Vol. 6, No. 5, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, I

Andrew Obus

Vol. 6 (2012), No. 5, 833–883
Abstract

We examine in detail the stable reduction of G-Galois covers of the projective line over a complete discrete valuation field of mixed characteristic (0,p), where G has a cyclic p-Sylow subgroup of order pn. If G is further assumed to be p-solvable (that is, G has no nonabelian simple composition factors with order divisible by p), we obtain the following consequence: Suppose f : Y 1 is a three-point G-Galois cover defined over . Then the n-th higher ramification groups above p for the upper numbering for the extension K vanish, where K is the field of moduli of f. This extends work of Beckmann and Wewers. Additionally, we completely describe the stable model of a general three-point pn-cover, where p > 2.

Keywords
Field of moduli, stable reduction, Galois cover
Mathematical Subject Classification 2000
Primary: 14H30
Secondary: 14G20, 14G25, 14H25, 11G20, 11S20
Milestones
Received: 9 December 2009
Revised: 22 September 2011
Accepted: 4 November 2011
Published: 31 July 2012
Authors
Andrew Obus
Columbia University
Department of Mathematics
MC4403
2990 Broadway
New York, NY 10027
United States