Vol. 6, No. 5, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 15
Issue 6, 1343–1592
Issue 5, 1077–1342
Issue 4, 821–1076
Issue 3, 569–820
Issue 2, 309–567
Issue 1, 1–308

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
Squareful numbers in hyperplanes

Karl Van Valckenborgh

Vol. 6 (2012), No. 5, 1019–1041
Abstract

Let n 4. In this article, we will determine the asymptotic behavior of the size of the set of integral points (a0 : : an) on the hyperplane i=0nXi = 0 in n such that ai is squareful (an integer a is called squareful if the exponent of each prime divisor of a is at least two) and |ai| B for each i {0,,n}, when B goes to infinity. For this, we will use the classical Hardy–Littlewood method. The result obtained supports a possible generalization of the Batyrev–Manin program to Fano orbifolds.

Keywords
squareful, Campana, asymptotic behavior
Mathematical Subject Classification 2010
Primary: 11D45
Secondary: 14G05, 11D72, 11P55
Milestones
Received: 3 December 2010
Revised: 17 June 2011
Accepted: 19 July 2011
Published: 31 July 2012
Authors
Karl Van Valckenborgh
Department of Mathematics
Katholieke Universiteit Leuven
Celestijnenlaan 200B
3001 Leuven
Belgium