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We prove a denominator identity for nontwisted affine Lie superalgebras with
zero dual Coxeter number.

Introduction

0.1. Let g be a complex finite-dimensional contragredient Lie superalgebra. These
algebras were classified by V. Kac [1977] and the list (excluding Lie algebras) con-
sists of four series: A(m|n), B(m|n),C(m), D(m|n) and the exceptional algebras
D(2, 1, a), F(4),G(3). The finite-dimensional contragredient Lie superalgebras
with zero Killing form (or, equivalently, with dual Coxeter number equal to zero)
are A(n|n), D(n|n+ 1) and D(2, 1, a).

Denote by 1+0 (resp., 1+1) the set of positive even (resp., odd) roots of g. The
Weyl denominator R and the affine Weyl denominator R̂ are given by the formulas

R =
R0

R1
, R̂ =

R̂0

R̂1
,

where

R0 :=
∏

α∈1+0

(1− e−α), R̂0 := R0 ·
∞∏

k=1
(1− qk)rank g ∏

α∈10

(1− qke−α),

R1 :=
∏

α∈1+1

(1+ e−α), R̂1 := R1 ·
∞∏

k=1

∏
α∈11

(1+ qke−α).

Let ĝ be the nontwisted affinization of g, ĥ be the Cartan subalgebra of ĝ and
1̂+ be the set of positive roots of ĝ. The affine Weyl denominator is the Weyl
denominator of ĝ. Let ρ̂ ∈ ĥ be such that 2(ρ̂, α) = (α, α) for each simple root
α ∈ 1̂+.
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If g has a nonzero Killing form, the affine denominator identity, stated in [Kac
and Wakimoto 1994] and proven there and in [Gorelik 2011], takes the form

R̂eρ̂ =
∑
w∈T ′

w(Reρ̂), (1)

where T ′ is the affine translation group corresponding to the “largest” root sub-
system of 10. The affine denominator identity for strange Lie superalgebras Q(n),
which are not contragredient, was stated in [Kac and Wakimoto 1994] and proven
in [Zagier 2000].

For a parameter q and a formal variable x we introduce, after [De Sole and Kac
2005], the infinite products

(1+ x)∞q :=
∞∏

k=0

(1+ qk x) and (1− x)∞q :=
∞∏

k=0

(1− qk x).

These infinite products converge for any x ∈ C if the parameter q is a real number
0< q < 1. In particular, they are well defined for 0< x = q < 1 and (1± q)∞q :=∏
∞

n=1(1± qn).
For A(n− 1|n− 1)= gl(n|n) denote by str the restriction of the supertrace to

the Cartan subalgebra h⊂ g (thus str ∈ h∗).
In this paper we will prove the following theorem.

0.2. Theorem. Let g be a complex finite-dimensional contragredient Lie superal-
gebra with zero Killing form. One has

R̂eρ̂ · f (q, estr)=
∑

w∈T ′ w(Reρ̂) for A(n|n),
R̂eρ̂ · f (q)=

∑
w∈T ′ w(Reρ̂) for D(n+1|n), D(2, 1, a),

(2)

where T ′ is the affine translation group corresponding to the “smallest” root subsys-
tem of 10 (see 0.4 below) and f (q, estr), f (q) are given by the following formulas

f (q, estr)=
(1−q(−1)nestr)∞q ·(1−q(−1)ne−str)∞q

((1−q)∞q )2
for gl(n|n),

f (q)=
(
(1− q)∞q

)−1 for D(n+1|n).
(3)

0.3. The affine denominator identity for gl(2|2) was stated by V. Kac and M. Waki-
moto [1994] and proven in [Gorelik 2010] (with a proof different from the one
presented below).

As pointed by P. Etingof, the terms f (q, estr), f (q) can be interpreted using
“degenerate” cases n = 1; for example, for gl(1|1) we obtain the formula

R̂eρ̂ =
((1− q)∞q )

2

(1+ qestr)∞q · (1+ qe−str)∞q
Reρ̂,
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which is trivial since gl(1|1) has the only positive root β = str, which is odd.
Since sl(n|n)= {a ∈ gl(n|n) : str(a)= 0} and

rank sl(n|n)= 2n− 1= rank gl(n|n)− 1,

one has

f (q)=


(1− q)∞q for sl(2n|2n),

((1+q)∞q )
2

(1−q)∞q
for sl(2n+1|2n+1).

The root datum of D(2, 1, a) is the same as the root datum of D(2|1) so the
affine denominator identity for D(2, 1, a) is the same as the affine denominator
identity for D(2|1).

As it is shown in [Kac and Wakimoto 1994], the evaluation of the affine denomi-
nator identity (2) for A(1|1) gives the following Jacobi identity [1829]:

�(q)8 = 1+ 16
∞∑

j,k=1

(−1)( j+1)kk3q jk, (4)

where �(q)=
∑

j∈Z q j2
and thus the coefficient of qm in the power series expansion

of �(q)8 is the number of representation of a given integer as a sum of 8 squares
(taking into the account the order of summands).

0.4. In order to define T ′ for A(n|n), D(n+1|n) we present the set of even roots
in the form 10 =1

′
q1′′, where

1′ ∼=1′′ = An−1 for A(n− 1|n− 1)= gl(n|n),
1′ = Cn, 1

′′
= Dn+1 for D(n+1|n).

Let W ′ be the Weyl group of 1′ and Ŵ ′ be the corresponding affine Weyl group.
Then Ŵ ′ =W ′n T ′, where T ′ is a translation group, see [Kac 1990, Chapter VI].
By contrast to Lie superalgebras with nonzero Killing form, for D(n+1|n) the rank
of root system 1′ is smaller than the rank of 1′′. It is not possible to change T ′

to T ′′ in (1) and in (2) for D(n+1|n), since the sum
∑

w∈T ′′ w(Reρ̂) is not well
defined if 1′ 6∼=1′′ (see Remark 2.1.4).

The key point of our proof of Theorem 0.2 is Proposition 2.3.2, where it is
shown that the expansion of Y := R̂−1e−ρ̂

∑
w∈T ′ w(Reρ̂) contains only Ŵ -invariant

elements. This implies that Y = f (q) for g= D(n+1|n) and Y = f (q, e−str) for
gl(n|n). We determine f (q) and f (q, estr) using suitable evaluations.

1. Preliminaries

One readily sees (for instance, [Gorelik 2011, 1.5]) that Reρ̂ and R̂eρ̂ do not depend
on the choice of set of positive roots1+. As a result, in order to prove Theorem 0.2,
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it is enough to establish the identity (2) for one choice of 1+. Similarly, it is
enough to establish the identity for one choice of An−1 for gl(n|n). In Section 1.1
we describe our choice of the set of positive roots for gl(n|n), D(n+1|n). In
Section 1.2 we introduce notation for affine Lie superalgebra ĝ. In Section 1.3 we
introduce the algebra R of formal power series in which we expand R and R̂.

Note that if the dual Coxeter number of g is zero, then

ρ̂ = ρ =
1
2

( ∑
α∈1+0

α−
∑

α∈1+1

α
)
.

1.1. Root systems. Let g be gl(n|n) or D(n|n+1) and let h be its Cartan subalgebra.
We fix the following sets of simple roots:

5=

{
{ε1− δ1, δ1− ε2, ε2− δ2, . . . , εn − δn} for gl(n|n),
{ε1− δ1, δ1− ε2, ε2− δ2, . . . , εn − δn, δn ± εn+1} for D(n+1|n).

We fix a nondegenerate symmetric invariant bilinear form on g and denote by
(− ,−) the induced nondegenerate symmetric bilinear form on h∗; we normalize
the form in such a way that −(εi , ε j )= (δi , δ j )= δi j ; notice that {εi , δi : 1≤ i ≤ n}
(resp., {ε j , δi : 1≤ i ≤ n, 1≤ j ≤ n+ 1}) is an orthogonal basis of h∗ for gl(n|n)
(resp., for D(n+1|n)).

For this choice one has

10+ =

{
{εi−ε j }1≤i< j≤nq{δi−δ j }1≤i< j≤n for gl(n|n),
10+ = {εi±ε j }1≤i< j≤n+1q{δs±δt }1≤s<t≤n∪{2δs}1≤s≤n for D(n+1|n),

11+ =


{εi−δ j }1≤i≤ j≤n∪{δi−ε j }1≤i< j≤n for gl(n|n),
11+ = {εi−δs}1≤i≤s≤n∪{δs−ε j }1≤s< j≤n+1∪{δi+ε j }1≤i≤n;1≤ j≤n+1

for D(n+1|n).

For D(n+1|n) one has ρ = 0. For gl(n|n) one has str =
∑n

i=1(εi − δi ) and
ρ =− 1

2str.
Recall that sl(n|n) = {a ∈ gl(n|n) : str(a) = 0} and so h∗ for sl(n|n) is the

quotient of h∗ for gl(n|n) by Cstr.
By the above, 10 is the union of two irreducible root systems, and we write

10 =1
′′
q1′, where 1′′ lies in the span of the εi and 1′ lies in the span of the δi

(this notation is compatible with the notation in Section 0.4).

1.2. Nontwisted affinization. Let g=n−⊕h⊕n+ be any complex finite-dimensional
contragredient Lie superalgebra with a fixed triangular decomposition, and let 1+
be its set of positive roots. Let ĝ be the affinization of g and let ĥ be its Cartan
subalgebra, see [Kac 1990, Chapter VI]. Let 1̂= 1̂0q 1̂1 be the set of roots of ĝ.
We set

1̂+ =1+ ∪
( ∞⋃

k=1
{α+ kδ| α ∈1}

)
∪

( ∞⋃
k=1
{kδ}

)
,
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where δ is the minimal imaginary root. Let W and Ŵ be the Weyl groups of 10 and
1̂0. One has (ĥ∗)Ŵ = Cδ for g 6= gl(n|n) and (ĥ∗)Ŵ = Cδ⊕Cstr for g= gl(n|n).

We extend the nondegenerate symmetric invariant bilinear form from g to ĝ and
denote by (−,−) the induced nondegenerate symmetric bilinear form on ĥ∗ (the
above-mentioned form on h∗ is induced by this form on ĥ∗). For A ⊂ ĥ∗ we set
A⊥ = {µ ∈ ĥ∗ : ∀ν ∈ A, (µ, ν)= 0}.

1.2.1. In Section 1.1 we introduced the root systems 1′,1′′ for g= gl(n|n) and
g = D(n+1|n). Let W ′ and W ′′ be the Weyl groups of 1′ and 1′′, respectively.
One has W =W ′×W ′′. We denote by Ŵ ′ the Weyl group of the affine root system
1̂′. Recall that Ŵ ′ = W ′ n T ′, where T ′ is a translation group; see [Kac 1990,
Chapter VI].

1.2.2. For N ⊂ ĥ∗ we use the notation ZN for the set
∑

µ∈N Zµ. Set

Q+ :=
∑
µ∈1+

Z
≥0µ, Q := Z1+, Q̂± := ±

∑
µ∈1̂+

Z
≥0µ, Q̂ := Z1̂+.

We introduce the standard partial order on ĥ∗: µ≤ ν if (ν−µ) ∈ Q̂+.

1.3. The algebra R. We are going to use the notation of [Gorelik 2011, 1.4], which
we recall below. We retain the notation of Section 1.2.

1.3.1. Call a Q̂+-cone a set of the form (λ− Q̂+), where λ ∈ ĥ∗.
For a formal sum of the form Y :=

∑
ν∈ĥ∗ bνeν, bν ∈ Q define the support of

Y by supp(Y ) := {ν ∈ ĥ∗ : bν 6= 0}. Let R be a vector space over Q, spanned by
the sums of the form

∑
ν∈Q̂+ bνeλ−ν , where λ ∈ ĥ∗, bν ∈ Q. In other words, R

consists of the formal sums Y =
∑

ν∈ĥ∗ bνeν with the support lying in a finite union
of Q̂+-cones.

Clearly, R has a structure of commutative algebra over Q. If Y ∈R is such that
Y Y ′ = 1 for some Y ′ ∈R, we write Y−1

:= Y ′.

1.3.2. Action of the Weyl group. For w ∈ Ŵ set w
(∑

ν∈ĥ∗ bνeν
)
:=
∑

ν∈ĥ∗ bνewν .
By the above, wY ∈R if and only if w(supp Y ) is a subset of a finite union of Q̂+-
cones. For each subgroup W̃ of Ŵ we set RW̃ := {Y ∈R :wY ∈R for each w∈ W̃ };
notice that RW̃ is a subalgebra of R.

1.3.3. Infinite products. An infinite product of the form Y =
∏
ν∈X (1+ aνe−ν)r(ν),

where aν ∈ Q, r(ν) ∈ Z
≥0 and X ⊂ 1̂ is such that the set X \ 1̂+ is finite, can

be naturally viewed as an element of R; clearly, this element does not depend on
the order of factors. Let Y be the set of such infinite products. For any w ∈ Ŵ the
infinite product

wY :=
∏
ν∈X

(1+ aνe−wν)r(ν),
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is again an infinite product of the above form, since the set w1̂+ \ 1̂+ is finite (see
for example [Gorelik 2011, Lemma 1.2.8]). Hence Y is a Ŵ -invariant multiplicative
subset of RŴ .

The elements of Y are invertible in R: using the geometric series we can expand
Y−1. For example, (1− eα)−1

=−e−α(1− e−α)−1
=−

∑
∞

i=1 e−iα.

1.3.4. The subalgebra R′. Denote by R′ the localization of RŴ by Y. By the above,
R′ is a subalgebra of R. Observe that R′ 6⊂RŴ : for example, (1− e−α)−1

∈R′,
but (1− e−α)−1

=
∑
∞

j=0 e− jα
6∈RŴ . We extend the action of Ŵ from RŴ to R′

by setting w(Y−1Y ′) := (wY )−1(wY ′) for Y ∈ Y, Y ′ ∈RŴ .
Notice that an infinite product of the form Y =

∏
ν∈X (1+ aνe−ν)r(ν), where

aν, X are as above and r(ν) ∈ Z, lies in R′ and wY =
∏
ν∈X (1+ aνe−wν)r(ν). The

support supp(Y ) has a unique maximal element (with respect to the standard partial
order) and this element is given by the formula

max supp(Y )=−
∑

ν∈X\1̂+:aν 6=0

rνν.

1.3.5. Let W̃ be a subgroup of Ŵ . For Y ∈R′ we say that Y is W̃ -invariant (resp.,
W̃ -anti-invariant) if wY = Y (resp., wY = sgn(w)Y ) for each w ∈ W̃ .

Let Y =
∑

aµeµ ∈ RW̃ be W̃ -anti-invariant. Then awµ = (−1)sgn(w)aµ for
each µ and w ∈ W̃ . In particular, W̃ supp(Y ) = supp(Y ), and, moreover, for
each µ ∈ supp(Y ) one has StabW̃ µ ⊂ {w ∈ W̃ : sgn(w) = 1}. The condition
Y ∈RW̃ is essential: for example, for W̃ = {id, sα}, the expressions Y := eα− e−α ,
Y−1
= e−α(1− e−2α)−1 are W̃ -anti-invariant, supp(Y )= {±α} is sα-invariant, but

supp(Y−1)= {−α,−3α, . . .} is not sα-invariant.
For Y ∈RW̃ such that each W̃ -orbit in ĥ∗ has a finite intersection with supp(Y ),

introduce the sum
FW̃ (Y ) :=

∑
w∈W̃

sgn(w)wY.

This sum is well defined, but does not always belong to R. For Y =
∑

aµeµ one has
FW̃ (Y )=

∑
bµeµ, where bµ =

∑
w∈W̃ sgn(w)awµ; in particular, bµ = sgn(w)bwµ

for each w ∈ W̃ . One has

Y ∈RW̃ and FW̃ (Y ) ∈R H⇒


FW̃ (Y ) ∈RW̃ ,

supp(FW̃ (Y )) is W̃ -stable,
FW̃ (Y ) is W̃ -anti-invariant.

We call a vector λ ∈ ĥ∗ W̃ -regular if StabW̃ λ= {id}, and we say that the orbit
W̃λ is W̃ -regular if λ is W̃ -regular (so the orbit consists of W̃ -regular points). If W̃
is an affine Weyl group, then for any λ ∈ ĥ∗ the stabilizer StabW̃ λ is either trivial
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or contains a reflection. Thus for W̃ = Ŵ ′, Ŵ ′′ one has

Y ∈RW̃ and FW̃ (Y ) ∈R H⇒ supp(FW̃ (Y )) is a union of W̃ -regular orbits.

2. Proof

Unless stated otherwise, g is assumed to be one of the algebras gl(n|n), D(n+1|n).
As it is pointed out in Section 1, it is enough to establish the denominator identity

for a particular choice of 1+ and we do this for the choice described in Section 1.1.
Recall that the group T ′ was introduced in Section 1.2.1. The steps of the proof are
the following.

• In Section 2.1 we check that the sum FT ′(Reρ̂) is well-defined and belongs to R.

• In Section 2.2 we prove the inclusions

supp(FT ′(Reρ̂)), supp(R̂eρ̂)⊂U, (5)

where
U := {µ ∈ ρ̂− Q̂+ : (µ,µ)= (ρ̂, ρ̂)}. (6)

We remark that (5) holds for simple contragredient Lie superalgebras with
nonzero Killing form; see [Gorelik 2011, 2.4].

• In Section 2.3 we show that if the dual Coxeter number of g is zero, then the inclu-
sions (5) imply that supp

(
R̂−1e−ρ̂FT ′(Reρ̂)

)
⊂ Q̂Ŵ . As a result, R̂−1e−ρ̂FT ′(Reρ̂)

takes the form f (q) for g 6= gl(n|n) and f (q, estr) for gl(n|n).

• In Section 2.4 we compute f (q) for D(n+1|n) and f (q, estr) for gl(n|n). This
completes the proof of the identities (2).

2.1. In this subsection we show that for g= gl(n|n), D(n+1|n), the sum FT ′(Reρ̂)
is a well-defined element of R. Since ρ̂ = ρ is Ŵ -invariant, it is enough to verify
that FT ′(R) is a well-defined element of R.

Recall that T ′ = Z{tδi−δi+1}
n−1
i=1 for gl(n|n) and T ′ = Z{tδi }

n
i=1 for D(n+1|n),

where
tµ(α)= α− (α, µ)δ for any α ∈ Q̂. (7)

2.1.1. By Section 1.3.4 one has

max supp(w(R))=−
∑

α∈10+ :
wα<0

wα +
∑

β∈11+ :
wβ<0

wβ.

Forw∈T ′ writew= tµ, whereµ∈Z{δi−δi+1}1≤i<n for gl(n|n) andµ∈Z{δi }
n
i=1

for D(n+1|n). From (7) we get

{β ∈1i+|wβ < 0} = {β ∈1i+|(β, µ) > 0} for i = 0, 1.
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We obtain max supp(tµ(R))=−v(µ)+ (v(µ), µ)δ, where

v(µ) :=
∑

β∈10+ :
(β,µ)>0

β −
∑

β∈11+ :
(β,µ)>0

β.

In order to prove that FT ′(R) is a well-defined element of R we verify that

(i) (v(µ), µ)≤ 0 for all µ;

(ii) {µ : (v(µ), µ)≥−N } is finite for all N > 0.
(8)

Condition (ii) ensures that the sum FT ′(R)=
∑

µ tµ(R) is well-defined and condi-
tion (i) means that for each µ one has

max supp(tµ(R))=−v(µ)≤
∑
β∈11+

β

so supp
(
FT ′(R)

)
⊂
∑

β∈11+
β − Q̂+ and thus FT ′(R) ∈R.

2.1.2. Case gl(n|n). Recall thatw∈ T ′ has the formw= tµ, µ=
∑n

i=1 kiδi , where
the ki s are integers and

∑n
i=1 ki = 0. One has

{α ∈1+0 : (α, µ) > 0} = {δi − δ j : i < j, ki > k j },

{α ∈1+1 : (α, µ) > 0} = {εi − δ j : k j < 0, i ≤ j} ∪ {δi − ε j : ki > 0, i < j},

where 1≤ i, j ≤ n.
Write v(µ) = v′ + v′′, where v′ =

∑n
i=1 aiδi and v′′ lies in the span of the εi .

By the above, for ki > 0 one has ai ≤ (n− i)− (n− i)= 0 and for k j < 0 one has
a j ≥−( j − 1)+ j = 1. Therefore

(v(µ), µ)=
n∑

i=1
ai ki ≤

∑
ki<0

ki ≤ 0

and the set {µ : (v(µ), µ)≥−N } is a subset of the set {µ :
∑

ki<0 ki ≥−N }, which
is finite for any N , because the ki are integers and

∑n
i=1 ki = 0. This establishes

conditions (8).

2.1.3. Case D(n+1|n). Recall that w ∈ T ′ has the form w = tµ, µ =
∑

kiδi ,
where the ki s are integers. One has

{α ∈1+0 : (α, µ) > 0} =
{δi − δ j : i < j, ki > k j } ∪ {δi + δ j : i 6= j, ki + k j > 0} ∪ {2δi : ki > 0},

{α ∈1+1 : (α, µ) > 0} =
{εs − δ j : k j < 0, s ≤ j} ∪ {δi − εs : ki > 0, i < s} ∪ {δi + εs : ki > 0},

where 1≤ i, j ≤ n and 1≤ s ≤ n+ 1.
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Write v(µ)= v′+v′′, where v′ =
∑n

i=1 aiδi and v′′ lies in the span of the εi . By
the above, for ki > 0 one has ai ≤ (2n+ 1− i)− (2n+ 2− i)=−1 and for k j < 0
one has a j ≥−( j − 1)+ j = 1. Therefore

(v(µ), µ)=
n∑

i=1
ai ki ≤−

∑
ki>0

ki +
∑

k j<0
k j =−

n∑
1=1
|ki | ≤ 0,

so the set {µ : (v(µ), µ)≥−N } is a subset of {µ :
∑n

i=1 |ki | ≤ N }, which is finite
for any N . This establishes the conditions (8).

2.1.4. Remark. For gl(n|n) one can interchange 1′ and 1′′ so the sum FT ′′(R) is
well-defined. One readily sees that FT ′′(R) is not well-defined for D(n+1|n). For
instance, for n>1, for each k>0 one has v(−2kε1)=0 so max supp

(
t−2kε1(R)

)
=0

and the sum
∑
∞

k=1 t−2kε1(R) is not well-defined; hence FT ′′(R) is not well-defined
as well.

2.2. By Section 1.3.3, R̂ is an invertible element of R′. From representation theory
we know that since ĝ admits a Casimir element [Kac 1990, Chapter II], the character
of the trivial ĝ-module is a linear combination of the characters of Verma ĝ-modules
M(λ), where λ ∈ −Q̂ are such that (λ+ ρ̂, λ+ ρ̂)= (ρ̂, ρ̂). Since the character of
M(λ) is equal to R̂−1eλ, we obtain

1=
∑
λ∈Q̂−

(λ+ρ̂,λ+ρ̂)=(ρ̂,ρ̂)

aλ R̂−1eλ,

where aλ ∈ Z. This can be rewritten as

R̂eρ̂ =
∑

λ∈ρ̂−Q̂+
(λ,λ)=(ρ̂,ρ̂)

aλeλ,

that is supp(R̂)⊂U , see (6) for notation.
It remains to verify the inclusion supp

(
FT ′(Reρ̂)

)
⊂U . The denominator identity

for g (see [Kac and Wakimoto 1994; Gorelik 2012]) takes the form

Reρ = FW ′′

(
eρ∏

β∈S(1+ e−β)

)
,

where S := {εi − δi }
n
i=1 (the identity for gl(n|n) immediately follows from the

identity for sl(n|n)). Since ρ = ρ̂ is Ŵ -invariant, this implies

tµ(Reρ̂)= eρ̂
∑
w∈W ′′

sgn(w)
∏
β∈S

(1+ e−tµwβ)−1.
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For each tµ ∈ T ′ and w ∈W ′′ one has

supp
(∏
β∈S

(1+ e−tµwβ)−1)
⊂ V, where V := Z{tµwβ : β ∈ S} ∩ Q̂−.

Since (tµwβ, tµwβ ′) = (β, β ′) = (tµwβ, ρ̂) = (ρ̂, β) = 0 for any β, β ′ ∈ S, one
has (V, V ) = (V, ρ̂) = 0. Therefore V + ρ̂ ⊂ U so supp

(
tµ(Reρ̂)

)
⊂ U for each

µ. This establishes the required inclusion supp
(
FT ′(Reρ̂)

)
⊂U and completes the

proof of (5).

2.3. Let us deduce from (5) that the support of R̂−1eρ̂ ·FT ′(Reρ̂) consists of Ŵ -
invariant elements of Q̂−. We do this in two steps: first, proving Lemma 2.3.1,
which is valid for any simple contragredient Lie superalgebra and for gl(n|n),
and then, proving Proposition 2.3.2, which uses the fact that ρ̂ = ρ for g (this is
equivalent to the fact that the dual Coxeter number is zero).

The affine root system 1̂′ is a subsystem of 1̂0. Set 1̂′
+
= 1̂′ ∩ 1̂+ and let 5̂′

be the corresponding set of simple roots. Fix ρ̂ ′ ∈ ĥ∗ such that 2(ρ̂ ′, α) = (α, α)
for each α ∈ 5̂′.

2.3.1. Lemma. The term R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂) is a Ŵ ′-anti-invariant element of

RŴ ′ .

Proof. By Section 2.1.1, FT ′(Reρ̂) ∈R and thus R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂) ∈R.

Let R′0, R′′0 be the Weyl denominators for 1′,1′′ (i.e., R′0 =
∏
α∈1′+

(1− e−α)).

Notice that R′′0 eρ̂/R1 ∈ R′ so w
(
R′′0 eρ̂/R1

)
is well-defined. Below we will show

that the sum FŴ ′
(
R′′0 eρ̂/R1

)
is a well-defined element of R and will establish the

following formula

FT ′(Reρ̂)= FŴ ′

(
R′′0 eρ̂

R1

)
. (9)

It is easy to see that R̂0eρ̂
′

, R̂eρ̂ are Ŵ ′-anti-invariant elements of R′ (see, for
instance, [Gorelik 2011, 1.5.1]). Since R̂1eρ̂

′
−ρ̂
∈R′ and R̂1eρ̂

′
−ρ̂
· R̂eρ̂ = R̂0eρ̂

′

, we
conclude that R̂1eρ̂

′
−ρ̂ is a Ŵ ′-invariant element of R′. However, by Section 1.3.3,

R̂1 ∈ RŴ , and thus R̂1eρ̂
′
−ρ̂ is a Ŵ ′-invariant element of RŴ . Multiplying both

sides of formula (9) by R̂1eρ̂
′
−ρ̂ we obtain

R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂)= FŴ ′

(
R̂1

R1
· R′′0 eρ̂

′

)
. (10)

By Section 1.3.3, R̂1/R1 and R′′0 lie in RŴ . In the light of Section 1.3.5, the
formula (10) implies the assertion of the lemma.

Let us show that the right-hand side of (9) is well-defined. Since R′′0 and ρ̂ are
Ŵ ′-invariant, it is enough to check that FŴ ′(R

−1
1 ) is a well-defined element of R.
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By Section 1.3.4, for each w ∈ Ŵ ′ one has

max supp
(
w(R−1

1 )
)
=

∑
β∈11+ :
wβ<0

wβ.

In particular, supp
(
w(R−1

1 )
)
⊂ Q̂−, so, if the term FŴ ′(R

−1
1 ) is well-defined, it

lies in R. In order to see that FŴ ′(R
−1
1 ) is well-defined let us check that for each

ν ∈ Q̂− the set

X (ν) :=
{
w ∈ Ŵ ′ :

∑
β∈11+ :
wβ<0

wβ ≥ ν

}

is finite. One has

X (ν)⊂ {w ∈ Ŵ ′ : wβ ≥ ν for all β ∈11+}.

Write ν =−kδ+ν ′, where k ≥ 0, ν ′ ∈ Q, and write w ∈ X (ν) in the form w= tµy,
where tµ∈T ′, y∈W ′. Sincewβ= yβ−(yβ,µ)δ for β ∈11+, one has (yβ,µ)≥−k
for each β ∈ 11+. Since {εi − δi , δi − εi+1} ⊂ 11+, this gives |(µ, yδi )| ≤ k for
i = 1, . . . , n. Combining the facts that W ′ is a subgroup of signed permutation of
{δ j }

n
j=1 and that (µ, δi ) is integral for each i , we conclude that X (ν) is finite. Thus

FŴ ′
(
R′′0 eρ̂/R1

)
is a well-defined element of R.

Now let us prove the formula (9). Recall that ρ = ρ ′0+ ρ
′′

0 − ρ1, where

ρ ′0 :=
∑
α∈1′0+

α/2, ρ ′′0 :=
∑
α∈1′′0+

α/2, ρ1 :=
∑
β∈11+

β/2.

The Weyl denominator identity for 1′0 takes the form

R′0eρ
′

0 = FW ′(eρ
′

0).

Since R1eρ1 =
∏

β∈11+

(eβ/2+ e−β/2) is W -invariant and R′′0 eρ
′′

0 is W ′-invariant, we
get

Reρ =
R′′0 eρ

′′

0

R1eρ1
·FW ′(eρ

′

0)= FW ′

(
eρ
′

0 R′′0 eρ
′′

0

R1eρ1

)
= FW ′

(
R′′0 eρ

R1

)
.

Using the W -invariance of ρ̂− ρ, we obtain

FT ′
(
Reρ̂)= FT ′

(
FW ′

(
R′′0 eρ̂

R1

))
= FŴ ′

(
R′′0 eρ̂

R1

)
as required. This completes the proof. �
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2.3.2. Proposition. One has

supp(R̂−1e−ρ̂ ·FT ′(Reρ̂))⊂ (Q̂−)Ŵ = Q̂− ∩ Q̂⊥.

Proof. Set
Y := R̂−1e−ρ̂ ·FT ′(Reρ̂).

By Sections 2.1.1 and 1.3.3, FT ′(Reρ̂), R̂−1
∈R. Thus Y ∈R. One has

R̂0eρ̂
′

Y = R̂1eρ̂
′
−ρ̂
·FT ′(Reρ̂).

In the light of Lemma 2.3.1, we obtain

R̂0eρ̂
′

Y is a Ŵ ′-anti-invariant element of RŴ ′ . (11)

Write Y =Y1+Y2, where supp(Y1)= supp(Y )∩Q̂⊥ and supp(Y2)= supp(Y )\Q̂⊥.
Note that Y1, Y2 ∈R. Assume that Y2 6= 0. Let µ be a maximal element in supp(Y2).
One has supp(R̂−1)⊂ Q̂− and supp

(
FT ′(R)eρ̂

)
⊂ ρ̂− Q̂+, by Section 1.3.4 and (5)

respectively. Thus supp(Y )⊂ Q̂− and so µ ∈ Q̂−.
Since supp(Y1)⊂ Q̂⊥, Y1 is a Ŵ -invariant element of RŴ . Recall that R̂0eρ̂

′

is
a Ŵ ′-anti-invariant element of RŴ . Thus R̂0eρ̂

′

Y1 is a Ŵ ′-anti-invariant element of
RŴ ′ . In the light of (11), the product R̂0eρ̂

′

Y2 is also a Ŵ ′-anti-invariant element
of RŴ ′ . Clearly, ρ̂ ′ + µ is a maximal element in the support of R̂0eρ̂

′

Y2. By
Section 1.3.5, this support is a union of Ŵ ′-regular orbits (recall that regularity
means that each element has the trivial stabilizer in Ŵ ′), so ρ̂ ′+µ is a maximal
element in a regular Ŵ ′-orbit and thus 2(ρ̂ ′+µ, α)/(α, α) 6∈ Z

≤0 for each α ∈ 5̂′.
Since µ ∈ Q̂− one has 2(µ, α)/(α, α) ∈ Z for each α ∈ 5̂′. Taking into account
that 2(ρ̂ ′, α)/(α, α)= 1 for each α ∈ 5̂′, we obtain

2(µ, α)
(α, α)

∈ Z
≥0 for all α ∈ 5̂′. (12)

Recall that δ =
∑

α∈5̂′ kαα for some kα ∈ Z>0 (see [Kac 1990, Chapter VI]). Since
µ ∈ Q̂− one has (µ, δ) = 0. Combining with (12), we get (µ, α) = 0 for each
α ∈ 5̂′ so µ ∈ (1̂′)⊥.

Let us show that (µ,µ) = 0. Since (ρ̂, Q̂) = 0, it is equivalent to the equality
(µ+ ρ̂, µ+ ρ̂)= (ρ̂, ρ̂). Notice that µ+ ρ̂ is a maximal element in the support of
R̂eρ̂Y2. Let us check that

supp(R̂eρ̂Y2)⊂U = {ξ ∈ ρ̂− Q̂+ : (ξ, ξ)= (ρ̂, ρ̂)}. (13)

Indeed,
R̂eρ̂Y2 = FT ′(Reρ̂)− R̂eρ̂Y1

and, by (5),
supp

(
FT ′(Reρ̂)

)
⊂U and supp

(
R̂eρ̂

)
⊂U.
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By construction, supp(Y1)⊂ Q̂⊥∩ Q̂−. Recall that ρ̂ = ρ ∈Q1, so U ⊂Q · Q̂. In
particular, we have (U, supp(Y1))= 0. Since (supp(Y1), supp(Y1))= 0, we obtain
(supp(Y1)+U )⊂U and this establishes the inclusion (13). Hence (µ,µ)= 0.

Recall that µ ∈ (1̂′)⊥ ∩ Q̂−. One has

(1̂′)⊥ ∩ Q̂ = (Q̂⊥ ∩ Q̂)⊕Z1′′.

For every β ∈ Q̂⊥ ∩ Q̂, γ ∈1′′ one has (β, β) = (β, γ ) = 0 and (γ, γ ) 6= 0 if
γ 6= 0. Using the equality (µ,µ) = 0, we get µ ∈ Q̂⊥ ∩ Q̂, which contradicts to
the construction of Y2. Hence Y2 = 0 as required. �

2.3.3. Corollary. For g = D(n+1|n) one has f (q) · R̂eρ̂ = FT ′(Reρ̂) for some
f (q)=

∑
∞

k=0 akqk (ak ∈ Z). For g= gl(n|n) one has f (q, estr) · R̂eρ̂ =FT ′(Reρ̂)
for some f (q, estr)=

∑
∞

k=0
∑
∞

m=−∞ ak,mqkem·str (ak,m ∈ Z).

Proof. One has (Q̂)⊥∩ Q̂=Zδ+Zstr for gl(n|n) and (Q̂)⊥∩ Q̂=Zδ for D(n+1|n).
�

2.4. In this subsection we complete the proof of the denominator identities (2) by
proving the formulas (3). We prove them by taking a suitable evaluation of the term
R̂−1e−ρ̂FT ′(Reρ̂). Since ρ̂ is Ŵ -invariant, this term is equal to R̂−1FT ′(R), and,
by Corollary 2.3.3, it is equal to f (q) for D(n+1|n) and to f (q, estr) for gl(n|n).
Now we consider q as a real parameter between 0 and 1. We choose the evaluation
in such a way that the evaluation of R̂−1FT ′(R)= R̂−1∑

t∈T ′ t (R) is equal to the
evaluation of R̂−1 R. As a result, f (q) (resp., f (q, estr)) is equal to the evaluation
of R̂−1 R, which can be easily computed.

2.4.1. Case D(n+1|n). Take a complex parameter x and consider the evaluation
e−εi := xai , e−δ j := −xb j , where ai (i = 1, . . . , n+ 1) and b j ( j = 1, . . . , n) are
integers such that ai ± b j 6= 0, ai ± a j 6= 0, bi ± b j 6= 0, bi 6= 0 for all indexes i, j .
We denote by R̂ and R̂(x) the evaluation of R and R(x). The functions R(x) and
R̂(x) are meromorphic. One has

R(x)=

∏
1≤i< j≤n+1(1− xai±a j ) ·

∏
1≤i< j≤n(1− xbi±b j ) ·

∏
1≤i≤n(1− x2bi )∏

1≤i≤ j≤n(1− xai±b j )
∏

1≤ j<i≤n+1(1− xb j±ai )
.

One readily sees that R(x) has a pole at x = 1 of order |11+| − |10+| = n.
One has

R̂(x)
R(x)

∣∣∣∣
x=1
=
((1− q)∞q )

dim g0

((1− q)∞q )dim g1
= ((1− q)∞q )

dim g0−dim g1 = (1− q)∞q .

In particular, R̂(x) also has a pole of order n at x = 1.
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The evaluation of (t∑ ki δi (R))(x) is∏
1≤i< j≤n+1(1− xai±a j ) ·

∏
1≤i≤n(1− q−2ki x2bi ) ·

∏
1≤i< j≤n(1− q−ki∓k j xbi±b j )∏

1≤i≤ j≤n(1− q∓k j xai±b j )
∏

1≤ j<i≤n+1(1− q−k j xb j±ai )

which is a meromorphic function. Let s be the number of zeros among k1, . . . , kn .
Then at x = 1 the order of zero of the numerator is at least is n(n + 1) + s2,
and the order of zero of the denominator is 2(n + 1)s. Therefore at x = 1 the
function (t∑ ki δi (R))(x) has the pole of order at most 2(n+ 1)s− n(n+ 1)− s2

=

n+1−(n+1−s)2; in particular, (t∑ ki δi (R))(x) has the pole of order at most n and
it is equal to n if and only if n = s that is

∑
kiδi = 0 and (t∑ ki δi (R))(x)= R(x).

We conclude that
(R̂(x))−1

·

∑
t∈T ′:t 6=id

(t (R))(x)

is holomorphic at x = 1 and its value is zero, and that

(R̂(x))−1
·

∑
t∈T ′

(t (R))(x)

is holomorphic at x = 1 and its value is R(x)
R̂(x)

∣∣∣∣
x=1

. In the light of Corollary 2.3.3
we obtain

f (q)=
R(x)

R̂(x)

∣∣∣∣
x=1
= ((1− q)∞q )

−1.

2.4.2. Case gl(n|n). Fix y > 1. Take a complex parameter x and consider the
following evaluation

e−ε1 := y, e−εi := x i , for i = 2, . . . , n; e−δi := −x−i for i = 1, . . . , n.

The functions R(x), R̂(x) are meromorphic. One has

R(x)=

∏
1<i≤n(1− yx−i ) ·

∏
1<i< j≤n(1− x i− j ) ·

∏
1≤i< j≤n(1− x j−i )∏

1≤i≤n(1− yx i ) ·
∏

1<i≤ j≤n(1− x i+ j ) ·
∏

1≤ j<i≤n(1− x−i− j )
.

Therefore the function R(x) has a pole of order n− 1 at x = 1.
One has

R̂(x)
R(x)

∣∣∣∣
x=1
=
((1− q)∞q )

dim g0−2(n−1)
· ((1− qy)∞q )

n−1
· ((1− qy−1)∞q )

n−1

((1− q)∞q )dim g1−2n · ((1− qy)∞q )n · ((1− qy−1)∞q )
n .

Thus R̂(x) also has a pole of order n − 1 at x = 1. Since dim g0 = dim g1 and
estr
= (−1)n y−1 for x = 1 we obtain

R̂(x)
R(x)

∣∣∣∣
x=1
=

((1− q)∞q )
2

(1− q(−1)nestr)∞q · (1− q(−1)ne−str)∞q
.
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One has

(t∑ ki δi (R))(x, y)

=

∏
1<i≤n

(1−yx−i ) ·
∏

1<i< j≤n
(1−x i− j )·

∏
1≤i< j≤n

(1−qk j−ki x j−i )∏
1≤i≤n

(1−qki yx i ) ·
∏

1<i≤ j≤n
(1−qk j x i+ j ) ·

∏
1≤ j<i≤n

(1−q−k j x−i− j )
,

which is a meromorphic function.
Let s be the number of zeros among k1, . . . , kn . Then at x = 1 the order of zero

of the numerator is at least

(n− 1)(n− 2)+ s(s− 1)
2

,

and the order of zero of the denominator is (n−1)s. Therefore at x = 1 the function
(t∑ ki δi (R))(x, y) has a pole of order at most

(n− 1)s− (n−1)(n−2)+s(s−1)
2

=
3n−s−2−(n−s)2

2
,

so the order is at most n − 1 and it is equal to n − 1 if and only if s = n − 1, n.
Notice that s 6= n− 1, since

∑
ki = 0. Therefore the pole has order n− 1 if and

only if
∑

kiδi = 0.
We conclude that the function (R̂(x))−1(FT ′(R))(x) is holomorphic at x = 1

and its value is (R(x)/R̂(x))
∣∣
x=1. Using Corollary 2.3.3 we obtain

f (q, estr)=
R(x)

R̂(x)

∣∣∣∣
x=1
=
(1− q(−1)nestr)∞q · (1− q(−1)ne−str)∞q

((1− q)∞q )2
.

3. Other forms of denominator identity

Recall that the denominator identity for a basic Lie superalgebra can be written in
the form

Reρ = FW ]

(
eρ∏

β∈S(1+ e−β)

)
, (14)

where S ⊂ 5 is the maximal isotropic system, and W ] is the Weyl group of the
“largest” root subsystem of 10 (10 = 1

′
q1′′), see [Kac and Wakimoto 1994;

Gorelik 2012]; in particular, W ]
:= W ′′ for g = D(n+1|n), and W ]

:= W ′ or
W ]
:=W ′′ for g= gl(n|n).

If the dual Coxeter number of g is nonzero the affine denominator identity for g

can be written in the form

R̂eρ̂ = FŴ ]

(
eρ̂∏

β∈S(1+ e−β)

)
,
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see [Gorelik 2012, 2.1]. In this section we will show that for gl(n|n) the denominator
identity can be written in a similar form:

R̂eρ = f (q, estr) ·FŴ ′

(
eρ∏

β∈S(1+ e−β)

)
, (15)

and that the denominator identities for D(n+1|n) can not be written in a similar
form, since the expressions

FŴ ′′

(
eρ∏

β∈S(1+ e−β)

)
and FŴ ′

(
eρ∏

β∈S(1+ e−β)

)
(16)

are not well-defined.

3.1. Case D(n+1|n). Let us show that the expressions in (16) are not well-defined
for D(n+1|n). Fix 5 as in Section 1.1 and recall that ρ = 0.

We repeat the reasoning of Section 2.1.1. One has∑
β∈VS(w)

wβ ∈ supp
(

1∏
β∈S(1+ e−wβ)

)
⊂

∑
β∈VS(w)

wβ − Q̂+ ⊂ Q̂−,

where
VS(w)= {β ∈ S : wβ < 0}.

Therefore 1 ∈ supp
(
1/
∏
β∈S(1+ e−wβ)

)
if and only if wS ⊂1+.

Take S = {εi − δi }; then tµS ⊂1+ if (εi − δi , µ) < 0 for all i which holds for
all µ ∈

∑
Z<0εi and all µ ∈

∑
Z>0δi . Hence the sums in (16) contain infinitely

many summands equal to 1 and thus they are not well-defined.

3.2. Case gl(n|n). Fix 5 as in Section 1.1; then S = {εi − δi }.
In order to deduce the formula (15) from (14) and (2) it is enough to verify that

the expression

FŴ ′

(
eρ∏

β∈S(1+ e−β)

)
= eρFŴ ′

(
1∏

β∈S(1+ e−β)

)
is well-defined (since ρ is Ŵ -invariant). As in Section 2.1.1, this amounts to
showing that

X S(ν) :=

{
w ∈ Ŵ ′ :

∑
β∈VS(w)

wβ ≥−ν

}

is finite for any ν ∈ Q̂+ (where VS(w) is defined as in Section 3.1). As in
Section 2.1.1, writing ν = kδ+ ν+, where ν+ ∈ Z1, we get

X S(ν)⊂
{
tµy : µ ∈ T ′, y ∈W ′ s.t. (yβ,µ)≥−k for all β ∈ S

}
.
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Since y permutes δi s, tµy ∈ X S(ν) forces (δi , µ)≥−k for all i . Taking into account
that µ lies in the Z-span of δi and (µ,

∑n
i=1 δi ) = 0, we conclude that X S(ν) is

finite. This establishes (15).
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