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We define a new symmetry for morphisms of vector bundles, called triality
symmetry, and compute Chern class formulas for the degeneracy loci of such
morphisms. In an appendix, we show how to canonically associate an octonion
algebra bundle to any rank-2 vector bundle.

1. Introduction

Let ϕ : E→ F be a morphism of vector bundles on a smooth variety X , of respective
ranks m and n. The r -th degeneracy locus of ϕ is the set of points of X defined by

Dr (ϕ)= {x ∈ X | rkϕ(x)≤ r},

where ϕ(x) : E(x) → F(x) is the corresponding linear map in the fibers over
x ∈ X . Such loci are ubiquitous in algebraic geometry: many interesting varieties,
from Veronese embeddings of projective spaces to Brill–Noether loci parametrizing
special divisors in Jacobians, can be realized as degeneracy loci for appropriate
maps of vector bundles. General geometric information about degeneracy loci is
therefore often useful. In particular, one can ask for Chern class formulas for the
cohomology class of Dr (ϕ) in H∗X — what is [Dr (ϕ)] as a polynomial in the
Chern classes of E and F?

When ϕ is sufficiently general, so Dr (ϕ) has expected codimension equal to
(m− r)(n− r), the answer is given by the Giambelli–Thom–Porteous determinan-
tal formula. In two cases of particular interest, Chern class formulas are known
for degeneracy loci where ϕ is not general in this sense. Taking F = E∗, one
has the dual morphism ϕ∗ : E∗∗ = E → E∗. Call ϕ symmetric if ϕ∗ = ϕ, and
skew-symmetric if ϕ∗ = −ϕ. The codimension of Dr (ϕ) is at most

(m−r+1
2

)
(in

the symmetric case) or
(m−r

2

)
(in the skew-symmetric case), so such morphisms

are never sufficiently general for the Giambelli–Thom–Porteous formula to apply.
Formulas for these loci were given by Harris and Tu [1984] and Józefiak, Lascoux
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and Pragacz [Józefiak et al. 1981]. As explained in [Fehér et al. 2005], these for-
mulas can also be found by computing the equivariant classes of appropriate orbit
closures in the GL(E)-representations Sym2 E∗ and

∧2 E∗, where E is a vector
space. See [Fulton and Pragacz 1998, Chapter 6] for more detailed discussions of
the formulas.

The primary goal of the present article is to give degeneracy locus formulas for
a new class of morphisms, which we call triality-symmetric morphisms. Letting E
be a rank-2 vector bundle, these are maps

ϕ : E→ End(E)⊕ E∗

possessing a certain symmetry related to the S3 symmetry of the D4 Dynkin dia-
gram. Specifically, we use the following definition:

Definition 1.1. Consider the canonical identification

Hom(E,End(E)⊕ E∗)= (E∗⊗ E∗⊗ E)⊕ (E∗⊗ E∗)

= (E∗⊗ E∗⊗ E∗⊗
∧2 E)⊕ (E∗⊗ E∗).

A morphism ϕ : E→End(E)⊕E∗ is triality-symmetric if the corresponding section
of Hom(E,End(E)⊕ E∗) lies in the subbundle

(Sym3 E∗⊗
∧2 E)⊕

∧2 E∗.

That is, ϕ = ϕ1⊕ϕ2, with ϕ1 defining a symmetric trilinear form Sym3 E→
∧2 E

and ϕ2 defining an alternating bilinear form
∧2 E→ OX .

We will sometimes write tSym(E∗) = (Sym3 E∗⊗
∧2 E)⊕

∧2 E∗ for the sub-
bundle of triality-symmetric morphisms.

A few words of motivation are in order concerning this definition. For simplicity,
consider the case where X is a point, and take vector spaces E and F of respective
dimensions m and n. The space of all linear maps Hom(E, F) is also the tangent
space to the Grassmannian Gr(m,m + n) = Gr(m, E ⊕ F) = GLm+n /P (for an
appropriate maximal parabolic subgroup P) at the point corresponding to E . When
F = E∗, there is a canonical symplectic form ω on E⊕E∗, defining the Lagrangian
Grassmannian LG(m, 2m)⊆ Gr(m, 2m), and the space of symmetric morphisms
Sym2 E∗ is naturally identified with the tangent space to LG(m, 2m) = Sp2m /P
at the point [E]. Moreover, LG(m, 2m) is the fixed locus for the involution of
Gr(m, 2m) which sends a subspace to its orthogonal complement under ω. The sit-
uation is similar for skew-symmetric morphisms, replacing the Lagrangian Grass-
mannian with the orthogonal Grassmannian OG(m, 2m)= SO2m /P .

From this point of view, it is natural to expect nice degeneracy locus formulas
corresponding to other finite symmetries of homogeneous spaces. A particularly
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interesting one is the triality action on OG(2, 8), which we identify as

OG(2, E ⊕End(E)⊕ E∗)

for a two-dimensional vector space E . A concise description of this S3 action may
be found in [Anderson 2009, Appendix B]; for more details, see [van der Blij and
Springer 1960; Garibaldi 1999]. For our purposes, the relevant facts are that the
fixed locus is the “G2 Grassmannian” G2/P (for P corresponding to the long root),
and the tangent space to G2/P is naturally identified with tSym(E∗) at the point
[E] ∈ G2/P ⊆ OG(2, 8). (In Section 3, we will explicitly exhibit the S3 action
on the tangent space T[E]OG(2, 8)∼=Hom(E,End(E))⊕

∧2 E∗ fixing tSym(E∗).)
Further motivation comes from the fact that there is a canonical octonion algebra
structure on E ⊕End(E)⊕ E∗, when E is a rank-2 vector bundle, just as there is a
canonical symplectic structure on E ⊕ E∗. This is the content of Proposition A.1.

Since E is required to have rank-2, a triality-symmetric morphism may have
rank 0, 1, or 2. Write Dr (ϕ)⊆ X for the locus of points where ϕ has rank at most
r . For a triality-symmetric morphism ϕ, define the expected codimension of Dr (ϕ)

to be 5, 3, or 0 if r = 0, r = 1, or r = 2, respectively. With this understood, we
may state our main theorem:

Theorem 1.2. Let c1, c2 be the Chern classes of E∗, and let x1, x2 be Chern roots.
Let ϕ : E→ End(E)⊕ E∗ be a triality-symmetric morphism. If Dr (ϕ) has expected
codimension and X is Cohen–Macaulay, then we have [Dr (ϕ)] = Pr (c1, c2) in
H∗X , where

P2 = 1,

P1 = 3 c2 c1 = 3x1x2(x1+ x2),

P0 = c2 c1 (9 c2− 2 c2
1)= x1x2(x1+ x2)(2x1− x2)(−x1+ 2x2).

A secondary goal of this article is to illustrate two points of view on degeneracy
loci. In this spirit, we will give two proofs of the main theorem, both involving the
simple Lie group of type G2, but using substantially different approaches. The first
relates degeneracy loci for triality-symmetric morphisms to certain Schubert loci in
a G2 flag bundle, just as Fulton’s generalization of the Harris–Tu formulas relates
symmetric morphisms to type C flag bundles [Fulton 1996]. One then applies the
formulas for G2 Schubert loci developed in [Anderson 2011] to derive the formulas
of Theorem 1.2.

The second proof uses equivariant cohomology in the spirit of [Fehér and Rimányi
2004; Fehér et al. 2005] (but see Remark 5.3). More precisely, when P is the
maximal parabolic subgroup of G2 which omits the long root and E is a two-
dimensional vector space, we consider (Sym3 E∗⊗

∧2 E)⊕
∧2 E∗ as a P-module

and compute the equivariant classes of the P-orbit closures in this vector space.
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Certain of these orbit closures correspond to degeneracy loci, and one can deduce
Theorem 1.2 from the equivariant formulas. Along the way, we explicitly identify
the P-orbit closures in (Sym3 E∗⊗

∧2 E)⊕
∧2 E∗, and compute all their equivariant

classes (Proposition 5.1 and Theorem 5.2).
Triality symmetry is the G2 case of a general notion of symmetry for morphisms

of vector bundles. In fact, two types of symmetry for morphisms can be naturally
associated to any maximal parabolic subgroup P of a complex reductive group
G, as described in [Anderson 2009, Appendix C]. The “orbit” approach used in
the second proof of Theorem 1.2 generalizes to the following problem: Compute
the equivariant classes of P-orbit (or B-orbit) closures for the adjoint action on
g/p. Solutions to this problem account for many of the known degeneracy locus
formulas; see, for example, [Fehér and Rimányi 2003; Knutson and Miller 2005].

A related problem is to classify situations where there are finitely many orbits.
In the case of P acting on g/p, this problem was investigated by Popov and Röhrle
[1997], and such parabolic actions have been classified [Bürgstein and Hesselink
1987; Hille and Röhrle 1999; Jürgens and Röhrle 2002]. The classification of Borel
or Levi subgroup actions on g/p with finitely many orbits appears to be unknown.

We have endeavored to make our perspective on triality and G2 accessible to
general algebraic geometers, and in this spirit, the ingredients of the first proof of
Theorem 1.2 are spelled out quite explicitly. The second proof is more streamlined,
but requires a little more specialized background; we hope that the reader versed
in Lie theory will appreciate both points of view.

2. Preliminaries

All varieties are over C. We will write X for the base variety. If E is a vector
bundle on X , we write E(x) for the fiber over x ∈ X . We often suppress notation
for pullback of vector bundles.

2.1. Octonions. An octonion algebra over C is an 8-dimensional complex vector
space C , equipped with

• a nondegenerate quadratic norm N , and

• a bilinear multiplication with unit e, written u⊗ v 7→ uv,

such that N (uv)= N (u)N (v) for all u, v ∈ C . Recall that any quadratic norm N
corresponds to a symmetric bilinear form 〈 · , · 〉, by N (v)= 1

2〈v, v〉 and 〈u, v〉 =
N (u+ v)− N (u)− N (v), and a norm is called nondegenerate if the corresponding
bilinear form is nondegenerate.

Up to isomorphism, there is only one octonion algebra over C (or over any
algebraically closed field). The multiplication is only required to be bilinear, and
indeed it is neither commutative nor associative.



Degeneracy of triality-symmetric morphisms 693

The notion of an octonion algebra globalizes easily to octonion bundles, where
C is a rank-8 vector bundle on a variety X , the multiplication is a vector bundle map
C ⊗C→ C , and for simplicity we assume the norm takes values in OX . For more
on octonions and octonion bundles, see [Springer and Veldkamp 2000, Sections
1–2; Petersson 1993; Anderson 2009, Section 2].

The group of algebra automorphisms of an octonion algebra (that is, linear au-
tomorphisms preserving multiplication) is the simple complex Lie group of type
G2 [Springer and Veldkamp 2000, Section 2]; abusing notation, we will write G2

to denote this group.1

Let E be a rank-2 vector bundle on X . Then C = E ⊕ End(E)⊕ E∗ has a
canonical structure of an octonion bundle, which is described in Proposition A.1.
In the case where X is a point, so E is a 2-dimensional vector space, the same
formulas (1) and (2) define an octonion algebra. It will be convenient to use a
basis adapted to this construction. Let v1, v2 be a basis for E , with dual basis
v∗1 , v

∗

2 for E∗, and extend to a basis for C = E ⊕End(E)⊕ E∗ by setting

v3 = v
∗

2 ⊗ v1, v4 = v
∗

1 ⊗ v1, v5 = v
∗

2 ⊗ v2,

v6 = v
∗

1 ⊗ v2, v7 = v
∗

2 , v8 = v
∗

1 .
(1)

One checks that the identity element of C is e = v4+ v5.
With respect to this basis, the symmetric bilinear form 〈 · , · 〉 is given by

〈vp, v9−q〉 = −δpq , for {p, q} 6= {4, 5};

〈v4, v5〉 = 1.
(2)

Write V = e⊥ ⊂ C for the orthogonal complement of the identity element with
respect to 〈 · , · 〉. Thus V is defined by v∗4 + v

∗

5 = 0.
Let the torus T = (C∗)2 act on C in this basis via the matrix

diag(z1, z2, z1z−1
2 , 1, 1, z−1

1 z2, z−1
2 , z−1

1 ), (3)

with weights

{t1, t2, t1− t2, 0, 0, −t1+ t2, −t2, −t1}. (4)

This is induced from the standard action on E = span {v1, v2}. The algebra structure
of C is preserved by this action, so T ⊆ G2; in fact, T is a maximal torus.

2.2. Roots and weights. For general Lie-theoretic notions, we refer to [Humphreys
1975]; here we explain the relevant facts for type G2. Let G2 be the automorphism
group of an octonion algebra C , as above, so G2 is presented as a subgroup of

1In fact, one can show that u2
= 〈u, e〉u− N (u)e for any element u ∈ C , so any algebra automor-

phism also preserves the norm.
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GL(C)∼= GL8. Let T ⊂ B ⊂ G2 be a maximal torus and Borel subgroup, and let
t⊂ b⊂ g2 be the corresponding Lie algebras. Once a basis for C has been chosen
as in (1), we will always take T to be the torus acting as in (3), and we may take
B to be the intersection of the upper-triangular matrices in GL8 with the subgroup
G2. Write α1 and α2 for the two simple roots, with α2 the long root. In terms of
the weights t1, t2 of (4), we have

α1 = t1− t2, α2 =−t1+ 2 t2. (5)

The positive roots are α1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+2α2; the negative
roots are −α, for α a positive root.

Let P ⊂ G2 be the standard maximal parabolic subgroup omitting the long root,
with Lie algebra p⊂ g2. Thus p= b⊕ g−α1 , where g−α1 ⊂ g2 is the weight space
for the negative root −α1.

The Weyl group is W = N (T )/T , where N (T ) is the normalizer of T in G2. It is
isomorphic to the dihedral group with 12 elements, and is generated by the simple
reflections s = sα1 and t = sα2 , and is defined by the relations s2

= t2
= (st)6 = 1.

There is an embedding W ↪→ S7 coming from the action of G2 on V ⊂ C given by

s 7→2 1 5 4 3 7 6,

t 7→1 3 2 4 6 5 7;

see [Anderson 2009, Section A.3]. We will sometimes treat elements of W as
permutations via this embedding.

2.3. Flag bundles and Schubert loci. We refer to [Anderson 2009; 2011] for
proofs of the following facts with more details. (There the term “γ -isotropic” is
used instead of “G2-isotropic” in reference to a trilinear form γ .)

Let C be an octonion algebra, and let V = e⊥ ⊂ C be as before. A subspace
E ⊆ C is called G2-isotropic if E ⊆ V and uv = 0 for all u, v ∈ E . A maximal
G2-isotropic subspace has dimension 2, and a G2-isotropic flag is a chain E1 ⊂

E2⊂ V (with dim Ei = i), where E2 is G2-isotropic. Such a flag can be canonically
extended to a complete flag E1 ⊂ E2 ⊂ E3 ⊂ · · · ⊂ E7 = V : When E1 ⊂ E2 is
G2-isotropic, with E1 spanned by a vector u, then Eu := {v ∈ V | uv = 0} is a
three-dimensional subspace containing E2. To get a complete flag, set E3 = Eu ,
and then take orthogonal complements with respect to the norm N for the rest, so
E4 = E⊥3 , etc. (See [Anderson 2011, Section 2.2] for this construction.)

The G2 flag variety FlG2 parametrizes all G2-isotropic flags in V ⊂ C . It is a
six-dimensional projective homogeneous space, isomorphic to G2/B for a Borel
subgroup B ⊂ G2. The G2 Grassmannian GrG2 parametrizes two-dimensional G2-
isotropic subspaces of V ; this is isomorphic to the five-dimensional homogeneous
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space G2/P . The construction of a complete G2-isotropic flag gives an embedding
FlG2 ↪→ Fl(C7)= SL7 /B.

For an octonion bundle C on X with its rank-7 subbundle V , there is an associ-
ated G2-isotropic flag bundle FlG2(V )→ X , as well as a G2-isotropic Grassmann
bundle GrG2(V )→ X . These are (étale-)locally trivial fiber bundles, with fibers
FlG2 and GrG2 , respectively. The flag bundle FlG2 comes with a tautological flag
of subbundles Ẽ• of V .

Given a complete G2-isotropic flag of subbundles F1 ⊂ F2 ⊂ · · · ⊂ F7 = V on
X , the Schubert loci in FlG2(V ) are defined by

�w(F•)= {x ∈ FlG2 | dim(Ẽ p(x)∩ Fq(x))≥ rw(q, p) for 1≤ p, q ≤ 7}, (6)

where for w ∈ W , rw(q, p) is #{i ≤ q |w(8− i) ≤ p}, and Ẽ• is the tautological
flag on FlG2 . Here we are using the embedding W ↪→ S7 discussed above.2 The
codimension of�w is the length of w, i.e., the least number of simple transpositions
needed to write w as a word in s and t .

If E• is a second G2-isotropic flag on X , it defines a section sE• : X→ FlG2 such
that s∗E• Ẽ• = E•. We define degeneracy loci in X as the scheme-theoretic inverse
images of Schubert loci:

�w(E•, F•)= s−1
E• �w(F•).

3. Triality symmetry

Triality symmetry is described in terms of coordinates as follows. Assume X is a
point, so E is a two-dimensional vector space. Choose a basis {v1, v2} for E , and
let {v3, . . . , v8} be a basis for End(E)⊕E∗ as in (1). Suppose ϕ : E→End(E)⊕E∗

is given by ϕ = ϕ1⊕ϕ2, with

ϕ1(v1)=

(
a1 b1

c1 d1

)
, ϕ1(v2)=

(
a2 b2

c2 d2

)
,

and ϕ2(v1)= z v∗2 , ϕ2(v2)=−z v∗1 . In terms of the chosen bases for E and End(E)⊕
E∗, ϕ has matrix At

ϕ , whose transpose is

Aϕ =

(
b1 a1 d1 c1 z 0
b2 a2 d2 c2 0 −z

)
. (7)

2This definition of rw differs slightly from that of [Anderson 2011]; there the assignment
(q, p) 7→ #{i ≤ q | w(i)≤ p} is called rw . The two are related by replacing w with ww◦, where w◦
is the longest element of W .
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Identify Hom(E,End(E))= E∗⊗ E∗⊗ E with E∗⊗ E∗⊗ E∗ by mapping

v∗i ⊗ v
∗

j ⊗ v1 7→ v∗i j2,

v∗i ⊗ v
∗

j ⊗ v2 7→ −v
∗

i j1,

where v∗i jk = v
∗

i ⊗ v
∗

j ⊗ v
∗

k for 1 ≤ i, j, k ≤ 2. (The sign appears because of the
canonical isomorphism E∗⊗ E∗⊗ E ∼= E∗⊗ E∗⊗ E∗⊗

∧2 E ; we are using v1∧v2

to identify E ∼= E∗ ⊗
∧2 E with E∗.) Thus ϕ is triality-symmetric if and only

if the corresponding coordinates of v∗i jk are invariant under permutations of the
indices. Explicitly, there is an S3-action on Hom(E,End(E))⊕

∧2 E∗ generated
by elements τ and σ whose action on matrices Aϕ is given by

τ

(
b1 a1 d1 c1 z 0
b2 a2 d2 c2 0 −z

)
=

(
−d2 −d1 c2 c1 z 0
b2 b1 −a2 −a1 0 −z

)

and σ

(
b1 a1 d1 c1 z 0
b2 a2 d2 c2 0 −z

)
=

(
a2 a1 c2 c1 z 0
b2 b1 d2 d1 0 −z

)
.

This means that the triality-symmetric maps are those whose (transposed) matrix
is of the form

Aϕ =

(
a −d d c z 0
b a −a d 0 −z

)
. (8)

Here a is also the coordinate of v∗122, b is the coordinate of v∗222, −c is the coordi-
nate of v∗111, and −d is the coordinate of v∗112. Note that the S3-invariants coincide
with the τ -invariants.

Remark 3.1. “Triality” usually refers to several phenomena related to the S3 sym-
metry of the D4 Dynkin diagram. It was first described by Cartan [1925]; see [Knus
et al. 1998] for a thorough discussion. The connection with our context can be ex-
plained briefly as follows. Automorphisms of the D4 Dynkin diagram correspond
to outer automorphisms of the simply connected group Spin8; these all fix a para-
bolic subgroup P , and therefore define automorphisms of Spin8 /P ∼=OG(2, 8) and
the tangent space TeP Spin8 /P . The tangent space can be identified with matrices
as in (7), and under this identification the automorphism group S3 acts as described
above.

4. Graphs

For any morphism ϕ : E→ F , let Eϕ ⊂ E ⊕ F be its graph, that is, the subbundle
whose fiber over x is Eϕ(x)= {(v, ϕ(v)) | v ∈ E(x)}. If ϕ : E→ E∗ is symmetric,
then its graph is isotropic for the canonical skew-symmetric form on E⊕E∗ defined
by (v1⊕ f1, v2⊕ f2)= f1(v2)− f2(v1). Thus one obtains a map to the Lagrangian
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bundle of isotropic flags in E ⊕ E∗, and formulas for the degeneracy loci of ϕ are
deduced from formulas for Schubert loci; see [Fulton 1996; Fulton and Pragacz
1998].

In this section, we consider morphisms ϕ : E → End(E)⊕ E∗. There is, by
Proposition A.1, a canonical octonion algebra structure on E ⊕End(E)⊕ E∗. We
give formulas for degeneracy loci of morphisms whose graphs are G2-isotropic
with respect to this structure. In general such morphisms are not triality-symmetric
(nor vice versa). For rank-1 maps, however, the two notions agree.

After a suitable change of coordinates (including a switch to opposite Schubert
cells), the parametrization of the open Schubert cell in G2/P given in [Anderson
2009, Section D.1] becomes

�̃◦ =

(
1 0 a −d d c z −X
0 1 b a −a d −Z −Y

)
, (9)

where X = −ac− d2, Y = z + ad − bc, and Z = −a2
− bd. Morphisms E →

End(E)⊕ E∗ with G2-isotropic graph are exactly those whose (transposed) matrix
has the form of the last six columns of (9).

Lemma 4.1. Suppose X is a point and ϕ : E→End(E)⊕E∗ is a triality-symmetric
map with matrix At

ϕ as in (8). Then the graph Eϕ is contained in V ⊂ C , and is
G2-isotropic if and only if

a2
+ bd = ac+ d2

= ad − bc = 0. (10)

Conversely, suppose ϕ : E→ End(E)⊕ E∗ has G2-isotropic graph as in (9). Then
ϕ is triality-symmetric if and only if the equations (10) hold.

Proof. This is a straightforward verification, using the basis {vi } as in (1). It is
clear that the row span of (9) is always in V ⊂ C since the fourth and fifth columns
add to zero. The condition that the row span be the graph Eϕ means X = Z = 0
and Y = z, which are precisely the equations (10). �

Corollary 4.2. Let ϕ : E → End(E)⊕ E∗ be a morphism of rank at most 1 such
that the component ϕ2 : E→ E∗ is zero. Then ϕ is triality-symmetric if and only
if Eϕ ⊂ C is G2-isotropic. (This holds scheme-theoretically, that is, the equations
locally defining these two subsets of Hom(E,End(E)) are the same.)

Proof. This is a local statement, so we may assume X is a point and compute in
coordinates. In this case, it follows from Lemma 4.1 by adding the equation z = 0.
(In fact, for a morphism with G2-isotropic graph, the rank condition is forced by
ϕ2 ≡ 0.) �
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Corollary 4.2 implies that the formulas of Theorem 1.2 (for triality-symmetric
morphisms) will agree with formulas for morphisms with G2-isotropic graphs. Be-
fore proceeding with the proof of Theorem 1.2, we will describe the connection
between triality-symmetry and G2-isotropic graphs more precisely.

Let GrG2 ⊆ Gr(2,C) be the G2-Grassmannian bundle on X , and let Gr◦ be
the open subset parametrizing subbundles of C = E ⊕ End(E)⊕ E∗ whose pro-
jection onto E is an isomorphism; locally on X , coordinates for Gr◦ are given
as in (9). Identifying a morphism E → End(E)⊕ E∗ with its graph, note that
Hom(E,End(E)⊕E∗) is identified with the corresponding open subset of Gr(2,C),
so Gr◦=GrG2∩Hom(E,End(E)⊕E∗) parametrizes morphisms with G2-isotropic
graph.

When X is a point, we have remarked that the space of triality-symmetric maps
tSym(E∗) is naturally isomorphic to the tangent space T[E]GrG2 . For general X ,
this globalizes to an identification of the vector bundle tSym(E∗) with the nor-
mal bundle NX/Gr = NX/Gr◦ , where X is embedded in Gr◦ ⊂ Gr by the section
corresponding to the subbundle E ⊂ C .

Now let D1 ⊆ tSym(E∗) be the locus of triality symmetric morphisms of rank
at most 1, and let �◦1 ⊂Gr◦ be the locus of morphisms with G2-isotropic graph of
rank at most 1 such that the component ϕ2 is zero. The next lemma identifies D1

with the normal cone to X in �◦1.

Lemma 4.3. Inside tSym(E∗)= NX/Gr◦ , we have D1 = CX�
◦

1.

Proof. This can be checked locally on X , so assume X is a point. Note that both
tSym(E∗) and Gr◦ are isomorphic to A5. By Corollary 4.2, D1 and �◦1 are defined
by the same equations, namely (10) together with z = 0; since these equations are
already homogeneous, we have that �◦1 is equal to its tangent cone at the origin. �

Corollary 4.4. Let ϕ be any triality-symmetric morphism and let ψ be any mor-
phism with G2-isotropic graph. Let sϕ : X→ tSym(E∗) and sψ : X→Gr◦ be the
sections determined by ϕ and ψ . Then s∗ϕ[D1] = s∗ψ [�1] in H∗X.

Proof. Let s0 be the zero section of tSym(E∗), and let sE be the section of Gr◦

corresponding to E ⊂ C . By Lemma 4.3 and the basic construction of intersection
theory (see [Fulton 1998, Section 6]), we have s∗0 [D1] = s∗E [�1]. On the other
hand, both tSym(E∗) and Gr◦ are affine bundles on X , so every section determines
the same pullback on cohomology. (In fact, Gr◦ is isomorphic to tSym(E∗), as
one sees from the parametrization in (9), although it is not a vector subbundle of
Hom(E,End(E)⊕ E∗).) �

Consequently, for morphisms ϕ and ψ as in Corollary 4.4, we have [D1(ϕ)] =

[D1(ψ)] whenever

s∗ϕ[D1] = [s−1
ϕ D1] and s∗ψ [�1] = [s−1

ψ �1]. (11)
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(Indeed, D1(ϕ)= s−1
ϕ D1 and D1(ψ)= s−1

ψ �1 by definition.) When X is Cohen–
Macaulay, so are D1 and �1; this can be seen directly from the equations, or by
using the fact that Schubert varieties are Cohen–Macaulay. The conditions (11)
are therefore equivalent to the condition that D1(ϕ) and D1(ψ) have expected
codimension in X , by [Fulton and Pragacz 1998, Lemma, p. 108].

First proof of Theorem 1.2. Let ϕ : E→ End(E)⊕ E∗ have G2-isotropic graph Eϕ .
Suppose E has a rank-1 subbundle, so Eϕ also does. (One can always arrange for
this, by passing to a P1-bundle if necessary.) Write E1 ⊂ E2 = E and F1 ⊂ F2 =

Eϕ , and extend these to complete G2-isotropic flags E• and F•. For w ∈ W , set
�w(ϕ)=�w(E•, F•). Since Eϕ ∼= E , the Chern classes are the same. Let−x1,−x2

be Chern roots of E , so x1, x2 are Chern roots of E∗. Then, by [Anderson 2011,
Theorem 2.4 and Section 2.5], we have

[�w(ϕ)] =Gw(x1, x2;−x1,−x2) (12)

in H∗X , where Gw(x1, x2; y1, y2) is the “G2 double Schubert polynomial” defined
in the same reference.

It remains to determine the w for which Dr (ϕ)=�w(ϕ). We have

Dr (ϕ)= {x ∈ X | dim(E(x)∩ Eϕ(x))≥ 2− r},

and it is easy to check that

D2(ϕ)=�id(ϕ)= X, D1(ϕ)=�tst(ϕ), and D0(ϕ)=�tstst(ϕ). (13)

Indeed, the element tst ∈ W corresponds to the permutation 3 6 1 4 7 2 5 (see
[Anderson 2011, Section A.3]), so the condition defining �tst is dim(E2 ∩ F2)≥

rtst(2, 2) = 1. The other two identities are clear. This also justifies our defini-
tion of expected codimension for triality-symmetric degeneracy loci: the expected
codimension of Dr (ϕ) is the length of the corresponding element of W .

Specializing the polynomials Gw given in [Anderson 2009, Section D.2] for
these three w, we obtain the desired formulas for Pr . �

Remark 4.5. The twelve polynomials Gw(x1, x2;−x1,−x2) become the equivari-
ant localizations of Schubert classes in G2/B at the point eB after the substitution
xi =−ti ; see [Anderson 2009, Section D.3].

Remark 4.6. We defined the scheme structure on D1(ϕ) for a triality-symmetric
morphism by taking the equations (10) together with z = 0. In fact, the ideal
generated by 2× 2 minors of the matrix (8) is the same as the one generated by
minors of (9), but this ideal is not radical. (It is generated by (10) together with
az, bz, cz, dz, z2.) The requirement ϕ2 ≡ 0 for rank-1 maps is transparent on the
triality-symmetric side; for G2-isotropic graphs, the scheme structure is defined by
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pullback from the Schubert locus �tst , and one sees ϕ2 ≡ 0 from a parametrization
of Schubert cells [Anderson 2009, Section D.1].

5. Orbits

Another approach to the computation of triality-symmetric degeneracy loci is as
follows. Inside the vector bundle(

Sym3 E∗⊗
∧2 E

)
⊕
∧2 E∗ ⊂ Hom

(
E,End(E)⊕ E∗

)
,

there is a locus Dr consisting of morphisms of rank at most r . By definition, a
triality-symmetric morphism ϕ defines a section sϕ of

(
Sym3 E∗⊗

∧2 E
)
⊕
∧2 E∗,

and Dr (ϕ)= s−1
ϕ Dr is the scheme-theoretic preimage.

It suffices to solve this problem on the classifying space for the vector bundle E
(or on algebraic approximations thereof), so let X = BGL2.3 Replace E with the
standard representation of GL2, and write

U =
(
Sym3 E∗⊗

∧2 E
)
⊕
∧2 E∗.

The relevant vector bundle on BGL2 is U ×GL2 EGL2, where EGL2→ BGL2 is the
universal principal GL2-bundle. Letting Dr ⊆U ⊂ Hom(E,End(E)⊕ E∗) be the
locus of maps of rank at most r , we have

Dr = Dr ×
GL2 EGL2 ⊆U ×GL2 EGL2 .

Therefore [Dr ] = [Dr ]
GL2 in H∗(U ×GL2 EGL2) = H∗GL2

(U ), and the problem
becomes a computation in the equivariant cohomology of the vector space U .

Moreover, as we shall see below, Dr is an orbit closure for the action of GL2 on
U . In fact, we will use a larger group action. As discussed in Section 1, U may be
identified with the tangent space

T[E]G2/P ∼= g2/p,

so P acts on U via the adjoint action on g2/p. Let P = L · Pu be the Levi decompo-
sition, with Pu the unipotent radical and L a Levi subgroup. We will be interested
in P-orbit closures in g2/p.

First observe that L is isomorphic to GL2. Here is one way to see this. Since E
defines a point in G2/P , the parabolic P may be identified with the subgroup of G2

stabilizing E . Every linear automorphism of E induces an algebra automorphism
of C = E ⊕ End(E)⊕ E∗; therefore GL(E) ∼= GL2 is a (reductive) subgroup of
P , and we have GL(E)⊆ L . On the other hand, L is connected (since P is) and
four-dimensional (by the root decomposition), so this inclusion must be an equality.

3Topologically, we may assume E is pulled back from the tautological bundle on Gr(2, n), for
n� 0, so one can take a Grassmannian for an approximation to BGL2.
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The L-action on g2/p is identified with the natural GL2-action on U : as an
L-module, we have

g2/p∼=
(
Sym3 E∗⊗

∧2 E
)
⊕
∧2 E∗,

where E ∼=C2 is the standard representation of L ∼=GL2 (with weights t1= 2α1+α2

and t2 = α1+α2). As a P-module, g2/p is indecomposable, but there is an exact
sequence

0→ Sym3 E∗⊗
∧2 E→ g2/p→

∧2 E∗→ 0.

These identifications of L- and P-modules follow directly from the weight decom-
position of g2/p: the T -weights are

−α2, −α1−α2, −2α1−α2, −3α1−α2, −3α1− 2α2. (14)

As a first step to computing the classes of P-orbits in H∗T (g/p), we give explicit
descriptions of these orbits.

By the classification given in [Jürgens and Röhrle 2002], there are finitely many
P-orbits on g/p. In fact, there are five orbits. To describe them, let

U ′ = Sym3 E∗⊗
∧2 E ⊂U = g2/p.

Let b, a, d, c be coordinates on U ′ with weights−α2,−α1−α2,−2α1−α2,−3α1−

α2, respectively. The five orbits are Oc, with c = 0, 1, 2, 3, 5 giving the codimen-
sion; their closures are nested and described by the following proposition:

Proposition 5.1. The P-orbit closures in U = g2/p are as follows:

• O0 =U.

• O1 =U ′.

• O2 is the discriminant locus in U ′ defined by the vanishing of the quartic
polynomial a2d2

+ 4a3c+ 4bd3
− 27b2c2

+ 18abcd.

• O3 is the (affine) cone over the twisted cubic curve in P3
= PU ′ defined by

the condition that the matrix (
a −d c
b a d

)
have rank 1.

• O5 = O5 = {0}.

The proof is straightforward, using the orbit classification of [Bürgstein and
Hesselink 1987, Table 2]. See [Anderson 2009, Section 5.2] for details. Each
of these orbit closures is Cohen–Macaulay, as may be checked easily from the
equations.
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From the description in terms of cubic polynomials, it is easy to find represen-
tatives for orbits in U ′. Here we give representatives as weight vectors in g/p. Let
Yα ∈ g2/p be a weight vector for α. We have

O0 = P · Y−3α1−2α2 =U r U ′,

O1 = P · (Y−3α1−α2 + Y−α2)
∼= P/Pu ∼= GL2,

O2 = P · Y−α1−α2,

O3 = P · Y−α2,

O5 = {0}.

Using Proposition 5.1, it is a simple matter to compute the equivariant classes.

Theorem 5.2. In H∗T (U )= Z[α1, α2] = Z[t1, t2], we have

[O0] = 1,

[O1] = −3α1− 2α2 =−t1− t2,

[O2] = 2(−3α1− 2α2)
2
= 2(t1+ t2)2,

[O3] = −3(α1+α2)(2α1+α2)(3α1+ 2α2)

=−3t1t2(t1+ t2),

[O5] = −α2(α1+α2)(2α1+α2)(3α1+α2)(3α1+ 2α2)

= t1t2(t1+ t2)(2t1− t2)(t1− 2t2).

Proof. The normal space to U ′= O1⊂U has weight−3α1−2α2, so the formula for
[O1] is clear. Since the restriction H∗T (U )→ H∗T (U

′) is an isomorphism, the Gysin
pushforward H∗T (U

′)→ H∗T (U ) is multiplication by [U ′]. Therefore it suffices
to compute the remaining classes in H∗T (U

′). The locus O2 is a hypersurface
in U ′ defined by an equation of weight −6α1 − 4α2, so its class in H∗T (U ) is
(−6α1−4α2)·[U ′]. The class of [O3] in H∗T (U

′) is found by the classical Giambelli
(or Salmon–Roberts) formula; see for example [Fulton and Pragacz 1998, Section
1.1]. Finally, the class of the origin is the product of all the T -weights on U . �

Remark 5.3. These classes cannot be computed using the “restriction equation”
method of Fehér and Rimányi [2004] because the stabilizer of O1 = P/Pu is uni-
potent. This means the restriction map H∗P(U )→ H∗P(O1) ∼= H∗Pu

(pt) = H∗(pt)
is zero in positive degrees, and all the restriction equations are of the form 0= 0.
The problem persists for the other orbits.

Lemma 5.4. The orbit O3 ⊂ g/p⊂ Hom(E,End(E)⊕ E∗) consists of the triality-
symmetric morphisms of rank 1.
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Proof. Any rank-1 map ϕ must correspond to an element ϕ1⊕ϕ2 ∈U =U ′⊕
∧2 E∗

with ϕ2 = 0, that is, ϕ lies in U ′. (If ϕ2 6= 0, then ϕ surjects onto E∗.)
The action of P on U ′ is the same as that of its Levi subgroup GL2. Let P2̂⊂GL8

be the parabolic which stabilizes E . The inclusion P ↪→ P2̂ ⊂ GL8 induces an
inclusion of Levi subgroups GL2 = GL2×1 ↪→ GL2×GL6, and the latter group
acts on Hom(E,End(E)⊕ E∗) by left-right matrix multiplication,4 so it preserves
ranks of morphisms. Therefore it will suffice to check that a representative for O2

has rank 2, and a representative from O3 has rank 1.
For these, we use the coordinate description given in Section 3. Under the identi-

fication of U ′ with the space of cubic polynomials, the monomial xy2 corresponds
to the basis vector v∗122. The orbit is O2 (since xy2 has two distinct zeroes), and
the corresponding matrix Aϕ has b = c = d = 0 and a 6= 0; it is easy to see this
means ϕ has rank 2. Similarly, x3 corresponds to v∗111, and the corresponding Aϕ
has a = b = d = 0 and c 6= 0, so ϕ has rank 1. �

The formulas of Theorem 1.2 now follow from those of Theorem 5.2.

Second proof of Theorem 1.2. Let f : X → BGL2 be the map defined (up to
homotopy) by the given vector bundle E on X . The corresponding map

f ∗ : H∗ BGL2 = H∗GL2
(pt)= Z[c1, c2] → H∗X

is given by ci 7→ ci (E)= (−1)i ci (E∗). Equivalently, using the inclusion H∗GL2
(pt)⊂

H∗T (pt)= Z[t1, t2] and Chern roots x1, x2 for E∗, the map is given by ti 7→ −xi .
Using Lemma 5.4, we have f −1O3 = D1(ϕ), so by [Fulton and Pragacz 1998,

p. 108] and the fact that O3 is Cohen–Macaulay, we obtain f ∗[O3] = [D1(ϕ)]

when D1(ϕ) has expected codimension. �

Remark 5.5. The proof of Theorem 1.2 given in Section 4 works verbatim for
Chow cohomology. The proof in this section also works, though to apply equivari-
ant techniques, one needs to take extra care to ensure that the bundle E is pulled
back from an algebraic approximation to the classifying space. To achieve this,
one can replace X with an appropriate composition of an affine bundle and a Chow
envelope; see [Graham 1997, p. 486] for the argument.

Appendix: Octonion bundles

There is a G2 analogue of the well-known fact that for any vector bundle E , the
direct sum E ⊕ E∗ carries canonical symplectic (type C) and symmetric (type D)
forms; see for example [Fulton and Pragacz 1998, p. 71]. The intrinsic construction

4Identifying Hom(E,End(E)⊕ E∗) with 6× 2 matrices, the action is by (g, h) · A = h Ag−1.
This is the action induced by restricting the conjugation action of GL8 on 8× 8 matrices when the
subspace of 6× 2 matrices is placed in the lower-left corner.
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presented here seems to appear first in [Landsberg and Manivel 2006, p. 151]; it is
closely related to the Cayley–Dickson doubling construction [Petersson 1993].

We fix some notation. For any vector bundle E , let

Tr : End(E)= E∗⊗ E→ OX

be the canonical contraction map, and let

End0(E)= ker(Tr)⊂ End(E)

be the subbundle of trace-zero endomorphisms. Let e : OX → End(E) be the
identity section. Thus the composition Tr ◦ e : OX → OX is multiplication by rk(E).
Also, when E has rank 2, the conjugation map End(E)→ End(E) is given by
e ◦Tr− id. (Here id is the identity morphism, as opposed to the identity section e.)
Conjugation is an involution; locally, it is ξ 7→ ξ := Tr(ξ)e− ξ .

The norm on an octonion bundle C corresponds to a nondegenerate symmetric
bilinear form 〈 · , · 〉. Let V ⊂ C be the orthogonal complement to the identity
subbundle defined by e. A subbundle E ⊂ C is G2-isotropic if it is contained in V
and the multiplication map E ⊗ E→ C is the zero map.

Proposition A.1 (cf. [Landsberg and Manivel 2006, p. 151]). Let E be a rank-2
vector bundle on a variety X. Then C = E⊕End(E)⊕E∗ has a canonical octonion
bundle structure with identity section e : OX → End(E)⊂ C. The subbundle E =
E ⊕ 0⊕ 0⊂ C is G2-isotropic.

More specifically, there is a quadratic norm N : C→ OX and bilinear multipli-
cation m : C⊗C→ C for C = E⊕End(E)⊕ E∗ which are compatible. The norm
corresponds to the bilinear form 〈 · , · 〉 defined by

〈x ⊕ ξ ⊕ f, y⊕ η⊕ g〉 = Tr(ξ)Tr(η)−Tr(ξη)− f (y)− g(x). (1)

The multiplication is given by

(x ⊕ ξ ⊕ f ) · (y⊕ η⊕ g)= (ηx + ξ y)⊕ (g⊗ x + ξη+ f ⊗ y)⊕ (gξ + f η). (2)

One only needs to verify compatibility of the norm with multiplication; see
[Anderson 2009, Section 2.4] for details.
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