Vol. 6, No. 6, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
The smallest prime that does not split completely in a number field

Xiannan Li

Vol. 6 (2012), No. 6, 1061–1096
Abstract

We study the problem of bounding the least prime that does not split completely in a number field. This is a generalization of the classic problem of bounding the least quadratic nonresidue. Here, we present two distinct approaches to this problem. The first is by studying the behavior of the Dedekind zeta function of the number field near 1, and the second by relating the problem to questions involving multiplicative functions. We derive the best known bounds for this problem for all number fields with degree greater than 2. We also derive the best known upper bound for the residue of the Dedekind zeta function in the case where the degree is small compared to the discriminant.

Keywords
primes, split, number fields, Dedekind zeta function
Mathematical Subject Classification 2000
Primary: 11N60
Secondary: 11R42
Milestones
Received: 22 June 2010
Revised: 8 September 2011
Accepted: 26 September 2011
Published: 12 August 2012
Authors
Xiannan Li
Department of Mathematics
Stanford University
Stanford 94305
United States