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We show that the equation a2
+b6
=cn has no nontrivial positive integer solutions

with (a, b) = 1 via a combination of techniques based upon the modularity of
Galois representations attached to certain Q-curves, corresponding surjectivity
results of Ellenberg for these representations, and extensions of multi-Frey curve
arguments of Siksek.

1. Introduction

Following the proof of Fermat’s last theorem [Wiles 1995], there has developed an
extensive literature on connections between the arithmetic of modular abelian vari-
eties and classical Diophantine problems, much of it devoted to solving generalized
Fermat equations of the shape

a p
+ bq
= cr ,

1
p
+

1
q
+

1
r
< 1, (1)

in coprime integers a, b, and c, and positive integers p, q, and r . That the number
of such solutions (a, b, c) is finite, for a fixed triple (p, q, r), is a consequence
of [Darmon and Granville 1995]. It has been conjectured that there are in fact
at most finitely many such solutions, even when we allow the triples (p, q, r) to
vary, provided we count solutions corresponding to 1p

+23
= 32 only once. Being

extremely optimistic, one might even believe that the known solutions constitute a
complete list, namely (a, b, c, p, q, r) corresponding to 1p

+ 23
= 32, for p ≥ 7,

and to nine other identities (see [Darmon and Granville 1995; Beukers 1998]):

25
+ 72
= 34, 73

+ 132
= 29, 27

+ 173
= 712, 35

+ 114
= 1222,

177
+762713

=210639282, 14143
+22134592

=657, 92623
+153122832

=1137,

438
+ 962223

= 300429072, and 338
+ 15490342

= 156133.
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(For brevity, we omit listing the solutions which differ only by sign changes and
permutation of coordinates: for instance, if p is even, (−1)p

+ 23
= 32, etc.)

Since all known solutions have min{p, q, r} < 3, a closely related formulation
is that there are no nontrivial solutions in coprime integers once min{p, q, r} ≥ 3.

There are a variety of names associated to the above conjectures, including,
alphabetically, Beal (see [Mauldin 1997]), Darmon and Granville [1995], van der
Poorten, Tijdeman, and Zagier (see, for example, [Beukers 1998; Tijdeman 1989]),
and apparently financial rewards have even been offered for their resolution, posi-
tive or negative.

Techniques based upon the modularity of Galois representations associated to
putative solutions of (1) have, in many cases, provided a fruitful approach to these
problems, though the limitations of such methods are still unclear. Each situa-
tion where finiteness results have been established for infinite families of triples
(p, q, r) has followed along these lines. We summarize the results to date; in each
case, no solutions outside those mentioned above have been discovered:

(p,q,r) Reference(s)

(n,n,n), n ≥ 3 [Wiles 1995; Taylor and Wiles 1995]
(n,n,2), n ≥ 4 [Darmon and Merel 1997; Poonen 1998]
(n,n,3), n ≥ 3 [Darmon and Merel 1997; Poonen 1998]
(2n,2n,5), n ≥ 2 [Bennett 2006]
(2,4,n), n ≥ 4 [Bruin 1999; Ellenberg 2004; Bennett et al. 2010]
(2,n,4), n ≥ 4 Immediate from [Bruin 2003; Bennett and Skinner 2004]
(2,2n,k), n ≥ 2,

k ∈ {9,10,15}
[Bennett et al. ≥ 2012]

(4,2n,3), n ≥ 2 [Bennett et al. ≥ 2012]
(2,n,6), n ≥ 3 [Bennett et al. ≥ 2012]
(3,3,n), n ≥ 3∗ [Kraus 1998; Bruin 2000; Dahmen 2008;

Chen and Siksek 2009]
(3 j,3k,n),

j,k,n ≥ 2
[Kraus 1998]

(3,3,2n), n ≥ 2 [Bennett et al. ≥ 2012]
(3,6,n), n ≥ 2 [Bennett et al. ≥ 2012]
(2,2n,3), n ≥ 3∗ [Bruin 1999; Chen 2008; Dahmen 2008; 2011; Siksek 2008]
(2,2n,5), n ≥ 3∗ [Chen 2010]
(2,3,n),

6≤ n ≤ 10
[Bruin 1999; 2003; 2005; Poonen et al. 2007; Siksek 2010;

Brown 2012]

The (∗) here indicates that the result has been proven for a family of exponents of
natural density one (but that there remain infinitely many cases of positive Dirichlet
density untreated).
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In this paper, we will prove the following theorem.

Theorem 1. Let n ≥ 3 be an integer. Then the equation

a2
+ b6
= cn (2)

has no solutions in positive integers a, b, and c, with a and b coprime.

Our motivations for considering this problem are two-fold. Firstly, the exponents
(2, 6, n) provide one of the final examples of an exponent family for which there
is known to exist a corresponding family of Frey–Hellegouarch elliptic Q-curves.
A remarkable program for attacking the generalized Fermat equation of signa-
ture (n, n,m) (and perhaps others) is outlined in [Darmon 2000], relying upon the
construction of Frey–Hellegouarch abelian varieties. Currently, however, it does
not appear that the corresponding technology is suitably advanced to allow the
application of such arguments to completely solve families of such equations for
fixed m ≥ 5.

In some sense, the signatures (2, 6, n) and (2, n, 6) (the latter equations are
treated in [Bennett et al. ≥ 2012]) represent the final remaining families of gen-
eralized Fermat equations approachable by current techniques. More specifically,
as discussed in [Darmon and Granville 1995], associated to a generalized Fermat
equation x p

+ yq
= zr is a triangle Fuchsian group with signature (1/p, 1/q, 1/r).

A reasonable precondition to applying the modular method using rational elliptic
curves or Q-curves is that this triangle group be commensurable with the full mod-
ular group. Such a classification has been performed in [Takeuchi 1977], where
it is shown that the possible signatures containing ∞ are (2, 3,∞), (2, 4,∞),
(2, 6,∞), (2,∞,∞), (3, 3,∞), (3,∞,∞), (4, 4,∞), (6, 6,∞), (∞,∞,∞). A
related classification of Frey representations for prime exponents can be found in
[Darmon and Granville 1995; Darmon 2000]. The above list does not, admittedly,
explain all the possible families of generalized Fermat equations that have been
amenable to the modular method. In all other known cases, however, the Frey
curve utilized is derived from a descent step to one of the above “pure” Frey curve
families. Concerning the applicability of using certain families of Q-curves, see
the conclusions section of [Chen 2010] for further remarks.

Our secondary motivation is as an illustration of the utility of the multi-Frey
techniques of S. Siksek (see [Bugeaud et al. 2008a; 2008b]). A fundamental dif-
ference between the case of signature (2, 4, n) considered in [Ellenberg 2004] and
that of (2, 6, n) is the existence, in this latter situation, of a potential obstruction to
our arguments in the guise of a particular modular form without complex multipli-
cation. To eliminate the possibility of a solution to the equation x2

+y6
= zn arising

from this form requires fundamentally new techniques, based upon a generalization
of the multi-Frey technique to Q-curves (rather than just curves over Q).
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The computations in this paper were performed in MAGMA [Bosma et al. 1997].
The programs, data, and output files are posted in this paper’s Electronic Supple-
ment and at http://people.math.sfu.ca/ ichen/firstb3i-data. Throughout the text, we
have included specific references to the MAGMA code employed, indicated as
sample.txt .

2. Review of Q-curves and their attached Galois representations

The exposition of Q-curves and their attached Galois representations we provide in
this section closely follows that of [Ribet 1992; Quer 2000; Ellenberg and Skinner
2001; Chen 2012]; we include it in the interest of keeping our exposition reasonably
self-contained.

Let K be a number field and C/K be a non-CM elliptic curve such that there is
an isogeny µ(σ) : σC→C defined over K for each σ ∈ GQ. Such a curve C/K is
called a Q-curve defined over K . Let φ̂C,p :G K →GL2(Zp) be the representation
of G K on the Tate module V̂p(C). One can attach a representation

ρ̂C,β,p : GQ→Q∗p GL2(Qp)

to C such that Pρ̂C,β,p|G K
∼= Pφ̂C,p. The representation depends on the choice of

splitting map β (in what follows, we will provide more details of this choice).
Let π be a prime above p of the field Mβ generated by the values of β. In
practice, the representation ρ̂C,β,π is constructed in a way so that its image lies
in M∗β,π GL2(Qp), and we choose to use the notation ρ̂C,β,p = ρ̂C,β,π to indicate
the choice of π in this explicit construction.

Let

cC(σ, τ )= µC(σ )
σµC(τ )µC(στ)

−1
∈ (HomK (C,C)⊗Z Q)∗ =Q∗,

where µ−1
C := (1/ degµC)µ

′

C and µ′C is the dual of µC . Then cC(σ, τ ) determines
a class in H 2(GQ,Q∗) which depends only on the Q-isogeny class of C . The class
cC(σ, τ ) factors through H 2(G K/Q,Q∗), depending now only on the K -isogeny
class of C . Alternatively,

cC(σ, τ )= α(σ)
σα(τ)α(στ)−1

arises from a class α ∈ H 1(GQ,Q∗/Q∗) through the map

H 1(GQ,Q∗/Q∗)→ H 2(GQ,Q∗),

resulting from the short exact sequence

1→Q∗→Q∗→Q∗/Q∗→ 1.

Explicitly, α(σ) is defined by σ ∗(ωC)= α(σ)ωC .
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Tate showed that H 2(GQ,Q∗) is trivial where the action of GQ on Q∗ is trivial.
Thus, there is a continuous map β : GQ→Q∗ such that

cC(σ, τ )= β(σ)β(τ)β(στ)
−1

as cocycles, and we call β a splitting map for cC . We define

ρ̂C,β,π (σ )(1⊗ x)= β(σ)−1
⊗µC(σ )(σ (x)).

Given a splitting cC(σ, τ ) = β(σ)β(τ)β(στ)
−1, Ribet attaches an abelian variety

Aβ defined over Q, of GL2-type and having C as a simple factor over Q.
In practice, what we do in this paper is find a continuous β : GQ → Q∗, fac-

toring over an extension of low degree, such that cC(σ, τ )= β(σ)β(τ)β(στ)
−1 as

elements in H 2(GQ,Q∗), using results in [Quer 2000]. Then we choose a suitable
twist Cβ/Kβ of C , where Kβ is the splitting field of β, such that cCβ (σ, τ ) is exactly
the cocycle cβ(σ, τ )= β(σ)β(τ)β(στ)−1. In this situation, the abelian variety Aβ
is constructed as a quotient over Q of ResKβ

Q Cβ .
The endomorphism algebra of Aβ is given by Mβ = Q({β(σ)}) and the repre-

sentation on the πn-torsion points of Aβ coincides with the representation ρ̂C,β,π

defined earlier.
Let ε : GQ→Q∗ be defined by

ε(σ )= β(σ)2/ degµ(σ). (3)

Then ε is a character and

det ρ̂C,β,π = ε
−1
·χp, (4)

where χp : GQ→ Z∗p is the p-th cyclotomic character.

3. Q-curves attached to a2 + b6 = cp and their Galois representations

Let (a, b, c) ∈ Z3 be a solution to a2
+ b6

= cp where we suppose that p is a
prime. We call (a, b, c) proper if gcd(a, b, c) = 1 and trivial if |c| = 1. Note
that a solution (a, b, c) ∈ Z3 is proper if and only if the integers a, b, and c are
pairwise coprime. In what follows, we will always assume that the triple (a, b, c)
is a proper, nontrivial solution. We consider the following associated (Frey or
Frey–Hellegouarch) elliptic curve:

E : Y 2
= X3

− 3(5b3
+ 4ai)bX + 2(11b6

+ 14ib3a− 2a2),

with j-invariant

j = 432i
b3(4a− 5ib3)3

(a− ib3)(a+ ib3)3
(5)

and discriminant 1=−28
· 33
· (a− ib3) · (a+ ib3)3.
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Lemma 2. Suppose a/b3
∈ P1(Q). Then the j-invariant of E does not lie in Q

except when

• a/b3
= 0 and j = 54000, or

• a/b3
=∞ and j = 0.

Proof. This can be seen by solving the polynomial equation in Q[i][ j, a/b3
] de-

rived from (5) by clearing the denominators and collecting terms with respect to
{1, i}, using the restriction that j, a/b3

∈ P1(Q). �

Corollary 3. E does not have complex multiplication unless

• a/b3
= 0, j = 54000, and d(O)=−12, or

• a/b3
=∞, j = 0, and d(O)=−3.

Proof. If E has complex multiplication by an order O in an imaginary quadratic
field, then j (E) has a real conjugate over Q (for instance, arising from j (E0),
where E0 is the elliptic curve associated to the lattice O itself). Hence, j (E) ∈ Q

in fact. For a list of the j-invariants of elliptic curves with complex multiplication
by an order of class number 1, see, for instance, [Cox 1989, p. 261]. �

Lemma 4. If (a, b, c) ∈ Z3 with gcd(a, b, c) = 1 and a2
+ b6

= cp, then either
c = 1 or c is divisible by a prime not equal to 2 or 3.

Proof. The condition gcd(a, b, c)= 1 together with inspection of a2
+ b6 modulo

3 shows that c is never divisible by 3. Similar reasoning allows us to conclude,
since p > 1, that c is necessarily odd, whereby the lemma follows. �

From here on, let us suppose that E arises from a nontrivial proper solution to
a2
+b6
= cp where p is an odd prime. Note that ab is even and, from the preceding

discussion, that a− b3i and a+ b3i are coprime p-th powers in Z[i].
The elliptic curve E is defined over Q(i). Its conjugate over Q(i) is 3-isogenous

to E over Q(
√

3, i); see isogeny.txt . This is in contrast to the situation in [Ellen-
berg 2004], where the corresponding isogeny is defined over Q(i). We make a
choice of isogenies µ(σ) : σE→ E such that µ(σ)= 1 for σ ∈ GQ(i) and µ(σ) is
the 3-isogeny above when σ /∈ GQ(i).

Let d(σ ) denote the degree of µ(σ). We have d(GQ)= {1, 3} ⊆Q∗/Q∗2. The
fixed field Kd of the kernel of d(σ ) is Q(i) and so (a, d)= (−1, 3) is a dual basis
in the terminology of [Quer 2000]. The quaternion algebra (−1, 3) is ramified at
2, 3 and so a choice of splitting character for cE(σ, τ ) is given by ε = ε2ε3 where
ε2 is the nontrivial character of Z/4Z× and ε3 is the nontrivial character of Z/3Z×.
The fixed field of ε is Kε =Q(

√
3).

Let GQ(i)/Q = {σ1, σ−1}. We have that

α(σ1)= 1 and α(σ−1)= i
√

3.
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This can be checked by noting that the quotient of E by the 3-torsion point of E
using Vélu multiplies the invariant differential by 1. The resulting quotient elliptic
curve is then a twist over Q(

√
3, i) of the original E . This twisting multiplies the

invariant differential by i
√

3.
So now we can express cE(σ, τ )=α(σ)

σα(τ)α(στ)−1. Let β(σ)=
√
ε(σ)
√

d(σ)
and cβ(σ, τ )=β(σ)β(τ)β(στ)−1

∈H 2(GQ,Q∗). We know from [Quer 2000] that
cβ(σ, τ ) and cE(σ, τ ) represent the same class in H 2(GQ,Q∗). The fixed field of
β is Kβ = Kε · Kd =Q(

√
3, i) and Mβ =Q(

√
3, i).

Our goal is to find a γ ∈Q∗ such that cβ(σ, τ )= α1(σ )
σα1(τ )α1(στ)

−1, where
α1(σ )=α(σ)

σ(
√
γ )/
√
γ . Using a similar technique as for the equation a2

+b2p
=

c5 (compare [Chen 2010], where the corresponding Kβ is cyclic quartic), we can
narrow down the possibilities for choices of γ and subsequently verify that a par-
ticular choice actually works.

In more detail, recall that Kβ = Q(
√

3, i) = Q(z), where z = (i +
√

3)/2 is a
primitive twelfth root of unity. Let GQ(

√
3,i)/Q={σ1, σ−1, σ3, σ−3} and assume that

α1(σ−3)
2/α(σ−3)

2
= α1(σ−3)

2/− 3 is a unit, say 1. This implies that σ−3γ /γ = 1,
whereby γ ∈Q(

√
−3). Furthermore, let us assume that σ−1γ /γ is a square in Kβ of

a unit in Q(
√
−3), say z2 (the other choices produce isomorphic twists). Solving

for γ , we obtain that γ = (−3+ i
√

3)/2 is one possible choice.
The resulting values of α2(σ )= α(σ)

√
σγ /γ are

α2(σ1)= 1, α2(σ−1)= i
√

3z, α2(σ3)= z, and α2(σ−3)= i
√

3,

where we have fixed a choice of square root for each σ ∈ G K/Q. It can be verified
that cβ(σ, τ )= α2(σ )

σα2(τ )α2(στ)
−1.

Consider the twist Eβ of E given by the equation

Eβ : Y 2
= X3

− 3(5b3
+ 4ai)bγ 2 X + 2(11b6

+ 14ib3a− 2a2)γ 3. (6)

From the relationship between Eβ and E , the initial µ(σ)’s for E give rise to
choices for µβ(σ ) for Eβ which are, in general, locally constant on a smaller
subgroup than G K . For these choices of µβ(σ ) we have

αEβ (σ )= α1(σ )= α(σ)
σ
(
√
γ )/
√
γ .

Now,
√
σγ /γ = ξ(σ )δ(σ ) where δ(σ ) = σ(

√
γ )/
√
γ and ξ(σ ) = ±1. Since

δ(σ )σδ(τ )δ(στ)−1
= 1, it follows that cEβ (σ, τ ) = cβ(σ, τ )ξ(σ )ξ(τ )ξ(στ)−1.

Hence, by using the alternate set of isogenies µ′β(σ ) = µβ(σ )ξ(σ ), which are
now locally constant on G K , the corresponding αEβ (σ ) = α(σ)

√
σγ /γ = α2(σ ),

and hence cEβ (σ, τ ) = α2(σ )
σα2(τ )α2(στ)

−1
= cβ(σ, τ ) as cocycles, not just as

classes in H 2(G K/Q,Q∗). The elliptic curve Eβ/Kβ is a Q-curve defined over
Kβ ; see isogenyp.txt .



714 Michael A. Bennett and Imin Chen

Another way to motivate the preceding calculation is as follows. Without loss
of generality, we may assume that γ is square-free in the ring of integers of Kβ (if
γ is a square, then the corresponding Eβ is isomorphic over Kβ to E). The field
Kβ has class number 1. If γ = λγ ′ where λ ∈ Z, then using γ ′ instead of γ yields
an Eβ whose cEβ (σ, τ ) is the same cocycle in H 2(G K/Q,Q∗). The condition that
√
σγ /γ be a square in Kβ for all σ ∈G K/Q shows that only ramified primes divide

γ and there are two such primes in Kβ =Q(
√

3, i).
The discriminant of Kβ is dKβ/Q = 24

· 32
= 144. The prime factorizations of

(2) and (3) in Kβ are given by

(2)= q2
2 and (3)= q2

3.

Let ν2 and ν3 be uniformizers at q2 and q3 respectively with associated valuations
v2 and v3. The units in Kβ are generated by z of order 12 and a unit u2 of infinite
order. Thus, up to squares, γ is a product of a subset of the elements {z, u2, ν2, ν3}.

The authors have subsequently learned that a similar technique for finding γ
also appeared in [Dieulefait and Urroz 2009] (where Kβ is polyquadratic).

It would be interesting to study the twists Eβ which arise from other choices of
splitting maps. We will not undertake this here.

Lemma 5. Suppose that E and E ′ are elliptic curves defined by

E :Y 2
+ a1 XY + a3Y = X3

+ a2 X2
+ a4 X + a6,

E ′:Y 2
+ a′1 XY + a′3Y = X3

+ a′2 X2
+ a′4 X + a′6,

where the ai and a′i lie in a discrete valuation ring O with uniformizer ν.

(a) Suppose the valuation at ν of the discriminants is, in each case, equal to 12.
If E has reduction type II∗ and a′i ≡ ai (mod ν6), then E ′ also has reduction
type II∗. If E has reduction type I0 and a′i ≡ ai (mod ν6), then E ′ also has
reduction type I0.

(b) Suppose the valuation at ν of the discriminants is, in each case, equal to 16.
If E has reduction type II and a′i ≡ ai (mod ν8), then E ′ also has reduction
type II.

(c) Suppose the Weierstrass equation of E is in minimal form, and E has reduc-
tion type II or III. If a′i ≡ ai (mod ν8), then E ′ has the same reduction type as
E and is also in minimal form.

Proof. We give a proof for case (a); the remaining cases are similar. Since the
discriminants of E and E ′ have valuation 12, when E and E ′ are processed through
Tate’s algorithm [Silverman 1994], the algorithm terminates at one of Steps 1–10
or reaches Step 11 to loop back a second time at most once.
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If E has reduction type II∗, the algorithm applied to E terminates at Step 10.
Since the transformations used in Steps 1–10 are translations, they preserve the
congruence ai ≡ a′i (mod ν6) as E and E ′ are processed through the algorithm,
and since the conditions to exit at Steps 1–10 are congruence conditions modulo
ν6 on the coefficients of the Weierstrass equations, we see that if the algorithm
applied to E terminates at Step 10, it must also terminate at Step 10 for E ′.

If E has reduction type I0, the algorithm applied to E reaches Step 11 to loop
back a second time to terminate at Step 1 (because the valuation of the discriminant
of the model for E is equal to 12). Again, since a′i ≡ ai (mod ν6), it follows that
the algorithm applied to E ′ also reaches Step 11 to loop back a second time and
terminate at Step 1 (again because the valuation of the discriminant of the model
for E ′ is equal to 12). �

Theorem 6. The conductor of Eβ is

m= q4
2 ·q

ε
3

∏
q|c

q-2,3

q,

where ε = 0, 4.

Proof. See tate2m.txt and tate3m.txt for the computations. Recall that Eβ is given
by

Eβ : Y 2
= X3

− 3(5b3
+ 4ai)bγ 2 X + 2(11b6

+ 14ib3a− 2a2)γ 3, (7)

with
1Eβ =−28

· 33
· (a− ib3)(a+ ib3)3 · γ 6. (8)

Then

c4 = 24
· 32
· b(4ia+ 5b3) · γ 2

c6 = 25
· 33
· (2a+ (−7i − 6z2

+ 3)b3)(2a+ (−7i + 6z2
− 3)b3) · γ 3.

(9)

Let q be a prime not dividing 2 ·3 but dividing 1Eβ . The elliptic curve Eβ has bad
multiplicative reduction at q if one of c4, c6 6≡ 0 (mod q). Since γ is not divisible
by q and gcd(a, b)= 1, we note that c4 ≡ c6 ≡ 0 (mod q) happens if and only if

b3
≡ 0 (mod q) or 4ia+ 5b3

≡ 0 (mod q),

and

2a+ (−7i − 6z2
+ 3)b3

≡ 0 (mod q) or 2a+ (−7i + 6z2
− 3)b3

≡ 0 (mod q).

The determinants of the resulting linear system in the variables a and b3, in all
four cases, are only divisible by primes above 2 and 3. It follows that Eβ has bad
multiplicative reduction at q.



716 Michael A. Bennett and Imin Chen

By (8), since gcd(a, b) = 1, we have v3(1Eβ ) = 12. We run through all possi-
bilities for (a, b) modulo ν6

3 and, in each case, we compute the reduction type of
Eβ at q3 using MAGMA; in every case, said reduction type turns out to be of type
II∗ or I0. By Lemma 5(a), this determines all the possible conductor exponents for
Eβ at q3.

Since a and b are of opposite parity, (8) implies that v2(1Eβ )= 16. Checking all
possibilities for (a, b) modulo ν8

2 , and in each case computing the reduction type
of Eβ at q2, via MAGMA, we always arrive at reduction type II. By Lemma 5(b),
this determines all the possible conductor exponents for Eβ at q2. �

Theorem 7. The conductor of ResKβ

Q
Eβ is

dKβ/Q
2
· NKβ/Q(m)= 216

· 34+2ε
·

∏
q|c

q 6=2,3

q4,

where ε = 0, 4.

Proof. See [Milne 1972, Lemma, p. 178]. We also note that Kβ is unramified
outside {2, 3} so the product is of the form stated. �

Corollary 8. The elliptic curve Eβ has potentially good reduction at q2 and q3. In
the latter case, the reduction is potentially supersingular.

Let A = ResKβ
Q Eβ . By [Quer 2000, Theorem 5.4], A is an abelian variety of

GL2 type with Mβ=Q(
√

3, i). The conductor of the system of Mβ,π [GQ]-modules
{V̂π (A)} is given by

24
· 31+ε/2

·

∏
q|c

q 6=2,3

q, (10)

using the conductor results explained in [Chen 2010].
For the next two theorems, it is useful to recall that a − b3i and a + b3i are

coprime p-th powers in Z[i].

Theorem 9. The representation φE,p|Ip is finite flat for p 6= 2, 3.

Proof. This follows from the fact that E has good or bad multiplicative reduction
at primes above p when p 6= 2, 3, and in the case of bad multiplicative reduction,
the exponent of a prime above p in the minimal discriminant of E is divisible by
p. Also, p is unramified in Kβ so that Ip ⊆ G Kβ

. �

Theorem 10. The representation φE,p|I` is trivial for ` 6= 2, 3, p.

Proof. This follows from the fact that E has good or bad multiplicative reduction
at primes above ` when ` 6= 2, 3, and, in the case of bad multiplicative reduction,
the exponent of a prime above ` in the minimal discriminant of E is divisible by
p. Also, ` is unramified in Kβ so that I` ⊆ G Kβ

. �
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Theorem 11. Suppose p 6= 2, 3. The conductor of ρ = ρE,β,π is one of 48 or 432.

Proof. Since we are determining the Artin conductor of ρ, we consider only rami-
fication at primes above ` 6= p.

Suppose ` 6= 2, 3, p. Since ` 6= 2, 3, we see that Kβ is unramified at ` and hence
G Kβ

contains I`. Now, in our case, ρ|G Kβ
is isomorphic to φE,p. Since φE,p|I` is

trivial, ρ|I` is trivial, so ρ is unramified outside {2, 3, p}.
Suppose ` = 2, 3. The representation φ̂E,p|I` factors through a finite group of

order only divisible by the primes 2 and 3. Now, in our case, ρ̂|G Kβ
is isomorphic

to φ̂E,p. Hence, the representation ρ̂|I` also factors through a finite group of order
only divisible by the primes 2 and 3. It follows that the exponent of ` in the
conductor of ρ is the same as in the conductor of ρ̂ as p 6= 2, 3. �

Proposition 12. Suppose p 6= 2, 3. Then the weight of ρ = ρE,β,π is 2.

Proof. The weight of ρ is determined by ρ|Ip . Since p 6= 2, 3, we see that Kβ is
unramified at p and hence G Kβ

contains Ip. Now, in our case, ρ|G Kβ
is isomorphic

to φE,p. Since φE,p|Ip is finite flat and its determinant is the p-th cyclotomic
character, the weight of ρ is necessarily 2 [Serre 1987, Proposition 4]. �

Proposition 13. The character of ρE,β,π is ε.

Proof. This follows from (4). �

Let X K
0,B(d, p), X K

0,N (d, p), and X K
0,N ′(d, p) be the modular curves with level-p

structure corresponding to a Borel subgroup B, the normalizer of a split Cartan
subgroup N , the normalizer of a nonsplit Cartan subgroup N ′ of GL2(Fp), and
level-d structure consisting of a cyclic subgroup of order d, twisted by the quadratic
character associated to K through the action of the Fricke involution wd .

Lemma 14. Let E be a Q-curve defined over K ′, K a quadratic number field
contained in K ′, and d a prime number such that

(a) the elliptic curve E is defined over K ,

(b) the choices of µE(σ ) are constant on G K cosets, µE(σ ) = 1 when σ ∈ G K ,
and degµE(σ )= d when σ /∈ G K , and

(c) µE(σ )
σµE(σ )=±d whenever σ /∈ G K .

If ρE,β,π has image lying in a Borel subgroup, normalizer of a split Cartan sub-
group, or normalizer of a nonsplit Cartan subgroup of F×p GL2(Fp), then E gives
rise to a Q-rational point on the corresponding modular curve above.

Proof. This proof is based on [Ellenberg 2004, Proposition 2.2]. Recall the action
of GQ on PE[d] is given by x 7→µE(σ )(

σx). Suppose PρE,β,p has image lying in
a Borel subgroup. Then we have that µE(σ )(

σC p)=C p for some cyclic subgroup
C p of order p in E[p] and all σ ∈GQ. Let Cd be the cyclic subgroup of order d in
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E[d] defined by µE(σ )(
σE[d]) where σ is an element of GQ which is nontrivial

on K . This does not depend on the choice of σ . Suppose σ is an element of GQ

which is nontrivial on K . The kernel of µE(σ ) is precisely σCd as µE(σ )(
σCd)=

µE(σ )
σµE(σ )(

σ 2
E[d])= [±d](σ

2
E[d])= 0. Hence, we see that

wd
σ(E,Cd ,C p)= wd(

σE, σCd ,
σC p)

= (µE(σ )(
σE), µE(σ )(

σE[d]), µE(σ )(
σC p))

= (E,Cd ,C p),

so σ(E,Cd ,C p) = wd(E,Cd ,C p), where wd is the Fricke involution. Suppose σ
is an element of GQ which is trivial on K . In this case, we have σ(E,Cd ,C p) =

(E,Cd ,C p). Thus, (E,Cd ,C p) gives rise to a Q-rational point on X0,B(d, p).
The case when the image of ρE,β,π lies in the normalizer of a Cartan subgroup

is similar except now we have the existence of a set of distinct points Sp={αp, βp}

of PE[p] ⊗ Fp2 such that the action of σ ∈ GQ by x 7→ µE(σ )(
σx) fixes Sp as a

set. �

Theorem 15. Suppose the representation ρE,β,π is reducible for p 6= 2, 3, 5, 7, 13.
Then E has potentially good reduction at all primes above ` > 3.

Proof. See [Ellenberg 2004, Proposition 3.2]. E gives rise to a Q-rational point on
X K

0,N (3, p) by Lemma 14, even though the isogeny between E and its conjugate
is only defined over Q(

√
3, i). �

Corollary 16. The representation ρE,β,π is irreducible for p 6= 2, 3, 5, 7, 13.

Proof. Lemma 4 shows that E must have bad multiplicative reduction at some
prime of K above ` > 3. �

Proposition 17. If p = 13, then ρE,β,π is irreducible.

Proof. By Lemma 14, if ρE,β,π were reducible, then E would give rise to a noncus-
pidal K -rational point on X0(39) where K = Q(i) and a noncuspidal Q-rational
point on X0(39)/w3. We can now use [Kenku 1979] which says that X0(39)/w3

has four Q-rational points. Two of them are cuspidal. Two of them arise from
points in X0(39) defined over Q(

√
−7). Hence, no such E can exist, since a

K -rational point on X0(39) which is also Q(
√
−7)-rational must be Q-rational

(and again by [Kenku 1979], X0(39) has no noncuspidal Q-rational points). �

Outline of proof of Theorem 1. Using the modularity of E , which now follows
from Serre’s conjecture [Serre 1987; Khare and Wintenberger 2009a; 2009b; Kisin
2009] plus the usual level-lowering arguments based on results in [Ribet 1990],
we have ρE,π,β ∼= ρg,π , where g is a newform in S2(00(M), ε) where M = 48 or
M = 432. This holds for n = p ≥ 11.
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There is one newform F1 in S2(00(48), ε) and this has CM by Q(−3); see
inner-48.txt , cm-48.txt . At level 432, we find three newforms G1, G2, and G3

in S2(00(432), ε); inner-432.txt . As it transpires, both G1 and G2 have CM by
Q(−3); cm-432.txt . The form G3 is harder to eliminate as it does not have com-
plex multiplication and its field of coefficients is Mβ = Q(

√
3, i). Furthermore,

the complex conjugate of G3 is a twist of G3 by ε−1. In fact, G3 arises from the
near solution 12

+16
= 2 (this near solution gives rise to a form at level 432 and it

is the unique non-CM form at that level) so it shares many of the same properties
g should have as both arise from the same geometric construction. Note, however,
that one cannot have a ≡ b ≡ 1 (mod 2) in the equation a2

+ b6
= cp as p > 1.

Unfortunately, it is not possible to eliminate the possibility of g=G3 by consid-
ering the fields cut out by images of inertia at 2. Using [Kraus 1990, théorème 3]
and its proof, it can be checked that these fields are the same regardless of whether
or not a ≡ b ≡ 1 (mod 2).

In the next two sections, we show that in each case g = Gi , for i = 1, 2 (CM
case), and i = 3, we are led to a contradiction, if n = p ≥ 11. Finally, in the last
section, we deal with the cases n = 3, 4, 5, 7. This suffices to prove the theorem
as any integer n ≥ 3 is either divisible by an odd prime or by 4.

4. Eliminating the CM forms

When g = Gi for i = 1 or 2, g has complex multiplication by Q(
√
−3) so that

ρE,β,π has image lying in the normalizer of a Cartan subgroup for p> 3. However,
this leads to a contradiction using the arguments below.

Proposition 18. Let p ≥ 7 be prime and suppose there exists either a p-newform
in S2(00(3p2)) with wp f = f , w3 f = − f , or a p-newform in S2(00(p2)) with
wp f = f , such that L( f ⊗ χ−4, 1) 6= 0, where χ−4 is the Dirichlet character
associated to K =Q(i). Let E be an elliptic curve which gives rise to a noncusp-
idal Q-rational point on X K

0,N (3, p) or X K
0,N ′(3, p). Then E has potentially good

reduction at all primes of K above ` > 3.

Proof. See [Ellenberg 2004] and comments in [Bennett et al. 2010, Proposition 6]
about the applicability to the split case (see also the argument in [Ellenberg 2004,
Lemma 3.5] which shows potentially good reduction at a prime of K above p in
the split case). �

Proposition 19. If p ≥ 11 is prime, then there exists a p-newform f ∈ S2(00(p2))

with wp f = f and L( f ⊗χ−4, 1) 6= 0.

Proof. For p ≥ 61, this is, essentially, the content of the proof of [Bennett et al.
2010, Proposition 7] (the proof applies to p≡ 1 (mod 8), not just to p 6≡ 1 (mod 8)
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as stated). Further, a relatively short Magma computation newform-twists.txt re-
veals the same to be true for smaller values of p with the following forms f (the
number following the level indicates Magma’s ordering of forms; one should note
that this numbering is consistent neither with Stein’s modular forms database nor
with Cremona’s tables):

p f dim f p f dim f p f dim f

11 121 (1) 1 29 841 (1) 2 47 2209 (9) 16
13 169 (2) 3 31 961 (1) 2 53 2809 (1) 1
17 289 (1) 1 37 1369 (1) 1 59 3481 (1) 2
19 361 (1) 1 41 1681 (1) 2
23 529 (7) 4 43 1849 (1) 1 �

Theorem 20. Suppose the representation ρE,β,π has image lying in the normalizer
of a Cartan subgroup for p ≥ 11. Then E has potentially good reduction at all
primes of K above ` > 3.

Proof. We note that E still gives rise to a Q-rational point on X K
0,N (3, p) or

X K
0,N ′(3, p) with K = Q(i), even though, as a consequence of Lemma 14, the

isogeny between E and its conjugate is only defined over Q(
√

3, i). �

Theorem 21. If p ≥ 11 is prime, the representation ρE,β,π does not have image
lying in the normalizer of a Cartan subgroup.

Proof. Lemma 4 immediately implies that E necessarily has bad multiplicative
reduction at a prime of K lying above some ` > 3. �

5. Eliminating the newform G3

Recall that E = Ea,b is given by

E : Y 2
= X3

− 3(5b3
+ 4ai)bX + 2(11b6

+ 14ib3a− 2a2).

Let E ′ = E ′a,b be the elliptic curve

E ′ : Y 2
= X3

+ 3b2 X + 2a,

which is a Frey–Hellegouarch elliptic curve over Q for the equation a2
+ (b2)3 =

cp. We will show how to eliminate the case of g = G3 using a combination of
congruences from the two Frey curves E and E ′. This is an example of the multi-
Frey technique [Bugeaud et al. 2008a; 2008b], as applied to the situation when one
of the Frey curves is a Q-curve. We are grateful to Siksek for suggesting a version
of Lemma 24 which allows us to do this.
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The discriminant of E ′ is given by

1′ =−26
· 33(a2

+ b6). (11)

For a 6≡ b (mod 2), v2(1
′) = 6, so E ′ is in minimal form at 2. Since a and b are

not both multiples of 3, we have v3(1
′) = 3 and so E ′ is also minimal at 3. If q

divides 1′ and is neither 2 nor 3, then E ′ has bad multiplicative reduction at q .
For each congruence class of (a, b) modulo 24 where a 6≡ b (mod 2), we com-

pute the conductor exponent at 2 of E ′ using MAGMA. The conductor exponent at
2 of each test case was 5 (reduction type III) or 6 (reduction type II): tate2m-3.txt .
By Lemma 5(c), the conductor exponent at 2 of E ′ is 5 or 6. In a similar way,
the conductor exponent at 3 of E ′ is 2 (reduction type III) or 3 (reduction type II):
tate3m-3.txt .

We are now almost in position to apply the modular method to E ′. We need
only show that the representation ρE ′,p arising from the p-torsion points of E ′ is
irreducible.

Lemma 22. If p ≥ 11 is prime, then ρE ′,p is irreducible.

Proof. If p 6= 13, the result follows essentially from [Mazur 1978] (see [Dahmen
2008, Theorem 22]), provided jE ′ is not one of

−215, −112, −11 ·1313,
−17·3733

217 ,
−172
·1013

2
, −215

·33, −7 ·1373
·20833,

−7 · 113, −218
· 33
· 53, −215

· 33
· 53
· 113, −218

· 33
· 53
· 233
· 293.

Since

jE ′ =
1728b6

a2+ b6 > 0,

we may thus suppose that p = 13. In this case, if ρE ′,p were reducible, the repre-
sentation would correspond to a rational point on the curve defined via the equation
j13(t)= jE ′ , where j13(t) is the map from the modular curve X0(13) to X (1), given
by

j13(t)=
(t4
+ 7t3

+ 20t2
+ 19t + 1)3(t2

+ 5t + 13)
t

=
(t6
+ 10t5

+ 46t4
+ 108t3

+ 122t2
+ 38t − 1)2(t2

+ 6t + 13)
t

+ 1728.

Writing s = a/b3, we thus have 1728/(s2
+ 1)= j13(t), for some t ∈Q, and so

s2
=

1728− j13(t)
j13(t)

=−
(t6
+10t5

+46t4
+108t3

+122t2
+38t−1)2(t2

+6t+13)
(t4+7t3+20t2+19t+1)3(t2+5t+13)

.
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It follows that there exist rational numbers x and y with

y2
=−(x2

+ 6x + 13)(x2
+ 5x + 13)(x4

+ 7x3
+ 20x2

+ 19x + 1),

and hence coprime, nonzero integers u and v, and an integer z for which

(u2
+ 6uv+ 13v2)(u2

+ 5uv+ 13v2)(u4
+ 7u3v+ 20u2v2

+ 19uv3
+ v4)=−z2.

Note that, via a routine resultant calculation, if a prime p divides both u2
+6uv+

13v2 and the term (u2
+ 5uv + 13v2)(u4

+ 7u3v + 20u2v2
+ 19uv3

+ v4), then
necessarily p ∈ {2, 3, 13}. Since u2

+ 6uv+ 13v2 is positive-definite and u, and v
are coprime (whereby u2

+ 6uv+ 13v2
≡±1 (mod 3)), we thus have

u2
+ 6uv+ 13v2

= 2δ113δ2 z2
1,

(u2
+ 5uv+ 13v2)(u4

+ 7u3v+ 20u2v2
+ 19uv3

+ v4)=−2δ113δ2 z2
2,

for z1, z2 ∈ Z and δi ∈ {0, 1}. The first equation, with δ1 = 1, implies that u ≡ v ≡
1 (mod 2), contradicting the second. We thus have δ1 = 0, whence

u2
+ 6uv+ 13v2

≡ u2
+ v2
≡ z2

1 ≡ 1 (mod 3),

so that 3 divides one of u and v, again contradicting the second equation, this time
modulo 3. �

Applying the modular method with E ′ as the Frey curve thus shows that ρE ′,p∼=

ρg′,π ′ for some newform g′ ∈ S2(00(M)) where M = 2r 3s , r ∈ {5, 6}, and s ∈ {2, 3}
(here π ′ is a prime above p in the field of coefficients of g′). The possible forms g′

were computed using b3i-modformagain.txt . The reason the multi-Frey method
works is because when a 6≡ b (mod 2), we that r ∈ {5, 6}, whereas when a ≡ b ≡
1 (mod 2), we have r = 7. Thus, the 2-part of the conductor of ρE ′,π separates
the cases a 6≡ b (mod 2) and a ≡ b (mod 2). Hence, the newform g′ that the near
solution a = b = 1 produces does not cause trouble from the point of view of the
Frey curve E ′. By linking the two Frey curves E and E ′, it is possible to pass
this information from the Frey curve E ′ to the Frey curve E , by appealing to the
multi-Frey technique.

The following lemma results from the condition ρE ′,p ∼= ρg′,π ′ and standard
modular method arguments.

Lemma 23. Let q ≥ 5 be prime and assume q 6= p, where p ≥ 11 is a prime. Let

Cx,y(q, g′)=
{

aq(E ′x,y)− aq(g′) if x2
+ y6
6≡ 0 (mod q),

(q + 1)2− aq(g′)2 if x2
+ y6
≡ 0 (mod q).

If (a, b)≡ (x, y) (mod q), then p|Cx,y(q, g′).
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For our choice of splitting map β, we attached a Galois representation ρE,β,π to
E such that ρE,β,π ∼=ρg,π for some newform g∈ S2(00(M), ε)where M=48, 432.
We wish to eliminate the case of g=G3. The following is the analog of Lemma 23
for E = Ea,b.

Lemma 24. Let q ≥ 5 be prime and assume q 6= p, where p ≥ 11 is prime. Let

Bx,y(q, g)

=


N (aq(Ex,y)

2
−ε(q)aq(g)2) if x2

+ y6
6≡ 0 (mod q) and

(
−4
q

)
= 1,

N (aq(g)2−aq2(Ex,y)−2qε(q)) if x2
+ y6
6≡ 0 (mod q) and

(
−4
q

)
=−1,

N (ε(q)(q+1)2−aq(g)2) if x2
+ y6
≡ 0 (mod q),

where aq i (Ex,y) is the trace of Frobi
q acting on the Tate module Tp(Ex,y).

If (a, b)≡ (x, y) (mod q), then p|Bx,y(q, g).

Proof. Recall the setup in Sections 2 and 3. Let π be a prime of Mβ above p. The
mod π representation ρAβ ,π of GQ attached to Aβ is related to Eβ by

PρAβ ,π |G K
∼= PφEβ ,p,

where φEβ ,p is the representation of G K on the p-adic Tate module Tp(Eβ) of
Eβ , and the P indicates that we are considering isomorphism up to scalars. The
algebraic formula which describes ρEβ ,β,π = ρAβ ,π

∼= ρ f,π is

ρAβ ,π (σ )(1⊗ x)= β(σ)−1
⊗µ′β(σ )(φEβ ,p(σ )(x))

where 1⊗x ∈Mβ,π⊗Tp(Eβ). Here, µ′β(σ ) is the chosen isogeny from σEβ→ Eβ
for each σ which is constant on G K (see the paragraph after (6)).

If x2
+ y6
≡ 0 (mod q), then q|c. Recall the conductor of Aβ is given by

24
· 31+ε/2

·

∏
q|c

q 6=2,3

q,

so that q exactly divides the conductor of Aβ . Using the condition ρ f,π ∼= ρg,π ,
we can deduce from [Carayol 1983, théorème 2.1], [Carayol 1986, théorème (A)],
[Darmon et al. 1997, Theorem 3.1], and [Gross 1990, (0.1)] that

p|N
(
aq(g)2− ε−1(q)(q + 1)2

)
.

If x2
+ y6

6≡ 0 (mod q), then let q be a prime of Kβ over q. Let E = Ea,b be
the reduction modulo q of E . Since (a, b) ≡ (x, y) (mod q), we have E = Ex,y .
Furthermore, since q is a prime of good reduction, Tp(E)∼= Tp(E).



724 Michael A. Bennett and Imin Chen

We now wish to relate the representation ρEβ ,β,π = ρAβ ,π
∼= ρ f,π to the repre-

sentation φE,p for the original E . We know that

cEβ (σ, τ )= β(σ)β(τ)β(στ)
−1 and cEβ (σ, τ )= cE(σ, τ )κ(σ )κ(τ )κ(στ)

−1,

where κ(σ )=
σ(
√
γ )
√
γ

and γ = −3+i
√

3
2

. It follows that

cE(σ, τ )= β
′(σ )β ′(τ )β ′(στ)−1,

where β ′(σ ) = β(σ)κ(σ ), so that β ′ is a splitting map for the original cocycle
cE(σ, τ ). Also, recall that ε(Frobq)=

( 12
q

)
.

Now we have

ρAβ′ ,π (σ )(1⊗ x)= β ′(σ )−1
⊗µ(σ)(φE,p(σ )(x)),

where 1⊗ x ∈ Mβ,π ⊗ Tp(E). For this choice of β ′(σ ),

ρAβ′ ,π
∼= κ(σ )ξ(σ )⊗ ρAβ ,π

∼= κ(σ )ξ(σ )⊗ ρ f,π .

This can be seen by fixing the isomorphism ι : E ∼= Eβ , using standard Weierstrass
models and then appealing to the

Eβ
σ // σEβ

µEβ (σ ) // Eβ

E

ι

OO

σ // σE

σι

OO

µE (σ ) // E .

ι

OO

Recall that β(σ) =
√
ε(σ )
√

d(σ ), so that β ′(σ ) =
√
ε(σ )
√

d(σ )κ(σ ). We note
that d(σ )= 1 if σ ∈ GQ(

√
−1) and d(σ )= 3 if σ /∈ GQ(

√
−1).

Now
(
−4
q

)
= 1 means σ = Frobq ∈ GQ(

√
−1). If σ ∈ GQ(

√
−1), then µ(σ) = id

and d(σ )= 1 so

ρAβ′ ,π (σ )(1⊗x)=β ′(σ )−1
⊗µ(σ)(φE,p(σ )(x))=

√
ε(σ )

−1
κ(σ )−1

⊗φE,p(σ )(x),

so tr ρAβ′ ,π (σ ) =
√
ε(σ )

−1
κ(σ )−1

· trφE,p(σ ) and ε(q)aq( f )2 = aq(E)2. Also
aq( f )≡ aq(g) (mod π), giving the assertion that p|Bα(q, g) in the case

(
−4
q

)
= 1.

If
(
−4
q

)
=−1, then σ = Frobq /∈ GQ(

√
−1). But then σ 2

∈ GQ(
√
−1), and in fact,

σ 2
∈ GQ(

√
−1,
√

3), so by the argument above we get

tr ρAβ′ ,π (σ
2)=

√
ε(σ )

−1
κ(σ )−1

· trφE,p(σ
2)= trφE,p(σ

2)= aq2(E).
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Also, tr ρAβ′ ,π (σ )= κ(σ )ξ(σ )aq( f ) so tr ρAβ′ ,π (σ )
2
= aq( f )2. We have

1
det(1− ρAβ′ ,π (σ )q

−s)
= exp

∞∑
r=1

tr ρAβ′ ,π (σ
r )

q−sr

r

=
1

1− tr ρAβ′ ,π (σ )q
−s + qε(q)q−2s .

The determinant and traces are of vector spaces over Mβ,π . Computing the coeffi-
cient of q−2s and equating, we find that tr ρAβ′ ,π (σ

2)= tr ρAβ′ ,π (σ )
2
−2qε(q) and

hence conclude that aq( f )2− 2qε(q)= aq2(E). Since aq( f )≡ aq(g) (mod π), it
follows that p|Bα(q, g) in the case

(
−4
q

)
=−1 as well. �

Let
Aq(g, g′) :=

∏
(x,y)∈F2

q
(x,y) 6=(0,0)

gcd(Bx,y(q, g),Cx,y(q, g′)).

Then we must have p|Aq(g, g′). For a pair g, g′, we can pick a prime q and
compute Aq(g, g′). Whenever this Aq(g, g′) 6= 0, we obtain a bound on p so that
the pair g, g′ cannot arise for p larger than this bound.

For g = G3, and g′ running through the newforms in S2(00(2r 3s)) where r ∈
{5, 6} and s ∈ {2, 3}, the above process eliminates all possible pairs g = G3 and
g′; see multi-frey.txt . In particular, using q = 5 or q = 7 for each pair shows that
p ∈ {2, 3, 5}. Hence, if p /∈ {2, 3, 5, 7}, then a solution to our original equation
cannot arise from the newform g = G3.

6. The cases n = 3, 4, 5, 7

It thus remains only to treat the equation a2
+ b6
= cn for n ∈ {3, 4, 5, 7}. In each

case, without loss of generality, we may suppose that we have a proper, nontrivial
solution in positive integers a, b, and c. If n=4 or 7, the desired result is immediate
from [Bruin 1999] and [Poonen et al. 2007], respectively. In the case n = 3, a
solution with b 6= 0 implies, via the equation( a

b3

)2
=

( c
b2

)3
− 1,

a rational point on the elliptic curve given by E : y2
= x3
− 1, Cremona’s 144A1

of rank 0 over Q with E(Q)∼= Z/2Z. It follows that c = b2 and hence a = 0.
Finally, we suppose that a2

+b6
= c5, for coprime positive integers a, b, and c.

From parametrizations for solutions to x2
+ y2
= z5 (see, for example, [Chen 2010,

Lemma 2]), it is easy to show that there exist coprime integers u and v (and z) for
which

v4
− 10v2u2

+ 5u4
= 5δz3, (12)
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with either

(a) v = β3, δ = 0, β coprime to 5, or

(b) v = 52β3, δ = 1, for some integer β.

Let us begin by treating the latter case. From (12), we have

(u2
− v2)2− 4 · 57

·β12
= z3
;

and hence taking

x =
z

52β4 , y =
u2
− v2

53β6 ,

we have a rational point on E : y2
= x3

+ 20, Cremona’s 2700E1 of rank 0 and
trivial torsion (with no corresponding solutions of interest to our original equation).

We may thus suppose that we are in situation (a), so that

β12
− 10β6u2

+ 5u4
= z3. (13)

Since β and u are coprime, we may assume that they are of opposite parity (and
hence that z is odd), since β ≡ u ≡ 1 (mod 2) with (13) leads to an immediate
contradiction modulo 8. Writing T = β6

− 5u2, (13) becomes T 2
− 20u4

= z3,
where T is coprime to 10. Factoring over Q(

√
5) (which has class number 1), we

deduce the existence of integers m and n, of the same parity, such that

T + 2
√

5u2
=

(1+
√

5
2

)δ(m+n
√

5
2

)3
, (14)

with δ ∈ {0, 1, 2}.
Let us first suppose that δ = 1. Then, expanding (14), we have

m3
+15m2n+15mn2

+25n3
= 16T and m3

+3m2n+15mn2
+5n3

= 32u2.

It follows that
3m2n+ 5n3

= 4T − 8u2
≡ 4 (mod 8),

contradicting the fact that m and n have the same parity. Similarly, if δ = 2, we
find that

3m3
+15m2n+45mn2

+25n3
= 16T and m3

+9m2n+15mn2
+15n3

= 32u2,

and so
3m2n+ 5n3

= 24u2
− 4T ≡ 4 (mod 8),

again a contradiction.
We thus have δ = 0, and so

m(m2
+ 15n2)= 8T = 8(β6

− 5u2) and n(3m2
+ 5n2)= 16u2. (15)
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Combining these equations, we may write

16β6
= (m+ 5n)(2m2

+ 5mn+ 5n2). (16)

Returning to the last equation of (15), since gcd(m, n) divides 2, we necessarily
have n = 2δ13δ2r2 for some integers r and δi ∈ {0, 1}. Considering the equation
n(3m2

+ 5n2) = 16u2 modulo 5 implies that (δ1, δ2) = (1, 0) or (0, 1). In case
(δ1, δ2) = (1, 0), the two equations in (15), taken together, imply a contradiction
modulo 9.

We may thus suppose that (δ1, δ2) = (0, 1) and, setting y = (2β/r)3 and x =
6m/n in (16), we find that

y2
= (x + 30)(x2

+ 15x + 90).

This elliptic curve is Cremona’s 3600G1, of rank 0 with nontrivial torsion corre-
sponding to x =−30, y = 0.

It follows that there do not exist positive coprime integers a, b, and c for which
a2
+ b6
= c5, which completes the proof of Theorem 1.
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