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The image of complex conjugation in
l-adic representations associated to

automorphic forms
Richard Taylor

If F+ is a totally real field, if n is an odd integer and if 5 is a regular, algebraic,
essentially self-dual, cuspidal automorphic representation of GLn(AF+), then we
calculate the image of any complex conjugation under the l-adic representations
rl,ι(5) associated to 5.

Introduction

Let F+ denote a totally real number field and fix an isomorphism ι : Ql −→
∼ C. It

is known that to a regular, algebraic, essentially self-dual, cuspidal automorphic
representation 5 of GLn(AF+) one can associate a continuous semisimple Galois
representation

rl,ι(5) : Gal(F+/F+)→ GLn(Ql).

(For the definition of “regular, algebraic, essentially self-dual, cuspidal” see the
start of Section 1.) This representation is known to be de Rham and its Hodge–
Tate numbers are known. (They can be simply calculated from the infinitesimal
character of π∞.) For all finite places v of F+ not dividing l one can calculate the
Frobenius semisimplification of the restriction of rl,ι(5) to a decomposition group
above v in terms of πv via the local Langlands correspondence. This uniquely
(in fact, over) determines rl,ι(5). (See [Shin 2011; Clozel et al. 2011; Caraiani
2010; Chenevier and Harris 2011].) The representation rl,ι(5) is conjectured to
be irreducible. This is known if 5 is discrete series at some finite place [Tay-
lor and Yoshida 2007]. Moreover rl,ι(5)

∨ ∼= rl,ι(5) ⊗ µ for some character µ
of Gal(F+/F+) which is either totally odd (takes the value −1 on all complex
conjugations) or totally even (takes the value +1 on all complex conjugations).

Frank Calegari raised the question as to whether, for an infinite place v of F+

one can calculate the conjugacy class of rl,ι(5)(cv), where cv ∈Gal(F+/F+) is a

The author is partially supported by NSF Grant DMS-0600716.
MSC2000: 11F80.
Keywords: Galois representations.
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406 Richard Taylor

complex conjugation for v. This conjugacy class has order two, so it is semisimple
with eigenvalues ±1. The problem is to determine how many +1’s and how many
−1’s occur. Because 5 was assumed to be regular, we expect that the number of
+1’s and −1’s differ by at most one:

|tr rl,ι(5)(cv)| ≤ 1.

As we know the determinant of rl,ι(5) this would completely determine the con-
jugacy class of rl,ι(5)(cv).

If µ is totally odd then [Bellaïche and Chenevier 2011] shows that n is even and
that rl,ι(5) preserves an alternating pairing up to multiplierµ. In this case, because
GSpn(Ql) has a unique conjugacy class of elements of order two and multiplier
−1, we see that tr rl,ι(5)(cv)= 0 for all v|∞. So the problem lies in the case that µ
is totally even, i.e., that rl,ι(5) preserves an orthogonal pairing up to multiplier µ.

In this paper we will prove this conjecture in the case n is odd:

Proposition 1. Suppose that F+ is a totally real field, that n is an odd positive
integer and that5 a regular, algebraic, essentially self-dual, cuspidal automorphic
representation 5 of GLn(AF+). Suppose also that rl,ι(5) is irreducible. If

c ∈ Gal(F+/F+)

is a complex conjugation (for some embedding F+ ↪→ C) then

|tr rl,ι(5)(c)| ≤ 1.

We believe that essentially the same method works if n is even and 5 is discrete
series at a finite place, though we haven’t taken the trouble to write the argument
down in this case. (One would work with the construction of rl,ι(5) given in
[Harris and Taylor 2001] rather than that given in [Shin 2011].) However we do
not see how to treat the general case when n is even. When rl,ι(5) is reducible one
can calculate the trace of r(c) for some representation of r of Gal(F+/F+) with
the same restriction to Gal(F+/F), but this does not seem to be very helpful.

The construction of rl,ι(5) is via piecing together twists of representations of
Gal(F+/F) which arise in the cohomology of unitary group Shimura varieties, as
F runs over certain imaginary CM fields. For none of these twisted restrictions
does complex conjugation make sense. For an infinite place of F one can assign
a natural sign to the representations of Gal(F+/F) that arise in the cohomology
of these Shimura varieties, because they are essentially conjugate self-dual. (See
[Clozel et al. 2008] or [Bellaïche and Chenevier 2011].) As Calegari has stressed
this sign is not related to the image of complex conjugation in our representation
of Gal(F+/F+). This latter image only makes sense for the Galois representations
coming from certain automorphic forms on the unitary groups, namely those that
arise from an automorphic form on GLn(AF+) by some functoriality.
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In the case that n is odd the unitary groups employed by Shin [2011] have rank
n and we are able to use the moduli theoretic interpretation of its Shimura variety
to write descent data to the maximal totally real subfield of F . This descent data
does not commute with the action of the finite adelic points of the unitary group.
However in the special case of an automorphic representation π which arises by
functoriality from an automorphic form on GLn over a totally real field we are able
to show that, up to twist, this descent data preserves the π∞ isotypical component
of the cohomology, and hence gives a geometric realization of rl,ι(5)(cv). Be-
cause of its geometric construction, rl,ι(5)(cv) also makes sense in the world of
variations of Hodge structures. Finally we can appeal to the fact that the Hodge
structure corresponding to rl,ι(5) is regular (i.e., each h p,q

≤ 1) to show that
|tr rl,ι(5)(cv)| ≤ 1.

In the case that n is even and 5 is not discrete series at any finite place, [Shin
2011] realizes twists of rl,ι(5)|Gal(F+/F) in the cohomology of the Shimura vari-
eties for unitary groups of rank n+1. One takes the π∞ isotypic component of the
cohomology for an unstable automorphic representation π of the unitary group,
which one constructs from 5 using the theory of endoscopy. In this case our
descent data relates the π∞ isotypic component of the cohomology, not to itself,
but to a twist of the (π ′)∞ isotypic component for a second unstable automorphic
representation π ′ of the unitary group also arising from 5. (This π ′ is not even
nearly equivalent to a twist of π .) This does not seem to be helpful.

Notation. Let us establish some notation that we will use throughout the paper.
If ρ is a representation κρ will denote its central character.
If F is a p-adic field with valuation v then Fnr will denote its maximal unrami-

fied extension and Frobv ∈Gal(Fnr/F)will denote geometric Frobenius. Moreover
ArtF : F×→Gal(F/F)ab will denote the Artin map (normalized to take uniformiz-
ers to geometric Frobenius elements). Suppose that V/Ql is a finite-dimensional
vector space and that

r : Gal(F/F)→ GL(V )

is a continuous homomorphism. If either l 6= p or l = p and V is de Rham (i.e.,
dimQl

(V⊗τ,F BDR)
Gal(F/F)

= dimQl
V for all continuous embeddings τ : F ↪→Ql)

then we may associate to r a Weil–Deligne representation WD(r) of the Weil group
WK of K over Ql . In the case l 6= p the Weil–Deligne representation WD(r) deter-
mines r up to equivalence. (See for instance [Taylor and Yoshida 2007, Section 1]
for details.) If (r, N ) is a Weil–Deligne representation of WK then we will let
(r, N )F-ss

= (r ss, N ) denote the Frobenius semisimplification of (r, N ). We will
write recF for the local Langlands correspondence — a bijection from irreducible
smooth representations of GLn(F) over C to n-dimensional Frobenius semisimple
Weil–Deligne representations of the Weil group WF of F . (See the Introduction or
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Section VII.2 of [Harris and Taylor 2001].) Recall that if χ is a character of F×

then rec(χ)= χ ◦Art−1
F .)

If F = R or C we will write ArtF : F× � Gal(F/F). If F = R then we will
denote by c the nontrivial element of Gal(F/F) and denote by sgn the unique
surjection F×� {±1}.

If F is a number field then

ArtF =
∏
v

ArtFv : A
×

F /F×(F×∞)0 −→∼ Gal(F/F)ab

will denote the Artin map. If v is a real place of F then we will let cv denote the
image of c ∈ Gal(Fv/Fv) in Gal(F/F). Thus cv is well defined up to conjugacy.
Suppose that

χ : A×F /F×→ C×

is a continuous character for which there exists a ∈ ZHom(F,C) such that

χ |(F×∞)0 : x 7→
∏

τ∈Hom(F,C)

(τ x)aτ

(i.e., an algebraic grossencharacter). Suppose also that ι :Ql −→
∼ C. Then we define

rl,ι(χ) : Gal(F/F)→Q×l

to be the continuous character such that

ι

(
(rl,ι(χ) ◦ArtF )(x)

∏
τ∈Hom(F,C)

(ι−1τ)(xl)
−aτ

)
= χ(x)

∏
τ∈Hom(F,C)

(τ x)−aτ .

1. Statement of the main result

Now let F+ be a totally real field. By a RAESDC (regular, algebraic, essentially
self dual, cuspidal) automorphic representation π of GLn(AF+)we mean a cuspidal
automorphic representation such that

• π∨ ∼= π ⊗ (χ ◦ det) for some continuous character χ : A×F+/(F
+)× → C×

with χv(−1) independent of v|∞, and

• π∞ has the same infinitesimal character as some irreducible algebraic repre-
sentation of the restriction of scalars from F+ to Q of GLn .

Note that χ is necessarily algebraic. Also, if n is odd and π∨∼= π⊗(χ ◦ det), then
χv(−1) is necessarily independent of v|∞, in fact it is necessarily 1 for all such v.

If F+ is totally real we will write (Zn)Hom(F+,C),+ for the set of a = (aτ,i ) ∈
(Zn)Hom(F+,C) satisfying

aτ,1 ≥ · · · ≥ aτ,n.
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If F+′/F+ is a finite totally real extension we define aF+′ ∈ (Z
n)Hom(F+′,C),+ by

(aF+′)τ,i = aτ |F+ ,i .

If a ∈ (Zn)Hom(F+,C),+, let 4a denote the irreducible algebraic representation of
GLHom(F+,C)

n which is the tensor product over τ of the irreducible representations
of GLn with highest weights aτ . We will say that a RAESDC automorphic repre-
sentation π of GLn(AF+) has weight a if π∞ has the same infinitesimal character
as 4∨a .

Fix once and for all an isomorphism ι : Ql −→
∼ C. The following theorem is

proved in [Shin 2011] (see also [Clozel et al. 2011]). (This is not explicitly stated
in [Shin 2011], but see Remark 7.6 of that reference. For the last sentence see
[Taylor and Yoshida 2007].)

Theorem 1.1. Let F+0 be a totally real field and let n be an odd positive inte-
ger. Let a ∈ (Zn)Hom(F+0 ,C),+. Suppose further that 5 is a RAESDC automorphic
representation of GLn(AF+0

) of weight a. Specifically suppose that 5∨ ∼= 5χ

where χ : A×
F+0
/(F+0 )

×
→ C× and χv(−1) is independent of v|∞. Then there is a

continuous semisimple representation

rl,ι(5) : Gal(F+0 /F+0 )→ GLn(Ql)

with the following properties.

(1) For every prime v - l of F+0 we have

WD(rl,ι(5)|Gal(F+0,v/F+0,v)
)F-ss
= rl(ι

−1 rec(5v ⊗ | det |(1−n)/2
v ).

(2) rl,ι(5)
∨
= rl,ι(5)ε

n−1rl,ι(χ).

(3) det rl,ι(5)= rl,ι(κ5)ε
n(1−n)/2
l .

(4) If v|l is a prime of F+0 then the restriction rl,ι(5)|Gal(F+0,v/F+0,v)
is de Rham.

Moreover, if 5v is unramified, if (F+0,v)
0 denotes the maximal unramified

subextension of F+0,v/Ql and if τ : (F+0,v)
0 ↪→ Ql then rl,ι(5)|Gal(F+0,v/F+0,v)

is
crystalline and the characteristic polynomial of φ[(F

+

0,v)
0
:Ql ] on

(rl,ι(5)⊗τ,(F+0,v)
0 Bcris)

Gal(F+0,v/F+0,v)

equals the characteristic polynomial of

ι−1 recF+0,v
(5v ⊗ | det |(1−n)/2

v )(Frobv).

(5) If v|l is a prime of F+0 and if τ : F+0 ↪→Ql lies above v then

dimQl
gri (rl,ι(5)⊗τ,F0,v BDR)

Gal(F+0,v/F+0,v) = 0
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unless i = aιτ, j + n− j for some j = 1, . . . , n in which case

dimQl
gri (rl,ι(5)⊗τ,F+0,v

BDR)
Gal(F+0,v/F+0,v) = 1.

(6) If 5 is discrete series at some finite place then rl,ι(5) is irreducible.

The purpose of this paper is to calculate rl,ι(5)(cv) for any infinite place v of
F+0 .

Proposition 1.2. Keep the notation and assumptions of the above theorem and
suppose that rl,ι(5) is irreducible. (In particular we are assuming that n is odd.)
Let v denote an infinite place of F+0 . Then

rl,ι(5)(cv)

is semisimple with eigenvalues 1 of multiplicity (n + κ5,v(−1))/2 and −1 with
multiplicity (n− κ5,v(−1))/2.

2. A geometric realization of complex conjugation

We must recall some of the construction of rl,ι(5) and explain how the action of
complex conjugation can be constructed geometrically.

The basic set-up. There is a constant α ∈ Z such that aτ, j + aτ,n+1− j = α for all
j = 1, . . . , n and all τ : F+0 ↪→ C. Thus

χ |((F+0,∞)
×)0 = Nα

F+0 /Q
.

Shin shows that one can choose

• a soluble Galois totally real extension F+/F+0 ,

• an imaginary quadratic field E in which l splits,

• an embedding τ0 : F = F+E ↪→ C,

• a continuous character

φ : A×F /F×→ C×,

• a continuous character

ψ : A×E /E×→ C×,

with the following properties.

• [F+ :Q] is even and > 2.

• If Ram denotes the set of (finite) rational primes above which any of F , 5,
φ, or ψ ramifies, then every prime of F+ above a prime of Ram splits in F .

• rl,ι(5)|Gal(F/F) remains irreducible.
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• φφc
= χF and φ|F×∞ =

∏
τ τ
−βτ where βτ +βτc =−α.

• ψc/ψ = (κ5|
[F+:F+0 ]
A×

◦NE/Q)φ|
n
A×E

.

• ψ∞ = τ
−ε
0 (τ0 ◦ c)−ε

′

with ε, ε′ ∈ Z.

• ψ is unramified at the prime of E above l corresponding to ι−1
◦ τ0.

Let V = Fn and let
〈 , 〉 : V × V →Q

be a nondegenerate alternating bilinear form such that

〈xv,w〉 = 〈v, cxw〉

for all x ∈ F and v,w∈V . Let G be the reductive subgroup of GL(V/F) consisting
of elements which preserve 〈 , 〉 up to a Gm-multiple and let ν : G→ Gm denote
the multiplier character. We may, and do, suppose that V is chosen so that

• G is quasisplit at all finite places;

• if τ : F ↪→C satisfies τ |E = τ0|E then the Hermitian form on V⊗F,τ C defined
by

(v,w) 7→ 〈v, iw〉

has a maximal positive definite subspace of dimension 0 if τ 6= τ0 and 1 if
τ = τ0.

(See [Shin 2011, Lemma 5.1].) There is an identification of G ×Q E with the
product of GL1 and the restriction of scalars from F to E of GLn . The map sends
g to the product of its multiplier and its action on the direct summand V ⊗E,1 E
of V ⊗Q E = V ⊗E,1 E ⊕ V ⊗E,c E .

The group G. Letting ker1(Q,G) denote the kernel of

H 1(Q,G)→
∏
v

H 1(Qv,G),

using the fact that n is odd, we see from [Kottwitz 1992, Section 8] that there is an
identification

ker1(Q,G)∼= ((F+)× ∩ (A×NF/F+A×F ))/Q
×(NF/F+F×).

As F/F+ is unramified at all finite primes we see that NF/F+A×F ⊃ Ẑ×R×>0 so
that A×NF/F+A×F = Q×NF/F+A×F . Because (F+)× ∩NF/F+A×F = NF/F+F× we
conclude that

ker1(Q,G)∼=Q×((F+)× ∩NF/F+A×F )/Q
×(NF/F+F×)= {1}.
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It follows from the proof of Lemma 3.1 of [Shin 2011] that the Tamagawa number
τ(G)= 2.

Let T denote the quotient of G by its derived subgroup. Then we may identify
T by

T (R)= {(x, y) ∈ R×× (R⊗Q F)× : xn
= yc y}

for any Q-algebra R. The quotient map d : G→ T sends g to (ν(g), det g). Also
let Z denote the centre of G so that

Z(R)= {(x, y) ∈ R×× (R⊗Q F)× : x = yc y}

for any Q-algebra R. The map d|Z sends (x, y) to (x, yn) and the map ν|Z sends
(x, y) to x . Note that Z × E can be identified with the product of Gm with
the restriction of scalars from F to E of Gm and the norm map sends (a, b) to
(aca, cab/cb). Then

ν : Z(A)/Z(Q)(NE/Q Z(AE))−→
∼ A×/Q×(NE/QA×E )

∼= Gal(E/Q).

[To see this note that the left hand side is

{y ∈ A×F : yc y ∈ A×}/A×E {y ∈ F× : yc y ∈Q×}{y/c y : y ∈ A×F }.

As {y/c y : y ∈ A×F } = A
NF/F+=1
F we see that the group in the previous displayed

equations maps isomorphically under ν = NF/F+ to

(A× ∩NF/F+A×F )/(NE/QA×E )(Q
×
∩NF/F+F×)

∼= (A× ∩NF/F+A×F )/((NE/QA×E )Q
×
∩NF/F+A×F ).

There is a natural injection from here to A×/(NE/QA×E )Q
×. It only remains to see

that this map is surjective, i.e., that

A×/Q×(NE/QA×E )(A
×
∩NF/F+A×F )= {1}.

However as F/F+ is everywhere unramified we have that

(A× ∩NF/F+A×F )⊃ Ẑ××R×>0,

while A× =Q×Ẑ×R×>0. ]

The involution I. We can choose a Q-linear map I : V → V such that

• I (xv)= cx I (v) for all x ∈ F and v ∈ V ;

• 〈Iv, Iw〉 = −〈v,w〉 for all v,w ∈ V ;

• I 2
= 1.
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[To see this note that with respect to a suitable basis we have

〈v,w〉 = trF/Q(
tvDcw)

for some diagonal matrix D with c D = −D. With respect to such a basis we can
take I to simply be complex conjugation on coordinates.] The choice of I gives
rise to an automorphism # of G of order two:

g#
= IgI.

Note that
ν ◦ #= ν

and that
det g#

=
c det g.

If we identify G× E with the product of Gm and the restriction of scalars from F
to E of GLn then # differs by composition with an inner automorphism from the
automorphism:

(x, g) 7→ (x, x t g−1).

Base change from G(A∞) to (A∞E )××GLn(A
∞
F ). As in [Harris and Taylor 2001,

Section VI.2] we can define the base change BC(π̃) of an irreducible admissible
representation π̃ of G(A∞) which is unramified at a place v of Q, unless all primes
of F+ above v split in F . The base change lift, BC(π̃), is an irreducible admissible
representation of (A∞E )

×
× GLn(A

∞

F ). Note that if δE/Q denotes the nontrivial
character of A×/Q×NE/QA×E then

BC(π̃)= BC(π̃ ⊗ (δE/Q ◦ ν)).

Also note that π̃ and π̃ ⊗ (δE/Q ◦ ν) have different central characters and so can
not be isomorphic. (Recall that

ν : Z(A∞)� (A∞)× ∩NF/F+(A
∞

F )
×
⊃ Ẑ×,

and that δE/Q is ramified at some finite prime.) We have that

κBC(π̃) = κπ̃ ◦N,

where N denotes the norm map Z(A∞E )→ Z(A∞). If

BC(π̃)= (φ̃, 5̃)

then
BC(π̃#)= (φ̃κ5̃|(A∞E )×, 5̃

∨)

and
κπ̃# = κπ̃κ

c
5̃
|Z(A∞),

where we think of Z(A∞)⊂ (A∞F )
×.
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Define
ω : T (A)/T (Q) → C×

(x, y) 7→ φc(y)−1κ5,F+(x)−1.

Note that
ω#ω = 1.

With the functorialities of the previous paragraph the next lemma is easy to verify.

Lemma 2.1. Suppose that π̃ is as in the previous paragraph and that

BC(π̃)= (ψ∞,5Fφ).

Then

(1) κπ̃#⊗(ω∞◦d) = κπ̃ ;

(2) BC(π̃#
⊗ (ω∞ ◦ d))= BC(π̃);

(3) and there exists an automorphism Aπ̃ of the underlying space of π̃ such that

Aπ̃ π̃(g)= π̃(g#)ω(d(g))Aπ̃
for all g ∈ G(A∞) and A2

π̃
= 1. Moreover Aπ̃ is unique up to sign.

Weights. We identify G×Q C with

Gm ×
∏

τ∈HomE,τ0 (F,C)

GL(V ⊗F,τ C),

where HomE,τ0(F,C) denotes the set of embeddings τ : F ↪→ C with τ |E = τ0|E .
The identification sends g to its multiplier and its push forward to each GL(V⊗F,τ

C). Let ξ denote the irreducible representations of G ×Q C with highest weights
(b0; bτ,i )τ |E=τ0|E , where

• b0 = ε;

• bτ,i = aτ |F+0 ,i
+βτ .

Then ξ # has highest weights(
b0+

∑
τ∈HomE,τ0 (F,C),i

bτ,i ;−bτ,n+1−i
)
τ∈HomE,τ0 (F,C); i=1,...,n.

Also let ζ be the irreducible representation with highest weights(
−n
(
[F+ :Q]α/2+

∑
τ∈HomE,τ0 (F,C)

βτ
)
;α+ 2βτ

)
τ∈HomE,τ0 (F,C); i=1,...,n.

Then

• ζ is one-dimensional;

• ξ #
⊗ ζ ∼= ξ ;

• ζ # ∼= ζ∨;

• and ω|T (R) = ζ−1.



Complex conjugation in l-adic representations 415

Shimura varieties. Let U denote an open compact subgroup of G(A∞). Consider
the functor XU from connected, locally noetherian F-schemes with a specified
geometric point to sets, which sends a pair (S, s̄) to the set of equivalence classes
of 4-tuples

(A, i, λ, η)

where

(1) A/S is an abelian scheme of relative dimension n;

(2) i : F ↪→ End0(A/S) is such that for all x ∈ F we have

tr(x |Lie A)= x − cx + n trF/E
cx;

(3) λ : A→ A∨ is a polarization such that i(x)∨ ◦ λ= λ ◦ i(cx) for all x ∈ F ;

(4) η is a π1(S, s̄)-invariant U -orbit of A∞F -isomorphisms η : V ⊗A∞ −→∼ V As̄

such that for some isomorphism η0 :A
∞
−→∼ A∞(1) and for all v,w∈V⊗A∞

we have
〈ηv, ηw〉λ = η0〈v,w〉,

where 〈 , 〉λ denotes the λ-Weil pairing.

Two 4-tuples (A, i, λ, η) and (A′, i ′, λ′, η′) are considered equivalent if there is an
isogeny

γ : A→ A′

such that

(1) γ i(x)= i ′(x)γ for all x ∈ F ,

(2) γ ∨λ′γ ∈Q×λ,

(3) and (V γs̄) ◦ η = η
′.

This functor is canonically independent of the choice of base point s̄ and so can
be considered as a functor from connected, locally noetherian F-schemes to sets.
It can be extended to all locally noetherian F-schemes by setting

XU (S1q S2)= XU (S1)×XU (S2).

(See for instance [Harris and Taylor 2001, Section III.1] for more details. We are
using End0(A/S) to denote End(A/S)⊗Z Q and V As̄ for (lim←N A[N ](k(s̄)))⊗Z

Q, where k(s̄) denotes the residue field of s̄.)
If U is sufficiently small then XU is represented by an abelian scheme

AU/XU/Spec F.

If V ⊂U is an open subgroup there is a natural map XV → XU such that AU pulls
back to AV . The inverse system of the XU ’s carries a natural action of G(A∞),
as does the inverse system of the AU ’s. If V is a normal open subgroup of U



416 Richard Taylor

then U acts on XV and induces an isomorphism between U/V and Gal(XV /XU ).
Thus ι−1ξ gives a representation of U and hence a lisse Ql-sheaf Lξ on XU . The
Ql-vector space

H i (X,Lξ )= lim
→U

H i (XU × F,Lξ )

has an action of G(A∞)×Gal(F/F). It is admissible and semisimple as a G(A∞)-
module. If U is an open, compact subgroup of G(A∞) then

H i (X,Lξ )
U
= H i (XU × F,Lξ )

is a continuous representation of Gal(F/F) on a finite-dimensional Ql-vector space.
The pull back XU×F,c F represents the functor X′U defined exactly as XU except

that the condition
tr(x |Lie A)= x − cx + n trF/E

cx

is replaced by the condition

tr(x |Lie A)=
cx − x + n trF/E x .

There is a map of functors XU→X′U which sends (A, i, λ, η) to (A, i ◦c, λ, η ◦ I ).
This induces an F-linear map XU → XU ×F,c F and hence a c-linear map, which
we will also denote I ,

XU
I
−→ XU

↓ ↓

Spec F
c
−→ Spec F.

We have

• I 2
= 1;

• IgI = g# for g ∈ G(A∞);

• and a natural isomorphism I ∗Lξ ⊗Lζ
∼= Lξ , i.e.,

I ∗Lξ
∼= Lξ# . (2-1)

Thus I provides a way to descend the system of the XU to F+; however this
descended system of varieties no longer has an action of G(A∞) defined over F+.

Complex points and connected components. We will need to consider the com-
plex uniformization of XU×F,τC for every homomorphism τ : F ↪→C. So suppose
τ : F ↪→ C. There is a nondegenerate alternating form

〈 , 〉τ : V × V →Q

such that
〈xv,w〉τ = 〈v, cxw〉τ
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for all x ∈ F and v,w ∈ V and such that

• there is an isomorphism jτ : (V ⊗Q A∞, 〈 , 〉) −→∼ (V ⊗Q A∞, 〈 , 〉τ ) as
A∞F -modules with alternating A∞-bilinear pairing;

• if τ ′ : F ↪→ C satisfies τ ′|E = τ |E then the Hermitian form on V ⊗F,τ ′ C

defined by
(v,w) 7→ 〈v, iw〉τ

has a maximal positive definite subspace of dimension 0 if τ ′ 6= τ and 1 if
τ ′ = τ .

Let Gτ denote the group of symplectic F-linear similitudes for (V, 〈 , 〉τ ) and Gτ,1

the kernel of the multiplier character Gτ→Gm . Note that Gτ ×Q A∞∼=G×Q A∞

and that Gτ/Gτ,1 −→
∼ T . Choose a Q-linear map Iτ : V → V such that

• Iτ (xv)= cx Iτ (v) for all x ∈ F and v ∈ V ;

• 〈Iτv, Iτw〉 = −〈v,w〉 for all v,w ∈ V ;

• I 2
τ = 1.

We may, and shall, take 〈 , 〉τ0 = 〈 , 〉 and Iτ0 = I .
Let �τ denote the set of homomorphisms

h : C→ EndF⊗QR(V ⊗Q R)

such that

• 〈h(z)v,w〉τ = 〈v, h(cz)w〉τ for all z ∈ C and v,w ∈ V ⊗R,

• 〈v, h(i)v〉τ ≥ 0 for all v ∈ V .

Then �τ forms a single conjugacy class for Gτ,1(R) [Kottwitz 1992, Lemma 4.3].
This gives �τ a topology (the quotient topology) and, as the group Gτ,1(R) is
connected, we see that�τ is connected. There are G(A∞)-equivariant homeomor-
phisms (see [Kottwitz 1992, Section 8], for example)

Gτ (Q)\(G(A∞)/U ×�τ )−→∼ (XU ×F,τ C)(C).

Let 3 be a Z-lattice in V . The map sends (g, h) to a the equivalence class of
a four-tuple (A, i, λ, η), which is determined as follows. The abelian variety A
is characterized by the complex uniformization A(C) = (V ⊗Q R)/3 with the
complex structure coming from h. The map i arises from the natural action of F
on V ⊗Q R and the (quasi)polarization λ corresponds to the Riemann form 〈 , 〉τ .
Note that V A is naturally identified with V ⊗Q A∞. The level structure η is the
class of jτ ◦g. Under I ×cτ this is taken to ( cA, i ◦c, λ, η◦ I ), which has analytic
uniformization as (V ⊗Q R)/3 but with the complex structure coming from h ◦ c.
The F action is the complex conjugate of the usual one. The Riemann form is sent



418 Richard Taylor

to its negative and the level structure is jτ ◦ g ◦ I . The map I ⊗ 1R shows that
this is isomorphic to the abelian variety with additional structure corresponding to
(( j−1

τ Iτ jτ I )g#, IτhIτ ) ∈ G(A∞)×�τ . Set sτ = j−1
τ Iτ jτ I ∈ G(Q) and note that

s#
τ sτ = 1.

We conclude that there is a bijection ςτ :

π0(XU×F F)∼=π0(XU×F,τC)(C)∼=Gτ (Q)\Gτ (A
∞)/U−→∼ T (Q)\T (A∞)/d(U ).

(For the bijectivity of the third map, which is given by d, see [Milne 2005, Theo-
rem 5.17] and the discussion following it.) Write ς for ςτ0 . The map ςτ is G(A∞)-
equivariant. It is also I×cτ equivariant if we let I×cτ act on T (Q)\T (A∞)/d(U )
via t 7→ d(sτ )t#. Note that because of the G(A∞) equivariance we must have
ςτ = uτς for some uτ ∈ T (A). Thus we see that

• ς(Cg)= d(g)ς(C) for all C ∈ π0(XU ×F F) and all g ∈ G(A∞),

• and for any infinite place v of F there is an sv ∈ T (A) such that ς((I×cv)x)=
svς(x)# and svs#

v = 1.

(If v|F arises from τ : F ↪→ C then sv = d(sτ )u#
τu−1
τ .)

We wish to also know the Gal(F/F)-equivariance of ς . Note that the XU are the
canonical models for the Shimura varieties ShU (G, [h−1

]). (See [Kottwitz 1992,
Section 8] and note that ker1(Q,G)= (0).) Define a map

r : A×F → T (AE)
NE/Q
−→ T (A)

where the first map sends
x 7→ (NF/E x, x)−1.

Note that r ◦Art−1
F is a well defined map

(r ◦Art−1
F ) : Gal(F/F)→ T (A)/T (Q)T (R).

Then according to [Milne 2005, Section 13] we have

ς(σ x)= (r ◦Art−1
F )(σ )ς(x)

for all x ∈ π0(XU ×F F) and all σ ∈ Gal(F/F).

H0 of sheaves on our Shimura varieties. Let ξ̃ be the irreducible representation of
G×C which has highest weight (b̃0, b̃τ,i )τ |E=τ0|E . The description of the previous
section allows us to calculate H 0(XU × F,Lξ̃ ). It will be (0) unless b̃τ,i = b̃τ is
independent of i . In this case ξ̃ factors through a map T ×C→Gm which we will
also denote ξ̃ . We can then identify H 0(XU × F,Lξ̃ ) with the space of functions

f : T (A)/T (R)T (Q)→Ql
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such that
f (tu)= (ι−1ξ̃ )(ul)

−1 f (t)

for all t ∈ T (A) and all u ∈ d(U ). The action of G(A∞) is via

(g f )(t)= (ι−1ξ̃ )(gl) f (td(g))

and the action of Gal(F/F) is via

(σ f )(t)= f ((r ◦Art−1
F )(σ )t).

The map that sends f to f̃ defined by

f̃ (t)= (ι−1
◦ ξ̃ )(t∞)−1(ι−1ξ̃ )(tl) f (t),

establishes an isomorphism between H 0(XU × F,Lξ̃ ) and the space of functions
f̃ : T (A)/T (Q)d(U )→Ql such that

f̃ (tu∞)= (ι−1
◦ ξ̃ )(u∞)−1 f̃ (t)

for all t ∈ T (A) and u∞ ∈ T (R). Now the action of G(A∞) is via right translation
((g f̃ )(t)= f̃ (td(g))) and the action of Gal(F/F) is via

(σ f̃ )(t)= (ι−1
◦ ξ̃ )(s∞)(ι−1ξ̃ )(sl)

−1 f̃ (st)

where s is a lift of (r ◦Art−1
F )(σ ) to T (A). From this it follows that we can write

H 0(X,Lξ̃ )=
⊕
ω̃

Qlυω̃

where ω̃ runs over continuous characters

T (A)/T (Q)→ C×

such that ω̃|T (R) = ξ̃−1, and where:

• the action of G(A∞) on υω̃ is via ι−1
◦ ω̃ ◦ d;

• the action of Gal(F/F) on υω̃ is via rl,ι(ω̃ ◦ r);

• and, if v is an infinite place of F , then (I × cv)υω̃ ∈Qlυω̃# .

In particular cupping with υδE/Q◦ν ∈ H 0(X,Ql) we see that

HomG(A∞)(ι
−1π, H i (X,Lξ ))∼= HomG(A∞)(ι

−1(π ⊗ (δE/Q ◦ ν)), H i (X,Lξ )).

If v is a place of F above infinity then I×cv defines a map XU×F F→ XU×F F ,
which in turn induces a map

H i (X,Lξ )→ H i (X,Lξ#).
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Composing this with the cup product with ω(sv)−1/2υω ∈ H 0(X,Lζ ), we get a
map

Iv : H i (X,Lξ )→ H i (X,Lξ ),

such that

• IvgIv = g#(ι−1
◦ω ◦ d)(g) for g ∈ G(A∞);

• and Ivσ Iv = (cvσcv)rl,ι((ψFφ)
c/(ψFφ))(σ ) for σ ∈ Gal(F/F).

Galois representations. Shin shows that

•
⊕

BC(π̃)=(ψ∞,5∞F ⊗φ
∞)

HomG(A∞)(ι
−1π̃ , H i (X,Lξ )) 6= (0) if and only if i =n−1;

•
⊕

BC(π̃)=(ψ∞,5∞F ⊗φ
∞)

HomG(A∞)(ι
−1π̃ , H n−1(X,Lξ ))

ss

∼= rl,ι(5)|
∨

Gal(F/F)
⊗ rl,ι((ψ

−1
F φ−1)2).

(See in particular Theorem 6.4, Corollary 6.5 and the proof of Lemma 3.1 of [Shin
2011]. The sums run over π̃ which only ramify above rational primes v, such that
all places of F+ above v split in F .) From the irreducibility of rl,ι(5)|Gal(F/F) we
see that at most two π̃ ’s can contribute to the latter sum. On the other hand if π̃
contributes so does π̃⊗(δE/Q◦ν), because one can cup with υδE/Q◦ν . Thus exactly
two π̃ ’s contribute. Choose one of them and from now on reserve the notation π
for this one. Thus we have the following.

• Suppose that π̃ is an irreducible representation of G(A∞) and j ∈ Z≥0 such
that

– if π̃ is ramified above a rational prime v, then all places of F+ above v
split in F ;

– BC(π̃)= (ψ∞,5∞F ⊗φ
∞);

– and HomG(A∞)(ι
−1π̃ , H j (X,Lξ )) 6= (0).

Then j = n− 1 and π̃ ∼= π or π ⊗ (δE/Q ◦ ν).

• HomG(A∞)(ι
−1π, H n−1(X,Lξ ))⊗ rl,ι(ψFφ)∼= rl,ι(5)|

∨

Gal(F/F)
.

• HomG(A∞)(ι
−1(π⊗(δE/Q◦ν)), H n−1(X,Lξ ))⊗rl,ι(ψFφ)∼= rl,ι(5)|

∨

Gal(F/F)
.

If v is an infinite place of F then the map

f 7→ Iv ◦ f ◦ Aπ

induces a map c̃v on

HomG(A∞)(ι
−1π, H n−1(X,Lξ ))⊗ rl,ι(ψFφ)

such that
c̃v ◦ σ ◦ c̃v = (cvσcv)
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for all σ ∈Gal(F/F). Because rl,ι(5)|
∨

Gal(F/F)
is irreducible, we conclude that c̃v

corresponds to a scalar multiple of rl,ι(5)
∨(cv). We can, and shall, replace c̃v by

a scalar multiple so that c̃2
v = 1, so that c̃v = ±rl,ι(5)

∨(cv). We finally have our
geometric realization of rl,ι(5)(cv). To prove our proposition it suffices to check
that the trace of c̃v on

HomG(A∞)(ι
−1π, H n−1(X,Lξ ))

is ±1. This we will do in the next section by working with the variations of Hodge
structure analogue of our l-adic sheaves.

3. Calculation of the trace of c̃v

We must recall an alternative construction of the sheaves Lξ , Lξ# and Lζ , which
will make sense also for variations of Hodge structures. First we recall the theory
of Young symmetrizers.

Young symmetrizers. Let k denote a field of characteristic 0 and let C denote a
Tannakian category over k in the terminology of [Deligne 1990]. Suppose that
e= (e1, . . . , en)∈Zn satisfies e1 ≥ e2 ≥ · · · ≥ en ≥ 0. Let Se denote the symmetric
group on the set Te of pairs of integers (i, j) with 1≤ i ≤ n and 1≤ j ≤ ei . Let S+e
denote the subgroup of Se consisting of elements σ with σ(i, j)= (i, j ′) some j ′

and let S−e denote the subgroup of Se consisting of elements σ with σ(i, j)= (i ′, j)
for some i ′. Further we set

A±e =
∑
σ∈S±e

(±)σσ ∈Q[Se],

where (+)σ = 1 and (−)σ denotes the sign of σ . Note that (A±e )
2
= (#S±e )A

±
e and

(A+e A−e )
2
=m(e)(A+e A−e ) and (A−e A+e )

2
=m(e)(A−e A+e ) for some nonzero integer

m(e) [Fulton and Harris 1991, Theorem 4.3]. If W is an object of C we define

Se(W )=W⊗Te A+e A−e ,

where Se acts on W⊗Te from the right by

(⊗t∈Tewt)h =⊗t∈Tewht .

Then Se is a functor from C to itself. Note that S(1,...,1)(W ) =
∧nW . Right

multiplication by A+e defines an isomorphism

Se(W )−→∼ W⊗Te A−e A+e ,
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with inverse given by right multiplication by m(e)−1 A−e . Thus we get natural
isomorphisms

Se(W )∨ = (W⊗Te A+e A−e )
∨
−→∼ (W∨)⊗Te A−e A+e −→∼ Se(W∨).

Let e′ = (e1+ 1, . . . , en + 1). Let

ι : Te′ −→
∼ T(1,...,1)qTe

be the bijection which sends (i, 1) to (i, 1) in the first part and, if j > 1, sends
(i, j) to (i, j − 1) in the second part. Then ι induces an isomorphism

ι∗ :W⊗n
⊗W⊗Te →W⊗Te′ .

Note that
A+e′ ◦ ι

∗
◦ (A−(1,...,1)⊗ A−e A+e )= (#S+e )(A

−

e′ A
+

e′ ) ◦ ι
∗

so that we get a natural surjection(∧nW
)
⊗Se(W )−→∼ W⊗n A−(1,...,1)⊗W⊗Te A−e A+e � W⊗Te′ A−e′ A

+

e′ −→
∼ S′e′(W ),

where the middle map is A+e′ ◦ι
∗. If W has rank n then this map is an isomorphism.

(This can be checked after applying a fibre functor where one can either count
dimension, or use the fact that the map is GL(W ) equivariant and

(∧nW
)
⊗Se(W )

is an irreducible GL(W )-module.) Thus for any e = (e1, . . . , en) ∈ (Z
n)+ and any

W of rank n we can define

Se(W )= Se′(W )⊗
(∧nW

)⊗− f

where f ∈ Z satisfies f ≥ −en and where e′ = (e1+ f, . . . , en + f ). We see that
up to natural isomorphism this does not depend on the choice of f .

Lemma 3.1. If e ∈ (Zn)+ equals (e1, . . . , en) set e∗ = (−en, . . . ,−e1) ∈ (Z
n)+. If

W has rank n then there are natural isomorphisms

Se+( f, f,..., f )(W )∼= Se(W )⊗S( f, f,..., f )(W )

and
Se(W )∼= Se∗(W∨).

Proof. The first assertion has already been proved so we turn to the second. We may
reduce to the case en≥0 and we may choose f ∈Z≥e1 . Set e′= ( f−en, . . . , f−e1).
Then it will suffice to show that

Se(W )∼= Se′(W )∨⊗
(∧nW

)⊗ f
.

It even suffices to find a nontrivial natural map

Se(W )⊗Se′(W )→
(∧nW

)⊗ f
= (W⊗T( f,..., f ))A−( f,..., f ).
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(For this then gives a nontrivial natural map Se(W )→Se′(W )∨⊗
(∧nW

)⊗ f , which
we can check is an isomorphism after applying a fibre functor, in which case the
left and right hand sides become irreducible GL(W )-modules.) To this end let ι
denote the bijection

ι : T( f,..., f ) −→
∼ TeqTe′

which sends (i, j) to (i, j) if j ≤ ei and to (n+ 1− i, f + 1− i) if j > ei , and let
ι∗ denote the induced map

W⊗Te ⊗W
⊗

Te′ −→∼ W
⊗

T( f,..., f ) .

Then we consider the map

A−( f,..., f ) ◦ ι
∗
: Se(W )⊗Se′(W )→ S( f,..., f )(W ).

We must show that if W has rank n then this map is nontrivial. We can reduce
this to the case of Q-vector spaces by applying a fibre functor. In this case let
w1, . . . , wn be a basis of W . Consider the element

x = (⊗Te ut)A−e ⊗ (⊗Te′
vt)A−e′ ∈W⊗Te ⊗W⊗Te′

where u(i, j) = wi and v(i, j) = wn+1−i . Then

(ι∗x)A−( f,..., f ) =

(∏ f
i=1(#{ j : e j < i})!(#{ j : e j ≥ i})!

)
(⊗T( f,..., f )xt)A−( f,..., f )

6= 0,

where x(i, j) = wi . The lemma follows. �

The relative cohomology of A/XU . If $ denotes the projection map from the
universal abelian variety A to XU then we decompose

R1$∗Ql =
⊕

τ∈Hom(F,C)

Lτ

where Lτ is the subsheaf of R1$∗Ql where the action of F coming from the
endomorphisms of the universal abelian variety is via ι−1τ . The sheaves Lτ on
the inverse system of the XU ’s carry a natural action of G(A∞) (coming from
the action of G(A∞) on the inverse system of the A/XU . Let Stdτ denote the
representation of G ×Q C on V ⊗F,τ C, so that Stdτc ∼= ν Std∨τ . Then Lτ

∼= LStd∨τ
with the G(A∞)-actions. We also define an action of G(A∞) on the sheaves
Ql(1) by letting g : g∗Ql(1)→ Ql(1) be ν(gl)

−1 times the canonical map. Then
Lνm ∼=Ql(m) with the G(A∞)-actions. Moreover the Weil pairing gives G(A∞)-
equivariant isomorphisms

Lτ
∼= L∨τc⊗Ql(−1)

corresponding to LStd∨τ
∼= LStdτc ⊗Lν−1 .
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Suppose that ξ̃ is an irreducible representation of G ×Q C with highest weight
(b̃0, b̃τ,i )τ |E=τ0|E . Then we see that

Lξ̃
∼=

( ⊗
τ |E=τ0|E

S(b̃τ,1,...,b̃τ,n)(L
∨

τ )

)
⊗Ql(b̃0),

with their G(A∞)-actions.
Note that there are natural isomorphisms I ∗Lτ

∼=Lτc and hence, by Lemma 3.1,
natural isomorphisms

I ∗
( ⊗
τ |E=τ0|E

S(b̃τ,1,...,b̃τ,n)(L
∨

τ )

)
⊗Ql(b̃0)

∼=

( ⊗
τ |E=τ0|E

S(b̃τ,1,...,b̃τ,n)(L
∨

τc)

)
⊗Ql(b̃0)

∼=

( ⊗
τ |E=τ0|E

S(b̃τ,1,...,b̃τ,n)(Lτ (1))
)
⊗Ql(b̃0)

∼=

( ⊗
τ |E=τ0|E

S(−b̃τ,n,...,−b̃τ,1)(L
∨

τ )

)
⊗Ql

(
b̃0+

∑
τ |E=τ0|E

∑
i

bτ,i
)
.

This isomorphism coincides up to scalar multiples with our previous isomorphism
I ∗Lξ̃

∼= Lξ̃# of (2-1).

Betti realizations. Fix σ : F ↪→C which gives rise to our infinite place v of F and
suppose that σ |E = τ0|E . Set XU,σ (C) to be the complex manifold (XU×F,σC)(C).
If τ : F ↪→ C let Lτ denote the maximal subsheaf of R1$∗C on XU,σ (C) where
the action of F from endomorphisms of the universal abelian variety is via τ . The
system of locally constant sheaves Lτ have a natural action of G(A∞). Also let
C(1) denote the constant sheaf and endow the system of sheaves C(1)/XU,σ (C)

with an action of G(A∞) by letting g : g∗C(1)→C(1) be |ν(g)|−1 times the natural
map. Then

Lτ ∼= L∨τc⊗C(−1).

If ξ̃ is the irreducible representation of G×QC with highest weight (b̃0,b̃τ,i )τ |E=τ0|E ,
then we define a locally constant sheaf of finite-dimensional C-vector spaces L ξ̃
on XU,σ (C) as ( ⊗

τ |E=τ0|E

S(b̃τ,1,...,b̃τ,n)(L
∨

τ )

)
⊗C(b̃0).

Then L ξ̃ is the locally constant sheaf associated to the pull back of Lξ̃ to XU×F,σC,
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thought of as a sheaf of C-vector spaces via ι−1. This correspondence is G(A∞)-
equivariant. Note that by Lemma 3.1 if ξ̃ ′ is one-dimensional then

L ξ̃ ⊗ L ξ̃ ′ −→
∼ L ξ̃⊗ξ̃ ′ .

Let c XU,σ (C) denote the complex conjugate complex manifold of XU,σ (C),
that is, the same topological space but with complex conjugate charts. Then I × c
induces an isomorphism

I × c : XU,σ (C)−→
∼ c XU,σ (C).

As we described above in the l-adic setting, Lemma 3.1 together with the isomor-
phisms Lτ ∼= L∨τc⊗C(−1) gives rise to an isomorphism

(I × c)∗L ξ̃ ∼= L ξ̃#

compatible with the corresponding isomorphism in the l-adic setting (I ∗Lξ̃
∼=Lξ̃#).

We set
H i (Xσ (C), L ξ̃ )= lim

→U
H i (XU,σ (C), L ξ̃ )

which is naturally a G(A∞)-module and which satisfies

H i (Xσ (C), L ξ̃ )∼= H i (X,Lξ̃ )⊗Ql ,ι
C

as C[G(A∞)]-modules. Again as in the l-adic setting we have a decomposition

H 0(Xσ (C), Lζ )=
⊕
ω̃

Cυω̃,B,

where ω̃ runs over continuous characters

T (A)/T (Q)→ C×

with ω̃|T (R) = ζ−1, and where G(A∞) acts on υω̃,B via ω̃ ◦ d . If we define

Iv,B : H i (Xσ (C), Lξ )→ H i (Xσ (C), Lξ )

to be the composite

H i (Xσ (C), Lξ )
I×c
−→ H i (Xσ (C), Lξ#)

∪υω,B
−→ H i (Xσ (C), Lξ ).

Then under the isomorphism H i (Xσ (C), Lξ )∼= H i (X,Lξ )⊗Ql ,ι
C, this map Iv,B

corresponds to a scalar multiple of the previous map Iv ⊗ 1.
Again we can define a map c̃v,B on

HomG(A∞)(π, H n−1(Xσ (C), Lξ ))∼= Cn

to be the map which sends

f 7→ Iv,B ◦ f ◦ Aπ .
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Then c̃v,B corresponds to a scalar multiple of the map c̃v previously defined on
HomG(A∞)(ι

−1π, H n−1(X,Lξ )). Rescaling c̃v,B we may, and shall, suppose that
c̃2
v,B = 1, in which case it corresponds to ±c̃v. Then it suffices to show that the

trace of c̃v,B is ±1.

Variation of Hodge structures I: generalities. We begin with a rather lengthy re-
minder about variations of pure Hodge structures on complex manifolds. We do
this because we have not found a single clear reference for all the material we need,
although it is all standard.

Recall that a (pure) R-Hodge structure of weight w is a finite-dimensional R-
vector space H together with a decreasing, exhaustive and separated filtration Fil i

on the C-vector space H ⊗R C such that

H ⊗R C= Fil i (H ⊗R C)⊕ (1⊗ c)Filw−1−i (H ⊗R C)

for all i . In this case H ⊗R C=
⊕

i H i,w−i , where

H i,w−i
= (Fil i H ⊗R C)∩ (1⊗ c)(Filw−i H ⊗R C).

By a polarization on (H, {Fil i
}) we mean a perfect bilinear pairing

〈 , 〉 : H × H → R

such that the 〈 , 〉-orthogonal complement of Fil i H ⊗R C is Filw−1−i H ⊗R C

and such that the following property holds. Define a sesquilinear pairing ( , ) on
H ⊗R C by extending 〈 , 〉 to a C-bilinear pairing on H ⊗C and defining

(x, y)=
√
−1
−w
〈x, (1⊗ c)y〉.

Note that ( , ) restricts to a perfect sesquilinear pairing on each H i,w−i . We require
that ( , ) is Hermitian (i.e., (y, x)= c(x, y)) and that the restriction of (−1)i ( , )
to H i,w−i is positive definite. If φ : (H1, {Fil i

1})→ (H2, {Fil i
2}) is a map of R-Hodge

structures (i.e., a linear map φ : H1→ H2 such that φ ⊗ 1 maps Fil i H1 ⊗R C to
Fil i H2⊗R C for all i) then

(φ⊗ 1)(Fil i H1⊗R C)= (Fil i H2⊗R C)∩ (φ(H1)⊗R C)

for all i . It follows that the category of R-Hodge structures of weightw is an abelian
category. The restriction of a polarization to a subobject is again a polarization and
the orthogonal complement of the subobject is again a subobject. It follows that the
full subcategory of polarizable pure Hodge structures is also (semisimple) abelian.
The direct sums of over all integers w of the abelian category of R-Hodge struc-
tures of weight w and of the abelian category of polarizable R-Hodge structures of
weight w are Tannakian. We will refer to them as the categories of pure R-Hodge
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structures and of pure polarizable R-Hodge structures; although strictly speaking
their objects are not pure, but direct sums of pure objects.

A (pure) C-Hodge structure of weight w is a C-vector space H together with
two decreasing, exhaustive and separated filtrations Fil i and Fil i on H such that
H =Fil i H⊕Filw−1−i H for all i . If H= (H, {Fil i

}, {Fil i
}) is a C-Hodge structure

of weight w then we define the underlying R-Hodge structure to be

(H, {Fil i H ⊕Fil i H}),

where
H ⊗R C−→∼ H ⊕ H ⊃ Fil i H ⊕Fil i H

is given by x ⊗ a 7→ (ax, (ca)x). This establishes an equivalence of categories
between C-Hodge structures of weight w and R-Hodge structures of weight w
with an action of C. If H= (H, {Fil i

}, {Fil i
}) is a C-Hodge structure of weight R

then H =
⊕

H i,w−i , where H i,w−i
= Fil i H ∩ Filw−i H . By a polarization on H

we mean a perfect Hermitian pairing

( , ) : H × H → C,

such that for all i the orthogonal complement of Fil i H is Filw−1−i H and the
restriction of (−1)i ( , ) to H i,w−i is positive definite. This is equivalent to a
polarization 〈 , 〉 of the underlying R-Hodge structure such that

〈ax, y〉 = 〈x, (ca)y〉

for all a ∈ C and x, y ∈ H . The equivalence is given by

〈x, y〉 = Re
√
−1

w
(x, y).

The category of polarizable C-Hodge structures of weightw is the full subcategory
of the category of C-Hodge structures of weight w whose objects are those that
admit a polarization. It is closed under taking subobjects and quotients. By the
category of (polarizable) pure C-Hodge structures we mean the direct sum over
w of the categories of (polarizable) C-Hodge structures of weight w. They are
Tannakian categories. (Again objects of these categories are not strictly speaking
pure, but the direct sum of pure objects of different weights.)

If (H, {Fil i
}) is an R-Hodge structure of weight w then we define

(H, {Fil i
})⊗C= (H ⊗R C, {Fil i

}, {(1⊗ c)Fil i
}),

a C-Hodge structure of weightw. If (H, {Fil i
}) is polarizable, so is (H, {Fil i

})⊗C.
(Define (x ⊗ a, y⊗ b)=

√
−1
−w

a(cb)〈x, y〉.)
If H= (H, {Fil i

}, {Fil i
}) is a C-Hodge structure we define its complex conjugate

cH= (H, {Fil i
}, {Fil i

}).
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Recall also that a variation of R-Hodge structures H of weight w on a complex
manifold Y is a pair (H, {Fil i

}), where H is a locally constant sheaf of finite-
dimensional R-vector spaces, where {Fil i

} is an exhaustive, separated, decreasing
filtration of H ⊗R OY by local OY -direct summands, such that

• the pull back of H to any point of Y is a pure C-Hodge structure of weight w,

• and 1⊗ d : Fil i (H ⊗R OY )→ (Fil i−1(H ⊗R OY ))⊗OY �
1
Y .

If φ : H1→ H2 is a morphism of variation of R-Hodge structures of weight w on
Y then (φ⊗1)Fil i (H1⊗R OY )= ((φH1)⊗R OY )∩Fil i (H2⊗R OY ). It follows that
the category of variations of R-Hodge structures of weight w on Y is abelian. By
a polarization on H we mean a perfect bilinear pairing

〈 , 〉 : H × H → R

whose pull-back to any point of Y is a polarization. The full subcategory of the
category of variations of R-Hodge structures of weight w on Y consisting of po-
larizable objects is a semisimple abelian subcategory closed under taking subob-
jects and quotients. By the category of (polarizable) pure variations of R-Hodge
structures on Y we mean the direct sum over w of the categories of (polarizable)
variations of R-Hodge structures of weightw on Y . They are Tannakian categories.
(Again objects of these categories are not strictly speaking pure, but the direct sum
of pure objects of different weights.)

The pull back of a (polarizable) variation of R-Hodge structures of weight w
by any morphism is clearly again a (polarizable) variation of R-Hodge structures
of weight w. If Y is a compact Kähler manifold and H is a polarizable variation
of R-Hodge structures of weight w on Y then H i (Y, H) has a natural structure of
a polarizable R-Hodge structure of weight i +w [Zucker 1979, Theorem (2.9)].
More precisely, we define �•(H) to be the complex

H ⊗R OY → H ⊗R�
1
Y → H ⊗R�

2
Y → · · · ,

and filter it by setting Fil i �•(H) to be the subcomplex

Fil i (H ⊗R OY )→ Fil i−1(H ⊗R OY )⊗OY �
1
Y → Fil i−2(H ⊗R OY )⊗OY �

2
Y → · · · .

Then the spectral sequence

E i, j
1 = Hi+ j (Y, gri �•(H))⇒ Hi+ j (Y, �•(H))∼= H i+ j (Y, H)⊗R C

degenerates at E1 and defines the (Hodge) filtration on H i (Y, H)⊗R C.
If f : X → Y is a smooth family of compact Kähler manifolds over a complex

manifold Y then Ri f∗R is naturally a polarizable variation of R-Hodge structures
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of weight i . (See the Introduction and first two sections of [Zucker 1979].) More
precisely, let �•X/Y denote the complex

OX →�1
X/Y →�2

X/Y → · · ·

and let Fil i �•X/Y denote the subcomplex

�i
X/Y →�i+1

X/Y → · · ·

Then the filtration on (Ri f∗R)⊗OY ∼=Ri f∗�•X/Y is the one induced by the spectral
sequence

E i, j
1 = R j f∗�i

X/Y ⇒ Ri+ j f∗�•X/Y
∼= Ri+ j f∗R⊗R OY .

If moreover Y is a compact Kähler manifold then the Leray spectral sequence

E i, j
2 = H i (Y, R j f∗R)⇒ H i+ j (X,R)

degenerates at E2 and the R-Hodge structure on H i (Y, R j f∗R) is compatible with
the R-Hodge structure on H i+ j (X,R) [Zucker 1979, Proposition (2.16)].

By a variation of C-Hodge structures H of weight w on a complex manifold
Y we mean a triple (H, {Fil i

}, {Fil i
}), where H is a locally constant sheaf of

finite-dimensional C-vector spaces, {Fil i
} is an exhaustive, separated, decreasing

filtration of H ⊗C OY by local OY -direct summands, and {Fil i
} is an exhaustive,

separated, decreasing filtration of H⊗COcY by local OcY -direct summands such that

• the pull back of H to any point of Y is a pure C-Hodge structure of weight w,

• 1⊗ d : Fil i (H ⊗C OY )→ (Fil i−1(H ⊗C OY ))⊗OY �
1
Y ,

• and 1⊗ d : Fil i (H ⊗C OcY )→ (Fil i−1(H ⊗C OcY ))⊗OcY �
1
cY .

(Recall that cY denote the same underlying topological space as Y but with complex
conjugate charts.) If H is a variation of C-Hodge structures of weight w on Y then
(H, {Fil i

⊕(1⊗ c)Fil i
}) is a variation of R-Hodge structures of weight w on Y ,

where we think of Fil i
⊕(1⊗ c)Fil i contained in

(H ⊗C OY )⊕ (1⊗ c)(H ⊗C OcY )= (H ⊗C OY )⊕ (H ⊗C,c OY )= H ⊗R OY .

This establishes an equivalence of categories between variations of C-Hodge struc-
tures of weight w on Y and variations of R-Hodge structures of weight w on Y
together with an action of C. Thus the category of variations of C-Hodge struc-
tures of weight w on Y is abelian. By the category of pure variations of C-Hodge
structures of weight w on Y we mean the direct sum over w of the categories of
variations of C-Hodge structures of weight w. It is a Tannakian category. (Again
the objects are not strictly speaking pure, but the direct sum of pure objects of
different weights.)
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By a polarization of a variation of C-Hodge structures of weight w on Y we
mean a perfect Hermitian pairing

( , ) : H × H → C

such that the pull back to any point of Y is a polarization. The category of po-
larizable C-Hodge structures of weight w on Y is equivalent to the category of
R-Hodge structures of weight w on Y together with an action of C, which admit
a polarization for which the adjoint of any a ∈ C is ca. Thus the category of
polarizable variations of C-Hodge structures of weight w on Y is a full abelian
subcategory of the category of variations of C-Hodge structures of weight w on Y
and is closed under subobjects and quotients. By the category of pure polarizable
variations of C-Hodge structures of weight w on Y we mean the direct sum over
w of the categories of variations of C-Hodge structures of weight w. It is again a
Tannakian category. (And again the objects are not strictly speaking pure, but the
direct sum of pure objects of different weights.)

If (H, {Fil i
}) is a variation R-Hodge structures of weight w on Y then we define

(H, {Fil i
})⊗C= (H ⊗R C, {Fil i

}, {(1⊗ c)Fil i
}),

a variation of C-Hodge structures of weight w on Y . If (H, {Fil i
}) is polarizable

then so is (H, {Fil i
})⊗C. (Define (x ⊗ a, y⊗ b)=

√
−1
−w

a(cb)〈x, y〉.)
If H= (H, {Fil i

}, {Fil i
}) is a variation of C-Hodge structures of weight w on Y

we define its complex conjugate cH= (H, {Fil i
}, {Fil i

}).
The pull back of a (polarizable) variation of C-Hodge structures of weight w by

any morphism is clearly again a (polarizable) variation of C-Hodge structures of
weight w. If Y is a compact Kähler manifold and H is a polarizable variation of
C-Hodge structures of weight w on Y then H i (Y, H) has a natural structure of a
polarizable C-Hodge structure of weight i +w). More precisely, define �•Y (H) to
be the complex

H ⊗C OY → H ⊗C�
1
Y → H ⊗C�

2
Y → · · ·

filtered by setting Fil i �•Y (H) to be the subcomplex

Fil i (H ⊗C OY )→ Fil i−1(H ⊗C OY )⊗OY �
1
Y → Fil i−2(H ⊗C OY )⊗OY �

2
Y → · · · ;

similarly �•cY (H) is the complex

H ⊗C OcY → H ⊗C�
1
cY → H ⊗C�

2
c Y → · · ·

with Fil i �•cY (H)) the subcomplex

Fil i (H⊗C OcY )→ Fil i−1(H⊗C OcY )⊗OcY �
1
cY → Fil i−2(H⊗C OcY )⊗OcY �

2
cY . . . .
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Then the spectral sequences

E i, j
1 = Hi+ j (Y, gri �•Y (H))⇒ Hi+ j (Y, �•Y (H))∼= H i+ j (Y, H)

and

E i, j
1 = Hi+ j (cY, gri �•cY (H))⇒ Hi+ j (Y, �•cY (H))

∼= H i+ j (Y, H)

degenerate at E1 and define the (Hodge) filtrations on H i (Y, H). (This can be
easily deduced from the corresponding facts for variations of R-Hodge structures.)

If f : X → Y is a smooth family of compact Kähler manifolds over a complex
manifold Y then Ri f∗C is naturally a polarizable variation of C-Hodge structures
of weight i . More precisely, the filtrations on (Ri f∗C)⊗C OY ∼= Ri f∗�•X/Y and
(Ri f∗C)⊗C OcY ∼= Ri f∗�•c X/cY are the ones induced by the spectral sequences

E i, j
1 = R j f∗�i

X/Y ⇒ Ri+ j f∗�•X/Y
∼= Ri+ j f∗C⊗C OY

and

E i, j
1 = R j f∗�i

c X/cY ⇒ Ri+ j f∗�•c X/cY
∼= Ri+ j f∗C⊗C OcY .

If moreover Y is a compact Kähler manifold then the Leray spectral sequence

E i, j
2 = H i (Y, R j f∗C)⇒ H i+ j (X,C)

degenerates at E2 and the C-Hodge structure on H i (Y, R j f∗C) is compatible with
the C-Hodge structure on H i+ j (X,C). (Again this is all easily deduced from the
case of R-Hodge structures.)

For example C(m) is the variation of pure C-Hodge structures of weight −2m
with underlying locally constant sheaf C and with Fil i

= (0) and Fil i
= (0) for

i >−m, but with Fil i and Fil i everything for i ≤ m.
If H= (H, {Fil i

}, {Fil i
}) is a variation of pure C-Hodge structures of weight w

on Y we define a variation pure C-Hodge structures H{ j1, j2} of weight w+ j1+ j2
on Y by setting H{ j1, j2} = H and

Fil i H{ j1, j2}⊗C OY = Fil i− j1 H ⊗C OY ,

Fil i H{ j1, j2}⊗C OcY = Fil i− j2 H ⊗C OcY .

Thus C( j)= C(0){− j,− j}.

Variation of Hodge structures II. We will give C( j) (the constant variation of
pure C-Hodge structures of weight−2 j on XU,σ (C)) an action of G(A∞) by letting
g : g∗C( j)→C( j) be |ν(g)− j

| times the natural map. If H/XU,σ (C) is a collection
of variations of pure C-Hodge structures with an action of G(A∞) we will give
H{ j1, j2} the action induced from the one on H. Thus the actions of G(A∞) on
C( j) and C(0){− j,− j} are different.
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R1$∗C is a variation of pure C-Hodge structures of weight 1 on XU,σ (C) and
we can decompose

R1$∗C=
⊕

τ∈Hom(F,C)

Lτ

where Lτ is a variation of pure C-Hodge structures of weight 1 extending Lτ . The
projective system of variations of pure C-Hodge structures Lτ/XU,σ (C) as U varies
has an action of G(A∞). We have G(A∞)-equivariant isomorphisms

Lτ ∼= L∨τc⊗C(−1).

Also, if σ, τ ∈ HomE,τ0(F,C) then(∧n
Lτ
)
/XU,σ (C)

is noncanonically isomorphic to C{0, n} if σ 6= τ and to C{1, n−1} if σ = τ . This
identification is not G(A∞)-equivariant.

For ξ̃ an irreducible representation of G×Q C with highest weight (b̃0, b̃τ,i ), we
can then define a variation of pure C-Hodge structures Lξ̃ of weight

−2b̃0−
∑

τ |E=τ0|E

∑
i

b̃τ,i

extending L ξ̃ by

Lξ̃ =

( ⊗
τ |E=τ0|E

S(b̃τ,1,...,b̃τ,n)(L
∨

τ )

)
⊗C(b̃0).

Again the system Lξ̃/XU,σ (C) has an action of G(A∞). Again by Lemma 3.1 we
see that if ξ̃ ′ is one-dimensional then there is a natural isomorphism

Lξ̃ ⊗ Lξ̃ ′ −→
∼ Lξ̃⊗ξ̃ ′ .

We set
H i (Xσ (C), Lξ̃ )= lim

→U
H i (XU,σ (C), Lξ̃ ).

It is a direct limit of pure C-Hodge structures with an action of G(A∞), such that
the fixed subspace of any open subgroup of G(A∞) is a (finite-dimensional) pure
C-Hodge structure of weight w = i − 2b̃0−

(∑
τ |E=τ0|E

∑
j b̃τ, j

)
.

If b̃τ, j = b̃τ is independent of j for all τ ∈ HomE,τ0(F,C) and if σ |E = τ0|E

then
Lξ̃
∼= C(0){−b̃σ − b̃0, b̃σ − b̃0− n

∑
τ∈HomE,τ0 (E,C)

b̃τ }

noncanonically on XU,σ (C). If

ω̃ : T (A)/T (Q)−→ C×
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is a continuous character with ω̃|T (R) = ξ̃−1 then υω̃,B spans a sub pure C-Hodge
structure of H 0(Xσ (C), Lξ̃ ) isomorphic to

C(0){−b̃σ − b̃0, b̃σ − b̃0− n
∑

τ∈HomE,τ0 (E,C)

b̃τ }.

The choice of ω̃ fixes an equivariant isomorphism

Lξ̃
∼= C(0){−b̃σ − b̃0, b̃σ − b̃0− n

∑
τ∈HomE,τ0 (E,C)

b̃τ }(ω̃ ◦ d).

The map (I × c) : XU,σ (C)→
c XU,σ (C) lifts to a map Aσ (C)→

cAσ (C). We
deduce that there is a natural isomorphism

(I × c)∗Lτ ∼= cLτc,

and hence applying Lemma 3.1 and the isomorphism Lτ ∼= L∨τc ⊗ C(−1) we get
natural isomorphisms

(I × c)∗Lξ̃ ∼=
cLξ̃#

extending our previous isomorphism (I × c)∗L ξ̃ ∼= L ξ̃# . Thus we get maps

H i (Xσ (C), Lξ̃ )→ H i (c Xσ (C), cLξ̃#)∼=
c H i (Xσ (C), Lξ̃#).

Now suppose that σ |E = τ0|E . The line Cυω,B is a subpure C-Hodge structure
of H 0(c Xσ (C), cLζ ) isomorphic to C{γ,−γ } with

γ = α+ 2βσ − n
∑

τ∈HomE,τ0 (F,C)

(βτ +α/2).

Thus the cup product map

∪υω,B :
cLξ# → (cLξ ){−γ, γ }

is a map of variations of pure C-Hodge structures. Thus the map

Iv,B : H i (Xσ (C), Lξ )→ H i (Xσ (C), Lξ )

extends to a map of pure C-Hodge structures

Iv,B : H i (Xσ (C), Lξ )→ (c H i (Xσ (C), Lξ )){−γ, γ },

or to a map of pure C-Hodge structures

Iv,B :H i (Xσ (C), Lξ ){ε+βσ , ε
′
−α−βσ }→

c(H i (Xσ (C), Lξ ){ε+βσ , ε
′
−α−βσ }).(

Note that ε′−α−βσ − (ε+βσ )=−α−2βσ +n
∑

τ∈HomE,τ0 (F,C)
(βτ +α/2)=−γ.

)
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If we set

H= HomG(A∞)(π, H n−1(Xσ (C), Lξ )){ε+βσ , ε
′
−α−βσ },

then H is a pure C-Hodge structure of weight w = n − 1− α ∈ 2Z. We see that
c̃v,B extends to a map of pure C-Hodge structures:

c̃v,B : H→ cH

with c̃2
v,B = 1. Moreover we see that c̃v,B interchanges Filw/2−1 H and Filw/2−1H,

and that these two spaces have trivial intersection. We deduce that

| tr c̃v,B | ≤ n− 2 dimC Filw/2−1 H

= dimC Filw/2H− dimC Filw/2−1 H

= dimC Filw/2 H− dimC Filw/2−1 H

= dimC grw/2 H= grw/2−ε−βσ HomG(A∞)(π, H n−1(Xσ (C), Lξ )).

Cupping with υδE/Q◦ν,B shows that

dimC grw/2−ε−βσ HomG(A∞)(π, H n−1(Xσ (C), Lξ ))

= dimC grw/2−ε−βσ HomG(A∞)(π ⊗ (δE/Q ◦ ν), H n−1(Xσ (C), Lξ )).

Thus it suffices to show that

dimC

⊕
BC(π̃)=(ψ∞,5∞F ⊗φ

∞)

grw/2−ε−βσ HomG(A∞)(π, H n−1(Xσ (C), Lξ ))≤ 2.

However the proof of Corollary 6.7 of [Shin 2011] shows this. (Note that the
constant CG = τ(G)# ker1(Q,G) of [Shin 2011] in our case equals 2.) So we have
finally completed the proof of Proposition 1.2.
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Betti numbers of graded modules
and the multiplicity conjecture

in the non-Cohen–Macaulay case
Mats Boij and Jonas Söderberg

We use results of Eisenbud and Schreyer to prove that any Betti diagram of
a graded module over a standard graded polynomial ring is a positive linear
combination of Betti diagrams of modules with a pure resolution. This implies
the multiplicity conjecture of Herzog, Huneke, and Srinivasan for modules that
are not necessarily Cohen–Macaulay and also implies a generalized version of
these inequalities. We also give a combinatorial proof of the convexity of the
simplicial fan spanned by pure diagrams.

1. Introduction

The formula for the multiplicity of a standard graded algebra with a pure resolution
found by C. Huneke and M. Miller [Huneke and Miller 1985], led to the formula-
tion of the multiplicity conjecture by Huneke and H. Srinivasan, which was later
generalized and published by J. Herzog and Srinivasan [Herzog and Srinivasan
1998]. J. Migliore, U. Nagel and T. Römer [Migliore et al. 2008a] extended the
conjecture to modules and strengthened it.

In a series of papers [Srinivasan 1998; Gold 2003; Guardo and Van Tuyl 2005;
Migliore et al. 2005; 2008b; Römer 2005; Francisco 2006; Herzog and Zheng 2006;
Kubitzke and Welker 2006; Miró-Roig 2006; Francisco and Van Tuyl 2007; Gold
et al. 2007; Seo and Srinivasan 2007; Zanello 2007; Goff 2008; Hibi and Singla
2008; Puthenpurakal 2008] different versions of the multiplicity conjecture have
been proven in many special cases. An exposition of most of these results can be
found in [Francisco and Srinivasan 2007].

Recently D. Eisenbud and F.-O. Schreyer [2009] proved the strongest version
of the conjecture for Cohen–Macaulay modules by proving a set of conjectures
formulated in [Boij and Söderberg 2008] on the set of possible Betti diagrams up
to multiplication by positive rational numbers. Eisenbud and Schreyer introduced
a set of linear functionals defined on the space of possible Betti diagrams. The

MSC2000: primary 13D02; secondary 13A02.
Keywords: graded modules, Betti numbers, multiplicity conjecture.
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linear functionals are given by certain cohomology tables of vector bundles on
Pn−1, and they showed that the supporting hyperplanes of the exterior facets of the
simplicial fan given by the pure Betti diagrams are given by the vanishing of these
linear functionals, while the functionals are nonnegative on the Betti diagram of
any minimal free resolution.

In this paper we generalize the construction given in [Boij and Söderberg 2008]
to include Cohen–Macaulay pure Betti diagrams of various codimensions. We show
that linear functionals similar to those introduced by Eisenbud and Schreyer define
the supporting hyperplanes of the simplicial fan. Furthermore, these new linear
functionals are limits of the Eisenbud–Schreyer functionals, which allows us to con-
clude that all Betti diagrams of graded modules can be uniquely written as positive
linear combinations of pure diagrams in totally ordered chains. Together with the
existence of modules with pure resolutions, proved by D. Eisenbud, G. Fløystad
and J. Weyman [Eisenbud et al. 2011] in characteristic zero and by Eisenbud
and Schreyer [Eisenbud and Schreyer 2009] in general, this gives a complete
classification of the possible Betti diagrams up to multiplication by scalars.

As a consequence, we get the multiplicity conjecture for algebras and modules
that are not necessarily Cohen–Macaulay. In fact, we get a stronger version of
the inequalities of the multiplicity conjecture in terms of the Hilbert series of the
module which is bounded from below by the Hilbert series corresponding to the
lowest shifts in a minimal free resolution while it is bounded from above by the
Hilbert series corresponding to the highest shifts in the first s + 1 terms of the
resolution, where s is the codimension of the module.

We also give a combinatorial proof of the convexity of the simplicial fan spanned
by the pure diagrams, even though this convexity is an implicit consequence of the
results involving the linear functionals.

Furthermore, we show that if we choose the basis of pure diagrams in a certain
way, all the coefficients in the expansion of an actual Betti diagram into a chain of
pure diagrams are nonnegative integers.

Remark 1.1. Before the submission of this paper, Eisenbud and Schreyer [2010]
have gone further on the side of cohomology tables and extended their results from
vector bundles to coherent sheaves. Apart from the addition of two remarks, this
manuscript is in its original form and is not dependent on these newer developments.

2. The partially ordered set of pure Betti diagrams

Let R = k[x1, x2, . . . , xn] be the polynomial ring with the standard grading. For
any finitely generated graded module M , we have a minimal free resolution

0←− M←− F0←− · · · ←− Fn−1←− Fn←− 0,
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where
Fi =

⊕
j∈Z

R(− j)βi, j , i = 0, 1, . . . , n,

and we get that the Hilbert series of M can be recovered from the Betti numbers,
βi, j , by

H(M, t)=
1

(1− t)n

n∑
i=0

∑
j∈Z

(−1)iβi, j t j .

It was noted by Herzog and M. Kühl [Herzog and Kühl 1984] that this gives us s
linearly independent equations

n∑
i=0

∑
j∈Z

(−1)iβi, j jm
= 0, m = 0, 1, . . . , s− 1,

where s is the codimension of M .
Furthermore, they proved that in the case when M is Cohen–Macaulay and the

resolution is pure, that is, if Fi = R(−di ) for some integers d0, d1, . . . , ds , we get
a unique solution (up to scalar multiples) to these equations given by

βi, j =


(−1)i

s∏
j=0
j 6=i

1
d j−di

, j = di ,

0, j 6= di ,

for i = 0, 1, . . . , s.

Definition 2.1. For an increasing sequence of integers d = (d0, d1, . . . , ds), where
0≤ s ≤ n, we denote by π(d) the matrix in Qn−1

×QZ given by

π(d)i, j = (−1)i
s∏

j=0
j 6=i

1
d j−di

, for j = di

and zero elsewhere. We will call this the pure diagram given by the degree sequence
d = (d0, d2, . . . , ds). We will use the notation di (π) to denote the degree, di , when
π = π(d)= π(d0, d1, . . . , ds).

For degree sequences with d0 = 0, we will also use the normalized pure diagram

π̄(d)= d1d2 · · · dsπ(d)

so that normalized pure diagrams have π̄0,0 = 1.

We define a partial ordering on the set of pure diagrams, extending the ordering
used for Cohen–Macaulay diagrams of a fixed codimension.
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Definition 2.2. We say that π(d0, d1, . . . , ds)≤ π(d ′0, d ′1, . . . , d ′t ) if the s ≥ t and
di ≤ d ′i for i = 0, 1, . . . , t .

As in the case of Cohen–Macaulay pure diagrams, we get a simplicial structure
given by the maximal chains of pure diagrams, which spans simplicial cones. In
order to have maximal chains in this setting, we have to fix a bound on the region
we are considering. We can do this by restricting the degrees to be in a given region
M+ i ≤ di ≤ N + i . We will denote the subspace generated by Betti diagrams with
these restrictions by BM,N =Qn+1

×QN−M+1. Furthermore, we denote by Bs
M,N

the subspace of BM,N of diagrams satisfying the s first Herzog–Kühl equations.

Proposition 2.3. For s = 0, 1, . . . , n, we have that any maximal chain of pure
diagrams of codimension at least s in BM,N form a basis for Bs

M,N .

Proof. For any interval of length one π < π ′ there is a unique nonzero entry in
π which is zero in all pure diagrams above π ′. Thus the pure diagrams in any
maximal chain are linearly independent. The number of elements in any maximal
chain of pure diagrams of codimension at least s is (n+ 1)(N −M)+ n− s+ 1,
since we have n+ 1 positions that has to be raised N −M steps and then n− s+ 1
times when the codimension is lowered by one. On the other hand, we have that
the dimension of Bs

M,N is (n+ 1)(N −M + 1)− s, since we have s independent
equations on BM,N . �

By looking at the order in which the different positions of a Betti diagram in
BM,N disappear when going along a maximal chain of pure diagrams we get the
following observation:

Proposition 2.4. The maximal chains of pure diagrams in BM,N are in one to one
correspondence with numberings of the entries of an (N −M+1)× (n+1)-matrix
which are increasing to the left and downwards.

Example 2.5. For n = 2, M = 0, and N = 1, the numbering

5 3 1

6 4 2

corresponds to the maximal chain

∗ ∗ ∗

− − −
<
∗ ∗ −

− − ∗
<
∗ ∗ −

− − −
<
∗ − −

− ∗ −
<
∗ − −

− − −
<
− − −

∗ − −

and there are four other maximal chains corresponding to

3 2 1

6 5 4
,

4 2 1

6 5 3
,

5 2 1

6 4 3
, and

4 3 1

6 5 2
.
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3. Description of the boundary facets

We know that the partially ordered set of pure diagrams in BM,N give rise to
a simplicial fan 1, where the faces are the totally ordered subsets. The facets
of this simplicial fan correspond to maximal chains in the partially ordered set.
According to Proposition 2.3 each such set is a basis for the space BM,N . If
we look at normalized Betti diagrams, we get a simplicial complex which is the
hyperplane section of the simplicial fan. This is the complex described in our
previous paper, in the case of Cohen–Macaulay diagrams (see [Boij and Söderberg
2008, Proposition 2.9]).

Proposition 3.1. The simplicial cones spanned by the totally ordered sets of pure
diagrams in BM,N form a simplicial fan.

Proof. We need to show that the cones meet only along faces. This is the same as
to say that any element which can be written as a positive linear combination of
pure diagrams in a chain can be written so in a unique way. If such a sum has only
one term, the uniqueness is trivial. Thus, suppose that a diagram in BM,N can be
written as a positive linear combination of totally ordered pure diagrams in two
different ways and that this is the minimal number of terms in such an example.
We then have

β =

m∑
i=1

λiπi =

k∑
j=1

µ jπ
′

j ,

where all the coefficients are positive. Look at the lowest degree in which β is
nonzero for each column. These degrees have to be given by the degrees in π1 and
by the degrees in π ′1. Thus we must have π1 = π

′

1. If λ1 > µ1, we can subtract
µ1π1 from β and from both sums to get

β − λ1π1 =

m∑
i=2

λiπi = (µ1− λ1)π1+

k∑
j=2

µ jπ
′

j .

Since all the pure diagrams in the left expression are greater than π1, the degrees in
which β−λ1π1 is nonzero have to be given by π2, but then the coefficient of π1 in
the right-hand expression has to be zero, that is, λ1 = µ1. Since this was assumed
to be a minimal example, we get that the expressions for β − λ1π1 are term wise
equal and so were the original expressions for the diagram β. �

We will now show that the coefficients of the pure diagrams when a Betti
diagram is expanded in the basis given by a maximal chain have nice expressions.
In particular, we see that the coefficients are integers. Moreover, it will give
us expressions for the inequalities that define the simplicial fan similar to the



442 Mats Boij and Jonas Söderberg

inequalities used by Eisenbud and Schreyer to prove our conjectures in the Cohen–
Macaulay case.

Proposition 3.2. The coefficient of π1 = π(d0, d1, . . . , dm) when a Betti diagram
β in Bs

M,N is expanded in a basis containing π0 <π1 <π2 is given by the following
formulas:

(a) When π1 differs from π0 in codimension and from π2 in column k, it is given by

n∑
i=0

di (π0)∑
d=M

(−1)i
m∏

j=0
j 6=k

(d j − d)βi,d .

(b) When π1 differs from π0 in codimension and from π2 in column k, it is given by

n∑
i=0

di (π0)∑
d=M

(−1)i (dk − dm)

m−1∏
j=0
j 6=k

(d j − d)βi,d .

(c) When π1 differs from π2 in column k and from π0 in column ` 6= k, it is given
by

n∑
i=0

di (π0)∑
d=M

(−1)i (d`− dk)

m∏
j=0

j /∈{k,`}

(d j − d)βi,d .

(d) When π1 differs from π0 and π2 in codimension, it is given by

n∑
i=0

di (π0)∑
d=M

(−1)i
m−1∏
j=0

(d j − d)βi,d .

In particular, all the coefficients are integers.

Remark 3.3. For simplicity of notation, we use the convention that di (π)= N if i
is greater than the codimension of π .

Observe that when π1 differs from π0 and π2 in column k, the coefficient is given
by the individual Betti number (−1)k

∏
j 6=k(d j − dk)βk,dk , since no other diagram

than π1 contributes in this position, (k, dk).

Proof. In all four cases, (a)–(d), the coefficients of βi,d are zero for pure diagrams
π ≥ π2 by construction since the sums are taken only up to degree di (π0) and the
coefficients are zero in all positions where di (π0)= di (π2).

Furthermore, the expressions are zero on all pure diagrams π , where π ≤ π0

by the Herzog–Kühl equations. Indeed, for such pure diagrams, we can extend
the summation over d to be over all degrees from M to N . When we do this and
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expand the products we get polynomials in d and, therefore, the expressions are
linear combinations of the Herzog–Kühl equations

n∑
i=0

N∑
d=M

(−1)iβi,dd j
= 0,

for j = 0, 1, . . . ,m − 1 in cases (b) and (d), and for j = 0, 1, . . . ,m in cases (a)
and (d). Observe that all pure diagrams π with π ≤ π0, have codimension at least
the codimension of π0 and hence satisfy these Herzog–Kühl equations.

It remains to show that the value of the expressions are one on the pure diagram
π1. In case (a), the only nonzero term is in column k and equals

(−1)k
m∏

j=0
j 6=k

(d j − dk) · (−1)k
m∏

j=0
j 6=k

1
d j−dk

= 1,

in case (b), the only nonzero term is in column m and equals

(−1)m(dk − dm)

m∏
j=0
j 6=k

(d j − dm) · (−1)m
m−1∏
j=0

1
d j−dm

= 1,

in case (c), the only nonzero term is in column k and equals

(−1)k(d`− dk)

m∏
j=0

j /∈{k,`}

(d j − dk) · (−1)k
m∏

j=0
j 6=`

1
d j−dk

= 1,

and in case (d), the nonzero term is in column m and equals

(−1)m
m−1∏
j=0

(d j − dm) · (−1)m
m−1∏
j=0

1
d j−dm

= 1. �

Example 3.4. When n = 3, M = 0, and N = 2 we can choose the basis of B0,2

given by the numbering

10 4 3 1

11 6 5 2

12 9 8 7

.
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When expanding a Betti diagram

β0 β1 β2 β3

0 : β0,0 β1,1 β2,2 β3,3

1 : β0,1 β1,2 β2,3 β3,4

2 : β0,2 β1,3 β2,4 β3,5

(where we use the Macaulay2 [Grayson and Stillman 1993] convention shifting the
columns upwards in order for the diagrams to be more compact) into this chain we
get the coefficients by applying the linear functionals corresponding to the following
matrices:

0 0 0 6
0 0 0 0
0 0 0 0

1

0 8 −12 12
0 0 0 8
0 0 0 0

4

0 −6 8 −6
0 −8 6 0
0 0 0 10

7

1 −1 1 −1
0 −1 1 −1
0 −1 1 −1

10

0 0 0 0
0 0 0 24
0 0 0 0

2

0 −4 6 −6
0 0 6 4
0 0 0 0

5

0 2 −2 0
0 2 0 −4
0 0 4 −10

8

0 0 0 0
1 0 0 0
0 0 0 0

11

0 0 6 −18
0 0 0 −36
0 0 0 0

3

0 8 −12 12
0 12 −12 8
0 0 0 0

6

0 1 −2 3
0 2 −3 4
0 3 −4 5

9

0 0 0 0
0 0 0 0
1 0 0 0

12

Matrices 1, 2, 11, and 12 correspond to individual Betti numbers as we will see in
the next proposition. Matrices 3, 4, 5, and 6 are as in Proposition 3.2 case (c), since
they correspond to two consecutive degree changes in distinct columns. Matrix
7 is as in case (b), since it corresponds to a degree change followed by a change
in codimension. Matrices 8 and 9 are as in case (d), since they correspond to two
consecutive changes of codimension. Matrix 10 is as in case (a) since it corresponds
to a change in codimension followed by a degree change.
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In order to prove that the simplicial fan is convex and in order to prove that any
Betti diagram of a module of codimension s is a positive linear combination of pure
diagrams, we need to know the boundary of the simplicial fan. The description
is very similar to the description given in our previous paper [Boij and Söderberg
2008, Proposition 2.12] and we only have to add one more kind of boundary facet.

Proposition 3.5. A facet of the boundary of the simplicial fan given by the pure
diagrams in Bs

M,N is given by removing one element from a maximal chain such that
there is a unique way to complete it to a maximal chain. There are four different
cases:

(i) The removed element is maximal or minimal.

(ii) The removed element is in the middle of a chain of three degree sequences
which differ in one single column, that is,

π(d) < π(d ′) < π(d ′′), di = d ′i − 1= d ′′i − 2.

(iii) The removed element differs from the adjacent vertices in two adjacent degrees,
that is,

π(d) < π(d ′) < π(d ′′), di+1 = d ′i+1− 1, d ′i = d ′′i − 1.

(iv) the removed element differs from the adjacent vertices in codimension, that is,

π(d) < π(d ′) < π(d ′′), codim(π(d))= codim(π(d ′′))+ 2.

Proof. A boundary facet is a codimension-one face of a simplicial cone and hence
given by the removing of one vertex. Since it is on the boundary, it is contained in
a unique cone of maximal dimension, so there has to be a unique extension of the
chain into a maximal chain.

This clearly happens if we remove the maximal or the minimal element, since
there are unique such elements in the partially ordered set. Suppose therefore that
we remove π(d ′) and that the adjacent vertices in the chain are π(d) < π(d ′) and
π(d ′′) > π(d ′). If the difference between π(d) and π(d ′′) are in two columns
that are not adjacent, we can find another element between π(d) and π(d ′′) by
exchanging the order in which the two degrees are increased. This can also be done
if the columns are adjacent, but the degrees differ by more than one.

If one of the two differ from π(d ′) in codimension and the other by an increase
of the degree in one column, we can alter the order and obtain another element
between π(d) and π(d ′′).

The remaining cases are those described by (ii), (iii), and (iv). �

Remark 3.6. In Example 3.4 matrices 1 and 12 correspond to boundary facets of
type (i). Matrices 2 and 11 correspond to boundary facets of type (ii). Matrices 4
and 6 correspond to boundary facets of type (iii) and matrices 8 and 9 correspond
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to boundary facets of type (iv). The remaining matrices correspond to inner faces
of the fan.

Theorem 3.7. The simplicial fan of pure diagrams in Bs
M,N is convex.

Proof. We will use the following observation which allows us to go from local
convexity to global convexity: If the simplicial fan is not convex, then there will
be one boundary facet whose supporting hyperplane passes through the interior
of a neighboring simplicial cone. We can see this by looking at a line segment
between two vertices which contains points outside the simplicial fan. If we take a
two-dimensional plane through these two points and through a generic inner point
of the fan, we get a two-dimensional picture where we can find two edges meeting
at an inwards angle. The supporting hyperplane of the boundary facet meeting the
two-dimensional plane in one of these edges meets the interior of the simplicial
cone corresponding to the other edge.

Thus we will prove that any two boundary facets meet in a convex manner. If
either of the two facets are of type (i) or (ii), described in Proposition 3.5, it is clear
that any Betti diagram will lie on the correct side of the supporting hyperplane,
since this hyperplane is given by the vanishing of a single Betti number. Thus we
will assume that the facets are of types (iii) or (iv).

Let K denote the number of pure diagrams in a maximal chain in Bs
M,N . Any two

boundary facets meeting along a codimension-one face gives us a chain with K −2
pure diagrams. If the two missing vertices are on levels differing by more than one,
there is a unique way of completing the chain into a maximal chain and the two
facets are faces of the same simplicial cone. Hence they meet in a convex way.

Thus we can assume that the two vertices missing are on adjacent levels and that
there is a least element π3 above these and a greatest element π0 below them. Now
we can see from the difference in codimension between π0 and π3 that facets of
type (iii) described in Proposition 3.5 cannot meet facets of type (iv) in this way.

We must have that the two facets are given by removing π ′1 or π ′′2 from the chains
π0 < π

′

1 < π
′

2 < π3 and π0 < π
′′

1 < π
′′

2 < π3 in the following lattice:

eπ0

eπ ′′1eπ ′1
eπ ′2 eπ ′′2

eπ3

@
@
@
@

�
�

�
�

�
�

@
@

@
@

We need to show that the coefficient of π ′1 is positive when π ′′1 is expanded into the
chain π0 < π

′

1 < π
′

2 < π3. Note that the codimension cannot differ by more than
three between π0 and π3 and if it differs by three, there is only one chain between
π0 and π3. Thus we can assume that the difference in codimension is zero, one, or
two.
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In order to do this we use Proposition 3.2 which gives us an expression of this
coefficient involving only two terms.

Suppose that π0 and π3 differ in codimension by two. Then the coefficient
is given by the fourth expression of Proposition 3.2 and the coefficient for π ′1 =
π(d0, d1, . . . , dm)when π ′′1 =π(d0, d1, . . . , dk−1, dk+1, dk+1, . . . , dm) is expanded
in the basis containing π0 < π

′

1 < π
′

2 is given by

n∑
i=0

∑
d≤di (π0)

(−1)i
m−1∏
j=0

(d j − d)βi,d(π
′′

1 ),

which has only two nonzero terms in columns m and m+ 1 and equals

(−1)m
m−1∏
j=0

(d j − dm)(−1)m
dk − dm

dk + 1− dm

1
dm+1−dm

m−1∏
j=0

1
d j−dm

+ (−1)m+1
m−1∏
j=0

(d j − dm+1)(−1)m+1 dk − dm+1

dk + 1− dm+1

1
dm−dm+1

m−1∏
j=0

1
d j−dm+1

=
1

dm+1−dm

(
dk − dm

dk + 1− dm
−

dk − dm+1

dk + 1− dm+1

)
=

1
(dk + 1− dm+1)(dk + 1− dm)

> 0,

since dk + 1< dm < dm+1.
If π0 and π3 differ in codimension by one we get that the coefficient of π ′1 when

π ′′1 = π(d0, d1, . . . , dm−1) is expanded in the basis π0 < π
′

1 < π
′

2 < π3 is given by

n∑
i=0

∑
d≤di (π0)

(−1)i (dk + 2− dk)

m∏
j=0

j /∈{k,k+1}

(d j − d)βi,d(π
′′

1 ),

which has only two nonzero terms from columns k and k+ 1 and equals

2(−1)k
m∏

j=0
j /∈{k,k+1}

(d j − dk)(−1)k
m−1∏
j=0
j 6=k

1
d j−dk

+ 2(−1)k+1
m∏

j=0
j /∈{k,k+1}

(d j − dk − 1)(−1)k+1
m−1∏
j=0

j 6=k+1

1
d j−dk−1

= 2
dm − dk

dk + 1− dk
− 2

dm − dk − 1
dk − dk − 1

= 2> 0.
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The last possibility is that the codimension of π0 equals the codimension of π3.
In this case π0 < π

′

1 < π
′

2 corresponds to a facet of type (iii) and we get that the
coefficient of π ′1 = π(d0, d1, . . . , dk, dk + 2, dk+2, . . . , dm), when π ′′1 = π(d0, d1,

. . . , d`−1, d` + 1, d`+1, . . . , dm) is expanded in the basis π0 < π ′1 < π ′2 < π3, is
given by

n∑
i=0

∑
d≤di (π0)

(−1)i (dk + 2− dk)

m∏
j=0

j /∈{k,k+1}

(d j − d)βi,d(π
′′

1 ).

Again there are only two nonzero terms and the coefficient is equal to

2(−1)k
m∏

j=0
j /∈{k,k+1}

(d j − dk)(−1)k
d`− dk

d`+ 1− dk

m∏
j=0
j 6=k

1
d j − dk

+ 2(−1)k+1
m∏

j=0
j /∈{k,k+1}

(d j − dk − 1)(−1)k+1 d`− dk − 1
d`+ 1− dk − 1

m∏
j=0

j 6=k+1

1
d j − dk − 1

= 2
d`− dk

d`+ 1− dk
− 2

d`− dk − 1
d`− dk

=
2

(d`− dk)(d`− dk + 1)
> 0,

since d`− dk and d`− dk + 1 are both negative or both positive. �

4. The expansion of any Betti diagram into sums of pure diagrams

We know from the work of Eisenbud and Schreyer that the inequalities given by
the exterior facets of the cone are valid on all minimal free resolutions, not only on
the resolutions of Cohen–Macaulay modules. The inequalities that we have to add
because we now look at chains of pure diagrams of different codimensions can be
seen to be limits of the inequalities already known.

As in the previous section, we look at Betti diagrams of graded modules under
the restriction that βi, j = 0 unless M + i ≤ j ≤ N + i , that is, diagrams in BM,N .

Theorem 4.1. Any Betti diagram of a finitely generated graded module P of codi-
mension s can be uniquely written as a positive linear combination of a chain of
pure diagrams in Bs

M,N , where M is the least degree of any generator of P and N
is the regularity of P.

Proof. By Proposition 3.5 we know what are the boundary facets of the simplicial
fan given by the pure diagrams in Bs

M,N and by Proposition 3.2 we know how
to obtain the inequalities given by the boundary facets. In fact, the coefficient of
the removed element of the chain is nonnegative on the half-space defined by the
corresponding boundary facet. We need to show that any Betti diagram of a graded
module satisfies these inequalities.



Betti numbers of graded modules 449

By Proposition 3.5 we have four types of boundary facets to consider, (i)–(iv).
The inequalities corresponding to facets of type (i) and (ii) certainly hold for all
Betti diagrams of modules.

The inequalities corresponding to facets of type (iii) are given by the expression
of Proposition 3.2(c) and can be written as

n∑
i=0

di (π0)∑
d=M

(−1)i
m∏

j=0
j /∈{k,k+1}

(d j − d)βi,d(P)≥ 0 (4-1)

and the inequalities corresponding to facets of type (iv) are given by the expression
of Proposition 3.2(d) and can be written as

n∑
i=0

di (π0)∑
d=M

(−1)i
m−1∏
j=0

(d j − d)βi,d(P)≥ 0. (4-2)

As we can see from these expressions, they are very similar. Indeed, (4-2) is equal
to (4-1) if we increase N and m by one and choose k = m− 1. Thus it is sufficient
to prove that (4-1) always holds for any m ≤ n.

The case m = n corresponds to the facets that occur in the cone of Cohen–
Macaulay diagrams. In the Cohen–Macaulay case we have more Herzog–Kühl
equations but fewer inequalities. Eisenbud and Schreyer [2009, Theorems 4.1
and 7.1] proved that the inequalities given by the boundary facets hold for Betti
diagrams of all modules, not only Cohen–Macaulay modules. Hence (4-1) holds
for Betti diagrams in BM,N when m = n.

In order to prove that (4-1) holds when m < n, we look at the inequality we get
by exchanging π1 = π(d0, d1, . . . , dm) by π t

1 = π(d0, d1, . . . , dm, dm+1+ t, dm+

2+ t, . . . , dm + n−m+ t), and similarly exchanging π0 and π2 by π t
0 and π t

2. We
then let t grow to infinity and get

lim
t→∞

1
tn−m

n∑
i=0

di (π
t
0)∑

d=M

(−1)i
m∏

j=0
j /∈{k,k+1}

(d j − d)
n∏

j=m+1

(dm + j −m+ t − d)βi,d

=

n∑
i=0

di (π0)∑
d=M

(−1)i
m∏

j=0
j /∈{k,k+1}

(d j − d)βi,d(P).

The limit is nonnegative since for each integer t ≥ 0, the expression under the limit
in the left-hand side is nonnegative. �

Remark 4.2. One of the questions raised by Eisenbud and Schreyer was what was
the description of the convex cone cut out by all of their inequalities. The answer
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to this question is that this convex cone in BM,N equals the convex cone of all Betti
diagrams in BM,N of graded modules up to multiplication by nonnegative rational
numbers. This follows from Theorem 4.1 and the fact that all the inequalities we
use to define the simplicial fan, as seen in the proof, are limits of their inequalities,
hence are consequences of the full set of those inequalities. Thus for a given diagram
satisfying their inequalities, we find suitable M and N and use Theorem 4.1 to see
that it can be written as a positive linear combination of pure diagrams and we can
conclude that a multiple of the diagram is the Betti diagram of a module.

We can also see that the unique way of writing any Betti diagram of a module
into a chain of pure diagrams leads to a way of writing the diagram as a linear
combination of diagrams of Cohen–Macaulay modules, one of each codimension
between the codimension of M and the projective dimension of M . As in the
Cohen–Macaulay case, we get an algorithm for finding the expansion of a given
Betti diagram by subtracting as much as possible of the pure diagram corresponding
to the lowest shifts.

Remark 4.3. The method used in the proof of Theorem 4.1 is based only on what
was known after the appearance of [Eisenbud and Schreyer 2009]. In view of the
their more recent paper [Eisenbud and Schreyer 2010], the limiting process can
be avoided using the functionals associated to coherent sheaves and, in fact, we
only need to use vector bundles with supernatural cohomology supported on linear
subspaces of Pn−1, as pointed out by an anonymous referee.

Example 4.4. For M = k[x, y, z]/(x2, xy, xz2) we get the Betti diagram

1 3 3 1

0 : 1 − − −
1 : − 2 1 −
2 : − 1 2 1

which can be expanded into

1 − − −
− 2 1 −
− 1 2 1

= 6 ·

1
30 − − −

−
1
6

1
6 −

− − −
1
30

+ 12 ·

1
40 − − −

−
1
12 − −

− −
1
8

1
15

+ 2 ·

1
12 − − −

− − − −

−
1
3

1
4 −

+ 1 ·

1
3 − − −

− − − −

−
1
3 − −

.

The coefficients can also be obtained by the functionals corresponding to the
matrices 5, 6, 8, and 9 from Example 3.4.
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We now will go on and prove a generalized version of the multiplicity conjecture
in terms of the Hilbert series. In order to do this, we first prove that the Hilbert series
behaves well with respect to the partial ordering on the normalized pure diagrams.
We use the partial order on Hilbert series given by coefficientwise inequality in all
degrees simultaneously.

Proposition 4.5. The Hilbert series is strictly increasing on the partially ordered
set of normalized pure diagrams generated in degree zero.

Proof. First assume that π̄ < π̄ ′ is a maximal chain of pure diagrams of codimension
s. The Hilbert series can be recovered from the Betti diagrams and we can write

H(π̄ ′, t)− H(π̄, t)=
1

(1− t)n
(S(π̄ ′, t)− S(π̄, t)),

where S(β, t)=
∑n

i=0(−1)i
∑

j βi, j t j . Since the polynomials S(π̄, t) and S(π̄ ′, t)
both have constant term 1, we get that the polynomial S(π̄ ′, t)− S(π̄, t), has only
s+ 1 nonzero terms. Since it also satisfies the Herzog–Kühl equations, we have a
unique solution to this up to a scalar multiple, and H(π̄, t)−H(π̄ ′, t) is λtd1 times
the Hilbert series of a pure module. Since we know that all pure diagrams have
positive Hilbert series, we only have to check that this is a nonnegative multiple.
The sign of λ can be obtained by looking at the sign of the term of S(π̄ ′, t)−S(π̄, t)
which comes from S(π̄ ′, t) and which is not present in S(π̄, t). This term comes
with the sign (−1)i , if it is in column i , which proves that λ has to be positive.

We now consider the case where π̄ < π̄ ′ is a maximal chain such that the
codimension of π̄ is s and the codimension of π̄ ′ is s− 1. If we now look at the
difference of the Hilbert series,

H(π̄ ′, t)− H(π̄, t)=
1

(1− t)n
(S(π̄ ′, t)− S(π̄, t)),

where the polynomial S(π̄ ′, t)−S(π̄, t) has zero constant term and s nonzero terms.
Since we know that it is divisible by (1− t)s−1, there is again a unique possibility,
which is λtd1 times the Hilbert series of a module with pure resolution. This time,
we can see that the sign of the last term is −(−1)s = (−1)s−1, which shows that λ
is positive. �

Theorem 4.6. For any finitely generated module M of projective dimension p and
codimension s generated in degree 0, we have that

H(π̄(0, d1, d2, . . . , dp), t)≤
H(M, t)
β0(M)

≤ H(π̄(0, d̄1, d̄2, . . . , d̄s), t),

where d1, d2, . . . , dp are the minimal shifts and d̄1, d̄2, . . . , d̄s are the maximal
shifts in a minimal free resolution of M. Equality on either side implies that the
resolution is pure.
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In particular, the right-hand inequality implies the multiplicity conjecture, that is,

e(M)
β0(M)

≤
d̄1d̄2 · · · d̄s

s!
,

with equality if and only if M is Cohen–Macaulay with a pure resolution.

Proof. We can use Theorem 4.1 to write the Betti diagram of M as a positive
linear combination of pure diagrams. Since the Hilbert series by Proposition 4.5 is
increasing on along the chain, we get the first inequalities of the theorem.

The multiplicity of M is obtained from the leading coefficient of the Hilbert
polynomial. The coefficients of the Hilbert series are eventually equal to the Hilbert
polynomial, which shows that the multiplicity is increasing with the Hilbert series
as long as the degree of the Hilbert polynomial is the same. Since this is the case for
M and π(0, d̄1, d̄2, . . . , d̄s), we get the conclusion of the multiplicity conjecture. �

Remark 4.7. For a Cohen–Macaulay module M , the Hilbert coefficients are pos-
itive linear combinations of the entries of the h-vector. Since we can reduce M
modulo a regular sequence and keep the same Betti diagram, we get that the Hilbert
coefficients are increasing along chains of normalized pure diagrams. Thus the
generalization of the multiplicity conjecture made by J. Herzog and X. Zheng
[Herzog and Zheng 2009] is a consequence of Theorem 4.6.
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L-invariants and Shimura curves
Samit Dasgupta and Matthew Greenberg

In earlier work, the second named author described how to extract Darmon-style
L-invariants from modular forms on Shimura curves that are special at p. In this
paper, we show that these L-invariants are preserved by the Jacquet–Langlands
correspondence. As a consequence, we prove the second named author’s period
conjecture in the case where the base field is Q. As a further application of our
methods, we use integrals of Hida families to describe Stark–Heegner points in
terms of a certain Abel–Jacobi map.
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1. Introduction

Let N and p be relatively prime positive integers with p prime and let

f =
∞∑

n=1

an( f )qn
∈ S2(00(N p))p-new

be a Hecke eigenform with a1( f ) = 1. In their study of p-adic L-functions
associated to modular forms, Mazur, Tate and Teitelbaum [Mazur et al. 1986]
introduce a p-adic invariant of f which they call its L-invariant. Let X( f, p)
be the set of primitive Dirichlet characters with conductor prime to p such that

MSC2000: primary 11F41; secondary 11G18, 11F67, 11F75.
Keywords: L-invariants, Shimura curves, Hida families, Stark–Heegner points.

455



456 Samit Dasgupta and Matthew Greenberg

χ(p)= ap( f )=±1. If χ ∈ X( f, p) then the interpolation property forces the p-
adic L-function L p( f, χ, s) of f twisted by χ to vanish at s = 0. This is called an
exceptional zero phenomenon. In this case, it is conjectured in [Mazur et al. 1986]
that there is a p-adic number LMTT( f ) such that for all χ ∈X( f, p) of conductor c,

L ′p( f, χ, 0)= LMTT( f ) c
τ(χ)

L( f, χ, 1)
�
χ(−1)
f

. (1-1)

Here, τ(χ) is the Gauss sum associated to χ and �χ(−1)
f is the real or imaginary

period of f , depending on the parity of χ . Note that (1-1) makes sense after
fixing embeddings Q ⊂ C, Q ⊂ Cp, since L( f, χ, 1)/�χ(−1)

f is algebraic by a
theorem of Shimura. It follows from nonvanishing results on critical L-values that
L( f, χ, 1) 6= 0 for some χ ∈ X( f, p), making (1-1) a nontrivial statement; see
[Darmon 2001, Lemma 2.17] and the following remark.

The existence of LMTT( f ) was proved in the influential paper [Greenberg and
Stevens 1993]. Since f is p-ordinary, that is, ap( f ) is a p-adic unit, f lives in a p-
adic analytic family f of eigenforms by the work of Hida [1986]. More precisely,
there is a p-adic disk U ⊂ Zp × Z/(p − 1)Z containing 2 and a p-adic analytic
function an( f ) :U → Cp for each n ≥ 1, with a1( f )= 1, such that

(1) for all integers k ≥ 2 with k ∈U , an( f , k) ∈Q and the image of

f (k) :=
∞∑

n=1

an( f , k)qn

in C[[q]] is the q-expansion of an eigenform in Sk(00(N p)),

(2) f (2)= f .

Moreover, up to shrinking U around 2, f is completely determined by f . Note that
1− ap( f , k)2 vanishes at k = 2 since ap( f )=±1. Thus, it is natural to consider
the derivative of this quantity. Greenberg and Stevens show that (1-1) holds with

LMTT( f )=
d

dk

(
1− ap( f , k)2

)∣∣∣
k=2
=: LGS( f ). (1-2)

Also, (1-2) extends the definition of the L-invariant from the case ap( f )= 1 orig-
inally considered in [Mazur et al. 1986] to the case ap( f )=±1.

Mazur, Tate, and Teitelbaum further conjecture in the same work that LMTT( f )
is of local type, that is, depends only on the two-dimensional p-adic representation
σp( f ) of Gal(Qp/Qp) associated to f . Greenberg and Stevens [1993] proved this
by showing that LGS( f ) may be described in terms of the deformation theory of
σp( f ).
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Since the L-invariant is a local-at-p invariant of f , it is natural to attempt to
extract the L-invariant of f from its Jacquet–Langlands lift g to another indefi-
nite quaternion algebra B split at p, that is, with Bp ∼= M2(Qp), since the corre-
sponding automorphic representations have the same local components at p. (The
case of definite quaternion algebras was resolved by Bertolini, Darmon and Iovita
[Bertolini et al. 2010].) Following Darmon [2001], a conjectural method for doing
this was proposed in [Greenberg 2009], as follows.

We first consider a certain p-arithmetic subgroup 2⊂ B× of level

N+ := N/ disc B, (1-3)

defined precisely in (6-1). We view 2 as a subgroup of GL2(Qp) using the chosen
isomorphism Bp ∼= M2(Qp). Let M0(X) be the space of Cp-valued measures
on X := P1(Qp) with total measure zero (see Section 4). The group 2 acts on
X by linear fractional transformations. This induces an action of 2 on M0(X).
A Mayer–Vietoris argument, together with multiplicity one, shows that for each
choice of sign ± at infinity, dimCp H 1(2,M0(X))g,± = 1. Here, the superscript
g indicates the eigensubspace on which the Hecke operators act according to the
Hecke eigenvalues of g. The superscript ± indicates the ±1-eigenspace for the
natural conjugation action of a matrix of determinant −1 that normalizes 2. Let
ϕ±g be a nonzero element of H 1(2,M0(X))g,±. Our definition of the L-invariant
of g will arise by considering the image of ϕ±g under a certain integration pairing
that we now define.

For each L ∈ Cp, there is a unique branch logL of the p-adic logarithm such
that logL(p) = L. Let Hp = P1(Cp)− P1(Qp) be the p-adic upper half-plane.
Associated to each branch of the p-adic logarithm, there is a PGL2(Qp)-invariant
integration pairing

〈 · , · 〉L : M0(X)×Div0 Hp→ Cp

defined by

〈µ, {τ ′}− {τ }〉L =

∫
X

logL

( x−τ ′

x−τ

)
µ(x),

which, in turn, induces a pairing H 1(2,M0(X))× H1(2,Div0 Hp)→ Cp. Let
∂ : H2(2,Z)→ H1(2,Div0 Hp) be the boundary map in the long exact sequence
in 2-cohomology associated to the short exact sequence defining Div0 Hp:

0→ Div0 Hp→ Div Hp
deg
→ Z→ 0.

Proposition 1 [Greenberg 2009, Prop. 30]. There are unique constants LD(ϕ±g ) in
Cp such that

〈
ϕ±g , ∂H2(2,Z)

〉
−LD(ϕ±g )

= {0}.
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We have chosen the notation LD(ϕ±g ) for these L-invariants since they are de-
fined following methods of Darmon [2001]. The goal of this paper is to relate these
L-invariants LD(ϕ±g ) arising from the cohomology of Shimura curves to those
whose origins lie in the arithmetic of classical modular curves. The following is
our main result:

Theorem 2. LD(ϕ±g )= LGS( f ).

Using Theorem 2, we deduce Conjecture 2 of [Greenberg 2009] in the case
where the base field is Q; see Section 8 for details. The proof of Theorem 2
falls into two steps. Applying a result of Hida’s theory, we deform the Jacquet–
Langlands lift g of f into a cohomological Hida family8±g . Let ap = ap(k) be the
eigenvalue of Up acting on 8±g . Group cohomological calculations building upon
those in [Dasgupta 2005] show that

LD(ϕ±g )=
d

dk
(
1− ap(g, k)2

)∣∣∣
k=2
=: LGS(g).

It remains to show that LGS(g) = LGS( f ). We prove this in Theorem 8, which
asserts a compatibility between the Jacquet–Langlands correspondence with the
formation of Hida families. This result is a weak analogue of results of Chenevier
[2005] for definite quaternion algebras and may be of independent interest.

In the last section of this paper, we apply our computations to the theory of
Stark–Heegner points. Let E/Q be an elliptic curve of conductor N p and suppose
that O is a real quadratic order with fraction field K such that (disc O, N p) = 1.
Assume further that the sign in the functional equation of L(E/K , s) is −1. Then
for each character χ : Cl+O → C× of the narrow ideal class group of O, the sign in
the functional equation of L(E/K , χ, s) is also −1. Thus, the conjecture of Birch
and Swinnerton-Dyer leads one to expect that

rank E(HO)= ords=1 L(E/HO, s)= ords=1
∏

χ :Cl+O→C×

L(E/K , χ, s)≥ |Cl+O |, (1-4)

where HO is the narrow ring class field associated to the order O. In [Greenberg
2009], a p-adic analytic construction of local Stark–Heegner points on E was
presented, generalizing a construction of Darmon [2001] applicable when p is inert
in K and the primes dividing N split in K . The local definition of Stark–Heegner
points given in [Greenberg 2009] is contingent upon Conjecture 2 [ibid.] over the
base field Q; this now follows from Theorem 2. The analytically defined Stark–
Heegner points are conjectured to be defined over the field HO, and are expected
to generate a finite index subgroup of E(HO) when the inequality in (1-4) is an
equality.
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The strongest theoretical evidence presented to date for the conjectures of [Dar-
mon 2001] on the rationality of Stark–Heegner points is the main result of [Bertolini
and Darmon 2009], which proves the rationality of certain linear combinations of
Stark–Heegner points. A key tool in the proof of this result is a description of
the formal group logarithms of Stark–Heegner points in terms of periods of Hida
families. In Section 9, we prove such a formula for the Stark–Heegner points of
[Greenberg 2009]. We intend to pursue the analogue of the rationality result of
[Bertolini and Darmon 2009] in future work.

2. Modular forms on quaternion algebras
and the cohomology of Shimura curves

Let f be as in the introduction with level N p, p - N . In order to ensure that f
admits a Jacquet–Langlands lift to an indefinite quaternion Q-algebra, we suppose
that the tame part N of the level of f admits a factorization

N = N−N+, (N−, N+)= 1,

such that f is N−-new. We work under the additional simplifying assumption that
N− is squarefree.

Let B be the indefinite quaternion Q-algebra with discriminant N−. Let Rmax

be a maximal order in B. Let ` be a prime with ` - N−. Since B is split at `, we
may choose an embedding

ι` : B→ M2(Q`)

such that ι`(Rmax)⊂ M2(Z`). Define

R =
{
α ∈ Rmax : ι`(α)≡

(
∗ ∗

0 ∗

)
(mod N+Z`) for all ` - N−

}
, (2-1)

R0 =

{
α ∈ Rmax : ι`(α)≡

(
∗ ∗

0 ∗

)
(mod pN+Z`) for all ` - N−

}
. (2-2)

The rings R and R0 are Eichler orders in B of level N+ and pN+, respectively.
Set

0 = R×
+
/{±1}, 00 = R×0,+/{±1},

where the subscript + indicates elements with positive reduced norm.
Since B is split at the infinite place of Q, we may choose an embedding

ι∞ : B→ M2(R). (2-3)

The groups 0 and 00 may be viewed as discrete groups of transformations of the
complex upper half-plane H by identifying them with subgroups of PGL2(R) via
ι∞. The quotients

Y (C) := 0\H, Y0(C) := 00\H
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are Riemann surfaces, compact exactly when N− 6= 1. Let H∗=H∪P1(Q) be the
extended complex upper half-plane and define

X (C)=
{

Y (C) if N− 6= 1,
0\H∗ if N− = 1.

Define X0(C) analogously. The Riemann surfaces X (C) and X0(C) are compact
and may be identified with the loci of complex points of Shimura curves X and
X0 that admit canonical models over Q. Of course, these are just the classical
modular curves in the case N− = 1. For the remainder of this section, we assume
that N− 6= 1.

Let Sk(0) and Sk(0) be the spaces of holomorphic and, respectively, antiholo-
morphic weight k cusp forms on X (0). The spaces Sk(00) and Sk(00) are defined
analogously. These spaces admit the action of a commutative algebra of Hecke
operators, all commuting with complex conjugation (see Section 3).

Theorem 3 (Jacquet–Langlands correspondence). Let k ≥ 2 be an integer. There
are isomorphisms

Sk(00(N ))N−-new ∼= Sk(0) and Sk(00(N p))N−-new ∼= Sk(00).

Both isomorphisms are equivariant with respect to the Hecke operators T` for ` -
N p, U` for ` | N+ and W` for ` | N−. In addition, the first isomorphism equivariant
with respect to Tp, and the second is equivariant with respect to Up.

Therefore, there is a one-dimensional subspace of S2(00), independent of the
choice of isomorphism in the Jacquet–Langlands correspondence, on which the
Hecke operators act via the eigenvalues of f . Let g be a nonzero element of
this space. We call g a Jacquet–Langlands lift of f . Let a`(g) = a`( f ) be the
eigenvalue of T`, U`, or −W` acting on g in the cases ` - N p, ` | pN+, and
` | pN−, respectively.

We are also interested in cohomological avatars of g. We have canonical iso-
morphisms of Betti and group cohomology

H∗(0, E)∼= H∗(X (C), E), H∗(00, E)∼= H∗(X0(C), E)

for any characteristic zero field E endowed with the trivial action of 0. By the de
Rham theorem and the Hodge decomposition,

H 1(00,C)= H 1(X0(C),C)

= H 1,0(X0(C),C)⊕ H 0,1(X0(C),C) ∼= S2(00)⊕ S2(00).

Therefore, if E is any field containing the Hecke eigenvalues of g, we have

dimE H 1(00, E)g = 2,
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where the superscript g indicates Hecke eigenspace corresponding to the system
of Hecke eigenvalues of g:

H 1(00, E)g = {c ∈ H 1(00, E) : T`(c)= a`(g)c for ` - N ,

U`(c)= a`(g)c for ` | pN+}.

(See Section 3 for a detailed description of Hecke operators acting on group
cohomology.) Note that this space is stable for the Atkin–Lehner involutions
−W` for ` | pN− with eigenvalues a`(g). Conjugation by an element of R×0
of reduced norm −1 induces an automorphism of H 1(00, E) under which the
subspace H 1(00, E)g is stable. This action corresponds to complex conjugation
of cusp forms and is denoted W∞. Therefore, H 1(00, E)g decomposes into one-
dimensional ±-eigenspaces for this action:

H 1(00, E)g = H 1(00, E)g,+⊕ H 1(00, E)g,−.

We denote by g± a nonzero element of H 1(00, E)g,±. In Section 4 we construct a
cohomological Hida family8±g that specializes to g± in weight 2, and in Section 6
we use 8±g to define the Darmon L-invariant LD(g±).

3. Hecke operators and group cohomology

In anticipation of the delicate group cohomological calculations to follow, we
carefully set up notation for describing the action of Hecke operators on various
cohomology groups. Let G ⊂ K be an inclusion of groups, x an element of K ,
M a G-module, and M ′ an xGx−1-module. Suppose that ξ : M→ M ′ is a group
homomorphism such that

ξ(gm)= xgx−1ξ(m). (3-1)

for all g ∈G and m ∈ M . In our applications, M ⊂ M ′′ for a K -module M ′′, and ξ
is the map m 7→ xm with M ′ = x M ⊂ M ′′. The map ξ induces a homomorphism

ξ∗ : H∗(G,M)→ H∗(xGx−1,M ′) (3-2)

as follows: Let F•→ Z be a resolution of Z by free K -modules. Note that Fr is
also a free G-module and a free xGx−1-module. In what follows, we will often
take Fr = Z[K r+1

]. Formally, ξ induces a map of cochain complexes relative to
this resolution,

ξ∗ : HomG(Fr ,M)→ HomxGx−1(Fr ,M ′), ξ∗(ϕ)( fr )= ξ(ϕ(x−1 fr )),

which induces (3-2). We now use this formalism to define the Hecke operators that
play a role in this paper.
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• Suppose that `>0 is a prime divisor of N−. Then there exists an element λ∈ R0

whose reduced norm is ` and such that λ generates the unique two-sided ideal of
R0 with norm `. The element λ normalizes R0 by [Vignéras 1980, chapitre II,
corollaire 1.7]. Take G = 00 or 0, K = B×/Q×, x = λ. Let M be a G-module
such that M = λM (that is, this equality holds in a K -module M ′′ containing M).
The formalism above then yields the Atkin–Lehner involutions

W` : H r (00,M)→ H r (00,M), W` : H r (0,M)→ H r (0,M). (3-3)

• Let wp ∈ R0 be an element of reduced norm p that generates the normalizer
of 00 in R[1/p]×+ and define

2̃= R[1/p]×
+

/
Z[1/p]×. (3-4)

The groups 00, 0, and 0′ := wp0w
−1
p are all subgroups of 2̃. Using the above

formalism with G = 00 or 0, K = 2̃, and x = wp yields Atkin–Lehner maps

Wp : H r (00,M)→ H r (00,M ′), Wp : H r (0,M)→ H r (0′,M ′), (3-5)

with M ′=wp M . We note that these maps are isomorphisms, as applying the same
formalism with w−1

p instead of wp yields inverse homomorphisms W−1
p .

• Let ` > 0 be a prime with ` - N−. Choose an element λ ∈ R0 of reduced
norm `. When ` | pN+, we insist that

ι`(λ)I` ∈

(
1 0
0 `

)
I`, (3-6)

where I` is the Iwahori subgroup of GL2(Z`) defined by

I` =
{
α ∈ GL2(Z`) : α ≡

(
∗ ∗

0 ∗

)
(mod `)

}
.

Consider a double coset decomposition

00 · λ ·00 =
⋃

i

γa00. (3-7)

Let 6 be the subsemigroup of 2̃ generated by 00 together with λ, and let M be
a 6-module. Let F•→ Z be a resolution of Z by free 2̃-modules, and define an
endomorphism T` of the cochain complex Hom00(F•,M) by

(T`ϕ)( fr )=
∑

i

γiϕ(γ
−1
i fr ), fr ∈ Fr . (3-8)

It is routine to check that T` does not depend on the choice of coset representatives
and descends to a well defined endomorphism T` of H∗(00,M). When ` | pN+,
we write U` instead of T` for this operator.
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• Finally, let 5 denote the matrix λ ∈ R0 of reduced norm p chosen above to
satisfy (3-6) when `= p. Let 5′ = wp5w

−1
p . Then

ιp(5
′)Ip =

(
p 0
0 1

)
Ip.

Let U ′p be the Hecke operator associated to the double coset 005
′00. It is easy to

check that
U ′p =Wp ◦Up ◦W−1

p . (3-9)

Note that this holds on the level of cochains if we choose compatible double coset
decompositions:

00500 =
⋃

i

γa00, 005
′00 =

⋃
i

(wpγaw
−1
p )00.

4. p-adic measures, Hida families, and Greenberg–Stevens L-invariants

Let Y be a compact topological space with a basis of compact-open subsets and let
A be a subring of Cp. Write C∞(Y )=C∞(Y, A) for the group of locally constant,
A-valued functions on Y , equipped with the sup-norm. An A-valued measure on
Y is a bounded A-linear functional on C∞(Y, A). We write M(Y ) = M(Y, A)
for the space of such measures, which can be identified with the space of finitely
additive, A-valued functions on the set of compact-open subsets of Y whose values
are bounded. For details, see [Mazur and Swinnerton-Dyer 1974, §7.1].

Let
X = (Z2

p)
′
:= Z2

p − p(Z2
p), X∞ = Z×p × pZp ⊂ X. (4-1)

The spaces M(X) and M(X∞) are naturally modules for the Iwasawa algebra3 :=
Zp[[1 + pZp]], where group-like elements act via the natural diagonal action of
1+ pZp on X; given ` ∈ 1+ pZp, we define ([`]µ)(h(x, y)) := µ(h(`x, `y)).

Let
ε :3→ Zp (4-2)

be the augmentation map defined by [`] 7→ 1 and let Iε be the kernel of ε. Letting
γ be a topological generator of 1+ pZp, it follows that Iε is generated by

$ := [γ ] − 1.

The group GL2(Zp) acts on X from the left by viewing elements of X as col-
umn vectors. The group 0 acts on X via the embedding ιp : R× ↪→ GL2(Zp),
and X∞ is stable under 00. Therefore, we may consider the cohomology groups
H∗(0,M(X)) and H∗(00,M(X∞)). These cohomology groups are canonically
isomorphic:
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Lemma 4. The map

H∗(0,M(X))→ H∗(00,M(X∞))

induced by the 00-equivariant inclusion X∞ ↪→ X is an isomorphism.

Proof. The p+ 1 translates of X∞ by 0 cover X. It follows that

M(X)= Co-Ind000
M(X∞).

The lemma now follows from Shapiro’s lemma. �

Let us assume that our measures take values in Zp (so M(X) denotes M(X,Zp),
etc.). We set W̃ := H 1(00,M(X∞)) ∼= H 1(0,M(X)). View 3 as a Zp[[Z×p ]]-
algebra via the canonical projection

Z×p → 1+ pZp, ` 7→ 〈`〉 := `/ω(`),

where ω is the Teichmuller character. Define the 3-algebra W := W̃⊗Zp[[Z
×
p ]]
3.

As 5X∞ ⊂ X∞, the semigroup 6 of Section 3 acts on M(X∞). Therefore, the
formalism of Section 3 endows W with an action of the Up-operator. In addition
to the Up-action, the group W enjoys an action of

• Hecke operators T` for primes ` - pN and U` for ` | N+, and

• Atkin–Lehner involutions W` for ` | N−.

See Section 3 for the definitions of these operators. Let T be the commutative
3-subalgebra of End3 W generated by these operators. Let ρ : M(X∞)→ Zp be
the total measure map. It induces a corresponding map

ρ :W→ H 1(00,Zp). (4-3)

The map ρ respects the decomposition into ±-eigenspaces:

ρ :W±→ H 1(00,Zp)
±.

Let e= limn→∞U n!
p denote Hida’s ordinary idempotent and, for any T-module

M , let Mo
= eM . In particular, To

= eT is Hida’s ordinary Hecke algebra.

Theorem 5 (Hida’s control theorem). There is an exact sequence

0→$W±,o→W±,o
ρ
→ H 1(00,Zp)

±,o
→ 0. (4-4)

The kernel of the3-algebra homomorphism To
→Qp given by sending a Hecke

operator to its eigenvalue on g is a prime ideal p⊂To lying above the augmentation
ideal Iε ⊂3. The following fundamental result is due to Hida in the case N− = 1
(see [Greenberg and Stevens 1993]), and was extended in [Balasubramanyam and
Longo 2011] to the case N− 6= 1.
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Theorem 6. There is a unique minimal prime P⊂ p, and the quotient R := To/P

is a finite flat extension of 3 unramified above Iε .

Let R be as in the theorem, and let Rp be the localization of R at p. Let E be the
field of fractions of the integral closure of Zp in R. It is a finite extension of Qp.
We write ε : Rp→ Rp/$ Rp

∼= E for the reduction map. This notation is justified
as this map extends the augmentation ε :3→ Zp.

Write (W⊗3 Rp)
±,g for the subspace of (W⊗3 Rp)

± on which T acts via the
canonical map T→ Rp. Note that

(W⊗3 Rp)
±,g
⊂ (W⊗3 Rp)

±,o
=W±,o⊗3 Rp

and that

H 1(00,Zp)⊗3 Rp = H 1(00,Zp)⊗Zp E = H 1(00, E). (4-5)

On the left of (4-5), we view H 1(00,Zp) as a 3-module via the augmentation ε.

Corollary 7 [Balasubramanyam and Longo 2011, §3.6]. The sequence

0→$(W⊗3 Rp)
±,g
→ (W⊗3 Rp)

±,g
→ H 1(00, E)±,g→ 0

obtained by tensoring (4-4) with Rp over 3 and taking g-isotypic components is
exact, and rankRp(W⊗3 Rp)

±,g
= 1.

We now view g± as an element of H 1(00, E)±,g. By Corollary 7, we may
choose a lift

8±g ∈ (W⊗3 Rp)
±,g (4-6)

of g±. The element 8±g is well defined up to multiplication by an element of
1+$ Rp. We call 8±g a Hida family through g±. We denote its Up-eigenvalue by
ap(8

±
g ) ∈ Rp. Since ε(ap(8

±
g )) = ap(g±) = ap(g) = ap( f ) = ±1, we see that

1− ap(8
±
g )

2 lies in $ Rp. There is a “derivative map" dε : $ Rp/($ Rp)
2
→ E

that extends the map Iε/I 2
ε → Zp given by the p-adic logarithm:

[`] − 1 7→ log(`). (4-7)

Since `∈Z×p , we need not specify a branch of the p-adic logarithm. We define the
Greenberg–Stevens L-invariant of g by

LGS(8±g )= dε
(
1− ap(8

±

g )
2)
∈ E .

The derivative map dε is related to the usual notion of derivative in the following
way. For 0< r ≤ 1, let Ar be the subring of Q[[x]] consisting of those powers series
that converge on the closed disk centered at 0 with radius r . Evidently, if r < s,
then there is a canonical inclusion As ⊂ Ar . Therefore, we may set A =

⋃
r Ar .

Define i : 3→ A1 by sending a group-like element [`], for ` ∈ 1+ pZp, to the
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function k 7→ `k−2. Since R is unramified over Iε and A is Henselian, there is
a unique extension of i to a 3-algebra homomorphism i : Rp→ A. An element
λ ∈ Rp lies in $ Rp if and only if the associated analytic function i(λ) has a zero
at k = 2. In this case, dε(λ)= i(λ)′(2).

Theorem 8. We have the following equality of Greenberg–Stevens L-invariants:

LGS(8±g )= LGS( f ).

Proof. Suppose R′ is a finitely generated R-subalgebra of Rp such that 8±g lies in
(W⊗3R′)g,±. With notation as above, there is some r0 such that i(R′) is contained
in Ar0 .

Let Pk−2(Q) be the space of homogeneous polynomials of degree k−2 in inde-
terminates x and y, and let Vk−2(Q) be its Q-linear dual. Define a “specialization
to weight k” map

ρk : M(X∞)→ Vk−2(Q)

by the rule

ρk(8)(P)=
∫

X∞

P(x, y)8(x, y).

This map being 00-equivariant, it induces a homomorphism

ρk : H 1(00,M(X∞))→ H 1(00, Vk−2(Q)).

The map ρ defined in (4-3) coincides with ρ2 in this more general notation.
If |k− 2|p ≤ r , we may extend ρk to a map

ρk : H 1(00,M(X∞))⊗3 Ar → H 1(00, Vk−2(Q))

by setting

ρk

(∑
i
ϕi ⊗αi

)
=
∑

i
αi (k)ρk(ϕi ).

One may verify formally that ρk is Hecke-equivariant.
Let a` be the image in Ar0 of the eigenvalue of T`, −〈`〉(k−2)/2W`, or U` acting

on 8±g in the cases ` - N p, ` | N−, and ` | N+ p, respectively. Here 〈`〉 denotes the
projection of ` onto 1+ pZp. Set a1 = 1 and define an in terms of the a` with ` | n
by the usual formulas for Hecke operators.

We may shrink r0 if necessary to ensure that ρk(8
±
g ) is a nonzero element of

H 1(00, Vk−2(Qp)) for all k ≥ 2 with |k − 2|p ≤ r0 and k ≡ 2 (mod p− 1). The
class ρk(8

±
g ) is an eigenvector for the `-th Hecke operator with eigenvalue a`(k).

Thus, {a`(k)} is a system of Hecke eigenvalues occurring in H 1(00, Vk−2(Qp)). In
particular, {a`(k)} ⊂Q⊂Qp. By the Eichler–Shimura isomorphism [Matsushima
and Shimura 1963, §4], this system of Hecke eigenvalues also occurs in Sk(00).
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By the Jacquet–Langlands correspondence, it occurs in Sk(00(pN )) as well. Thus,
if we set

h :=
∞∑

n=1

anqn
∈Ar0[[q]],

then h(k)=
∑

an(k)qn is in fact the q-expansion of a classical cusp form of weight
k on 00(N p) for k ≥ 2, |k− 2|p ≤ r0, k ≡ 2 (mod p− 1). Furthermore, it is clear
that h(2) = f . Therefore, by the uniqueness of the Hida family through f [Hida
1986, Corollary 1.3, pg. 554], it follows that an(k) = an( f , k) for |k − 2|p ≤ r0.
In particular, this is true for n = p; Theorem 8 follows. �

Finally, we record a result that will be important later. Set

W0
= H 1(0,M0(X))⊗Zp[[Z

×
p ]]
3.

Lemma 9. The canonical map

(W0
⊗3Rp)

±,g
→ (W⊗3Rp)

±,g (4-8)

is an isomorphism.

Proof. The map ρ : M(X)→ Zp gives rise to the short exact sequence

0→ M0(X)→ M(X)
ρ
→ Zp→ 0.

Since R is 3-flat, we may tensor Rp with the associated long exact sequence in
0-cohomology to obtain

· · · → H 0(0, E)→W0
⊗3Rp→W⊗3Rp→ H 1(0, E)→ · · · .

The space H 0(0, E) is Eisenstein (that is, T` acts as 1+ `), so its g-isotypic com-
ponent is trivial. Since the maps in the sequence above are Hecke-equivariant, it
follows that the map (4-8) is injective. Similarly, if 8 ∈ (W⊗3Rp)

±,g, then its
image in H 1(0, E)must be zero. This holds because g is p-new of level 00, so the
system of Hecke eigenvalues of g does not occur in H 1(0, E). Therefore 8 is the
image of an element 8̃ ∈W0

⊗3Rp. Let ` be any prime such that the eigenvalue
a`(g) of the Hecke operator T` is not equal to ` + 1. Let a`(8) denote the T`
eigenvalue of 8, that is, the image of T` in Rp. We claim that

8̃′ :=
T`−(`+1)

a`(8)−(`+1)
8̃ (4-9)

is a lift of 8 to (W0
⊗3 Rp)

±,g. First note that the division in (4-9) is allowed
in the localization, since the image of a`(8)− (`+ 1) under reduction modulo p

is a`(g)− (`+ 1) 6= 0. Next, it is clear that 8̃′ maps to 8 under (4-8) since 8
has T` eigenvalue a`(8). Finally, let λ ∈ To, and let aλ(8) be the corresponding
eigenvalue of 8. Then (λ− aλ(8))8̃ maps to 0 in W⊗3Rp and hence arises from
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H 0(0, E). Since this module is Eisenstein, it is killed by T`−(`+1), and it follows
that (λ− aλ(8))8̃′ = 0. This shows that 8̃′ lies in (W0

⊗3Rp)
±,g, and concludes

the proof of the lemma. �

Using Lemma 9, we may view 8±g an element of (W0
⊗3Rp)

±,g.

5. Some commutative diagrams

In this section, we establish some commutative diagrams involving the operators
Up, U ′p, and Wp acting on the group cohomology of various spaces of p-adic
measures. In fact, these diagrams are so natural that they commute on the level
of cochains; this fact will be used heavily in the calculations of Section 7. Re-
call the group 2̃ defined in (3-4). We describe cohomology classes in terms of
homogeneous cochains relative to the complex of projective 2̃-modules

Fr := Z[2̃r+1
]. (5-1)

Thus, if G is a subgroup of 2̃, our group of M-valued r -cochains is

Cr (G,M) := HomG(Fr ,M). (5-2)

Coboundary maps d : Cr (G,M)→ Cr+1(G,M) are defined by the usual formula

dϕ(g0, . . . , gr+1)=

r+1∑
i=0

(−1)iϕ(g0, . . . , ĝi , . . . , gr+1).

We write

Z r (G,M)= Ker(d : Cr (G,M)→ Cr+1(G,M)),

Br (G,M)= Image(d : Cr−1(G,M)→ Cr (G,M)),

and have
H r (G,M)= Z r (G,M)/Br (G,M).

Defining
Xp = Zp×Z×p = w

−1
p X∞, (5-3)

we obtain Atkin–Lehner maps as in (3-5) with M = M(X∞) and M ′ = M(Xp).

Proposition 10. The following diagrams commute:

Cr (0,M(X))
ρX∞

uu

ρXp

))
Cr (00,M(X∞)) Up

// Cr (00,M(X∞))
W−1

p

// Cr (00,M(Xp))

(5-4)
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Cr (0′,M(wpX))
ρ′pXp

uu

ρ′X∞

))
Cr (00,M(pXp))

U ′p
// Cr (00,M(pXp))

W−1
p

// Cr (00,M(X∞))

(5-5)

Here the maps ρ are the natural restriction maps.

Proof. Let ϕ ∈ Z r (0,M(X)). Let g ∈ 2̃r+1, and let h be a locally analytic function
on Xp. In the following, we will write j! for the extension-by-zero of a function j
on X∞ to a function on X. We compute:

(W−1
p UpρX∞ϕ)(g)(h)= (UpρX∞ϕ)(wpg)(h|w−1

p )

=

∑
0≤i≤p−1

(ρX∞ϕ)(δ
−1
i wpg)(h|w−1

p δi )

=

∑
0≤i≤p−1

ϕ(δ−1
i wpg)((h|w−1

p δi )!)

=

∑
0≤i≤p−1

ϕ(g)((h|w−1
p δi )!|δ

−1
i wp)

=

∑
0≤i≤p−1

ϕ(g)(h!1π−1(i+pZp))

= (ρXpϕ)(g)(h).

Essential in this calculation is that w−1
p δi belongs to 0 and that

w−1
p δi (X∞)= γiw

−1
p (X∞)= γi (Xp)= π

−1(i + pZp).

The commutativity of (5-5) follows from applying the operator Wp to (5-4). �

Next, we will be interested in understanding the map

WpUp : H r (0,M(X))→ H r (0′,M(wpX))

with respect to the decomposition wpX = X∞ t pXp.

Proposition 11. The following diagram commutes:

Cr (0,M(X))
ρX∞ //

WpUp
��

Cr (00,M(X∞))

U 2
p

��
Cr (0′,M(wpX))

ρ′X∞

// Cr (00,M(X∞))
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Proof. The result follows from the following commutative diagram and (3-9). Note
that the commutativity of the triangle on the right is given by that of (5-5).

Cr (0,M(X))
Up //

ρX∞

��

Cr (0,M(X))
Wp //

ρX∞

��

Cr (0′,M(wpX))
ρ′X∞

((
ρ′pXp

��

Cr (00,M(X∞))

Cr (00,M(X∞)) Up

// Cr (00,M(X∞)) Wp

// Cr (00,M(pXp))

W−1
p U ′p

66

�

Proposition 12. The following diagram commutes:

H r (0,M(X))
ρXp //

WpUp

��

H r (00,M(Xp))

p∗
��

H r (0′,M(wpX))
ρ′pXp

// H r (00,M(pXp))

Here the map p∗ : H r (00,M(Xp))→ H r (00,M(pXp)) is induced by p∗h(x, y)=
h(px, py) for a locally analytic function h on pXp.

Proof. The result follows from the following commutative diagram.

Cr (0,M(X))
Up //

ρX∞

��

ρXp

,,

Cr (0,M(X))
Wp //

ρX∞

��

Cr (0′,M(wpX))

ρ′pXp

��

Cr (00,M(Xp))

Cr (00,M(X∞)) Up

// Cr (00,M(X∞)) Wp

// Cr (00,M(pXp))

W−2
p =p−1

∗

88

The commutativity of the diagonal map ρXp with the arrows that lie below it follows
from that of (5-4). The fact that W 2

p = p∗ follows from the fact that w2
p ∈ p00 and

hence induces the same map on 00-cohomology as multiplication by p. �

6. p-arithmetic cohomology classes and Darmon L-invariants

Let

2= ker
(
ordp ◦ nrd : 2̃→ Z/2Z

)
, (6-1)
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where nrd : B×→ Q× is the reduced norm map. Thus, 2 is a normal subgroup
of 2̃ of index two and 2̃/2 is generated by the image of wp. By analyzing its
action on the Bruhat–Tits tree of PGL2(Qp), the group 2 can be expressed as an
amalgamation (free product) 2 ∼= 0 ∗00 0

′ [Greenberg 2009]. Associated to such
an amalgamation and a 2-module M , there is a Mayer–Vietoris sequence

· · · → H r−1(00,M)
δ
−→ H r (2,M)

(res20 ,res2
0′
)

−−−−−−→ H r (0,M)⊕ H r (0′,M)
(res000

− res0
′

00
)

−−−−−−−−→ H r (00,M)→ · · · . (6-2)

Recall that we defined X = P1(Qp). View Qp as a subspace of P1(Qp) via the
inclusion z 7→ (z : 1). Thus, (x : y) can be identified with the fraction x/y. Set
∞= (1 : 0). We view Zp ⊂Qp as a subspace of X and set

X∞ = X −Zp = wpZp.

Our first goal in this section is to use (6-2) in order to construct a cohomol-
ogy class in H 1(2,M0(X))± associated to g±. (Such a class is constructed in
[Greenberg 2009] using different methods.) The map

π : X→ X, π(x, y)= (x : y)

and the induced pushforward of measures π∗ : M(X)→ M(X) can be described
via the following isomorphism, a consequence of the fact that π is a Z×p -fibration:

M(X)∼= M(X)⊗Zp[[Z
×
p ]]

Zp. (6-3)

Here, Zp is given the structure of a Zp[[Z
×
p ]]-algebra via the augmentation map

defined in (4-2). Recall that by Lemma 9, we may assume that the cohomo-
logical Hida family 8±g associated to g± belongs to H 1(0,M0(X))⊗Zp[[Z

×
p ]]

Rp.
For notational simplicity, we suppress the ⊗Zp[[Z

×
p ]]

Rp in the sequel and write
g±∈H 1(0,M0(X)); this does not affect any subsequent arguments in a substantive
way, though our measures now take values in E .

Proposition 13. There is a unique cohomology class ϕ±g ∈ H 1(2,M0(X)) such
that

res20 ϕ
±

g = π∗8
±

g , res20′ ϕ
±

g = π∗WpUp8
±

g .

Proof. The uniqueness follows from (6-2) as H 0(00,M0(X))= 0. We must show
the existence of ϕ±g . To this end, let

ϕ±g = π∗8
±

g ∈ H 1(0,M0(X)), ϕ′±g = π∗WpUp8
±

g ∈ H 1(0′,M0(X)).

From (6-2), we must show that res000
ϕ±g = res000

ϕ′±g in H 1(00,M0(X)). Since the
kernel of H 1(00,M0(X))→ H 1(00,M(X)) is Eisenstein, it suffices to prove this
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equality after viewing ϕ±g and ϕ′±g as taking values in M(X). Let

ρZp : H
1(0,M(X))→ H 1(00,M(Zp))

ρ ′X∞ : H
1(0′,M(X))→ H 1(00,M(Zp))

ρX∞ : H
1(0,M(X))→ H 1(00,M(X∞))

ρ ′X∞ : H
1(0′,M(X))→ H 1(00,M(X∞))

be the maps induced by the inclusions Zp ↪→ X and X∞ ↪→ X and restriction of
groups to 00. From the decomposition

H 1(00,M(X))= H 1(00,M(Zp))⊕ H 1(00,M(X∞)),

we must show that ρZpϕ
±
g = ρZpϕ

′±
g and ρX∞ϕ

±
g = ρ

′

X∞ϕ
′±
g . By Propositions 11

and 12, the following diagrams commute:

H 1(0,M(X))
ρZp

((
WpUp

��
H 1(0′,M(X)

ρ′Zp

// H 1(00,M(Zp))

H 1(0,M(X))
ρX∞ //

WpUp

��

H 1(00,M(X∞))

U 2
p

��
H 1(0′,M(X))

ρ′X∞

// H 1(00,M(X∞))

The diagram on the left proves ρZpϕ
±
g = ρZpϕ

′±
g , one of the desired identities. The

one on the right says ρ ′X∞ϕ
′±
g =U 2

pρX∞ϕ
±
g . By (6-3),

U 2
pρX∞ϕ

±

g = ε(ap(8
±

g ))
2ρX∞ϕ

±

g = ρX∞ϕ
±

g ,

completing the proof. �

For each choice of L ∈ P1(E), we define an integration map

κL : H r (2,M0(X))→ H r+1(2, E)

as follows: Let C(X) denote the space of continuous E-valued functions on X .
Choose a base-point τ ∈Hp(E)= P1(E)−P1(Qp) and define

ξL,τ ∈ C1(2̃,C(X)/E)

by

ξL,τ (g0, g1)=


logL

( z−g1τ

z−g0τ

)
if L ∈ E,

ordp

( z−g1τ

z−g0τ

)
if L=∞.

It is easy to see that dξL,τ = 0 and that the cohomology class represented by ξL,τ

does not depend on τ .



L-invariants and Shimura curves 473

Let G be any subgroup of 2̃, let ϕ ∈ Cr (G,M0(X)), and consider the cup
product

ξL,τ ∪ϕ ∈ Cr+1(G, (C(X)/E)⊗E M0(X)).

The 2̃-invariant integration pairing (C(X)/E)⊗E M0(X)→ E induces a map

I : Cr+1(G, (C(X)/E)⊗E M0(X))→ Cr+1(G, E).

Set κL,τ (ϕ)= I (ξL,τ ∪ϕ) ∈ Cr+1(G, E), i.e.,

κL,τ (ϕ)(g0, . . . , gr+1)=

∫
X

logL

( z−g1τ

z−g0τ

)
ϕ(g1, . . . , gr+1). (6-4)

One may compute directly that

dκL,τ (ϕ)= κL,τ (dϕ). (6-5)

Therefore, the correspondence ϕ 7→ κL,τ (ϕ) induces a map

κL : H r (G,M0(X))→ H r+1(G, E),

which, as our notation suggests, does not depend on the choice of τ . Define

H 1(00, E)p-new := H 1(00, E)
/

Image
(
H 1(0, E)⊕ H 1(0′, E)→ H 1(00, E)

)
,

and let
δ : H 1(00, E)p-new ↪→ H 2(2, E) (6-6)

be the injective map induced by the connecting homomorphism in the Mayer–
Vietoris sequence (6-2).

Proposition 14. The cohomology class ϕ±g defined in Proposition 13 satisfies the
following:

(1) The identity κ∞(ϕ±g )= δ(g
±) holds in H 2(2, E).

(2) There is a unique L ∈ E , denoted −LD(g±), such that κL(ϕ
±
g )= 0.

Proof. The first statement is argued in the proof of [Greenberg 2009, Lemma 32].
By [ibid., Lemmas 32 and 33], the eigenspace of H 2(2, E)± on which the Hecke
operators away from p act via the eigenvalues of g is 1-dimensional and is spanned
by κ∞(ϕ±g )= δ(g

±), where δ is as in (6-6). The class δ(g±) is nonzero as g± is a
nonzero p-new form and δ is injective on such classes. Since the map κ0 (the one
corresponding to L= 0) is Hecke-equivariant, there is a unique constant LD(g±)∈
E such that κ0(ϕ

±
g ) = LD(g±)κ∞(ϕ±g ). But the identity logL = log0+L ordp

implies that κL = κ0+Lκ∞, and the second statement of the proposition follows
with L=−LD(g±). �

Definition 15. The quantity LD(g±) is called the Darmon L-invariant of g±.



474 Samit Dasgupta and Matthew Greenberg

7. Equality of the Greenberg–Stevens and Darmon L-invariants

Let L ∈ E . The goal of this section is to prove the following:

Theorem 16. We have

κL(ϕ
±

g )= (L
GS(g)+L)δ(g±)

in H 2(2, E). Therefore, LD(g±)= LGS(g).

Since the Riemann surfaces 0\H and 0′\H are compact if and only if N− 6= 1,
we have

H 2(0, E)∼=
{

E if N− 6= 1,
{0} if N− = 1.

In either case, this space is Eisenstein for the Hecke operators. Since the restriction
maps are Hecke-equivariant, res20 κL(ϕ

±
g )= 0 and res20′ κL(ϕ

±
g )= 0.

Fix a base point τ ∈ Hp(E) and a representative ϕ ∈ C1(2,M0(X)) for the
cohomology class ϕ±g ∈ H 1(2,M0(X)). Let ψ ∈ C1(0, E) and ψ ′ ∈ C1(0′, E)
be 1-cochains such that dψ = κL,τ (ϕ)|0 and dψ ′ = κL,τ (ϕ)|0′ . Then ψ −ψ ′ is a
1-cocycle on 00 = 0 ∩0

′ and, tracing through the construction of the connecting
homomorphism in the long exact sequence in cohomology associated to (6-6), one
finds that

δ([ψ −ψ ′])= κL(ϕ
±

g ) (7-1)

in H 2(2, E). Through a general cohomological calculation, we will find explicit
formulas for ψ and ψ ′ and show that

[ψ −ψ ′] = (LGS(g)+L)g±. (7-2)

Equations (7-1) and (7-2) prove Theorem 16.
Let ϕ ∈ C1(2,M0(X)) be a cocycle representing the class ϕ±g . Let

8=8±g ∈ H 1(0,M0(X))

denote the Hida family defined in (4-6) that lifts res20 [ϕ] with respect to the push-
forward map π∗ : M0(X)→ M0(X). Let ϕ̃0 ∈ C1(0,M0(X)) be a cocycle repre-
senting8. Then there exists a cochain m∈ Z0(0,M0(X)) such that π∗ϕ̃0=ϕ+dm.
Since F0=Z[2̃] is 2-projective and thus 0-projective, we may lift m to a cochain
m̃ ∈ C0(0,M0(X)). Setting ϕ̃ = ϕ̃0 − dm̃ ∈ C1(0,M0(X)), we obtain a cocycle
representing 8 that satisfies

π∗ϕ̃ = ϕ. (7-3)



L-invariants and Shimura curves 475

For any σ ∈Cr (0,M0(X)) and σ ′∈Cr (0′,M0(wpX)), define λL(σ )∈Cr (0, E)
and λ′L(σ

′) ∈ Cr (0′, E) by the formulas

λL(σ )(g0, g1, . . . , gr )=

∫
X

logL(x − (g0τ)y) σ (g0, g1, . . . , gr )(x, y), (7-4)

λ′L(σ
′)(g0, g1, . . . , gr )=

∫
wpX

logL(x − (g0τ)y) σ ′(g0, g1, . . . , gr )(x, y).

These maps are 0 and 0′-invariant, respectively, because the values of σ and σ ′

have total measure zero.

Lemma 17. For any σ ∈ Cr (0,M0(X)) and σ ′ ∈ Cr (0′,M0(wpX)), we have

dλL(σ )= κL(π∗σ)+ λL(dσ), dλ′L(σ
′)= κL(π∗σ

′)+ λ′L(dσ
′).

Proof. Letting h = (g0, . . . , gr+1) and hi = (g0, . . . , ĝi , . . . , gr ), we have

dλ(σ)(h)=
∫

X

logL(x − (g1τ)y)σ (h0)(x, y)

+

r+1∑
i=1

(−1)i
∫

X

logL(x − (g0τ)y)σ (hi )(x, y)

=

∫
X

logL

( x−(g1τ)y
x−(g0τ)y

)
σ(h0)(x, y)+

∫
X

logL(x−(g0τ)y) dσ(h)(x, y)

=

∫
X

logL

( z−g1τ

z−g0τ

)
π∗σ(h0)(z)+ λL(dσ)(h)

= κL(π∗σ)(h)+ λL(dσ)(h),

as desired. The second equality is proved in a similar manner. �

Lemma 17 implies that if we define

ψ = λL(ϕ̃) ∈ C1(0, E), (7-5)

then dψ = κL(ϕ). Similarly, define

ψ ′ = λ′L(WpUpϕ̃) ∈ C1(0′, E). (7-6)

Then

dψ ′ = κL(π∗WpUpϕ̃)+ dλ′L(dWpUpϕ̃)

= κL(WpUpϕ)+ 0

= κL(ϕ),

where the last equality is justified by the following lemma:

Lemma 18. We have the identity of 2-cochains WpUpϕ = ϕ.
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Proof. Consider the diagram

Cr (0,M(X))
ρX∞

uu

ρZp

))
Cr (00,M(X∞)) Up

//

ρ−1
X∞

��

Cr (00,M(X∞)) Wp

//

ρ−1
X∞

��

Cr (00,M(Zp))

ρ−1
Zp

��
Cr (0,M(X))

Up

// Cr (0,M(X))
Wp

// Cr (0′,M(X))

The maps ρX∞ and ρZp are isomorphisms by Shapiro’s lemma. The bottom squares
of the diagram commute by definition and the upper triangle commutes as it is the
pushforward via π∗ in (5-4). The lemma follows. �

Having found explicit formulas for ψ and ψ ′ in (7-5) and (7-6), respectively,
we now turn towards proving (7-2). Recall that 8 = [ϕ̃] is a Up-eigenvector with
eigenvalue ap(8) satisfying ε(ap(8))=±1. We defined

LGS(8)= dε(1− ap(8)
2).

Proposition 19. The class of the cocycle ψ −ψ ′ in H 1(00, E) is equal to

(LGS(8)+L)ρ∗[ϕ],

where ρ∗ : H 1(2,M0(X))→ H 1(00,M(X∞))→ H 1(00, E) is the composition
of the canonical restriction map ρX∞ with the total measure on X∞ map (as in
(4-3)).

Proof. We use the decompositions X = X∞ tXp and wpX = X∞ t pXp to study
the integrals defining ψ and ψ ′ (see (4-1) and (5-3)). Writing h = (g0, g1), we
find:

(ψ −ψ ′)(h)=
∫

X∞

logL(x − (g0τ)y)ϕ̃(h)+
∫

Xp

logL(x − (g0τ)y)ϕ̃(h)

−

∫
X∞

logL(x − (g0τ)y)WpUpϕ̃(h)

−

∫
pXp

logL(x − (g0τ)y)WpUpϕ̃(h). (7-7)

Propositions 11 and 12 allow us to rewrite these last two integrals as∫
X∞

logL(x − (g0τ)y)WpUpϕ̃(h)=
∫

X∞

logL(x − (g0τ)y)U 2
pϕ̃(h) (7-8)
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and∫
pXp

logL(x − (g0τ)y)WpUpϕ̃(h)

=

∫
pXp

logL(x − (g0τ)y)p∗ϕ̃(h)=
∫

Xp

logL(px − (g0τ)py)ϕ̃(h)

=

∫
Xp

logL(x − (g0τ)y)ϕ̃(h)+Lϕ̃(h)(Xp). (7-9)

Combining (7-7), (7-8), and (7-9), we obtain

(ψ −ψ ′)(h)=
∫

X∞

logL(x − (g0τ)y)(1−U 2
p)ϕ̃(h)−Lϕ̃(h)(Xp). (7-10)

We now view ϕ̃ as an element of Z r (00,M0(X∞)) and calculate the class in
H r (00, E) represented by the right side of (7-10). We have that

ϕ̃(h)(Xp)= ϕ(h)(Zp)=−ϕ(h)(X∞),

and hence represents the class −ρ∗[ϕ] in H r (00, E). Therefore the last term in
(7-10) represents the class Lρ∗[ϕ].

It remains to prove that the first term in (7-10) represents the class LGS(ϕ̃)ρ∗[ϕ]

in H 1(00, E). Since (1−U 2
p)8= α8 with α = 1− ap(8)

2, we may write

(1−U 2
p)ϕ̃ = αϕ̃+ dν (7-11)

for some ν ∈ C0(00,M(X∞)). Pushing forward via π∗, we obtain

(1−U 2
p)ϕ = 0+π∗(dν).

Since the term on the left is zero, we obtain dπ∗(ν) = 0. Thus π∗ν represents a
class in H 0(00,M(X∞)).

Lemma 20. The cohomology group H 0(00,M(X∞)) is zero.

Proof. It is easy to see that

Ip = {g ∈ GL2(Zp) : g is upper-triangular modulo p}

acts transitively on the set of balls in X∞ of radius p−n for any n ≥ 1. Since 00 is
p-adically dense in Ip, 00 acts transitively on this set as well. It follows that if µ
is a 00-invariant measure on X∞, then µ(B)= p−n+1µ(X∞) for all compact-open
balls B ⊂ X∞ of radius p−n . Since the values of µ are assumed to be p-adically
bounded, it follows that µ= 0. �

By the lemma, we conclude that π∗ν is a coboundary. Arguing above as in the
definition of the cocycle ϕ̃ satisfying (7-3), we may alter ν by a coboundary to
assume that π∗ν = 0.



478 Samit Dasgupta and Matthew Greenberg

We may now calculate the cohomology class represented by (7-10). Substituting
(7-11) into (7-10), the term from αϕ̃ yields∫

X∞

logL(x − (g0τ)y)αϕ̃(h). (7-12)

By Proposition 21 below, the expression in (7-12) represents the class LGS(ϕ̃)ρ∗[ϕ]

in H 1(00, E). It remains to prove that the term arising from dν is trivial in coho-
mology, i.e., that

h 7→
∫

X∞

logL(x − (g0τ)y)dν(h) (7-13)

is a coboundary. Note that the right side of (7-13) is equal to∫
X∞

logL(x)dν(h)+
∫

X∞
logL(1− (g0τ)/z)π∗dν(h). (7-14)

The last term of (7-14) is zero since π∗dν = 0. The first term of (7-14) is equal to
the coboundary of the 0-cochain given by

g0 7→

∫
X∞

logL(x)ν(g0). (7-15)

We leave to the reader the exercise of using the equation π∗ν = 0 to show that the
0-cochain in (7-15) is 00-invariant. This proves that (7-13) is a coboundary and
completes the proof of the proposition. �

The following proposition, applied with α = 1 − ap(8)
2, was used above to

extract the invariant LGS(8) from the cohomology class [8].

Proposition 21. Let σ ∈ Z r (00,M(X∞)), let α ∈ Iε ⊂3 and define

η(g0, . . . , gr )=

∫
X∞

logL(x − (g0τ)y)ασ(g0, . . . , gr ).

Then η ∈ Z r (00, E) and represents the class

[η] = dε(α)ρ∗[σ ] ∈ H r (00, E).

Proof. Since α ∈ Iε , we have π∗(ασ) = 0; in particular, ασ has total measure 0.
It follows from this fact and a routine calculation that η is a cochain. That η is a
cocycle follows from the equations d(ασ)= α dσ = 0.
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To evaluate the class [η] ∈ H r (00, E), we consider α of the form [`] − 1 for
` ∈ 1+ pZp. Writing h = (g0, . . . , gr ), we have

η(h)=
∫

X∞

logL(x − (g0τ)y)([`]σ − σ)(h)

=

∫
X∞

(
logL(`x − (g0τ)`y)− logL(x − (g0τ)y)

)
σ(h)

=

∫
X∞

logL(`)σ (h)= log(`) · σ(h)(X∞)= dε([`] − 1)ρ∗σ(h).

This proves the result for α = [`]−1, and hence gives the result for general α ∈ Iε
as the ideal Iε is generated over 3 by such elements. �

This concludes the proof of Proposition 19, and since ρ∗ϕ±g = g±, we deduce
(7-2) and hence Theorem 16. Combining with Theorem 8, we also complete the
proof of Theorem 2.

8. Multiplicative integrals and period lattices

In this section, we suppose that the Hecke eigenvalues of g belong to Z. In this
case, it is shown in [Greenberg 2009, §8] that we may take

ϕ±g ∈ H 1(2,M0(X,Z))g,±.

That is, we may find an element ϕ±g ∈ H 1(2,M0(X,Z))g,± whose image in
H 1(2,M0(X, E)) is a basis for H 1(2,M0(X, E))g,±. Using this integral co-
homology class, we may define multiplicative versions of many of the objects
considered in previous sections.

Following Darmon [2001], we consider the multiplicative integration pairing

C(X)×/E××M0(X,Z)→ E×, ( f, µ) 7→ ×
∫

X
f µ (8-1)

defined by

×

∫
X

f µ= lim
||U||→0

∏
U∈U

f (zU )
µ(U ).

Here, U is a finite cover of X by compact open sets and zU is an arbitrary point of
U . The limit is taken over uniformly finer covers U. It is clear that

logL ×

∫
f µ=

∫
logL( f )µ for any L.

The pairing (8-1) is easily seen to be GL2(Qp)-equivariant and thus induces a
corresponding pairing

〈 · , · 〉× : H1(2,C(X)×/E×)× H 1(2,M0(X,Z))→ E×. (8-2)
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Let1=Div Hp and let10
=Div0 Hp. From the long exact sequence associated

to the short exact sequence of GL2(Qp)-modules 0→10
→1→Z→0, we extract

a connecting homomorphism ∂ :H2(2,Z)→H1(2,1
0). Let j :10

→C(X)×/E×

be the map sending a divisor D to a rational function on X with divisor D. (Note
that such a function is only well-defined up to multiplication by a nonzero scalar.)
The map j being GL2(Qp)-equivariant, it induces a corresponding map

j∗ : H1(2,1
0)→ H1(2,C(X)×/E×).

We may also define multiplicative refinements of the cocycles κL,τ (ϕ) as fol-
lows. Let τ ∈Hp, let ϕ ∈ Cr (2,M0(X,Z)), and define κτ (ϕ) ∈ Cr+1(2, E×) by
the rule

κτ (ϕ)(g0, . . . , gr+1)= ×

∫
X

( z−g1τ

z−g0τ

)
ϕ(g1, . . . , gr+1) ∈ E×.

As with κL,τ , the homomorphism κτ induces a map

κ : H r (2,M0(X,Z))→ H r+1(2, E×)

that does not depend on τ .
By the universal coefficients theorem, there is a natural surjective map

H r+1(2, E×)→ Hom(Hr+1(2,Z), E×).

Lemma 22. The image of κ(ϕ±g ) in Hom(H2(2,Z), E×) is given by

ξ 7→ 〈− j∗∂ξ, ϕ±g 〉
×.

Proof. Suppose

ξ =
∑

i

1⊗ (γi , δi , εi ) ∈ Z2(2,Z)= Z⊗2 Z[23
]

is a 2-cycle on 2 with values in Z. Tracing through the construction of the con-
necting homomorphism, one computes that ∂[ξ ] is represented by the cycle∑

i

(γiτ − δiτ)⊗ (δi , εi ).

Therefore,

〈 j∗∂ξ, ϕ±g 〉
×
=

∏
i

×

∫
X

(
z− γiτ

z− δiτ

)
ϕ±g (δi , εi ).

By the definition of the map in the universal coefficients theorem, the image of
κ(ϕ±g ) in Hom(H2(2,Z), E×) sends ξ to∏

i

κ(ϕ±g )(γi , δi , εi )=
∏

i

×

∫
X

( z−δiτ

z−γiτ

)
ϕ±g (δi , εi ).
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The result follows. �

In view of Lemma 22, we set

L±g = 〈 j∗∂H2(2,Z), ϕ±g 〉
×
= 〈H2(2,Z), κ(ϕ±g )〉 ⊂ E×.

Proposition 23 [Greenberg 2009, Proposition 30]. L±g is a lattice in E×.

Therefore, there is a unique L ∈ E such that logL(L
±
g ) = 0. We define the L-

invariant of the lattice L±g , denoted L(L±g ), to be the negative of this constant L.

Proposition 24. The L-invariant of the lattice L±g is equal to LD(ϕ±g ).

Proof. By the universal coefficients theorem,

logL(L
±

g )= logL〈H2(2,Z), κ(ϕ±g )〉

= 〈H2(2,Z), κL(ϕ
±

g )〉

is equal to 0 if and only if κL(ϕ
±
g ) = 0. By definition, this occurs if and only if

L=−LD(ϕ±g ). �

Corollary 25 [Greenberg 2009, Conjecture 2]. Let q be the Tate period of the
elliptic curve E/Q associated to f . Then

L(L±g )= logp(q)/ ordp(q).

Proof. By Proposition 23 and Theorem 2, L(L±g ) = LD(ϕ±g ) = LGS( f ). By the
Galois-theoretic portion of the proof of the Greenberg–Stevens theorem [Greenberg
and Stevens 1993, Theorem 3.18], we have LGS( f )= logp(q)/ ordp(q). �

In [Greenberg 2009], a construction was given for local Stark–Heegner points
on E×/L±g . We conjectured that the elliptic curve E×/L±g is isogenous to E/E ,
yielding a construction of local points on E. Corollary 25 proves this conjecture
and makes the construction unconditional. In the following section, we apply the
above techniques further to obtain a formula for the formal group logarithms of
these Stark–Heegner points in terms of Hida families.

9. Abel–Jacobi maps and Stark–Heegner points

In this section we recall the definition of Stark–Heegner points and give a for-
mula for the formal group logarithms of these points in terms of Hida families.
This formula will be used in [Greenberg and Shahabi ≥ 2012] to prove partial
results towards the rationality of the Stark–Heegner points following the methods
of [Bertolini and Darmon 2009].

Let Hp,ur denote the unramified p-adic upper half-plane:

Hp,ur = P1(Cp)− r−1(P1(Fp))⊂Hp,
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where r : P1(Cp)→ P1(Fp) is the reduction map. The action of GL2(Zp) on Hp

preserves Hp,ur. We set 1ur = Div Hp,ur and 10
ur = Div0 Hp,ur. If τ1, τ2 ∈ Hp,ur,

z ∈ X and (x, y) ∈ X, then the quantities

logL

( z−τ
z−τ ′

)
, logL(x − yτ)

do not depend on L because the arguments are p-adic units. For this reason, we
do not specify a branch of the p-adic logarithm and simply write log. The natural
GL2(Qp)-equivariant pairing

〈 · , · 〉 : M0(X)×C(X)/E→ Cp

induces a pairing

〈 · , · 〉 : H 1(0,M0(X))× H1(0,C(X)/E)→ Cp. (9-1)

Define j :10
ur→ C(X)/E by

j ({τ2}− {τ1})(z)= log
( z−τ2

z−τ1

)
.

Since it is 0-equivariant, j induces a homomorphism

j∗ : H1(0,1
0
ur)→ H1(0,C(X)/E).

We define one more pairing

〈 ·, · 〉 : H 1(0,M0(X))× H1(0,1
0
ur)→ Cp

by 〈ϕ, ξ〉 = 〈ϕ, j∗ξ〉.
Let T(p) be the Hecke generated by the operators away from p, that is, the

operators T` for ` - pN , U` for ` | N+, and the involutions W` for ` | N− (see §3).
There is a natural action of T(p) on H1(0,1

0
ur) described by double cosets such

that, endowing Hom(H1(0,1
0
ur), E) with the corresponding dual action, the map

A : H 1(0,M0(X))→ Hom(H1(0,1
0
ur), E),

ϕ 7→
(
ξ 7→ 〈ϕ, ξ〉

)
induced by the pairing (9-1) is T(p)-equivariant. For g as in the previous sections,
define

A±g = A(Res20 ϕ
±

g ).

We have A±g ∈ Hom(H1(0,1
0
ur), E)g,±, where Hom(H1(0,1

0
ur), E)g,± is the

eigenspace on which T(p) acts via the Hecke eigenvalues of g and W∞ acts as
±1.
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Proposition 26. There is a unique homomorphism AJ±g ∈Hom(H1(0,1ur), E)g,±

such that the diagram

H1(0,1
0
ur)

//

A±g $$

H1(0,1ur)

AJ±gzz
E

commutes, where the horizontal map is induced by the inclusion 10
ur ↪→1ur.

The proof of Proposition 26 is given in [Greenberg 2009, §10] and is very similar
to the first half of the proof of Lemma 9.

Remark 27. We have chosen the notation AJ±g for this map because it formally
resembles an Abel–Jacobi map.

Define J : 1ur → C(X)/E by J ({τ })(x, y) = log(x − yτ). Since it is 0-
equivariant, J induces a homomorphism J∗ : H1(0,1)→ H1(0,C(X)/E). The
natural 0-equivariant pairing M0(X) × C(X)/E → E induces a corresponding
pairing H 1(0,M0(X))× H1(0,C(X)/E)→ E .

Corollary 28. The map AJ±g : H1(0,1ur)→ E is given by AJ±g (ξ)= 〈8
±
g , J∗ξ〉.

Proof. It is easy to see that the element ÃJ±g of Hom(H1(0,1ur), E) defined by
ξ 7→ 〈8±g , J∗ξ〉 belongs to the (g,±)-eigenspace. Since π∗8±g = Res20 ϕ

±
g , the

diagram

H1(0,1
0
ur)

j∗ //

��

H1(0,C(X)/E)
〈Res20 ϕ

±
g ,· 〉

))
π∗

��

E

H1(0,1ur) J∗
// H1(0,C(X)/E)

〈8±g ,· 〉

55

commutes, implying that

H1(0,1
0
ur)

//

A±g $$

H1(0,1ur)

ÃJ±gzz
E

commutes as well. Therefore, by Proposition 26, AJ±g = ÃJ±g . �
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Let K be a real quadratic field and let O ⊂ K be an order such that disc O is
relatively prime to N and p. There is an embedding

ψ : K → B

such that ψ(O)= ψ(K )∩ R. For details regarding this point, see [Vignéras 1980,
chapitre III, 5C]. Suppose further that p is inert in K . Then ψ(K×) acts on P1(E)
via ιp with two fixed points τψ and τψ in Hp,ur, conjugate under the action of
Gal(K p/Qp). Let ε be a generator of the unit group of O. Then since ψ(ε)τψ = τψ ,
we have

{τψ }⊗ (1, ψ(ε)) ∈ Z1(0,1ur).

Let C[ψ] be the corresponding class in H1(0,1ur). The brackets around ψ indicate
that C[ψ] depends only on the 0-conjugacy class of the embedding ψ . Assuming
that the Hecke eigenvalues of g lie in Z, we may associate an elliptic curve E/Q

to g by the Eichler–Shimura construction. Let logω be the logarithm of the formal
group law on E associated to the differential dq/q on E×/qZ. Note that logω
factorizes as

E(E)→ E×/qZ
→ E,

where the left arrow is the inverse of the Tate uniformization of E and the right
arrow is logL with

−L= LGS(g)= LD(ϕ±g )= LMTT(g)=
logp(q)
ordp(q)

.

The points
AJ±g (C[ψ]) ∈ E = logω E(E)

are called Stark–Heegner points on E. We conjecture in [Greenberg 2009, §10]
that the locally defined points AJ±g (C[ψ]) in fact belong to logE(E(HO)), where HO

is the ring class field of K associated to the order O. By the results of this section,
we have the following formula for AJ±g (C[ψ]) in terms of the Hida family 8±g :

Corollary 29. AJ±g (C[ψ])= 〈8
±
g , J∗C[ψ]〉.

In [Greenberg and Shahabi ≥ 2012], we apply this formula with the methods of
[Bertolini and Darmon 2009] to prove partial results towards the rationality of the
Stark–Heegner points AJ±g (C[ψ]) over HO.
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On the weak Lefschetz property for powers
of linear forms

Juan C. Migliore, Rosa M. Miró-Roig and Uwe Nagel

Ideals generated by prescribed powers of linear forms have attracted a great deal
of attention recently. In this paper we study properties that hold when the linear
forms are general, in a sense that we make precise. Analogously, one could study
so-called “general forms” of the same prescribed degrees. One goal of this paper
is to highlight how the differences between these two settings are related to the
weak Lefschetz property (WLP) and the strong Lefschetz property (SLP). Our
main focus is the case of powers of r + 1 general linear forms in r variables.
For four variables, our results allow the exponents to all be different, and we
determine when the WLP holds and when it does not in a broad range of cases.
For five variables, we solve this problem in the case where all the exponents are
equal (uniform powers), and in the case where one is allowed to be greater than
the others. For evenly many variables (≥ 6) we solve the case of uniform powers,
and in particular we prove half of a recent conjecture by Harbourne, Schenck
and Seceleanu by showing that for evenly many variables, an ideal generated
by d-th powers of r + 1 general linear forms fails the WLP if and only if d > 1.
For uniform powers of an odd number of variables, we also give a result for
seven variables, missing only the case d = 3. Our approach in this paper is via
the connection (thanks to Macaulay duality) to fat point ideals, together with a
reduction to a smaller projective space, and the use of Cremona transformations.
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1. Introduction

Ideals generated by powers of linear forms have attracted a great deal of attention
recently. For example, their Hilbert functions have been the focus of the papers
[Ardila and Postnikov 2010; Sturmfels and Xu 2010; Harbourne et al. 2011], among
others. In this paper we obtain further results in this direction, and relate them to
the presence or failure of the weak Lefschetz property, which we now recall.

Let A= R/I be a standard graded artinian algebra, where R= k[x1, . . . , xr ] and
k is a field. If ` is a linear form, then multiplication by ` induces a homomorphism
from any component [A]i to the next. Such linear forms are parametrized by [R]1.
A natural question is whether there is a Zariski-open subset U of [R]1 such that
if ` corresponds to any point of U , then for each i , multiplication by ` induces a
homomorphism of maximal rank. When this property holds, the algebra is said to
have the weak Lefschetz property (WLP), and we say that multiplication by a general
linear form has maximal rank from each degree to the next. One would naively
expect this property to hold, and so it is interesting to find classes of algebras where
it fails and to understand what is it about the algebra that prevents this property
from holding. There has been a long series of papers by many authors studying
different aspects of this problem. Even the characteristic of k plays an interesting
role; see for instance [Migliore et al. 2011; Li and Zanello 2010; Brenner and Kaid
2011; Cook and Nagel 2009; 2011].

The first result in this direction is due to R. Stanley [1980], J. Watanabe [1987],
and L. Reid, L. Roberts and M. Roitman [Reid et al. 1991], who showed that, in
characteristic 0, the WLP holds for an artinian complete intersection generated by
powers of variables. In fact, they showed that there is a Zariski-open subset U of
[R]1 such that if ` corresponds to a point of U , then for each i , multiplication by
any power `d induces a homomorphism of maximal rank from [A]i to [A]i+d ; that
is, the strong Lefschetz property (SLP) holds. Since both the WLP and the SLP
are preserved after a change of variables, their result shows that both properties
hold for any complete intersection whose generators are powers of linear forms. By
semicontinuity, it holds for a complete intersection whose generators (of arbitrary
degree) are chosen generically.

There are (at least) three natural directions suggested by this theorem. First,
we can ask whether the WLP holds for arbitrary complete intersections. It was
shown by T. Harima, J. Watanabe and the first and third authors in [Harima et al.
2003] that in two variables, all artinian algebras have the WLP. In the same paper,
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it was shown that it also holds for arbitrary artinian complete intersections in three
variables. It remains open whether it also holds for arbitrary complete intersections
in arbitrarily many variables.

Second, a natural question arising from the theorem of [Stanley 1980; Watanabe
1987; Reid et al. 1991] is to ask for which monomial ideals does the WLP hold or
not hold. F. Zanello [2006] and H. Brenner and A. Kaid [2007] gave very simple
examples to show that even level monomial ideals need not have this property, and
the latter gave an example that was even an almost complete intersection (the ideal
was in a ring with three variables and had four minimal generators). This latter
fact gave a negative answer to a question in [Migliore and Miró-Roig 2003]. In
[Migliore et al. 2011], we gave a much more extensive study of monomial almost
complete intersections and when they fail to have the WLP. This work was extended
in [Cook and Nagel 2009; 2011]. In [Boij et al. 2012], we showed that the only other
situation where level monomial ideals have to have the WLP is 3 variables, type 2.

A third interesting problem suggested by the result of [Stanley 1980; Watanabe
1987; Reid et al. 1991] is to ask when the WLP holds for powers of ≥ r + 1
linear forms, since up to a change of variables their result says that any complete
intersection of powers of linear forms has the WLP. In [Migliore et al. 2011], we
showed by example that in four variables, for d = 3, . . . , 12, an ideal generated by
the d-th powers of five general linear forms does not have the WLP. On the other
hand, H. Schenck and A. Seceleanu [2010] then gave the surprising result that in
three variables, any ideal generated by powers of linear forms has the WLP. (We
give a new proof of this result in Section 2.) In contrast, Harbourne, Schenck and
Seceleanu [Harbourne et al. 2011] have recently shown the following: Let

I = 〈`t
1, . . . , `

t
n〉 ⊂ k[x1, . . . , x4]

with `i general linear forms. If n ∈ {5, 6, 7, 8} then the WLP fails, respectively, for
t ≥ {3, 27, 140, 704}.

A famous conjecture of Fröberg [1985] gives the expected Hilbert function for
an ideal of s general forms of prescribed degrees d1, . . . , ds . The result of [Stanley
1980; Watanabe 1987; Reid et al. 1991] shows that when s = r+1, the same Hilbert
function is obtained by the same powers d1, . . . , dr+1 of general linear forms. Many
authors have studied the question of when an ideal of powers of general linear
forms has the Hilbert function predicted by Fröberg, and it is known that often it
fails even when s = r + 2; see for instance [Iarrobino 1997]. It is also known (and
strongly used in this paper) that there is a strong connection between the Hilbert
function of powers of general linear forms and the Hilbert function of a related
set of fat points in projective space. The connections between these topics, and a
geometric study of the Hilbert function of a set of fat points via Bézout methods,
can be found in [Iarrobino 1997] and in [2005; Chandler 2007].
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In this paper, we study the WLP for quotients k[x1, . . . , xr ]/I where I is an
almost complete intersection ideal generated by powers of general linear forms.
By the main result of [Schenck and Seceleanu 2010], the first interesting case is
r = 4, and by the result of [Stanley 1980; Watanabe 1987; Reid et al. 1991], the first
interesting situation is that of r+1 forms. This is the focus of this paper. As a main
tool, we first use the inverse system dictionary to relate an ideal I ⊂ k[x1, . . . , xr ]

generated by powers of linear forms to an ideal of fat points in Pr−1, and then we
show that the WLP problem of an ideal generated by powers of linear forms is
closely connected to the geometry of the linear system of hypersurfaces in Pr−2 of
fixed degree with preassigned multiple points.

Let us briefly explain how this paper is organized. In Section 2 we give the
connection between the WLP problem and Fröberg’s conjecture. As a consequence,
the results of this paper (about the failure of WLP for explicit ideals generated by
r + 1 powers of general linear forms in r variables) can be interpreted as explicit
results about when an ideal generated by r + 1 powers of general linear forms in
r − 1 variables fails to have the Hilbert function predicted by Fröberg.

We begin Section 3 by explaining the tools that are applied throughout the
paper. First, we recall a result of Emsalem and Iarrobino [1995] which gives a
duality between powers of linear forms and ideals of fat points in Pr−1. Then, we
reduce our WLP problem to one of computing the Hilbert function of n general fat
points in Pr−2 or, equivalently, to computing the dimension of the linear system
of hypersurfaces in Pr−2 of degree d having some points of fixed multiplicity.
Moreover, using Cremona transformations, one can relate two different linear
systems to reduce the problem; see [Laface and Ugaglia 2006] or [Dumnicki 2009,
Theorem 3].

In Section 4, we consider the case of 4 variables and we give a fairly complete
answer about the failure of the WLP for

I = 〈La1
1 , La2

2 , La3
3 , La4

4 , La5
5 〉 ⊂ k[x1, x2, x3, x4],

where the L i are general linear forms and 2≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. In Section 5,
we deal with 5 variables and we completely determine when an ideal generated
by uniform or almost uniform powers of six linear forms fails the WLP. We add
some examples to illustrate that our methods extend beyond the mentioned results.
The main result of Section 6 is Theorem 6.1, where we give a complete answer
to the uniform case when the number of variables is even; in particular, we solve
[Harbourne et al. 2011, Conjecture 5.5.2] when the number of variables is even.
The case of an odd number of variables is left as an open conjecture and we present
some evidence for this conjecture, including a proof for the case of seven variables.

Finally, it is worthwhile to point out that the approach used in this work can
be applied to many other situations, in particular when the generators do not all
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have the same degree, but the calculations quickly become overwhelming. The key
steps of our approach involve identifying the consecutive degrees where the WLP
fails, determining the appropriate inequality (or equality) in the dimensions, and
then after making the translation to fat points, showing that the dimension of the
corresponding linear system has the predicted failure. As we will see, all of these
steps become very intricate.

2. Lefschetz properties and Fröberg’s conjecture

This section discusses briefly the relations between Fröberg’s conjecture and the
Lefschetz properties. For all references to Fröberg’s work, see [Fröberg 1985].

Let R = k[x1, . . . , xr ] be a polynomial ring over a field k with its standard
grading. Assume that k is infinite. Denote by h A the Hilbert function

h A(t)= dimk[A]t

of a standard graded k-algebra A. Fix a positive integer s, and fix positive integers
d1, . . . , ds . Consider the product P = [R]d1×· · ·× [R]ds , with its Zariski topology.
Fröberg’s idea is that there should be a dense open subset U of P such that for all
points (F1, . . . , Fs) of U , the coordinate rings of the ideals 〈F1, . . . , Fs〉 should
have the same Hilbert function, which was precisely described by Fröberg; we
call this the expected Hilbert function for the given values of s, d1, . . . , ds . (In
particular, U will avoid any instances where Fi = F j .) Throughout this paper, when
we say that an ideal of general forms has some property (∗), either the values of
s, d1, . . . , ds will be understood from the context, or the statement will be valid
for any choices of s, d1, . . . , ds , and we will mean that there is a Zariski-open
subset U as above whose points correspond to generators of an ideal satisfying (∗).
Beginning in the next section, usually we will have s = r + 1.

Fröberg’s conjecture is equivalent to the following structural statement: If I ⊂ R
is an ideal generated by s general forms of degrees d1, . . . , ds , and f ∈ R is another
general form of degree d , then the multiplication map

× f : [R/I ]i−d → [R/I ]i

has maximal rank for every integer i ; that is, it is injective or surjective. This
conjecture is known if the number of variables is at most three, due to Anick [1986],
and open if the number of variables is greater.

Recall that an artinian graded algebra A = R/I has the weak Lefschetz property
(WLP) if there is a linear form ` such that the multiplication ×` : [A]i−1→[A]i has
maximal rank for each integer i . Furthermore, A has the strong Lefschetz property
(SLP) if for each integer d ≥ 1 the multiplication

×`d
: [A]i−d → [A]i
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has maximal rank for each i . It is known that the WLP does not imply the SLP.
Fröberg’s conjecture implies, in particular, that all ideals generated by general

forms have the WLP. In fact, these concepts are even more closely related, as the
following result and its corollaries show.

Proposition 2.1. (a) If Fröberg’s conjecture is true for all ideals generated by
general forms in r variables, then all ideals generated by general forms in
r + 1 variables have the WLP.

(b) Let R = k[x1, . . . , xr+1], ` ∈ R be a general linear form, and S = R/〈`〉 ∼=
k[x1, . . . , xr ]. Fix positive integers s, d1, . . . , ds+1. Let L1, L2, . . . , Ls+1 ∈ R
be linear forms. Denote by ¯ the restriction from R to S ∼= R/〈`〉. Make the
following assumptions:

(i) The ideal I = 〈Ld1
1 , . . . , Lds

s 〉 has the WLP.
(ii) The multiplication ×L̄ds+1

s+1 : [S/ Ī ] j−ds+1→ [S/ Ī ] j has maximal rank.

Then R/〈Ld1
1 , . . . , Lds+1

s+1 〉 has the WLP.

Proof. As pointed out in the paragraph preceding [Migliore and Miró-Roig 2003,
Proposition 4.3], the proof of [ibid., Proposition 4.3] implies Claim (a). Essentially,
it also proves Claim (b). For the reader’s convenience, we give the proof of (b) here.

Let A = R/I . Let f = Lds+1
s+1 . We have to show that A/ f A ∼= R/(I, f ) has the

WLP. To this end, for simplicity let d=ds+1 and consider the following commutative
diagram with exact rows and columns,

[A] j−d−1 −−−→
ρ

[A] j−1 −−−→ [A/ f A] j−1 −−−→ 0yα yβ yγ
[A] j−d −−−→

ψ
[A] j −−−→ [A/ f A] j −−−→ 0y y y

[A/`A] j−d −−−→
ϕ
[A/`A] j −−−→ [A/( f, `)A] j −−−→ 0y y y

0 0 0,

where α, β, γ are multiplications by ` and ρ,ψ, ϕ are multiplications by f .
By (i), α and β have maximal rank. We have to show that the same is true for γ .

If β is surjective, then so is γ . Thus, assume that β is injective. Since the algebras
in the bottom row are quotients of R = R/`R by ideals generated by powers of
general linear forms in R, the assumption implies that also ϕ has maximal rank.
If ϕ is surjective, then so is γ , and we are done. If ϕ is injective, then a routine
diagram chase shows that γ is injective as well, which completes the argument. �
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The last result provides a new short proof of the main result of [Schenck and
Seceleanu 2010].

Corollary 2.2 [Schenck and Seceleanu 2010]. If k has characteristic zero, then
every ideal generated by powers of linear forms in 3 variables has the WLP.

Proof. Let J ⊂ R = k[x, y] be an ideal generated by powers of linear forms in two
variables. By [Harima et al. 2003, Proposition 4.4], every ideal in two variables
over a field of characteristic zero has the SLP. Hence, if ` in R is a general linear
form, then multiplication by any power of `, say `e, on R/J has maximal rank.
However, since the statement is about ideals generated by powers of arbitrary linear
forms, we need to show that the multiplication still has maximal rank whenever `
is not one of the linear forms whose powers generate J . To this end, it is enough
to argue that the Hilbert function of the cokernel of multiplication by `e, namely
R/(J, `e), does not change. However, this is clear because the latter is determined
by the Hilbert function of fat points in projective 1-space (see Theorem 3.3 below),
which only depends on the degree of the scheme since it is defined by a principal
ideal.

Now we can employ the argument used in the proof of Proposition 2.1. Indeed,
we just showed that the map ϕ in the commutative diagram above has maximal
rank. �

Corollary 2.3. Assume the characteristic is zero. Let R = k[x1, . . . , xr+1], ` ∈ R
be a general linear form, and S= R/〈`〉 ∼= k[x1, . . . , xr ]. For integers d1, . . . , dr+2,
if an ideal of powers of general linear forms 〈Ld1

1 , . . . , Ldr+2
r+2 〉 ⊂ R fails to have the

WLP, then an ideal of powers of general linear forms 〈L̄d1
1 , . . . , L̄dr+2

r+2 〉 ⊂ S fails to
have the Hilbert function predicted by Fröberg’s conjecture.

Proof. Taking s = r + 1, condition (i) of Proposition 2.1(b) is satisfied by the result
of [Stanley 1980; Watanabe 1987; Reid et al. 1991]. Thus (ii) must fail. We also
know that [S/ Ī ] j−dr+1 and [S/ Ī ] j have the expected dimensions. The failure of
×L̄dr+2

r+2 to have maximal rank then immediately gives the result. �

If all ideals in R = k[x1, . . . , xr ] that are generated by powers of general linear
forms were to have the SLP, then these ideals would have the expected Hilbert
function of ideals generated by general forms of the corresponding degrees, and thus
Fröberg’s conjecture would be true in R. Since complete intersections generated
by powers of linear forms have the SLP, it follows that ideals generated by r + 1
powers of general linear forms in r variables have the expected Hilbert functions,
so Fröberg’s conjecture is true for ideals generated by r + 1 general forms of R.

It has already been shown by Iarrobino in [1997] that ideals generated by r + 2
powers of general linear forms in r variables do not necessarily have the expected
Hilbert function, leading to almost complete intersections generated by powers of
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general linear forms in r + 1 variables that fail the WLP. By Corollary 2.2, this
forces r ≥ 4. Since complete intersections do have the WLP, these considerations
suggest as a crucial test case the question of whether ideals generated by r + 1
powers of general linear forms in r ≥ 4 variables have the WLP.

In the following sections we study this phenomenon much more systematically.
We give many explicit ideals of powers of r + 1 general linear forms that fail the
WLP, and so by Corollary 2.3 these all give examples in r − 1 variables of ideals
generated by powers of r + 1 linear forms that fail to have the Hilbert function
predicted by Fröberg. We will not repeat this remark after this section, but it is an
important motivation for our work.

Example 2.4. For some specific examples, see [Migliore et al. 2011; Schenck and
Seceleanu 2010]. However, we give two illustrations here.

(a) Taking a1 = · · · = a5 = 5, in Theorem 4.2 we have λ= 8, so k[x1, . . . , x4]/

〈x5
1 , . . . , x5

4 , L5
〉 fails the WLP from degree 7 to degree 8. Thus the ideal

generated by the fifth powers of five general linear forms in k[x, y, z] fails to
have the Hilbert function predicted by Fröberg.

(b) If r is odd and d > 1, then an ideal of powers of general linear forms of
the form 〈Ld

1 , . . . , Ld
r , Ld

1 , Ld
2〉 fails to have the Hilbert function predicted by

Fröberg. This follows from Theorem 6.1 and the above discussion.

3. General approach

Let R = k[x1, . . . , xr ] be a polynomial ring, where k is a field of characteristic zero.

Notation 3.1. Throughout this paper, when m is any integer, we will denote

[m]+ =max{m, 0}.

For any artinian ideal I ⊂ R and a general linear form ` ∈ R, the exact sequence

· · · → [R/I ]m−1
×`
−→ [R/I ]m→ [R/(I, `)]m→ 0

gives, in particular, that the multiplication by ` will fail to have maximal rank
exactly when

dimk[R/(I, `)]m 6=max{dimk[R/I ]m − dimk[R/I ]m−1, 0}; (3-1)

in that case, we will say that R/I fails the WLP in degree m.

Remark 3.2. Notice that to show that the multiplication by ` fails to have maximal
rank from degree m− 1 to degree m, it is enough to check the failure of injectivity
if dim[R/I ]m−1 ≤ dim[R/I ]m , and it is enough to check the failure of surjectivity
if dim[R/I ]m−1 ≥ dim[R/I ]m . We will then say that R/I fails injectivity or fails



On the weak Lefschetz property for powers of linear forms 495

surjectivity, respectively. An important part of the argument is the verification of
the inequality of the dimensions.

In several of the papers mentioned above, this failure was studied via an exam-
ination of the splitting type of the first syzygy bundle of I . For powers of linear
forms, we give an alternative approach, which we will implement in the subsequent
sections.

We first recall a result of Emsalem and Iarrobino giving a duality between powers
of linear forms and ideals of fat points in Pn−1. We quote it in the form that we
need.

Theorem 3.3 [Emsalem and Iarrobino 1995, Theorem I]. Let 〈La1
1 , . . . , Lan

n 〉 ⊂ R
be an ideal generated by powers of n linear forms. Let ℘1, . . . , ℘n be the ideals of
n points in Pr−1. (Each point is actually obtained explicitly from the corresponding
linear form by duality.) Choose positive integers a1, . . . , an . Then, for any integer
j ≥max{ai },

dimk
[
R/〈La1

1 , . . . , Lan
n 〉
]

j = dimk
[
℘

j−a1+1
1 ∩ · · · ∩℘ j−an+1

n
]

j .

Now, we observe that the ideal (I, `) is also an ideal generated by powers of
linear forms! We conclude that if ℘ is the ideal of the point dual to ` then

dimk
[
R/〈La1

1 , . . . , Lan
n , `〉

]
j = dimk

[
℘

j−a1+1
1 ∩ · · · ∩℘ j−an+1

n ∩℘ j]
j .

Consider the points P1, . . . , Pn, P in Pr−1 defined by the ideals ℘1, . . . , ℘n, ℘,

respectively. Let λi be the line joining P to Pi , and let H = Pr−2 be a general
hyperplane defined by a linear form L H . Let Qi be the point of intersection of λi

with H . For any positive integer m, we will denote by λm
i the curve with defining

ideal I m
λi

, and notice that λm
i is arithmetically Cohen–Macaulay. Thus the hyperplane

section of λm
i by H has saturated ideal qm

i = (I
m
λi
, L H )/(L H ) in the coordinate ring

R/(L H ) of H , and qm
i defines a fat point Qm

i in H = Pr−2. The curve

Y = λ j−a1+1
1 ∪ · · · ∪ λ j−an+1

n

is the cone over Qa1
1 ∪ · · · ∪ Qan

n , and thus is also arithmetically Cohen–Macaulay.

Proposition 3.4. Let 〈La1
1 , . . . , Lan

n 〉 ⊂ R be an ideal generated by powers of n
linear forms, and let ` be a general linear form. For j ≥max{ai }, we have

dimk
[
R/〈La1

1 , . . . , Lan
n , `〉

]
j

= dimk
[
℘

j−a1+1
1 ∩ · · · ∩℘ j−an+1

n ∩℘ j]
j (in k[x1, . . . , xr ])

= dimk
[
q

j−a1+1
1 ∩ · · · ∩ q j−an+1

n
]

j (in k[x1, . . . , xr−1]).
Proof. The first equality is Theorem 3.3. Without loss of generality let P =
[0, . . . , 0, 1], with defining ideal ℘ = 〈x1, . . . , xr−1〉, and assume that H is defined
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by xr =0. Any form F ∈[℘ j−a1+1
1 ∩· · ·∩℘

j−an+1
n ∩℘ j

] j involves only the variables
x1, . . . , xr−1 since it is in [℘ j

] j . Thus F ∈ [IY ] j , so viewing F in k[x1, . . . , xr−1],
we see that F vanishes on the hyperplane section of Y ; that is,

F ∈
[
q

j−a1+1
1 ∩ · · · ∩ q j−an+1

n
]

j . (∗)

Now suppose F satisfies (∗). Viewing F in k[x1, . . . , xr ] we see that F vanishes
on Y , hence also on the subscheme of Y defined by ℘ j−a1+1

1 ∩ · · · ∩℘
j−an+1
n . But

we also have that F ∈ ℘ j , since it involves only x1, . . . , xr−1. Moreover F has
degree j . Thus F ∈ ℘ j−a1+1

1 ∩ · · · ∩℘
j−an+1
n ∩℘ j

] j as desired. �

Using Proposition 3.4, we reduce our WLP problem to one of computing the
Hilbert function of n general fat points in Pr−2. From now on, we will denote by

Lr−2( j; j − a1+ 1, j − a2+ 1, . . . , j − an + 1)

the linear system [q j−a1+1
1 ∩ · · · ∩ q

j−an+1
n ] j ⊂ [k[x1, . . . , xr−1]] j . In order to

simplify notation, we use superscripts to indicate repeated entries. For example,
L3( j; 52, 23)= L3( j; 5, 5, 2, 2, 2).

Notice that, for every linear system Lr ( j; a1, . . . , an), one has

dimk Lr ( j; a1, . . . , an)≥max
{

0,
( j+r

r

)
−

n∑
i=1

(ai+r−1
r

)}
,

where the right-hand side is called the expected dimension of the linear system. If
the inequality is strict, then the linear system Lr ( j; a1, . . . , an) is called special. It
is a difficult problem to classify the special linear systems.

Using Cremona transformations, one can relate two different linear systems; see
[Nagata 1960; Laface and Ugaglia 2006; Dumnicki 2009, Theorem 3].

Lemma 3.5. Let n > r ≥ 2 and j, a1, . . . , an be nonnegative integers, and set
m = (r − 1) j − (a1+ · · ·+ ar+1). If ai +m ≥ 0 for all i = 1, . . . , r + 1, then

dimk Lr ( j; a1, . . . , an)= dimk Lr ( j +m; a1+m, . . . , ar+1+m, ar+2, . . . , an).

Following [De Volder and Laface 2007], the linear system Lr ( j; a1, . . . , an) is
said to be in standard form if (r − 1) j ≥ a1+ · · ·+ ar+1 and a1 ≥ · · · ≥ an ≥ 0. If
r = 2, then every linear system in standard form is nonspecial. This is no longer
true if r ≥ 3. However, De Volder and Laface were able to compute the speciality
in the case of at most 8 fat points in P3. We state their result only in the form we
need it.
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Theorem 3.6 [De Volder and Laface 2007, Theorem 5.3]. If the linear system
L3( j; a1, . . . , a6) is in standard form, then

dimk L3( j; a1, . . . , a6)=max
{

0,
( j+r

r

)
−

6∑
i=1

(ai+r−1
r

)}
+

6∑
i=2

( ti+1
3

)
,

where ti = a1+ ai − j .

Notice that we always use the vector space dimension of the linear system rather
than the dimension of its projectivization and that we adjusted the formula for the
expected dimension. Furthermore, we always use the convention that a binomial
coefficient

(a
r

)
is zero if a < r .

In this note, we are interested in certain almost complete intersections. Then one
can compute the right-hand side of the inequality (3-1).

Lemma 3.7. Let I = 〈La1
1 , . . . , Lar+1

r+1 〉 ⊂ R be an almost complete intersection
generated by powers of r + 1 general linear forms. Then, for each integer j ,

dimk[R/I ] j − dimk[R/I ] j−1

=
[
h A( j)− h A( j − ar+1)

]
+
−
[
h A( j − 1)− h A( j − 1− ar+1)

]
+
,

where A = R/〈La1
1 , . . . , Lar

r 〉. Furthermore, if j ≤ 1
2ar+1+

1
2

∑r
i=1(ai − 1), then

the formula simplifies to

dimk[R/I ] j − dimk[R/I ] j−1

=
[
h A( j)− h A( j − 1)

]
−
[
h A( j − ar+1)− h A( j − 1− ar+1)

]
.

Proof. Considering multiplication by lar+1
r+1 on A, the first equation follows because

the complete intersection A has the SLP according to [Stanley 1980; Watanabe
1987; Reid et al. 1991]. The latter also implies that the Hilbert function of A is
unimodal. Its midpoint is 1

2

∑r
i=1(ai − 1). Thus, the differences in brackets in the

first formula are not negative if j ≤ 1
2ar+1+

1
2

∑r
i=1(ai − 1), proving the second

formula. �

Notice that the Hilbert function of the complete intersection A can be computed
using the Koszul complex that provides its minimal free resolution.

4. Powers of linear forms in four variables

In this section we let R = k[x1, x2, x3, x4], where k is a field of characteristic zero.
Our main result will be to determine, in almost all cases, when an ideal generated
by powers of five general linear forms has the WLP. To this end, without loss of
generality we set I = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 , La5〉, where L is a general linear form and

a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. Part of the argument involves an application of Bézout’s
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theorem to remove one-dimensional components of the relevant linear systems; this
approach was also used in [Chandler 2005].

Lemma 4.1. Let P1, . . . , P6, be points in P2 in linear general position. Assign
multiplicities m1, . . . ,m6 respectively to the points, with 0 ≤ m1 ≤ · · · ≤ m6. (In
particular, taking some of the mi = 0 allows us to consider fewer than six points.)
Assume that d ≥ m5 + m6 and that 2d ≥

∑6
i=2 mi . Then the fat point scheme

Z = m1 P1+ · · ·+m6 P6 imposes independent conditions on curves of degree d.

Proof. Let X be the rational surface obtained by blowing up P2 at the points Pi .
Let L , E1, . . . , E6 be the standard basis of the divisor class group of X , that is,
L is the pullback of the class of a line in P2 and E1, . . . , E6 are the exceptional
divisors. Under the stated assumptions d ≥ m5 + m6 and 2d ≥

∑6
i=2 mi , the

divisor d L−m1 E1−· · ·−m6 E6 is numerically effective (nef), by [Di Rocco 1996,
Theorem 3.4]. Then [Geramita et al. 2009, Theorem 2.3 and Remark 2.4] show that
the Castelnuovo–Mumford regularity of IZ is ≤ d + 1. This implies the claimed
result. �

The following theorem represents “half” of our results (the “even” case) con-
cerning when an ideal of five powers of general linear forms has the WLP. It is not
a complete list, however, because of the second condition in (iii). See Remark 4.4
for further discussion.

Theorem 4.2. Let L be a general linear form and let I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5〉.
Assume that a1+ a2+ a3+ a4 is even. Let λ= (a1+ a2+ a3+ a4)/2− 2.

(i) If a5 ≥ λ then the ring R/I has the WLP.

(ii) If a5 < λ and a1+ a4 ≥ a2+ a3 then R/I fails the WLP from degree λ− 1 to
degree λ.

(iii) If a5 < λ, a1+ a4 < a2+ a3 and 2a5+ a1− a2− a3− a4 ≥ 0 then R/I fails
the WLP from degree λ− 1 to degree λ.

The hypotheses of (ii) and of (iii) both force a1 ≥ 3.

Proof. Let ` be a general linear form. Letting J = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 〉, consider the
commutative diagram

[R/J ]t
×`
−→ [R/J ]t+1

↓ ↓

[R/I ]t
×`
−→ [R/I ]t+1

(where the vertical arrows are the natural restriction). If we know that the multipli-
cation on the top row is surjective, then we immediately conclude surjectivity on the
bottom row. Notice that 2λ is the socle degree of the artinian complete intersection
R/(xa1

1 , xa2
2 , xa3

3 , xa4
4 ), so λ is the midpoint.
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First assume that a5 >λ. Then clearly R/I and R/J coincide in degrees ≤ λ, so
we have injectivity (by the result of Stanley, Watanabe, Reid, Roberts and Roitman)
for (×`) : [R/I ]t → [R/I ]t+1 for all t ≤ λ− 1. When t ≥ λ we have surjectivity
for R/J , so by the above result we also have it for R/I .

Now assume that a5 = λ. We wish to show that R/I has the WLP. Again
surjectivity is immediate for t ≥ λ, and injectivity is immediate for t ≤ λ−2. When
t = λ− 1 we consider two cases. If dim[R/J ]λ−1 = dim[R/J ]λ then by Stanley–
Watanabe we have surjectivity for (×`) : [R/J ]λ−1→ [R/J ]λ, so the same holds
for R/I . If dim[R/J ]λ−1 < dim[R/J ]λ, the image of [R/J ]λ−1 in [R/J ]λ under
multiplication by ` is not surjective. Hence the vector space

[
〈xa1

1 , xa2
2 , xa3

3 , xa4
4 , `〉

]
λ

is not all of Rλ. But in characteristic zero the λ-th powers of linear forms span [R]λ.
Thus for a general L , the image of Lλ in [R/J ]λ is outside the image of [R/J ]λ−1

in [R/J ]λ. Thus (×`) : [R/I ]λ−1→ [R/I ]λ is injective since it is for R/J in that
degree. This completes the proof of (i).

We now prove (ii). Our assumptions now are that a1 + a2 + a3 + a4 is even,
a5 < λ, and a1+a4 ≥ a2+a3. We first note that the hypotheses force a1 ≥ 3, since
if a1 = 2 then a5 < λ= (a2+ a3+ a4− 2)/2≤ (2+ 2a4− 2)/2= a4.

We will show that the multiplication by ` fails to have maximal rank from degree
λ− 1 to degree λ. If dim[R/I ]λ−1 ≤ dim[R/I ]λ it is enough to check the failure
of injectivity, and if dim[R/I ]λ−1 ≥ dim[R/I ]λ it is enough to check the failure of
surjectivity. (See Example 4.3.)

According to (3-1), the task is to show that

dim[R/(I, `)]λ > [dim[R/I ]λ− dim[R/I ]λ−1]+. (4-1)

We will compute the left-hand side using Proposition 3.4 and the right-hand side
using Lemma 3.7.

By Proposition 3.4 and Theorem 3.3, we have

dimk[R/(I, `)]λ
= dimk[q

λ−a1+1
1 ∩ qλ−a2+1

2 ∩ q
λ−a3+1
3 ∩ qλ−a4+1

4 ∩ q
λ−a5+1
5 ]λ

= dimk L2(λ; λ− a1+ 1, λ− a2+ 1, λ− a3+ 1, λ− a4+ 1, λ− a5+ 1).
(4-2)

Notice that λ− a1+ 1 ≥ · · · ≥ λ− a5+ 1 ≥ 2. The vector space defines a linear
system, and we want to find its dimension. The first step is to understand the
one-dimensional base locus, which has components of degree 2 and of degree 1.
We will use Bézout’s theorem to formally reduce the degree of the polynomials and
the order of vanishing at the points, without changing the dimension of the linear
system. If the result has dimension zero then (4-2) is also zero.

Let Fλ ∈L2(λ; λ−a1+1, λ−a2+1, λ−a3+1, λ−a4+1, λ−a5+1). There is
a unique quadratic polynomial F2 vanishing at the five general points. By Bézout’s
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theorem, if F2 is not a factor of Fλ then it intersects Fλ with multiplicity 2λ. On the
other hand, considering the multiplicities at the five points, we get that the curves
meet with multiplicity at least 5λ−

∑5
i=1 ai + 5. But

5λ−
5∑

i=1

ai + 5≤ 2λ ⇐⇒ a5 ≥
a1+a2+a3+a4

2
− 1= λ+ 1,

a contradiction. Hence F2 is a factor of Fλ. We next want to know what power of
F2 divides Fλ. Thus we want to know the smallest i for which

2(λ− 2i)≥ (λ− a1+ 1− i)+ · · ·+ (λ− a5+ 1− i),

and this is equivalent to i ≥ λ− a5 + 1. Thus we have Fλ = Fλ−a5+1
2 · F2a5−λ−2,

where F2a5−λ−2 ∈L2(2a5−λ− 2; a5− a1, a5− a2, a5− a3, a5− a4). (Notice that
now there are only four points, and some of these multiplicities might even be zero.)

Now we consider linear factors coming from the lines joining two of these four
points. There are six such lines; we denote by L i j , 1≤ i < j ≤ 4, the line (as well
as the linear form) passing through the points with multiplicities a5−ai and a5−a j .
Notice that if a5− ai > 2a5− λ− 2 then there are no such forms F2a5−λ−2, so the
desired dimension is zero.

Arguing in a similar manner as above, we obtain that if (a5− ai )+ (a5− a j ) >

2a5− λ− 2, then L i j appears as a factor

(a5− ai )+ (a5− a j )− (2a5− λ− 2)= λ+ 2− ai − a j

times. Thus, letting Ai j = [λ+ 2− ai − a j ]+ = max{λ+ 2− ai − a j , 0}, we see
that (formally)

Fλ= Fλ−a5+1
2 ·

∏
1≤i< j≤4

L Ai j
i j ·G, where deg G = 2a5−λ−2−

∑
1≤i< j≤4

Ai j . (4-3)

Notice that

if 2a5− λ− 2<
∑

1≤i< j≤4

Ai j , then dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = 0. (4-4)

Now, since we have assumed a1+ a4 ≥ a2+ a3, observe that

a1+ a4− a2− a3 ≥ 0 a2+ a3− a1− a4≤ 0 a2+ a4− a1− a3 ≥ 0

a1+ a3− a2− a4 ≤ 0 a3+ a4− a1− a2≥ 0 a1+ a2− a3− a4 ≤ 0.
(4-5)

We claim that after removing the one-dimensional base locus, we obtain a set
of at most 4 fat points of uniform multiplicities (possibly 0). We have already seen
that after removing the powers of F2 we are left with the problem of finding the
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dimension of the forms of degree 2a5 − λ− 2 passing through four general fat
points with multiplicity a5−a1, . . . , a5−a4. To compute this, we have to determine
precisely what is left when we remove the lines. At each of the four points we
compute the multiplicity of the fat point that remains after we remove the (multiple)
lines passing through it in the base locus (which do not contribute to the desired
dimension):

a5− a4−
∑

i=1,2,3

[λ+ 2− ai − a4]+

= a5− a4−

[
−a1+a2+a3−a4

2

]
+

−

[a1−a2+a3−a4
2

]
+

−

[a1+a2−a3−a4
2

]
+

= a5− a4.

Similarly,

a5− a3−
∑

i=1,2,4[λ+ 2− ai − a3]+ = a5− a4,

a5− a2−
∑

i=1,3,4[λ+ 2− ai − a2]+ = a5− a4,

a5− a1−
∑

i=2,3,4[λ+ 2− ai − a1]+ = a5− a4.

Concluding, we want to find the dimension of the vector space of forms of degree

2a5− λ− 2−
∑

1≤i< j≤4

Ai j = 2(a5− a4)

passing through four points with multiplicity a5−a4. By Lemma 4.1, this dimension
is a5− a4+ 1 (which in particular is at least 1). That is,

dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = a5− a4+ 1≥ 1. (4-6)

Using Lemma 3.7, we now compute the “expected” dimension, that is, the
right-hand side of (4-1). Let A = R/J , where J = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 〉. In the

following, recall also that λ is the midpoint of the h-vector of R/J , so 0≤h R/I (λ)=

h A(λ)− h A(λ− a5). Observe that a4 < a1+ a2+ a3 since otherwise

a5− λ≥ a4− λ=
a4− a1− a2− a3

2
+ 2> 0,

contradicting our assumption that a5 < λ. This implies, in particular, that for
determining h A(λ) by using the Koszul resolution of A, we only need to consider
the free modules up to

⊕
1≤i<l≤4 R(−ai − a j ).

From (4-5) we see that only λ−a2−a3+2, λ−a1−a3+2 and λ−a1−a2+2
can be positive. Similarly, we have λ− a5 − ai + 2 ≤ 0 since a1 + a4 ≥ a2 + a3.
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Then the “expected dimension” is[
dim[R/I ]λ− dim[R/I ]λ−1

]
+

=
[
h A(λ)− h A(λ− a5)− h A(λ− 1)+ h A(λ− a5− 1)

]
+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−ai−a j+2
2

)
−

(
λ−a5+2

2

)]
+

.

If this is zero then clearly the actual dimension exceeds the expected one and we
are done. If not, one verifies (we used CoCoA version 4.7.5 [CoCoA 2009]) that

dimk[R/(I, `)]λ−
[
dim[R/I ]λ− dim[R/I ]λ−1

]
+

=(a5− a4+ 1)

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−ai−a j+2
2

)
−

(
λ−a5+2

2

))
=

(
λ+1−a5

2

)
,

and this last binomial coefficient is at least 1. Thus, in either case we have shown
the inequality (4-1), which completes the proof of (ii).

Finally we prove (iii). Our assumptions now are that a1+ a2+ a3+ a4 is even,
a5 <λ, a1+a4 < a2+a3 and 2a5+a1−a2−a3−a4 ≥ 0. The calculations from (ii)
continue to be valid up to (4-3) and (4-4). We first note that the hypotheses again
force a1≥ 3 since if a1= 2 then a5<λ= (a2+a3+a4−2)/2≤ (2+2a5−2)/2= a5.

In our current situation, though, observe that

a3+ a4− a1− a2 > 0 a1+ a2− a3− a4< 0 a2+ a4− a1− a3 > 0

a1+ a3− a2− a4 < 0 a2+ a3− a1− a4> 0 a1+ a4− a2− a3 < 0.
(4-7)

Now we examine the linear system remaining after we remove the one-dimensional
base locus. As in (ii), we obtain a linear system of curves of degree

2a5− λ− 2−
∑

1≤i< j≤4

Ai j .

Now we compute the order of vanishing at the four points:

a5− a4−
∑

i=1,2,3

[λ+ 2− ai − a4]+

=a5− a4−

[
−a1+a2+a3−a4

2

]
+

−

[a1−a2+a3−a4
2

]
+

−

[a1+a2−a3−a4
2

]
+

=a5−
−a1+a2+a3+a4

2
.
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By the additional hypothesis 2a5+ a1− a2− a3− a4 ≥ 0, this order of vanishing
is ≥ 0. A similar computation gives that the order of vanishing at the other three
points is the same. Thus Lemma 4.1 shows that

dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = a5−
−a1+a2+a3+a4

2
+ 1≥ 1.

The computation of the “expected” dimension is very similar to what we did above.
From (4-7) we see that only λ− a1− a2+ 2, λ− a1− a3+ 2 and λ− a1− a4+ 2
can be positive. We again have a4 < a1+ a2+ a3. Thus, Lemma 3.7 provides[
dim[R/I ]λ− dim[R/I ]λ−1

]
+

=
[
h A(λ)− h A(λ− a5)− h A(λ− 1)+ h A(λ− a5− 1)

]
+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

)]
+

.

As above, if this is zero then we are done. If not, one verifies (for example with
CoCoA) that

dimk[R/(I, `)]λ−
[

dim[R/I ]λ− dim[R/I ]λ−1
]
+

=a5−
−a1+a2+a3+a4

2
+ 1

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

))

=

(
λ+1−a5

2

)
,

and this last binomial coefficient is at least 1, establishing the inequality (4-1). This
completes the proof of (iii). �

Example 4.3. To illustrate that sometimes it is injectivity that fails and sometimes
it is surjectivity, consider the following (produced using CoCoA).

When a1 = 5, a2 = 7, a3 = 8, a4 = 10, a5 = 10 we get dim[R/I ]12 = 225 and
dim[R/I ]13 = 220, so we expect surjectivity, but the image under multiplication by
a general linear form has dimension 219.

When a1 = 5, a2 = 7, a3 = 8, a4 = 10, a5 = 12 we get dim[R/I ]12 = 234,
dim[R/I ]13 = 236, so we expect injectivity, but the image under multiplication by
a general linear form has dimension 233.

Let us now discuss cases that are not covered by Theorem 4.2, still assuming
that a1+ a2+ a3+ a4 is even.

Remark 4.4. As above, let I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5〉. Assume 2a5+ a1− a2−

a3− a4 < 0 and a1 ≥ 3. Then:
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(i) If a1 = 2 then R/I has the WLP (see Theorem 4.6).

(ii) If a1 = 3, then in the following cases, R/I fails to have the WLP, and the
failure is in degree λ− 1 and it fails by 1.

• (3, 9,m,m,m) for m ≥ 9
• (3, 10,m,m+ 1,m+ 1) for m ≥ 10
• (3, 11,m,m,m+ 1) for m ≥ 11
• (3, 11,m,m+ 2,m+ 2) for m ≥ 11
• (3, 12,m,m+ 1,m+ 2) for m ≥ 12
• (3, 12,m,m+ 3,m+ 3) for m ≥ 12
• (3, 13,m,m,m+ 2) for m ≥ 13
• (3, 13,m,m+ 2,m+ 3) for m ≥ 13
• (3, 13,m,m+ 4,m+ 4) for m ≥ 13

(This is shown using arguments as in the proof of Theorem 4.2. We omit the
details.)

Furthermore, the reader can easily construct examples using CoCoA to support the
following statements, although we do not have proofs (see also the beginning of
the proof of Theorem 6.5):

(iii) When a1 = 3 and a2 ≤ 13, all cases apart from the ones above have the WLP.

(iv) When a1 = 3, 4, some examples have the WLP and others do not.

(v) When a1 ≥ 5, R/I fails the WLP.

We now consider the case where a1 + a2 + a3 + a4 is odd. There are some
interesting differences to Theorem 4.2. As before, Theorem 4.5 is not a complete
classification because of the extra condition in (iii).

Theorem 4.5. Let L be a general linear form and let I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5〉.
Assume that a1+ a2+ a3+ a4 is odd. Let λ= (a1+ a2+ a3+ a4− 5)/2.

(i) If a5 ≥ λ− 1 then the ring R/I has the WLP.

(ii) If a5 < λ− 1 and a1+ a4 ≥ a2+ a3 then R/I fails the WLP from degree λ− 1
to degree λ. These hypotheses force a1 ≥ 5.

(iii) If a5 < λ−1, a1+a4 < a2+a3 and 2a5+3−a4−a3−a2+a1 ≥ 0 then R/I
fails the WLP from degree λ− 1 to degree λ. These hypotheses force a1 ≥ 3.

Proof. The outline of part of the proof is the same as that for Theorem 4.2, and we
only highlight the differences. First note that with the hypotheses of (ii), if a1 ≤ 4
then we have a5<λ−1= (a1+a2+a3+a4−7)/2≤ (2a1+2a4−7)/2≤ a4+(1)/2,
a contradiction. Similarly, with the hypotheses of (iii), if a1 = 2 then we have
a2+ a3+ a4− 5≤ 2a5 < 2λ− 2= a2+ a3+ a4− 5, again a contradiction.
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Now, for all three parts of the theorem, we show that the one-dimensional part
of the base locus corresponding to the quadratic polynomial F2 has equation Fλ−5

2 .
Thus, in the first step we want to compute

dim L2(2a5− λ; a5− a1+ 1, a5− a2+ 1, a5− a3+ 1, a5− a4+ 1, 1). (4-8)

In the second step, we obtain that if (a5− ai + 1)+ (a5− a j + 1) > 2a5− λ then
L i j appears as a factor

(a5− ai + 1)+ (a5− a j + 1)− (2a5− λ)= λ− ai − a j + 2

times. Thus we let Ai j = [λ+ 2− ai − a j ]+ as before, and formally we have

Fλ = Fλ−a5
2 ·

∏
1≤i< j≤4

L Ai j
i j ·G, where deg G = 2a5− λ−

∑
1≤i< j≤4

Ai j . (4-9)

Notice that

if 2a5− λ <
∑

1≤i< j≤4

Ai j then dim[〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , La5, `〉]λ = 0. (4-10)

For (i), we want to show that whenever a5 ≥ λ− 1, the multiplication (×`) :
[R/I ]t→[R/I ]t+1 has maximal rank. Let J = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 〉. Notice that we

have h R/J (λ)= h R/J (λ+ 1). We consider several cases.

• If t ≥ λ, we know that the multiplication on R/J from degree t to degree t+1
is surjective, by the result of Watanabe, Stanley, Reid, Roberts and Roitman.
Since R/I is a quotient, the same holds for R/I . This holds no matter what
a5 is.

• If t ≤ a5− 2, then [R/I ]t = [R/J ]t and [R/I ]t+1 = [R/J ]t+1, so again the
result follows trivially. Notice that as a result of these first two cases, we are
done if a5 ≥ λ+ 1.

• If (t, a5)= (λ−1, λ) or (t, a5)= (λ−2, λ−1), we know that the multiplication
for R/J is injective in either of these cases, and that dim[R/I ]t = dim[R/J ]t
and dim[R/I ]t+1 = dim[R/J ]t+1− 1. Then we argue exactly as in the case
a5 = λ at the beginning of the proof of Theorem 4.2, using that the λ-th
and (λ− 1)-st powers of linear forms span [R]λ and [R]λ−1, respectively. In
particular, this completes the argument if a5 = λ.

• The case where t = λ− 1, a5 = λ− 1 is the most subtle, and we now give the
argument for this case.

We claim that the multiplication (×`) : [R/I ]λ−1 → [R/I ]λ is injective. To
see this, we will show that dim[R/I ]λ−1 < dim[R/I ]λ and that dim[R/(I, `)]λ =
dim[R/I ]λ− dim[R/I ]λ−1.
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First we compute dim[R/(I, `)]λ. The first step (4-8) now becomes

dim[R/(I, `)]λ = dim L2(λ− 2; λ− a1, λ− a2, λ− a3, λ− a4, 1).

We now consider three cases. First, if a1 = a2 = a3 = a4−1 then (4-8) becomes

dim[R/(I, `)]λ = dim L2(2a4− 6; a4− 3, a4− 3, a4− 3, a4− 4, 1)

= 2a4− 6= 2a1− 4
(4-11)

thanks to Lemma 4.1.
We now assume that we are not in the first case. We obtain

A1,2 =

[
−a1−a2+a3+a4−1

2

]
+

≥ 0 A1,3 =

[
−a1+a2−a3+a4−1

2

]
+

≥ 0

A1,4 =

[
−a1+a2+a3−a4−1

2

]
+

A2,3 =

[a1−a2−a2+a4−1
2

]
+

A2,4 =

[a1−a2+a3−a4−1
2

]
+

= 0 A3,4 =

[a1+a2−a3−a4−1
2

]
+

= 0.

Our second case is a2+a3> a1+a4. Then A1,2, A1,3 and A1,4 are possibly nonzero.
A calculation shows that we then must have

dim[R/(I, λ)]λ = dim L2(2a1− 3; a1− 1, a1− 2, a1− 2, a1− 2, 1)

= 2a1− 3. (4-12)

Our third case is a1+a4>a2+a3. Then A1,2, A1,3 and A2,3 are possibly nonzero.
Another calculation shows that we must have

dim[R/(I, `)]λ= dim L2(a1+ a2+ a3− a4− 3; (λ− a4+ 1)3, λ− a4, 1)

= a1+ a2+ a3− a4− 3.
(4-13)

Now we compute the expected dimension dim[R/I ]λ− dim[R/I ]λ−1 (recall
a5 = λ− 1) by using Lemma 3.7.

In the first case (a1 = a2 = a3 = a4− 1) we use the Koszul complex and easily
compute that the expected dimension is 2a4− 6= 2a1− 4, agreeing with (4-11).

In the second case, using the observations about which Ai, j are positive, the
Koszul resolution gives the expected dimension 2a1− 3, agreeing with (4-12).

In the third case, again using the observations about the Ai, j and the Koszul
complex, we obtain the expected dimension a1+ a2+ a3− a4− 3, agreeing with
(4-13). Thus when a5 = λ− 1, R/I has the WLP, concluding the proof of (i).

Now, we prove (ii). Hence, we are assuming that a1+a4 ≥ a2+a3. In fact, since
a1+ a2+ a3+ a4 is odd, we actually have a1+ a4 > a2+ a3. We obtain

a1+a4−a2−a3 > 0, a2+a3−a1−a4 < 0, a2+a4−a1−a3 > 0,

a1+a3−a2−a4 < 0, a3+a4−a1−a2 > 0, a1+a2−a3−a4 < 0.
(4-14)
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Therefore, we get

a5− a4+ 1−
∑

i=1,2,3[λ+ 2− ai − a4]+ = a5− a4+ 1,

a5− a3+ 1−
∑

i=1,2,4[λ+ 2− ai − a3]+ = a5− a4+ 2,

a5− a2+ 1−
∑

i=1,3,4[λ+ 2− ai − a2]+ = a5− a4+ 2,

a5− a1+ 1−
∑

i=2,3,4[λ+ 2− ai − a1]+ = a5− a4+ 2,

2a5− λ−
∑

1≤i< j≤4 Ai j = 2(a5− a4+ 2).

Concluding, we want the dimension of the linear system

L2(2a5− 2a4+ 4; a5− a4+ 2, a5− a4+ 2, a5− a4+ 2, a5− a4+ 1, 1).

By Lemma 4.1 we have

dimk L2(2a5− 2a4+ 4; (a5− a4+ 2)3, a5− a4+ 1, 1)
≥ dimk L2(2a5− 2a4+ 4; (a5− a4+ 2)3, a5− a4+ 1)− 1

= dimk L2(2a5− 2a4+ 4; (a5− a4+ 2)4)+ a5− a4+ 1

= 2a5− 2a4+ 4.

This is clearly positive. Arguing as in the proof of Theorem 4.2, and using the
inequalities (4-14), we compute the expected dimension and we get

[dim[R/I ]λ− dim[R/I ]λ−1]]+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−a j−ai+2
2

)
−

(
λ−a5+2

2

)]
+

.

If the part inside the brackets is negative, the actual dimension clearly exceeds the
expected one, and we are done. If not, a straightforward computation shows that

dimk[R/(I, `)]λ− [dimk[R/I ]λ− dimk[R/I ]λ−1]

≥ (2a5− 2a4+ 4)

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

∑
1≤i< j≤3

(λ−a j−ai+2
2

)
−

(
λ−a5+2

2

))
=

(
λ−a5

2

)
> 0.

Thus the actual dimension exceeds the expected dimension, and this completes the
proof of (ii).

(iii) We break this into two cases: first we will assume that a1+a4+3≤ a2+a3,
and then we will handle the case a1+ a4+ 1= a2+ a3.
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So to begin, our assumptions now are that a1+ a2+ a3+ a4 is odd, a5 < λ− 1,
a1+ a4+ 3≤ a2+ a3 and 2a5+ 3− a4− a3− a2+ a1 ≥ 0. Hence, we have

a3+ a4− a1− a2 >0, a1+ a2− a3− a4<0, a2+ a4− a1− a3>0,

a1+ a3− a2− a4 <0, a2+ a3− a1− a4>0, a1+ a4− a2− a3<0.
(4-15)

Now we examine the linear system remaining after we remove the one-dimensional
base locus. Observe that

a5− a4+ 1−
∑

i=1,2,3[λ+ 2− ai − a4]+ = a5+ 1− (a2+ a3+ a4− a1− 1)/2,

a5− a3+ 1−
∑

i=1,2,4[λ+ 2− ai − a3]+ = a5+ 1− (a2+ a3+ a4− a1− 1)/2,

a5− a2+ 1−
∑

i=1,3,4[λ+ 2− ai − a2]+ = a5+ 1− (a2+ a3+ a4− a1− 1)/2,

a5− a1+ 1−
∑

i=2,3,4[λ+ 2− ai − a1]+ = a5+ 2− (a2+ a3+ a4− a1− 1)/2,

2a5− λ−
∑

1≤i< j≤4 Ai j = 2a5+ 4− a4− a3− a2+ a1 =: 2b.

The additional hypothesis 2a5+3−a4−a3−a2+a1 ≥ 0 guarantees that the orders
of vanishing are positive. Therefore, applying Lemma 4.1, we obtain

dimk[R/(I, `)]λ = dimk L2(2b; b, (a5+ 1− (a2+ a3+ a4− a1− 1)/2)3, 1)

≥ 2a5+ 5− (a2+ a3+ a4− a1)− 1.

The hypothesis also guarantees that this value is positive. The computation of the
“expected” dimension is very similar to what we did above. The extra hypothesis
a1 + a4 + 3 ≤ a2 + a3 implies that only λ − a1 − a2 + 2, λ − a1 − a3 + 2 and
λ− a1 − a4 + 2 are > 0. We again have a4 < a1 + a2 + a3. Thus, Lemma 3.7
provides[
dimk[R/I ]λ− dimk[R/I ]λ−1]

]
+

=
[
h A(λ)− h A(λ− a5)− h A(λ− 1)+ h A(λ− a5− 1)

]
+

=

[(
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

)]
+

.

If this is zero, we are done. Otherwise, a straightforward computation shows that
dimk[R/(I, `)]λ− [dimk[R/I ]λ− dimk[R/I ]λ−1] is given by

2a5+ 4− (a2+ a3+ a4− a1)

−

((
λ+2

2

)
−

4∑
i=1

(
λ−ai+2

2

)
+

4∑
i=2

(
λ−a1−ai+2

2

)
−

(
λ−a5+2

2

))
=

(
λ−a5

2

)
> 0.
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Thus in either case the actual value of dim[R/(I, `)]λ exceeds the expected dimen-
sion. This completes the proof of the case a1+ a4+ 3≤ a2+ a3.

Finally, we assume that a1+a4+1= a2+a3. We note first that this assumption
actually forces the stronger condition a1 ≥ 4 since a4 ≤ a5 < λ− 1 implies

7< a1+ a2+ a3− a4 = 2a1+ 1,

and hence a1>3. The condition a1+a4+1=a2+a3 implies that λ−a1−a4+2= 0,
so the computation of the expected dimension above can only get smaller, while
the computation of dim[R/(I, `)]λ remains unchanged. Thus the difference can
only grow, and we again have shown the failure of the WLP. This completes the
proof of (iii). �

In the previous results we excluded the case a1 = 2 for the most part. The reason
is that then the algebra does have the WLP.

Theorem 4.6. Let L be a general linear form in R := k[x1, . . . , x4], and let I be
the ideal 〈x2

1 , xa2
2 , xa3

3 , xa4
4 , La5〉 of R. Then the algebra R/I has the WLP.

The proof will be based on a result about almost complete intersections in three
variables generated by powers of four general linear forms. According to [Schenck
and Seceleanu 2010] such an algebra has the WLP, that is, multiplication by a
general linear form has maximal rank. We show that this is also true when one
multiplies by the square of such a form.

Proposition 4.7. Let `2, . . . , `5, ` be five general linear forms of S := k[x, y, z],
and let a ⊂ S be the ideal 〈`a2

2 , . . . , `
a5
5 〉. Set A := S/a. Then, for each integer j ,

the multiplication map ×`2
: [A] j−2→ [A] j has maximal rank.

Proof. If any of the numbers a2, . . . , a5 equals one, then A has the SLP by [Harima
et al. 2003], so the claim is true. Thus, we may assume 2≤ a2 ≤ · · · ≤ a5.

First, assume also that

a5 ≤
a2+a3+a4−3

2
.

Define integers p and b by

p :=
⌊a2+a3+a4+a5−4

3

⌋
and a2+ a3+ a4+ a5 = 3(p+ 1)+ b,

thus 1≤ b ≤ 3.
According to [Schenck and Seceleanu 2010], A has the WLP and A/`A has

socle degree p. This implies that multiplication by ` on A is injective until degree
p and surjective in larger degrees. Symbolically, this reads as

[A]0 ↪→ · · · ↪→ [A]p−1 ↪→ [A]p� [A]p+1� · · · . (4-16)
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Hence, to show our claim it suffices to prove that the multiplication

×`2
: [A]p−1→ [A]p+1

has maximal rank, which is equivalent to

dimk[A/`2 A]p+1 =max{0, h A(p+ 1)− h A(p− 1)}. (4-17)

In order to see this, we first compute the left-hand side and then the right-hand
side. Using Theorem 3.3, we get

dimk[A/`2 A]p+1 = dimk[S/〈`2, `
a2
2 , . . . , `

a5
5 〉]p+1

= dimk[p
p
∩ p

p−a2+2
2 ∩ . . .∩ p

p−a5+2
5 ]p+1

= dimk L2(p+ 1; p, p− a2+ 2, . . . , p− a5+ 2),

where p, p2, . . . , p5 are the homogenous ideals of five general points in P2. Let
Q ∈ S be the unique quadric that vanishes at these five points. Again, we use
Bézout’s theorem to estimate the multiplicity of Q in the base locus of the linear
system

L2(p+ 1; p, p− a2+ 2, . . . , p− a5+ 2).

For an integer j , the condition

2(p+ 1− 2 j)≥ p− j +
∑5

i=2[p− ai + 2− j]

= 5p+ 8− 5 j −
∑5

i=2 ai

= 5p+ 8− 5 j − [3(p+ 1)+ b]

= 2p+ 5− 5 j − b

is equivalent to j ≥ 3− b. It follows that Q appears with multiplicity at least 3− b
in the base locus. Thus, we get

dimk[A/`2 A]p+1 = dimk L2(p+ 1; p, p− a2+ 2, . . . , p− a5+ 2)

= dimk L2(p+ 2b− 5; p+ b− 3, p+ b− a2− 1,

. . . , p+ b− a5− 1).

The latter linear system is clearly empty if b = 1. To compute its dimension if
2≤ b ≤ 3, we consider the lines L i , 2≤ i ≤ 5, passing through the points p and pi .
By Bézout’s theorem, the line L i appears with multiplicity at least Bi in the base
locus, where

Bi := [p+ b− 3+ p+ b− ai − 1−{p+ 2b− 5}]+ = [p+ 1− ai ]+.
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Our assumption a5 ≤ (a2 + a3 + a4 − 3)/2 implies a5 ≤ p + 1. Thus, we get
Bi = p+ 1− ai , so

B2+· · ·+ B5= 4p+4−[a2+a3+a4+a5] = 4p+4−[3(p+1)+b] = p+1−b.

Removing the lines from the base locus we obtain

dimk[A/`2 A]p+1 = dimk L2(p+ 2b− 5; p+ b− 3, p+ b− a2− 1,

. . . , p+ b− a5− 1)

= dimk L2(3b− 6; 2b− 4, b− 2, . . . , b− 2).

It follows that dimk[A/`2 A]p+1 = 1 if b = 2.
If b = 3, then we get, using Theorem 3.3 again,

dimk[A/`2 A]p+1 = dimk L2(3; 2, 1, . . . , 1)

= dimk[S/〈`2, `3
2, . . . , `

3
5〉]3

= dimk[S/〈`2
〉]3− 4

= 3,

because the linear forms are general. Summarizing, we have shown so far that

dimk[A/`2 A]p+1 =


0 if b = 1,
1 if b = 2,
3 if b = 3.

(4-18)

Now we compute the right-hand side of (4-17). To this end consider the ring
B := S/〈`a3

3 , `
a4
4 , `

a5
5 〉. Observe that

p+ 1− a3− a4 =

⌊a2+a3+a4+a5−1
3

⌋
− a3− a4

≤
a2+a5−1−2a3−2a4

3

≤
3a2−5−3a3−3a4

6
< 0,

where we used again a5 ≤ (a2+ a3+ a4− 3)/2. Hence, the Koszul resolution of
the complete intersection B provides for its Hilbert function if j ≤ p+ 1 that

hB( j)=
( j+2

2

)
−

5∑
i=3

( j+2−ai
2

)
, (4-19)
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where, as above, we define a binomial coefficient
(c

2

)
to be zero if c < 0. Since the

complete intersection B has the SLP and since A ∼= B/`a2
2 B, we get

h A(p+ 1)− h A(p− 1)

=
[
hB(p+ 1)− hB(p+ 1− a2)

]
+
−
[
hB(p− 1)− hB(p− 1− a2)

]
+
.

One easily checks that our assumptions provide p+ 1 ≤
⌈
(a3+ a4+ a5− 3)/2

⌉
.

Since a3+a4+a5−3 is the socle degree of B, this implies that hB( j−1)≤ hB( j)
if j ≤ p+ 1. Hence the last formula simplifies to

h A(p+1)−h A(p−1)= hB(p+1)−hB(p+1−a2)−hB(p−1)+hB(p−1−a2).

The socle degree of A/`A is at most the socle degree of S/〈`, `a2
2 , `

a3
3 〉, thus

p ≤ a2+ a3− 2. Combining with (4-19) and using that( j+1
2

)
−

( j−1
2

)
= 2 j − 1

if j ≥ 1, this provides

h A(p+ 1)− h A(p− 1)=
( p+3

2

)
−

( p+1
2

)
−

5∑
i=3

[( p+3−aa
2

)
−

( p+1−ai
2

)]
−

[( p+3−a2
2

)
−

( p+1−a2
2

)]
=−6p− 9+ 2

4∑
i=2

ai

= 2b− 3.

Hence, we get

[h A(p+ 1)− h A(p− 1)]+ = [2b− 3]+ =


0 if b = 1,
1 if b = 2,
3 if b = 3.

Comparing with (4-18), this establishes the desired equality (4-17).
It remains to consider the case a5 > (a2 + a3 + a4 − 3)/2. Let us call b :=

〈`
a2
2 , `

a3
3 , `

a4
4 〉 and set B := S/b. Note that the socle degree of B is a2+a3+a4−3.

Stanley [1980], Watanabe [1987] and Reid, Roberts and Roitman [1991] showed
that, in characteristic 0, SLP holds for an artinian complete intersection generated
by powers of linear forms. In particular, for each integer j , the multiplication map
×`2
: [B] j−2→ [B] j has maximal rank. We want to prove that, for each integer j ,

the multiplication map ×`2
: [A] j−2→ [A] j has maximal rank. To this end, we

will examine several cases:

(a) Assume a2+ a3+ a4 odd.
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(a1) For any j < a5, we have [A] j ∼= [B] j and hence ×`2
: [A] j−2 → [A] j has

maximal rank.

(a2) For any j ≥ a5 + 1 or j = a5 and a5 > (a2 + a3 + a4 − 3)/2+ 1, we have
j − 2 ≥ (a2 + a3 + a4 − 3)/2. Hence, the surjectivity ×`2

: [B] j−2 � [B] j
together with the commutative diagram

[B] j−2 � [A] j−2y y
[B] j � [A] j

allows us to conclude that ×`2
: [A] j−2→ [A] j has maximal rank.

(a3) For j = a5= (a2+a3+a4−3)/2+1 we have [A] j−2∼=[B] j−2∼=[B] j� [A] j .
Therefore, we also conclude that ×`2

: [A] j−2→ [A] j has maximal rank.

(b) Assume a2+ a3+ a4 even.

(b1) For any j < a5, we have [A] j ∼= [B] j and hence ×`2
: [A] j−2 → [A] j has

maximal rank.

(b2) It is identical to (a2).

(b3) For j = a5 = (a2+a3+a4−2)/2 we have to prove that ×`2
: [A] j−2→[A] j

is injective. Since dim[B] j−2 < dim[B] j , the image of [B] j−2 in [B] j under
multiplication by `2 is not surjective. So the vector space [〈`a2

2 , `
a3
3 , `

a4
4 , `

2
〉] j

is not all of S j . But in characteristic zero the j -th powers of linear forms span
[S] j . Thus for a general L , the image of L j

= La5 in [B] j is outside the image
of [B] j−2 in [B] j . Thus (×`2) : [A] j−2→ [A] j is injective, since it is for B
in that degree. This completes the proof of the proposition. �

Remark 4.8. Observe that extensions of Proposition 4.7 to multiplication by higher
powers of ` fail in general. There are many such examples. The smallest is when
a2 = · · · = a5 = 3, for which multiplication by `3 fails to have maximal rank from
degree 1 to degree 4. It is easy to see that this extends to the case a2 = · · · = a5 = d ,
for which multiplication by `d fails to have maximal rank from degree d − 2 to
degree 2d − 2. Many more complicated examples (produced by CoCoA) exist as
well.

Proof of Theorem 4.6. If one of the numbers a2, . . . , a5 is one, then the result
follows by [Schenck and Seceleanu 2010]. Thus, we may assume 2≤ a2 ≤ · · · ≤ a5.

If a5 > (a2 + a3 + a4 − 3)/2, then R/I has the WLP by Theorems 4.2(i) and
4.5(i). Thus, we may assume a5 ≤ (a2+ a3+ a4− 3)/2 for the remainder of the
proof. Let ` ∈ R be another general linear form. We have to show that for all
integers j ,

dimk[R/(I, `)] j =max{0, h R/I ( j)− h R/I ( j − 1)}. (4-20)
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To this end, consider the ideal J := 〈xa2
2 , xa3

3 , xa4
4 , La5〉 ⊂ R. The complete

intersection R/J has the SLP, which implies[
h R/I ( j)− h R/I ( j − 1)

]
+

=

[[
h R/J ( j)− h R/J ( j − 2)

]
+
−
[
h R/J ( j − 1)− h R/J ( j − 3)

]
+

]
+

.

The complete intersection R/J has socle degree a2 + · · · + a5 − 4 ≥ 4, thus the
multiplication×` : [R/J ] j−1→[R/J ] j is injective if j≤

⌈
(a2+a3+a4+a5−4)/2

⌉
.

One checks that⌈a2+a3+a4+a5−4
2

⌉
≥

⌊a2+a3+a4+a5−1
3

⌋
=: p+ 1.

It follows that h R/J ( j −1)≤ h R/J ( j) if j ≤ p+1. Thus, if j ≤ p+1, then we get
that

h R/I ( j)− h R/I ( j − 1)

= h R/J ( j)− h R/J ( j − 2)− h R/J ( j − 1)+ h R/J ( j − 3)

=
[
h R/J ( j)− h R/J ( j − 1)

]
+
−
[
h R/J ( j − 2)− h R/J ( j − 3)

]
+

= h R/(J,`)( j)− h R/(J,`)( j − 2),

where we used again that R/J has the SLP. Invoking Proposition 4.7, we obtain[
h R/I ( j)− h R/I ( j − 1)

]
+
= h R/(I,`)( j)

if j≤ p+1. This equality is also true (using the same computations) if h R/J (p+1)≤
h R/J (p+2). Otherwise, we get

[
h R/I (p+2)−h R/I (p+1)

]
+
= 0. However, using

(4-16), we get [R/(I, `)]p+2 = 0. Hence, we have in any case[
h R/I (p+ 2)− h R/I (p+ 1)

]
+
= h R/(I,`)(p+ 2)= 0,

which completes the argument. �

5. Almost uniform powers of linear forms in 5 variables

In this section, we let R = k[x1, x2, x3, x4, x5], where k is a field of characteristic
zero, and we will apply the approach described in Section 3 and results on fat points
in P3 to determine exactly when an ideal generated by uniform powers of six general
linear forms in R fails the WLP. Some nonuniform cases are also discussed. To
this end, without loss of generality we set I = 〈xa1

1 , xa2
2 , xa3

3 , xa4
4 , xa5

5 , La6〉, where
L is a general linear form and a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6.

Theorem 5.1. Let L be a general linear form and let I = 〈xd
1 , xd

2 , xd
3 , xd

4 , xd
5 , Ld
〉.

Then the ring R/I fails the WLP if and only if d > 3.
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Proof. Using CoCoA we check that if d < 4 then R/I has the WLP. Assume d ≥ 4
and we will show that R/I fails the WLP in degree 2d − 1. To this end, we take
` ∈ R a general linear form. According to (3-1), it is enough to show that

dim[R/(I, `)]2d−1 >
[
dim[R/I ]2d−1− dim[R/I ]2d−2

]
+
. (5-1)

We will compute the left-hand side using Proposition 3.4 and the right-hand side
using the fact that R/J has the SLP.

Now let S = k[x1, x2, x3, x4]. We want to compute the vector space dimension

dimk
[
qd

1 ∩ qd
2 ∩ qd

3 ∩ qd
4 ∩ qd

5 ∩ qd
6
]

2d−1 = dimk L3(2d − 1; d6). (5-2)

Applying a sequence of cubo-cubic Cremona transformations

P3 99K P3

(x1 : x2 : x3 : x4) 99K (x−1
1 , x−1

2 , x−1
3 , x−1

4 )= (x2x3x4 : x1x3x4 : x1x2x4 : x1x2x3)

we will transform the last linear system to another one which has the same dimension,
but it will be nonspecial and hence we will be able to compute its dimension. In
fact, we apply Lemma 3.5 and we get

dim L3(2d − 1; d6)= dim L3(2d − 3; d2, (d − 2)4)

= dim L3(2d − 5; (d − 2)4, (d − 4)2)

= dim L3(2d − 7; (d − 4)6). (5-3)

Since 2(2d − 7)≥ 4(d − 4), the linear system L3(2d − 7; (d − 4)6) is in standard
form. Therefore, Theorem 3.6 provides that it is nonspecial and its dimension is
given by

dim L3
(
2d − 7; (d − 4)6

)
=

(2d−4
3

)
− 6

(d−2
3

)
. (5-4)

Now we have to compute the right-hand side of (5-1). Let A = R/J , where
J = 〈xd

1 , xd
2 , xd

3 , xd
4 , xd

5 〉. Since R/J has the SLP, we have

0≤ h R/I (2d − 1)= h A(2d − 1)− h A(d − 1).

Therefore,

[dim[R/I ]2d−1− dim[R/I ]2d−2]

= h A(2d − 1)− h A(d − 1)− h A(2d − 2)+ h A(d − 2)

=

(2d+2
3

)
− 6

(d+2
3

)
.

We easily verify that

dim[R/(I, `)]2d−1− [dim[R/I ]2d−1− dim[R/I ]2d−2] = 4
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and this shows that R/I fails the WLP in degree 2d − 1, which is what we wanted
to prove. �

Remark 5.2. Note that (5-4) could also have been proven using Proposition 3.5 of
[Catalisano et al. 1999]. However, we use our approach because it also applies to
setups below where the hypotheses of the latter proposition are not satisfied.

There are several possible extensions of the above theorem. First, we can ask
whether the WLP property holds for the case of nonuniform powers and, in particular,
we can ask what happens in the almost uniform case. We have

Theorem 5.3. Let L be a general linear form and let I =〈xd
1 , xd

2 , xd
3 , xd

4 , xd
5 , Ld+e

〉

with e ≥ 1. Then:

(i) If d is odd, then R/I has the WLP if and only if e ≥ (3d − 5)/2.

(ii) If d is even, R/I has the WLP if and only if e ≥ (3d − 8)/2.

Proof. Set λ :=
⌊
(5d − 5)/2

⌋
. We will actually prove the following sequence of

statements:

(i′) If d + e ≥ λ, then R/I has the WLP.

(ii′) If d is odd and e ≤ d − 2, then R/I fails the WLP.

(iii′) If d is even and e ≤ d − 3, then R/I fails the WLP.

(iv′) If d is odd and d − 1≤ e ≤ (3d − 7)/2 then R/I fails the WLP.

(v′) If d is even and d − 2≤ e ≤ (3d − 10)/2 then R/I fails the WLP.

(vi′) If d is even and e= (3d− 8)/2 (that is d+ e= λ− 1) then R/I has the WLP.

Throughout this proof we will denote A= R/J , where J = 〈xd
1 , xd

2 , xd
3 , xd

4 , xd
5 〉.

(i′) The proof is the same as in Theorems 4.2(i) and 4.5(i).

(ii′) Since d+e≤ 2d−2, we can write e= 2 j+ε with 0≤ ε ≤ 1 and j ≤ (d−3)/2.
We will show that R/I fails the WLP in degree 2d − 1+ j . To this end, we take
` ∈ R, a general linear form. According to (3-1), it is enough to show that

dim[R/(I, `)]2d−1+ j > [dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j ]+. (5-5)

We will compute the left-hand side using Proposition 3.4 and the right-hand side
using Lemma 3.7.

We begin by computing the vector space dimension

dimk[q
d+ j
1 ∩ q

d+ j
2 ∩ q

d+ j
3 ∩ q

d+ j
4 ∩ q

d+ j
5 ∩ q

d+ j−e
6 ]2d−1+ j

= dimk L3(2d − 1+ j; (d + j)5, d + j − e).
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Applying a sequence of cubo-cubic Cremona transformations (see Lemma 3.5), we
get

dimk L3(2d − 1+ j; (d + j)5, d + j − e)

= dimk L3(2d − 3− j; d + j, d + j − e), (d − j − 2)4

= dimk L3(2d − 5− 3 j + e; d − j − 2+ e, (d − j − 2)3, (d − 3 j − 4+ e)2)

= dimk L3(2d − 7− 5 j + 2e; d − 3 j − 4+ 2e, (d − 3 j − 4+ e)5).

(Here we use the hypothesis d+ e ≤ 2d− 2 to guarantee that d− 3 j − 4+ 2e ≥ 0.)
Since 2(2d − 7− 5 j + 2e) ≥ 3(d − 3 j − 4+ e)+ d − 3 j − 4+ 2e, the linear

system

L3(2d − 7− 5 j + 2e; d − 3 j − 4+ 2e, (d − 3 j − 4+ e)5)

is in standard form. Therefore, Theorem 3.6 provides

dimk L3(2d − 7− 5 j + 2e; (d − 3 j − 4+ e)5, d − 3 j − 4+ 2e)

=

[(2d−4−5 j+2e
3

)
− 5

(d−2−3 j+e
3

)
−

(d−2−3 j+2e
3

)]
+

+ 5 ·
(e− j

3

)
.

We claim that(2d−4−5 j+2e
3

)
− 5

(d−2−3 j+e
3

)
−

(d−2−3 j+2e
3

)
+ 5 ·

(e− j
3

)
=

1
6
(d − 2− 2 j)

[
2d2
− 3e2

+ 12e(1+ j)− 4(3+ 8 j + 4 j2)+ d(3e− 2− 2 j)
]

is positive. In fact, using d ≥ 2 j + 3 and e ≥ 2e, one gets

2d2
− 3e2

+ 12e(1+ j)− 4(3+ 8 j + 4 j2)+ d(3e− 2− 2 j)

≥ 2(2 j + 3)2− 3e2
+ 12e(1+ j)− 4(3+ 8 j + 4 j2)+ (2 j + 3)(3e− 2− 2 j) > 0.

We conclude that dim[R/(I, `)]2d−1+ j > 0.
Now we compute the right-hand side of (5-5). Lemma 3.7 provides

dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j

= h A(2d − 1+ j)− h A(d − 1+ j − e)− h A(2d − 2+ j)+ h A(d − 2+ j − e)

=

(2d+ j+2
3

)
− 5

(d+ j+2
3

)
−

(d+ j+2−e
3

)
+ 10

( j+2
3

)
.

If dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j ≤ 0, then the WLP fails because we have
seen that dim[R/(I, `)]2d−1+ j > 0.
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If dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j > 0, then

dim[R/(I, `)]2d−1+ j − [dim[R/I ]2d−1+ j − dim[R/I ]2d−2+ j ]

≥

(2d−4−5 j+2e
3

)
− 5

(d−2−3 j+e
3

)
−

(d−2−3 j+2e
3

)
+ 5 ·

(e− j
3

)
−

[(2d+ j+2
3

)
− 5

(d+ j+2
3

)
−

(d+ j+2−e
3

)
+ 10

( j+2
3

)]
=

(3 j−e+4
3

)
> 0.

Hence, we conclude in every case that R/I fails the WLP in degree 2d − 1+ j ,
which is what we wanted to prove.

(iii′) The proof is completely analogous.

(iv′) Suppose that d is odd and d−1≤ e≤ (3d−7)/2. We claim that R/I fails the
WLP (usually by failing injectivity) from degree (5d − 7)/2 to degree (5d − 5)/2.
We first consider (by applying a sequence of cubo-cubic Cremona transformations;
see Lemma 3.5)

dim[R/(I, `)](5d−5)/2 = dimk L
(5d−5

2
;

(3d−3
2

)5
,

3d−3
2
− e

)
= dimk L3

(3d−3
2
;

(d−1
2

)4
,

3d−3
2

,
3d−3

2
− e

)
= dimk L3

(3d−3
2
;

3d−3
2

,
(d−1

2

)4
,

3d−3
2
− e

)
= dimk L2

(3d−3
2
;

(d−1
2

)4
,

3d−3
2
− e

)
,

the last step being a consequence of Proposition 3.4. Notice that since d − 1≤ e,
we have (3d−3)/2−e≤ (d−1)/2. Thanks to Lemma 4.1, these fat points impose
independent conditions, so we have

dim[R/(I, `)](5d−5)/2 =

( 3d−3
2 +2

2

)
− 4 ·

( d−1
2 +1

2

)
−

( 3d−3
2 −e+1

2

)
=

9d2
−1

8
− 4·d

2
−1
8
−

1
2

[9d2
−12d+3

4
− e(3d − 2)+ e2

]
=

e
2
(3d − 2− e)−

(d−1
2

)
+ 1

(The fact that

dimk L3

(3d−3
2
;

3d−3
2

,
d−1

2
,

d−1
2
,

d−1
2
,

d−1
2
,

3d−3
2
− e

)
=

e
2
(3d − 2− e)−

(d−1
2

)
+ 1

could also be obtained via Theorem 3.6.)
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Combined with Lemma 3.7, we obtain

dim[R/(I, `)](5d−5)/2−
(
dim[R/I ](5d−5)/2− dim[R/I ]((5d−5)/2)−1

)
=

( 3d−7
2 −e+3

3

)
.

If the part in parentheses is nonnegative then we expect injectivity, but the positivity
of the part on the right (since we assumed e≤ (3d−7)/2) implies that the WLP fails.
Now suppose that the part in parentheses is negative, so that we expect surjectivity.
Then one checks that

dim[R/(I, `)](5d−5)/2 =
e
2
(3d − 2− e)−

(d−1
2

)
+ 1

=
(e−d)(2d−e−2)

2
+

(d+1
2

)
≥
(e−d)(d+3)

4
+

(d+1
2

)
(since e ≤ 3d−7

2
)

> 0.

(the last inequality is for d − 1≤ e ≤ (3d − 7)/2 ), and so surjectivity, and hence
WLP, fails. This completes the proof of (iv′).

(v′) We show that R/I fails the WLP from degree (5d− 8)/2 to degree (5d− 6)/2.
Since we will use part of the computations also for (vi′), we consider all even d
such that d − 2≤ e ≤ (3d − 8)/2. In the same way as above we get

dim[R/(I, `)](5d−6)/2 = dimk L3

(5d−6
2
;

(3d−4
2

)5
,

3d−4
2
− e

)
= dimk L3

(3d−2
2
;

(d
2

)4
,

3d−4
2

,
3d−4

2
− e

)
.

Using Theorem 3.6, we obtain

dim[R/(I, `)](5d−6)/2 =−d2
+ 3de− e2

+ 6d − 4e− 4= 5d2

4
−

(3d−4
2
− e

)2
,

which is at least d2 in the given range for e. In particular, we are finished whenever
dim[R/I ](5d−6)/2 ≤ dim[R/I ]((5d−6)/2)−1.

If dim[R/I ](5d−6)/2 ≥ dim[R/I ]((5d−6)/2)−1 (so we expect injectivity), then
Lemma 3.7 provides, minding the bound on e,

dim[R/(I, `)](5d−6)/2−
(
dim[R/I ](5d−6)/2− dim[R/I ]((5d−6)/2)−1

)
=

( 3d−10
2 −e+3

3

)
. (5-6)

Since we are assuming that the part in parentheses is nonnegative, the positivity of
the part on the right implies that WLP fails if e ≤ (3d − 10)/2, as claimed.
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(vi′) Arguing as in Theorem 4.5(iii), we see that if t ≤ λ− 2 or t ≥ λ then (×`) :
[R/I ]t→[R/I ]t+1 has maximal rank. So, it only remains to study the case t=λ−1.
We are going to prove that the multiplication (×`) : [R/I ]λ−1→[R/I ]λ is injective,
that is dim[R/(I, `)]λ = dim[R/I ]λ− dim[R/I ]λ−1.

Notice that the assumptions force d ≥ 4, so we may apply the computations of
(v′). Thus, the desired follows by (5-6). �

The same argument gives us the following result.

Proposition 5.4. Let L be a general linear form and let

I = 〈xa1
1 , xa2

2 , xa3
3 , xa4

4 , xa5
5 , La6〉.

Assume that 5≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 ≤ a1+ 2. Then the ring R/I fails the
WLP.

Our methods extend beyond the results mentioned above.

Example 5.5. Using the above notation, one shows:

(i) If d ≥ 4 and (a1, a2, a3, a4, a5, a6) = (d, d + 1, d + 2, d + 3, d + 4, d + 5),
then the ring R/I fails the WLP in degree 2d + 4.

(ii) If d ≥ 4 and (a1, a2, a3, a4, a5, a6) = (d, d + 3, d + 4, d + 7, d + 7, d + 10),
then the ring R/I fails the WLP in degree 2d + 9.

6. Uniform powers of linear forms

In this section, we consider the case of an almost complete intersection of general
linear forms whose generators all have the same degree d. We give a complete
answer, in the case of an even number of variables, to the question of when the
WLP holds. Interestingly, the case of an odd number of variables is more delicate,
and we are only able to give a partial result, concluding with a conjecture.

We first consider the case where there are an even number of variables. Set
R = k[x1, . . . , x2n], where k is a field of characteristic zero. We determine when
an ideal generated by uniform powers of 2n+ 1 general linear forms in R fails the
WLP. If n = 1, then R/I always has the WLP due to [Harima et al. 2003]. If n = 2,
then R/I fails the WLP if and only if d ≥ 3 by Theorem 4.2.

Theorem 6.1. Let L ∈ R be a general linear form, and let I = 〈xd
1 , . . . , xd

2n, Ld
〉,

where n ≥ 3. Then the ring R/I fails the WLP if and only if d > 1.

Proof. It is clear that for d = 1, R/I has WLP.
Assume d ≥ 2. We will show that R/I fails WLP in degree nd − n. To this end,

we take ` ∈ R, a general linear form. According to (3-1), it is enough to show that

dimk[R/(I, `)]nd−n >
[
dimk[R/I ]nd−n − dimk[R/I ]nd−n−1

]
+
. (6-1)
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First, we compute the left-hand side of (6-1).

Claim 1. dim[R/(I, `)]nd−n = 1.

Proof. By Proposition 3.4 and Theorem 3.3, we have

dimk[R/(I, `)]nd−n

= dimk[q
(n−1)d−(n−1)
1 ∩ q

(n−1)d−(n−1)
2 ∩ · · · ∩ q

(n−1)d−(n−1)
2n ∩ q

(n−1)d−(n−1)
2n+1 ]nd−n

= dimk L2n−2(nd − n; ((n− 1)d − (n− 1))2n+1).

Applying Lemma 3.5, we get

dimk L2n−2(nd − n; ((n− 1)d − (n− 1))2n+1)

= dimk L2n−2((n−1)d−(n−1); ((n−1)d−(n−1))2, ((n−2)d−(n−2))2n−1).

Using Proposition 3.4 twice, it follows that

dimk L2n−2(nd−n; ((n−1)d− (n−1))2n+1)

= dimk L2n−3((n−1)d− (n−1); (n−1)d− (n−1), ((n−2)d− (n−2))2n−1)

= dimk L2n−4((n−1)d− (n−1); ((n−2)d− (n−2))2n−1). (6-2)

If n = 3, then we get by applying again Lemma 3.5

dimk L2(2d − 2; (d − 1)5)= dimk L2(2d − 2; (d − 1)2, 03)= 1,

as desired.
If n ≥ 4, then we conclude by induction using (6-2). Thus, Claim 1 is shown.

Next we consider the right-hand side of inequality (6-1). Taking into account
Claim 1, we see that R/I fails the WLP, once we have shown the following:

Claim 2. dimk[R/I ]nd−n ≤ dimk[R/I ]nd−n−1.

Proof. We use induction on n ≥ 3. Let A = R/〈xd
1 , . . . , xd

2n〉. Assume n = 3.
Lemma 3.7 provides

dimk[R/I ]3d−3− dimk[R/I ]3d−4

= h A(3d − 3)− h A(2d − 3)− h A(3d − 4)+ h A(2d − 4)

=

(3d+1
4

)
− 7

(2d+1
4

)
+ 21

(d+1
4

)
=−

1
12

d(d − 2)(5d2
+ 2d + 5)

≤ 0,

as desired.
Let n ≥ 4. By Lemma 3.7, Claim 2 can be rewritten as

h A(nd − n)− h A(nd − n− 1)≤ h A(nd − n− d)− h A(nd − n− d − 1). (6-3)
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Consider now the ring B = k[x1, . . . , x2n−1]/〈xd
1 , . . . , xd

2n−1〉. Then A ∼= B ⊗k

k[x]/(xd), which implies

h A( j)= hB( j)+ hB( j − 1)+ · · ·+ hB( j − (d − 1)). (6-4)

Thus, the last inequality becomes

hB(nd − n)− hB(nd − n− d)≤ hB(nd − n− d)− hB(nd − n− 2d).

The Hilbert function of B is symmetric about 1
2(2n− 1)(d − 1), so hB(nd − n)=

hB(nd − n− d + 1). Thus, we have to show

hB(nd − n− d + 1)− hB(nd − n− d)≤ hB(nd − n− d)− hB(nd − n− 2d).

To this end, put C = k[x1, . . . , x2n−2]/〈xd
1 , . . . , xd

2n−2〉. Then B ∼= C⊗k k[x]/(xd).
Hence, using a relation similar to (6-4), Claim 2 follows, once we have shown

hC(nd − n− d + 1)− hC(nd − n− 2d + 1)

≤ hC(nd − n− d)+ hC(nd − n− d)+ · · ·+ hC(nd − n− 2d + 1)

−
[
hC(nd− n− 2d)+ hC(nd− n− 2d− 1)+· · ·+ hC(nd− n− 3d+ 1)

] (6-5)

Our induction hypothesis (see inequality (6-3)) provides

hC(nd−n−d+1)− hC(nd−n−d)≤ hC(nd−n−2d+1)− hC(nd−n−2d).

Since the Hilbert function of C is unimodal with peak in degree (n− 1)(d− 1), we
have the estimates:

hC(nd − n− d)− hC(nd − n− 2d + 1)
≤ hC(nd − n− d)− hC(nd − n− 2d − 1),

0≤ hC(nd − n− d − 1)− hC(nd − n− 2d − 2),
...

0≤ hC(nd − n− 2d)− hC(nd − n− 3d − 1).

Adding the last inequalities, we get the desired inequality (6-5), which completes
the proof of Claim 2, and we are done. �

Remark 6.2. Theorem 6.1 proves half of Conjecture 5.5.2 in [Harbourne et al.
2011] — namely, the case when the number of variables is even.

Remark 6.3. In [Harbourne et al. 2011, Theorem 5.2.2], Harbourne, Schenck and
Seceleanu have recently given an alternative proof of the above theorem for d � 0.

Claim 2 can be restated as a result about the growth of the coefficients of a
certain univariate polynomial.
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Proposition 6.4. Let n ≥ 3 and d ≥ 1 be integers. For the univariate polynomial

a0+ a1z+ · · ·+ a2nd z2nd
:=
(
1+ z+ · · ·+ zd)2n,

we have and − and−1 ≤ and−d−1− and−d−2.

Proof. Note that ai is the Hilbert function of k[x1, . . . , x2n]/〈xd+1
1 , . . . , xd+1

2n 〉 in
degree i . Hence inequality (6-3) establishes the claim. �

We now turn to an odd number of variables. We are not able to give a result as
comprehensive as that of an even number of variables, and we only consider the
case of seven variables.

Theorem 6.5. Let L ∈ R = k[x1, . . . , x7] be a general linear form, and let I =
〈xd

1 , . . . , xd
7 , Ld
〉. If d = 2 then the ring R/I has the WLP. If d ≥ 4 then R/I fails

the WLP.

Proof. If d = 2, we have verified on CoCoA that R/I has the WLP. In fact, CoCoA
has also given the result that when d = 3, R/I fails to have the WLP because of
the failure of injectivity. However, a computer verification is not enough to show
the failure of the WLP, since it is impossible to justify that the linear forms are
“general enough”. We conjecture that WLP also fails for d = 3.

We now assume that d ≥ 4. We will show the failure of surjectivity in a suitable
degree. Let ` ∈ R be a general linear form. Let j =

⌊ 17
5 (d − 1)

⌋
. We want to

compute dimk[R/(I, `)] j = dimk L5( j; ( j + 1− d)8), and in particular, to show
that this dimension is nonzero. Using Lemma 3.5 four times we get

dimk[R/(I, `)] j
= dimk L5(− j + 6(d − 1); ( j + 1− d)2, (− j + 5(d − 1))6)

= dimk L5(−3 j + 12(d − 1); (− j + 5(d − 1))4, (−3 j + 11(d − 1))4, )

= dimk L5(−5 j + 18(d − 1); (−3 j + 11(d − 1))6, (−5 j + 17(d − 1))2)

= dimk L5(−7 j + 24(d − 1); (−5 j + 17(d − 1))8). (6-6)

This computation is correct and has a chance of resulting in a nonempty linear
system if 0≤−5 j+17(d−1)<−7 j+24(d−1), which is true since j ≤ 17

5 (d−1).
Thus, we distinguish five cases, where e is an integer:

Case 1: d − 1= 5e, thus j = 17e.

Case 2: d − 1= 5e+ 1, thus j = 17e+ 3.

Case 3: d − 1= 5e+ 2, thus j = 17e+ 6.

Case 4: d − 1= 5e+ 3, thus j = 17e+ 10.

Case 5: d − 1= 5e+ 4, thus j = 17e+ 13.
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The computation (6-6) then shows that dimk[R/(I, `)] j equals dimk L5(e; 08) in
Case 1, dimk L5(e+3;28) in Case 2, dimk L5(e+6;48) in Case 3, dimk L5(e+2;18)

in Case 4, and dimk L5(e+5; 38) in Case 5. It is clear that these linear systems are
not empty if e ≥ 0, thus d ≥ 1.

To prove failure of the WLP in degree j it remains to check that the expected
dimension is zero. Using Lemma 3.7, we obtain

dimk[R/I ] j − dimk[R/I ] j−1

=

( j+5
5

)
− 8

( j+5−d
5

)
+ 28

( j+5−2d
5

)
− 56

( j+5−3d
5

)
.

Notice that the last binomial coefficient is zero if d ≤ 10, while the third one is zero
for d ≤ 2. However, the computations of the polynomials below are not affected.
Distinguishing the five cases above, this dimension times 5! equals

Case 1:− 101995 e5
− 69925 e4

− 15975 e3
+ 565 e2

+ 730 e+ 120

Case 2:− 101995 e5
− 139850 e4

− 60225 e3
− 1330 e2

+ 5080 e+ 960

Case 3:− 101995 e5
− 209775 e4

− 133975 e3
− 8145 e2

+ 19730 e+ 5040

Case 4:− 101995 e5
− 359875 e4

− 499175 e3
− 336365 e2

− 107910 e− 12600

Case 5:− 5 (e+ 1) (20399 e4
+ 65561 e3

+ 74044 e2
+ 32716 e+ 3840)

Clearly the first three polynomials are negative if e ≥ 1, and the last two whenever
e ≥ 0. Thus the expected dimension is zero whenever d ≥ 4. In particular, we have
shown the failure of surjectivity (in particular the failure of the WLP) for d ≥ 4. �

In applying the approach of Theorem 6.5 to the general case, we were able to
mimic the choice of j , as well as the main details of the proof that dim[R/(I, `)] j >
0. However, a proof of the required inequality to verify that it is surjectivity rather
than injectivity that fails eluded us. Based on experiments with CoCoA, we end
with the following conjecture (also to complete the case of seven variables). Notice
that the case d = 2 has the WLP in seven variables (as noted above).

Conjecture 6.6. Let R = k[x1, . . . , x2n+1], where n ≥ 4. Let L ∈ R be a general
linear form, and let I = 〈xd

1 , . . . , xd
2n+1, Ld

〉. Then the ring R/I fails the WLP if
and only if d > 1. Furthermore, if n = 3 then R/I fails the WLP when d = 3.
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Resonance equals reducibility for
A-hypergeometric systems

Mathias Schulze and Uli Walther

Classical theorems of Gel’fand et al. and recent results of Beukers show that
nonconfluent Cohen–Macaulay A-hypergeometric systems have reducible mon-
odromy representation if and only if the continuous parameter is A-resonant.

We remove both the confluence and Cohen–Macaulayness conditions while
simplifying the proof.
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1. Introduction

In a series of seminal papers of the 1980s, Gel’fand, Graev, Kapranov and Zelevinskiı̆
introduced A-hypergeometric systems HA(β), a class of maximally overdetermined
systems of linear PDEs. These systems, today also known as GKZ-systems, are
induced by an integer d × n-matrix A and a parameter vector β ∈ Cd .

A-hypergeometric structures are nearly ubiquitous, generalizing most classical
differential equations. Indeed, toric residues, generating functions for intersection
numbers on moduli spaces, and special functions (Gauß, Bessel, Airy, etc.) may all
be viewed as solutions to GKZ-systems, and the same is true for varying Hodge
structures on families of Calabi–Yau toric hypersurfaces as well as the space of
roots of univariate polynomials with undetermined coefficients.

Uli Walther was supported by the NSF under grant DMS 0901123.
MSC2010: primary 13N10; secondary 32S40, 14M25.
Keywords: toric, hypergeometric, Euler–Koszul, D-module, resonance, monodromy.
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We shall identify A with its set of columns a1, . . . , an . A parameter β is nonres-
onant if it is not contained in the locally finite subspace arrangement of resonant
parameters

Res(A) :=
⋃
τ

(ZA+Cτ) , (1-1)

the union being taken over all linear subspaces τ ⊆ Qn that form a boundary
component of the rational polyhedral cone Q+A.

Assuming that the toric ring C[NA] = C[a1, . . . , an] is Cohen–Macaulay and
standard graded (the latter is equivalent to the classical notion of nonconfluence;
see [Schulze and Walther 2008]), Gel’fand et al. [1989; 1990] proved the following
fundamental theorems:

(I) HA(β) is holonomic.

(II) The rank (dimension of the solution space) of HA(β) equals the degree of
C[NA] for generic β.

(III) If β is nonresonant, the monodromy representation of the solutions of HA(β)

in a generic point is irreducible.

More recent research has shown that statements (I) and (II) hold true irrespective
of whether C[NA] is Cohen–Macaulay or standard graded, [Adolphson 1994; Saito
et al. 2000; Matusevich et al. 2005]. In Theorems 4.1 and 5.1, we prove the same
of statement (III) while providing a converse inspired by [Beukers 2011].

The crucial tool for the proof of (III) in [Gel’fand et al. 1990, Theorem 2.11] is
the Riemann–Hilbert correspondence of Kashiwara and Mebkhout, relating regular
holonomic D-modules to perverse sheaves. Confluence (i.e., irregularity) of MA(β)

rules out the use of the Riemann–Hilbert correspondence in the general case.
A powerful way of studying HA(β) is to consider the corresponding D-module

MA(β) on Cn as a 0-th homology of the Euler–Koszul complex K•(C[NA], β).
This idea can be traced back to [Gel’fand et al. 1989] and was developed into a
functor in [Matusevich et al. 2005]. Results from [Matusevich et al. 2005] show that
K•(C[NA], β) is a resolution of MA(β) if and only if β is not in the A-exceptional
arrangement EA (see Remark 2.2), a well-understood (finite) subspace arrangement
of Cn comprised of the parameters β for which the solution space of HA(β) is
unusually large.

Surprisingly, the Euler–Koszul technique combined with the D-module/represen-
tation-theoretic description of GKZ-systems from [Schulze and Walther 2009]
serves as a replacement for the Riemann–Hilbert correspondence in the proof of
(III). This provides an approach that is simultaneously conceptually simpler and
more widely applicable.
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2. Hypergeometric system and Euler–Koszul homology

Hypergeometric D-module. Let A = (ai, j ) : Zn
→ Zd be an integer d× n-matrix,

which we view both as a map, and as the finite subset {a1, . . . , an} of columns. We
assume that the additive group ZA generated by the columns of A is the free Abelian
group Zd , but we do not assume that A is positive, i.e., we do allow nontrivial units
in the semigroup NA (see Remarks 2.1 and 2.4).

Let xA = x1, . . . , xn be coordinates on X := Cn , and let ∂A = ∂1, . . . , ∂n be the
corresponding partial derivative operators on C[xA]. Then the Weyl algebra

DA = C〈xA, ∂A | [xi , ∂ j ] = δi, j , [xi , x j ] = 0= [∂i , ∂ j ]〉

is the ring of algebraic differential operators on Cn . With u+ = (max(0, u j )) j and
u− = u+ − u, write �u for ∂u+ − ∂u− , where here and elsewhere we freely use
multiindex notation. The toric relations of A are then

�A := {�u | Au = 0} ⊆ RA := C[∂A],

and generate the toric ideal IA = RA ·�A, whose residue ring is the toric ring

SA := RA/IA ∼= C[NA] = C[a1, . . . , an].

The Euler vector fields E = E1, . . . , Ed induced by A are defined as

Ei :=

n∑
j=1

ai, j xi∂ j .

Then, for β ∈Cd , the A-hypergeometric ideal and D-module are, by [Gel’fand et al.
1987; 1989], the left DA-ideal and DA-module

HA(β)= DA · {E −β}+ DA ·�A and MA(β)= DA/HA(β).

The structure of the solutions to HA(β) is tightly interwoven with the combinatorics
of the pair (A, β) ∈ (ZA)n × CA [Sturmfels and Takayama 1998; Cattani et al.
1999; Matusevich and Miller 2006; Okuyama 2006; Berkesch 2011].

Remark 2.1. Suppose we were to weaken the condition ZA = Zd to “the rank of
ZA is d ”. Pick a basis B for ZA, interpreted as elements of Zd . In terms of B, A
takes the form of the d× n matrix A′ (say) which satisfies A = B A′ and ZA′ = Zd .
Choose β ∈ CA = CA′. The hypergeometric systems HA(β) and HA′(B−1β) are
equivalent since kerZn (A)= kerZn (A′).

Torus action. Consider the algebraic d-torus T := Spec(C[ZA]) ∼= (C∗)d with
coordinate functions t = t1, . . . , td . The columns a1, . . . , an of A can be viewed
as characters ai (t)= t ai on T , and the parameter vector β ∈ Cd as a character on
its Lie algebra via β(ti∂ti )=−βi + 1. These characters define an action of T on
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X∗ := Spec(C[Nn
]), interpreted as the cotangent space T ∗0 X of X at 0, by

t · ∂A = (t a1∂1, . . . , t an∂n).

The toric ideal IA is the ideal of the closure of the orbit T · 1A of 1A = (1, . . . , 1)
in X∗, whose coordinate ring is SA.

The contragredient action of T on the coordinate ring RA of X∗ is given by

(t · P)(∂A)= P(t−a1∂1, . . . , t−an∂n)

for P ∈ RA. It yields a ZA-grading on RA on the coordinate ring C[xA, ∂A] of
T ∗X :

−deg ∂ j = a j = deg x j . (2-1)

In particular, deg ∂u
= Au, and E −β and �A are homogeneous.

The following description of MA(β) was given in [Schulze and Walther 2009].
Consider the algebraic DT -module

M(β) := DT /DT · 〈∂t t +β〉,

where ∂t t := ∂1t1, . . . , ∂d td . It is OT -isomorphic to OT but equipped with a twisted
DT -module structure expressed symbolically as

M(β)= OT · t−β−1

on which DT acts via the product rule. The orbit inclusion

φ : T → T · 1 ↪→ X

gives rise to a (derived) direct image functor φ+ : DT -mods→ DX -mods. On X
one has access to the Fourier transform: F(xi ) = ∂i , F(∂i ) = −xi . By [Schulze
and Walther 2009, Proposition 2.1], F ◦ φ+M(β) is represented by the Euler–
Koszul complex K•(SA[∂

−1
A ], β). Thus, the latter is quasiisomorphic to K•(SA, β)

if β 6∈Res(A) by [Schulze and Walther 2009, Theorem 3.6], and hence Corollary 3.8
of [Schulze and Walther 2009] yields

MA(β)= F ◦φ+M(β) if β 6∈ Res(A). (2-2)

Euler–Koszul functor. We say that β ∈ ZA is a true degree of the graded RA-
module M if β is the degree of a nonzero homogeneous element of M . The
quasidegrees of M are the points qdeg M in the Zariski closure of tdeg M ⊆ ZA ⊆
CA.

A graded RA-module M is called a toric module if it has a finite filtration by
graded RA-modules such that each filtration quotient is a finitely generated SA-
module. The toric modules with ZA-homogeneous maps of degree zero form a
category that is closed under subquotients and extensions. For every toric module the
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quasidegrees form a finite subspace arrangement where each participating subspace
is a shift of a complexified face of Q≥0 A by a lattice element.

For all β ∈ Cd and for any toric RA-module M one can define a collection
of d commuting DA-linear endomorphisms denoted Ei − βi , 1 ≤ i ≤ d, on the
DA-module DA⊗RA M which operate on a homogeneous element m ∈ DA⊗RA M
by m 7→ (Ei −βi ) ◦m, where

(Ei −βi ) ◦m = (Ei −βi − degi m) ·m.

There is an exact functor K•(−, β)= K•(−, E − β) from the category of graded
RA-modules to the category of complexes of graded DA-modules; it sends M to the
Koszul complex defined by all morphisms Ei −βi . On toric modules, the functor
returns complexes with holonomic homology. A short exact sequence

0→ M ′→ M→ M ′′→ 0

of graded RA-modules with homogeneous maps of degree zero induces a long exact
sequence of Euler–Koszul homology

· · · → Hi (M ′′, β)→ Hi−1(M ′, β)→ Hi−1(M, β)→ Hi−1(M ′′, β)→ · · ·

where Hi (−, β)= Hi (K•(−, β)). If M = SA then H0(M, β)= MA(β).
We refer to [Matusevich et al. 2005; Schulze and Walther 2009] for more details.

Rank (jumps) and monodromy reducibility. We shall write DA(xA) for the ring
of C-linear differential operators on C(xA); note that DA(xA)= C(xA)⊗C[xA] DA

as left DA-module. We further set M(xA) := C(xA)⊗C[xA] M for any DA-module
M .

The rank rk(M) of a DA-module M is the C(xA)-dimension of M(xA). By
Kashiwara’s Cauchy–Kovalevskaya theorem [Saito et al. 2000, Theorem 1.4.19], it
equals the C-dimension of the solution space Sol(M)= HomDA(M,C{xA− ε}) of
M with coefficients in the convergent power series near the generic point xA = ε in
(the analytic space associated to) X .

Remark 2.2. By [Adolphson 1994, Theorem 5.15] and [Matusevich et al. 2005,
Theorems 2.9, 7.5],

rk MA(β)≥ volA(A)

with equality for generic β ∈ Cn . Here volA(G) denotes, for any G ⊆ ZA, the
simplicial volume of the convex hull of G taken in the lattice ZA. More precisely,
equality is equivalent to β 6∈ EA, where

EA :=

n∑
j=1

a j −

d−1⋃
i=0

qdeg Extn−i
RA
(SA, RA)
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is the exceptional arrangement.

Definition 2.3. We say that a DA-module M has irreducible monodromy if M(xA)

is an irreducible DA(xA)-module (i.e., it has no nontrivial DA(xA)-quotients).

By [Walther 2007, Theorem 3.15], monodromy irreducibility of M(β) is a
property of the equivalence class β ∈ CA/ZA.

The nomenclature is based on the Riemann–Hilbert correspondence: DA(xA)-
quotients of M(xA) correspond to monodromy-invariant subspaces of Sol(M) in
nonsingular points of M . (Analytic continuations of an analytic germ satisfy the
same differential equations as the germ itself).

Remark 2.4. Careful reading of [Matusevich et al. 2005] reveals that all fundamen-
tal results obtained through Euler–Koszul technology do not require NA to be a
positive semigroup. As a matter of fact, EA was defined in [Matusevich et al. 2005]
in terms of local cohomology with supports at the origin of X∗; the translation
between this definition and ours here can only be done if A is pointed. On the other
hand, it is the Ext-based definition that is (implicitly) used in all proofs in loc. cit.

In consequence, the main theorems in [Walther 2007] and [Schulze and Walther
2009] remain true in the absence of positivity since the only ingredients in their
proofs that are specific to the hypergeometric situation are those of [Matusevich
et al. 2005].

3. Pyramids and resonance centers

Definition 3.1. For any subset F of the columns of A we write F for the comple-
ment A r F .

A face of A is any subset F ⊆ A subject to the condition that there be a linear
functional φF : ZA→ Z that vanishes on F but is positive on F . This includes
F = A as possibility. Every face contains all units of NA, and A is positive if and
only if the empty set is a face of A.

For a given face F , we set

I F
A := IA+ RA · ∂F

and note that RA/I F
A = SF as RA-module.

Definition 3.2. Let F be a face of A. The parameter β ∈ Cd is F-resonant if
β ∈ ZA+CG for a proper subface G of F .

If β is G-resonant for all faces G properly containing F , but not for F itself, we
call F a resonance center for β.

A resonance center is a minimal face F for which β ∈ZA+CF . Every parameter
β has a resonance center; A is a (and then the only) center of resonance for β if
and only if β is nonresonant in the usual sense (i.e., β 6∈ Res(A), defined in (1-1)).
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On the other hand, for positive A, the empty face is a resonance center for β if and
only if β ∈ ZA.

Example 3.3. It is easy to have several resonance centers for β. For example,
consider β = ( 1

2 , 1) on the quadric cone A =
( 1

0
1
1

1
2

)
; β has both extremal rays as

resonance centers.

Definition 3.4. We say that A is a(n iterated) pyramid over the face F if d =
dimZ(ZA) equals |F | + dimZ(ZF).

The following equivalences are trivial or follow from [Walther 2007, Lemma 3.13].

Lemma 3.5. The following statements are equivalent.

(1) F is a face and A is a pyramid over F.

(2) a j 6∈Q(A r {a j }) for any j 6∈ F.

(3) ZA = Za j ⊕Z(A r {a j }) for any j 6∈ F.

(4) volF (F)= volA(A).

(5) For every β ∈ CA, the coefficients c j in the sum β =
∑

A c j a j are uniquely
determined by β for j 6∈ F.

(6) The generators �A of IA do not involve ∂ j for any j 6∈ F.

(7) SF ⊗C C[∂F ] = SA as RA-modules.

Notation 3.6. Suppose F is any nonempty face of A, and let X F , X∗F , TF , H F
•

, etc.
be defined as in Section 2 with A replaced by F (cf. Remark 2.1 for the case where
ZA/ZF has torsion). Write E F

= E F
1 , . . . , E F

d where E F
i :=

∑
j∈F ai, j x j∂ j is the

part of Ei supported in F . Then, in particular,

MF (β)= DF/(DF · 〈E F
−β〉+ DF · IF ) for β ∈ CF.

Suppose now that A is a pyramid over the face F , and let β ∈ CA. The splitting
in Lemma 3.5(3) corresponds to a splitting of tori TA = TF ×

∏
a j∈F Ta j which in

turn gives a splitting of the spaces of Lie algebra characters CA=CF⊕
⊕

a j∈F Ca j .
Then β decomposes correspondingly as

β = βF
+

∑
j∈F

βF
j .

Let ιF : X∗F ↪→ X∗A be the inclusion. By [Matusevich et al. 2005, Lemma 4.8], for
β ∈ CF ,

(F ◦ ιF,+ ◦F−1)MF (β)= C[xF ]⊗C MF (β)

∼= H0(SF , β)= DA/(DA · 〈E F
−β〉+ DA · I F

A ) (3-1)

as DA-modules. In the following lemma, (9) follows from (8) and (3-1) above.
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Lemma 3.7. If A is a pyramid over F then the following conditions hold:

(8) The ideal HA(β) contains x j∂ j −β
F
j for j 6∈ F.

(9) MA(β)(xA)= C(xA)⊗C[xF ] MF (β) for β ∈ CF.

(10) The solutions of MA(β) are the solutions of MF (β
F ), multiplied with the

unique solution to the system

{x j∂ j • f = βF
j · f } j∈F .

In particular, β ∈ EA if and only if βF
∈ EF .

Proposition 3.8. If β ∈ CA has a resonance center F over which A is a pyramid,
then F is the only resonance center for β.

Proof. Let G be a second resonance center for β and suppose G meets the com-
plement of F ; pick ak ∈ G ∩ F . Since Zak is a direct summand of ZA, it is also a
direct summand of ZG. It follows that G r {ak} is a face G ′ of A.

As F and G are resonance centers,

β = zk ak +
∑

j∈Fr{k}

z j a j +
∑
j∈F

c j a j , β = c′k ak +
∑

j∈G ′r{k}

z′j a j +
∑
j∈G ′

c′j a j

where zk, z j , z′j ∈ Z and c′k, c j , c′j ∈C. By Lemma 3.5(5), the coefficients for ak in
these sums are identical, c′k = zk ∈ Z. It follows that

β =

zk ak +
∑

j∈G ′r{k}

z′j a j

+∑
G ′

c′j a j ∈ ZA+CG ′.

This contradicts G being a resonance center. Thus G ∩ F =∅ and so G ⊆ F . But
then F can only be a resonance center if F = G. �

4. Resonance implies reducibility

The following result generalizes Theorem 3.4 in [Walther 2007] and Theorem 1.3
in [Beukers 2011].

Theorem 4.1. Let F be a resonance center for β ∈ CA. If A is not a pyramid over
F then MA(β) has reducible monodromy.

Proof. By hypothesis, we have β − γ ∈ ZA for some γ ∈ CF . We first dispose
of the case F = ∅. In that case, A is positive, γ = 0, β ∈ ZA and, by [Walther
2007, Theorem 3.15], we may assume β = 0. Then C(xA) is a rank-1 quotient of
MA(β)(xA). But A is not a pyramid over F , so

rk(MA(β))≥ volA(A) > volF (F)= 1= rk(C(xA))
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by Remark 2.2 and Lemma 3.5. So C(xA) is a proper quotient of MA(β)(xA), and
hence MA(β) has reducible monodromy. We can hence assume that F is not empty,
and by [Walther 2007, Theorem 3.15], we need to show the reducibility of MA(γ ).

Consider the surjection

MA(γ )= H0(SA, γ )� H0(SF , γ )

induced by the surjection SA � SF . Therefore, it suffices to show that 0 <
rk(H0(SF , γ )) < volA(A) by Remark 2.2. Since F is a resonance center for β, and
hence for γ as well, γ is a nonresonant parameter for the GKZ-system

MF (γ )= DF/(DF · 〈E F
− γ 〉+ DA · IF ).

Then, by Remark 2.2, rk(MF (γ ))= volF (F) > 0 and rk(MA(γ ))≥ volA(A). As A
is not a pyramid over F , volF (F) < volA(A) by Lemma 3.5. Finally, rk(MF (γ ))=

rk(H0(SF , γ )) by (3-1). Combining the above (in)equalities yields the claim. �

5. Resonance follows from reducibility

We now generalize Theorem 2.11 in [Gel’fand et al. 1990].

Theorem 5.1. Let F be a resonance center for β. If A is a pyramid over F then
MA(β) has irreducible monodromy.

Proof.
First consider the case F = A. Then β 6∈Res(A) and hence MA(β)=F◦φ+(Mβ)

by (2-2). As in the proof of [Schulze and Walther 2009, Proposition 2.1], factor
φ =$ ◦ ι into the closed embedding of tori

ι : T ↪→ Spec(C[Zn
])= Y ∗ ∼= (C∗)n (5-1)

induced by ZA ⊆ Zn , followed by the open embedding

$ : Y ∗ = X∗r Var(∂1 · · · ∂n) ↪→ X∗. (5-2)

By Kashiwara equivalence, ι preserves irreducibility. The same holds for$ , because
D-affinity of both the target and the source of the inclusion map allows to detect
submodules on global sections. But global sections on Y ∗ and X∗ agree because we
are looking at an open embedding. Since M(β) is clearly irreducible, φ+M(β) is as
well. As Fourier transforms preserve composition chains, MA(β) is irreducible. It
follows that MA(β) has irreducible monodromy.

Suppose now that F is a proper face. Choose γ ∈ CF with β − γ ∈ ZA. Then
MF (γ ) is irreducible by the first part of the proof, and the claim follows from
Lemma 3.7(9) and [Walther 2007, Theorem 3.15]. Finally, if F = ∅ then A is
positive and Lemma 3.7(8) shows that MA(β)(xA) = C(xA) which has clearly
irreducible monodromy. �
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The Chow ring of double EPW sextics
Andrea Ferretti

A conjecture of Beauville and Voisin states that for an irreducible symplectic
variety X the subring of CH∗(X) generated by divisors goes injectively into the
cohomology of X , via the cycle map. We prove this for a very general double
Eisenbud–Popescu–Walter sextic.

1. Introduction

A difficult problem in algebraic geometry is to characterize the kernel (and the
image) of the cycle map

c : CH∗(X)→ H∗(X,Z)

for a smooth projective variety X over C. When X is an irreducible symplectic
variety there is this general conjecture:

Conjecture 1 [Beauville 2007]. Let X be an irreducible symplectic variety, and
let DCH(X) ⊂ CH∗

Q
(X) be the subalgebra generated by the divisors. Then the

cycle map
c : CH∗(X)Q→ H∗(X,Q)

is injective when restricted to DCH(X).

We refer to the original article for the motivation of the conjecture and its link
with the conjectures of Bloch and Beilinson; we just remark that the conjecture
was known to hold when X is a K3 surface from [Beauville and Voisin 2004].
Conjecture 1 explicitly means the following: any polynomial relation

P(D1, . . . , Dk)= 0

in the fundamental classes of divisors which holds in H∗(X) already holds inside
CH∗

Q
(X).

This has been extended by Claire Voisin:

I’d like to thank K. O’Grady for his constant support, advice, and encouragement during my Ph.D..
MSC2010: primary 53C26; secondary 14C15, 14J35.
Keywords: EPW sextics, Chow ring, hyperkähler, irreducible symplectic varieties.
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Conjecture 2 [Voisin 2008]. Let X be an irreducible symplectic variety. Any poly-
nomial relation

P(D1, . . . , Dk, ci (X))= 0

in the fundamental classes of divisors and in the Chern classes of X that holds in
H∗(X) already holds in CH∗

Q
(X).

Theorem [Voisin 2008]. Conjecture 2 holds when

• X = S[n], for some K3 surface S, and n ≤ 2b2(S)tr + 4, where b2(S)tr is
the rank of the transcendental part of H 2(S), that is, the orthogonal of the
Néron–Severi lattice, or

• X is the Fano variety of lines on a cubic fourfold Y ⊂ P5.

To our knowledge, no other cases of the conjecture have been verified. We prove
it to be true for double EPW sextics, a class of irreducible symplectic varieties
introduced in [O’Grady 2008a] and named after Eisenbud, Popescu and Walter.
(We will review their construction shortly.) More precisely:

Theorem 1.1. Let X be a double EPW sextic and f : X→ Y its associated double
covering. Let

h = f ∗OY (1)

be the natural polarization. Then every polynomial relation between h and the
Chern classes of X which holds in H∗(X,Q) already holds in CH∗(X)Q.

In particular, if X is very general, Conjecture 2 holds for X.

Theorem 1.1 is the main result of my Ph.D. thesis [Ferretti 2009]. Some facts
that are only cited in the present paper are described there in more detail.

EPW sextics. In this section we recall some known facts about EPW sextics and
we fix the notation that we shall use. The results here are from [O’Grady 2006;
2008a]; see also [Ferretti 2009] for a detailed introduction.

We start with a six-dimensional vector space V over the field C. The space
∧6V

is one-dimensional, so we choose once and for all an isomorphism

vol :
∧6V → C.

This endows
∧3V with a symplectic form, given by

(α, β)= vol(α∧β),

for α, β ∈
∧3V , so

∧3V becomes a symplectic vector space of dimension 20.
For each nonzero v ∈ V we can consider the Lagrangian subspace

Fv = {v∧α | α ∈
∧2V }.



The Chow ring of double EPW sextics 541

This is clearly isotropic, and the isomorphism

ϕv : Fv
∼=
−→

∧2(V/〈v〉)

v∧α 7−→ [α]
(1-1)

shows that dim Fv =
(

5
2

)
= 10.

Since the subspace Fv only depends on the class [v]∈P(V ), the subspaces Fv fit
together, giving rise to a Lagrangian subbundle F of the trivial symplectic bundle
P(V )×

∧3V . The maps in (1-1) then yield an isomorphism

F ∼= S⊗
∧2 Q,

where Q is the tautological quotient bundle on P(V ) and S the tautological sub-
bundle. From this a standard computation gives

c1(F)= c1(
∧2 Q)+ rk(F)c1(S)=−6H, (1-2)

where H = c1(O(1)) is the hyperplane class on P(V ).
We are now ready to define the EPW sextics, as follows. Fix a Lagrangian

subspace A⊂
∧3V . Note that the symplectic form gives a canonical identification∧3V/A ∼= A∨.

Let
λA : F→ OP(V )⊗ A∨ (1-3)

be the inclusion F ↪→ OP(V ) ⊗
∧3V followed by the projection modulo A. The

map λA is a map of vector bundles of equal rank 10.

Definition 1.2. We set
YA = Z(det λA),

the zero locus of the determinant of λA. This is a subscheme of P(V ); when it is
not the whole of P(V ), YA is called an EPW sextic. (It is indeed a sextic by (1-2).)

The support of the scheme YA is by definition the locus

{[v] ∈ P(V ) | dim(Fv ∩ A)≥ 1}.

We then set
YA[k] = {[v] ∈ P(V ) | dim(Fv ∩ A)≥ k},

so that YA = YA[1], at least set-theoretically. The loci YA[k] also have a natural
scheme structure, given by the vanishing of the determinants of the (11 − k) ×
(11− k) minors of λA.

The natural parameter space for EPW sextics is the Lagrangian Grassmannian
LG(

∧3V ), or more precisely the Zariski open set parametrizing those A for which
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YA ( P(V ). We recall that LG(
∧3V ) ⊂ Gr(10,

∧3V ) is the subvariety of La-
grangian subspaces; it is a smooth variety of dimension 55.

Double EPW sextics. Assume that YA is not the whole of P(V ). The map of vector
bundles λA in (1-3) is an injective homomorphism of sheaves, whose cokernel is
supported on YA. If we denote by

i A : YA→ P(V )

the inclusion, then we have an exact sequence

0−→ F −→ OP(V )⊗ A∨ −→ i A∗(ξA)−→ 0 (1-4)

for some sheaf ξA on YA. For a generic Lagrangian subspace A the locus

YA[2] =
{
[v] ∈ P(V ) | dim(Fv ∩ A)≥ 2

}
is properly contained in YA; it follows that ξA is generically free of rank 1. If

ζA = ξ
∨

A (3),

there is a natural multiplication map

m A : ζA⊗ ζA→ OYA .

More precisely:

Lemma 1.3 [O’Grady 2008a]. The map m A is symmetric and associative, and
gives an isomorphism between ζA⊗ ζA and OYA .

Thanks to the lemma we see that the sheaf

OYA⊕ ζA

has the structure of an OYA -algebra, so we have an associated double covering.

Definition 1.4. We denote by X A this double covering; the scheme X A is called a
double EPW sextic. We denote by

f A : X A→ YA

the covering map.

The scheme X A is endowed with a polarization h A = f ∗A OYA(1).

Remark 1.5. The ramification locus of the map f A is YA[2]. To see this we just
need to observe that by construction the ramification locus is the locus where the
sheaf ζA, or equivalently the sheaf ξA, is not locally free. Since i A∗(ξA) is the
cokernel of the map

λA : F→ OP(V )⊗ A∨,

we see that the rank of ξA jumps exactly along YA[2], hence our claim.
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Definition 1.6 [O’Grady 2010]. We let

6 =
{

A ∈ LG(
∧3V ) |

∧3(W )⊂ A for some W ⊂ V, dim W = 3
}
.

In other words, 6 is the set of Lagrangian subspaces of
∧3V containing a decom-

posable form. We also let

1=
{

A ∈ LG(
∧3V ) | YA[3] 6=∅

}
⊂ LG(

∧3V ).

Finally we define
LG(

∧3V )0 = LG(
∧3V ) \ (6 ∪1).

We recall the following characterization of smooth double EPW sextics:

Theorem 1.7 [O’Grady 2010]. The double covering X A is smooth if and only if

A ∈ LG(
∧3V )0.

The relevance of these double coverings stems from the following result.

Theorem 1.8 [O’Grady 2010]. Let A ∈ LG(
∧3V )0. Then X A is an irreducible

symplectic variety. The Beauville–Bogomolov form on H 2(X,Z) is the same as
that of S[2], where S is a K3 surface, and the Fujiki constant of X A is 3.

Let Z A = f −1
A (YA[2]); this is the branch locus for the 2 :1 covering, hence it

is isomorphic to YA[2] itself. Since the covering involution is antisymplectic, the
symplectic form restricts to 0 on Z A, that is, Z A is isotropic. Under mild assump-
tions Z A is a surface, hence a Lagrangian surface inside X A. More precisely:

Proposition 1.9 [O’Grady 2010]. Let A ∈ LG(
∧3V )0. Then YA[2] is a smooth

connected surface of degree 40, with χtop(YA[2])= 192.

We will need the following relation in the Chow group. It appears in [O’Grady
2008b, Proposition 4.9], with a different proof from the one given below.

Proposition 1.10. Let A ∈ LG(
∧3V )0, Z = Z A. The canonical class of Z satisfies

2K Z = OZ (6)

in CH∗(Z).

Remark 1.11. The proposition determines K Z only up to 2-torsion. Namely we
can rewrite it as

K Z = OZ (3)+ κ,

where κ is a 2-torsion class. One can use the deformation argument in [Ferretti
2012] and the results of [Welters 1981] to show that the class κ is really nonzero.
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Proof. For simplicity let W = f (Z) denote the singular set of Y . We know that on
W the map λ has constant rank 8, so we get the following exact sequence of vector
bundles on W :

0−→ K−→ F
λ|W
−→ OW ⊗ (

∧3V/A)−→ ζ |W −→ 0. (1-5)

Here K is defined to be the kernel of λ|W ; it has rank 2. Identifying W with its
preimage Z ⊂ X , we claim that the following isomorphisms hold:

ζ |W ∼= NZ/X , (1-6)

K∼= N∨Z/X . (1-7)

Assuming (1-6) and (1-7) for a moment, the exact sequence in (1-5) gives

c1(N
∨

Z/X )− c1(F)− c1(NZ/X )= 0,

hence
2c1(NZ/X )=−c1(F)= OZ (6).

Since X has trivial canonical class, it follows that

2K Z = 2c1(NZ/X )= OZ (6),

as desired.
So we now turn to the proof of (1-6) and (1-7). Let p ∈ Z ; then the covering

involution ϕ fixes p, so ϕ∗ acts on Tp X . This gives a decomposition

Tp X = (Tp X)+⊕ (Tp X)−

in eigenspaces for ϕ∗, with eigenvalues ±1. Since Z is the fixed locus of ϕ,

(Tp X)+ = Tp Z .

On the other hand, since
X = Spec(OY ⊕ ζ ),

we can identify
(Tp X)− ∼= ζ f (p).

It follows that
(NZ/X )p ∼= ζ f (p);

this fiber-wise identification is easily seen to globalize, hence yielding the isomor-
phism in (1-6).

For the other, we show that K∼= ζ |∨W . Indeed observe that over W we have

Kv = Fv ∩ A and ζv =
∧3V/(Fv + A).



The Chow ring of double EPW sextics 545

The symplectic form identifies K∨v with the quotient
∧3V/(Fv ∩ A)⊥, and since

both A and Fv are Lagrangian we have

(Fv ∩ A)⊥ = F⊥v + A⊥ = Fv + A,

thereby proving the isomorphism (1-7). �

Corollary 1.12. For A ∈ LG(
∧3V )0 the surface Z A ∼= YA[2] is of general type.

Plan of the paper. Before turning to the proof of Theorem 1.1, we explain the
overall plan. Let X = X A be a smooth double EPW sextic, and denote its polar-
ization h = h A. The symplectic form gives an isomorphism

TX ∼=�
1
X ,

hence the odd Chern classes vanish. So we only need to consider c2(X) and c4(X).
Moreover if A is very general in LG(

∧3V ), the group Pic(X A) is cyclic, generated
by h A, so the second conclusion of Theorem 1.1 follows from the first.

The only relations in cohomology can be in degree 4, 6, or 8. Lemma 2.3
excludes the existence of relations of degree 4, hence we are left with relations in
degree 6 or 8; these are listed in Propositions 2.1 and 2.2.

Since h4, c2(X) ·h, c2(X)2, and c4(X) are all proportional in cohomology, there
must be some distinguished 0-cycle θ on X , such that all these classes are multiples
of θ in CH 4(X). We shall define θ as the class of any point on a suitable surface
inside X A; actually it will be easier to work with YA and pull back everything to
X A later.

Hence we look for a surface S⊂ X such that CH 2(S) is trivial, so each point on
S is rationally equivalent to each other. For instance, in the proof of the conjecture
in the case where X is the Fano variety of a cubic fourfold, Voisin [2008] used a
rational surface. In that case there is a family of Lagrangian surfaces on X , which
are simply the Fano varieties of hyperplane sections of the cubic; if the section is
singular enough, its Fano variety turns out to be rational.

In our case this construction is a delicate point: the analogue of S is an Enriques
surface, but exhibiting it is complicated. The construction that we need is provided
in [Ferretti 2012].

So the plan is as follows. In Section 2 we carry out the cohomology computa-
tions on X . In Section 3 we use the surface constructed in [Ferretti 2012] to define
the class θ . In the rest of the paper we find enough relations in the Chow ring to
finish the proof of the main theorem.

2. Cohomology computations

Let X = X A be a smooth double EPW sextic. In this section we compute the
cohomological invariants of X , partly following [O’Grady 2008b]. We shall find
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all relations in cohomology between h and the Chern classes of X . In later sections
we shall show that these relations hold in the Chow ring.

Let σ be the symplectic form on X . Since the canonical of X is trivial

H 4,0(X)= H 0(X, �4
X )

is generated by σ 2. Moreover it is known that H 3(X)= 0, so we can compute the
Euler characteristic

χ(X,OX )= h0,0(X)+ h2,0(X)+ h4,0(X)= 3.

The symplectic form on X gives an isomorphism

TX ∼=�
1
X ,

hence the odd Chern classes vanish. The Hirzebruch–Riemann–Roch theorem for
X simplifies to

3= χ(X,OX )=
1

240

(
c2(X)2− 1

3 c4(X)
)
. (2-1)

We introduce some more notation. Let us call

q ∈ Sym2(H 2(X,Q)∨)

the Beauville–Bogomolov form of X . Since it is nondegenerate, it allows us to
give an identification

H 2(X,Q)∼= H 2(X,Q)∨;

hence we obtain a dual quadratic form

q∨ ∈ Sym2(H 2(X,Q)).

From [Verbitsky 1996, Theorem 1.5] (together with the computation of the Betti
numbers in [Göttsche 1990]) we know that the cup product yields an isomorphism
between Sym2(H 2(X,Q)) and H 4(X,Q), so we can regard q∨ as an element of
H 4(X,Q).

O’Grady [2008b] proves that we have the relation

q∨ = 5
6 c2(X), (2-2)

and that for any α, β ∈ H 2(X,Q) we have

q∨ ·α ·β = 25q(α, β). (2-3)

We now work out the relations in the cohomology of X . Let

h = c1( f ∗OY (1)) ∈ H 2(X).
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Proposition 2.1. In the cohomology ring H∗(X,Q) we have

h4
= 12, h2

· c2(X)= 60, c2(X)2 = 828, c4(X)= 324.

Proof. The first and the last relations are easily handled. Indeed,

h4
= 2 deg(Y )= 12.

As for the last one we have
c4(X)= χ(X),

and since X is a deformation of S[2], where S is a K3, we have

χ(X)= χ(S[2])= 324.

By O’Grady’s computations (2-3) and (2-2) we also have

c2(X) · h2
=

6
5 q∨ · h2

=
25·6

5
q(h, h)= 60.

Finally we can use (2-1) to obtain c2(X)2 = 828. �

In degree 6 the only possible relation is a linear dependency between h3 and
c2(X) · h, and indeed we have:

Proposition 2.2. There is a relation

c2(X) · h = 5h3

H 6(X,Q).

Proof. From O’Grady’s relation (2-3) we get

6q∨ · h ·α = 6 · 25q(h, α)

for all α ∈ H 2(X). On the other hand, by polarization of Fujiki’s relation we obtain

25h3
·α = 25 · 3 · q(h, h)q(h, α)= 6 · 25q(h, α).

So Poincaré duality implies that

25h3
= 6q∨ · h

modulo torsion, and using (2-2) we get the thesis. �

We can instead exclude relations in degree 4:

Lemma 2.3. The classes h2 and c2(X) are linearly independent inside H 2(X).

This fact appears inside the proof of [O’Grady 2008b, Claim 3.1], but we add a
short proof for completeness.
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Proof. We can substitute c2(X) with its multiple q∨. Assume that we have a
relation

h2
+ λq∨ = 0

for some λ ∈ C. Then we get

h2α2
=−25λq(α, α)

for all α ∈ H 2(X). By polarization of the Fujiki formula we also obtain

h2α2
= q(α, α)q(h, h)+ 2q(h, α)2.

So if q(α, α) = 0 we obtain q(h, α) = 0. This means that q is degenerate (the
quadric defined by q would be contained in a hyperplane of PH 2(X)), which is a
contradiction. �

Finally, it will be useful to write out the explicit form of Hirzebruch–Riemann–
Roch, using the above computations for the characteristic classes of X . We let

OX (1)= f ∗OY (1).

Then OX (n) is ample on X , and since K X is trivial, Kodaira vanishing yields

χ(X,OX (n))= h0(X,OX (n)).

The formula of Hirzebruch–Riemann–Roch then reads

h0(X,OX (n))=
h4

24
n4
+

c2(X) · h2

24
n2
+χ(OX )=

1
2 n4
+

5
2 n2
+ 3. (2-4)

3. Definition of the class θ

Let X = X A be a double EPW sextic, f : X → Y the double covering. Our first
task is to define a class

θ ∈ CH 4(X)

of degree 1. Then we will show that the relations

h4
= 12θ, h2c2(X)= 60θ, c2(X)2 = 828θ, c4(X)= 324θ

hold.
It will actually be easier to work on Y , so we should find the relationship between

CH(X) and CH(Y ).

Remark 3.1. The map f : X→ Y induces a push-forward morphism

f∗ : CH(X)→ CH(Y ),

because f is proper (for the construction of Chow rings and morphisms between
them see [Fulton 1984, Chapter 1]). On the other hand f ∗ is usually defined for flat
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maps with fibers of constant dimension, or when the target is smooth, and neither
is the case.

Following [Fulton 1984, Example 1.7.6] we can define f ∗ in our situation. In-
deed, Fulton shows that if

Y = X/G

is the quotient of X by the action of a finite group G, we have a canonical isomor-
phism

CH(Y )Q ∼= CH(X)GQ,

where as usual CH(Y )Q =CH(Y )⊗Q. So if f is the quotient map we can define
f ∗ by the composition

CH(Y )Q
∼=
−→ CH(X)GQ ↪→ CH(X)Q.

Fulton also shows that the composition

CH(Y )Q
f ∗
−→ CH(X)Q

f∗
−→ CH(Y )Q

is the multiplication map by ]G.
In our situation G=〈ϕ〉, where ϕ is the covering involution, and the composition

above is multiplication by 2.
Moreover we observe that

CH(Y )Q ∼= CH(X)Z/2Z

Q

is a subring of CH(X)Q, so we can multiply cycle classes on Y even if it is singular.

We now recall the main result in [Ferretti 2012]. There we produce a surface
S ⊂ Y such that CH 2(S) = Z; this will be the starting point for our investigation
of CH∗(Y ). Let us fix a Lagrangian subspace A ∈ LG(

∧3V ). If B is another
Lagrangian subspace such that

dim(A∩ B)= 9, (3-1)

it follows from the Grassmann formula that YB[2] ⊂ YA.

Theorem [Ferretti 2012]. Let A be a Lagrangian subspace in LG(
∧3V )0. Then

there exists another Lagrangian subspace B such that dim(A ∩ B) ≥ 9, and such
that S := YB[2] is either a (singular) Enriques surface, or a degeneration of such
surfaces. In either case we have

CH 2(S)∼= Z.

Moreover we have the relation

[S] =
[
YA[2]

]
(3-2)



550 Andrea Ferretti

in CH 2(X A).

So for such a choice of B we know that all points on S = YB[2] are rationally
equivalent. We define θ̄ as the class of any such point. We need to do some checks
in order to show that this is actually well-defined. We also define

θ = 1
2 f ∗(θ̄) ∈ CH 4(X A)Q.

Lemma 3.2. Let B, B ′ ∈ LG(
∧3V ) such that (3-1) holds. Then

YB[2] ∩ YB ′[2] 6=∅. (3-3)

Proof. It is enough to show that

YB[2] · YB ′[2] 6= 0

in CH∗(YA). Thanks to (3-2) it will be enough to prove that

YA[2]2 6= 0.

By the definition of the ring structure on CH∗(YA) we need to prove that

Z2
A 6= 0 in CH∗(X A).

But actually Z2
A 6= 0 already in cohomology. Indeed, using the fact that Z A is

Lagrangian, we have

Z2
A = c2(NZ A/X A)= c2(�

1
Z A
)= c2(Z A)= χtop(Z A)= 192

by Proposition 1.9. �

By the previous lemma we see that the class of θ̄ ∈ CH 4(YA) is actually inde-
pendent of the chosen Lagrangian subspace B such that (3-1) holds.

4. Relations coming from vector bundle morphisms

In this section we omit A from the notation, for clarity. Fix a Lagrangian subspace
A ∈ LG(

∧3V )0 and denote X = X A, Y = YA, and Z = Z A. We shall exhibit a
number of relations coming from exact sequences of sheaves on X and Y .

Lemma 4.1. The following relation holds in CH(X):

3Z = 15h2
− c2(X).

Proof. We consider f as a map X→P5, so it induces a morphism of vector bundles
over X :

d f : TX → f ∗TP5 .
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We notice that d f is injective outside Z , so we can see Z as a degeneracy locus
for this morphism. We then apply the Thom–Porteous formula in the form stated
in [Fulton 1984, §14.4]. In their notation we have e = 4, f = 5, and k = 3.

This yields a cycle class

D3(d f ) ∈ CH 2(Z)

whose support is Z , and such that the image of D3(d f ) in CH 2(X) is

1
(1)
2 (c( f ∗TP5 − TX ))= c2( f ∗TP5 − TX ).

Here the total Chern class
c( f ∗TP5 − TX )

is defined formally in such a way that Whitney’s formula holds, that is,

c(TX ) · c( f ∗TP5 − TX )= c( f ∗TP5).

From the last equation and the fact that c1(TX ) = 0 (since X is symplectic) we
can obtain

c2( f ∗TP5 − TX )= f ∗c2(TP5)− c2(TX )= 15h2
− c2(X).

Since D3(d f ) has support on Z , which is irreducible, we find that

k Z = 15h2
− c2(X) (4-1)

for some k ∈ Z. To find the right k, we observe that, again by [Fulton 1984,
Theorem 14.4(c)], we have

D3(d f )= [D3(d f )],

where D3(d f ) is the degeneracy locus of d f . In other words D3(d f ) is just Z ,
with the scheme structure given by the vanishing of all 4× 4 minors of d f .

The map
f : X→ Y ⊂ P5

has, in suitable analytic coordinates around a point of Z , the local form

f (x, y, z, t) =
loc
(x2, xy, y2, z, t).

The differential of f is then

d f =
loc


2x 0 0 0
y x 0 0
0 2y 0 0
0 0 1 0
0 0 0 1

 ;
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equating to 0 the determinants of its 3× 3 minors yields

D3(d f ) =
loc

V (x2, xy, y2).

So we see that D3(d f ) has multiplicity 3 at each point of Z , hence k = 3.
Alternatively we could multiply (4-1) by h2 to find

k Z · h2
= 15h4

− c2(X) · h2.

If we look at this relation in cohomology it becomes, thanks to Proposition 2.1,

40k = 15 · 12− 60,

so k = 3. �

We take a closer look at the differential of

f : X→ P5.

As a map of vector bundles, this is not injective exactly on Z . Hence it is always
injective on stalks; in other words

d f : TX → f ∗TP5

is an injective map of sheaves. Let R denote its cokernel; this is locally free of
rank 1 outside Z . So we have the exact sequence

0−→ TX −→ f ∗TP5 −→ R−→ 0. (4-2)

We now dualize it applying Hom(·,OX ). We remark that

Hom(R,OX )

is torsion-free, of rank one, and one can check in local coordinates that it is a line
bundle. By (4-2) we get c1(R)= 6h, hence

Hom(R,OX )∼= OX (−6).

Then we note that
Ext1( f ∗(TP5),OX )= 0,

because both sheaves are locally free. So if we let

Q= Ext1(R,OX ),

the dual of (4-2) becomes

0−→ OX (−6)−→ f ∗(�1
P5)

d f T

−→�1
X −→ Q−→ 0. (4-3)
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We remark that Q is set-theoretically supported on Z , because both R and OX are
locally free outside Z . Actually the schematic support of Q is 2Z , that is, the
subscheme of X defined by the ideal I2

Z . This follows from:

Lemma 4.2. Let Q be as above; then Ann(Q)= I2
Z .

Proof. We only need to prove this locally. As in the proof of Lemma 4.1 we can
choose local coordinates on X such that

f (x, y, z, t) =
loc
(x2, xy, y2, z, t);

then d f T has the matrix

d f T
=
loc


2x y 0 0 0
0 x 2y 0 0
0 0 0 1 0
0 0 0 0 1

 ;
hence we have the presentation

Q =
loc

〈dx, dy〉
〈x dx, x dy+ y dx, y dy〉

.

A given h(x, y) ∈ C[x, y] then annihilates Q if and only if both h dx and h dy
belong to the k[x, y]-module generated by x dx , x dy+ y dx , and y dy.

Let us make this more explicit. Assume that

h(x, y)dx = a(x, y)x dx + b(x, y) · (x dy+ y dx)+ c(x, y)y dy.

This yields
h(x, y)= xa(x, y)+ yb(x, y),

0= xb(x, y)+ yc(x, y).

The second equation implies b(x, y)= yb′(x, y), so the first becomes

h(x, y)= xa(x, y)+ y2b′(x, y).

If h can be written this way, then we can choose c so that the second condition is
satisfied. In short

h(x, y) dx ∈ 〈x dx, x dy+ y dx, y dy〉k[x,y]

if and only if h ∈ (x, y2).
We have the symmetric condition for h(x, y) dy, so we conclude that h∈Ann(Q)

if and only if
h ∈ (x, y2)∩ (x2, y)= (x2, xy, y2).
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The last equality between ideals can be proved, for instance, by the remark that
both (x, y2)∩ (x2, y) and (x2, xy, y2) consist of the polynomials h such that

h(0, 0)= ∂h
∂x
(0, 0)= ∂h

∂y
(0, 0)= 0.

Finally, (x2, xy, y2) is exactly the square of the ideal (x, y) which locally de-
fines Z . �

We now produce another exact sequence involving Q. Let

i : Z ↪→ X

denote the inclusion. Recall that we have a canonical identification

IZ/I
2
Z
∼= i∗N∨Z/X : (4-4)

locally the function g vanishing on Z corresponds to the normal covector dg. Con-
sider the natural projection

π :�1
X |Z → N∨Z/X ;

we see this as a map on X :

π :�1
X → IZ/I

2
Z .

Lemma 4.3. We have π ◦ d f T
= 0.

Proof. We keep the notation of the proof of Lemma 4.2. We need only to verify
the thesis on Z . The image of d f T is generated by

x dx, x dy+ y dx, y dy, dz, dt.

The first three elements vanish on Z , while the latter two are in the kernel of π . �

The above lemma and the exact sequence in (4-3) provide us a surjective map

α : Q→ i∗(N∨Z/X ).

Lemma 4.4. The kernel of α is i∗(det TZ ).

Proof. We can see this explicitly in local coordinates. Keeping the notation of the
above proofs, Q is locally generated, on Z , by dx , dy, and x dy = −y dx . The
conormal bundle N∨Z/X is generated by dx and dy, and α is the obvious projection.

The kernel of α is then generated by x dy. Under the identification in (4-4) this
corresponds to the generator dx ∧ dy of

∧2 N∨Z/X .
So

kerα = i∗(det N∨Z/X )
∼= i∗(det TZ ),

since Z is Lagrangian. �
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Thanks to the lemma we get the exact sequence we are looking for:

0−→ i∗(det TZ )−→ Q−→ i∗TZ −→ 0. (4-5)

We can now find new relations in the Chow ring of X .

Proposition 4.5. In CH(X)Q we have

c2(X) · h = 5h3

and c4(X) is a linear combination of h4, c2(X) · h2, and c2(X)2.

Proof. This is just a matter of putting together the relations that come from the
exact sequences (4-3) and (4-5).

We start from (4-3), which yields

(1− 6h) · (1+ c2(X)+ c4(X))= (1− h)6 · (1+ c1(Q)+ c2(Q)+ c3(Q)+ c4(Q)).

Comparing the terms in degree up to 2 we get:

c1(Q)= 0, c2(Q)= c2(X)− 15h2
=−3Z , (4-6)

where the last equality is Lemma 4.1. Then in degree 3 we have

c3(Q)= 6h(c2(Q)− c2(X))+ 20h3
= 6h · (−15h2)+ 20h3

=−70h3, (4-7)

using the second of (4-6). Finally in degree 4 we get, using (4-6) and (4-7),

c4(X)= 15h4
+15h2

·c2(Q)−6h ·c3(Q)+c4(Q)= 15h4
−45h2

·Z+420h4
+c4(Q),

hence
c4(Q)= c4(X)− 435h4

+ 45h2
· Z . (4-8)

Next we look at the relations coming from (4-5). To do this we shall use
Grothendieck–Riemann–Roch, which for the closed embedding

i : Z ↪→ X

takes the form
ch(i∗F)= i∗(ch(F) · td(NZ/X )

−1),

for any F ∈ Coh(Z). This is because in our situation we have

Rki∗(F)= 0

for all such F, thanks to [Hartshorne 1977, Corollary III.11.2].
Using that Z is Lagrangian we have NZ/X ∼=�

1
Z , so we can compute

td(NZ/X )= 1− 1
2 c1(Z)+ 1

12 (c1(Z)2+ c2(Z)),

td(NZ/X )
−1
= 1+ 1

2 c1(Z)+ 1
6 c1(Z)2− 1

12 c2(Z).
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Then we have

ch(det TZ )= 1+ c1(Z)+ 1
2 c1(Z)2,

ch(TZ )= 2+ c1(Z)+ 1
2 (c1(Z)2− c2(Z)).

So Grothendieck–Riemann–Roch for these sheaves becomes

ch(i∗ det TZ )= i∗
(
1+ 3

2 c1(Z)+ 7
6 c1(Z)2− 1

12 c2(Z)
)
,

ch(i∗TZ )= i∗
(
2+ 2c1(Z)+ 4

3 c1(Z)2− 7
6 c2(Z)

)
.

Next we use the fact that in CH(Z)Q we have

c1(Z)=−K Z =−3i∗(h),

thanks to Proposition 1.10. So we obtain

ch(i∗ det TZ )= Z − 9
2 h · Z + 21

2 h2
· Z − 1

12 Z2,

ch(i∗TZ )= 2Z − 6h · Z + 12h2
· Z − 7

6 Z2.

We can use this to recover the Chern classes of i∗(det TZ ) and i∗(TZ ). These are:

c1(i∗ det TZ )= 0, c2(i∗ det TZ )=−Z ,

c3(i∗ det TZ )=−9h · Z , c4(i∗ det TZ )= Z2
− 63h2

· Z ,

and
c1(i∗TZ )= 0, c2(i∗TZ )=−2Z ,

c3(i∗TZ )=−12h · Z , c4(i∗TZ )= 9Z2
− 72h2

· Z .

Finally we use the exact sequence (4-5) to get the Chern classes of Q. The first
two are

c1(Q)= 0, c2(Q)=−3Z ,

in accordance with (4-6). Then we get

c3(Q)=−21h · Z ,

and comparing with (4-7) we obtain

−3h · Z =−10h3.

Using Lemma 4.1 this is equivalent to

c2(X) · h = 5h3.

Finally we get
c4(Q)= 12Z2

− 135h2
· Z;
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comparing with (4-8) this yields

12Z2
− 135h2

· Z = c4(X)− 435h4
+ 45h2

· Z ,

and using again Lemma 4.1 to write Z as a rational combination of c2(X) and h2,
we get the second claim of the thesis. �

5. Conclusion of the proof

First we recall that we have defined the class

θ = 1
2 f ∗(θ̄).

Here θ̄ is the class of any point on a surface S ⊂ YA. By (3-2) we know that[
YA[2]

]
= [S] in CH 2(YA).

We also let h̄ = OY (1), so that h = f ∗(h̄).

Lemma 5.1. There exists a line L0 ⊂ Y which meets YB[2].

Proof. Let V be the union of lines contained in Y .

Step 1: dim V ≥ 2. Let R ⊂ Gr(2, V ) be the locus of lines `⊂ YA. We can obtain
R as follows. Let

YA = V (g),

where g is a degree-6 polynomial, and let S be the tautological subbundle on
Gr(2, V ), so that Sym6(S∨) is the fiber bundle whose fiber at ` is the vector space
of homogeneous polynomials of degree 6 on `.

Then we can define a section

s ∈ H 0(Gr(2, V ),Sym6(S∨))

by the condition
s(`)= g|`.

By definition R is the zero locus of s. It follows that

dim R ≥ dim Gr(2, V )− rk Sym6(S∨)= 8− 7= 1,

provided R is not empty. But we can show that R 6= ∅ by computing the funda-
mental class

[R] = c7(Sym6(S∨))= 432 · 134σ4,3.

Here the notation is that of Schubert calculus, see for instance [Griffiths and Harris
1978, §1.5].

Since V =
⋃
`∈R

` is birational to a P1-bundle over R, it follows that dim V ≥ 2.
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Step 2: There exists B ′ such that A∩ B = A∩ B ′ and YB ′[2] meets V . Let

U = A∩ B.

In [Ferretti 2012] we have shown that there exists a divisor DU ⊂ YA which is
covered by the surfaces [YB ′[2]] as B ′ ranges through the Lagrangian subspaces
which satisfy

A∩ B ′ ⊃U.

In particular DU has dimension 3; since two varieties of dimensions 2 and 3 in P5

always meet, it follows that
DU ∩ V 6=∅.

So there exists a Lagrangian subspace B ′ such that B ′ ∩ A =U and

YB ′[2] ∩ V 6=∅.

Step 3: B meets V . We lift everything to X A, which is smooth, so intersection
theory applies. Let

Ṽ1 = f −1(V ) and Ṽ2 = f −1(YB ′[2]).

One easily sees that on X
Ṽ1 · Ṽ2 6= 0.

Since f −1(YB[2]) and Ṽ2 have the same homology class, it follows that

Ṽ1 · f −1(YB[2]) 6= 0;

in particular Ṽ1 must meet f −1(YB[2]), and so

V ∩ YB[2] 6=∅. �

Using Lemma 5.1 we can start proving that

h4
= 6θ in CH(X). (5-1)

Indeed let L0 be any line meeting S and let3 be any plane containing L0. Then
h̄3 is represented by the intersection

3 · Y = L0+C,

where C is a quintic on 3. Multiplying by h̄ we obtain

h̄4
= L0 · h̄+C · h̄.

We claim that this is represented by a 0-cycle supported on L0. This is clear for
the first addend; for the second we represent h̄ by a hyperplane containing L0 and
transverse to 3. It follows that C · h̄ is supported on C ∩ L0.
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Since L0 is rational, CH 1(L0) ∼= Z, so h̄4 is rationally equivalent to a multiple
of a point of L0. Finally L0 ∩ S 6=∅, so we get

h̄4
= kθ̄ in CH 4(Y )Q

for some k ∈Q.
Pulling back this relation to X and using f ∗(h̄) = h, f ∗(θ̄) = 2θ we see that

h4
= 2k θ in CH 4(X)Q. Since in cohomology we have h4

= 12 we must have k= 6,
and so (5-1) is proved.

Next we show that
h2
· c2(X)= 60 θ̄ . (5-2)

We start from Lemma 4.1; pushing forward that relation we get

3
[
YA[2]

]
= 15 · 4 h̄2

− f∗c2(X) in CH 2(Y ). (5-3)

Multiplying (5-3) by h̄2 we get

h̄2
· f∗c2(X)= 60 h̄4

− 3h̄2
·
[
YA[2]

]
.

We already proved that h̄4 is a multiple of θ̄ , and the cycle class

h̄2
·
[
YA[2]

]
= h̄2
· [S]

is supported on S, hence it is a rational multiple of θ̄ too.
We conclude that the relation (5-2) holds up to a multiple, that is,

h̄2
· f∗c2(X)= kθ̄ .

As before, we pull back this relation to X in order to make computations in coho-
mology. We get

h2
· 2c2(X)= 2kθ̄ .

Since in cohomology we have h2
· c2(X)= 60, we must have k = 60, and (5-2) is

proved.
In a similar way, we can rewrite (5-3) as

f∗c2(X)= 15 h̄2
− 3

[
YA[2]

]
and take squares to write ( f∗c2(X))2 as a combination of h̄4 and a 0-cycle supported
on YB[2]. This shows that ( f∗c2(X))2 is a rational multiple of θ̄ .

As usual a cohomology computation yields the precise form

c2(X)2 = 828θ.

Now we can use Proposition 4.5 to conclude that c4(X) = kθ , and finally we
get k = 324 by comparison with the analogous computation in cohomology. This
takes care of all relations in degree 8.
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The only relation in degree 6 comes from Proposition 2.2, and is

c2(X) · h = 5h3.

We already proved that the same holds in CH∗(X) in Proposition 4.5, so this ends
the proof of the main theorem.
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A finiteness property of graded
sequences of ideals

Mattias Jonsson and Mircea Mustat,ă

Given a graded sequence of ideals (am)m≥1 on X , having finite log canonical
threshold, we show that if there are divisors Em over X computing the log
canonical threshold of am , and such that the log discrepancies of the divisors
Em are bounded, then the set {Em | m ≥ 1} is finite.

1. Introduction

Let X be a smooth algebraic variety over an algebraically closed field k of charac-
teristic zero. The log canonical threshold of a nonzero ideal a on X is a fundamental
invariant of the singularities of the subscheme defined by a. Originally known as
the complex singularity index, it shows up in many contexts related to singularities,
and it has found a plethora of applications in birational geometry [Kollár 1997; Ein
and Mustat,ă 2006].

In this note we will be interested in the behavior of this invariant in certain
sequences of ideals. Let a• = (am)m≥1 be a graded sequence of ideals on X ,
that is, a sequence of ideals that satisfies a` · am ⊆ a`+m for every `,m ≥ 1. We
always assume that, in addition, some ideal am is nonzero. The main motivating
example is the graded sequence aL

•
associated to a line bundle L of nonnegative

Iitaka dimension on a smooth projective variety X : the ideal aL
m defines the base-

locus of the linear system |Lm
|. Note that in this case the behavior of aL

•
is easy to

understand if the section ring
⊕

m 0(X, Lm) is finitely generated over k. Indeed,
in this case there is a positive integer p such that amp = am

p for all m. The study
of aL

•
is useful precisely when the section ring is not finitely generated (or at least,

when this property is not known a priori).

Jonsson was partially supported by NSF grants DMS-0449465 and DMS-1001740. Mustat,ă was
partially supported by NSF grant DMS-0758454 and a Packard Fellowship.
MSC2010: primary 14F18; secondary 14B05.
Keywords: graded sequence of ideals, log canonical threshold.
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To a graded sequence a• as above, one can associate an asymptotic version of
the log canonical threshold, by putting

lct(a•) := sup
m;am 6=(0)

m · lct(am).

This can be infinite: for example, if a• = aL
•

as above, with L big, then lct(a•) is
infinite if and only if L is nef (see Remark 2.2 below).

We will be concerned with the divisors that compute the log canonical thresholds
of the elements of a graded sequence. We denote by A(ordE) the log discrepancy
of a divisor E over X (see Section 2 for the relevant definitions). Our main result,
which gives a positive answer to a question of Mihai Păun, is Theorem A below.
(Păun’s question was motivated by [Siu 2009], in which Y.-T. Siu presents part
of his arguments for the finite generation of the canonical ring. At the end of
Section 6.3, he evokes a subtle point in his approach, involving the control of
an infinite sequence of blow-ups. Although expressed in a different language,
our main result shows that the infinite blow-up process in Siu’s approach can be
“stopped”, provided that the log discrepancies of the divisors computing the log
canonical thresholds are bounded.)

Theorem A. Let a• be a graded sequence of ideals on a smooth variety X such
that lct(a•) <∞. If I ⊆ Z>0 is a subset such that for all m ∈ I we have a divisor
Em over X that computes lct(am) such that {A(ordEm ) | m ∈ I } is bounded, then
the set {Em | m ∈ I } is finite.

Corollary B. Under the hypothesis in Theorem A, suppose that the set I is infi-
nite. Then there is a divisor E over X that computes lct(am) for infinitely m. In
particular, E computes lct(a•).

In fact, since our proof will require replacing X by a suitable blow-up, we will
need to prove a stronger version of the above theorem, in which we replace the log
canonical threshold by the possibly higher jumping numbers, in the sense of [Ein
et al. 2004] (see Theorem 4.1 below for the precise statement).

Here is a sketch of the proof. Let Zm be the image of Em on X , and let W
be the Zariski closure of

⋃
m∈I Zm . We may assume that W is irreducible, and

we first show that since lct(a•) <∞, the asymptotic order of vanishing ordW (a•)

is positive. In particular, W is a proper subset of X . If W has codimension at
least two in X , then blowing-up X along W decreases the log discrepancies of the
divisors Em , and since these are bounded above, we reduce to the case when W is
a hypersurface. In this case, we use the following result, which we believe is of
independent interest.

Theorem C. Let H be a hypersurface in X , and a a nonzero ideal. Suppose that
E is a divisor over X that computes lct(a). If the image Z of E on X is a proper
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subset of H , and if H is smooth at the generic point of Z , then

ordZ (a)≥ ordH (a) ·

(
1+

ordE(IZ )

A(ordE)

)
,

where IZ is the ideal defining Z.

Of course, as we have already mentioned, we need in fact a version of this result
that applies also to higher jumping numbers (see Theorem 3.1 below for this more
general version of the theorem). Using Theorem C, we show that if there were
infinitely many Zm that were properly contained in W , then the ideals in a• would
vanish along W more than they should. Therefore all but finitely many of the Em

are equal to W (note that at this point we are on some blow-up of our original
variety).

In the following section we review some basic facts about log canonical thresh-
olds and higher jumping numbers. The proofs of the stronger versions of Theo-
rems C and A are given in Section 3, and respectively, Section 4.

2. Jumping numbers and valuations

In this section we recall some definitions and results concerning the invariants of
singularities that we will use, and set the notation for the rest of the paper. We work
over a fixed algebraically closed field k of characteristic zero. Let X be a smooth
variety over k (in particular, we assume that X is connected and separated). All
ideal sheaves on X are assumed to be coherent.

By a divisor E over X we mean a prime divisor on a normal variety Y that has
a proper birational morphism π : Y → X . This induces a discrete valuation of
the function field K (Y ) = K (X), that we denote by ordE . As usual, we identify
two such divisors if they induce the same valuation. In particular, it follows from
Hironaka’s theorem on resolution of singularities that we may assume that both Y
and E are nonsingular. If we denote by KY/X the relative canonical divisor, then
the log discrepancy of ordE is given by A(ordE) := 1+ordE(KY/X ). Note that this
depends on the variety X , and whenever the variety is not clear from the context,
we will write AX (ordE). The center of E on X is the image cX (E) := π(E) of
E . We always consider on cX (E) the reduced scheme structure. If a is a nonzero
ideal sheaf on X , we put

ordE(a) :=min{ordE( f ) | f ∈ a ·OX,cX (E)} ∈ R≥0.

If Z is the subscheme defined by a, we also denote this by ordE(Z).
Given an irreducible closed subset Z of X , we define the order of vanishing

along Z as follows. Consider the normalized blow-up of X along Z , and put
ordZ := ordE , where E is the unique irreducible component of the exceptional
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divisor that dominates Z . It is clear that in this case cX (E) = Z . Note also that
ordZ (a)=minx∈Z ordx(a).

Let us recall the definition of multiplier ideals. For details and proofs we refer
to [Lazarsfeld 2004, Section 9]. Suppose that a is a nonzero ideal on X . Let
µ : X ′ → X be a log resolution of (X, a), that is, π is proper and birational, X ′

is nonsingular, a · OX ′ = OX ′(−F) for an effective divisor F , and F + K X ′/X has
simple normal crossings. For every λ ∈ R≥0, the multiplier ideal of a of exponent
λ is given by

J(aλ) := π∗OX ′(K X ′/X −bλFc).

The definition is independent of the choice of log resolution.
It is clear from the above definition that if λ< λ′, then J(aλ

′

)⊆ J(aλ). Further-
more, for every λ there is ε > 0 such that J(aλ) = J(at) for every t ∈ [λ, λ+ ε].
One says that λ> 0 is a jumping number of a if J(aλ) 6=J(aλ

′

) for every λ′<λ. It
follows from the definition that if we write F =

∑
i ai Ei , then for every jumping

number λ there is i such that λai is an integer. In particular, the jumping numbers
form a discrete set of rational numbers.

For basic properties of the jumping numbers and applications, we refer to [Ein
et al. 2004]. The most important jumping number is the smallest one, known as
the log canonical threshold and denoted by lct(a). This is the smallest λ such that
J(aλ) 6= OX (note that J(a0)= OX ).

It is convenient to index the jumping numbers as follows (see [Jonsson and
Mustat,ă 2010]). Let q be a nonzero ideal on X . We put

lctq(a) :=min{λ | q 6⊆ J(aλ)}.

Note that lctOX (a) is the log canonical threshold lct(a) of a. It follows from the
definition that if a 6= OX , then

⋂
λ≥0 J(aλ) = (0), hence lctq(a) is finite. When

a = OX , we make the convention lctq(a) = ∞. We will also use the notation
Arnq(a) := 1/ lctq(a) (where Arn stands for Arnold multiplicity). It follows from
the definition that we have

Arnq(a)=max
E

ordE(a)

A(ordE)+ ordE(q)
, (1)

where the maximum can be taken either over all divisors over X , or just over those
lying on a log resolution of (X, a). We say that E computes lctq(a) (or Arnq(a))
if the maximum in (1) is achieved by E .

The most interesting of the jumping numbers is the log canonical threshold.
However, as the following lemma shows, the other jumping numbers appear natu-
rally when we consider higher birational models.
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Proposition 2.1. Let π : X ′→ X be a proper birational morphism, with X ′ smooth,
and a and q nonzero ideals on X. If a′ = a ·OX ′ , and q′ = q ·OX ′(−K X ′/X ), then

lctq(a)= lctq
′

(a′).

Proof. This is an immediate consequence of (1), and of the fact that for every
divisor E over X , we have AX (ordE)= AX ′(ordE)+ ordE(K X ′/X ). �

Suppose now that a• is a graded sequence of ideals on X , and let S = {m | am 6=

(0)}. Note that S is closed under addition. In this case we have the following
asymptotic version of the jumping numbers:

lctq(a•) := sup
m∈S

m · lctq(am)= lim
m→∞,m∈S

m · lctq(am) (2)

(see [Jonsson and Mustat,ă 2010, Section 2]). We put Arnq(a•)= 1/ lctq(a•). When
q= OX , we simply write lct(a•) and Arn(a•). Note that lctq(a•) ∈R>0∪{∞}. One
can show that lctq(a•) =∞ if and only if lct(a•) =∞ (see [Jonsson and Mustat,ă
2010, Corollary 6.10]).

Remark 2.2. If X is a smooth projective variety, L is a big line bundle on X , and
a• = aL

•
is the graded sequence of ideals defining the base loci of the powers of L

(see Introduction), then [Ein et al. 2006, Corollary 2.10] shows that lct(a•)=∞ if
and only if L is nef.

If a• is as above and E is a divisor over X , we will also consider the following
asymptotic version of the order of vanishing along E :

ordE(a•) := inf
m

ordE(am)

m
= lim

m→∞,m∈S

ordE(am)

m
.

We have the following extension of (1)

Arnq(a•)= sup
E

ordE(a•)

A(ordE)+ ordE(q)
. (3)

For these facts, we refer to [Jonsson and Mustat,ă 2010, Section 2]. We say that
E computes lctq(a•) if the supremum in (3) is achieved by E . Note however that
unlike in the case of one ideal, there may be no divisor E that computes lctq(a•);
see [Jonsson and Mustat,ă 2010, Example 8.5].

We will use the following Izumi-type estimate [Izumi 1985; Ein et al. 2003].

Proposition 2.3. If E is a divisor over X with cX (E)= Z , then

ordE(a)≤ A(ordE) · ordZ (a)

for every nonzero ideal sheaf a on X.
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Proof. We may replace X by an affine open subset of the generic point of Z , and
therefore assume that X is affine. In this case we may assume that a is principal.
If ordZ (a)= m, then for a general p ∈ Z we have ordp(a)= m. By [Kollár 1997,
Lemma 8.10], there is an open neighborhood U of p such that lct(a|U )≥ 1/m, and
we get the assertion in the proposition since U ∩ Z 6=∅ implies

A(ordE)

ordE(a)
≥ lct(a|U ). �

3. An inequality between orders of vanishing

We keep the notation and the conventions from Section 2. The following is the
main result in this section. Note that in the special case q = OX , this recovers
Theorem C in the Introduction.

Theorem 3.1. Let H be a hypersurface in X , and a, q nonzero ideals on X. Sup-
pose that E is a divisor over X that computes lctq(a). If the center Z of E on X is a
proper subset of H , and if H is smooth at the generic point of Z , then the following
inequality holds

ordZ (a)≥ ordH (a) ·

(
1+

ordE(Z)
A(ordE)(1+ ordH (q))

)
. (4)

We start by recalling a basic estimate for the log discrepancy of a valuation. For
a proof, see for example [Lazarsfeld 2004, page 157].

Lemma 3.2. Let E be a divisor over X with cX (E) = Z , and let ξ be the generic
point of Z. If x1, . . . , xr form a regular system of parameters of OX,ξ , then

A(ordE)≥

r∑
i=1

ordE(xi ).

Corollary 3.3. If H is a hypersurface in X , and E is a divisor over X such that
Z := cX (E) is a proper subset of H , and H is smooth at the generic point of Z ,
then

A(ordE)≥ ordE(H)+ ordE(Z). (5)

Proof. Let ξ be the generic point of Z . Since H is smooth at ξ , we may choose a
regular system of parameters x1, . . . , xr of OX,ξ such that H is defined at ξ by (x1).
Note that by assumption r ≥ 2. By definition, we have ordE(Z)=min j ordE(x j ).
Let i be such that ordE(xi )= ordE(Z). If i ≥ 2, then by the lemma

A(ordE)≥ ordE(x1)+ ordE(xi )= ordE(H)+ ordE(Z).

On the other hand, if i = 1, then using again the lemma we get

A(ordE)≥ ordE(x1)+ ordE(x2)≥ 2 · ordE(x1)= ordE(H)+ ordE(Z). �
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Proof of Theorem 3.1. Let us put m = ordH (a) and p = ordH (q). We can write
a= OX (−H)m · ã, and we get

ordE(a)= m · ordE(H)+ ordE(ã), ordZ (a)= m+ ordZ (ã) (6)

(note that ordZ (H) = 1 since H is smooth at the generic point of Z ). Since E
computes lctq(a), it follows from (1) that

ordE(a)

A(ordE)+ ordE(q)
≥

ordH (a)

A(ordH )+ ordH (q)
=

m
1+ p

. (7)

Corollary 3.3 gives ordE(H) ≤ A(ordE)− ordE(Z), and combining this with (7)
we deduce

m ≤ (1+p)·
ordE(a)

A(ordE)+ordE(q)
≤

ordE(ã)+m(A(ordE)−ordE(Z))+ p ·ordE(a)

A(ordE)+ordE(q)

= m+
ordE(ã)+ p ·ordE(a)−m(ordE(q)+ordE(Z))

A(ordE)+ordE(q)
. (8)

Therefore ordE(ã) ≥ m(ordE(q)+ ordE(Z))− p · ordE(a). Using one more time
the first equation in (6), this implies

(1+ p) · ordE(ã)≥ m(ordE(q)+ ordE(Z))− pm · ordE(H). (9)

On the other hand, by Proposition 2.3 we have ordE(ã)≤ A(ordE) ·ordZ (ã), while
clearly ordE(q)≥ p · ordE(H). Putting these together with (9) gives

(1+ p)A(ordE) · ordZ (ã)≥ (1+ p) · ordE(ã)

≥ m(ordE(q)+ ordE(Z))− pm · ordE(H)

≥ m · ordE(Z).

Combining this with the second equality in (6), we obtain

ordZ (a)= m+ ordZ (ã)≥ m ·
(

1+
ordE(Z)

A(ordE)(1+ p)

)
,

which completes the proof of the theorem. �

Remark 3.4. In Theorem 3.1 one can replace ordE by any real valuation of K (X),
having center on X and computing lctq(a). The proof goes through if one uses the
definition of A(v) from [Jonsson and Mustat,ă 2010, Section 5]. In this case, the
assertion in Lemma 3.2 follows from Corollary 5.4 of that reference.

Example 3.5. The inequality in Theorem 3.1 is optimal, at least in an asymptotic
sense. Indeed, let us consider the ideal a = xm(x, ym+1) in k[x, y], where m is
a positive integer. Since this is a monomial ideal, one can use Howald’s theorem
[Howald 2001] to compute its log canonical threshold. It is easy to check that
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lct(a) = (m + 2)/(m + 1)2, and this log canonical threshold is computed by the
(toric) divisor E over X = A2 such that

ordE

( ∑
i, j≥0

ci, j x i y j
)
=min{(m+ 1)i + j | ci, j 6= 0}.

Note that A(ordE) = m + 2, and the center of E on X is the origin. If we take
q= OX and H = (x = 0), then

ordZ (a)

ordH (a)
(

1+ ordE(Z)
A(ordE)

) = m+ 1

m
(

1+ 1
m+2

) = (m+ 1)(m+ 2)
m(m+ 3)

,

and this converges to 1 when m goes to infinity.

Remark 3.6. The right-hand side of the inequality (4) is bounded above by

ordH (a) ·

(
1+

1
lct(IZ ) · (1+ ordH (q))

)
,

where IZ is the ideal defining Z . One could ask whether this expression is ≤
ordZ (a), improving in this way the assertion in Theorem 3.1. However, this is
not the case: let us consider the special case m = 3 in Example 3.5, that is, a =

x3(x, y4). With q= OX and H = (x = 0), we have ordZ (a)= 4, while

ordH (a) ·

(
1+ 1

lct(IZ )

)
= 3

(
1+ 1

2

)
=

9
2 > 4.

4. The main result

In this section we prove the generalized version of Theorem A in the Introduction.
We work in the same setting as in Section 2.

Theorem 4.1. Let a• be a graded sequence of ideals on X , and q a nonzero ideal
on X such that lctq(a•) <∞. If I ⊆ Z>0 is a subset such that for all m ∈ I we
have a divisor Em over X that computes lctq(am) such that {A(ordEm ) | m ∈ I } is
bounded, then the set {Em | m ∈ I } is finite.

Corollary 4.2. Under the same hypothesis as in Theorem 4.1, suppose that the set
I is infinite. Then there is a divisor E over X that computes lctq(am) for infinitely
many m. In particular, E computes lctq(a•).

Proof of Theorem 4.1. Note that the hypothesis implies, in particular, that am is
nonzero for every m ∈ I . We assume that I is an infinite set, that Ei 6= E j for
all i 6= j in I and aim to derive a contradiction. Let Zm = cX (Em). We argue by
induction on M := max{A(ordEi ) | i ∈ I }. This is finite by assumption. Note that
M is a positive integer, and M = 1 if and only if all the Ei ’s are divisors on X . At
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several stages in the proof we will replace I by an infinite subset. Note that this
can only decrease the value of M .

We start with the following lemma.

Lemma 4.3. With the above notation, suppose that there is an infinite subset J ⊆ I
such that W :=

⋃
j∈J Z j is irreducible, and Z j 6=W for all j ∈ J . In this case

ordW (a•)≥ Arn(a•)≥ Arnq(a•) > 0.

Proof. We only need to prove the first inequality. Let C = Arn(a•), so that
Arn(am)≥ Cm for every m. If j ∈ J , then by Proposition 2.3 we have Arn(a j )≤

ordZ j (a j ).
We need to show that ordW (am) ≥ Cm for every m ≥ 1. We may, of course,

assume that am is nonzero. By hypothesis, we can find 0 ≤ ` ≤ m − 1 such that
the set ⋃

j∈J
j≡`(mod m)

Z j (10)

is dense in W . Since all Z j are proper subsets of W , this implies that if in (10)
we only take the union over those j ∈ J with j ≡ ` (mod m) and with j ≥ N , for
some N , then the union is still dense in W . Let us fix j0 ∈ J with j0 ≡ ` (mod m),
and let C ′ := maxx∈W ordx(a j0) <∞ (recall that a j0 is nonzero). If mp+ j0 ∈ J ,
then the inclusion a

p
m · a j0 ⊆ amp+ j0 implies

p·ordZmp+ j0
(am)+ordZmp+ j0

(a j0)≥ordZmp+ j0
(amp+ j0)≥Arn(amp+ j0)≥C(mp+ j0).

Therefore ordZmp+ j0
(am) ≥ Cm − C ′/p. Since we have arbitrarily large such p,

and since the union of the corresponding Zmp+ j0 is dense in W , we conclude that
ordW (am)≥ Cm, as required. �

A first consequence of the lemma is that if W is the closure of
⋃

i∈I Zi , then
W 6= X . In particular, this shows that when M = 1, we have a contradiction.

Arguing by Noetherian induction on W , we may assume that W is minimal in X
with the property that there is an infinite family of divisors (Ei )i∈I as above, with
max{A(ordEi ) | i ∈ I } ≤ M . This implies first that W is irreducible. Indeed, if we
consider the irreducible decomposition W =W1∪· · ·∪Wr , then there is j such that
Zi ⊆ W j for infinitely many i ∈ I . Since we may replace I by {i ∈ I | Zi ⊆ W j },
it follows from the minimality assumption on W that W =W j .

A second consequence of the minimality of W is that for every infinite subset
J ⊆ I , the union

⋃
j∈J Z j is dense in W . In particular, if U is an open subset of

X that meets W , then there are infinitely many i ∈ I such that U meets Zi (and
the union of these Zi ∩ U is dense in W ∩ U ). Therefore in order to deduce a
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contradiction we may replace X by U and each am by its restriction to U . We may
thus assume that W is nonsingular.

We claim that the induction hypothesis on M implies that W is a hypersurface in
X . Indeed, suppose that c= codim(W, X)≥ 2, and let π : X ′→ X be the blow-up
of X along W . If E is the exceptional divisor of π , then K X ′/X = (c−1)E . Since
cX (Ei )⊆W for every i ∈ I , it follows that cX ′(Ei )⊆ E , hence

AX ′(ordEi )= AX (ordEi )− ordEi (K X ′/X )≤ AX (ordEi )− (c− 1).

If a′m=am ·OX ′ and q′=q·OX ′(−K X ′/X ), then by Proposition 2.1 we have lctq(ai )=

lctq
′

(ai ), and it follows from hypothesis and (1) that Ei computes lctq
′

(a′i ) for every
i ∈ I . Since max{AX ′(ordEi ) | i ∈ I }≤M−1, we have a contradiction by induction
on M .

Therefore W is a smooth hypersurface in X . If Zi = W , then Ei = W , hence
this can be the case for at most one i . After discarding this i , we may assume that
each Zi is a proper subset of W . In particular, we may apply Theorem 3.1 to get

ordZi (ai )≥ ordW (ai ) ·

(
1+

ordEi (Zi )

A(ordEi )(1+ ordW (q))

)
. (11)

Note that ordEi (Zi ) ≥ 1 for all i ∈ I . Let α = ordW (a•). We have α > 0 by
Lemma 4.3. Let us fix ε > 0 with

ε <
1

M(1+ ordW (q))
.

If we show that ordW (am)≥ αm(1+ ε) for every m ≥ 1, then

α = ordW (a•)≥ α(1+ ε),

a contradiction. We now argue as in the proof of Lemma 4.3. Let 0 ≤ ` ≤ m − 1
be such that the set in (10) is dense in W . We fix j0 ∈ I such that j0 ≡ ` (mod m),
and let C ′ := maxx∈W ordx(a j0). It follows from the inclusion a

p
m · a j0 ⊆ amp+ j0

and from (11) that for every p such that mp+ j0 ∈ I we have

p ·ordZmp+ j0
(am)≥ ordZmp+ j0

(amp+ j0)−ordZmp+ j0
(a j0)≥ ordW (amp+ j0)(1+ε)−C ′.

Therefore for every such p we have ordZmp+ j0
(am)≥αm(1+ε)−C ′/p. Since there

are arbitrarily large such p, and the union of the corresponding Zmp+ j0 is dense
in W , we conclude that ordW (am) ≥ αm(1+ ε). As we have seen, this leads to a
contradiction, and thus completes the proof of the theorem. �
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On unit root formulas for toric
exponential sums

Alan Adolphson and Steven Sperber

Starting from a classical generating series for Bessel functions due to Schlö-
milch, we use Dwork’s relative dual theory to broadly generalize unit-root results
of Dwork on Kloosterman sums and Sperber on hyperkloosterman sums. In
particular, we express the (unique) p-adic unit root of an arbitrary exponential
sum on the torus Tn in terms of special values of the p-adic analytic continuation
of a ratio of A-hypergeometric functions. In contrast with the earlier works, we
use noncohomological methods and obtain results that are valid for arbitrary
exponential sums without any hypothesis of nondegeneracy.

1. Introduction

The starting point for this work is the classical generating series

exp 1
2(3X −3/X)=

∑
i∈Z

Ji (3)X i

for the Bessel functions {Ji (3)}i∈Z due to Schlömilch [1857], which was the
foundation for his treatment of Bessel functions (see [Watson 1944, page 14]).
Suitably normalized, it also played a fundamental role in Dwork’s construction
[1974] of p-adic cohomology for J0(3). Our realization that the series itself
(suitably normalized) could be viewed as a distinguished element in Dwork’s
relative dual complex led us to the present generalization (which also generalizes
unit-root results of Sperber [1975] on hyperkloosterman sums).

Let A ⊆ Zn be a finite subset that spans Rn as real vector space and set

f3(X)=
∑
a∈A

3a Xa
∈ Z[{3a}a∈A][X±1

1 , . . . , X±1
n ],

where the 3a and the X i are indeterminates and where Xa
= Xa1

1 · · · X
an
n for

a = (a1, . . . , an). Let Fq be the finite field of q = pε elements, p a prime, and let

MSC2010: 11T23.
Keywords: exponential sums, A-hypergeometric functions.
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F̄q be its algebraic closure. For each λ̄= (λ̄a)a∈A ∈ (F̄q)
|A|, let

fλ̄(X)=
∑
a∈A

λ̄a Xa
∈ Fq(λ̄)[X±1

1 , . . . , X±1
n ],

a regular function on the n-torus Tn over Fq(λ̄). Fix a nontrivial additive character
2 : Fq →Qp(ζp) and let 2λ̄ be the additive character 2λ̄ =2 ◦TrFq (λ̄)/Fq

of the
field Fq(λ̄). For each positive integer l, let Fq(λ̄, l) denote the extension of degree l
of Fq(λ̄) and define an exponential sum

Sl = Sl( fλ̄,2λ̄,Tn)=
∑

x∈Tn(Fq (λ̄,l))

2λ̄ ◦TrFq (λ̄,l)/Fq (λ̄)
( fλ̄(x)).

The associated L-function is

L( fλ̄; T )= L( fλ̄,2λ̄,Tn
; T )= exp

( ∞∑
l=1

Sl
T l

l

)
.

It is well-known that L( fλ̄; T )∈Q(ζp)(T ) and that its reciprocal zeros and poles
are algebraic integers. We note that among these reciprocal zeros and poles there
must be at least one p-adic unit: if Fq(λ̄) has cardinality qκ , then Sl is the sum of
(qκl
− 1)n p-th roots of unity, so Sl itself is a p-adic unit for every l. On the other

hand, a simple consequence of the Dwork trace formula will imply (see Section 3)
that there is at most a single unit root, and it must occur amongst the reciprocal
zeros (as opposed to the reciprocal poles) of L( fλ̄; T )

(−1)n+1
. We denote this unit

root by u(λ̄). It is the goal of this work to exhibit an explicit p-adic analytic formula
for u(λ̄) in terms of certain A-hypergeometric functions.

Consider the series

exp f3(X)=
∏
a∈A

exp(3a Xa)=
∑
i∈Zn

Fi (3)X i (1.1)

where the Fi (3) lie in Q[[3]]. Explicitly, one has

Fi (3)=
∑

u=(ua)a∈A∑
a∈A uaa=i

3u∏
a∈A(ua!)

. (1.2)

The A-hypergeometric system with parameter α = (α1, . . . , αn) ∈ Cn (where
C denotes the complex numbers) is the system of partial differential equations
consisting of the operators

�` =

∏
`a>0

(
∂

∂3a

)̀
a

−

∏
`a<0

(
∂

∂3a

)−`a
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for all `= (`a)a∈A ∈ Z|A| satisfying
∑

a∈A `aa = 0 and the operators

Z j =
∑
a∈A

a j3a
∂

∂3a
−α j

for a = (a1, . . . , an) ∈ A and j = 1, . . . , n. Using Equations (1.1) and (1.2), it
is straightforward to check that for i ∈ Zn , Fi (3) satisfies the A-hypergeometric
system with parameter i .

Fix π satisfying π p−1
=−p and 2(1)≡ π (mod π2). It follows from (1.2) that

the Fi (π3) converge p-adically for all 3 satisfying |3a|< 1 for all a ∈ A. Let

F(3)= F0(π3)/F0(π3
p).

The main result of this paper is the following statement. Note that we make no
restriction (such as nondegeneracy) on the choice of λ̄ ∈ (F̄q)

|A|.

Theorem 1.3. The series F(3) converges p-adically for |3a| ≤ 1 for all a ∈ A
and the unit root of L( fλ̄; T ) is given by

u(λ̄)= F(λ)F(λp)F(λp2
) · · ·F(λpεd(λ̄)−1

),

where λ denotes the Teichmüller lifting of λ̄ and d(λ̄)= [Fq(λ̄) : Fq ].

Remark. Historically, expressing the unit root of a zeta- or L-function in terms
of special values of p-adic hypergeometric functions has been accomplished by
studying the action of Frobenius on the associated p-adic cohomology. Hypergeo-
metric functions arise because the variation of p-adic cohomology of a parametrized
family of varieties or of exponential sums is described by (p-adic) hypergeomet-
ric differential equations. A systematic listing of the correspondence between
such parametrized families and classical hypergeometric equations is given in the
appendix to [Dwork and Loeser 1993].

The first result of this type was Dwork’s formula [1969] for the unit root of
a nonsupersingular elliptic curve y2

= x(x − 1)(x − λ̄) in terms of the Gaussian
hypergeometric function F( 1

2 ,
1
2 , 1; λ). Later he established the corresponding

result for the unit root of the family of Kloosterman sums x+ λ̄/x using the p-adic
Bessel function [Dwork 1974]. Since then, a number of authors have proved similar
results.

We have systematically avoided the use of cohomology in this article. The
cohomology spaces associated to the exponential sums Sl( fλ̄,2λ̄,Tn) may not be
well behaved for all λ̄. In any case, it would require substantially more work to
describe the action of Frobenius on cohomology (although, of course, this would
give information about more than just the unit root).
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2. Analytic continuation

We begin by proving the analytic continuation of the function F defined in the
introduction.

Let C ⊆ Rn be the real cone generated by the elements of A and let 1⊆ Rn be
the convex hull of the set A∪{(0, . . . , 0)}. Put M = C ∩Zn . For ν ∈ M , define the
weight of ν, w(ν), to be the least nonnegative real (hence rational) number such
that ν ∈w(ν)1. There exists D ∈Z>0 such that w(ν)∈Q≥0∩Z[1/D]. The weight
function w is easily seen to have the following properties:

(i) w(ν)≥ 0, and w(ν)= 0 if and only if ν = 0.

(ii) w(cν)= cw(ν) for c ∈ Z≥0.

(iii) w(ν +µ) ≤ w(ν)+w(µ), with equality holding if and only if ν and µ are
cofacial, that is, lie in a cone over the same closed face of 1.

(iv) If dim1= n, let {`i }
N
i=1 be linear forms such that the codimension-one faces

of 1 not containing the origin lie in the hyperplanes {`i = 1}Ni=1. Then

w(ν)=max{`i (ν)}
N
i=1.

Let � be a finite extension of Qp containing π and an element π̃ satisfying
ord π̃ = (p− 1)/p2 (we always normalize the valuation so that ord p = 1). Put

R =
{
ξ(3)=

∑
ν∈(Z≥0)|A|

cν3ν
∣∣ cν ∈� and {|cν |}ν is bounded

}
,

R′ =
{
ξ(3)=

∑
ν∈(Z≥0)|A|

cν3ν
∣∣ cν ∈� and cν→ 0 as ν→∞

}
.

Equivalently, R is the ring of formal power series in {3a}a∈A that converge on the
open unit polydisk in �|A|, and R′ the ring of those that converge on the closed
unit polydisk. Define a norm on R by setting |ξ(3)| = supν{|cν |}. Both R and R′

are complete in this norm. Note that (1.2) implies that the coefficients Fi (π3) of
expπ f3(X) belong to R.

Let S be the set

S =
{
ξ(3, X)=

∑
µ∈M

ξµ(3)π̃
−w(µ)X−µ

∣∣ ξµ(3) ∈ R and {|ξµ(3)|}µ is bounded
}
.

Let S′ be defined analogously with R replaced by R′. Define a norm on S by setting

|ξ(3, X)| = supµ{|ξµ(3)|}.

Both S and S′ are complete under this norm.



On unit root formulas for toric exponential sums 577

Define θ(t)= exp(π(t − t p))=
∞∑

i=0
bi t i . By [Dwork 1962, Section 4a],

ord bi ≥
i(p− 1)

p2 . (2.1)

Let

F(3, X)=
∏
a∈A

θ(3a Xa)=
∑
µ∈M

Bµ(3)Xµ.

Lemma 2.2. One has Bµ(3) ∈ R′ and |Bµ(3)| ≤ |π̃ |w(µ).

Proof. From the definition,

Bµ(3)=
∑

ν∈(Z≥0)|A|

B(µ)ν 3ν,

where

B(µ)ν =

{∏
a∈A bνa if

∑
a∈A νaa = µ,

0 if
∑

a∈A νaa 6= µ.

It follows from (2.1) that B(µ)ν → 0 as ν→∞, which shows that Bµ(3) ∈ R′. We
have

ord B(µ)ν ≥

∑
a∈A

ord bνa ≥

∑
a∈A

νa(p− 1)
p2 ≥ w(µ)

p− 1
p2 ,

which implies |Bµ(3)| ≤ |π̃ |w(µ). �

By the proof of Lemma 2.2, we may write B(µ)ν = π̃
w(µ) B̃(µ)ν with |B̃(µ)ν | ≤ 1. We

may then write Bµ(3)= π̃w(µ) B̃µ(3) with B̃µ(3)=
∑

ν B̃(µ)ν 3ν and |B̃µ(3)| ≤ 1.
Let

ξ(3, X)=
∑
ν∈M

ξν(3)π̃
−w(ν)X−ν ∈ S.

We claim that the product F(3, X)ξ(3p, X p) is well-defined. Formally we have

F(3, X)ξ(3p, X p)=
∑
ρ∈Zn

ζρ(3)X−ρ,

where
ζρ(3)=

∑
µ,ν∈M

µ−pν=−ρ

π̃w(µ)−w(ν) B̃µ(3)ξν(3p). (2.3)

To prove convergence of this series, we need to show that w(µ)−w(ν)→∞ as
ν→∞. By property (iv) of the weight function, for a given ν ∈ M we may choose
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a linear form ` (depending on ν) for which w(ν)= `(ν) while w(µ)≥ `(µ). Since
µ= pν− ρ, we get

w(µ)−w(ν)≥ `(µ− ν)= `((p− 1)ν)− `(ρ)= (p− 1)w(ν)− `(ρ). (2.4)

As ν→∞, (p− 1)w(ν)→∞ while `(ρ) takes values in a finite set of rational
numbers (there are only finitely many possibilities for `). This gives the desired
result.

For a formal series
∑

ρ∈Zn ζρ(3)X−ρ with ζρ(3) ∈�[[3]], define

γ ′
( ∑
ρ∈Zn

ζρ(3)X−ρ
)
=

∑
ρ∈M

ζρ(3)X−ρ

and define for ξ(3, X) ∈ S

α∗(ξ(3, X))= γ ′(F(3, X)ξ(3p, X p))

=

∑
ρ∈M

ζρ(3)X−ρ .

For ρ ∈ M put ηρ(3)= π̃w(ρ)ζρ(3), so that

α∗(ξ(3, X))=
∑
ρ∈M

ηρ(3)π̃
−w(ρ)X−ρ (2.5)

with

ηρ(3)=
∑
µ,ν∈M
µ−pν=ρ

π̃w(ρ)+w(µ)−w(ν) B̃µ(3)ξν(3p). (2.6)

Since w(ρ)≥ `(ρ) for ρ ∈ M , (2.4) implies that

w(ρ)+w(µ)−w(ν)≥ (p− 1)w(ν), (2.7)

so by (2.6), |ηρ(3)| ≤ |ξ(3, X)| for all ρ ∈ M . This shows α∗(ξ(3, X)) ∈ S and

|α∗(ξ(3, X))| ≤ |ξ(3, X)|.

Furthermore, this argument also shows that α∗(S′)⊆ S′.

Lemma 2.8. If ξ0(3)= 0, then |α∗(ξ(3, X))| ≤ |π̃ |(p−1)/D
|ξ(3, X)|.

Proof. This follows immediately from (2.6) and (2.7) since w(ν)≥ 1/D for ν 6= 0.
�

From (2.6), we have

η0(3)=
∑
ν∈M

B̃pν(3)ξν(3
p)π̃ (p−1)w(ν). (2.9)
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Note that B̃0(3) = B0(3) ≡ 1 (mod π̃) since ord bi > 0 for all i > 0 implies
ord B(0)ν > 0 for all ν 6= 0. Thus B0(3) is an invertible element of R′. The following
lemma is then immediate from (2.9).

Lemma 2.10. If ξ0(3) is an invertible element of R (resp. R′), then so is η0(3).

Put
T = {ξ(3, X) ∈ S | |ξ(3, X)| ≤ 1 and ξ0(3)= 1}

and put T ′ = T ∩ S′. Using the notation of (2.5), define β : T → T by

β(ξ(3, X))=
α∗(ξ(3, X))
η0(3)

.

Note that β(T ′)⊆ T ′.

Proposition 2.11. The operator β is a contraction mapping on the complete metric
space T . More precisely, if ξ (1)(3, X), ξ (2)(3, X) ∈ T , then

|β(ξ (1)(3, X))−β(ξ (2)(3, X))| ≤ |π̃ |(p−1)/D
|ξ (1)(3, X)− ξ (2)(3, X)|.

Proof. We have (in the obvious notation)

β(ξ (1)(3, X))−β(ξ (2)(3, X))

=
α∗(ξ (1)(3, X))

η
(1)
0 (3)

−
α∗(ξ (2)(3, X))

η
(2)
0 (3)

=
α∗(ξ (1)(3, X)− ξ (2)(3, X))

η
(1)
0 (3)

−α∗(ξ (2)(3, X))
η
(1)
0 (3)− η

(2)
0 (3)

η
(1)
0 (3)η

(2)
0 (3)

.

Since η(1)0 (3)− η
(2)
0 (3) is the coefficient of X0 in α∗(ξ (1)(3, X)− ξ (2)(3, X)),

we have
|η
(1)
0 (3)− η

(2)
0 (3)| ≤ |α∗(ξ (1)(3, X)− ξ (2)(3, X))|.

And since the coefficient of X0 in ξ (1)(3, X)−ξ (2)(3, X) equals 0, the proposition
follows from Lemma 2.8. �

Remark. Proposition 2.11 implies that β has a unique fixed point in T . And since
β is stable on T ′, that fixed point must lie in T ′. Let ξ(3, X) ∈ T ′ be the unique
fixed point of β. The equation β(ξ(3, X))= ξ(3, X) is equivalent to the equation

α∗(ξ(3, X))= η0(3)ξ(3, X).

Since α∗ is stable on S′, it follows that

η0(3)ξµ(3) ∈ R′ for all µ ∈ M . (2.12)

In particular, since ξ0(3)= 1, we have η0(3) ∈ R′.
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Put C0 = C ∩ (−C), the largest subspace of Rn contained in C , and put M0 =

Zn
∩C0, a subgroup of M . For a formal series

∑
µ∈Zn cµ(3)Xµ with cµ(3)∈�[[3]]

we define

γ

( ∑
µ∈Zn

cµ(3)Xµ

)
=

∑
µ∈M0

cµ(3)Xµ

and set
ζ(3, X)= γ (exp(π f3(X))).

Of course, when the origin is an interior point of 1, then M0 = Zn and ζ(3, X)=
exp(π f3(X)). In any case, the coefficients of ζ(3, X) belong to R.

Since exp(π f3(X))=
∏

a∈A
exp(π3a Xa), we can expand this product to get

ζ(3, X)= γ
(∏

a∈A

∞∑
νa=0

(π3a Xa)νa

νa!

)
=

∑
µ∈M0

Gµ(3)π̃
−w(µ)X−µ,

where
Gµ(3)=

∑
ν∈(Z≥0)|A|

G(µ)
ν 3ν,

with

G(µ)
ν =


π̃w(µ)

∏
a∈A

πνa

νa!
if
∑
a∈A

νaa =−µ,

0 if
∑
a∈A

νaa 6= −µ.

Since ord π i/ i ! > 0 for all i > 0, it follows that Gµ(3) ∈ R, |Gµ(3)| ≤ |π̃ |
w(µ),

and G0(3) is invertible in R. This implies that ζ(3, X)/G0(3) ∈ T . Note also
that since F(3, X)= exp(π f3(X))/ exp(π f3p(X p)), it is straightforward to check
that

γ ′(F(3, X))= γ (F(3, X))= γ
(

expπ f3(X)
expπ f3p(X p)

)
=

ζ(3, X)
ζ(3p, X p)

.

It follows that if ξ(3, X) is a series satisfying γ (ξ(3, X)) ∈ S, then

α∗(γ (ξ(3, X)))= γ ′(F(3, X)γ (ξ(3p, X p)))= γ (F(3, X))γ (ξ(3p, X p))

=
ζ(3, X)γ (ξ(3p, X p))

ζ(3p, X p)
. (2.13)

Remark. In terms of the A-hypergeometric functions {Fi (3)}i∈M defined in (1.1),
we have exp(π f3(X))=

∑
i∈M Fi (π3)X i , so for i ∈ M0 we have the relation

Fi (π3)= π̃
−w(−i)G−i (3). (2.14)

Proposition 2.15. The unique fixed point of β is ζ(3, X)/G0(3).
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Proof. By (2.13), we have

α∗
(
ζ(3, X)
G0(3)

)
=

G0(3)

G0(3p)

ζ(3, X)
G0(3)

, (2.16)

which is equivalent to the assertion of the proposition. �

By the remark following Proposition 2.11, ζ(3, X)/G0(3) ∈ T ′. This gives the
following result.

Corollary 2.17. For all µ ∈ M0, Gµ(3)/G0(3) ∈ R′.

In the notation of the remark following Proposition 2.11, one has ξ(3, X) =
ζ(3, X)/G0(3) and η0(3) = G0(3)/G0(3

p), so (2.12) implies the following
result.

Corollary 2.18. For all µ ∈ M0, Gµ(3)/G0(3
p) ∈ R′.

In view of (2.14), this implies that the function F(3) = F0(π3)/F0(π3
p)

converges on the closed unit polydisk, which was the first assertion of Theorem 1.3.

3. p-adic theory

Fix λ̄= (λ̄a)a∈A ∈ (F̄q)
|A| and let λ= (λa)a∈A ∈ (Q̄p)

|A|, where λa is the Teichmüller
lifting of λ̄a . We recall Dwork’s description of L( fλ̄; T ). Let �0 =Qp(λ, ζp, π̃)

(=Qp(λ, π, π̃)) and let O0 be the ring of integers of �0.
We consider certain spaces of functions with support in M . We will assume

that �0 has been extended by a finite totally ramified extension so that there is an
element π̃0 in �0 satisfying π̃D

0 = π̃ . We shall write π̃w(ν) and mean by it π̃Dw(ν)
0

for ν ∈ M . Using this convention to simplify notation, we define

B =
{ ∑
ν∈M

Aνπ̃w(ν)Xν
∣∣ Aν ∈�0, Aν→ 0 as ν→∞

}
. (3.1)

Then B is an �0-algebra which is complete under the norm∣∣∣∣∑
ν∈M

Aνπ̃w(ν)Xν

∣∣∣∣= sup
ν∈M
|Aν |.

We construct a Frobenius map with arithmetic import in the usual way. Let

F(λ, X)=
∏
a∈A

θ(λa Xa)=
∑
µ∈M

Bµ(λ)Xµ,

i.e., F(λ, X) is the specialization of F(3, X) at 3 = λ, which is permissible by
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Lemma 2.2. Note also that Lemma 2.2 implies

ord Bµ(λ)≥
w(µ)(p− 1)

p2 ,

so we may write Bµ(λ)= π̃w(µ) B̃µ(λ) with B̃µ(λ) p-integral.
Let

9(Xµ)=

{
Xµ/p if p |µi for all i ,
0 otherwise.

We show that 9 ◦ F(λ, X) acts on B. If ξ =
∑

ν∈M Aνπ̃w(ν)Xν
∈ B, then

9

((∑
µ∈M

π̃w(µ) B̃µ(λ)Xµ

)(∑
ν∈M

Aνπ̃w(ν)Xν

))
=

∑
ω∈M

Cω(λ)π̃w(ω)Xω

where
Cω(λ)=

∑
ν

π̃w(pω−ν)+w(ν)−w(ω) B̃pω−ν(λ)Aν .

For any positive constant K there are only finitely many values of ν for which w(ν)
and w(pω− ν) are < K . This implies that the series Cω(λ) converges.

We have pw(ω)= w(pω)≤ w(pω− ν)+w(ν), so that

ord Cω(λ)≥ inf
ν
{ord π̃ (p−1)w(ω)Aν} =

(p− 1)2w(ω)
p2 + inf

ν
{ord Aν}. (3.2)

This implies that 9(F(λ, X)ξ) ∈ B.
Let d(λ̄)= [Fq(λ̄) : Fq ], so that λpεd(λ̄)

= λ. Put

αλ =9
εd(λ̄)
◦

( εd(λ̄)−1∏
i=0

F(λpi
, X pi

)

)
.

For any power series P(T ) in the variable T with constant term 1, define

P(T )δλ̄ = P(T )/P(pεd(λ̄)T ).

Then αλ is a completely continuous operator on B and the Dwork trace formula
[Dwork 1962; Serre 1962] gives

L( fλ̄,2λ̄,Tn
; T )(−1)n+1

= det(I − Tαλ|B)
δn
λ̄ . (3.3)

By Equation (3.2), the (ω, ν)-entry of the matrix of αλ [Serre 1962, Section 2] has
ord>0 unlessω=ν=0. The formula for det(I−Tαλ) [Serre 1962, Proposition 7a)]
then shows that this Fredholm determinant can have at most a single unit root. Since
L( fλ̄; T ) has at least one unit root (Section 1), it follows from (3.3) that L( fλ̄; T )
has exactly one unit root.
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4. Dual theory

It will be important to consider the trace formula in the dual theory as well. The
basis for this construction goes back to [Dwork 1964] and [Serre 1962]. We define

B∗ =
{
ξ∗ =

∑
µ∈M

A∗µπ̃
−w(µ)X−µ

∣∣ {A∗µ}µ∈M is a bounded subset of �0

}
,

a p-adic Banach space with the norm |ξ∗| = supµ∈M{|A
∗
µ|}. We define a pairing

〈 , 〉 : B∗× B→�0: if ξ =
∑

µ∈M Aµπ̃w(µ)Xµ, ξ∗ =
∑

µ∈M A∗µπ̃
−w(µ)X−µ, set

〈ξ∗, ξ〉 =
∑
µ∈M

AµA∗µ ∈�0.

The series on the right converges since Aµ→ 0 as µ→∞ and {A∗µ}µ∈M is bounded.
This pairing identifies B∗ with the dual space of B, i.e., the space of continuous
linear mappings from B to �0 [Serre 1962, Proposition 3].

Let 8 be the endomorphism of the space of formal series defined by

8

( ∑
µ∈Zn

cµX−µ
)
=

∑
µ∈Zn

cµX−pµ,

and let γ ′ be the endomorphism

γ ′
( ∑
µ∈Zn

cµX−µ
)
=

∑
µ∈M

cµX−µ.

Consider the formal composition α∗λ = γ
′
◦

( εd(λ̄)−1∏
i=0

F(λpi
, X pi

)
)
◦8εd(λ̄).

Proposition 4.1. The operator α∗λ is an endomorphism of B∗ which is adjoint to
αλ : B→ B.

Proof. As α∗λ is the composition of the operators γ ′ ◦ F(λpi
, X) ◦8 and αλ is the

composition of the operators9◦F(λpi
, X), i =0, . . . , εd(λ̄)−1, it suffices to check

that γ ′◦F(λ, X)◦8 is an endomorphism of B∗ adjoint to9◦F(λ, X) : B→ B. Let
ξ∗(X)=

∑
µ∈M A∗µπ̃

−w(µ)X−µ ∈ B∗. The proof that the product F(λ, X)ξ∗(X p)

is well-defined is analogous to the proof of convergence of the series (2.3). We have

γ ′(F(λ, X)ξ∗(X p))=
∑
ω∈M

Cω(λ)π̃−w(ω)X−ω,

where

Cω(λ)=
∑

µ−pν=−ω

B̃µ(λ)A∗νπ̃
w(ω)+w(µ)−w(ν). (4.2)

Note that
pw(ν)= w(pν)≤ w(ω)+w(µ)
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since pν = ω+µ. Thus

(p− 1)w(ν)≤ w(ω)+w(µ)−w(ν),

which implies that the series on the right-hand side of (4.2) converges and that
|Cω(λ)| ≤ |ξ∗| for all ω ∈ M . It follows that γ ′(F(λ, X)ξ∗(X p)) ∈ B∗. It is
straightforward to check that 〈8(X−µ), Xν

〉 = 〈X−µ, 9(Xν)〉 and that

〈γ ′(F(λ, X)X−µ), Xν
〉 = 〈X−µ, F(λ, X)Xν

〉

for all µ, ν ∈ M , which implies the maps are adjoint. �

By [Serre 1962, Proposition 15] we have det(I − Tα∗λ | B
∗)= det(I − Tαλ | B),

so (3.3) implies

L( fλ̄,2λ̄,Tn
; T )(−1)n+1

= det(I − Tα∗λ | B
∗)
δn
λ̄ . (4.3)

From Equations (2.14) and (2.16), we have

α∗
(
ζ(3, X)
G0(3)

)
= F(3)

ζ(3, X)
G0(3)

.

It follows by iteration that for m ≥ 0,

(α∗)m
(
ζ(3, X)
G0(3)

)
=

( m−1∏
i=0

F(3pi
)

)
ζ(3, X)
G0(3)

. (4.4)

We have
ζ(3, X)
G0(3)

=

∑
µ∈M0

Gµ(3)

G0(3)
π̃−w(µ)X−µ,

so by Corollary 2.17 we may evaluate at 3= λ to get an element of B∗:

ζ(3, X)
G0(3)

∣∣∣∣
3=λ

=

∑
µ∈M0

Gµ(3)

G0(3)

∣∣∣∣
3=λ

π̃−w(µ)X−µ ∈ B∗.

It is straightforward to check that the specialization of the left-hand side of (4.4)
with m = εd(λ̄) at 3 = λ is exactly α∗λ((ζ(3, X)/G0(3))|3=λ), so specializing
(4.4) with m = εd(λ̄) at 3= λ gives

α∗λ

(
ζ(3, X)
G0(3)

∣∣∣∣
3=λ

)
=

( εd(λ̄)−1∏
i=0

F(λpi
)

)
ζ(3, X)
G0(3)

∣∣∣∣
3=λ

. (4.5)

Equation (4.5) shows that
∏εd(λ̄)−1

i=0 F(λpi
) is a (unit) eigenvalue of α∗λ, hence by

(4.3) it is the unique unit eigenvalue of L( fλ̄; T ).
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Symmetries of the transfer operator
for

L
0(N) and a character deformation

of the Selberg zeta function for
L

0(4)
Markus Fraczek and Dieter Mayer

The transfer operator for 00(N ) and trivial character χ0 possesses a finite group
of symmetries generated by permutation matrices P with P2

= id. Every such
symmetry leads to a factorization of the Selberg zeta function in terms of Fred-
holm determinants of a reduced transfer operator. These symmetries are related
to the group of automorphisms in GL(2,Z) of the Maass wave forms of 00(N ).
For the group 00(4) and Selberg’s character χα there exists just one nontrivial
symmetry operator P . The eigenfunctions of the corresponding reduced transfer
operator with eigenvalue λ = ±1 are related to Maass forms that are even or
odd, respectively, under a corresponding automorphism. It then follows from a
result of Sarnak and Phillips that the zeros of the Selberg function determined by
the eigenvalue λ=−1 of the reduced transfer operator stay on the critical line
under deformation of the character. From numerical results we expect that, on
the other hand, all the zeros corresponding to the eigenvalue λ=+1 are off this
line for a nontrivial character χα .

1. Introduction

In the transfer operator approach to Selberg’s zeta function for a Fuchsian group
0 this function gets expressed in terms of the Fredholm determinant of a transfer
operator constructed from the symbolic dynamics of the geodesic flow on the cor-
responding surface of constant negative curvature. Though this approach has been
carried out, up to now, only for certain groups, like modular subgroups of finite
index [Chang and Mayer 2000; 2001a; 2001b] and Hecke triangle groups [Mayer
and Strömberg 2008; Mayer et al. 2012; Mayer and Mühlenbruch 2010], it has led
to new points of view on the Selberg zeta function [Zagier 2002] and the theory

This work was supported by the Deutsche Forschungsgemeinschaft through the DFG Research
Project “Maass wave forms and the transfer operator approach to the Phillips–Sarnak conjecture”
(Ma 633/18-1).
MSC2010: primary 11M36; secondary 35J05, 35B25, 37C30, 11F72, 11F03.
Keywords: transfer operator, Hecke congruence subgroups, Maass wave forms, character

deformation, factorization of the Selberg zeta function.
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of period functions [Lewis and Zagier 2001]. Another application of this method
is a precise numerical calculation of the Selberg zeta function [Strömberg 2008],
which seems to be impossible by other means at the moment.

In this paper we discuss the transfer operator approach to the Selberg zeta func-
tion for Hecke congruence subgroups with a character. Of special interest is the
behavior of its zeros for 00(4) under singular deformation by Selberg’s character
[Selberg 1990].

As found numerically in [Fraczek 2010], certain symmetries of the transfer
operator for these groups play an important role in this process. These symme-
tries lead to a factorization of the Selberg zeta function for the full modular group
SL(2,Z), as known. There it corresponds to the involution Ju(z)= u(−z∗) of the
Maass forms u for this group [Efrat 1993; Lewis and Zagier 2001]. Obviously the
corresponding element j =

( 1 0
0 −1

)
∈ GL(2,Z) generates the normalizer group of

SL(2,Z) in GL(2,Z). It tuns out also that the symmetries of the transfer operator
for 00(N ) correspond to automorphisms of the Maass forms from its normalizer
group in GL(2,Z).

For the group 00(4) with a character χα introduced in [Selberg 1990] and dis-
cussed also in [Phillips and Sarnak 1994], there is only one such nontrivial symme-
try of the transfer operator. It corresponds to the generator of 00(4)’s normalizer
group in GL(2,Z) leaving invariant the character χα. The results of Phillips and
Sarnak imply that the zeros on the critical line of one factor of Selberg’s func-
tion stay on this line under the deformation of the character, and hence the cor-
responding Maass wave forms for the trivial character remain Maass wave forms.
Numerical results [Fraczek 2010], on the other hand, imply that the zeros on the
critical line of the second factor of this function should all leave this line when
the deformation is turned on. A detailed discussion of these numerical results and
their partial proofs is in preparation [Bruggeman et al. 2012].

The paper is organized as follows: in Section 2 we recall briefly the form of the
transfer operator

Lβ,ρπ =

(
0 L+β,π

L−β,π 0

)

for a general finite index subgroup 0 of the modular group SL(2,Z) and unitary
representation π , and introduce the symmetries

P̃ =
(

0 P
P 0

)
of this operator defined by permutation matrices P . Any such symmetry leads to a
factorization of the Selberg zeta function in terms of the Fredholm determinants of
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the reduced transfer operator PL+β,π . The eigenfunctions with eigenvalues λ=±1
of this reduced transfer operator then fulfill certain functional equations.

In Section 3 we discuss the generators Jn,− of the group of automorphisms in
GL(2,Z) of the Maass forms u for 0 = 00(N ) and π = χ0 the trivial character.
We introduce their period functions ψ and derive a formula for the period function
Jn,−ψ of the Maass form Jn,−u.

In Section 4 we introduce Selberg’s character χα and the nontrivial automor-
phism J2,− of the Maass forms for 00(4). We derive again a formula for the
period function J2,−ψ of the Maass form J2,−u leading to a permutation matrix
P2,− which defines a symmetry P̃2,− of the transfer operator Lβ,ρχα . From this we
conclude that the eigenfunctions with eigenvalues λ=±1 of the operator P2,−L+β,π
correspond to Maass forms that are even or odd, respectively, under the involution
J2,−. Results of Phillips and Sarnak then imply that the zeros of the Selberg func-
tion on the critical line corresponding to the eigenfunctions with eigenvalue λ=−1
of this operator stay on this line under the deformation of the character.

2. The transfer operator and the Selberg zeta function
for Hecke congruence subgroups 00(N)

The starting point of the transfer operator approach to the Selberg zeta function for
a subgroup 0 of the modular group SL(2,Z) of index µ = [SL(2,Z) : 0] <∞

is the geodesic flow 8t : SM0 → SM0 on the unit tangent bundle SM0 of the
corresponding surface M0 = 0 \H of constant negative curvature. Here

H= {z = x + iy : y > 0}

denotes the hyperbolic plane with hyperbolic metric ds2
= (dx2

+ dy2)/y2, on
which the group 0 acts via Möbius transformations: gz = (az+b)/(cz+d) if g =(

a b
c d

)
. In the present paper we mostly work with the Hecke congruence subgroup

00(N )=
{

g ∈ SL(2,Z) : g =
(

a b
cN d

)}
,

with index µN = N
∏

p|N (1+1/p), where p is a prime number. If ρ :0→ end(Cd)

is a unitary representation of 0 then the Selberg zeta function Z0,ρ is defined as

Z0,ρ(β)=
∏
γ

∞∏
k=0

det
(
1− ρ(gγ ) exp(−(k+β)lγ )

)
, (2.0.1)

where lγ denotes the period of the prime periodic orbit γ of 8t and gγ ∈ 0 is
hyperbolic with gγ (γ ) = γ . In the dynamical approach to this function it gets
expressed in terms of the so-called transfer operator, well-known from D. Ruelle’s
thermodynamic formalism approach to dynamical systems. For general modular
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groups 0 with finite index µ and finite-dimensional representation π this operator
Lβ,π : B→ B was determined in [Chang and Mayer 2000; 2001b] as

Lβ,π =

(
0 L+β,ρπ

L−β,ρπ 0

)
, (2.0.2)

where B = B(D,Cµ)
⊕

B(D,Cµ) is the Banach space of holomorphic functions
on the disc D = {z : |z− 1| < 3

2}, and ρπ denotes the representation of SL(2,Z)

induced from the representation π of 0. The operator L±β,ρπ is given for Reβ > 1
2

by

(L±β,ρπ f )(z)=
∞∑

n=1

1
(z+ n)2β

ρπ (ST±n) f
( 1

z+n

)
, (2.0.3)

where S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
. In the following we restrict ourselves to one-

dimensional unitary representations π , hence unitary characters, which we denote
as usual by χ . In this case the following theorem was proved in [Chang and Mayer
2001b].

Theorem 2.0.1. The transfer operator Lβ,χ : B→ B with

Lβ,χ =

(
0 L+β,χ

L−β,χ 0

)
and (L±β,χ f )(z)=

∞∑
n=1

1
(z+ n)2β

ρχ (ST±n) f
( 1

z+n

)
extends to a meromorphic family of nuclear operators of order zero in the entire
complex β plane with possible poles at βk = (1 − k)/2, k = 0, 1, 2, . . . . The
Selberg zeta function Z0,χ for modular group 0 and character χ can be expressed
as Z0,χ (β)= det(1−Lβ,χ )= det(1−L+β,χL−β,χ )= det(1−L−β,χL+β,χ ).

This shows that the zeros of the Selberg function are given by those β-values
for which λ= 1 belongs to the spectrum σ(Lβ,χ ), or equivalently to the spectrum
σ(L−β,χL+β,χ )= σ(L

+

β,χL−β,χ ). From Selberg’s trace formula one knows that there
are two kinds of such zeros: the trivial zeros at β = −k, k = 1, 2, . . . , and the
so-called spectral zeros. The former correspond to eigenvalues λ= β(1−β) of the
automorphic Laplacian with Reβ = 1

2 or 1
2 ≤ β ≤ 1, and the latter to resonances

of the Laplacian, that is, poles of the scattering determinant with Reβ < 1
2 and

Imβ > 0 [Hejhal 1983; Venkov 1990]. For arithmetic groups like the congruence
subgroups with trivial or congruent character χ one knows that these resonances
lie on the line Reβ = 1

4 , corresponding to the nontrivial zeros ζR(2β) = 0 of
the Riemann zeta function ζR in the trivial case and to the zeros L(2β, χα) = 0
of other Dirichlet L-functions in the congruent case, assuming the generalized
Riemann hypothesis, as well as on the line Reβ = 0. For general Fuchsian groups
and congruence subgroups with noncongruent character, however, these resonances
can be anywhere in the half-plane Reβ < 1

2 .
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2.1. Symmetries of the transfer operator for 00(N). It turns out that there exists
for any N a finite number hN of µN ×µN permutation matrices P with P2

= idµN

such that the matrix

P̃ =
(

0 P
P 0

)
commutes with the transfer operator Lβ,χ and hence

PL+β,χ = L−β,χ P. (2.1.1)

Thereby P = (Pi j )1≤i, j≤µN acts in the Banach space B(D,CµN ) as (P f )i (z) =∑µN
j=1 Pi j f j (z) if f (z)= ( fi (z))1≤i≤µN . We call such a matrix P̃ a symmetry of the

transfer operator. As an example consider the group 00(4) and Selberg’s character
χα, 0 ≤ α ≤ 1, which will be described later. Its transfer operator Lβ,χα has the
following form:

Lβ,χα f̃+1=

∞∑
q=0

f−3
∣∣
2β S̃T 1+4q

+ f−4
∣∣
2β S̃T 2+4q

+ f−5
∣∣
2β S̃T 3+4q

+ f−2
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+2 =

∞∑
q=0

e2π i(1+4q)α f−1
∣∣
2β S̃T 1+4q

+ e2π i(2+4q)α f−1
∣∣
2β S̃T 2+4q

+e2π i(3+4q)α f−1
∣∣
2β S̃T 3+4q

+ e2π i(4+4q)α f−1
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+3 =

∞∑
q=0

e−2π iα f−2
∣∣
2β S̃T 1+4q

+ e−2π iα f−3
∣∣
2β S̃T 2+4q

+e−2π iα f−4
∣∣
2β S̃T 3+4q

+ e−2π iα f−5
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+4 =

∞∑
q=0

e−2π iα(1+4q) f−6
∣∣
2β S̃T 1+4q

+ e−2π iα(2+4q) f−6
∣∣
2β S̃T 2+4q

+e−2π iα(3+4q) f−6
∣∣
2β S̃T 3+4q

+ e−2π iα(4+4q) f−6
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+5 =

∞∑
q=0

e2π iα f−4
∣∣
2β S̃T 1+4q

+ e2π iα f−5
∣∣
2β S̃T 2+4q

+e2π iα f−2
∣∣
2β S̃T 3+4q

+ e2π iα f−3
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+6=

∞∑
q=0

f−5
∣∣
2β S̃T 1+4q

+ f−2
∣∣
2β S̃T 2+4q

+ f−3
∣∣
2β S̃T 3+4q

+ f−4
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−1=

∞∑
q=0

f+5
∣∣
2β S̃T 1+4q

+ f+4
∣∣
2β S̃T 2+4q

+ f+3
∣∣
2β S̃T 3+4q

+ f+2
∣∣
2β S̃T 4+4q ,
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Lβ,χα f̃−2 =

∞∑
q=0

e−2π iα(1+4q) f+1
∣∣
2β S̃T 1+4q

+ e−2π iα(2+4q) f+1
∣∣
2β S̃T 2+4q

+e−2π iα(3+4q) f+1
∣∣
2β S̃T 3+4q

+ e−2π iα(4+4q) f+1
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−3 =

∞∑
q=0

e−2π iα f+4
∣∣
2β S̃T 1+4q

+ e−2π iα f+3
∣∣
2β S̃T 2+4q

+e−2π iα f+2
∣∣
2β S̃T 3+4q

+ e−2π iα f+5
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−4 =

∞∑
q=0

e2π iα(1+4q) f+6
∣∣
2β S̃T 1+4q

+ e2π iα(2+4q) f+6
∣∣
2β S̃T 2+4q

+e2π iα(3+4q) f+6
∣∣
2β S̃T 3+4q

+ e2π iα(4+4q) f+6
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−5 =

∞∑
q=0

e2π iα f+2
∣∣
2β S̃T 1+4q

+ e2π iα f+5
∣∣
2β S̃T 2+4q

+e2π iα f+4
∣∣
2β S̃T 3+4q

+ e2π iα f+3
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−6=

∞∑
q=0

f+3
∣∣
2β S̃T 1+4q

+ f+2
∣∣
2β S̃T 2+4q

+ f+5
∣∣
2β S̃T 3+4q

+ f+4
∣∣
2β S̃T 4+4q ,

where f̃ ∈ B(D,Cµ)
⊕

B(D,Cµ) is given by f̃ = ( f +, f −), f ± = ( f±i )1≤i≤6,
and S̃z = 1/z. The induced representation ρχα of the character χα on 00(4) is
defined in terms of the coset decomposition of SL(2,Z)

SL(2,Z)=

6⋃
i=1

00(4)Ri (2.1.2)

as
ρχ (g)i j = δ00(4)(Ri gR−1

j )χα(Ri gR−1
j ), 1≤ i, j ≤ 6. (2.1.3)

Thereby we have chosen the following representatives Ri ∈ SL(2,Z) of the cosets
00(4)Ri

R1 = id2, Ri = ST i−2, 2≤ i ≤ 5, and R6 = ST 2S. (2.1.4)

It turns out that the two permutation matrices P1 and P2 corresponding to the
permutations

σ1 =
1 2 3 4 5 6
1 2 5 4 3 6

(2.1.5)

and

σ2 =
1 2 3 4 5 6
6 4 3 2 5 1

(2.1.6)
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fulfill (2.1.1) for α= 0 and hence the corresponding matrices P̃i , i = 1, 2, commute
with the transfer operator Lβ,χ0 where χ0 is the trivial character. The matrix P̃2,
on the other hand, commutes even with the operator Lβ,χα for all α. The matrix
ρχ0(S) is given by the permutation σS where

σS =
1 2 3 4 5 6
2 1 5 6 3 4

, (2.1.7)

and an easy calculation shows that Piρχ0(S) = ρχ0(S)Pi , i = 1, 2. The matrix
ρχ0(T ), on the other hand, is given by the permutation σT with

σT =
1 2 3 4 5 6
1 3 4 5 2 6

. (2.1.8)

One then checks that Piρχ0(T )= ρχ0(T
−1)Pi , i = 1, 2. Therefore Piρχ0(ST n)=

ρχ0(ST−n)Pi for all n ∈ N and i = 1, 2. For the character χα analogous relations
hold for P2.

For the trivial character χ0 one can determine for the group 00(N ) the number
hN of matrices Pi with the above properties and hence the defining symmetries of
the transfer operator as follows:

Theorem 2.1.1. For the Hecke congruence subgroup 00(N ) and trivial character
χ0 ≡ 1 there exist hN matrices P̃ =

(
0 P
P 0

)
commuting with the transfer operator

Lβ,χ0 where P is a µN ×µN permutation matrix satisfying P2
= 1µN ,

Pρχ0(S)= ρχ0(S)P and Pρχ0(T )= ρχ0(T
−1)P,

and hence
PL+β,χ0

= L−β,χ0
P.

Thereby hN =max{k : k|24 and k2
|N }. The permutation matrices P are determined

by the hN generators j of the normalizer group NN of 00(N ) in GL(2,Z). The
Selberg zeta function Z0,χ0 can be written as

Z0,χ0 = det(1− PL+β,χ0
) det(1+ PL+β,χ0

).

Remark 2.1.2. For 00(4), obviously hN = 2. According to Theorem 2.1.1, there
exist two permutation matrices P1 and P2 given by the permutations σ1 and σ2

above. Since P1 P2 = P2 P1 and Pi L
+

β,χ0
= L−β,χ0

Pi , i = 1, 2, we find

P1 P2 P1L+β,χ0
= P1 P2L−β,χ0

P1 = P1L+β,χ0
P2 P1 = P1L+β,χ0

P1 P2,

and the operators P1 P2 and P1L+β,χ0
commute, where the operator P1 P2 corre-

sponds to the permutation

σ =
1 2 3 4 5 6
6 4 5 2 3 1

. (2.1.9)
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We find also P1 P2L+β,χ0
= L+β,χ0

P1 P2. But (P1 P2)
2
= id6, hence this operator

has only the eigenvalues λ=±1 and the Banach space B(D,C6) decomposes as
B(D,C6)= B(D,C6)+⊕ B(D,C6)− with P1 P2 f ± =± f ± for f ± ∈ B(D,C6)±.
Therefore the elements f ε ∈ B(D,C6)ε , ε =± have the form ( f ε)i = fi , 1≤ i ≤ 3
and ( f ε)σ(i) = ε fi , 1≤ i ≤ 3. Denote by

L+β,χ0,±
: B(D,C6)±→ B(D,C6)± and P1L+β,χ0,±

: B(D,C6)±→ B(D,C6)±,

the restrictions of the operators L+β,χ0
and P1L+β,χ0

, respectively, to the subspace
B(D,C6)±, which obviously is isomorphic to the space B(D,C3). Then

det(1± P1L+β,χ0
)= det(1± P1L+β,χ0,+

) det(1± P1L+β,χ0,−
),

where the operator P1L+β,χ0,ε
: B(D,C3)→ B(D,C3) can be written as

P1L+β,χ0,ε
=

 0 εLβ,2+Lβ,4 εLβ,1+Lβ,3

Lβ 0 0
0 Lβ,1+εLβ,3 εLβ,2+Lβ,4

 , (2.1.10)

with Lβ,k f =
∑
∞

q=0 f
∣∣
2β S̃T 1+kq , 1≤ k ≤ 4, and Lβ =

∑4
k=1 Lβ,k . The operator

L+β,χ0,ε
in the space B(D,C3), on the other hand, has the form

L+β,χ0,ε
=

 0 εLβ,2+Lβ,4 εLβ,1+Lβ,3

Lβ 0 0
0 εLβ,1+Lβ,3 Lβ,2+εLβ,4

 . (2.1.11)

To relate the Fredholm determinants of the operators (P1L+β,χ0,ε
)2 and (L+β,χ0,ε

)2

we use the following simple lemma:

Lemma 2.1.3. Let α, β, and γ be complex numbers and ε = ±1. Then λ is an
eigenvalue of the matrix

L1 =

0 α β

γ 0 0
0 β εα


if and only if ελ is an eigenvalue of the matrix

L2 =

0 α β

γ 0 0
0 εβ α

 .
Proof. The proof follows from comparing the characteristic polynomials of the two
matrices. �

This shows that, for all n ∈ N,

trace Ln
1 =

3∑
k=1

(Ln
1)k,k = ε

n trace Ln
2 = ε

n
3∑

k=1

(Ln
2)k,k .
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But then is not too difficult to see that also trace(L+β,χ0,ε
)n = εn trace(P1L+β,χ0,ε

)n

for all n ∈ N and hence det(1− (P1L+β,χ0,ε
)2) = det(1− (L+β,χ0,ε

)2) for ε = ±.
Therefore the Selberg zeta function Z00(4),χ0(β) for the group 00(4) with trivial
character χ0 can be written as

Z00(4),χ0(β)= det(1− (P1L+β,χ0
)2)= det(1− (L+β,χ0

)2)

= det(1−L+β,χ0
) det(1+L+β,χ0

). (2.1.12)

Furthermore, this function factorizes in this case also as

Z00(4),χ0(β)= det(1− P1L+β,χ0,+
) det(1− P1L+β,χ0,−

)

× det(1+ P1L+β,χ0,+
) det(1+ P1L+β,χ0−

). (2.1.13)

To prove Theorem 2.1.1 we relate the matrices P to the generating automor-
phisms in GL(2,Z) of the Maass wave forms for 00(N ). We can determine this
way the explicit form of these matrices P . For this we derive, in a first step, a
Lewis-type functional equation for the eigenfunctions of the operator PL+β,χ with
eigenvalues λ=±1.

2.2. A Lewis-type functional equation. Consider any finite index modular sub-
group 0 and any unitary character χ : 0→ C?, together with the induced repre-
sentation ρχ of SL(2,Z). Assume there exists a symmetry P̃ =

(
0 P
P 0

)
, with P a

permutation matrix with properties analogous to Theorem 2.1.1, and commuting
with the transfer operator

Lβ,χ =

(
0 L+β,ρχ

L−β,ρχ 0

)
of 0. If f is an eigenfunction of the operator PL+β,χ with eigenvalues λ=±1 then
one can show:

Proposition 2.2.1. If PL+β,χ f (ζ )= λ f (ζ ) with λ=±1 then the function 9(ζ) :=
Pρχ (T−1S)P f (ζ − 1) fulfills the functional equations

9(ζ)= λζ−2β Pρχ (S)9
(1
ζ

)
(2.2.1)

and

9(ζ)− ρχ (T−1)9(ζ + 1)− (ζ + 1)−2βρχ (T ′−1)9
(
ζ

ζ+1

)
= 0, (2.2.2)

where T ′ = ST−1S. On the other hand, every solution 9 of (2.2.1) and (2.2.2)
holomorphic in the cut β-plane (−∞, 0] satisfying 9i (z) = o(z−min{1,2 Re s}) as
z ↓ 0 and 9i (z) = o(z−min{0,2 Re s−1}) as z→∞ determines an eigenfunction f
with eigenvalues λ=±1 of the operator PL+β,χ .
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Proof. Let Reβ > 1
2 . If PL+β f (ζ )= λ f (ζ ), λ=±1, then obviously

Pρχ (STS)PPL+β f (ζ + 1)= λPρχ (STS)P f (ζ + 1).

Subtracting the two equations leads to

λ f (ζ )− λPρχ (STS)P f (ζ + 1)− (ζ + 1)−2β Pρχ (ST ) f
( 1
ζ+1

)
= 0,

and hence the function ψ(ζ ) := P f (ζ − 1) fulfills the equation

ψ(ζ )− ρχ (STS)ψ(ζ + 1)− λζ−2βρχ (ST )Pψ
(
ζ+1
ζ

)
= 0. (2.2.3)

Replacing ζ by 1
ζ

and multiplying the resulting equation by ζ−2βρχ(STS)Pρχ(T−1S)
gives

ζ−2βρχ (STS)Pρχ (T−1S)ψ
(1
ζ

)
− ζ−2βρχ (STS)Pρχ (S)ψ

(
ζ+1
ζ

)
− λρχ (STS)ψ(ζ + 1)= 0.

Since ρχ (S)P = Pρχ (S), one finds, comparing with (2.2.3),

ψ(ζ )= λζ−2βρχ (STS)Pρχ (T−1S)ψ
(1
ζ

)
.

Hence the function ψ̃ := ρχ (T−1S)ψ fulfills (2.2.1). The same equation is then
fulfilled also by the function

9(ζ) := Pψ̃(ζ )= Pρχ (T−1S)P f (ζ − 1), (2.2.4)

that is,

9(ζ)= λζ−2β Pρχ (S)9
(1
ζ

)
. (2.2.5)

Inserting finally ψ(ζ )= ρχ (ST )P9(ζ) into (2.2.3) and using (2.2.1) leads to

9(ζ)− Pρχ (T )P9(ζ + 1)− (ζ + 1)−2β Pρχ (T ′)P9
(
ζ

ζ+1

)
= 0.

But by assumption Pρχ (T )P = ρχ (T−1); hence Pρχ (T ′)P = ρχ (T ′−1) and thus

9(ζ)− ρχ (T−1)9(ζ + 1)− (ζ + 1)−2βρχ (T ′−1)9
(
ζ

ζ+1

)
= 0. (2.2.6)

Hence for Reβ > 1
2 the first part of the proposition holds. By analytic continuation

in β one proves the general case.
To prove the second part we follow the arguments of [Deitmar and Hilgert 2007,

Lemma 4.1]: if 9(ζ) is a solution of the Lewis equation (2.2.2) with β /∈ Z then
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9 has the asymptotic expansions

9(ζ)∼ζ→0 ζ
2βQ0

(1
ζ

)
+

∞∑
l=−1

C∗lζ
l, 9(ζ )∼ζ→∞ Q∞(ζ )+

∞∑
l=−1

C∗′l ζ
−l−2β,

where Q0, Q∞ :C→Cµ are smooth functions such that Q0(ζ+1)= ρχ (T ′)Q0(ζ )

and Q∞(ζ+1)=ρχ (T )Q∞(ζ ), and the constants C∗l and C∗′l are determined by the
Taylor coefficients C m = (1/m!)9(m)(1). The functions Q0 and Q∞ are defined
as follows for general β with −2 Reβ < M ∈ N:

Q0(ζ ) := ζ
−2β9

(1
ζ

)
−

M∑
m=0

ζρχ (m+ 2β, z)C m

−

∞∑
n=0

(n+ ζ )−2βρχ (T ′−nT−1)

(
9
(

1+ 1
n+ζ

)
−

M∑
m=0

C m

(n+ ζ )m

)
,

Q∞(ζ ) :=9(ζ)−
M∑

m=0

ζ ′ρχ (m+ 2β, ζ + 1)C m

−

∞∑
n=0

(n+ ζ )−2βρχ (T−(n−1)T ′−1)

(
9
(

1− 1
n+ζ

)
−

M∑
m=0

C m

(n+ ζ )m

)
,

where

ζρχ (a, ζ )=
1

N a

N−1∑
k=0

ρχ (T ′−k T−1)ζ
(

a, k+ζ
N

)
and

ζ ′ρχ (a, ζ )=
1

N a

N−1∑
k=0

ρχ (T−k T ′−1)ζH

(
a, k+ζ

N

)
,

with ζH (a, ζ ) the Hurwitz zeta function. According to [Deitmar and Hilgert 2007,
Remark 4.2] any solution 9 of (2.2.2) with 9(ζ)= o(ζ−min{1,2β}) for ζ→ 0 fulfills
the equation

9(ζ)= ζ−2β
∞∑

n=0

(n+ ζ−1)−2βρχ (T ′−nT−1)9

(
1+

1
n+ ζ−1

)
and moreover C∗

−1 = 0. But if 9(ζ) fulfills also (2.2.1) then one finds

λζ−2β Pρχ (S)9
(1
ζ

)
= ζ−2β

∞∑
n=0

(n+ ζ−1)−2βρχ (T ′−nT−1)9

(
1+

1
n+ ζ−1

)
,
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and hence

λPρχ (S)9(ζ + 1)=
∞∑

n=1

(n+ ζ )−2βρχ (T ′−(n−1)T−1)9
(

1+ 1
n+ζ

)
. (2.2.7)

According to (2.2.4) 9(ζ + 1)= Pρχ (T−1S)P f (ζ ), and hence we get

λρχ (ST−1S)P f (ζ )=
∞∑

n=1

(n+ ζ )−2βρχ (T ′−(n−1)T−1)Pρχ (T−1S)P f
( 1
ζ+n

)
.

Inserting T ′−(n−1)
= ST (n−1)S one arrives at

λ f (ζ )=
∞∑

n=1

(n+ ζ )−2β Pρχ (ST n)ρχ (ST−1)Pρχ (T−1S)P f
( 1
ζ+n

)
.

Since ρχ (ST−1)P = Pρχ (ST ) we get finally

λ f (ζ )=
∞∑

n=1

1
(n+ ζ )2β

Pρχ (ST n) f
( 1

n+ζ

)
.

Hence any solution 9 of the Lewis equations (2.2.1) and (2.2.2) with the asymp-
totics at the cut ζ = 0 determines an eigenfunction f of the transfer operator PL+β,χ
with eigenvalues λ=±1. �

3. Automorphism of the Maass forms and their period functions for 00(N)

The Maass forms u = u(z) of a cofinite Fuchsian group 0 and unitary character χ
are real analytic functions u : H→ C with

• 1u(z)= λu(z),

• u(gz)= χ(g)u(z) for all g ∈ 0, and

• u(g j z)=O(yC) as y→∞ for some constant C ∈R and all cusps z j = g j (i∞)
of 0.

The cusp forms are those forms which decay exponentially fast at the cusps. If
u ∈ L2(M0) we call u a Maass wave form.

Definition 3.0.1. An element j ∈ GL(2,Z) defines an automorphism J of the
Maass wave form u for the group 0 and character χ if Ju with Ju(z) := u( j z) is
a Maass form for 0 and character χ .

Obviously j defines an automorphism J if and only if j is a normalizer of the
group 0 and the character χ is invariant under j , that is, χ( jg j−1) = χ(g) for
all g ∈ 0. Thereby j z = (az∗ + b)/(cz∗ + d) if det g = ad − bd = −1. We
have to show that the function Ju(z) = u( j z) has at most polynomial growth



Symmetries of the transfer operator and a character deformation 599

at the cusps zi = τi (i∞) of 0, where τi ∈ SL(2,Z). If det j = −1, one has
u( jτi (z))= u( jτi j0,− j0,−(z)) where j0,− =

(
1 0
0 −1

)
. Then jτi j0,− ∈ SL(2,Z) and

hence jτi j0,− = γi Ri for some γi ∈ 0 and some representative Ri of the cosets
0 \ SL(2,Z). But Ri = ητσ(i) for some η ∈ 0 and some index σ(i). Hence
u( jτi (z))= u(τσ(i)(−z∗)) which has at most polynomial growth at the cusps. The
same argument applies if det j = 1, and it shows also that Ju is a Maass wave form
or a cusp form if u is one.

3.1. The group of automorphisms of Maass forms for 00(N) and trivial charac-
ter χ0. We restrict ourselves now to the case 0 = 00(N ) and assume χ = χ0. De-
note by NN the normalizer group {00(N ) j : j normalizer of 00(N ) in GL(2,Z)}.
Using results of [Lehner and Newman 1964; Conway and Norton 1979], we find:

Proposition 3.1.1. For hN =max{r : r |24 and r2
|N } and kN := N/hN the normal-

izer group NN is given by

NN =

{
00(N ) jn,±, jn,± =

(
1 0

nkN ±1

)
, 0≤ n ≤ hN − 1

}
.

Proof. Using the fact that the divisors k of 24 are exactly the numbers for which
a ·d = 1 mod k implies a= d mod k one shows that the normalizer group of 00(N )
in SL(2,Z) is 00(N )\00(N/ν) [Lehner and Newman 1964] with ν = 2min{3,[ε2/2]} ·

3min{1,[ε3/2]}, ε2 = max{l : 2l
|N }, and ε3 = max{l : 3l

|N }. But obviously ν = hN

and [00(kN ) : 00(N )] = hN and hence NN = 00(N ) \
(
00(kN )

⋃
00(kN ) j0,−

)
.

Since jn,± 6= jm,± mod 00(N ) for n 6= m, this group has just the 2hN elements
00(N ) jn,±, 0≤ n ≤ hN − 1. The normalizer group NN is therefore generated by
the hN generators {00(N ) jn,−, 0≤ n ≤ hN − 1}. �

3.2. The period functions of 00(N) and character χ . For u a Maass form with
1u = β(1−β)u and 00(N )\SL(2,Z)= {00(N )Ri , 1≤ i ≤µN } its vector-valued
period function u is defined by

u = (ui (z))1≤i≤µN where ui (z)= u(Ri z). (3.2.1)

Then one has, as shown for instance in [Mühlenbruch 2006]:

• u(gz)= ρχ (g)u(z) for all g ∈ SL(2,Z) and ρχ the representation of SL(2,Z)

induced from the character χ on 00(N ) and

• 1ui (z)= β(1−β)ui (z), 1≤ i ≤ µN .

Given two eigenfunctions u = u(z) and v = v(z) of the hyperbolic Laplacian with
identical eigenvalue λ = β(1− β), one knows [Lewis and Zagier 2001] that the
1-form η = η(u, v), with

η(u, v)(z) :=
[
v(z)∂yu(z)− u(z)∂yv(z)

]
dx +

[
u(z)∂xv(z)− v(z)∂x u(z)

]
dy
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is closed. If u= u(z) is a Maass wave form for 00(N ) with eigenvalue λ=β(1−β)
and Rζ (z)= y/((ζ − x)2+ y2) denotes the Poisson kernel, the vector-valued period
function ψ = (ψ j (ζ ))1≤ j≤µN is defined as

ψ j (ζ ) :=

∫
∞

0
η(u j , Rβζ )(z). (3.2.2)

The following result has been shown for trivial character χ0 in [Mühlenbruch 2006].
That proof can be extended, however, immediately to the case of a nontrivial char-
acter χ .

Proposition 3.2.1. The period function ψ = ψ(ζ ) of a Maass wave form u = u(z)
for 00(N ) and unitary character χ is holomorphic in the cut ζ -plane C \ (−∞, 0]
and fulfills there the Lewis functional equation (2.2.2):

ψ(ζ )− ρχ (T−1)ψ(ζ + 1)− (ζ + 1)−2βρχ (T ′−1)ψ
(
ζ

ζ+1

)
= 0,

where ρχ denotes the representation of SL(2,Z) induced from the character χ of
00(N ).

On the other hand, it follows from [Deitmar and Hilgert 2007] that the solutions
of the above equation holomorphic in the cut ζ -plane with certain asymptotic be-
havior at the cut 0 and at∞ are in one-to-one correspondence with the Maass wave
forms. That paper treats only the trivial character but it can be extended also to the
case of the nontrivial character χ . Since the function9(ζ)= Pρχ (T−1S)P f (ζ−1)
with f an eigenfunction of the operator PL+β,χ with eigenvalues λ=±1 is such
a solution of (2.2.2), these eigenfunctions are in one-to-one correspondence with
the Maass wave forms. As in the case of the full modular group SL(2,Z) treated
in [Chang and Mayer 1998; Lewis and Zagier 2001] one can extend this result to
arbitrary Maass forms, that is, also to the real analytic Eisenstein series for 00(N )
and unitary character χ .

3.3. Automorphisms of the period functions. We have seen that the group of au-
tomorphisms in GL(2,Z) of the Maass forms u of 00(N ) and trivial character χ0

is generated by the matrices

jn,− =
(

1 0
nkN −1

)
, 0≤ n ≤ µN − 1.

Denote by Jn,−u the Maass form Jn,−u(z) := u( jn,−z) and by Jn,−ψ its period
function. Then one shows

Theorem 3.3.1. The period function Jn,−ψ = (Jn,−ψ j (ζ ))1≤ j≤µN is given by

Jn,−ψ j (ζ )= ζ
−2βψλn−◦σ◦δ( j)

(1
ζ

)
, (3.3.1)
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where the permutations λn−, σ and δ are determined through the coset representa-
tives R j of 00(N ) \SL(2,Z) as follows:

jn,+R j = θ j Rλn,−( j), j0,−R j j0,− = γ j Rσ( j), and R j S = η j Rδ( j),

with θ j , γ j , η j ∈ 00(N ) for 1≤ j ≤ µN .

Proof. For u = u(z) a Maass form for 00(N ) and trivial character χ0 and u = u(z)
its vector-valued Maass form consider the Maass forms Jn,±u(z)= u( jn,±z) and
Jn,±u(z) = (Jn,±u j (z))1≤ j≤µN , with Jn,±u j (z) = u( jn,±R j z). Since jn,+R j =

θ j Rλn.−( j) for some unique θ j ∈ 00(N ) and permutation λn,− of {1, 2, . . . , µN }

one gets for Jn,+u j

Jn,+u j (z)= u(Rλn,−( j)z)= uλn,−( j)(z). (3.3.2)

For Jn,+u j (−z∗) = u( jn,+R j (−z∗)) = u( jn,+R j j0,−z), on the other hand, one
finds

Jn,+u j (−z∗)= u( jn,− j0,−R j j0,−z)= u( jn,−Rσ( j)z),

since j0,−R j j0,− = γ j Rσ( j) for some unique γ j ∈ 00(N ) and permutation σ of
{1, 2, . . . , µN }. Hence

Jn,+u j (−z∗)= Jn,−uσ( j)(z). (3.3.3)

Consider next Jn,+u j (Sz) = Jn,+u(R j Sz). Since R j S = η j Rδ( j) for unique η j ∈

00(N ) and permutation δ of {1, 2, . . . , µN }, one has

Jn,+u j (Sz)= Jn,+u(Rδ( j)z)= Jn,+uδ( j)(z).

Hence by (3.3.2)
Jn,+u j (Sz)= uλn,−◦δ( j)(z). (3.3.4)

On the other hand, one gets for Jn,+u j (S(−z∗))= Jn,+u j (−Sz∗) by using (3.3.3):

Jn,+u j (S(−z∗))= Jn,−uσ( j)(Sz)= u( jn,−Rσ( j)Sz),

and therefore

Jn,+u j (−Sz∗)= u( jn,−ησ( j)Rδ◦σ( j)(z))= Jn,−uδ◦σ( j)(z).

But σ ◦ δ = δ ◦ σ and therefore

Jn,+u j (S(−z∗))= Jn,−uσ◦δ( j)(z). (3.3.5)

Define next
v±, j (z) := Jn,+u j (z)± Jn,+u j (−z∗).
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Then by (3.3.2) and (3.3.3) one has

v±, j (z)= uλ( j)(z)± Jn,−uσ( j)(z)

and hence, if 1u(z)= β(1−β)u(z),

1v±, j (z)= β(1−β)v±, j (z) (3.3.6)

and
v±, j (−z∗)=±v±, j (z). (3.3.7)

Equations (3.3.4) and (3.3.5), on the other hand, show

v±, j (Sz)= v±,δ( j)(z). (3.3.8)

Set ψ ′
±
(ζ ) :=

∫ i∞
0 η(v±, Rβζ )(z). Then, since v±, j (−z∗) = ±v±, j (z), one finds

(see [Lewis and Zagier 2001])

ψ ′
+, j (ζ )= 2β

∫
∞

0

tβv+, j (i t)
(ζ 2+ t2)β+1 dt, (3.3.9)

ψ ′
−, j (ζ )=−

∫
∞

0

tβ∂xv−, j (i t)
(ζ 2+ t2)β

dt. (3.3.10)

Using next the identity (3.3.8) one easily shows

ψ ′
±, j (ζ )=±ζ

−2βψ ′
±,δ( j)

(1
ζ

)
. (3.3.11)

But v±, j (z)= uλ( j)(z)± Jn,−uσ( j)(z) and hence

ψ ′
±, j (ζ )= ψλn,−( j)(ζ )± Jn,−ψσ( j)(ζ ).

Therefore

ψλn,−( j)(ζ )± Jn,−ψσ( j)(ζ )=±ζ
−2β

(
ψλn,−◦δ( j)

(1
ζ

)
± Jn,−ψσ◦δ( j)

(1
ζ

))
. (3.3.12)

Adding these two equations leads finally to

ψλn,−( j)(ζ )= ζ
−2β Jn,−ψσ◦δ( j)

(1
ζ

)
, (3.3.13)

and therefore to the equation

Jn,−ψ j (ζ )= ζ
−2βψλn,−◦σ◦δ( j)

(1
ζ

)
, (3.3.14)

which was to be proven. �
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Remark 3.3.2. As can be seen from their action on the coset representatives R j

the permutation δ commutes with the permutations λn,− and σ . Furthermore one
has σ 2

= δ2
= (λn,− ◦ σ)

2
= id, where id denotes the identity permutation. This

shows also that the automorphisms Jn,− are involutions both of the Maass forms
and the period functions, a special case of these involutions for all groups 00(N )
being J0,−u(z)= u(−z∗).

Denote by Qn,−, 0≤ n≤ hN−1, the µN×µN permutation matrix corresponding
to the permutation λn,− ◦ σ ◦ δ.

Theorem 3.3.3. The permutation matrices Pn,− := ρχ0(S)Qn,−, 0 ≤ n ≤ hN − 1,
define symmetries

P̃n,− =

(
0 Pn,−

Pn,− 0

)
for the transfer operator

Lβ,χ0 =

(
0 L+β,χ0

L+β,χ0
0

)

for 00(N ) and trivial character χ0≡1, with P2
n,−= idµN , Pn,−ρχ0(S)=ρχ0(S)Pn,−,

and Pn,−ρχ0(T )= ρχ0(T
−1)Pn,−, and therefore Pn,−L+β,χ0

= L+β,χ0
Pn,−. The per-

mutation matrix Pn,− is determined by the permutation λn,− ◦ σ and hence by the
coset representatives jn,−R j j0,−.

Proof. The matrix Pn,−ρχ0(S) is determined by the coset representatives jn,−R j Sj0,−
whereas ρχ0(S)Pn,− is determined by the coset representatives jn,−R j j0,−S and
j0,−S = Sj0,− . Hence Pn,−ρχ0(S) = ρχ0(S)Pn,−. On the other hand T j0,− =
j0,−T−1 and therefore Pn,−ρχ0(T )= ρχ0(T

−1)Pn,−. �

Obviously Theorem 2.1.1 follows from Theorem 3.3.3. For the automorphisms
jn,+ = jn,− j0,− one gets the symmetry

P̃n,+ =

(
Pn,+ 0

0 Pn,+

)
,

with Pn,+ the permutation matrix corresponding to the permutation λn,−◦σ ◦λ0,−◦σ

determined by the coset representatives jn,+R j .

Remark 3.3.4. The symmetry P0,− is given by ρχ0(SM) where M =
(

0 1
1 0

)
and

ρχ0 denotes the representation of GL(2,Z) induced from the trivial character χ0 of
00(N ). The transfer operator LM M

β of Manin and Marcolli [2002] for 00(N ) turns
out to coincide with the operator ρχ0(S)P0,−L+β,χ0

ρχ0(S) and appears as a special
case of our operators Pn,−L+β,χ0

.
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Corollary 3.3.5. The permutation matrices Pn,−, 0 ≤ n ≤ hN − 1, generate a
finite group consisting of the permutation matrices {Pn,±, 0 ≤ n ≤ hN − 1} and
isomorphic to the normalizer group NN of 00(N ) in GL(2,Z). The symmetries
{P̃n,±, 0 ≤ n ≤ hN − 1} of the transfer operator Lβ,χ0 for 00(N ) and trivial char-
acter χ0 define a finite group isomorphic to the group NN .

4. Selberg’s character χα for 00(4)

The group 00(4) is freely generated by the two elements T =
(

1 1
0 1

)
and B =

(
1 0
−4 1

)
.

Hence any g ∈ 00(4) can be written as g =
∏Ng

i=1 T mi Bni . If �(g)=
∑Ng

i=1 mi then
Selberg’s character χα [Selberg 1990] is defined as

χα(g)= exp(2π iα�(g)), 0≤ α ≤ 1. (4.1)

Denote by zi , 1≤ i ≤ 3, the inequivalent cusps of 00(4) and by Ti the generators of
their stabilizer groups 0zi with Ti zi = zi . They can be taken as z1= i∞, z2=0, z3=

−
1
2 and T1 = T, T2 = B, T3 = T−1 B−1. The character χα is singular in the cusp zi

if and only if χα(Ti )= 1. Otherwise the character is nonsingular in zi . It is well
known that the multiplicity κ(χα) of the continuous spectrum of the automorphic
Laplacian 1 with character χα is given by κ(χα) = #{i : χα(Ti ) = 1}. Therefore
κ(χα) = 3 for α = 0 whereas κ(χα) = 1 for α 6= 0 and hence the multiplicity
of the continuous spectrum of the Laplacian changes from 3 to 1 when the trivial
character is deformed to χα with α 6= 0. It is known [Phillips and Sarnak 1994] that
the character χα is congruent (or arithmetic) if and only if α ∈ {k 1

8 , 0≤ k≤ 4}. Since
the Selberg zeta function given in (2.0.1) has the property Z00(4),χα = Z00(4),χ−α
and obviously χα = χα+1 we can restrict the deformation parameter α to the range
0≤ α ≤ 1

2 .

Lemma 4.1. The Selberg character χα is invariant under the map defined by
j2,−z = z∗/(2z∗ − 1), and J2,−u(z) := u( j2,−z) is a Maass form for 00(4) and
character χα if u = u(z) is such a Maass form.

Proof. We only have to show that χα is invariant under the map j2,−z= z∗/(2z∗−1).
For g = T we find j2,−T j2,− = T B and hence

χα( j2,−T j2,−)= χα(T B)= χα(T ),

whereas for g = B one finds j2,−B j2,− = B−1 and hence

χα( j2,−B j2,−)= χα(B−1)= χα(B).

Therefore χα( j2,−g j2,−)= χα(g) for all g ∈ 00(4). �

If u = u(z) is a Maass form for 00(4) with character χα and ψ = (ψ j (ζ ))1≤ j≤6

is its period function, denote by J−u the Maass form given by J−u(z) := u( j2,−z),
and by J−ψ = (J−ψ j (ζ ))1≤ j≤6 its period function. Then one shows:
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Theorem 4.2. The period function J−ψ of the Maass form J−u is given by

J−ψ j (ζ )= ζ
−2βχα(ησ◦δ( j))ψλ2,−◦σ◦δ( j)

(1
ζ

)
, (4.2)

where the permutations λ2,−, σ , and δ, as well as the η j ∈ 00(4), are determined
through the coset representatives R j by

j2,+R j = θ j Rλ2,−( j), j0,−R j j0,− = γ j Rσ( j), R j S = η j Rδ( j),

with θ j , γ j , and η j ∈ 00(4) for 1≤ j ≤ 6.

Proof. Set j± := j2,± and J±u(z) := u( j±z). Then J−u is a Maass form for 00(4)
and character χα whereas J+u is a Maass form for 00(4) and character χ−α. The
vector-valued Maass form J+u = (J+u j )1≤ j≤6 is given by J+u j (z) = u( j+R j z).
We have chosen the representatives R j of the cosets in SL(2,Z)=

⋃
1≤ j≤6 00(4)R j

as follows:

R1 = id2, R j = ST j−2, 2≤ j ≤ 5, R6 = ST 2S.

But j+R j = θ j Rλ2,−( j) for some θ j ∈ 00(4) and some permutation λ2,− of the set
{1, 2, . . . , 6} and hence J+u j (z)= χα(θ j )u(Rλ2,−( j)z). It turns out that θ j = B−1

for 1≤ j ≤ 3 and θ j = id2 for 4≤ j ≤ 6. Hence χα(θ j )= 1 and

J+u j (z)= uλ2,−( j)(z), 1≤ j ≤ 6, (4.3)

with λ2,− the permutation

λ2,− =
1 2 3 4 5 6
6 4 5 2 3 1

. (4.4)

Consider next J+u j (−z∗)= J+u j ( j0,−z). Then

J+u j ( j0,−z)= u( j+R j j0,−z)= u( j+ j0,− j0,−R j j0,−z).

If j0,−R j j0,− = γ j Rσ( j) then J+u j ( j0,−z) = u( j−γ j j− j−Rσ( j)z). But it turns
out that j−γ j j− = id2 for j = 1, 2, 6 and j−γ j j− = B for j = 3, 4, 5, hence
χα( j−γ j j−)= 1 and therefore

J+u j (−z∗)= J+u j ( j0,−z)= J−uσ( j)(z). (4.5)

Since, furthermore, J+u j (Sz)= u( j+R j Sz)= u( j+η j Rδ( j)z), one finds

J+u j (Sz)= χ−α(η j )uλ2,−◦δ( j)(z), (4.6)

where δ is the permutation

δ =
1 2 3 4 5 6
2 1 5 6 3 4

, (4.7)
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η j = id2 for j = 1, 2, 4, 6, and η3 = η
−1
5 = T−1 B−1. For J+u j (−Sz∗) one gets

with (4.5) J+u j (−Sz∗)= J−uσ( j)(Sz)= u( j2,−Rσ( j)Sz) and

J+u j (−Sz∗)= u( j2,−ησ( j)Rδ◦σ( j)z)= χα(ησ( j))J−uδ◦σ( j)(z).

Using the explicit form of the η j one shows χα(ησ( j))= χ−α(η j ) and therefore

J+u j (−Sz∗)= χ−α(η j )J−uδ◦σ( j)(z). (4.8)

Define next v±, j = v±, j (z) as

v±, j (z) := J+u j (z)± J+u j (−z∗). (4.9)

Then v±, j (−z∗)=±v±, j (z), and by (4.6) and (4.8) we have

v±, j (Sz)= χ−α(η j )v±,δ( j)(z). (4.10)

If therefore ψ ′
±, j (ζ ) :=

∫ i∞
0 η(v±, j , Rβζ )(z) one gets from relation (4.10)

ψ ′
±, j (ζ )=±ζ

−2βχ−α(η j )ψ
′

±,δ( j)

(1
ζ

)
(4.11)

and using the identity (4.9)

ψλ2,−( j)(ζ )± J−ψσ( j)(ζ )

=±ζ−2βχ−α(η j )
(
ψλ2,−◦δ( j)

(1
ζ

)
± J−ψσ◦δ( j)

(1
ζ

))
. (4.12)

Adding these two equations leads finally to

J−ψ j (ζ )= ζ
−2βχα(ησ◦δ( j))ψλ2,−◦σ◦δ( j)

(1
ζ

)
, �

Inserting the explicit form of the permutations

σ ◦ δ =
1 2 3 4 5 6
2 1 3 6 5 4

(4.13)

and

λ2,− ◦ σ ◦ δ =
1 2 3 4 5 6
4 6 5 1 3 2

(4.14)

and the character values

χα(η1)= χα(η2)= χα(η4)= χα(η6)= 1 and χα(η3)= χα(η5)
−1
= e−2π iα,
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one finds

J−ψ1(ζ )= ζ
−2βψ4

(1
ζ

)
, J−ψ2(ζ )= ζ

−2βψ6

(1
ζ

)
,

J−ψ3(ζ )= ζ
−2βe−2π iαψ4

(1
ζ

)
, J−ψ4(ζ )= ζ

−2βψ1

(1
ζ

)
,

J−ψ5(ζ )= ζ
−2βe2π iαψ3

(1
ζ

)
, J−ψ6(ζ )= ζ

−2βψ2

(1
ζ

)
.

(4.15)

Define the matrix Q2,− through the equation J2,−ψ(ζ )= ζ
−2βQ2,−ψ(1/ζ ).

Proposition 4.3. The permutation matrix P2,− := ρχα (S)Q2,− defines a symmetry

P̃2,− =

(
0 P2,−

P2,− 0

)
of the transfer operator

Lβ,χα =

(
0 L+β,χα

L+β,χα 0

)

for 00(4) and character χα with P2
2,− = id6,

P2,−ρχα (S)= ρχα (S)P2,− and P2,−ρχα (T )= ρχα (T
−1)P2,−,

and therefore P2,−L+β,χα = L−β,χα P2,−. The permutation matrix P2,− corresponds
to the permutation λ2,− ◦ σ and hence is determined by the coset representatives
J2,−R j j0,−.

Proof. For our choice of coset representatives R j as given in (2.1.4) one finds for
ρχα (S)

ρχα (S)=



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 e−2π iα 0
0 0 0 0 0 1
0 0 e2π iα 0 0 0
0 0 0 1 0 0


, (4.16)

and hence the matrix Q2,− is given by

Q2,− =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 e−2π iα 0
1 0 0 0 0 0
0 0 e2π iα 0 0 0
0 1 0 0 0 0


. (4.17)
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For ρχα (T ) one finds

ρχα (T )=



e2π iα 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 e−2π iα


. (4.18)

A simple calculation then confirms that P2,−ρχα (S)=ρχα (S)P2,− and P2,−ρχα (T )=
ρχα (T

−1)P2,−, with

P2,− =



0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0


, (4.19)

and hence defines a symmetry of the transfer operator Lβ,χα . The matrix P2,−

coincides with the permutation matrix P2 corresponding to the permutation σ2 in
(2.1.6). �

Remark 4.4. For the trivial character χ0, the map j0,−z =−z∗ defines an automor-
phism of the Maass forms for the group 00(4). Indeed, this is an automorphism
for all Hecke congruence subgroups 00(N ). In this case the permutation λ0,−

is the trivial permutation and the matrix Q0,− is determined by the permutation
σ ◦ δ. For 00(4) this is given by (4.13). Using (4.16) with α = 0 one obtains for
P0,− = ρχ0(S)Q0,− the permutation σ1 as given in (2.1.5). The symmetry P̃1 for
00(4) and trivial character χ0 hence corresponds to the automorphism z→−z∗ of
the Maass forms for this group.

We have seen that for every eigenfunction f = f (ζ ) of the operator P2L+β,χα
with eigenvalues λ=±1 the function 9 =9(ζ)= P2ρχα (T

−1S)P2 f (ζ−1) fulfills
the functional equation

9(ζ)= λζ−2βρχα (S)P29
(1
ζ

)
= λJ−9(ζ) (4.20)

and hence is an eigenfunction of the involution J− corresponding to the automor-
phism j− = j2,− of the Maass forms for 00(4) and character χα . Hence this shows:

Proposition 4.5. The eigenfunctions f = f (ζ ) of the operator P2L+β,χα with eigen-
values λ = ±1 correspond to Maass forms which are even or odd, respectively,
under the involution J− = J2,−.
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For a conjugate character χ̂α, Phillips and Sarnak [1994] have shown that the
Maass cusp forms that are odd under the corresponding conjugate involution Ĵ are
still cusp forms under the deformation of this character. Hence:

Corollary 4.6. The zeros of the Selberg zeta function for the group 00(4) and char-
acter χα corresponding to eigenfunctions of the operator P2L+β,χα with eigenvalue
λ = −1 which for α = 0 are on the critical line Reβ = 1

2 stay, for all α, on this
line.

Remark 4.7. The operator P2L+β,χα can be used to calculate numerically the Sel-
berg zeta function for small values of Imβ and arbitrary 0≤α≤ 1

2 . These numerical
calculations confirm the above corollary and let us expect that all the zeros of the
Selberg function corresponding to the eigenvalue λ = 1 of the operator P2L+β,χα
for α = 0 leave the critical line when α becomes positive. A detailed discussion of
the numerical treatment of the behavior of the zeros of the Selberg function under
character deformation will appear elsewhere [Bruggeman et al. 2012].
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