lemma 3.1. If γ +RI
≥0 is a face leaning on a compact face γ of 0, then for every

J subset of I , γ +RJ
≥0 is also a face of 0 leaning on γ .

Notice that if I =∅, the face γ+RI
≥0 reduces to the compact face γ . If ε=γ+RI

≥0,
we denote σγ,I := σ(ε). It is clear that dim(σγ,I )= n− |I | − dim(γ ).

Lemma 3.2. If σγ,I is contained in R
n1
≥0×R

n2
>0, then for every subset J of I , σγ,J

is contained in R
n1
≥0×R

n2
>0. Moreover, σγ,I is a face of σγ,J .

Lemma 3.3. Assume that γ is a compact face and ε = γ +RI is a face of 0. Then
σγ,I is contained in R

n1
≥0×R

n2
>0 if and only if I is a subset of {1, . . . , n1}.

Fix a compact face γ of 0. Let M be a maximal element (in the inclusion relation)
of the family of the subsets of {1, . . . , n1} such that γ +RM

≥0 is a face of 0 (thus,
by Lemma 3.3, σγ,M is contained in R

n1
≥0×R

n2
>0). Then, for every subset I of M ,

γ +RI
≥0 is a face of 0 due to Lemma 3.1, and σγ,I is contained in R

n1
≥0×R

n2
>0 by

Lemma 3.2. We thus have proved the following result.

Proposition 3.4. There exists a canonical fan in R
n1
≥0×R

n2
>0 with respect to g par-

titioning it into the cones σγ,I , where I runs over the subsets of M , M runs over
the maximal subsets of {1, . . . , n1} such that γ + RM

≥0 is a face of 0, and γ runs
over the compact faces of 0.

Example 3.5. Consider a function g(x1, . . . , xn) with 0g having a unique vertex
P . Then the k-dimensional faces of 0 leaning on P have the form

P +RI
≥0

with I a subset of {1, . . . , n} and |I | = k, for k = 0, . . . , n − 1. We deduce from
Lemma 3.3 that the canonical partition of R

n1
≥0×R

n2
>0 with respect to g is given by

the cones σP,I , with I a subset of {1, . . . , n1}.

Remark 3.6. In the case n1 = 0, we reduce to the work in [Guibert 2002]. More
clearly, for each compact face γ of 0, all the maximal subsets M of {1, . . . , n}, of
which γ +RM

≥0 is a face of 0 and σγ,M ⊂ Rn
>0, are empty.
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4. Computation of i∗
1 Sg and

∫
A

d1
κ

i∗
1 Sg

Consider a regular function g on An
κ . We assume that g is nondegenerate with

respect to its Newton polyhedron 0. Denote by i1 the natural inclusion An1
κ ↪→An

κ

or An1
κ ×κ G ↪→ An

κ ×κ G.

4A. The motivic zeta function Zg(T ). We identify the arc space L(An
κ) with the

space of formal power series κ[[t]]n via the system of coordinates x1, . . . , xn . For
every arc ϕ ∈ L(An

κ), we note ordt x(ϕ) = (ordt x1(ϕ), . . . , ordt xn(ϕ)). For every
m ∈ N>0 and a ∈ Nn we set

Xa,m(g)= Xm(g)∩πm(Xa),

where the spaces Xm(g) and Xa are defined as follows:

Xm(g)= {ϕ ∈ Lm(A
n
κ) | ordt g(ϕ)= m},

Xa = {ϕ ∈ L(An
κ) | ordt x(ϕ)= a}.

It is clear that Xa,m(g) is a variety over X0(g)×κG in which the morphism to X0(g)
is induced by the canonical morphism Lm(A

n
κ)→ An

κ and the morphism to G is
the morphism ac(g). Note that Xa,m(g) is invariant by the G-action on Lm(A

n
κ).

For every a ∈Nn and ϕ ∈Xa , ordt g(ϕ)≥ l0(a) by the definition of l0. Further-
more, Xm(g) can be expressed as a disjoint union

⋃
a∈Nn Xa,m(g) of the subspaces

Xa,m(g) for a in Nn . Then the motivic zeta function Zg(T ) of g can be written in
the following form:

Zg(T )=
∑
a∈Nn

∑
m≥l0(a)

[Xa,m(g)]L−nm T m

=

∑
a∈Nn

(
[Xa,l0(a)(g)]L

−nl0(a)T l0(a)+
∑

m≥l0(a)+1

[Xa,m(g)]L−nm T m
)

=: Z0(T )+ Z1(T ).

There is a canonical partition of Rn
≥0 into the rational polyhedral cones σ(γ )

with γ running over the proper faces of 0, so we deduce that

Z0(T )=
∑
γ

∑
a∈σ(γ )

[Xa,l0(a)(g)]L
−nl0(a)T l0(a),

Z1(T )=
∑
γ

∑
a∈σ(γ )

∑
k≥1

[Xa,l0(a)+k(g)]L−n(l0(a)+k)T l0(a)+k,

where the sum
∑

γ runs over the proper faces γ of 0.



On a conjecture of Kontsevich and Soibelman 395

4B. Computation of i∗
1 Zg(T ). Assume that g satisfies the additional condition

that An1
κ is naturally included in X0(g) via the morphism i1. To compute i∗1 Zg(T ),

we consider the canonical fan in R
n1
≥0 ×R

n2
>0 with respect to g. Denote by 0c the

set of compact faces of 0 and by Mγ the set of maximal subsets M of {1, . . . , n1}

such that γ +RM
≥0 is a face of 0. By Proposition 3.4, we can partition R

n1
≥0×R

n2
>0

into the cones σγ,I , with I a subset of M , M in Mγ and γ in 0c. Assume that
Mγ = {M1, . . . ,Mp}. We denote by Sγ the family of subsets of one of the sets
M1, . . . ,Mp. Then we have

i∗1 Z0(T )= i∗1
( ∑
γ∈0c

∑
I∈Sγ

∑
a∈σγ,I

[Xa,l0(a)(g)]L
−nl0(a)T l0(a)

)
,

i∗1 Z1(T )= i∗1
( ∑
γ∈0c

∑
I∈Sγ

∑
a∈σγ,I

∑
k≥1

[Xa,l0(a)+k(g)]L−n(l0(a)+k)T l0(a)+k
)
.

4C. Class of Xa,m(g). For a compact face γ of 0, consider the variety Xγ :=
Gn
\ g−1

γ (0) endowed with a G-action as follows: if γ = γa , a = (a1, . . . , an) then
we set

s · (ξ1, . . . , ξn)= (sa1ξ1, . . . , sanξn).

For each compact γ and I in Sγ , consider the morphism

gγ,I : Xγ = Gn
\ g−1

γ (0)→ X0(g)×κ G

given by
gγ,I (ξ1, . . . , ξn)=

(
(ξ̂1, . . . , ξ̂n), gγ (ξ1, . . . , ξn)

)
,

where ξ̂i is defined by

ξ̂i =

{
ξi if i ∈ I,
0 otherwise.

The first projection Xγ → X0(g) is G-equivariant in an obvious manner, and for
γ = γa , the second Xγ →G is diagonally monomial of weight l0(a) with respect
to the G-action since gγ (s ·(ξ1, . . . , ξn))= sl0(a)gγ (ξ1, . . . , ξn) for any s in G. This
defines a class [gγ,I : Xγ → X0(g)×κ G] in MG

X0(g)×κG
, which we denote by 8γ,I .

Notice that 8γ,I does not depend on the action thanks to the construction of the
Grothendieck group (cf. [Guibert et al. 2005, 2006]).

We denote by 9γ,I the class in MG
X0(g)×κG

of the morphism

g−1
γ (0)×κ G→ X0(g)×κ G,

which maps
(
(ξ1, . . . , ξn), t

)
to
(
(ξ̂1, . . . , ξ̂n), t l0(a)

)
for γ = γa , with the G-action

on g−1
γ,I (0) given by s · (ξ1, . . . , ξn) = (sa1ξ1, . . . , sanξn), the G-action on G given

by the multiplicative translation, g−1
γ (0)×κ G→ X0(g) being G-equivariant, and
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g−1
γ (0)×κ G→G being diagonally monomial of weight l0(a) with respect to the

G-action.

Lemma 4.1. The following formulas hold in MG
X0(g)×κG

for every a in σγ,I :

(i) If there is a nonempty subset I of {1, . . . , n} such that ai > m for any i ∈ I
and g|AI c

κ
= 0, then [Xa,m(g)] = 0.

If ai ≤ l0(a) for any i = 1, . . . , n, we have

(ii) [Xa,l0(a)(g)] =8γ,I Lnl0(a)−s(a),

(iii) [Xa,l0(a)+k(g)] =9γ,I Ln(l0(a)+k)−s(a) for k ≥ 1.

Here, AI c

κ := {(x1, . . . , xn) ∈ An
κ | xi = 0 ∀i ∈ I }, and s(a) :=

∑n
i=1 ai .

Proof. Item (i) follows from the definition of Xa,m(g) and from the hypothesis on
g. Indeed, every element of πm(Xa) has the form ϕ(t)= (x1(t), . . . , xn(t)), where
x j (t) is a polynomial of degree ≤m in a variable t for any j = 1, . . . , n, and xi (t)
is the zero polynomial if i is in I . Then g(ϕ(t)) = 0 and ordt g(ϕ) = ∞, which
means that Xa,m(g)=∅.

Items (ii) and (iii) may be deduced from the proofs of [Guibert 2002, Lemmas
2.1.1, 2.1.2] and from the isomorphism M

µ̂

X0(g)
∼=MG

X0(g)×G
(cf. [Guibert et al. 2006,

Proposition 2.6]). In [Guibert 2002, Section 2.1] (in particular, Lemmas 2.1.1 and
2.1.2), Guibert only considers functions of the form

∑
α∈Nn

>0
fαxα. Observe that

his condition that α ∈ Nn
>0 is equivalent to the condition that ai ≤ l0(a) for any

i = 1, . . . , n. Finally, notice that the hypothesis of nondegeneracy with respect to
0 is in fact the main tool for the proofs.

There is also a way to prove (ii) directly as follows. An element ϕ(t) of Xa,l0(a)(g)
has the form ϕ(t)= (x1(t), . . . , xn(t)), where xi (t)=

∑l0(a)
m=ai

ci,m tm with ci,ai 6= 0
for i = 1, . . . , n. Note that the coefficient of t l0(a) in g(ϕ(t)) is equal to

1
l0(a)!

·
dl0(a)g(ϕ(t))

dt l0(a)
|t=0 =

1
l0(a)!

·
dl0(a)gγ (ϕ(t))

dt l0(a)
|t=0

= gγ (c1,a1, . . . , cn,an ),

which is nonzero for every a in σγ,I and (c1,a1, . . . , cn,an ) in Xγ . One deduces
from this that Xa,l0(a)(g) is isomorphic to Xγ ×κ A

nl0(a)−s(a)
κ via the map

ϕ(t) 7→
(
(ci,ai )1≤i≤n, (ci,m)1≤i≤n,ai+1≤m≤l0(a)

)
.

Here the action of G on A1
κ is trivial. For any s in G, the arc ϕ(st) is mapped to(

(sai ci,ai )1≤i≤n, (ci,m)1≤i≤n,ai+1≤m≤l0(a)
)
,

which is by definition equal to

s ·
(
(ci,ai )1≤i≤n, (ci,m)1≤i≤n,ai+1≤m≤l0(a)

)
.
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This means that the G-action is compatible with the isomorphism; that is, the iso-
morphism is G-equivariant. Then item (ii) follows. �

Remark 4.2. We do not know yet how to compute [Xa,l0(a)+k(g)] for k≥0 without
the assumptions as in Lemma 4.1.

Remark 4.3. Lemma 4.1 and Remark 4.2 explain the reason why in the rest of
this paper we will always assume that no vertex of the Newton polyhedron 0 of
g lies in a coordinate plane; that is, ai ≤ l0(a) for any i = 1, . . . , n. In this case,
l0(a) is expressed as

∑n
i=1 αi ai with αi > 0 for any i = 1, . . . , n. By Lemma 4.1,

this hypothesis guarantees that, for every compact face γ of 0, with I in Sγ , all
the terms of the sum

∑
a∈σγ,I [Xa,l0(a)(g)] are nonzero if 8γ,I is nonzero, and all

the terms of the sum
∑

a∈σγ,I [Xa,l0(a)+k(g)] (where k > 0) are nonzero if 9γ,I is
nonzero. In our work, we want to consider sums of this type that can be reduced
to the case of Lemma 2.1.

4D. An explicit formula for i∗
1 Sg . Assume that g is a regular function on An

κ that
is nondegenerate with respect to its Newton polyhedron 0, that no vertex of 0 lies
in a coordinate m-plane (m = 1, . . . , n − 1), and that X0(g) contains An1

κ ×κ {0}.
One then deduces from Remark 4.3 and Lemma 4.1 that

i∗1 Z0(T )=
∑
γ∈0c

∑
I∈Sγ

∑
a∈σγ,I

i∗18γ,I L−s(a)T l0(a),

and that

i∗1 Z1(T )= i∗1
( ∑
γ∈0c

∑
I∈Sγ

∑
a∈σγ,I

9γ,I L−s(a)T l0(a)
∑
k≥1

L−k T k
)

=
L−1T

1−L−1T

∑
γ∈0c

∑
I∈Sγ

∑
a∈σγ,I

i∗19γ,I L−s(a)T l0(a).

Proposition 4.4. With the previous notation and hypotheses, the following formula
holds in MG

A
n1
κ ×κG

:

i∗1 Sg =
∑
γ∈0c

(−1)n+1−dim(γ )
∑

I∈Sγ

(−1)|I |[An1
κ ×X0(g) (8γ,I −9γ,I )].

Proof. The positivity of the sum function s on σγ,I \ {0} is evident, and that of
the function l0 on σγ,I \ {0} follows straightforward from Remark 4.3. Applying
Lemma 2.1, notice that dim(σγ,I )= n− |I | − dim(γ ); we have

lim
T→∞

∑
a∈σγ,I

8γ,I L−s(a)T l0(a) =8γ,I lim
T→∞

∑
a∈σγ,I

L−s(a)T l0(a)

= (−1)n−|I |−dim(γ )8γ,I
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and

lim
T→∞

∑
a∈σγ,I

9γ,I L−s(a)T l0(a) =9γ,I lim
T→∞

∑
a∈σγ,I

L−s(a)T l0(a)

= (−1)n−|I |−dim(γ )9γ,I .

It follows that

lim
T→∞

i∗1 Z0(T )=
∑
γ∈0c

(−1)n−dim(γ )
∑

I∈Sγ

(−1)|I |i∗18γ,I ,

and

lim
T→∞

i∗1 Z1(T )=
∑
γ∈0c

(−1)n+1−dim(γ )
∑

I∈Sγ

(−1)|I |i∗19γ,I .

Then the proposition is proved. �

Example 4.5 (cf. Example 3.5). In the case where 0g has a unique compact face
P , the classes 9P,I vanish. If we assume that αi > 0 for every i = 1, . . . , n, we
have

i∗1 Sg = (−1)n+1
∑

I⊂{1,...,n1}

(−1)|I |[An1
κ ×X0(g)8P,I ].

Corollary 4.6 [Guibert 2002]. Assume that g is given by g(x) =
∑

α∈Nn
>0

aαxα in
κ[x] with g(0)= 0. If g is nondegenerate with respect to 0, then

Sg,0 = (−1)n−1
∑
γ∈0c

(−1)dim(γ )
[{0}×X0(g) (8γ,I −9γ,I )]

holds in MG
G

.

Proof. (See Remark 3.6) Apply Proposition 4.4 to the case n1= 0. Here the natural
inclusion i1 : A

n1
κ ↪→ An

κ reduces to the inclusion i0 : {0} ↪→ An
κ . Moreover, in this

case, by Lemma 3.3, for every compact face γ of 0, we have Sγ = {∅}. Thus this
corollary follows. Observe that this formula was already obtained by Guibert (cf.
[2002, Proposition 2.1.6]). �

4E. Consider the function g(x) =
∑

α∈H∩Nn aαxα on An
κ , where H is the hyper-

plane in Rn
≥0 defined by the equation

α1+ · · ·+αn1 = αn1+1+ · · ·+αp,

for some fixed p such that n1 < p ≤ n. Here, as well as in Corollary 4.6, we use
the notation xα for xα1

1 · · · x
αn
n , where α = (α1, . . . , αn). Because supp(g) lies on

the hyperplane H , the compact faces of 0 are contained in H . Moreover, for the
same reason, for each compact γ , there exist noncompact faces of 0 leaning on γ .
Note that, in this case, An1

κ is naturally viewed as a subset of X0(g).
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Lemma 4.7. Assume that g(x)=
∑

α∈H∩Nn aαxα is nondegenerate with respect to
0. Then, for every compact face γ of 0, we have |Mγ | = 1, and the unique element
of Mγ is nonempty.

Proof. Let γ be a compact face of 0. Assume that γ +RI
≥0 is a face of 0. Then, by

Lemma 3.3, the cone σγ,I is contained in R
n1
≥0×R

n2
>0 if and only if I is contained

in {1, . . . , n1}. Furthermore, we claim that if γ + RI
≥0 and γ + RJ

≥0 are faces
leaning on γ such that the corresponding cones σγ,I and σγ,J are both contained in
R

n1
≥0×R

n2
>0, then so is γ +RI∪J

≥0 . Indeed, since (α1, . . . , αn) is in H , one deduces
that if I and J are contained in {1, . . . , n1}, the intersection of γ +RI∪J

≥0 with the
interior of 0 is empty. This, together with the fact that γ +RI

≥0 and γ +RJ
≥0 are

faces of 0, shows that γ + RI∪J
≥0 is a face of 0 leaning on γ such that σγ,I∪J is

contained in R
n1
≥0×R

n2
>0.

As a consequence of the above claim, for each compact face γ of 0, there exists
a unique maximal subset M of {1, . . . , n1} such that γ +RM

≥0 is a face of 0 that
leans on γ , and σγ,M is contained in R

n1
≥0×R

n2
>0. The nonemptiness of the set M

follows from the fact that supp(g) lies on the hyperplane H . �

Proposition 4.8. Assume that g(x) =
∑

α∈H∩Nn
>0

aαxα is nondegenerate with re-

spect to 0. Then
∫

A
d1
κ

i∗1 Sg vanishes in MG
G

.

Proof. Let γ be a compact face of 0. By Lemma 4.7, the set Mγ has a unique
element and this element is nonempty. Assume Mγ = {M} with |M | ≥ 1. Note
that Aγ =

∫
A

d1
κ

i∗18γ,I and Bγ =
∫

A
d1
κ

i∗19γ,I depend only on γ , not on I contained
in M . Because

∑m
j=0(−1) j

(m
j

)
= 0 for m ≥ 1, one deduces that∑

I⊂M

(−1)|I |(Aγ − Bγ )= 0.

The hypothesis on g that α ∈ H ∩Nn
>0 means no vertex of the Newton polyhedron

0 of g lies in a coordinate plane. By Proposition 4.4, the image
∫

A
d1
κ

i∗1 Sg of Sg

vanishes in MG
G

. �

5. The Kontsevich–Soibelman conjecture

In this section, we will show that under certain assumptions, Conjecture 1.1 is true.

5A. Composition with a polynomial in two variables. We consider Conjecture 1.1
of Kontsevich and Soibelman in the case where F has the form F(x, y, z) =
f (g1(x, y), g2(z)), where f is a polynomial in two variables with f (0, y) nonzero
of positive degree, g1 is a function on Ad1

κ ×κ Ad2
κ such that g1(t x, t−1 y)= g1(x, y)

and g1(0, 0) = 0, and g2 is a regular function on Ad3
κ . Let g = g1 × g2 and

X0(g)= {(x, y, z) | g1(x, y)= g2(z)= 0}. In particular, X0(g) contains A
d1
k ×{0}.
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We denote by i1 the inclusion of Ad1
κ ×κ G into X0( f ◦g)×κ G. Recall that, in this

case, h(z)= f (0, g2(z)).

Theorem 5.1. Assume that f is a polynomial in two variables with f (0, y) nonzero
of positive degree. Let g1 be a regular function on Ad1

κ ×κ Ad2
κ nondegenerate with

respect to its Newton polyhedron 0g1 such that g1(0, 0) = 0, no vertex of 0g1 lies
in a coordinate plane, and g1(t x, t−1 y) = g1(x, y) for every t in G. Let g2 be a
regular function on Ad3

κ . Then, the formula∫
A

d1
κ

i∗1 S f ◦g = Ld1Sh,0

holds in MG
G

. In other words, in this case, Conjecture 1.1 is true.

Proof. In [Guibert et al. 2009], Guibert, Loeser and Merle consider the motivic
Milnor fiber of a composition of the form f (g1, g2) where g1 and g2 have no
variable in common and f is a polynomial in κ[x, y] such that f (0, y) is nonzero
of positive degree. To describe it, they used the generalized convolution operators
9Q defined in [Guibert et al. 2005] and the tree of contact τ( f, 0) constructed in
terms of Puiseux expansions by Guibert [2002]. Here 0 is the origin of Ad

κ , with
d = d1+d2+d3. To any rupture vertex v of τ( f, 0) one attaches a weighted homo-
geneous polynomial Qv in κ[X, Y ]. The virtual objects Av are defined inductively
in terms of the tree of contact τ( f, 0) and Av0 , where v0 is the first (extended)
rupture vertex of the tree and Av0 depends only on g. Let i be the inclusion of
X0(g)×κ G into X0( f ◦g)×κ G. Let m0 be the order of 0 as a root of f (0, y). By
the main theorem of [Guibert et al. 2009], the formula

i∗S f ◦g = Sg
m0
2
([X0(g1)])−

∑
v

9Qv
(Av)

holds in MG
X0(g)×κG

, where 9Qv
denotes the convolution defined in the same paper

and the sum runs over the augmented set of rupture vertices of the tree τ( f, 0).
The i1 in the theorem is the inclusion of Ad1

κ ×κ G into X0( f ◦ g)×κ G, but by
abuse of notation, we also use i1 for the inclusion Ad1

κ ×κ G ↪→ X0(g)×κ G. Thus
i1 and i ◦ i1 are in fact the same thing. Applying the operator

∫
A

d1
κ

i∗1 to both sides
of the previous formula, we have∫

A
d1
κ

i∗1 S f ◦g =

∫
A

d1
κ

i∗1 Sg
m0
2
([X0(g1)])−

∑
v

∫
A

d1
κ

i∗19Qv
(Av).

We claim that, with the previous notation and hypotheses, the formula∫
A

d1
κ

i∗1 Sg
m0
2
([X0(g1)])= Ld1Sh,0
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holds in MG
G

. Indeed, as in the proof of [Guibert et al. 2006, Theorem 5.18], one
can check that

i∗Sg
m0
2
([X0(g1)])= [g−1

1 (0)]� Sg
m0
2
.

By the hypotheses on g1 and the fact that i1(A
d1
κ )∩ g−1

2 (0)= {0}, we have

i∗1 [g
−1
1 (0)] = [Ad1

κ ] = Ld1 and i∗1 Sg
m0
2
= i∗0 Sg

m0
2
= Sg

m0
2 ,0.

One deduces that

i∗1 Sg
m0
2
([X0(g1)])= i∗1

(
[g−1

1 (0)]� Sg
m0
2

)
= Ld1Sg

m0
2 ,0.

By the definitions of h and m0, we have Sg
m0
2 ,0 = Sh,0, and the claim then fol-

lows. So, in order to finish the proof of Theorem 5.1, it suffices to prove that∫
A

d1
κ

i∗19Qv
(Av)= 0 for every (extended) rupture vertex v of τ( f, 0).

Let v0 be the first (extended) rupture vertex of the tree of contact τ( f, p). As in
[Guibert et al. 2009], the virtual object Av0 in

MG
X0(g)×κ (A1

κ×κG)

is defined by Av0 := S′g2
� Sg1

, where S′g2
is an element in MG

X0(g2)×κA1
κ

that is the
“disjoint sum” of Sg2 in MG

X0(g2)×κG
and X0(g2) in MX0(g2).

Lemma 5.2. Assume that g1 is a regular function on Ad1
κ ×κ Ad2

κ nondegenerate
with respect to its Newton polyhedron 0g1 such that g1(0, 0) = 0, no vertex of
0g1 lies in a coordinate plane, and g1(t x, t−1 y) = g1(x, y) for every t in G. Let
g2 be a regular function on Ad3

κ . Then
∫

A
d1
κ

i∗19Q(Av0) vanishes in MG
G

for every
quasihomogeneous polynomial Q.

Proof. The assumptions on g1 mean that we can write g1 in the form

g1(x, y)=
∑

(α,β)∈H∩N
d1+d2
>0

aαβxα1
1 · · · x

αd1
d1

yβ1
1 · · · y

βd2
d2
,

where H is given by α1+· · ·+αd1 = β1+· · ·+βd2 . By Proposition 4.8,
∫

A
d1
κ

i∗1 Sg1

vanishes in MG
G

, hence
∫

A
d1
κ

i∗1 Av0 vanishes in MG
A1
κ×κG

. Here i1 is once again abused
to denote the natural inclusion Ad1

κ ×κ A1
κ×κ G ↪→ X0(g)×κ A1

κ×κ G. Because the
diagram

MG
X0(g)×κA1

κ×κG

9Q
−−−→ MG

X0(g)×κG∫
A

d1
κ

i∗1

y ∫
A

d1
κ

i∗1

y
MG

A1
κ×κG

9Q
−−−→ MG

G

commutes, the lemma follows. �
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Let v be an arbitrary rupture vertex of the tree of contact τ( f, 0) and a(v) the
predecessor of v in the augmented set of rupture vertices. Then the polynomial Qv

is a factor of Qa(v). Suppose that Qv(X, 1) has mv disjoint zeroes in A1
κ .

Lemma 5.3. The equality Av = mvAa(v) holds in MG
X0(g)×κA1

κ×κG
.

Proof. We first notice that Q−1
v (0) is a smooth subvariety in G ×κ G equivari-

ant under a diagonal G-action, and that the second projection pr2 of the product
A1
κ ×κ G induces a homogeneous fibration Q−1

v (0)→ G. We denote by Bv the
restriction of Aa(v) above Q−1

v (0). Then, by [Guibert et al. 2009], the element Av
in MG

X0(g)×κA1
κ×κG

is defined as the external product of the class of id :A1
κ→A1

κ by
the induced map pr2 : Bv→ G, which is diagonally monomial when restricted to
X0(g)×κ G×κ G.

Consider the fibration pr2 : Bv→G defined by the composition of Bv→ Q−1
v (0)

and pr2 : Q
−1
v (0)→ G. Then each fiber of pr2 : Bv→ G is a disjoint union of mv

copies of a fiber of Aa(v)→ A1
κ ×κ G over one point (a, b) in A1

κ ×κ G. It follows
that Av = mvAa(v) in MG

X0(g)×κ (A1
κ×κG)

. �

It follows from Lemma 5.2 and Lemma 5.3 that
∫

A
d1
κ

i∗19Qv
(Av) = 0 for every

(extended) rupture vertex v of τ( f, 0), completing the proof of Theorem 5.1. �

Remark 5.4. In the case f (x, y)= x + y, the result can also be obtained directly
from the motivic Thom–Sebastiani theorem [Denef and Loeser 1999b; 2001].

5B. In the next proposition, we prove the conjecture of Kontsevich and Soibelman
under some other conditions on F = g, namely assuming F is nondegenerate with
respect to its Newton polyhedron 0 and no vertex of 0 lies in a coordinate plane.

Proposition 5.5. Let g be a regular function on Ad1
κ ×κ Ad2

κ ×κ Ad3
κ such that

g(0, 0, z) = 0 for every z in Ad3
κ , g(t x, t−1 y, z) = g(x, y, z) for every t in G,

and (x, y, z) in Ad1
κ ×κ Ad2

κ ×κ Ad3
κ . If g is nondegenerate with respect to its Newton

polyhedron 0 and no vertex of 0 lies in a coordinate plane, then
∫

A
d1
κ

i∗1 Sg vanishes
in MG

G
. In other words, Conjecture 1.1 is true in this case.

Proof. Write the function g in the form

g(x, y, z)=
∑

(a,b,c)∈H∩Nd
>0

ga,b,cxa ybzc,

where d=d1+d2+d3 and H is given by the equation a1+· · ·+ad1 =b1+· · ·+bd2 .
By Proposition 4.8,

∫
A

d1
κ

i∗1 Sg vanishes in MG
G

. Notice that in this case h(z) =
F(0, 0, z)= g(0, 0, z)= 0, hence Sh,0 also vanishes in MG

G
. �



On a conjecture of Kontsevich and Soibelman 403

5C. Functions of Steenbrink type. We consider now the case that

F(x, y, z)= g(x, y, z)+ h(z)`,

where g is as in Proposition 5.5, h(z) is regular on Ad3
κ such that h(0)= 0, and ` is

a large enough natural number. By composition with the projection, we will view
h as a function on Ad

κ .

Theorem 5.6. Let F(x, y, z)= g(x, y, z)+h(z)`, where g is as in Proposition 5.5,
h(z) is regular on Ad3

κ such that h(0) = 0, and ` is a natural number. There exists
a positive real number N such that, if` > N , the following formula holds in MG

G
:∫

A
d1
κ

i∗1 SF = Ld1Sh`,0.

Proof. Let us denote by i and j the inclusions of (X0(g) ∩ X0(h)) ×κ G into
X0(g)×κG and X0(F)×κG, respectively. The existence of N is shown by [Guibert
et al. 2006, Theorem 5.7]. Also by this theorem, for ` > N , we have

j∗SF − i∗Sg = Sh`([X0(g)])−96(Sh`(Sg)),

where 96 is the convolution defined in [Guibert et al. 2006]. Then we get∫
A

d1
κ

i∗1 SF −

∫
A

d1
κ

i∗1 Sg =

∫
A

d1
κ

i∗1 Sh`([X0(g)])−
∫

A
d1
κ

i∗196(Sh`(Sg)).

Now, by Proposition 5.5,
∫

A
d1
κ

i∗1 Sg = 0. An analogue to the proof of Lemma 5.2
shows that

∫
A

d1
κ

i∗196(Sh`(Sg)) vanishes. One deduces that∫
A

d1
κ

i∗1 SF =

∫
A

d1
κ

i∗1 Sh`([X0(g)]).

Define a function g′ on Ad1
κ ×κ Ad2

κ by setting g′(x, y) = g(x, y, 0). Then we
have that g′(0, 0)= 0 and g′(t x, t−1 y)= g′(x, y) for any t in G. Furthermore, we
have an identity in MX0(g) as follows

[X0(g)] = [X0(g′)] + [{(x, y, z) ∈ Ad1+d2
κ × (Ad3

κ \ {0}) | g(x, y, z)= 0}].

As in the proof of Theorem 5.1, since h` and g′ have no variable in common, we
have

i∗1 Sh`([X0(g′)])= Ld1Sh`,0

in MG

A
d1
κ ×G

. It remains to notice that

i∗1 Sh`([{(x, y, z) ∈ Ad1+d2
κ × (Ad3

κ \ {0}) | g(x, y, z)= 0}])= 0,

because the intersection

i1(A
d1
κ )∩ {(x, y, z) ∈ Ad1+d2

κ × (Ad3
κ \ {0}) | g(x, y, z)= 0}
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is empty. Thus,
∫

A
d1
κ

i∗1 SF = Ld1Sh`,0 in MG
G

, as needed. �
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