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Suppose that closed subschemes X ⊂ Y ⊂ PN differ at finitely many points:
when is Y a flat specialization of X union isolated points? Our main result says
that this holds if X is a local complete intersection of codimension two and the
multiplicity of each embedded point of Y is at most three. We show by example
that no hypothesis can be weakened: the conclusion fails for embedded points of
multiplicity greater than three, for local complete intersections X of codimension
greater than two, and for nonlocal complete intersections of codimension two.
As applications, we determine the irreducible components of Hilbert schemes of
space curves with high arithmetic genus and show the smoothness of the Hilbert
component whose general member is a plane curve union a point in P3.

1. Introduction

An attractive aspect of algebraic geometry is that moduli spaces for its objects tend
themselves to be algebraic varieties. Ever since Grothendieck [1961] proved their
existence, the Hilbert schemes Hilbp(z)(PN ) classifying flat families of subschemes
in PN with fixed Hilbert polynomial p(z) have drawn great interest. One of the
first major results was the connectedness of Hilbert schemes, proved in [Hartshorne
1966]. More recently Liaison theory [Peskine and Szpiro 1974; Martin-Deschamps
and Perrin 1990; Migliore 1998] has focused attention on Hilbert schemes Hd,g

of degree d, arithmetic genus g, locally Cohen–Macaulay curves in P3. The
connectedness of Hd,g remains an open question [Nollet 1997; 2006; Hartshorne
2000; Nollet and Schlesinger 2003].

While Hilbert schemes can be quite complicated in general, Piene and Sch-
lessinger [1985] gave a satisfying picture of Hilb3z+1(P3): there are two smooth
irreducible components of dimensions 12 and 15 which meet transversely along
an 11-dimensional family. In [Chen 2008], Mori’s program was applied to the
12-dimensional component of twisted cubics, working out the effective cone de-
composition and the corresponding models, exhibiting it as a flip of the Kontsevich
moduli space of stable maps over the Chow variety. Similarly the Hilbert scheme
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component of unions of a pair of codimension-two linear subspaces of PN is a
smooth Mori dream space [Chen et al. 2011].

In an effort to achieve a similar understanding of the geometry of the Hilbert
scheme component H1 of rational quartic curves in P3, the first obstacle is deter-
mining the other irreducible components of Hilb4z+1(P3). There are three natural
families whose general members consist of the disjoint union of a line and a plane
cubic, the disjoint union of an elliptic quartic curve and a point, and the disjoint
union of a plane quartic and three points, but what about a possible component
whose general member has an embedded point? We show in Example 2.9 that such
Hilbert scheme components exist for curves of degree four and sufficiently negative
genus. This motivates the following question:

Question 1.1. If X is obtained from Y ⊂ PN by removing the zero-dimensional
components, under what conditions is Y in the Hilbert scheme closure of the family
consisting of X union isolated points?

When this is the case, we say that Y is a flat limit of X union isolated points, or
simply that one can detach the embedded points of Y .

Remarks 1.2. (a) From the Hilbert scheme perspective, we should allow X to vary
in the flat family. On the other hand, it is clearly desirable to have results requiring
no information on how X sits in its Hilbert scheme, for they will be easier to apply.

(b) Question 1.1 is already interesting when X is empty. Fogarty [1968] observed that
Hilbd(P2) is irreducible for all d > 0, but Iarrobino [1972] showed that Hilbd(P3) is
reducible for d � 0. The minimum such value of d is still unknown. Iarrobino and
Emsalem [1978] showed that Hilb8(P4) is reducible and [Mazzola 1980] showed
that Hilbd(Pn) is irreducible for d ≤ 7. Cartwright et al. [2009] extended this to
prove that for d ≤ 8, Hilbd(PN ) is reducible if and only if d = 8 and N ≥ 4.

We are interested in the case dim X > 0. The kernel K of the surjection OY→OX

has finite length and may be written
⊕

K p with p in the support of K . For such p,
we say that the multiplicity of p is length K p. The following criterion tells when
all subschemes obtained from X by adding an embedded point of multiplicity one
at p ∈ X are flat limits of X union an isolated point (see Theorem 2.3).

Theorem 1.3. For p ∈ X ⊂ PN , the following are equivalent:

(1) All subschemes Y obtained from X by adding an embedded point of multiplicity
one at p are flat limits of X union an isolated point.

(2) The ideal sheaf IX has r minimal generators at p with r ≤ N and π−1(p)∼=
Pr−1, where π : P̃N

→ PN is the blow-up at X.

In particular, if X is a local complete intersection, then any embedded point of
multiplicity one can be detached from X.
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Condition (2) makes it easy to recognize when there exist schemes Y obtained
from X which are not flat limits of X union an isolated point (see Example 2.6).
Sometimes an embedded point of multiplicity one cannot be detached even if X
is allowed to move in the deformation (see Example 1.5). Our main result gives
conditions under which embedded points of various multiplicities can be detached
(see Theorem 3.9):

Theorem 1.4. Let X ⊂ PN be a local complete intersection of codimension two. If
Y is obtained from X by adding embedded points of multiplicity at most three, then
Y is a flat limit of X union isolated points.

The hypotheses may seem restrictive, but Theorem 1.4 is sharp in all aspects, as
the following examples show.

Example 1.5. For any g ≤ −15, the Hilbert scheme Hilb4z+1−g(P3) has an irre-
ducible component H of dimension 9−2g whose general member is the union of a
multiplicity 4-line containing the triple line of generic embedding dimension three
and an embedded point of multiplicity one. Details are given in Example 2.9.

Example 1.6. There are local complete intersections X ⊂ PN of codimension
greater than two and Y obtained from X by adding an embedded point of multiplicity
two which are not flat limits of X union two isolated points. Let X be the nonreduced
curve in P4 with ideal IX = (x2, y2, z2). The family of double point structures on
X has dimension equal to eight, the same as the dimension of the family consisting
of X union two isolated points, hence the former cannot lie in the closure of the
latter. See Example 3.6 for details.

Example 1.7. There are local complete intersections X ⊂ PN of codimension two
and Y obtained from X by adding an embedded point of multiplicity four which
are not flat limits of X union four isolated points. For X with ideal IX = (x2, y2)

in PN , we give a family of such subschemes Y having dimension 5N − 6, hence
the general member cannot be a flat limit of X union four isolated points for N > 5.
See Example 3.10 for details.

Remark 1.8. (a) For Y and X as in Theorem 1.4, there is an exact sequence

0→ IY → IX
ϕ
→ K → 0, (1)

where K is a sheaf of finite length. It is clear that the sheaf K is uniquely determined
by Y (it is the quotient IX/IY ) and that two surjections ϕ and ϕ′ yield the same
subscheme Y if and only if there exists an automorphism σ of K such that ϕ′=σ ◦ϕ.
The technique of our proof deforms the pair (ϕ, K ).

(b) It is not the case that the embedded points can be pulled away one at a time; see
Example 3.5.
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(c) If X is a hypersurface and Y is obtained from X by adding embedded points
of any multiplicities, then Y is a flat limit of X union isolated multiple points. In
particular, such Y is a flat limit of X union isolated reduced points if the multiplicities
are less than eight (Proposition 2.4).

Applying Theorem 1.4 to plane curves in P3, we deduce the following:

Corollary 1.9. For d ≥ 6 and (d − 1)(d − 2)/2− 3 ≤ g ≤ (d − 1)(d − 2)/2, the
Hilbert scheme Hilbdz+1−g(P3) is irreducible.

In Section 3 we give many other applications to space curves of low degree.
Letting g = (d − 1)(d − 2)/2 be the genus of a degree-d plane curve, we give the
following smoothness result:

Theorem 1.10. Let Hd ⊂ Hilbdz+2−g(P3) be the closure of the family of degree-d
plane curves union an isolated point. Then Hd is smooth for all d ≥ 1, and
hence isomorphic to the blow-up of Hilbdz+1−g(P3) × P3 along the incidence
correspondence.

Remark 1.11. Similarly the Hilbert scheme of a hypersurface in PN union an
isolated point is smooth (Theorem 4.1), but the Hilbert scheme is not smooth at
plane curves union certain double embedded points (Remark 4.4).

Regarding organization, we deal with the question of detaching embedded points
of multiplicity one in Section 2, and with embedded points of multiplicities two or
three in Section 3. Our applications to Hilbert schemes are found in Section 4.

Conventions. For a subscheme Z ⊂ PN , IZ denotes its sheaf of ideals and IZ

denotes its homogeneous (saturated) ideal or sometimes the ideal of Z in an open
affine chart. We often write O for the structure sheaf of the ambient projective space
and S for the homogeneous coordinate ring. A curve is a (purely) one-dimensional
scheme. We say that Y is a flat limit of X union isolated points if Y is in the Hilbert
scheme closure of this family. This is equivalent to the existence of a one-parameter
family {Yt }t∈T in which Yt is X union isolated points for t general and Y = Y0, and
this is typically how we exhibit such a flat limit. We sometimes speak of a flat limit
of ideals (or ideal sheaves) when working with the corresponding ideals. If two
schemes X ⊂ Y differ at an embedded point supported at p ∈ X , the multiplicity
of the embedded point is the length of IX,p/IY,p. Throughout the paper we work
over an algebraically closed field k of arbitrary characteristic, but will occasionally
assume char k 6= 2, 3 to apply irreducibility results.

2. Detaching embedded points of multiplicity one

In this section we study embedded point structures of multiplicity one on a local
complete intersection X ⊂PN of codimension two. We also give a global result for
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ACM subschemes with 3-generated ideal (Proposition 2.7). We begin by determining
when an embedded point of multiplicity one can be detached from a subscheme
X ⊂ PN .

Proposition 2.1. For a proper subscheme X ⊂ PN , let V ⊂ Hilbp(z)+1(PN ) be the
closed subset of subschemes which may be obtained from X by adding a point p
(embedded or isolated). Then there is a diagram

P̃N (X) � � f //

π
��

V

h
��

PN = PN ,

(2)

in which π is the blow-up at X , h sends a subscheme in V to the added point, and
f extends the map PN

− X→ V given by p 7→ X ∪ p. Moreover, f is injective.

Proof. There is a uniform bound for the Castelnuovo–Mumford regularity of
every ideal sheaf defining a closed subscheme with Hilbert polynomial p(z), hence
h0(IY (m)) is independent of [Y ] ∈ Hilbp(z)+1(PN ) for sufficiently large m and the
map

Y 7→
(
H 0(PN ,IY (m))⊂ H 0(PN ,OPN (m))

)
yields a closed immersion F :Hilbp(z)+1(PN ) ↪→G to a suitable Grassmann variety
[Harris and Morrison 1998]. Since H 0(PN ,IY (m))⊂ H 0(PN ,IX (m)) has codi-
mension one for [Y ]∈V , the image F(V ) is contained in P(H 0(PN ,IX (m)))∨⊂G.
On the other hand, a standard construction [Peskine and Szpiro 1974, Proposi-
tion 4.1] yields a closed immersion P̃N (X)

j
↪→ P(H 0(PN ,IX (m)))∨ and for each

p ∈ PN
− X we have j (π−1(p)) = F(h−1(p)). Since V is closed, we obtain an

injective map P̃N (X) ↪→ V and accompanying diagram (2). �

Proposition 2.2. In diagram (2), the following are equivalent:

(a) V is irreducible.

(b) For each p ∈ X , dimk(p) IX,p⊗ k(p)= r ≤ N and π−1(p)∼= Pr−1.

(c) The map P̃N (X)
f
→ V is bijective.

Proof. For each [Y ] ∈ V , there is an exact sequence

0→ IY → IX → K p→ 0,

where K p ∼= Op is the skyscraper sheaf of length 1 supported at p. For fixed p, the
set of all such Y is given by surjections

φ ∈ Hom(IX ,Op)∼= Hom(IX,p, k(p))∼= Hom(IX ⊗ k(p), k(p)) (3)

modulo scalar. In view of Nakayama’s lemma, we see that h−1(p)∼= Pr−1
k(p), where

r is the minimal number of generators for IX at p.
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The equivalence of (a) and (c) is clear from Proposition 2.1. Condition (c) implies
that π−1(p)∼= h−1(p)∼=Pr−1 for each p ∈ X and r ≤ N because π−1(p)⊂ P̃N (X)
is a proper subset, proving (b). Conversely if (b) holds, then for p ∈ X , we have
injections Pr−1 ∼= π−1(p) ↪→ h−1(p)∼= Pr−1 which must be surjective by reason
of dimension, hence f : P̃N (X)→ V is bijective on the fibers over PN and is
therefore bijective. �

The next result follows from the argument above. It allows one to determine
when all embedded structures of multiplicity one supported at a fixed point can be
detached.

Theorem 2.3. For p ∈ X ⊂ PN , the following are equivalent:

(1) Every subscheme Y obtained from X by adding an embedded point of multi-
plicity one at p is a flat limit of X union an isolated point.

(2) X satisfies condition (b) of Proposition 2.2 at p.

In particular, these conditions hold if X is a local complete intersection.

Proof. In the setting of Proposition 2.1, let U = h−1(PN
−X)⊂ V correspond to the

subschemes obtained from X by adding an isolated point. Note that f (P̃N (X))=
U ⊂V , since it is a closed subset with dense open subset U ; hence for fixed p∈ X we
have an inclusion f (π−1(p))⊂h−1(p)∼=Pr−1. Now condition (b) holds if and only
if π−1(p)∼=Pr−1, if and only if f (π−1(p))= h−1(p) by reason of dimension and
irreducibility of Pr−1; but this equality is equivalent to h−1(p)⊂ f (P̃N (X))=U ,
which is equivalent to condition (a). If X is a local complete intersection of
codimension r , then it is well-known that π−1(p) ∼= Pr−1 [Hartshorne 1977, II,
Theorem 8.24(b)]; hence condition (b) from Proposition 2.2 holds. �

We can make a stronger statement when X is a hypersurface.

Proposition 2.4. If Y is obtained from a hypersurface X ⊂PN by adding embedded
points of any multiplicities, then Y is a flat limit of X union isolated multiple points.
In particular, Y is a flat limit of X union isolated reduced points if the multiplicities
are at most seven. For N ≥ 4, there exist embedded structures of multiplicity eight
in Y such that Y is not a flat limit of X union eight reduced points.

Proof. Suppose that Y is defined by the surjection IX → K , where K is of finite
length supported at the embedded points p. Then K ∼=

⊕
p OZ p for finite length

subschemes Z p supported at p (IX is principal) and IY = IX · IZ , where Z is
the union of the zero-dimensional subschemes Z p. Use automorphisms of PN to
deform Z to Z t such that the support of Z t does not intersect X for t 6= 0. Then
IX∪Z t = IX ·IZ t for t 6= 0 and in considering the associated schemes it is clear
that Y is a flat limit of X ∪ Z t . If the length of Z t is ≤ 7, then Z t is a flat limit of
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reduced points [Mazzola 1980; Cartwright et al. 2009]; hence Y is a flat limit of X
union isolated reduced points.

For N ≥ 4, there exists a nonsmoothable, length-8 subscheme Z ⊂PN [Iarrobino
and Emsalem 1978; Cartwright et al. 2009]. Choose an open affine U ∼= AN

on which IX is trivial, apply an automorphism of PN to translate Z so that the
support of Z lies in U ∩ X , and let Y be the subscheme defined by the surjection
IX ∼= O→ OZ . If IX = ( f ) locally, then IY = ( f )IZ and Y cannot be a flat
limit of X union eight isolated points, for then IY would be the flat limit of ideals
( f )IZ t , where Z t consists of eight isolated points and from the expression of IY

we would obtain IZ as a flat limit of IZ t , a contradiction. �

Example 2.5. We give two examples in which Theorem 2.3 applies.

(a) If X ⊂ PN is a local complete intersection of codimension r at p, then IX,p =

( f1, . . . , fr ) ⊂ OPN ,p, where f1, . . . , fr cut out X at p. An embedded point is
determined by a surjection ϕ : IX,p→ k(p). After changing generators, we may
assume ϕ( f1)= 1 and ϕ( fi )= 0 for i > 1 so that the ideal for the corresponding
subscheme Y locally at p is (m p f1, f2, . . . , fr ).

(b) Use [x, y, z, w] to denote the coordinates of P3. Let C ⊂ P3 be the union of
three coordinate axes with ideal IC = (xy, xz, yz). Away from the origin [0, 0, 0, 1],
C is a local complete intersection. Working on the affine patch w 6= 0, one computes
that the blow-up at C has fiber P2 over the origin, so condition (b) of Proposition 2.2
holds at each point. It follows from Theorem 2.3 that any subscheme D obtained
from C by adding an embedded point is a flat limit of C with an isolated point.

Example 2.6. We give two examples where Theorem 2.3 does not apply.

(a) Fix a line L ⊂ P3 and define X by IX = Id
L with d > 1. Then IX is generated

by d+1 elements at each p ∈ X (IX = I d
L ), but π−1(p)∼=P1 because the blow-ups

of P3 at IL and Id
L are isomorphic [Hartshorne 1977, II, Example 7.11(a)], so

condition (b) of Proposition 2.2 fails.

(b) The curve X ⊂ P3 with ideal (x2, xy, y3) is ACM with locally 3-generated
ideal sheaf at each point p ∈ X ; hence it is not possible that π−1(p)∼= P2 for each
p ∈C , for then the exceptional divisor would have dimension 3. Therefore a general
embedded point cannot be detached while leaving X fixed. Nevertheless, such an
embedded point can be detached in the Hilbert scheme due to the following.

Proposition 2.7. Let X0 ⊂ PN be ACM of codimension two with 3-generated
homogeneous ideal IX0 . Then each subscheme Y obtained from X0 by adding an
embedded point of multiplicity one is the flat limit of local complete intersection
ACM subschemes union an isolated point.
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Proof. Write O for the structure sheaf of PN . Since X0 is ACM and IX0 is
3-generated, the ideal sheaf has minimal resolution

0→
2⊕

j=1
O(−b j )

ψ0
→

3⊕
i=1

O(−ai )
π0
→ IX0 → 0 (4)

and IY is the kernel of a surjection ϕ :IX0→Op. Our strategy is to deform the exact
sequence (4) along with ϕ to obtain subschemes X t that are local complete intersec-
tions and maps ϕt : IX t → Opt to define the family Yt . We carry this out in steps:

Claim 1. There is a lift of ϕ ◦ π0 :
⊕3

i=1 O(−ai )→ Op to ϕ̃ :
⊕3

i=1 O(−ai )→ O

such that the composite

ϕ̃ ◦ψ0 :
2⊕

j=1
O(−b j )→ O

is induced by multiplying (F,G), where F and G are homogeneous polynomials of
degrees b1 and b2 with no common factor.

Claim 2. There is a map

ψ1 :
2⊕

j=1
O(−b j )→

3⊕
i=1

O(−ai )

whose cokernel is the ideal sheaf of a local complete intersection X1.

Once we have established the claims, the rest is straightforward. Construct the
linear deformation ψt = tψ1+ (1− t)ψ0 for t ∈ A1 and write the composite maps
ϕ̃ ◦ψt :

⊕2
j=1 O(−b j )→ O as (Ft ,G t). Then the schemes St given by Ft =G t = 0

are complete intersections in a neighborhood of t = 0 because this is true for S0 by
construction. If S⊂PN

×A1 is the total family, there is an integral curve T through
(p, 0) inside S which is not vertical at (p, 0) and base extension by T →A1 allows
us to pick out a moving point pt ∈ St with p0 = p. By abuse of notation we will
use the same letter t for the parameter.

Let
ϕt :

3⊕
i=1

O(−ai )
ϕ̃
→ O→ Opt = k(pt)

be the composition. For general t 6= 0, Cokerψt is the ideal sheaf of an ACM
local complete intersection X t and ϕt ◦ ψt = 0 by construction (since pt ∈ St );
hence we get induced maps IX t → Opt . Since ϕ0 is onto, so is ϕt for general t , the
kernels giving a family of ideals IYt for a family of local complete intersections X t

converging to X0 along with a point pt converging to p = p0. If pt 6∈ X t , then we
are done. If pt ∈ X t for each t , then we have at least shown that Y is a flat limit of
complete intersections having an embedded point. By Proposition 2.2, these are flat
limits of local complete intersections with an isolated point and we again conclude
the proof. It remains to establish the two claims above.
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Proof of Claim 1. The composition ϕ ◦π :
⊕3

i=1 O(−ai )→ Op lifts to

ϕ̃ :
3⊕

i=1
O(−ai )→ O

because H 0
∗
(OP3)→ H 0

∗
(Op) is surjective in positive degrees. Let us write this

map as ϕ̃ = (A1, A2, A3) ∈ H 0(
⊕3

i=1 O(ai )). Then the general such lift ϕ̃ may be
written (A1+ B1, A2+ B2, A3+ B3) with Bi ∈ Ip. Writing

ψ0 =

(
f1 f2 f3

g1 g2 g3

)
,

the desired composite map is given by (F,G)= (
∑
(Ai + Bi ) fi ,

∑
(Ai + Bi )gi )

and we need to show that F and G have no common factor. For this it suffices
to show that the zero loci of F and G meet properly. Letting L be a line missing
X0 (and p), we will show that there are no common zeros along L , for general Bi .
Restricting the resolution (4) to L and dualizing yields the exact sequence

0→ OL →
3⊕

i=1
OL(ai )

ψ∨0 ⊗OL
→

2⊕
j=1

OL(b j )→ 0.

Since b j >0, the rank-two bundle on the right has a nonvanishing section, which lifts
to a section (r1, r2, r3) of the rank-three bundle

⊕3
i=1 OL(ai ). Since the equations

in Ip of degree d > 0 cut out the complete linear system H 0(OL(d)), we can find
Bi ∈ Ip such that (Ai + Bi )

∣∣
L = ri , for i = 1, 2, 3, and this choice proves our

claim because the nonvanishing image of (r1, r2, r3) in
⊕2

j=1 OL(b j ) is given by
the restrictions of the polynomials

∑
(Ai + Bi ) fi and

∑
(Ai + Bi )gi ; hence these

have no common zeros along L . �

Proof of Claim 2. It is well-known that the degeneracy locus X1 of the general such
map ψ1 is codimension two and regular in codimension one [Chang 1989]. Here
we show that X1 is a local complete intersection as well. In the exact sequence
(4) we may take a1 ≤ a2 ≤ a3, b1 ≤ b2, and b1 > a1 (if b1 = a1, we can cancel off
this summand and X0 is a complete intersection, when Claim 2 is clear). Since∑

b j =
∑

ai (because c1(IX0)= 0), it follows that d1= a3+a2−b1= b2−a1 > 0
and d2 = a3+ a2− b2 = b1− a1 > 0, so let Z be a complete intersection of two
general hypersurfaces of degrees d1 and d2. It is easy to check d2 ≤ d1 ≤ a3 and
d2 ≤ a2, therefore we can link Z to X by a complete intersection C = K1 ∩ K2 of
hypersurfaces of degrees a2 and a3. The inclusion

0 // O(b1+ b2− 2a2− 2a3) // O(b2− a2− a3)⊕O(b1− a2− a3) // IZ // 0

0 // O(−a2− a3) //

OO

O(−a2)⊕O(−a3) //

OO

IC //

OO

0,
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and the cone construction from liaison theory [Migliore 1998, Proposition 5.2.10]
yields the resolution

0→ O(−b1)⊕O(−b2)→ O(−a1)⊕O(−a2)⊕O(−a3)→ IX → 0.

Hence X has the same type of resolution as X0. By Bertini’s theorem, the general
hypersurface K2 containing Z is smooth, so X is Cartier on K2 and hence a local
complete intersection. Now just take X1 = X and the claim is proved. �

Example 2.8. The easiest way to construct curves in P3 satisfying the hypotheses
of Proposition 2.7 is by linking to a complete intersection, as in the proof of Claim 2.

(a) Any purely one-dimensional curve C ⊂ P3 of degree 3 and genus 0 is ACM
[Piene and Schlessinger 1985] and has a resolution of the form

0→ O(−3)2→ O(−2)3→ IC → 0

as noted in [Ellingsrud 1975, Example 1], and links to a line by a complete intersec-
tion of two quadric surfaces. In particular, this holds for the triple line with ideal
(x2, xy, y2).

(b) If C ⊂P3 is any locally Cohen–Macaulay curve of degree 4 and genus 1, then C
is nonplanar, so h1(IC0(n))≤ (d−2)(d−3)/2−g= 0 for all n [Martin-Deschamps
and Perrin 1993, Theorem 1.3] and therefore C is ACM. Now χ(IC(1))= 0, so
H 2(IC(1))= 0. Furthermore H 1(IC(2))= 0 (C is ACM) and H 3(IC(0))= 0 so
IC is Mumford 3-regular. In particular IC(3) is generated by global sections, and
we can link C by the complete intersection of a quadric and cubic to a curve D of
degree 2 and genus 0. Since D is planar, it is a complete intersection, so using the
method of the proof of Claim 2, above, we see that C has resolution

0→ O(−4)⊕O(−3)→ O(−3)⊕O(−2)2→ IC → 0

and again Proposition 2.7 applies to C . The quadruple line with ideal (x2, xy, y3)

is such an example, explaining Example 2.6(b).

Sometimes a one-dimensional subscheme D with embedded points is not a flat
limit of curves C union isolated points even if one allows C to deform. In other
words, the Hilbert scheme can have irreducible components whose general member
has an embedded point.

Example 2.9. We exhibit an irreducible component of Hilb4z+1−g(P3) whose gen-
eral member has an embedded point for any g ≤−15. The irreducible components
of the Hilbert schemes H4,g of locally Cohen–Macaulay curves of degree 4 and
arithmetic genus g are known [Nollet and Schlesinger 2003, Table III]. We note
two typographical errors in the table, namely the family G5 of double conics has
dimension 13− 2g instead of 13− 3g [Nollet and Schlesinger 2003, p. 189] and
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the general member of family G7,a should be W ∪3p L instead of just W . Now
consider the irreducible component G4 of dimension 9− 3g, consisting of thick
quadruple lines. Each curve [C] ∈ G4 has a supporting line L and there is an exact
sequence

0→ IC → IW
φ
→ OL(−g− 1)→ 0,

where W is the triple line given by IW = I2
L [Nollet and Schlesinger 2003, Propo-

sition 2.1]. The surjection φ factors through IW ⊗OL ∼= OL(−2)2, hence is given
by φ(x2)= a, φ(xy)= b, and φ(y2)= c for three homogeneous polynomials a, b,
and c of degree −g+ 1. Writing the ideal of C as

IC = (x3, x2 y, xy2, y3, axy− bx2, by2
− cxy),

we see that at general point p ∈ L , a, b, and c are units in the local ring OP3,p,
therefore IC,p = (x3, axy− bx2, by2

− cxy) and IC is generically 3-generated for
general φ.

Now consider the locus V ⊂ Hilb4z+2−g(P3) obtained by adding an isolated or
embedded point to C as above, as in Proposition 2.1. The closure of the component
corresponding to C along with isolated points has dimension three. Since IC is
generically 3-generated, the set of embedded point structures at general p ∈ C is
parametrized by P2 and we obtain a second three-dimensional family. Thus V
is reducible with at least these two three-dimensional components (conceivably
the locus where IC is generated by more elements could generate another family).
Varying the curve [C] ∈ G4, we obtain at least two corresponding families of
dimension 12− 3g (because dim G4 = 9− 3g). Let F be the closure of the family
whose general curve has an embedded point.

We claim that F is an irreducible component of Hilb4z+2−g(P3). The general
member [D]∈ F cannot be a flat limit of curves possessing more than one isolated or
embedded point (counted with multiplicity). Since G4 is an irreducible component
of H4,g for g ≤ −2, D is not a flat limit of another family of curves with an
isolated or embedded point of multiplicity one, because the underlying locally
Cohen–Macaulay curve C ⊂ D is not. Finally D cannot be a flat limit of locally
Cohen–Macaulay curves of genus g− 1 because the maximal dimension of such a
family for g ≤−15 is 12− 3g = dim F .

3. Detaching embedded points of multiplicity two or three

In this section we prove that if Y has embedded points of multiplicity two (see
Proposition 3.3) or three (see Proposition 3.7) and the underlying subscheme X⊂PN

is a local complete intersection of codimension two, then Y is a flat limit of X
union isolated points. Along with Theorem 2.3, this shows that an embedded point
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of multiplicity at most three can be detached from X , from which we deduce our
main result, Theorem 1.4.

We begin with several propositions that take care of the easier cases, leaving the
more difficult cases to Proposition 3.7. We also show that these results may fail for
local complete intersections of codimension greater than two (Example 3.6) and
for embedded points of multiplicity greater than three (Example 3.10).

Proposition 3.1. Let X ⊂ PN be a local complete intersection of codimension two,
Z a zero-dimensional subscheme of embedding dimension at most one and suppose
that Y is defined by the exact sequence

0→ IY → IX
ϕ
→ OZ → 0.

Then Y is a flat limit of X union isolated points.

Proof. Since the result is local, we may assume that Z is supported at a point p
and has length d . Since Z has embedding dimension ≤ 1, we can choose a smooth
connected curve C0 of high degree containing Z and not entirely in X . If p 6∈ X ,
the result is clear because Z is a flat limit of isolated points in C0. In the interesting
case p ∈ X , our idea is to take a deformation Ct of C0 and use d isolated points in
Ct to perform the detaching process.

Let C be a translation of C0 by PGL(N + 1) which misses X . Now for m� 0,
the general pair F,G ∈ H 0(IX (m)) give hypersurfaces which cut out X in an open
neighborhood of p. Write O for the structure sheaf of PN . For the purposes of this
proof we may assume that X is equal to the complete intersection defined by F and
G, giving the Koszul resolution

0→ O(−2m)
ψ
→ O(−m)⊕O(−m)

π
→ IX → 0. (5)

Because the restriction map H 0(O(m))→ H 0(OZ (m)) is surjective for m� 0,
we can lift the images of F,G to O, hence the composition ϕ ◦π : O(−m)2→ OZ

factors through O and we obtain ϕ̃ : O(−m)2→ O inducing ϕ. The composition
ϕ̃ ◦ψ vanishes on a hypersurface S of degree 2m containing both X and Z .

By Bertini’s theorem, we could have chosen the equations F and G cutting
out X near p to be smooth away from X , meeting C in disjoint reduced sets of
points, so the restrictions to C induce a sheaf surjection O2

C → OC(m). If ϕ̃ is
given by A0, B0 ∈ H 0(O(m)), then S has equation F A0 + G B0 = 0, but A0 and
B0 are only determined up to elements of H 0(IZ (m)). Since the natural map
H 0(IZ (m))2→ H 0(OC(m)) is surjective, given by (A, B) 7→ F A+G B, we may
choose A0 and B0 to assume that S ∩C is a reduced set of 2m(deg C) points.

Now consider a family of translations Ct from C to C0, parametrized by t ∈ A1.
Now C0 ∩ S contains Z at p and Ct ∩ S consists of 2m(deg C) reduced points
for general t 6= 0. Possibly after a base extension, we may pick d distinct points
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p1,t , p2,t , . . . , pd,t in S ∩ Ct near p. Letting Z t = {p1,t , p2,t , . . . , pd,t }, the flat
limit of Z t is exactly Z , because the ideal of the limit contains the equations of the
curve C0 by construction, and Z is the unique length-d subscheme of C0 at p.

Letting ϕt be the composition

O(−m)2
ϕ̃
→ O→ OZ t ,

we have ϕt ◦ψ = 0 by construction, so these maps factor through IX and we obtain
a family of maps ϕt : IX → OZ t . Since ϕ0 = ϕ is surjective, so are ϕt for t near 0
and the family IYt = kerϕt gives the desired family. �

Proposition 3.2. Let X ⊂ PN be a local complete intersection, K a sheaf of finite
length supported at p, and Y and Y 1 defined by the commutative diagram of short
exact sequences

0 // IY //

��

IX
ϕ=(α,β) //

��

K ⊕Op //

π1��

0

0 // IY 1 // IX
α // K // 0.

Then Y is a flat limit of Y 1 union an isolated point. In particular, if Y 1 is a flat limit
of X union isolated points, then so is Y .

Proof. The result is local at p. The direct sum allows us to write ϕ = (α, β), where
α defines Y 1 as above. The surjection β : IX → Op defines an embedded point
structure Y 2 on X . Since X is a local complete intersection, Y 2 is a flat limit of X
union an isolated point by Theorem 2.3, meaning that there is a flat family Y 2

t for
t ∈ T with Y 2

0 = Y 2 and Y 2
t = X ∪ pt with pt 6∈ X for t 6= 0. This gives a family of

surjections βt : IX → Opt with IY 2
t
= kerβt and β0 = β.

Let γt : IY 1 ⊂ IX
βt
→ Opt be the composite map. Clearly γt is surjective for

t 6= 0, because pt 6∈ IX , so the inclusion IY 1 ⊂ IX is an equality at these points.
The map γ0 is also a surjection, since, locally at p, if we choose f ∈ IX such that
ϕ( f )= (0, 1), then α( f )= 0⇒ f ∈IY 1 and γ0( f )= 1. This family of maps gives
a flat family Yt , and for t 6= 0 Yt consists of Y 1 union an isolated point. Finally, the
kernel of γ0 : IY 1 → Op is exactly IY , for g ∈ IY 1 ⇒ g ∈ IX and α(g)= 0. Now
γ0(g)= 0⇐⇒ β(g)= 0⇐⇒ ϕ(g)= 0⇐⇒ g ∈ IY . �

Proposition 3.3. Let X ⊂ PN be a local complete intersection of codimension two
and obtain Y by adding an embedded point of multiplicity two with associated exact
sequence

0→ IY → IX
ϕ
→ K p→ 0,

where K p is a sheaf of length 2 supported at p. Then either (a) K p ∼= Op ⊕ Op,
or (b) K p ∼= OZ , where Z ⊂ PN has length 2. In either case, Y is a flat limit of X
union two isolated points.
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Proof. If K p ∼= Op ⊕ Op, apply Proposition 3.2. Since Y 1 is obtained from X by
adding an embedded point of multiplicity one, it is a flat limit of X union an isolated
point, hence Y is a flat limit of X union two isolated points.

Now suppose K p � Op ⊕ Op. Then the surjection K p→ K p ⊗ k(p) is not an
isomorphism, thus K p ⊗ Op is one-dimensional as an Op = k(p) vector space.
Therefore K p is principal by Nakayama’s lemma, so there is a surjection O→ K p

whose kernel is the ideal sheaf IZ of a length-2 subscheme, which is contained in
a unique line and has embedding dimension one. We apply Proposition 3.1 to see
that Y is a flat limit of X union two isolated points. �

Remark 3.4. We give the local equations of the embedded point structures for
cases (a) and (b) of Proposition 3.3 for X ⊂ PN :

(a) If IX,p = ( f, g), then IY,p = m p · IX,p.

(b) Replacing generators so that ϕ( f )=1 and ϕ(g)=0, we obtain IY,p= (g, f ·IZ ),
Z being the length-2 subscheme.

Example 3.5. In case (b) of Proposition 3.3, there is a unique subscheme X ⊂
E ⊂ Y with an embedded point of multiplicity one, because the unique length-1
quotient of OZ is Op, obtained by modding out by the maximal ideal. Using such
subschemes E , we explain why it was necessary to prove case (b) by pulling away
two points simultaneously. For example, let X ⊂ A3 have ideal IX = (x2, y2) and
let p = (0, 0, 0), where [x, y, z] denotes the coordinates of A3. Add an embedded
point to X at p using the map IX → k by x2

7→ 1, y2
7→ 0 to obtain E with

IE = (y2, x3, x2 y, x2z) being 4-generated. By Proposition 2.2, one can add a
second point at p to obtain Y with an embedded point of multiplicity two, which is
not a flat limit of E union an isolated point.

Example 3.6. Proposition 3.3 may fail for local complete intersections of codi-
mension greater than two. For example, suppose that C ⊂ P4 is the complete
intersection with ideal IC = (x2, y2, z2), where [x, y, z, u, w] denotes the projective
coordinates. Consider the double point structures D on C given by surjections
φ : (x2, y2, z2)→ K =OZ , where Z is the double point with ideal IZ = (x, y, z, u2).
An arbitrary map φ : IC → S/IZ is given by

φ(x2)= a+ bu, φ(y2)= c+ du, φ(z2)= e+ f u,

where S is the coordinate ring of P4, a, b, c, d, e, f ∈ k, and any tuple (a, b, c, d,
e, f ) is possible because IC ⊂ IZ . The automorphisms of K = OZ are given by
multiplication by A+ Bu with A 6= 0. Thus the maps for which φ(x2) generates K
(that is, a 6= 0) are uniquely determined up to automorphisms of K by the quotients
φ(y2)/φ(x2) = (c + du)/(a + bu) and φ(z2)/φ(x2) = (e + f u)/(a + bu). By
Remark 1.8(a), these quantities uniquely determine the corresponding subschemes
D. In other words, if we compose the map above by the automorphism of OZ given
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by multiplication by (a + bu)−1
= (a − bu)/a2, we may assume that φ(x2) = 1

when the corresponding ideal of D is given by

(x2(IZ ), y2
− (c+ du)x2, z2

− (e+ f u)x2)

= (x3, x2 y, x2z, x2w2, y2
− (c+ du)x2, z2

− (e+ f u)x2)

and each tuple (c, d, e, f ) ∈ k4 yields a distinct subscheme D, so we obtain a
four-dimensional family of such double point structures D.

Finally, the same argument applies to any double point structure D on C . Since
there is a choice of any point p ∈ C for the support of K = OZ and the structure
of Z is uniquely determined by a line through p (parametrized by a hyperplane
P3), the family of such double point structures has dimension 1+ 3+ 4= 8. The
general such structure cannot be a flat limit of C union two isolated points, for this
family also has dimension eight.

Now we turn to the case of multiplicity three.

Proposition 3.7. Let X ⊂ PN be a local complete intersection of codimension two.
Let Y be the subscheme obtained from X by an exact sequence

0→ IY → IX
ϕ
→ K → 0,

where K is a length-3 sheaf supported at p. Then one of the following holds:

(a) K ∼= Op⊕OZ , where Z ⊂ PN is a double point on a line.

(b) K ∼= OZ , where Z ⊂ PN is a triple point on a line.

(c) K ∼= OZ , where Z ⊂ PN is a triple point on a smooth conic.

(d) K ∼= OZ , where Z is contained in a plane H and IZ ,H = I2
p,H .

(e) K ∼= HomOp(OZ ,Op) with Z as in case (d).

In each case, Y is a flat limit of X union three isolated points.

Proof. If K is a direct summand, one summand is Op and the other is O2
p or OZ for

a double point Z . The former is not possible as a quotient of the locally 2-generated
ideal IC , leading to case (a). If K is principal, then the surjection O→ K shows
that K ∼= OZ for a length-3 subscheme supported at p. Since h0(OZ (1)) = 3 and
h0(O(1)) = N + 1, Z is a planar triple point. It is easy to classify planar triple
points, leading to cases (b), (c), and (d). If K is not principal and not a direct
summand, then it is 2-generated as a quotient of IX via ϕ. The two generators
have a common nonzero multiple, otherwise they would express K as a direct sum
of two principal modules. The common nonzero multiple is therefore a generator
of the dual Hom(OZ ,Op), where OZ must be one of cases (b), (c), or (d). However,
the duals to cases (b) and (c) are principal and we are left with the dual of case (d),
which is case (e).
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That Y is a flat limit of X union three isolated points follows from Propositions 3.2
and 3.3 in case (a) and from Proposition 3.1 in cases (b) and (c). Cases (d) and (e)
require new ideas.

In case (d) we have K p ∼= OZ , where Z ⊂ H is the planar triple point supported
at p of embedding dimension two. As in Proposition 3.1, X is contained in
hypersurfaces with equations F and G of degree m� 0, giving a Koszul resolution
(5), ϕ :IX→OZ lifts to ϕ̃ :O(−m)2→O and there is a hypersurface S of degree 2m,
where ϕ̃ ◦ ψ = 0. The intersection H ∩ S contains an integral curve T passing
through p. Our idea is to realize this triple embedded structure as the flat limit of a
fixed double embedded structure at p union a single point varying in T .

Let T̃
f
→ T ⊂ H ∼= P2 be the normalization of T and choose a point 0 ∈ T

such that f (0) = p. For t 6= 0, let L t ⊂ H be the line through p and f (t). As
t→ 0, f (t)→ p and the line L t has a unique limit L0 (complete the associated
map T −{0}→ (P2)∨ to obtain this limiting line). Choose local coordinates x, y on
A2
⊂ P2 so that p = (0, 0) and L0 = {x = 0}. The double point W at p with ideal

(x2, y) is a closed subscheme of Z (which has ideal (x2, xy, y2)). We now show
that limt→0 f (t)∪W = Z in the Hilbert scheme of length-3 subschemes of H . If
f (t)= (a(t), b(t)) in the local coordinates above, then the ideal for W ∪ f (t) is

It = (x2, y)∩ (x − a(t), y− b(t)),

which contains the product of the two ideals. Since limt→0(a(t), b(t))= (0, 0), the
limiting ideal contains (x3, xy, y2). If the line L t has equation lt = 0, then l2

t ∈ It

and by choice of coordinates we have limt→0 l2
t = x2, so the limiting ideal also

contains x2 and hence (x2, xy, y2), which defines Z .
The rest is analogous to Proposition 3.1. The composite map

O(−2m)
ψ
→ O(−m)2

ϕ̃
→ O→ OS→ OW∪ f (t)

is zero, inducing a family of maps ϕt : IX → OW∪ f (t). Since ϕ0 is onto, so is ϕt

for t near 0. Therefore the kernels IYt give a flat family whose limit is Y as t→ 0.
Using our earlier results, for t 6= 0 each Yt is a flat limit of X union isolated points,
and therefore so is Y .

Finally consider case (e), where K p ∼= HomOp(OZ ,Op) with Op = k(p) the
residue field at p and Z ⊂ H ⊂ PN , with H a plane and IZ ,H = I2

p,H . Choose
affine coordinates x, y, z1, . . . , zN−2 centered at p so that IH = (z1, . . . , zN−2) and
x, y are coordinates for H ∼= A2. Let f, g be the restrictions of F,G to this affine
patch, so that IX = ( f, g). If g− u f = h ∈ IH for some unit u in the local ring,
replace g with h as a generator for IX . In this way we may assume g ∈ IH or ( f, g)
is not principal modulo IH locally around p. Now OZ is generated by 1, x, y as an
Op-vector space, so K p is generated by dual basis x∗, y∗, 1∗ as a vector space and
by x∗, y∗ as an OH -module with structure given by xx∗= 1∗= yy∗, xy∗= yx∗= 0.
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Since ϕ is surjective, ϕ( f ) = ax∗ + by∗ + c1∗ and ϕ(g) = dx∗ + ey∗ + f 1∗ are
also module generators for K p, and in particular ae − bd 6= 0. Now consider
the new coordinates X = ay − bx, Y = ex − dy for H . With these one sees that
Ann(ϕ( f ))= (IH , X), Ann(ϕ(g))= (IH , Y ), and Yϕ( f )= (ae−bd)1∗ = Xϕ(g).
It follows that IY = (IH ( f, g), X f, Y g, Y f − Xg). So by replacing the coordinates,
we can present the ideal of Y as

IY = (IH ( f, g), x f, yg, y f − xg).

We will directly deform this ideal to obtain the result. The locus

S = {(A, B,C, D) :

f (A, B)= 0, g(C, D)= 0, (B− D)g(C, B)− (C − A) f (C, B)= 0}

contains (0, 0, 0, 0) and each component has dimension ≥ 1; hence S contains an
integral curve T through the origin. Let σ : T → H × H ∼= A4 be the inclusion
with coordinate functions σ(t)= (a(t), b(t), c(t), d(t)) and 0 ∈ T chosen so that
σ(0)= (0, 0, 0, 0). We claim that T can be chosen with (a(t), b(t)) 6= (c(t), d(t)).
This is clear if g ∈ IH , for then the second equation g(C, D)= 0 puts no restriction
on C and D, and S is defined by only two equations: on a surface there are many
integral curves T through the origin. The other possibility by our assumption is
that g 6= u f modulo IH for any invertible u in an affine neighborhood of the origin.
Here the restrictions of f and g to H have a greatest common divisor h so that
f = h f1 and g = hg1 with f1 and g1 vanishing at the origin and relatively prime
modulo IH locally around the origin. If we look at the sublocus of S defined as
above with f1 and g1 in place of f and g, the condition of the claim holds and we
obtain the desired integral curve T .

Now consider the family of ideals

It =
(
IH ( f, g), (x − c(t)) f, (y− b(t))g, (y− d(t)) f − (x − a(t))g

)
.

We claim that the ideal It scheme-theoretically cuts out exactly X and the three points
(a(t), b(t)), (c(t), b(t)), and (c(t), d(t)) (which may be isolated or embedded, two
may coincide if a(t)= c(t) or b(t)= d(t)) for generic t near 0.

The claim holds away from H via the generators IH ( f, g). At points (x, y) ∈ H
away from (a, b), (c, b), and (c, d) (we suppress the variable t) the claim also holds.
If x 6= c, then x − c is a unit, f ∈ It and there are two cases: if x = a, then y 6= b,
hence y− b is a unit and g ∈ It ; otherwise x 6= a and the last equation shows that
g ∈ It . If x = c, then y 6= b, d , so g ∈ It and f ∈ It by the last equation.

Finally we consider (x, y) ∈ {(a, b), (c, b), (c, d)}. The claim is easily checked
if these points are distinct (a 6= c and b 6= d) by checking that length IX/It = 1.
For example, at (x, y)= (a, b) we have x 6= c so f ∈ It , when IX/It is generated
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by g alone, and since IH g, (y− b)g, (x − a)g ∈ It , we have IX/It ∼= k. The other
points (x, y)= (c, b), (c, d) are similar. In the degenerate case a = c, we need to
show that length IX/It = 2 at (x, y)= (a, b)= (c, b). Here y 6= d so u = (y− d)
is a unit and u f − (x − a)g ∈ It , showing that IX/It is generated by g. Further It

contains IH g, (y − b)g, and (x − c)2g (use (x − c) f and u f − (x − c)g), so the
quotient has length 2. The other degenerate case b = d can be verified similarly.
This proves the claim.

With the claim, the ideal It cuts out X and three other points (possibly embedded
in X , but not all supported at the same point). Using our earlier results, these
schemes are flat limits of X and isolated points. Since limt→0(a(t), b(t), c(t), d(t))
= (0, 0, 0, 0) by construction, we also have limt→0 It = IY , and we conclude. �

Remark 3.8. For IX,p = ( f, g) locally at p in Proposition 3.7, we write local
equations for the embedded point structure Y according to the various cases:

(a) If K p = Op ⊕ OZ and ϕ( f ) = (1, 0), ϕ(g) = (0, 1), then IY,p = ( f m p, gIZ )

with f ∈ IZ .

(b) If K p = OZ and ϕ( f )= 1, ϕ(g)= 0, then IY,p = ( f IZ , g) with g ∈ IZ .

(c) Similarly we have IY,p = ( f IZ , g) with g ∈ IZ .

(d) Again we have IY,p = ( f IZ , g) with g ∈ IZ .

(e) This is the most interesting structure. As shown in the proof, IY,p = (x f −
yg, y f, z f, xg, zg) for suitable coordinates x, y, z.

Putting these results together, we obtain our main theorem.

Theorem 3.9. Let X ⊂ PN be a local complete intersection of codimension two. If
Y is obtained from X by adding embedded points of multiplicity at most three, then
Y is a flat limit of X union isolated points.

Proof. Suppose the embedded points are supported at p1, . . . , pr with respective
multiplicities m1, . . . ,mr ≤ 3. If Y1 is the scheme which is isomorphic to Y near
p1 and equal to X away from p1, it follows from Theorem 2.3 and Propositions 3.3
and 3.7 that Y1 is in the Hilbert scheme closure of the family consisting of X union
m1 isolated points. Similarly if Y2 is locally isomorphic to Y near p2 and equal to
X away from p2, Y2 is in the closure of the family of X union m2 points. It follows
that Y1 ∪ Y2 is in the closure of the family of Y1 union m2 isolated points, the fixed
embedded point at p1 not affecting the relevant deformations. Since Y1 union m2

isolated points is in the closure of the family of X union m1+m2 isolated points,
we see that Y1∪Y2 is in this closure as well. Adding one point at a time in this way
we find that Y is in the closure of the family of X union m1 + · · · +mr isolated
points. �
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Example 3.10. Here we show that it is not always possible to detach embedded
points of multiplicity four. For linearly independent variables x, y, z, w, consider
the R = k[x, y, z, w]-module K given by

K = 〈a, b〉/(za, wa, xb, yb, xa− zb, ya−wb).

In changing the choice of vector space basis for the linear forms x, y, z, w, we
obtain a family of such modules on which the group GL(4) acts. It’s easily checked
that the R-module automorphisms of any fixed K have dimension five (one can
write them down explicitly). For another K ′ determined by basis x ′, y′, z′, w′ and
an isomorphism ψ : K → K ′, the map ψ uniquely determines x ′, y′, z′, w′ in terms
of x, y, z, w, because the relations yield 16 equations in 16 unknowns. One can
check that the family of candidate isomorphisms ψ has dimension 12 and a five-
dimensional subspace corresponds to the identity coordinate change. Hence, we find
that the isomorphism classes of such modules K has dimension 16− (12− 5)= 9.

Now for X ⊂PN given by IX = (x2, y2), the family of embedded point structures
on X given by such K has dimension 5N − 6. The choice of the support of K has
dimension equal to dim X = N − 2; choosing the linear subspace 〈x, y, z, w〉 at
p is given by G(4, N ) of dimension 4N − 16; choosing the isomorphism class of
K has dimension nine (see above); the choice of map ϕ : IX → K depends on
eight parameters, but the resulting family of ideals IY given by the kernels has
dimension three because the automorphisms of K have dimension five. All in all,
the family has dimension (N −2)+ (4N −16)+9+ (8−5)= 5N −6. For N ≥ 6,
we have 5N − 6≥ 4N , so the family cannot lie in the 4N -dimensional closure of
those obtained by unions of X with isolated points.

4. Applications to Hilbert schemes

In the previous section we proved various results about when a local complete
intersection X with embedded points are flat limits of X union isolated points. In
this section we apply these results to describe the irreducible components of certain
Hilbert schemes. In view of Proposition 2.4, we deduce the following:

Theorem 4.1. Let p(z) be the Hilbert polynomial of a degree-d hypersurface in
PN . Then:

(a) The Hilbert schemes Hilbp(z)+e(PN ) are irreducible for 0≤ e ≤ 7.

(b) The Hilbert scheme Hilbp(z)+1(PN) is smooth, isomorphic to Hilbp(z)(PN)×PN.

Proof. It follows from Proposition 2.4 that any (multiple) embedded point can be
detached from a hypersurface, and for e ≤ 7 we also know that any subscheme of
length e≤ 7 is a flat limit of reduced points [Mazzola 1980; Cartwright et al. 2009].
Therefore Hilbp(z)+e(PN ) is the closure of the open subset formed by a degree-d
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hypersurface and e isolated points and Hilbp(z)+e(PN ) is irreducible of dimension(d+N
d

)
− 1+ Ne.

Now take e = 1. It is easily checked that the Hilbert scheme is smooth at points
corresponding to a hypersurface and an isolated point. Write [x0, x1, . . . , xN ] for
the coordinates of PN . If X ⊂PN is a degree-d hypersurface and Y is obtained from
X by adding an embedded point located at x1 = x2 = · · · = xN = 0, then the ideal
of Y is simply IY = (x1, x2, . . . , xN ) · IX , so IY is generated in degree d+ 1. Since
the generator of IX → K is onto, H 1(IY (n))= 0 for n ≥ d and so the comparison
theorem [Piene and Schlessinger 1985] applies (see also [Ellingsrud 1975; Kleppe
1979]). Now the argument of [Piene and Schlessinger 1985, Lemma 4, Case (iii)]
goes through, which we include for self-containment: H 0(NY )= Hom(IY , S/IY )0,
where S is the coordinate ring of PN and NY is the normal sheaf to Y . Given
the dimension of Hilbp(z)+1(PN ), it suffices to prove that dim Hom(IY , S/IY )0 ≤(d+N

d

)
− 1+ N . Setting A = S/IY and K = IX/IY , the S-module K has Koszul

resolution of the form

0→ S(−d−N )→· · ·→ S(−d−2)N (N−1)/2
→ S(−d−1)N

→ S(−d)→ K→ 0.

Applying Hom(−, A) to this resolution shows Hom(K , A)= K (d) and Ext1(K , A)
is generated by the vectors ( f x0)ei with 1≤ i ≤ N , where f is the defining equation
of X . Applying Hom(−, A) to the short exact sequence IY → IX → K gives

0→ Hom(K , A)→ Hom(IX , A)→ Hom(IY , A)→ Ext1(K , A)→ · · ·

but dim Hom(K , A)0 = dim K (d)0 = 1 and Hom(IX , A) ∼= A(d), hence we have
dim Hom(IX , A)0=

(d+N
d

)
. Since dim Ext1(K , A)0≤ N by the above, we conclude

that the Hilbert scheme is smooth. The natural rational map Hilbp(z)(PN )×PN
→

Hilbp(z)+1(PN ) is actually a bijective morphism in view of the unique form of the
ideal, and hence is an isomorphism by Zariski’s main theorem. �

We are also interested in Hilbert schemes of space curves and obtain the following
irreducibility result for one-dimensional subschemes of high genus. Recall that if
C is a space curve of degree d, then g = pa(C) ≤

(d−1
2

)
with equality for plane

curves.

Theorem 4.2. The Hilbert scheme Hilbdz+1−g(P3) is irreducible for (d, g) satisfy-
ing d ≥ 3,

(d−1
2

)
−4< g ≤

(d−1
2

)
, and g >

(d−2
2

)
, with a general member consisting

of a plane curve of degree d union isolated points.

Proof. The Hilbert scheme is nonempty for all g ≤
(d−1

2

)
due to plane curves

union isolated points. For d ≥ 3, the genus of a nonplane curve satisfies g ≤
(d−2

2

)
[Hartshorne 1994], so if [C] ∈ Hilbdz+1−g(P3) and C0 ⊂ C is the curve remaining
after removing embedded or isolated points, then C0 is planar, hence a complete
intersection. Since C is obtained by adding at most three embedded or isolated
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points, it is a flat limit of those with isolated points by Propositions 2.2, 3.3, and 3.7,
and we conclude that the corresponding Hilbert scheme is irreducible. �

When just one isolated or embedded point is added to a plane curve of degree d
and genus g= (d−1)(d−2)/2, the resulting Hilbert scheme component is smooth:

Theorem 4.3. For g = (d − 1)(d − 2)/2, the component Hd ⊂ Hilbdz+2−g(P3)

of the Hilbert scheme whose general member is a degree-d plane curve union an
isolated point is smooth for all d ≥ 1. Moreover, Hd is isomorphic to the blow-up
of Hilbdz+1−g(P3)×P3 along the incidence correspondence.

Proof. For d = 2 and 3, this was proved in [Chen et al. 2011] and [Piene and
Schlessinger 1985], respectively, even though Hd is not the full Hilbert scheme in
these cases. For d = 1 and d ≥ 4, Hd is the full Hilbert scheme, and it suffices
to compute the global sections H 0(ND) of the normal sheaf associated to a point
[D] ∈ Hd ; so let D be the union of a plane curve C and the point p = (0, 0, 0, 1).
If p 6∈ C , smoothness follows from ND ∼= NC ⊕Np. If p ∈ C is an embedded
point, write IC = (z, f ) with f ∈ (x, y) and z = 0 the equation of the plane H
containing C . Consider the exact sequence (1):

0→ ID→ IC
ϕ
→ Op→ 0.

If ϕ(z)= 0, then D⊂ H and h0(ND,H )=
(d+2

2

)
+1 from Theorem 4.1, so the exact

sequence
0→ ND,H → ND,P3 → OD(1)→ 0

yields h0(ND,P3) ≤
(d+2

2

)
+ 1+ h0(OD(1)). If d ≥ 4, then h0(OD(1))= 4 and we

have h0(ND,P3) ≤ dim Hd , so Hd is smooth at [D]. Similarly, h0(OD(1)) = 3 if
d = 1 and we obtain h0(ND)≤ 7= dim H1.

Now suppose that ϕ(z) 6= 0 and d ≥ 4, since the case d = 1 is straightforward.
Write [x, y, z, w] for the coordinates of P3 and S for the coordinate ring. The exact
sequence (1) shows that h1(ID(n))= 0 for all n > 0; hence the map (S/ID)n→

H 0(OD(n)) is an isomorphism for all n > 0. It follows that the comparison theorem
[Piene and Schlessinger 1985] (see also [Ellingsrud 1975; Kleppe 1979]) applies
to D so that H 0(ND) ∼= Hom(ID, S/ID)0. Since ϕ( f ) = λϕ(zwd−1) for some
λ ∈ k, ϕ( f − λzwd−1)= 0 and we may write ID = (xz, yz, z2, f − λzwd−1). For
smoothness at [D], it suffices to show this when λ = 0, because the members of
the family parametrized by λ are projectively equivalent for λ 6= 0. Thus we may
assume ID = (xz, yz, z2, f ) with f ∈ (x, y) and write f = xg+ yh for g, h ∈ Sd−1.

Now consider ρ ∈Hom(ID, S/ID)0. Observe that a basis for (S/ID)2 consists of
{x2, xy, y2, zw,w2, wx, wy} and there is a similar basis for (S/ID)3 consisting of
eleven monomials because deg f > 3. In terms of these bases, the Koszul relations

zρ(xz)= xρ(z2), zρ(xy)= yρ(z2), xρ(yz)= yρ(xz)
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require that

ρ(z2)= a1wz, ρ(xz)= a2wz+ a3xz+ a4x2
+ a5xy,

ρ(yz)= a6wz+ a3zy+ a4xy+ a5 y2.

Modulo (xz, yz, z2) we may write

ρ( f )= a7zwd−1
+G,

with G ∈ k[x, y, w]d . Now gρ(zx)+ hρ(zy) = zρ( f ) = zG modulo ID gives a
linear relation between the coefficient of wd in G and a2 and a6. Since ρ( f ) is
only determined modulo f , there are

(d+2
2

)
− 2 degrees of freedom in choosing

ρ( f ), so that

dim Hom(ID, S/ID)0 ≤ 7+
(

d + 2
2

)
− 2=

(
d + 2

2

)
+ 5= dim Hd .

The second statement follows from Proposition 2.1 by varying C . Indeed,
the rational map M = Hilbdz+1−g(P3)× P3 99K Hd ⊂ Hilbdz+2−g(P3) given by
(C, p) 7→ C ∪ p has indeterminacy locus equal to the incidence correspondence
1={(C, p) : p ∈C}. For fixed [C] ∈Hilbdz+1−g(P3), the fiber is isomorphic to P3

and via this isomorphism the intersection with 1 is identified with C ⊂ P3. Thus
when 1 is blown up, the fiber over C is identified with P̃3(C), which according to
Proposition 2.1 is in bijective correspondence with V ⊂ Hd (using the notation in
Proposition 2.1). It follows that after blowing up the indeterminacy locus 1⊂ M
we obtain a bijective morphism M̃(1)→ Hd , which is an isomorphism by Zariski’s
main theorem. �

Remark 4.4. One can verify by similar tangent space calculations that the Hilbert
scheme of plane curves with two isolated or embedded points is singular exactly
along the plane curves with the double embedded points of type (a) in Proposition 3.3.
It is interesting that the Hilbert scheme is smooth along curves with the double
embedded points of type (b).

Example 4.5. The only locally Cohen–Macaulay curve of degree 1 is a line. By our
results, any curve obtained from a line L by adding ≤ 3 embedded points is a flat
limit of L union the right number of isolated points. It follows that Hilbz+1−g(P3)

is irreducible of dimension 4−3g for −3≤ g≤ 0. On the other hand, it is reducible
for g � 0 because the Hilbert scheme of sufficiently many points in P3 is not
irreducible [Iarrobino 1972].

Example 4.6. For one-dimensional subschemes of degree 2 and high genus the
irreducible components of Hilb2z+1−g(P3) are as follows:

(a) If g = 0, the Hilbert scheme is irreducible, consisting of plane curves.
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(b) If g = −1, there are two irreducible components. The first component H1

has general member a pair of skew lines and has dimension eight. The second
component H2 has general member a plane conic union an isolated point and has
dimension 11. There are also plane curves with embedded points, but these lie in
H2 by Proposition 2.2. Both components H1 and H2 are smooth [Chen et al. 2011].

(c) Similarly if g =−2, there are three irreducible components. There is the family
H1 of double lines of genus g =−2 with no embedded points of dimension nine,
the family H2 of two skew lines union an isolated point of dimension 11, and
the family H3 of conics union two isolated points of dimension 14. Because all
the underlying locally Cohen–Macaulay curves in question are local complete
intersections, we know from Proposition 2.2 and Proposition 3.3 that we have not
missed any possibilities.

(d) For g = −3 we can write down four irreducible components following the
same pattern as above and our results show that we have not missed any irreducible
components. However when g=−4 we cannot be sure that there is not an irreducible
component whose general member consists of a plane curve with some horrible
quadruple point.

Example 4.7. For one-dimensional subschemes of degree 3 and high genus, we
can make similar lists of the irreducible components of Hilb3z+1−g(P3):

(a) If g = 1, the Hilbert scheme is irreducible and consists of plane curves.

(b) If g= 0, the Hilbert scheme has two irreducible components. The family H1 has
general member a twisted cubic and has dimension 12. The family H2 has general
member a plane cubic union an isolated point and has dimension 15. This example
has been well-studied in [Piene and Schlessinger 1985].

(c) If g =−1, there are three irreducible components. The component H1 whose
general member is a line and a disjoint conic has dimension 12. The component H2

whose general member is a twisted cubic union an isolated point has dimension 15.
The component H3 whose general member is a plane cubic union two isolated points
has dimension 18. To see that these are all, we need to show that degenerations of a
twisted cubic curve union an embedded point cannot form an irreducible component
of their own, something which is not clear in view of Example 2.6(a). However all
ACM curves of degree 3 and genus 0 have resolution

0→ O(−3)2→ O(−2)3→ IC → 0

[Ellingsrud 1975, Example 1] and we can apply Proposition 2.7.

Example 4.8. Consider the Hilbert schemes Hilb4z+1−g(P3):

(a) If g = 3 or 2, the Hilbert scheme is irreducible by Theorem 4.2.
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(b) If g= 1, the Hilbert scheme has two irreducible components. One component H1

has general member a plane quartic union two isolated points and has dimension 23.
Any subschemes not parametrized by H1 have no isolated or embedded points
(any nonplanar locally Cohen–Macaulay curve satisfies the genus bound g ≤
(d − 2)(d − 3)/2 [Martin-Deschamps and Perrin 1993]), so we are looking at
the Hilbert scheme H4,1 of locally Cohen–Macaulay curves, which we described in
Example 2.8.

This brings us to the last example, which might be known to experts, though we
have not seen a rigorous proof in the literature.

Theorem 4.9. The Hilbert scheme Hilb4z+1(P3) has four irreducible components:

H1: The closure of the family of rational quartic curves has dimension 16.

H2: The family whose general member is a disjoint union of a plane cubic and a
line has dimension 16.

H3: The family whose general member is a disjoint union of an elliptic quartic
curve and a point has dimension 19.

H4: The family whose general member is a disjoint union of a plane quartic curve
and three distinct points has dimension 26.

Proof. The dimension counts are standard, so we only need to show that every
subscheme parametrized by Hilb4z+1(P3) is contained in one of these families and
no family is contained in another. The second part is easy: the family H4 has the
largest dimension, but none of the others lie in its closure due to the three isolated
or embedded points. Similarly H3 has larger dimension than H1 and H2, but H1

and H2 are not in its closure due to the isolated or embedded point. Since families
H1 and H2 have the same dimension, neither lies in the closure of the other.

To complete the proof, we show that each [C] ∈ Hilb4z+1(P3) lies in one of
the families Hi listed above. Fixing such C ⊂ P3, let C0 ⊂ C be the purely one-
dimensional part. There is no such curve of genus g= 2 [Hartshorne 1994], leaving
three cases. If g(C0)= 0, then C = C0 is locally Cohen–Macaulay, and it is known
that the Hilbert scheme H4,0 of locally Cohen–Macaulay curves has two irreducible
components, described in H1 and H2 above [Nollet and Schlesinger 2003]. If
g(C0)= 3, then C0 is a plane quartic and hence a complete intersection. It follows
from Propositions 2.2, 3.3, and 3.7 that C is a flat limit of subschemes which are
plane quartics union three isolated points, so [C] ∈ H4. If g(C0)= 1, then [C] ∈ H3

by Example 2.8. �

It would be interesting to describe more precisely the intersection of the compo-
nents H1 through H4 in Hilb4z+1(P3) as done in [Piene and Schlessinger 1985] for
Hilb3z+1(P3), though this will require a classification of all curves of degree 4 and



Detaching embedded points 755

genus 0 up to projective equivalence. It would also be interesting to determine the
birational geometry of the component H1, as done in [Chen 2008] for Hilb3z+1(P3).
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