Néron's pairing and relative algebraic equivalence

Cédric Pépin
Néron’s pairing and relative algebraic equivalence

Cédric Pépin

Let R be a complete discrete valuation ring with algebraically closed residue field k and fraction field K. Let X_K be a proper smooth and geometrically connected scheme over K. Néron defined a canonical pairing on X_K between 0-cycles of degree zero and divisors which are algebraically equivalent to zero. When X_K is an abelian variety, and if one restricts to those 0-cycles supported on K-rational points, Néron gave an expression of his pairing involving intersection multiplicities on the Néron model A of A_K over R. When X_K is a curve, Gross and Hriljac gave independently an analogous description of Néron’s pairing, but for arbitrary 0-cycles of degree zero, by means of intersection theory on a proper flat regular R-model X of X_K.

We show that these intersection computations are valid for an arbitrary scheme X_K as above and arbitrary 0-cycles of degree zero, by using a proper flat normal and semifactorial model X of X_K over R. When $X_K = A_K$ is an abelian variety, and $X = \overline{A}$ is a semifactorial compactification of its Néron model A, these computations can be used to study the relative algebraic equivalence on \overline{A}/R. We then obtain an interpretation of Grothendieck’s duality for the Néron model A, in terms of the Picard functor of \overline{A} over R. Finally, we give an explicit description of Grothendieck’s duality pairing when A_K is the Jacobian of a curve of index one.

1. Introduction 1315
2. Néron’s pairing and intersection multiplicities 1318
3. Duality and algebraic equivalence for models of abelian varieties 1329
4. Grothendieck’s pairing for Jacobians 1341
Acknowledgments 1346
References 1346

1. Introduction

Let R be a complete discrete valuation ring with algebraically closed residue field k and fraction field K. Let X_K be a proper smooth and geometrically connected

Partially supported by the FWO project ZKC1235-PS-011 G.0415.10 at KU Leuven.

Keywords: Néron’s symbol, Picard functor, Néron models, duality, Grothendieck’s pairing.
scheme over K. Denote by $Z^0_0(X_K)$ the group of 0-cycles of degree zero on X_K, and by $\text{Div}^0(X_K)$ the group of divisors which are algebraically equivalent to zero on X_K. For each $c_K \in Z^0_0(X_K)$ and $D_K \in \text{Div}^0(X_K)$ with disjoint supports, Néron attached a rational number

$$\langle c_K, D_K \rangle \in \mathbb{Q},$$

by using the unique (up to constant) Néron function associated to D_K. This defines a bilinear pairing $\langle \cdot, \cdot \rangle$; see [Néron 1965, II 9.3].

Suppose first that $X_K = A_K$ is an abelian variety, and denote by A its Néron model over R. By definition of A, any K-rational point of A_K extends to a section of A over R. Then, if c_K is supported on K-rational points, Néron showed that the pairing attached to A_K can be decomposed as follows:

$$\langle c_K, D_K \rangle = i(c_K, D_K) + j(c_K, D_K),$$

where $i(c_K, D_K)$ is the intersection multiplicity $(\tilde{c}_K, \tilde{D}_K) \in \mathbb{Z}$ of the schematic closures in A, and $j(c_K, D_K) \in \mathbb{Q}$ depends only on the specialization of c_K on the group Φ_A of connected components of the special fiber A_k; see [Néron 1965, III 4.1; Lang 1983, 11.5.1].

Suppose now that X_K is a curve, and denote by X a proper flat regular model of X_K over R. Let M be the intersection matrix of the special fiber X_k of X/R: if $\Gamma_1, \ldots, \Gamma_v$ are the irreducible components of X_k equipped with their reduced scheme structure, the (i, j)-th entry of M is the intersection number $(\Gamma_i \cdot \Gamma_j)$. Let $D_K \in \text{Div}^0(X_K)$ and let \tilde{D}_K be its closure in X. Computing the degree $(\tilde{D}_K \cdot \Gamma_i)$ of \tilde{D}_K along each Γ_i, we get a vector $\rho(\tilde{D}_K) \in \mathbb{Z}^v$. Next, as a consequence of intersection theory on X, there exists a vector $V \in \mathbb{Q}^v$ such that $\rho(\tilde{D}_K) = MV$. Denote again by V the \mathbb{Q}-linear combination of the Γ_i where the coefficient of Γ_i is the i-th entry of V. Then, for any $c_K \in Z^0_0(X_K)$ whose support is disjoint from that of D_K, the following formula holds:

$$\langle c_K, D_K \rangle = (\tilde{c}_K, \tilde{D}_K) + (\tilde{c}_K, (-V)),$$

where the second intersection number is defined by \mathbb{Q}-linearity from the (\tilde{c}_K, Γ_i). See [Gross 1986; Hriljac 1985; Lang 1988, III 5.2]. Now let J_K be the Jacobian of X_K and let J be its Néron model over R. Following the point of view of Bosch and Lorenzini [2002, 4.3], it results from Raynaud’s theory of the Picard functor $\text{Pic}_{X/R}$ [Raynaud 1970, Section 8] that the term $(\tilde{c}_K, (-V))$ depends only on the specialization of $(c_K) \in J_K(K)$ into the group of components Φ_J of J_k.

In Section 2, we provide a unified approach to these two descriptions of Néron’s pairing. More precisely, for an arbitrary proper geometrically normal and geometrically connected scheme X_K, there always exists some proper flat normal semifactorial model X of X_K over R [Pepin 2011, Theorem 2.6]. Recall that X/R is
semifactorial if the restriction homomorphism on Picard groups \(\text{Pic}(X) \to \text{Pic}(X_K) \) is surjective. Note that a regular model is semifactorial. Using the theory of the Picard functor of semifactorial models, we define a pairing \([\cdot, \cdot]\) on \(X_K\) involving intersection multiplicities on \(X\) (Definition 2.1.1). It turns out that this pairing depends only on \(X_K\), and coincides with Néron’s pairing when the latter is defined, that is, when \(X_K\) is smooth:

\[
(\cdot, \cdot) = [\cdot, \cdot]
\]

(Theorem 2.2.1). If \(X_K = A_K\) is an abelian variety and \(X = \overline{A}\) is a semifactorial compactification of its Néron model \(A\), then equality (3) provides decomposition (1) for 0-cycles supported on \(K\)-rational points. If \(X_K\) is a curve and \(X\) a proper flat regular model of \(X_K\), then the intersection matrix of \(X_k\) is defined, and equality (3) is exactly formula (2).

In Section 3, we consider an abelian variety \(A_K\), with dual \(A'_K\). By definition, the abelian variety \(A'_K\) parametrizes the divisors on \(A_K\) which are algebraically equivalent to zero, that is, \(A'_K = \text{Pic}^0_{A_K/K}\). Now, let \(A'/R\) be the Néron model of \(A'_K\), and denote by \((A')^0\) its identity component. By restricting to the generic fiber, the group of sections \((A')^0(R)\) can be viewed as a subgroup of \(A'_K(K)\). On the other hand, let \(\overline{A}\) be a normal semifactorial compactification of \(A\), let \(\text{Pic}_{\overline{A}/R}\) be its relative Picard functor, and let \(\text{Pic}^0_{\overline{A}/R}\) be the component of the zero section. By restricting to the generic fiber, the group \(\text{Pic}^0_{\overline{A}/R}(R)\) can be viewed as a subgroup of \(\text{Pic}^0_{A_K/K}(K)\).

In Theorem 3.2.1, we investigate the relationship between the two groups

\[
(A')^0(R) \quad \text{and} \quad \text{Pic}^0_{\overline{A}/R}(R) \quad (\text{contained in } A'_K(K) = \text{Pic}^0_{A_K/K}(K)).
\]

We show that they are equal as soon as the duality conjecture of Grothendieck about \(A\) and \(A'\) is true [SGA 7 I 1972, IX 1.3]. More precisely, Grothendieck defined a pairing between the component groups of the special fibers of \(A\) and \(A'\), and he conjectured that this pairing is perfect. This duality statement has been proved in many situations (see the introduction of [Bosch and Lorenzini 2002] for a detailed list of the known cases, and also [Loerke 2009]), but it remains open in equal characteristic \(p > 0\). Here, we give an equivalent formulation of Grothendieck’s conjecture, in terms of Cartier divisors on \(\overline{A}\). As a consequence, when the conjecture is true, we obtain the equality \((A')^0(R) = \text{Pic}^0_{\overline{A}/R}(R)\). As a Cartier divisor on \(\overline{A}\) is said to be algebraically equivalent to zero relative to \(R\) if its image into \(\text{Pic}_{\overline{A}/R}(R)\) is contained \(\text{Pic}^0_{\overline{A}/R}(R)\), the latter equality says that these divisors are parametrized by \((A')^0\). The main ingredients for the proof are a theorem of Bosch and Lorenzini about Néron’s and Grothendieck’s pairings [Bosch and Lorenzini 2002, 4.4], and the study of the pairing \([\cdot, \cdot]\) introduced above, especially for 0-cycles supported on nonrational points (Proposition 3.4.2).
In Section 4, we examine the relationship between Néron’s and Grothendieck’s pairing for the Jacobian of a curve, following Bosch and Lorenzini [2002, 4.6] and Lorenzini [2008, 3.4]. Here we take into account the index of the curve (Theorem 4.1.1). As a consequence, we obtain the perfectness of Grothendieck’s pairing when this index is prime to the characteristic of the residue field k (Corollary 4.1.2).

2. Néron’s pairing and intersection multiplicities

In this article, let us adopt the following terminology: a divisor on a scheme will always be a Cartier divisor.

2.1. A canonical pairing computed on semifactorial models. Let R be a discrete valuation ring with fraction field K and residue field k. We assume R complete and k algebraically closed. Let X_K be a proper geometrically normal and geometrically connected scheme over K. From [Pepin 2011, Theorem 2.6], there exists a model X/R of X_K, that is, an R-scheme with generic fiber X_K, which is proper, flat, normal and semifactorial: every invertible sheaf on X_K can be extended to an invertible sheaf on X. To each 0-cycle $c_K \in Z^0(X_K)$ and divisor $D_K \in \text{Div}^0(X_K)$ with support disjoint from that of c_K, we will attach a number $[c_K, D_K]_X \in \mathbb{Q}$ using intersection multiplicities on X. For this purpose, let us first recall some definitions and one result.

Intersection multiplicities. Let X/R be a proper R-scheme. Let c_K be a 0-cycle on the generic fiber X_K. Denote by \overline{c}_K its schematic closure in X: if $c_K = \sum_i n_i[x_{K,i}]$, then $\overline{c}_K = \sum_i n_i[x_{K,i}]$, where $x_{K,i}$ is the closure in X of the closed point $x_{K,i}$ of X_K. On the other hand, let Δ be a divisor on X whose support does not meet that of c_K. The intersection multiplicity (\overline{c}_K, Δ) of \overline{c}_K and Δ on X is defined as follows. Let x_K be a point of the support of c_K. Let $Z := \overline{x}_K$ be its schematic closure in X. This is an integral scheme, finite and flat over R, which is local because R is henselian. Set $x_k := Z \cap X_k$. If $f \in K(X)$ is a local equation for Δ in a neighborhood of x_k, then $(\overline{c}_K, \Delta)_{x_k}$ is the order of $f|_Z$ at x_k: writing $f|_Z = a/b$ with regular $a, b \in \mathcal{O}(Z)$, then

$$(\overline{c}_K, \Delta)_{x_k} = \text{length}_{\mathcal{O}(Z)}\left(\mathcal{O}(Z)/(a)\right) - \text{length}_{\mathcal{O}(Z)}\left(\mathcal{O}(Z)/(b)\right)$$

[Fulton 1998, page 8]. The whole intersection multiplicity (\overline{c}_K, Δ) is defined by \mathbb{Z}-linearity.

Let us also give another description of $(\overline{c}_K, \Delta)_{x_k}$, which will be useful in the sequel. As R is excellent, the normalization $\tilde{Z} \to Z$ is finite. Moreover, as k is algebraically closed,

$$\text{length}_{\mathcal{O}(Z)}\left(\mathcal{O}(Z)/(a)\right) = \text{length}_R\left(\mathcal{O}(Z)/(a)\right).$$
for any regular $a \in \mathcal{O}(Z)$, and the same formula holds with Z replaced by \widetilde{Z} [loc. cit., Appendix A.1.3]. But

$$\text{length}_R(\mathcal{O}(Z)/(a)) = \text{length}_R(\mathcal{O}(\widetilde{Z})/(a))$$

for any regular $a \in \mathcal{O}(Z)$; see [Bosch et al. 1990, end of page 237]. Thus, if $f \in K(X)$ is a local equation for Δ in a neighborhood of x_k, we have obtained that

$$(\tilde{c}_k, \Delta)_{x_k} = \begin{cases}
\text{length}_{t(\tilde{Z})}(\mathcal{O}(\tilde{Z})/(f)) & \text{if } f|_\tilde{Z} \in \mathcal{O}(\tilde{Z}), \\
-\text{length}_{t(\tilde{Z})}(\mathcal{O}(\tilde{Z})/(f^{-1})) & \text{otherwise}.
\end{cases}$$

Relative algebraic equivalence and relative τ-equivalence [Raynaud 1970, 3.2d; SGA 6 1971, XIII 4]. If G is a commutative group scheme locally of finite type over a field, the *identity component* G^0 of G is the open subscheme of G whose underlying topological space is the connected component of the identity element of G. The *τ-component* of G is open subgroup scheme G^τ of G which is the inverse image of the torsion subgroup of G/G^0. When G is a commutative group functor over a scheme T, whose fibers are representable by schemes locally of finite type, the *identity component* and *τ-component* of G are the subfunctors G^0 and G^τ of G whose fibers are the G^0_t, $t \in T$ and G^τ_t, $t \in T$, respectively. Note that $G^0 \subseteq G^\tau$.

Let $Z \to T$ be a proper morphism of schemes. Then the fibers of the Picard functor $\text{Pic}_{Z/T}$ are representable by schemes locally of finite type [Murre 1964; Oort 1962]. Let \mathcal{L} be an invertible \mathcal{O}_Z-module. The sheaf \mathcal{L} is said to be *algebraically equivalent to zero relative to T* if its image into $\text{Pic}_{Z/T}(T)$ belongs to the subgroup $\text{Pic}^0_{Z/T}(T)$, that is $\mathcal{L}_t \in \text{Pic}^0_{Z_t}(t)$ for all $t \in T$. When there is no ambiguity about the base scheme T, we will just say that \mathcal{L} is *algebraically equivalent to zero*. Similarly, the sheaf \mathcal{L} is said to be *τ-equivalent to zero relative to T* if its image into $\text{Pic}_{Z/T}(T)$ belongs to the subgroup $\text{Pic}^\tau_{Z/T}(T)$, that is $\mathcal{L}_t \in \text{Pic}^\tau_{Z_t}(t)$ for all $t \in T$. If D is a divisor on Z, it is *algebraically equivalent to zero*, or *τ-equivalent to zero*, respectively, relative to T if the associated invertible sheaf $\mathcal{O}_Z(D)$ is. We denote by $\text{Div}^0(Z/T)$ and $\text{Div}^\tau(Z/T)$ the groups of divisors on Z which are algebraically equivalent to zero and τ-equivalent to zero, respectively, relative to T. Then $\text{Div}^0(Z/T) \subseteq \text{Div}^\tau(Z/T)$.

Relative algebraic equivalence and semifactoriality. Let X/R be a proper flat semifactorial R-scheme. Suppose that the generic fiber X_K is geometrically normal and geometrically connected. Its Picard variety $\text{Pic}^0_{X_K/K, \text{red}}$ is then an abelian variety [FGA VI 1966, 3.2]. Let A/R be its Néron model, and let n be the exponent of the component group of the special fiber of A. In this situation, [Pepin 2011, Corollary 3.14] can be read as follows: for any divisor D_K on X_K which is algebraically equivalent to zero, there exists a divisor Δ on X which is algebraically equivalent to zero relative to R and whose generic fiber Δ_K is equal to $n D_K$.
Definition 2.1.1. Let X_K be a proper, geometrically normal and geometrically connected scheme over K. Let X/R be a proper, flat, normal and semifactorial model of X_K over R.

Consider $c_K \in Z_0^0(X_K)$ and $D_K \in \text{Div}^\tau(X_K)$ with disjoint supports. Let \tilde{c}_K be the schematic closure of c_K in X. Choose any $(n, \Delta) \in (\mathbb{Z} \setminus \{0\}) \times \text{Div}^\tau(X/R)$ such that $\Delta_K = nD_K$. Then set

$$[c_K, D_K]_X := \frac{1}{n}(\tilde{c}_K, \Delta) \in \mathbb{Q}.$$

This definition makes sense because $\frac{1}{n}\Delta \in \text{Div}^\tau(X/R) \otimes \mathbb{Z} \otimes \mathbb{Q}$ is uniquely determined by D_K, up to a rational multiple of the principal divisor X_k. Indeed, if (n', Δ') is another choice in Definition 2.1.1, then the divisor $n'\Delta - n\Delta'$ is τ-equivalent to zero on X and equal to zero on X_K. Thus, as X is normal, this difference is a rational multiple of X_k [Raynaud 1970, 6.4.1 3].

Next, one checks easily that the symbol $[\cdot, \cdot]_X$ is bilinear (in its definition domain). To prove that this pairing does not depend on the choice of X, we will use the following lemma.

We will denote by $(\cdot)_*$ and $(\cdot)^*$ the push-forward of cycles and the pull-back of divisors respectively; see [Fulton 1998, 20.1.3] and [Liu 2002, 7.1.29, 7.1.33, 7.1.34], respectively.

Lemma 2.1.2. Let X and X' be integral schemes, proper over R. Let $\varphi : X \to X'$ be an R-morphism. Let $c_K \in Z_0^0(X_K)$ and let \tilde{c}_K be its schematic closure in X. Let Δ' be a divisor on X' whose support does not meet that of $(\varphi_K)_*c_K$. Then the following projection formula holds:

$$\tilde{c}_K.\varphi^*\Delta' = \varphi_*\tilde{c}_K.\Delta'.$$

In particular, let X and X' be proper, flat, normal and semifactorial schemes over R, with geometrically normal and geometrically connected generic fibers, so that $[\cdot, \cdot]_X$ and $[\cdot, \cdot]_{X'}$ are defined. Let $\varphi : X \to X'$ be an R-morphism. Let $c_K \in Z_0^0(X_K)$, and let $D_K' \in \text{Div}^\tau(X'_K)$ whose support does not meet that of $(\varphi_K)_*c_K$. Then the following equality holds:

$$[c_K, (\varphi_K)^*D_K']_X = [(\varphi_K)_*c_K, D_K']_{X'}.$$

Proof. Let us first note that the divisors $\varphi^*\Delta'$ (and $(\varphi_K)^*D_K'$) are well-defined. Indeed, as φ is proper, its image Y is a closed subset of X'. Endow Y with its
Néron’s pairing and relative algebraic equivalence

reduced scheme structure. As X is reduced, φ factors through Y:

$$
\begin{array}{ccc}
X & \xrightarrow{\psi} & Y \\
\downarrow & & \downarrow \\
X' & &
\end{array}
$$

Now, by hypothesis, the support of Δ' is disjoint from that of $(\varphi_K)_*c_K$. In particular, Y is not contained in the support of Δ'. So the pullback $\iota^*\Delta'$ is well-defined. Next, X and Y being integral and ψ dominant, $\varphi^*\Delta' := \psi^*(\iota^*\Delta')$ is well-defined.

Let us now recall the proof of the projection formula $\bar{\varepsilon}_K\cdot \varphi^*\Delta' = \varphi_*\bar{\varepsilon}_K\cdot \Delta'$. Let x_K be a closed point of the support of c_K, let Z be its schematic closure in X, set $x_k := Z \cap x_k$ and let \tilde{Z} be the normalization of Z. The reduced scheme $V := \varphi(Z)$ is the schematic closure of $\varphi(x_K)$ and we have $\varphi(x_k) = V \cap x_k$. Denote by \bar{V} the normalization of V. The morphism φ induces a finite surjective morphism $Z \to V$, which in turn induces a finite surjective morphism $\tilde{Z} \to \bar{V}$ (R is excellent). Let f' be a local equation of Δ' at $\varphi(x_k)$. Suppose for example that $f'|_{\bar{V}} \in \mathcal{O}(\bar{V})$. The equality $(\varphi_*\bar{\varepsilon}_K\cdot \Delta')_{x_k} = (\bar{\varepsilon}_K\cdot \varphi^*\Delta')_{x_k}$ to be proved can be written as

$$
[K(Z) : K(V)] \cdot \text{length}(\mathcal{O}(\bar{V})/(f')) = \text{length}(\mathcal{O}(\tilde{Z})/((\varphi^* f'))) .
$$

But $[K(Z) : K(V)]$ is equal to the ramification index of the discrete valuation rings extension $\mathcal{O}(\bar{V}) \to \mathcal{O}(\tilde{Z})$. Consequently, the above formula is true.

Now, when the pairings $[\cdot, \cdot]_X$ and $[\cdot, \cdot]_{X'}$ are defined, the projection formula can be written as the equality $[c_K, (\varphi_K)^*D'_K]_X = [(\varphi_K)_*c_K, D'_K]_{X'}$. Indeed, let Δ' be a divisor which is τ-equivalent to zero on X' and let n' be a nonzero integer such that $(\Delta')_K = n'D'_K$. The direct image $\varphi_*\bar{\varepsilon}_K$ of the schematic closure of c_K coincides with the schematic closure of $(\varphi_K)_*c_K$. Thus, by definition,

$$
n'[((\varphi_K)_*c_K, D'_K)]_{X'} = \varphi_*\bar{\varepsilon}_K\cdot \Delta' .
$$

The divisor $\varphi^*\Delta'$ is τ-equivalent to zero on X, and satisfies $(\varphi^*\Delta')_K = n'(\varphi_K)^*D'_K$. Hence, by definition,

$$
n'[c_K, (\varphi_K)^*D'_K]_X = \bar{\varepsilon}_K\cdot \varphi^*\Delta' .
$$

In the situation of Definition 2.1.1, let X' be another proper flat normal semifactorial R-model of X_K. Consider the graph Γ of the rational map $X \dashrightarrow X'$ induced by the identity on the generic fibers. By definition, this is the schematic closure of the graph of the identity morphism $X_K \to X'_K$ in $X \times_R X'$. In particular, this is a closed subscheme of $X \times_X X'$, proper and flat over R, with generic fiber isomorphic to X_K. Applying [Pepin 2011, Theorem 2.6], we can find an R-scheme \tilde{X} which is proper flat normal and semifactorial, together with an R-morphism $\tilde{X} \to \Gamma$ which
is an isomorphism on the generic fibers. Composing with the two projections from $X \times_R X'$ to X and X', we get arrows

\[\tilde{X} \]

\[X \quad X' \]

which are isomorphisms on the generic fibers. Now, Lemma 2.1.2 shows that the pairings $[\cdot, \cdot]_X$ and $[\cdot, \cdot]_{X'}$ both coincide with $[\cdot, \cdot]_{\tilde{X}}$. In conclusion, the pairing $[\cdot, \cdot]_X$ depends only on X_K, and not on the choice of X.

Let us summarize the above considerations:

Proposition 2.1.3. Let X_K be a proper, geometrically normal and geometrically connected scheme over K. There exists a pairing

\[[\cdot, \cdot]: \mathbb{Z}_0^0(X_K) \times \text{Div}^\tau(X_K) \to \mathbb{Q}, \]

defined for the pairs (c_K, D_K) such that the supports of c_K and D_K are disjoint, and which can be computed as follows.

Let X/R be any proper flat normal and semifactorial model of X_K over R. Let \overline{c}_K be the schematic closure of c_K in X. Choose $(n, \Delta) \in (\mathbb{Z} \setminus \{0\}) \times \text{Div}^\tau(X/R)$ such that $\Delta_K = nD_K$. Then we have

\[[c_K, D_K] = \frac{1}{n}(\overline{c}_K \cdot \Delta) \in \mathbb{Q}. \]

2.2. **Comparison with Néron’s pairing.** As before, let R be a complete discrete valuation ring with fraction field K and algebraically closed residue field k. Let X_K be a proper smooth and geometrically connected scheme over K. Let v be the normalized valuation on K, which maps any uniformizing element of R to $1 \in \mathbb{Z}$. We fix an algebraic closure \overline{K} of K, and we still denote by v the unique valuation on \overline{K} extending v. Néron attached to X_K a pairing $\langle \cdot, \cdot \rangle$ with respect to the valuation v [Néron 1965, II 9.3]. This is a pairing

\[\langle \cdot, \cdot \rangle: \mathbb{Z}_0^0(X_K) \times \text{Div}^\tau(X_K) \to \mathbb{R}, \]

defined for (c_K, D_K) when the supports of c_K and D_K are disjoint (the definition of Néron’s pairing is briefly reviewed at the beginning of the proof of Theorem 2.2.1). Actually, Néron considers the subgroup $\text{Div}^\tau(X_K) \subseteq \text{Div}^\tau(X_K)$ to consist of divisors which are algebraically equivalent to zero on X_K. However, the group $(\mathbb{R}, +)$ being divisible, the real number $\langle c_K, D_K \rangle$ is naturally defined when D_K is only τ-equivalent to zero. Néron shows in [loc. cit., III 4.2] that the pairing takes values in \mathbb{Q}. This fact will be recovered and made more precise below (Corollary 2.2.2).
Our goal in this subsection is to prove the following common generalization of Néron [1965, III 4.1], Gross [1986], Hriljac [1985], Lang [1988, III 5.2] and Bosch–Lorenzini [2002, 4.3], over a complete discrete valuation ring R with algebraically closed residue field k and fraction field K.

Theorem 2.2.1. For every proper, smooth and geometrically connected scheme over K, the pairing $[\cdot, \cdot]$ defined in Proposition 2.1.3 coincides with Néron’s pairing $\langle \cdot, \cdot \rangle$ defined in [Néron 1965, II.9, Theorem 3].

In particular, the pairing $[\cdot, \cdot]$ generalizes Néron’s pairing to K-schemes which are proper geometrically normal and geometrically connected, but not necessarily smooth.

Before proving the theorem, let us note a consequence of Proposition 2.1.3.

Corollary 2.2.2. Let X_K be a proper, geometrically normal and geometrically connected scheme over K. Let n be the exponent of the component group of the special fiber of the Néron model of the Picard variety $A_K = \text{Pic}^0_{X_K/R, \text{red}}$. Then Néron’s pairing on $Z^0_0(X_K) \times \text{Div}^0(X_K)$ takes values in $(1/n) \mathbb{Z}$.

Proof. As recalled before Definition 2.1.1, the exponent n has the following property: for any $D_K \in \text{Div}^0(X_K)$ and any proper flat normal and semifactorial model X of X_K, there exists $\Delta \in \text{Div}^0(X/R)$ such that $\Delta_K = n D_K$. In particular, for any $D_K \in \text{Div}^0(X_K)$, we can choose this integer n, together with a divisor $\Delta \in \text{Div}^0(X/R)$, to compute

$$[c_K, D_K] = \frac{1}{n} (\bar{c}_K \cdot \Delta) \in \frac{1}{n} \mathbb{Z}.$$

Now Theorem 2.2.1 asserts that $\langle c_K, D_K \rangle = [c_K, D_K]$.

Corollary 2.2.2 provides a refinement of [Néron 1965, III 4.2]. More precisely, Néron shows that the pairing

$$\langle \cdot, \cdot \rangle: Z^0_0(X_K) \times \text{Div}^0(X_K) \to \mathbb{R}$$

takes values in $(1/2n'ab) \mathbb{Z}$, where n', a and b are defined as follows. The integer n' is the exponent of the component group of the special fiber of the Néron model of the Albanese variety A'_K of X_K. Conjecturally, n' is equal to n; see Section 3.1. Next, a is the smallest positive integer such that there exists a map $h : X_K \to A'_K$ from X_K to its Albanese variety, with the property that for any divisor $D_K \in \text{Div}^0(X_K)$, there exists a divisor $W_K \in \text{Div}^0(A'_K)$ such that $h^* W_K$ is linearly equivalent to $a D_K$. We can have $a > 1$ if $X_K(K)$ is empty. Finally, b is the smallest degree of a polarization of the Albanese variety A'_K.

In [Mazur and Tate 1983, (1.5) and (2.3); Lang 1983, 11.5.1-11.5.2], it is proved that $\langle c_K, D_K \rangle$ belongs to $(1/n') \mathbb{Z}$ when X_K is an abelian variety and if c_K is supported on rational points. This statement is also a consequence of [Bosch and...
Moreover, note that Néron’s pairing can take the value $1/n$, for instance when X_K is an elliptic curve; see [loc. cit., Example 5.8].

Let us go back to Theorem 2.2.1. To prove the theorem, we will use the characterization of Néron’s pairing given in [Lang 1983, 11.3.2] and that we recall now.

An element c_K of $Z_0^0(X_K)$ can be written uniquely as a difference of two positive 0-cycles with disjoint supports: $c_K = c^+_K - c^-_K$. Denoting by \deg the degree of a 0-cycle, let us set

$$\deg^+ c_K := \deg(c^+_K) = \deg(c^-_K) \geq 0.$$

Lemma 2.2.3 [Lang 1983, 11.3.2]. Suppose that for each projective smooth and geometrically connected scheme X_K over K, we are given a bilinear pairing

$$Z_0^0(X_K) \times \text{Div}^0(X_K) \to \mathbb{R}$$

$$(c_K, D_K) \mapsto \delta(c_K, D_K)$$

such that the following properties are true:

1. If D_K is a principal divisor on X_K, then $\delta(c_K, D_K) = 0$.
2. Let $\varphi_K : X_K \to X'_K$ be a K-morphism. For all $c_K \in Z_0^0(X_K)$, and for all $D'_K \in \text{Div}^0(X'_K)$ whose support does not meet that of the 0-cycle $(\varphi_K)_* c_K$, the following equality holds:

$$\delta(c_K, (\varphi_K)^* D'_K) = \delta((\varphi_K)_* c_K, D'_K).$$

3. For $D_K \in \text{Div}^0(X_K)$ fixed and $\deg^+ c_K$ bounded, the values $\delta(c_K, D_K)$ are bounded.

Then $\delta(c_K, D_K) = 0$ for all c_K, D_K and X_K.

Remark 2.2.4. In the statement of [Lang 1983, 11.3.2], one reads “projective variety V over K” instead of “projective smooth and geometrically connected scheme X_K over K”. According to the general conventions of [loc. cit., page 21], a “variety over K” is a “geometrically integral scheme of finite type over K”. However, the given proof of [loc. cit., 11.3.2] works if and only if the Albanese variety of each V is an abelian variety. The latter is true, for example, if each V is geometrically normal, or if each V is smooth. For our purposes, namely the proof of Theorem 2.2.1, we need the version of the lemma where all the V are smooth.

Proof of Theorem 2.2.1. Starting from the existence of Néron functions on a proper smooth and geometrically connected K-scheme X_K [Néron 1965, II 8.2], let us recall the definition of Néron’s pairing. Let

$$c_K = \sum_i n_i [x_{K,i}] \in Z_0^0(X_K)$$
and take $D_K \in \text{Div}^0(X_K)$ whose support $\text{Supp}(D_K)$ does not contain any of the $x_{K,i}$.

Let $\lambda_{D_K} : (X_K - \text{Supp}(D_K))(\overline{K}) \to \mathbb{R}$ be a Néron function associated to D_K. For each i, the scheme $x_{K,i} \otimes_K \overline{K}$ is supported on some \overline{K}-points x_{K,j_i}, $j_i = 1, \ldots, s_i$, where s_i is the separable degree of $K(x_{K,i})/K$. Denoting by l_i the inseparable degree of $K(x_{K,i})/K$, then

$$
\lambda_{D_K}(x_{K,i}) := \sum_{j_i=1}^{s_i} l_i \lambda_{D_K}(x_{K,j_i}) \quad \text{and} \quad \langle c_K, D_K \rangle := \sum_i n_i \lambda_{D_K}(x_{K,i}).
$$

The real number $\langle c_K, D_K \rangle$ is well-defined because λ_{D_K} is unique up to constant and c_K has degree zero.

Comparison of the pairings for a principal divisor D_K. Let us keep the previous notation, and suppose that $D_K = \text{div}_{X_k} f$ for a nonzero $f \in K(X_K)$. Let $z \in (X_K - \text{Supp}(\text{div}_{X_k} f))(\overline{K})$, mapping to a closed point $x_K \in X_K$. The evaluation of f at z is defined by the pull-back $z^* : \mathcal{O}_{X_k,x_k} \to \overline{K}$, that is, $f(z) := z^* f$. The formula $\lambda_f(z) = v(f(z))$ then defines a Néron function for the divisor $\text{div}_{X_k} f$.

Fix an i. There is a 1-1 correspondence between the x_{K,j_i} and the K-embeddings of the residue field extension $K(x_{K,i})/K$ into \overline{K}/K. By pulling back the valuation v, each of these embeddings induces a valuation on $K(x_{K,i})$. However, as R is complete, these valuations are equal to the unique valuation on $K(x_{K,i})$ which extends the normalized valuation on K, and that we can also denote by v. Consequently,

$$
\lambda_f(x_{K,i}) = \sum_{j_i=1}^{s_i} l_i v(f(x_{K,i})) = [K(x_{K,i}) : K] v(f(x_{K,i}))
$$

where $f(x_{K,i})$ is the image of f by the canonical surjection $\mathcal{O}_{X_k,x_k} \to K(x_{K,i})$.

Now, take the schematic closure Z_i of $x_{K,i}$ in X, denote by \tilde{Z}_i its normalization and set $x_{k,i} := X_k \cap Z_i$. The ring $\mathcal{O}(\tilde{Z}_i)$ is a discrete valuation ring with fraction field $K(x_{K,i})$. So it is precisely the valuation ring of v in $K(x_{K,i})$. As k is algebraically closed, its ramification index over R is equal to $[K(x_{K,i}) : K]$. From this observation, we get

$$
v(f(x_{K,i})) = \begin{cases}
1/[K(x_{K,i}) : K] \text{length}_{\mathcal{O}(\tilde{Z}_i)}(\mathcal{O}(\tilde{Z}_i)/(f)) & \text{if } f|_{\tilde{Z}_i} \in \mathcal{O}(\tilde{Z}_i), \\
-1/[K(x_{K,i}) : K] \text{length}_{\mathcal{O}(\tilde{Z}_i)}(\mathcal{O}(\tilde{Z}_i)/(f^{-1})) & \text{otherwise}.
\end{cases}
$$

We have thus obtained $[K(x_{K,i}) : K] v(f(x_{K,i})) = (\overline{c}_K, \text{div}_{X_k} f)_{x_{k,i}}$ (recall the beginning of Section 2.1). But $\text{div}_{X_k} f$ is a divisor on X which is τ-equivalent to zero and extends $\text{div}_{X_k} f$. The desired equality $\langle c_K, \text{div}_{X_k} f \rangle = [c_K, \text{div}_{X_k} f]$ follows.

Functoriality of the pairing $[\cdot, \cdot]$. Let $\varphi_K : X_K \to X'_K$ be a K-morphism of proper smooth and geometrically connected schemes over K. Let us show that for all $c_K \in Z^0_0(X_K)$, and for all $D'_K \in \text{Div}^1(X'_K)$ whose support does not meet that of the
0-cycle \((\varphi_K)_*c_K\), the following equality holds
\[
[c_K, (\varphi_K)^*D'_K] = [(\varphi_K)_*c_K, D'_K].
\]

Let \(X/R\) (resp. \(X'/R\)) be a proper flat normal semifactorial model of \(X_K\) (resp. \(X'_K\)). Consider the graph \(\Gamma\) of the rational map \(X \dashrightarrow X'\) defined by \(\varphi_K\). Applying Theorem 2.6 of [Pépin 2011] to \(\Gamma\), we obtain a proper flat normal semifactorial \(\tilde{X}/R\) and \(R\)-morphisms

\[
\begin{CD}
\tilde{X} @>\alpha>> X \\
@A\beta AA @VV \beta V \\
X @>\alpha>> X'
\end{CD}
\]

such that on the generic fibers, \(\alpha\) is an isomorphism and \(\beta\) coincides with \(\varphi_K\). In particular, the pairing \([\cdot, \cdot]\) for \(X_K\) can be computed on \(\tilde{X}\), and the desired functoriality follows from Lemma 2.1.2 applied to \(\beta\).

The pairing \(\delta(\cdot, \cdot)\). At this point, we recall that for any proper smooth and geometrically connected scheme \(X_K\) over \(K\), there exists a nonzero integer \(a\) and a map \(X_K \to A'_K\) from \(X_K\) to its Albanese variety, with the property that for any divisor \(D_K \in \text{Div}^+(X_K)\), there exists a divisor \(W_K \in \text{Div}^0(A'_K)\) such that \(h^*W_K\) is well-defined and linearly equivalent to \(aD_K\) [Néron 1965, II 2.1]. Let \(c_K \in \mathbb{Z}^0(X_K)\) and \(D_K \in \text{Div}^+(X_K)\) with disjoint supports. Keep the previous notation. After moving \(W_K\) on the projective smooth scheme \(A'_K\) if necessary (see [Liu 2002, 9.1.11], for example), we can assume that the support of \(h^*W_K\) does not meet that of \(c_K\). Then, using the functoriality of \([\cdot, \cdot]\), we can write
\[
a[c_K, D_K] = [c_K, h^*W_K] + [c_K, \text{div}_{X_K} f] = [h_*c_K, W_K] + [c_K, \text{div}_{X_K} f]
\]
for some nonzero \(f \in K(X_K)\). By definition, Néron’s pairing has the same functoriality property as \([\cdot, \cdot]\). And we have seen that both pairings coincide for principal divisors. Consequently, as \(A'_K\) is projective smooth geometrically connected over \(K\), Theorem 2.2.1 is proved if we know that both pairings coincide on such schemes. So, until the end of the proof, we will only consider the pairings for projective smooth geometrically connected schemes. Furthermore, by \(\mathbb{Z}\)-linearity, we can only consider divisors which are algebraically equivalent to zero.

Now, both \([\cdot, \cdot]\) and \(\langle \cdot, \cdot \rangle\) are bilinear in their definition domain, and they coincide for principal divisors. Using a moving lemma on the projective smooth scheme \(X_K\), we see that
\[
\delta(c_K, D_K) := \langle c_K, D_K \rangle - [c_K, D_K]
\]
is well-defined on the whole product \(\mathbb{Z}^0(X_K) \times \text{Div}^0(X_K)\). And conditions (1) and (2) of Lemma 2.2.3 are satisfied by \(\delta\).
Condition (3) of Lemma 2.2.3 is satisfied by \(\delta(\cdot, \cdot) \). Denote by \(\overline{R} \) the valuation ring of \(v \) in \(\overline{K} \).

Fix \(D_K \in \text{Div}^0(X_K) \). Let \((n, \Delta) \in (\mathbb{Z} \setminus \{0\}) \times \text{Div}^\tau(X_K) \) satisfying \(\Delta_K = n D_K \). Represent the divisor \(\Delta \) by a family \((U_t, g_t)_{t=1, \ldots, m} \), where the \(U_t \) are affine open subsets of \(X \) and the \(g_t \) are rational functions on \(X \). Let \(E_t \) be the set of \(\overline{K} \)-points of \(X_K \) which extend to \(\overline{R} \)-points of \(U_t \). As \(X \) is proper over \(R \), we see that \(X(\overline{K}) = \cup_{t=1}^m E_t \). The family \((U_t, K, g_t)_{t=1, \ldots, m} \) represents the divisor \(n D_K \) on \(X_K \).

Let us choose a Néron function \(\lambda_{nD_K} \) on \(X_K \). By definition, we can find some \(v \)-continuous locally bounded functions \(\alpha_t : U_t, K(\overline{K}) \to \mathbb{R} \) such that

\[
\lambda_{nD_K}(z) = v(g_t(z)) + \alpha_t(z)
\]

for all \(z \in (U_t, K - \text{Supp}(D_K))(\overline{K}) \). As \(E_t \) is bounded in \(U_t(\overline{K}) \) (by construction), the function \(\alpha_t \) is bounded on \(E_t \).

Let \(c_K = \sum_i n_i [x_K,i] \in \text{Z}^0(X_K) \) whose support does not meet that of \(D_K \). Fix an \(i \), let \(Z_i \) be the schematic closure of \(x_K,i \) in \(X \), set \(x_K := x_K \cap Z_i \) and let \(t_i \) be such that \(Z_i \subset U_{t_i} \). The same local computation as in the case of a principal divisor shows that

\[
(\overline{c}_K, \Delta)_{x_K,i} = [K(x_K,i) : K] v(g_{t_i}(x_K,i)) = \sum_{j_i=1}^{s_i} l_i v(g_{t_i}(x_K,i)).
\]

On the other hand, keeping the same notation as in the beginning of the proof,

\[
\langle c_K, nD_K \rangle = \sum_i n_i \sum_{j_i=1}^{s_i} l_i \lambda_{nD_K}(x_K,i).
\]

Consequently,

\[
n \delta(c_K, D_K) = \sum_i n_i \sum_{j_i=1}^{s_i} l_i \alpha_t(x_K,i).
\]

By construction, the \(\overline{K} \)-point \(x_{K,i} \) of \(X_K \) belongs to \(E_{t_i} \). Denoting by \(|\cdot| \) the usual absolute value on \(\mathbb{R} \), and setting

\[
B := \max_{t=1, \ldots, m} (\sup_{E_t} |\alpha_t|) \in \mathbb{R},
\]

we obtain

\[
|\delta(c_K, D_K)| \leq \frac{1}{|n|} \sum_i |n_i|[K(x_K,i) : K] |B| = \frac{2B}{|n|} \deg^+ c_K.
\]

As the divisor \(D_K \) is fixed, the numbers \(n \) and \(B \) are fixed, and so the right-hand side of the above inequality is bounded if \(\deg^+ c_K \) is.

Let us note the following properties of the pairing \([\cdot, \cdot] \), and consequently of Néron’s pairing.
Proposition 2.2.5. Let X_K be a proper, geometrically normal and geometrically connected scheme over K. Let $c_K \in \mathbb{Z}_0^\infty(X_K)$ and let $D_K \in \text{Div}^+(X_K)$ with disjoint supports. If c_K or D_K is rationally equivalent to zero, then $[c_K, D_K] \in \mathbb{Z}$.

Proof. The case where D_K is rationally equivalent to zero follows directly from the definition of \cdots: if $D_K = \text{div}_K f$ with $f \in K(X_K) \setminus \{0\}$, then $[c_K, \text{div}_K f] = (c_K, \text{div} f) \in \mathbb{Z}$.

Let us now suppose that c_K is rationally equivalent to zero. As $[\cdot, D_K]$ is \mathbb{Z}-linear, we have to show that if $c_K = (\varphi_K)_* \text{div}_K f$ for some K-morphism

$$\varphi_K : C_K \to X_K$$

from a proper normal connected curve C_K to X_K, and some nonzero $f \in K(C_K)$, then

$$[c_K, D_K] \in \mathbb{Z}.$$

As R is excellent, there exists a proper flat regular model C/R of C_K. On the other hand, let us consider a proper flat normal semifactorial model X/R of X_K.

After replacing C by a desingularization of the graph of the rational map $C \to X$ induced by φ_K, we can suppose that φ_K extends to an R-morphism $\varphi : C \to X$. If Δ is a divisor on X which is τ-equivalent to zero and such that $\Delta_K = nD_K$ for some integer $n \neq 0$, then

$$[c_K, D_K] := \frac{1}{n}((\varphi_K)_* \text{div}_C f, \Delta) = \frac{1}{n}(\text{div}_C f, \varphi^* \Delta)$$

by the projection formula (Lemma 2.1.2). Let us write

$$\text{div}_C f = \overline{\text{div}_C f} - V \quad \text{and} \quad \varphi^* \Delta = (\varphi_K)^* \Delta_K - W$$

for some vertical divisors V and W on C/R. Denote by $\Gamma_1, \ldots, \Gamma_v$ the reduced irreducible components of C_k, by M the intersection matrix associated to C_k (as defined in the introduction), and by $\rho : \text{Pic}(C) \to \mathbb{Z}^v$ the degree homomorphism $(E) \mapsto (E \cdot \Gamma_i)_{i=1,\ldots,v}$. Following [Bosch et al. 1990, 9.2/13], the divisor E on the R-curve C is algebraically equivalent to zero if and only if (E) belongs to the kernel of ρ. Therefore the τ-equivalence relation and the algebraic equivalence relation on C/R are the same, and the linear equivalence classes of $\varphi^* \Delta$ and $\text{div}_C f$ belongs to the kernel of ρ. Thus we get:

$$\rho(\overline{\text{div}_C f}) = \rho(V) = MV \quad \text{and} \quad \rho((\varphi_K)^* \Delta_K) = \rho(W) = MW,$$

where we have identified a vertical divisor on C/R with an element of \mathbb{Z}^v. Next, we use that the matrix M is symmetric to obtain

$$\langle \text{div}_C f, W \rangle = \langle \text{div}_C f, \rho \rangle = \langle W, MV \rangle = \langle V, MW \rangle = \langle (\varphi_K)^* \Delta_K, V \rangle.$$
Then it follows that
\[[c_K, D_K] = \frac{1}{n} \left((\varphi_K)^* \Delta_K \cdot \text{div} C_f \right) = \left((\varphi_K)^* D_K \cdot \text{div} C_f \right) \in \mathbb{Z}. \]

Remark 2.2.6. Let us keep the notation of the proof of 2.2.5. If the curve \(C_K \) is geometrically normal and geometrically connected, the pairing \([\cdot, \cdot] \) is defined on \(C_K \) and
\[
\left((\varphi_K)^* D_K \cdot \text{div} C_f \right) = \left[(\varphi_K)^* D_K, \text{div} C_K f \right].
\]

In other words, in this case, the proof consists in using the functoriality of the pairing \([\cdot, \cdot]\), then showing that it is symmetric for curves, and finally applying the definition of the pairing for a principal divisor. The symmetry property of Néron’s pairing \(\langle \cdot, \cdot \rangle \) for such a curve is well-known: for example see [Lang 1983, 11.3.6 and 11.3.7]. But here, there is no reason for the curve \(C_K \) coming from the rational equivalence relation to satisfy the above geometric hypotheses. So we could not use directly the properties of the pairing \(\langle \cdot, \cdot \rangle \). However, over an excellent discrete valuation ring, there is no need of these geometric hypotheses on \(C_K \) for the existence of the regular model \(C/R \). So we have been able to prove the proposition for the pairing \([\cdot, \cdot]\), and thus also for Néron’s pairing \(\langle \cdot, \cdot \rangle \) thanks to Theorem 2.2.1.

3. Duality and algebraic equivalence for models of abelian varieties

3.1. Grothendieck’s duality for Néron models.

Let us recall here Grothendieck’s duality theory for Néron models of abelian varieties, as developed in [SGA 7 I 1972, VII, VIII, IX].

Let \(R \) be a discrete valuation ring with perfect residue field \(k \) and fraction field \(K \). Let \(A_K \) be an abelian variety over \(K \), with dual \(A'_K \). Let \(A/R, A'/R \) be the Néron models of \(A_K, A'_K \), and \(\Phi_A, \Phi_{A'} \) be the étale \(k \)-group schemes of connected components of the special fibers \(A_k, A'_k \).

By definition, the abelian variety \(A'_K \) represents the identity component \(\text{Pic}^0_{A_K/K} \) of the Picard functor of \(A_K \), and the canonical isomorphism \(A'_K = \text{Pic}^0_{A_K/K} \) is given by the Poincaré sheaf \(\mathcal{P}_K \) on \(A_K \times_K A'_K \) birigidified along the unit sections of \(A_K \) and \(A'_K \). Now, this sheaf is canonically endowed with the structure of a biextension of \((A_K, A'_K)\) by \(\mathbb{G}_{m,K} \) [loc. cit., VII 2.9.5]. Then the duality theory for Néron models is to understand how this biextension extends at the level of Néron models. For this, Grothendieck attached to \(\mathcal{P}_K \) a canonical pairing
\[
\langle \cdot, \cdot \rangle : \Phi_A \times_k \Phi_{A'} \rightarrow \mathbb{Q} / \mathbb{Z},
\]

which measures the obstruction to extending \(\mathcal{P}_K \) as a biextension of \((A, A')\) by \(\mathbb{G}_{m,R} \). The duality statement is: this pairing is a perfect duality [loc. cit., IX 1.3]. As mentioned in the introduction, it has been proved in various situations, including the
semistable case [SGA 7 I 1972, IX 11.4; Werner 1997] and the mixed characteristic case [Bégueri 1980]. In general, the duality statement remains a conjecture.

3.2. Duality and Picard functor. Keep the notation of the previous subsection. By [Pepin 2011, Corollary 2.23], it is always possible to find an R-compactification of A, that is, an open R-immersion of A into a proper R-scheme \overline{A} with dense image, such that \overline{A}/R is flat, A is normal and the canonical map $\text{Pic}(\overline{A}) \to \text{Pic}(A)$ is surjective. Note that, in particular, \overline{A}/R is semifactorial: the map $\text{Pic}(A) \to \text{Pic}(A_K)$ is surjective because A is regular, so that $\text{Pic}(\overline{A}) \to \text{Pic}(A_K)$ is surjective by composition. As \overline{A}/R is proper, it makes sense to consider the notion of algebraic equivalence on A relative to R using the identity component of the Picard functor $\text{Pic}_{A/R}$, as defined in Section 2.1. Our goal in this section is to understand the duality from the point of view of algebraic equivalence, starting from the canonical isomorphism $A'_K = \text{Pic}^0_{A_K/K}$. To do this, we need the following notions.

\mathbb{Q}-divisors and relative τ-equivalence. Let Z be a normal locally noetherian scheme, so that the canonical homomorphism from the group of divisors on Z into that of 1-codimensional cycles is injective [EGA IV$_4$ 1967, 21.6.9(i)]. A 1-codimensional cycle C on Z is said to be a \mathbb{Q}-divisor if there exists $n \in \mathbb{Z} \setminus \{0\}$ such that nC is a divisor. Let $Z \to T$ be a proper morphism of schemes, with Z locally noetherian and normal. A \mathbb{Q}-divisor C on Z is said to be τ-equivalent to zero relative to T (or τ-equivalent to zero if there is no ambiguity on the base scheme T) if there exists $n \in \mathbb{Z} \setminus \{0\}$ such that nC is a divisor on Z which is τ-equivalent to zero relative to T (see Section 2.1). The group of classes of \mathbb{Q}-divisors on Z which are τ-equivalent to zero relative to T, modulo the principal divisors, will be denoted by $\text{Pic}^{\mathbb{Q},\tau}(Z/T)$.

When $Z = \overline{A}$, the restriction to the generic fiber induces an injective morphism

$$\text{Pic}^{\mathbb{Q},\tau}(\overline{A}/R) \hookrightarrow \text{Pic}_{A_K/K}^\tau(K) = \text{Pic}^0_{A_K/K}(K) = A'_K(K).$$

The fact that $\text{Pic}^\tau_{A_K/K}(K) = \text{Pic}^0_{A_K/K}(K)$ can be found in [Mumford 1974, (v) p. 75]. To see that the above morphism is injective, let (C) be in its kernel. After modifying C by a principal divisor if necessary, we can assume that $C_K = 0$, that is, the support of C is contained in the special fiber \overline{A}_k of \overline{A}/R. Let n be a nonzero integer such that nC is a divisor on \overline{A} which is τ-equivalent to zero relative to R. As \overline{A}_k admits at least one irreducible component Γ with multiplicity 1 (the component containing the unit element of A_k), the vertical divisor nC is principal [Raynaud 1970, 6.4.13]. In other words, there exists an integer m such that $nC = m\text{div}(\pi)$, where π is a uniformizing element of R. Taking the associated cycles, and comparing the coefficients of Γ, we obtain that n divides m. Consequently, the \mathbb{Q}-divisor C is a principal divisor, whence the injectivity.
By definition, the group $\text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R)$ contains the group $\text{Pic}^0(\overline{A}/R)$ of classes of divisors on \overline{A} which are algebraically equivalent to zero relative to R, modulo principal divisors. Now, when R is complete with algebraically closed residue field, we know from [Pepin 2011, Corollary 3.14] that the image of the composition

$$\text{Pic}^0(\overline{A}/R) \hookrightarrow \text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R) \hookrightarrow A'_K(K)$$

contains the subgroup $(A'_R)^0(R)$ of $A'_K(K)$.

Conversely, we will show that Grothendieck’s duality statement for A and A' is equivalent to the following assertion: the image of $\text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R) \hookrightarrow A'_K(K)$ is contained in the subgroup $(A'_R)^0(R)$.

Theorem 3.2.1. Let R be a complete discrete valuation ring with algebraically closed residue field k and fraction field K. Let A_K be an abelian variety over K, with dual A'_K. Let A and A' be the Néron models of A_K and A'_K, respectively, over R. Let \overline{A} be a proper flat normal model of A_K over R, equipped with a dense open R-immersion $A \rightarrow \overline{A}$, such that the induced map $\text{Pic}(\overline{A}) \rightarrow \text{Pic}(A)$ is surjective. Let $\text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R)$ be the group of \mathbb{Q}-divisors on \overline{A} which are τ-equivalent to zero relative to R, modulo the principal divisors. Then, the duality statement recalled in 3.1 is equivalent to the following:

The image of the restriction map $\text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R) \hookrightarrow A'_K(K)$ is contained in the subgroup $(A'_R)^0(R)$.

Let $\text{Pic}^0(\overline{A}/R)$ be the group of divisors on \overline{A} which are algebraically equivalent to zero relative to R, modulo the principal divisors. Then, when the duality statement is true, the inclusion $\text{Pic}^0(\overline{A}/R) \hookrightarrow \text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R)$ is an equality, and there is a canonical commutative diagram

$$\begin{array}{ccc}
\text{Pic}^0(A_K) & \longrightarrow & A'_K(K) \\
\uparrow & & \uparrow \\
\text{Pic}^0(\overline{A}/R) & \longrightarrow & (A'_R)^0(R)
\end{array}$$

where the vertical maps are injective, and the horizontal maps are bijective.

See the end of Section 3.4 for the proof.

Remark 3.2.2. With the notation of Theorem 3.2.1, the canonical morphisms of abstract groups

$$\text{Pic}^0(A_K) \rightarrow \text{Pic}^{A_K}_K(K), \quad \text{Pic}^0(\overline{A}/R) \rightarrow \text{Pic}^{\overline{A}/R}_R(R)$$

are isomorphisms. For the second one, note that $\text{Pic}^{\overline{A}/R}$ can be defined using the étale topology, and that R is strictly henselian. Note also that, when \overline{A} is locally factorial (e.g., regular), the group $\text{Pic}^{\mathbb{Q}, \tau}(\overline{A}/R)$ coincides with the group $\text{Pic}^{\tau}(\overline{A}/R)$.
of divisors on \(\overline{A} \) which are \(\tau \)-equivalent to zero relative to \(R \), modulo the principal divisors, which in turn can be identified with the group \(\text{Pic}^\tau_{\overline{A}/R}(R) \).

The last assertion of Theorem 3.2.1 provides a refinement of [Pepin 2011, Corollary 3.14] in the present case \(X = \overline{A} \). Here, when Grothendieck’s duality holds, we obtain a necessary and sufficient condition for an invertible sheaf which is algebraically equivalent to zero on \(A_K \) to extend into an invertible sheaf on \(\overline{A} \) which is algebraically equivalent to zero relative to \(R \): the corresponding point \(a'_K \in A'_K(K) \) must extend in the identity component of \(A' \). Thus, conjecturally, the group \((A')^0(R) \) parametrizes the invertible sheaves on \(\overline{A} \) which are algebraically equivalent to zero relative to \(R \).

To make the link between Grothendieck’s duality for \(A \) and \(A' \), and algebraic equivalence on \(\overline{A} \), we need some preparation about nonrational 0-cycles on \(A_K \), especially those which are supported on inseparable points over \(K \).

3.3. About nonrational 0-cycles on abelian varieties.

Let \(K \) be a field, and denote by \(\overline{K} \) its algebraic closure. Let \(A_K \) be an abelian variety over \(K \). Let \(d \) be a positive integer and let \(\text{Hilb}^d_{A_K/K} \) be the Hilbert scheme of points of degree \(d \) on \(A_K \). The Grothendieck–Deligne norm map

\[
\sigma_d : \text{Hilb}^d_{A_K/K} \to A^{(d)}_K
\]

defined in [SGA 4 III 1973, (6.3.4.1) on p. 435 = XVII-184] (see also [Bosch et al. 1990, pages 252–254]) maps \(\text{Hilb}^d_{A_K/K} \) to the \(d \)-fold symmetric product \(A^{(d)}_K \). On the other hand, the map

\[
A^{(d)}_K \to A_K, \quad (x_1, \ldots, x_d) \mapsto x_1 + \cdots + x_d,
\]

induces a map

\[
m_d : A^{(d)}_K \to A_K.
\]

Let us set

\[
\mathcal{F}_d := m_d \circ \sigma_d : \text{Hilb}^d_{A_K/K} \to A_K.
\]

Let \(a_K \in A_K \) be a closed point of degree \(d \), that is to say, the residue field extension \(K(a_K)/K \) has degree \(d \). It corresponds to a rational point

\[
h(a_K) \in \text{Hilb}^d_{A_K/K}(K).
\]

We will need an explicit description of its image \(\mathcal{F}_d(h(a_K)) \in A_K(K) \), when considered as an element of \(A^{(d)}_K(\overline{K}) \).

Let us consider the artinian \(\overline{K} \)-scheme \(a_K \otimes_K \overline{K} \). It is supported on some \(a_j \in A_K(\overline{K}) \), \(j = 1, \ldots, s \), where \(s \) is the separable degree of \(K(a_K)/K \). The length
of each local component of $a_K \otimes_K \overline{K}$ is equal to the inseparable degree of $K(a_K)/K$, and will be denoted by l. So the effective 0-cycle associated to $a_K \otimes_K \overline{K}$ is

$$\sum_{j=1}^{s} l[a_j] \in Z_0(A_{\overline{K}}).$$

We are going to show that

$$l_d(h(a_K)) = \sum_{j=1}^{s} la_j \in A_{\overline{K}}(\overline{K}).$$

We use the lemma to compute $\sigma_d(h(a_K))$, considered as an element of $A^{(d)}_{\overline{K}}(\overline{K})$. Let C be the \overline{K}-algebra of global sections of the scheme $a_K \otimes_K \overline{K}$. Set

$$TS_d^d(C) := (C^{(d)})^{\mathcal{S}_d} \subseteq C^{(d)}$$

where \mathcal{S}_d is the symmetric group acting on $C^{(d)}$ by permuting factors. By definition, the point $\sigma_d(h(a_K)) \in (a_K \otimes_K \overline{K})^{(d)}(\overline{K}) \subseteq A^{(d)}_{\overline{K}}(\overline{K})$ corresponds to the unique \overline{K}-algebra homomorphism

$$TS_d^d(C) \to \overline{K}, \quad c^{(d)} \mapsto N_{C/\overline{K}}(c).$$
Now, from Lemma 3.3.1, this homomorphism is induced by the point
\[(a_1, \ldots, a_1, a_2, \ldots, a_2, \ldots, a_s, \ldots, a_s) \in A^d_K(\overline{K}),\]
where \(a_j\) is repeated \(l\) times.

Next, the element \(\mathcal{G}_d(h(a_K)) \in A^d_K(\overline{K})\) is just the sum
\[m_d(\sigma_d(h(a_K))) = \sum_{j=1}^s la_j \in A^d_K(\overline{K}),\]
as claimed.

Notation 3.3.2. The above \(K\)-morphisms \(\mathcal{G}_d\) induce a homomorphism
\[\mathcal{G} : Z_0(A_K) \to A_K(K)\]
from the group of 0-cycles on \(A_K\) to that of \(K\)-rational points: if \(a_K \in A_K\) is a closed point of degree \(d\), defining \(h(a_K) \in \text{Hilb}^d_{A_K/K}(K)\), then \(\mathcal{G}(\{a_K\}) := \mathcal{G}_d(h(a_K))\).

We will also need to “translate divisors on \(A_K\) by nonrational points”.

Let \(\text{Div}_{A_K/K}\) be the scheme of relative effective divisors on \(A_K\) [FGA VI 1966, 4.1]. Fix a positive integer \(d\) and consider the map
\[A^d_K \times_K \text{Div}_{A_K/K} \to \text{Div}_{A_K/K}\]
which is given by the functorial formula
\[((a_1, \ldots, a_d), D) \mapsto D_{a_1} + \cdots + D_{a_d},\]
where \(D_a\) is obtained from \(D\) by translation by the section \(a\). By symmetry, it induces a map
\[A^{(d)}_K \times_K \text{Div}_{A_K/K} \to \text{Div}_{A_K/K} .\]
By composing with the norm map \(\sigma_d\), the latter gives rise to a map
\[\text{Hilb}^d_{A_K/K} \times_K \text{Div}_{A_K/K} \to \text{Div}_{A_K/K} .\]

Let \(a_K \in A_K\) be a closed point of degree \(d\) and let \(D_K\) be an effective divisor on \(A_K\). Denote by \((D_K)_{a_K} \in \text{Div}_{A_K/K}(K)\) the image of \((h(a_K), D_K)\) by the previous arrow. As above, write
\[\sum_{r=1}^d [a_{K,r}]\]
for the 0-cycle associated to \(a_K \otimes_K \overline{K}\). In this expression, repetitions are allowed. Then, using the above computation of \(\sigma_d(h(a_K))\), we see that \((D_K)_{a_K}\), as an element
Néron’s pairing and relative algebraic equivalence

of the group \(\text{Div}_{A \bar{K}/K} (\bar{K}) \), is equal to

\[
\sum_{r=1}^{d} (D_{\bar{K}})_{a_{K},r},
\]

where \(D_{\bar{K}} \) denotes the pull-back of \(D_{K} \) on \(A_{\bar{K}} \). When \(a_{K} \) is étale over \(K \), it is easy to see that the latter divisor descends on \(A_{K} \). But this turns out to be true in general because of the above construction. Moreover, this description shows that the formation of \((D_{K})_{a_{K}} \) is additive in \(D_{K} \). We can thus associate a divisor \((D_{K})_{a_{K}} \) on \(A_{K} \) to any divisor \(D_{K} \) in the following way: identifying divisors on \(A_{K} \) with 1-codimensional cycles, first use the above to define \((D_{K})_{a_{K}} \) when \(D_{K} \) is a prime cycle, and then extend by \(\mathbb{Z} \)-linearity.

Notation 3.3.3. If \(c_{K} \) is a 0-cycle on \(A_{K} \) and \(D_{K} \) a divisor on \(A_{K} \), define the divisor \((D_{K})_{c_{K}} \) on \(A_{K} \) by \(\mathbb{Z} \)-linearity from the above situation where \(c_{K} \) is a closed point.

3.4. Relative algebraic equivalence on semifactorial compactifications.

Our goal in this subsection is to prove Theorem 3.2.1. So, until the end of the subsection, we fix a complete discrete valuation ring \(R \) with algebraically closed residue field \(k \) and fraction field \(K \).

The starting point is the link between Grothendieck’s pairing and Néron’s pairing, which has been established by Bosch and Lorenzini: Grothendieck’s pairing is the specialization of Néron’s pairing.

Theorem 3.4.1 [Bosch and Lorenzini 2002, 4.4]. Keep the notation of Theorem 3.2.1. Moreover, let \(\Phi_{A} \) and \(\Phi_{A'} \) be the groups of connected components of \(A_{k} \) and \(A'_{k} \), respectively. On the one hand, consider Grothendieck’s pairing [SGA 7 I 1972, IX 1.3]

\[
\langle \cdot, \cdot \rangle : \Phi_{A} \times \Phi_{A'} \to \mathbb{Q} / \mathbb{Z},
\]

and on the other hand, consider Néron’s pairing [Néron 1965, II 9.3]

\[
\langle \cdot, \cdot \rangle : Z_{0}^{0}(A_{K}) \times \text{Div}^{0}(A_{K}) \to \mathbb{Q}
\]

(defined for \((c_{K}, D_{K}) \) when the supports of \(c_{K} \) and \(D_{K} \) are disjoint).

Let \((a, a') \in \Phi_{A} \times \Phi_{A'} \). Fix a point \(a_{K} \in A_{K}(K) \) specializing to \(a \), and a divisor \(D'_{K} \in \text{Div}^{0}(A_{K}) \) whose image in \(A'_{K}(K) \) specializes to \(a' \). Assume that \(a_{K} \) and \(0_{K} \) do not belong to the support of \(D'_{K} \). Then

\[
\langle a, a' \rangle = -\langle [a_{K}] - [0_{K}], D'_{K} \rangle \mod \mathbb{Z}.
\]

The following is a key result about the pairing \(\langle \cdot, \cdot \rangle \) defined in Proposition 2.1.3.
Proposition 3.4.2. Let X_K be a proper geometrically normal and geometrically connected scheme over K. Let X be a proper flat normal semifactorial model of X_K over R. Let v be the number of irreducible components of the special fiber X_k. There exist some 0-cycles of degree zero $c_{K,1}, \ldots, c_{K,v}$ on X_K, with the following property:

If D_K is a divisor on X_K which is τ-equivalent to zero, whose support is disjoint from those of the $c_{K,i}$, and if $[c_{K,i}, D_K]$ is an integer for all $i = 1, \ldots, v$, then there exists a \mathbb{Q}-divisor on X which is τ-equivalent to zero relative R, with generic fiber D_K.

Proof. Let U be the open subset of X consisting of the regular points. As X is normal, for any irreducible closed subset C of codimension 1 in X, the intersection $C \cap U$ is a dense open subset of C. Furthermore, for any 1-codimensional cycle C on X, the restriction $C|_U$ is a divisor on U.

Next, let $\Gamma_1, \ldots, \Gamma_v$ be the reduced irreducible components of X_k. Let ξ_1, \ldots, ξ_v be the generic points of $\Gamma_1, \ldots, \Gamma_v$. Set $d_i := \text{length}(\mathcal{O}_{X, \xi_i})$. From [Raynaud 1970, 7.1.2], there exists, for all $i = 1, \ldots, v$, an R-immersion $u_i : Z_i \to U$, with Z_i finite and flat over R, with rank d_i, such that $u_{i,k}(Z_{i,k})$ is a point $x_{i,k}$ of Γ_i. Then the intersection multiplicity of Z_i and $\Gamma_j \cap U$ is equal to 1 if $i = j$, and 0 otherwise. In particular, the generic fiber of Z_i is a closed point $x_{K,i} \in U_K$ of degree d_i. Moreover, as Z_i is proper over R, the immersion $Z_i \to X$ is closed. Finally, setting $d := \text{gcd}(d_i, i = 1, \ldots, v)$, an appropriate \mathbb{Z}-linear combination of the $x_{K,i}$ provides a 0-cycle c_K on X_K of degree d. We set

$$c_{K,i} := [x_{K,i}] - \frac{d_i}{d} c_K \in Z^0_0(X_K).$$

Let $D_K \in \text{Div}^\tau(X_K)$ whose support is disjoint from those of the $c_{K,i}$. Choose $\Delta \in \text{Div}^\tau(X/R)$ with a nonzero integer n such that $\Delta_K = nD_K$. Denoting by \overline{D}_K the schematic closure of D_K in X, we can view Δ as a 1-codimensional cycle on X, and write

$$\Delta = n\overline{D}_K + \sum_{i=1}^v n_i \Gamma_i$$

for some integers n_1, \ldots, n_v. Set $V := \sum_{i=1}^v n_i \Gamma_i$. As the schematic closures $\overline{c}_{K,i}$ of the $c_{K,i}$ in X are contained in U (by construction), the following computation is valid:

$$\overline{c}_{K,i} \cdot \Delta = n(\overline{c}_{K,i} \cdot \overline{D}_K) + (\overline{c}_{K,i} \cdot V) - \frac{d_i}{d} (\overline{c}_{K,i} \cdot V) = n(\overline{c}_{K,i} \cdot \overline{D}_K) + n_i - \frac{d_i}{d} (\overline{c}_{K,i} \cdot V).$$
Assume that \([c_{K,i}, D_K]\) belongs to \(\mathbb{Z}\). Then, the left-hand side of the above equality belongs to \(n \mathbb{Z}\). Consequently, there exists \(r_i \in \mathbb{Z}\) such that

\[
nr_i = ni - \frac{d_i}{d}(\bar{c}_K.V).
\]

Now, consider the vertical cycle (with integral coefficients)

\[
W := (\bar{c}_K.V) \frac{1}{d}[X_K].
\]

By definition,

\[
V - W = n \sum_{i=1}^{v} r_i \Gamma_i, \quad \text{that is,} \quad \Delta - W = n(D_K - \sum_{i=1}^{v} r_i \Gamma_i).
\]

The cycle \(D := \bar{D}_K - \sum_{i=1}^{v} r_i \Gamma_i\) is equal to \(D_K\) on the generic fiber. This is a \(\mathbb{Q}\)-divisor on \(X\) which is \(\tau\)-equivalent to zero because \(dnD\) is a divisor on \(X\) which is \(\tau\)-equivalent to zero. \(\square\)

Keep the notation of Proposition 3.4.2. Even if \(X/R\) admits a section, so that \(d\) is equal to 1, the closed point \(x_{K,i}\) is not rational as soon as the special fiber \(X_k\) is not reduced at the generic point of the irreducible component \(\Gamma_i\). Therefore, if we want to combine Theorem 3.4.1 and Proposition 3.4.2 when \(X = \bar{A}\) (notation of Theorem 3.2.1), we need to compare the values of Néron’s pairing on the abelian variety \(A_K\) for 0-cycles which are supported on nonrational points, with its values for 0-cycles of the form \([a_K]\) - \([0_K]\), with \(a_K \in A_K(K)\). Here we will use the constructions of Section 3.3, together with some biduality argument. To take care of the conditions on supports involved in the computations of Néron’s pairings, let us first note the following lemma.

Lemma 3.4.3. Let \(A_K\) be an abelian variety over \(K\) with dual \(A'_K\). Let \(a'_K \in A'_K(K)\) and let \(\mathcal{E}\) be a finite set of closed points of \(A_K\). Then there exists a Poincaré divisor on \(A_K \times_K A'_K\), that is, a divisor such that the invertible sheaf \(\mathcal{O}_{A_K \times K A'_K}(P)\) is a Poincaré sheaf which is birigidified along \(0_K \in A_K(K)\) and \(0'_K \in A'_K(K)\), satisfying the following conditions:

1. \(P_{0K} := P|_{0_K \times K A'_K}\) and \(P_{0'_K} := P|_{A_K \times K 0'_K}\) are well-defined and equal to zero.
2. \(P_{a'_K} := P|_{A_K \times K a'_K}\) is well-defined, and its support does not meet \(\mathcal{E}\).
3. For all \(a_K \in \mathcal{E}\), \(P_{a_K} := P|_{a_K \times K A'_K}\) is well-defined, and its support does not meet \(\{0'_K, a'_K\}\).

Proof. Consider the finite set \(\mathcal{F}\) whose elements are the following closed points of the product \(A_K \times_K A'_K\):

\[
a_K \times_K 0'_K \text{ or } a_K \times_K a'_K, \text{ with } a_K \in (\{0_K\} \bigcup \mathcal{E}).
\]
Let \mathcal{P} be a Poincaré sheaf on $A_K \times_K A'_K$, birigidified along $0_K \in A_K(K)$ and $0'_K \in A'_K(K)$. Choose an arbitrary divisor Q such that $0_{A_K \times_K A'_K}(Q) \simeq \mathcal{P}$. Using a moving lemma on the product $A_K \times_K A'_K$ if necessary [Liu 2002, 9.1.11], one can assume that the support of Q is disjoint from the finite set \mathcal{F}. As $0_K \times_K 0'_K \in \mathcal{F}$, the divisors $Q|_{0_K \times_K A'_K}$ and $Q|_{A_K \times_K 0'_K}$ are well-defined, and are principal. Then
\[P := Q - p_2^*(Q|_{0_K \times_K A'_K}) - p_1^*(Q|_{A_K \times_K 0'_K}) \]
(where $p_1 : A_K \times_K A'_K \to A_K$ and $p_2 : A_K \times_K A'_K \to A'_K$ are the projections) is a Poincaré divisor again.

Now, let $a_K \in \{0_K\} \cup \mathcal{E}$. Then $a_K \times_K a'_K$ does not belong to the support $\text{Supp}(Q)$ of Q because $a_K \times_K a'_K \notin \mathcal{F}$. Next, $a_K \times_K a'_K \notin \text{Supp}(p_2^*(Q|_{0_K \times_K A'_K}))$: indeed, $0_K \times_K a'_K \notin \mathcal{F}$ by definition, hence $0_K \times_K a'_K \notin \text{Supp}(Q)$, and consequently $a'_K \notin \text{Supp}(Q|_{0_K \times_K A'_K}$). Finally $a_K \times_K a'_K \notin \text{Supp}(p_1^*(Q|_{A_K \times_K 0'_K}))$, because otherwise $a_K \in \text{Supp}(Q|_{A_K \times_K 0'_K})$ and $a_K \times_K 0'_K \in \text{Supp}(Q)$, which is not the case because $a_K \times_K 0'_K \notin \mathcal{F}$. We have thus shown that the point $a_K \times_K a'_K$ does not belong to the support of P. Similarly, the point $a_K \times_K 0'_K$ does not belong to the support of P. In conclusion:

1. $P|_{0_K \times_K A'_K}$ and $P|_{A_K \times_K 0'_K}$ are well-defined, and are equal to zero, by definition of P.
2. $P|_{A_K \times_K a'_K}$ is well-defined, and its support does not meet \mathcal{E}, because $a_K \times_K a'_K \notin \text{Supp}(P)$ for all $a_K \in \mathcal{E}$.
3. $P|_{a_K \times_K A'_K}$ is well-defined for all $a_K \in \mathcal{E}$, and its support does not meet $\{0'_K, a'_K\}$, because $a_K \times_K a'_K \notin \text{Supp}(P)$ and $a_K \times_K 0'_K \notin \text{Supp}(P)$ for all $a_K \in \mathcal{E}$.

We can now proceed to the announced comparison of some values of Néron’s pairing.

Proposition 3.4.4. Let A_K be an abelian variety with dual A'_K. Let $c_K \in \mathcal{Z}_0^0(A_K)$ and $D'_K \in \text{Div}^0(A_K)$. Assume that the support of D'_K is disjoint from that of c_K and that of $[\mathcal{F}(c_K)] - [0_K]$ (Notation 3.3.2). Then the following relation between values of Néron’s pairing on A_K is true:
\[\langle c_K, D'_K \rangle \equiv \langle [\mathcal{F}(c_K)] - [0_K], D'_K \rangle \mod \mathbb{Z}. \]

Proof. Let $a'_K \in A'_K(K)$ corresponding to D'_K. Let \mathcal{E} be a finite set of closed points of A_K, containing the supports of c_K and $[\mathcal{F}(c_K)] - [0_K]$. From Lemma 3.4.3, there exists a Poincaré divisor P satisfying the following conditions:

1. $P|_{0_K} := P|_{0_K \times_K A'_K}$ and $P|_{0'_K} := P|_{A_K \times_K 0'_K}$ are well-defined and equal to zero.
2. $P|_{A_K} := P|_{A_K \times_K a'_K}$ is well-defined, and its support does not meet \mathcal{E}.
3. $P|_{a_K} := P|_{a_K \times_K A'_K}$ is well-defined for all $a_K \in \mathcal{E}$, and its support does not meet $\{0'_K, a'_K\}$.
Then, the divisors \(D'_K \) and \(P_{\alpha'_K} \) are linearly equivalent. Consequently, we can assume \(D'_K = P_{\alpha'_K} \) (Proposition 2.2.5).

Write \(c_K = c^+_K - c^-_K \) where \(c^+_K \) and \(c^-_K \) are positive 0-cycles with disjoint supports. Let \(L/K \) be a finite field extension such that

\[
c^+_K \otimes_K L = \sum_{r=1}^d [a_{r,+}] \quad \text{and} \quad c^-_K \otimes_K L = \sum_{r=1}^d [a_{r,-}]
\]

where \(d := \deg c^+_K = \deg c^-_K \) and with \(a_{r,+}, a_{r,-} \) in \(A_L(L) \) (repetitions allowed). Computing Néron’s pairings over \(K \) and over \(L \) with normalized valuations, we get

\[
\langle c_K, P_{\alpha'_K} \rangle_{A_K} = \frac{1}{e_L} \left\{ \sum_{r=1}^d [a_{r,+}] - \sum_{r=1}^d [a_{r,-}], (P_L)_{a'_L} \right\}_{A_L}
\]

where \(P_L \) is the pull-back of \(P \) over \(L \), the point \(a'_L \in A'_L(L) \) is the image of \(a'_K \in A'_K(K) \) by the inclusion \(A'_K(K) \subseteq A'_L(L) \), and \(e_L \) is the ramification index of \(L/K \). As \((P_L)_{0'_L} = 0 \), the reciprocity law for Néron’s pairing [Lang 1983, 11.4.2]\(^1\) asserts that the right-hand side of the equality is equal to the (well-defined) quantity

\[
\frac{1}{e_L} \left\{ \langle a'_L \rangle - \langle 0'_L \rangle, \sum_{r=1}^d (P_L)_{a_{r,+}} - \sum_{r=1}^d (P_L)_{a_{r,-}} \right\}_{A'_L}.
\]

Now, with Notation 3.3.3, the divisor \(\sum_{r=1}^d (P_L)_{a_{r,+}} - \sum_{r=1}^d (P_L)_{a_{r,-}} \) is precisely the pull-back over \(L \) of the divisor \(P_{c_K} \) on \(A'_K \). Furthermore, as the Poincaré map

\[
A_L(L) \rightarrow \text{Pic}^0_{A'_L/L}(L)
\]

is a group homomorphism, the divisors \(P_{c_K} \) and \(P_{S(c_K)} \) are linearly equivalent on \(A'_L \), and thus on \(A'_K \) (because \(\text{Pic}^0_{A'_K/K}(K) \) is contained in \(\text{Pic}^0_{A'_K/K}(L) \)). Let \(f \in K(A'_K) \) be such that \(P_{c_K} - P_{S(c_K)} = \text{div}(f) \). As the normalized valuation on \(K \) takes values in \(\mathbb{Z} \), the (well-defined) pairing

\[
\frac{1}{e_L} \langle \langle a'_L \rangle - \langle 0'_L \rangle, (\text{div}(f))_{A'_L} = \langle [a'_K] - [0'_K], \text{div}(f) \rangle_{A'_K}
\]

is an integer. Consequently,

\[
\langle c_K, P_{\alpha'_K} \rangle_{A_K} \equiv \langle [a'_K] - [0'_K], P_{\gamma(c_K)} \rangle_{A'_K} \mod \mathbb{Z}.
\]

As \(P_{0_K} = 0 \) and \(P_{0'_K} = 0 \), we conclude by using once again the reciprocity law. □

\(^1\)Here we use the reciprocity law in the case where the divisorial correspondence is the Poincaré divisor \(P_L \). By using a definition of Néron’s pairing relying on the Poincaré bixtension (see [Zahrin 1972, §5: Mazur and Tate 1983, §2]), the reciprocity law for \(P_L \) is a direct consequence of the biduality of abelian varieties.
We can now interpret Grothendieck’s obstruction (Section 3.1) in terms of relative algebraic equivalence.

Theorem 3.4.5. Keep the notation of Theorem 3.2.1. Moreover, let Φ_A and $\Phi_{A'}$ be the group of connected components of A_K and A'_K, respectively.

Let $a' \in \Phi_A$. Lift a' to a point $a'_K \in A'_K(K)$, representing the linear equivalence class of a divisor D'_K on A_K. Then the homomorphism

$$\langle \cdot, a' \rangle : \Phi_A \to \mathbb{Q} / \mathbb{Z}$$

induced by Grothendieck’s pairing is identically zero if and only if D'_K can be extended to a \mathbb{Q}-divisor on \bar{A} which is τ-equivalent to zero relative to R.

Proof. Suppose that the obstruction $\langle \cdot, a' \rangle$ vanishes. Choose 0-cycles of degree zero $c_{K,1}, \ldots, c_{K,v}$ on A_K satisfying the conclusion of Proposition 3.4.2 when applied to the model \bar{A}/R of A_K. To prove that D'_K extends to a \mathbb{Q}-divisor on \bar{A} which is τ-equivalent to zero, we can replace D'_K by any divisor on A_K which is linearly equivalent to D'_K. In particular, using moving lemma [Liu 2002, 9.1.11], we can assume that the support of D'_K does not meet the finite set

$$\{0_K, S(c_{K,1}), \ldots, S(c_{K,v})\} \bigcup \text{Supp}(c_{K,i}).$$

Then, as $\langle \cdot, a' \rangle = 0$, we get from Bosch–Lorenzini’s Theorem 3.4.1 that

$$\langle [f(c_{K,i})] - [0_K], D'_K \rangle \in \mathbb{Z}$$

for all $i = 1, \ldots, v$. Proposition 3.4.4 and Theorem 2.2.1 then imply that

$$[c_{K,i}, D'_K] \in \mathbb{Z}$$

for all $i = 1, \ldots, v$. Due to the choice of the $c_{K,i}$, the divisor D'_K can then be extended to a \mathbb{Q}-divisor on \bar{A} which is τ-equivalent to zero.

Conversely, suppose that there is a \mathbb{Q}-divisor D' on \bar{A} which is τ-equivalent to zero, with generic fiber D'_K. To prove that $\langle \cdot, a' \rangle = 0$, we can assume that 0_K does not belong to the support of D'_K, by adding to D' the divisor of a rational function on \bar{A} if needed. Let n' be a nonzero integer such that $\Delta' := n'D'$ is a divisor on \bar{A} which is τ-equivalent to zero. For each $a_K \in A_K(K)$ which is not in the support of D'_K, we get:

$$[a_K - [0_K], D'_K] = \frac{1}{n'}([\bar{a}_K] - [0_K], \Delta') = ([\bar{a}_K] - [0_K], D') \in \mathbb{Z}.$$

The first equality holds by definition of the pairing $[\cdot, \cdot]$, and the second one is true because $[\bar{a}_K] - [0_K]$ is contained in the regular locus of \bar{A}. Now observe that an element $a \in \Phi_A$ can always be lifted to a point $a_K \in A_K(K)$ which is not in
the support of D'_K. Thus, it follows from Theorem 2.2.1 and Bosch–Lorenzini’s
Theorem 3.4.1 that the obstruction $\langle \cdot, a' \rangle$ vanishes. \qed

Proof of Theorem 3.2.1. By biduality of abelian varieties, Grothendieck’s duality
statement is equivalent to the following: the obstruction $\langle \cdot, a' \rangle$ vanishes if and only
if $a' = 0$.

Suppose that this assertion is true. Let $(C) \in \text{Pic}^{Q, \tau}(\overline{A}/R)$ and let a'_K be its
canonical image in $A'_K(K)$. By Theorem 3.4.5, the obstruction $\langle \cdot, a' \rangle$ vanishes. Hence $a' = 0$, that is, $a_K \in (A')^0(R)$.

Conversely, suppose that the canonical image of $\text{Pic}^{Q, \tau}(\overline{A}/R)$ in $A'_K(K)$ is
contained in $(A')^0(R)$. Let $a' \in \Phi_{A'}$, and assume that the corresponding obstruction
$\langle \cdot, a' \rangle$ vanishes. Choose a lifting $a'_K \in A'_K(K)$ of a'. Then, by Theorem 3.4.5, the
point a'_K belongs to the image of $\text{Pic}^{Q, \tau}(\overline{A}/R)$. In particular, it belongs to $(A')^0(R)$, and $a' = 0$.

Thus, we have proved that Grothendieck’s conjecture is equivalent to the fact
that the image of $\text{Pic}^{Q, \tau}(\overline{A}/R)$ in $A'_K(K)$ is contained in $(A')^0(R)$. Now suppose
that the conjecture is true. Then, from [Pepin 2011, Corollary 3.14], we obtain
isomorphisms

$$\text{Pic}^0(\overline{A}/R) \cong \text{Pic}^{Q, \tau}(\overline{A}/R) \cong (A')^0(R).$$

The last assertion of Theorem 3.2.1 follows. \qed

4. Grothendieck’s pairing for Jacobians

4.1. Statement of the results. Let R be a complete discrete valuation ring with
algebraically closed residue field k and fraction field K. Let X_K be a proper smooth
generically connected curve over K, and let $J_K := \text{Pic}^0_X$ be its Jacobian.
Denote by J and J' the Néron models of J_K and J'_K over R, respectively, and
Φ_J and $\Phi_{J'}$ the groups of connected components of the special fiber of J/R and
J'/R, respectively. Theorems 3.4.1 and 2.2.1 describe Grothendieck’s pairing
associated to J_K in terms of intersection multiplicities on some compactification \tilde{J}
of J. It is natural to wonder if these computations can be replaced by intersection
computations on a proper flat regular model X of X_K.

Assume that $X_K(K)$ is nonempty. In this case, the curve X_K can be embedded
into J_K, and can be used to define a classical theta divisor on J_K. Then, using
Theorem 3.4.1, Bosch and Lorenzini described Grothendieck’s pairing associated to
J_K in terms of the Néron pairing on X_K, and so in terms of intersection multiplicities
on X, thanks to Gross’s and Hriljac’s Theorems [Gross 1986; Hriljac 1985]. Their
precise result is as follows. Let M be the intersection matrix of the special fiber of X/R: if $\Gamma_1, \ldots, \Gamma_v$ are the irreducible components of X_k equipped with their
reduced scheme structure, the (i, j)-th entry of M is the intersection number (Γ_i, Γ_j). Denote by Φ_M the torsion part of the cokernel of $M : \mathbb{Z}^v \to \mathbb{Z}^v$. According to
Raynaud’s work on the sheaf $\text{Pic}_{X/S}$, there is a canonical isomorphism $\Phi_J = \Phi_M$; see [Bosch et al. 1990, 9.6/1]. Now, on the product $\Phi_M \times \Phi_M$, there is the canonical pairing

$$\langle \cdot, \cdot \rangle_M : \Phi_M \times \Phi_M \to \mathbb{Q} / \mathbb{Z} \quad (\bar{T}, \bar{T'}) \mapsto (S/n)M(S'/n') \mod \mathbb{Z}$$

for any $n, n' \in \mathbb{Z} \setminus \{0\}$ and $S, S' \in \mathbb{Z}^\nu$ such that $MS = nT$, $MS' = n'T'$. Now let $(a, a') \in \Phi_J \times \Phi_J$. By identifying J_K and $J_{K'}$ with the help of the opposite of the canonical principal polarization defined by a theta divisor, Grothendieck’s pairing of a and a' can be computed by the formula

$$\langle a, a' \rangle = \langle a, a' \rangle_M$$

[Bosch and Lorenzini 2002, Theorem 4.6].

Now assume that $X_K(K)$ is empty. Choosing a field extension L/K such that $X_K(L)$ is nonempty, one can consider a theta divisor on J_L, and it is a classical fact that the associated canonical principal polarization is defined over K. Using its opposite, one can still identify Φ_J with $\Phi_{J'}$, and thus Φ_J with Φ_M (as k is algebraically closed, the identification $\Phi_J = \Phi_M$ holds without assuming that $X_K(K)$ is nonempty). Then the authors of [Bosch and Lorenzini 2002] ask if both pairings $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_M$ still coincide in this situation [loc. cit., Remark 4.9]. In [Lorenzini 2008, Theorem 3.4], Lorenzini gives a positive answer to this question when the special fiber of X/R admits two irreducible components C_i and C_j with multiplicities d_i and d_j such that $(C_i \cdot C_j) > 0$ and gcd$(d_i, d_j) = 1$. Here we show that this result still holds if we only assume that the global gcd of the multiplicities of the irreducible components of X_k is equal to 1. Note that, due to the hypotheses on R and on X, this global gcd coincides with the index of the curve X_K, that is, the smallest positive degree of a divisor on X_K [Raynaud 1970, 7.1.6 1].

Theorem 4.1.1. Let R be a complete discrete valuation ring with algebraically closed residue field k and fraction field K. Let X_K be a proper smooth geometrically connected curve over K, with index d. Let J_K be the Jacobian of X_K, identified with its dual using the opposite of its canonical principal polarization. Let X/R be a proper flat regular model of X_K. The following relation between Grothendieck’s pairing for J_K and the above pairing defined by the intersection matrix M of X_k is true:

$$d \langle a, a' \rangle = d \langle a, a' \rangle_M.$$

In particular, we get the following partial answers to Grothendieck’s conjecture [SGA 7 I 1972, IX 1.3] in this case:

Corollary 4.1.2. Keep the notation of Theorem 4.1.1. Then:

- The kernel of Grothendieck’s pairing for J_K is killed by d.
If d is prime to the characteristic of k, then Grothendieck’s pairing for J_K is perfect.

Proof. From [Bosch and Lorenzini 2002, Theorem 1.3], the pairing $\langle \cdot, \cdot \rangle_M$ is a perfect duality. So the first point follows directly from Theorem 4.1.1. For the second point, denote by p the characteristic of k. Then Grothendieck’s pairing is perfect when restricted to the prime-to-p parts of the component groups: [SGA 7 I 1972, IX 11.3; Bertapelle 2001, Theorem 1]. Consequently, the second point follows again from the perfectness of $\langle \cdot, \cdot \rangle_M$ and Theorem 4.1.1. \hfill \square

4.2. Proof of Theorem 4.1.1.

Here are two lemmas to prepare the proof of the theorem.

Recall that, as R is complete with algebraically closed residue field, a classical result of Lang asserts that the Brauer group of K is zero, whence $\text{Pic}^0(X_K) = J_K(K)$.

Lemma 4.2.1.

Let $a, a' \in \Phi_J = \Phi_M$, and choose divisors D_K, D'_K on X_K with disjoint supports, such that $a_K := (D_K), a'_K := (D'_K) \in J_K(K) = \text{Pic}^0(X_K)$ specialize to a, a'. The relationship between the pairing $\langle \cdot, \cdot \rangle_M$ and Néron’s pairing on X_K is given by:

$$\langle a, a' \rangle_M = -\langle D_K, D'_K \rangle \mod \mathbb{Z}.$$

Proof. This is an immediate consequence of the definitions, and of the description of Néron’s pairing for the curve X_K in terms of intersection multiplicities on X. Indeed, let $\rho : \text{Pic}(X) \to \mathbb{Z}^v$ be the degree morphism $(Z) \mapsto (Z \cdot \Gamma_i)_{i=1,\ldots,v}$. Denote by $\overline{D_K}$ the schematic closure of D_K in X. By definition of Raynaud’s isomorphism $\Phi_J = \Phi_M$, the image of $\rho(\overline{D_K}) \in \mathbb{Z}^v$ in $\mathbb{Z}^v / \text{Im} M$ is contained in the torsion part Φ_M, and the resulting element is precisely the image of $a \in \Phi_J$ under the isomorphism. In particular, there are $n, n' \in \mathbb{Z} \setminus \{0\}$ and $S, S' \in \mathbb{Z}^v$ such that $MS = n\rho(\overline{D_K}), MS' = n'\rho(\overline{D'_K})$, and by definition of the symmetric pairing $\langle \cdot, \cdot \rangle_M$, we get

$$\langle a, a' \rangle_M = (n'S' / n')\rho(\overline{D_K}) \mod \mathbb{Z}.$$

Under the identification $\bigoplus_{i=1}^v \mathbb{Z} \Gamma_i \simeq \mathbb{Z}^v$, the right-hand side can also be written as an intersection multiplicity:

$$\langle a, a' \rangle_M = \frac{1}{n}(\overline{D_K} \cdot S') = -\frac{1}{n'}(\overline{D_K} \cdot (n'\overline{D'_K} - S')) \in \mathbb{Q} / \mathbb{Z}.$$

Now, the equality $MS' = n'\rho(\overline{D'_K})$ means that the divisor $n'\overline{D'_K} - S'$ on X is algebraically equivalent to zero relative to R ([Bosch et al. 1990] 9.2/13). Applying Theorem 2.2.1 to the curve X_K, we conclude that

$$\langle a, a' \rangle_M = -[D_K, D'_K] = -\langle D_K, D'_K \rangle \in \mathbb{Q} / \mathbb{Z}. \hfill \square$$
Next, the index d of X_K divides $g - 1$ where g is the genus of X_K [Raynaud 1970, 9.5.1]. Let us fix a divisor E of degree d on X_K, and consider the linear equivalence class of divisors of degree $g - 1$ given by

$$t_K := (g - 1)d^{-1}(E) \in \text{Pic}^{g-1}_{X_K/K}(K).$$

The canonical image of the $(g - 1)$-fold symmetric product $X_K^{(g-1)}$ in $\text{Pic}^{g-1}_{X_K/K}$ can be translated by t_K to a divisor on J_K, which we will denote by Θ. Then, by extending K and reducing to the case where $X_K(K)$ is nonempty, one sees that the canonical principal polarization φ of J_K can be written explicitly here as $\varphi(z) = - (\Theta_z - \Theta)$, where Θ_z is obtained from Θ by translation by the point z. On the other hand, denoting by Δ the diagonal of $X_K \times_K X_K$, the divisor $d\Delta - E \times_K X_K$ on $X_K \times_K X_K$ defines an element of $\text{Pic}^0_{X_K/K}(X_K)$, hence a K-morphism $h : X_K \to \text{Pic}^0_{X_K/K} = J_K$.

Lemma 4.2.2. The following diagram of K-morphisms is commutative:

$$
\begin{array}{ccc}
J'_K & \xrightarrow{h^*} & J_K \\
\downarrow{\varphi} & & \downarrow{d} \\
J_K & \xrightarrow{\Theta} & J_K
\end{array}
$$

The commutativity can be stated as follows. Let $z \in J_K(\overline{K})$. Let Z be any divisor of degree 0 on X_K, whose linear equivalence class (Z) corresponds to z via the canonical isomorphism $\text{Pic}^0(X_K) = J_K(\overline{K})$. Then the following relation holds:

$$h^*(\Theta_z - \Theta) = d(Z) \in \text{Pic}^0(X_K) = J_K(\overline{K}).$$

In particular, there is a nonempty open subset U_K of J_K such that $h^*\Theta_z$ is a well-defined divisor on X_K for all $z \in U_K(K)$, and whose degree does not depend on the point z.

Proof. To check that the diagram is commutative, one can replace K by its algebraic closure, and so we can assume that K is algebraically closed. As the pull-back by the multiplication-by-d on J_K acts as multiplication-by-d on the group $\text{Pic}^0(J_K)$, the lemma then follows from the classical situation where X_K can be embedded into J_K using a rational point of X_K. \hfill \square

Proof of Theorem 4.1.1. Let $(a, a') \in \Phi_J \times \Phi_J$. Choose a point $a_K \in J_K(K)$ which specializes to $a \in \Phi_J$. The point a_K corresponds, under the equality $J_K(K) = \text{Pic}^0(X_K)$, to the linear equivalence class of a divisor $D(a)_K$ of degree 0 on X_K. Write $D(a)_K = D(a)_K^+ - D(a)_K^-$ with $D(a)_K^+$ and $D(a)_K^-$ positive with disjoint supports. Let L/K be a finite field extension such that

$$D(a)_K^+ \otimes_K L = \sum_{r=1}^{\alpha} [a_{r,+}] \quad \text{and} \quad D(a)_K^- \otimes_K L = \sum_{r=1}^{\alpha} [a_{r,-}],$$

Next, the index d of X_K divides $g - 1$ where g is the genus of X_K [Raynaud 1970, 9.5.1]. Let us fix a divisor E of degree d on X_K, and consider the linear equivalence class of divisors of degree $g - 1$ given by

$$t_K := (g - 1)d^{-1}(E) \in \text{Pic}^{g-1}_{X_K/K}(K).$$

The canonical image of the $(g - 1)$-fold symmetric product $X_K^{(g-1)}$ in $\text{Pic}^{g-1}_{X_K/K}$ can be translated by t_K to a divisor on J_K, which we will denote by Θ. Then, by extending K and reducing to the case where $X_K(K)$ is nonempty, one sees that the canonical principal polarization φ of J_K can be written explicitly here as $\varphi(z) = - (\Theta_z - \Theta)$, where Θ_z is obtained from Θ by translation by the point z. On the other hand, denoting by Δ the diagonal of $X_K \times_K X_K$, the divisor $d\Delta - E \times_K X_K$ on $X_K \times_K X_K$ defines an element of $\text{Pic}^0_{X_K/K}(X_K)$, hence a K-morphism $h : X_K \to \text{Pic}^0_{X_K/K} = J_K$.

Lemma 4.2.2. The following diagram of K-morphisms is commutative:

$$
\begin{array}{ccc}
J'_K & \xrightarrow{h^*} & J_K \\
\downarrow{\varphi} & & \downarrow{d} \\
J_K & \xrightarrow{\Theta} & J_K
\end{array}
$$

The commutativity can be stated as follows. Let $z \in J_K(\overline{K})$. Let Z be any divisor of degree 0 on X_K, whose linear equivalence class (Z) corresponds to z via the canonical isomorphism $\text{Pic}^0(X_K) = J_K(\overline{K})$. Then the following relation holds:

$$h^*(\Theta_z - \Theta) = d(Z) \in \text{Pic}^0(X_K) = J_K(\overline{K}).$$

In particular, there is a nonempty open subset U_K of J_K such that $h^*\Theta_z$ is a well-defined divisor on X_K for all $z \in U_K(K)$, and whose degree does not depend on the point z.

Proof. To check that the diagram is commutative, one can replace K by its algebraic closure, and so we can assume that K is algebraically closed. As the pull-back by the multiplication-by-d on J_K acts as multiplication-by-d on the group $\text{Pic}^0(J_K)$, the lemma then follows from the classical situation where X_K can be embedded into J_K using a rational point of X_K. \hfill \square

Proof of Theorem 4.1.1. Let $(a, a') \in \Phi_J \times \Phi_J$. Choose a point $a_K \in J_K(K)$ which specializes to $a \in \Phi_J$. The point a_K corresponds, under the equality $J_K(K) = \text{Pic}^0(X_K)$, to the linear equivalence class of a divisor $D(a)_K$ of degree 0 on X_K. Write $D(a)_K = D(a)_K^+ - D(a)_K^-$ with $D(a)_K^+$ and $D(a)_K^-$ positive with disjoint supports. Let L/K be a finite field extension such that

$$D(a)_K^+ \otimes_K L = \sum_{r=1}^{\alpha} [a_{r,+}] \quad \text{and} \quad D(a)_K^- \otimes_K L = \sum_{r=1}^{\alpha} [a_{r,-}],$$
where \(\alpha := \deg D(a)_K^+ = \deg D(a)_K^- \) and with \(a_{r,+}, a_{r,-} \) in \(X_L(L) \) (repetitions allowed).

Next, still denoting by \(U_K \) the open subset of \(J_K \) provided by Lemma 4.2.2, one can find \(a'_K \) and \(z_K \) in \(U_K(K) \) specializing respectively to \(a' \) and \(0 \) in \(\Phi_J \), and such that

\[
da_K, \ 0_K \not\in \text{Supp}(\Theta_{a'_K} - \Theta_{z_K})
da_{r,+}, \ a_{r,-} \not\in \text{Supp}(\Theta_{a'_K} - \Theta_{z_K})_L \quad \text{for all } r = 1, \ldots, \alpha,
\]

where \(\tilde{a}_{r,+} := h(a_{r,+}) \) and \(\tilde{a}_{r,-} := h(a_{r,-}) \). The points \(a'_K \) and \(z_K \) correspond to the classes of some divisors \(D(a'_K) \) and \(D(0)_K \) on \(X_K \), under the identification \(J_K(K) = \text{Pic}^0(X_K) \). From Lemma 4.2.2, we get:

\[
h^*(\Theta_{a'_K} - \Theta_{z_K}) = d(D(a'_K) - D(0)_K) = d(a'_K - z_K)
\]
in \(\text{Pic}^0(X_K) = J_K(K) \). And by construction, the \(K \)-point \(d(a'_K - z_K) \) of \(J_K \) specializes to \(da' \in \Phi_J \). As a consequence, Lemma 4.2.1 provides the formula:

\[
\langle a, da' \rangle_M = -\langle D(a)_K, h^*(\Theta_{a'_K} - \Theta_{z_K}) \rangle_X \quad \text{mod } \mathbb{Z}
\]

(note that \(h^*(\Theta_{a'_K} - \Theta_{z_K}) \) is a well-defined divisor, and not only a class, because \(a'_K, z_K \in U_K(K) \)).

Still working with normalized valuations to compute Néron’s pairing, and using functoriality, we obtain:

\[
\langle a, da' \rangle_M = -\frac{1}{e_L} \left(\sum_{r=1}^{\alpha} \left[\tilde{a}_{r,+} \right] - \left[\tilde{a}_{r,-} \right] , (\Theta_{a'_K} - \Theta_{z_K})_L \right)_{J_L} \quad \text{mod } \mathbb{Z},
\]

where \(e_L \) is the ramification index of \(L/K \). Then we apply the reciprocity law for Néron’s pairing with the divisorial correspondence \((\delta^* \Theta - p_1^* (\Theta - p_2^* \Theta))_L \), where \(\delta, p_1, \) and \(p_2 \): \(J_K \times_K J_K \to J_K \) are the difference map and the two projections, to get:

\[
\langle a, da' \rangle_M = -\frac{1}{e_L} \left([a'_L] - [z_L] , \sum_{r=1}^{\alpha} (\Theta_L)_{\tilde{a}_{r,+}}^- - (\Theta_L)_{\tilde{a}_{r,-}}^- \right)_{J_L} \quad \text{mod } \mathbb{Z}.
\]

Here \((\Theta_L)^- \) stands for \([-1]^*(\Theta_L)\).

Now, with Notation 3.3.3, the divisor \(\sum_{r=1}^{\alpha} (\Theta_L)_{\tilde{a}_{r,+}}^- - (\Theta_L)_{\tilde{a}_{r,-}}^- \) is the pull-back on \(J_L \) of the divisor \((\Theta^-)_{h_*(D(a))} \) defined on \(J_K \). On the other hand,

\[
\sum_{r=1}^{\alpha} \tilde{a}_{r,+} - \tilde{a}_{r,-} = \sum_{r=1}^{\alpha} (d[a_{r,+}] - E_L) - (d[a_{r,-}] - E_L)
\]
\[
d = d(D(a)_L) \in J_K(L)
\]
\[
da_K \in J_K(K).
\]
Therefore the theorem of the square on J_L shows that the two divisors $(\Theta^-)_b - D(a)$ and $\Theta^-_{da_K} - \Theta^-$ on J_K are linearly equivalent over L, hence also over K. From this observation, and the fact that the normalized valuation on K takes values in \mathbb{Z}, we deduce that
\[
\langle a, da' \rangle_M = -\langle [a'_K] - [z_K], \Theta^-_{da_K} - \Theta^- \rangle_{J_K} \mod \mathbb{Z}.
\]
Applying once more the reciprocity law, we find
\[
\langle a, da' \rangle_M = -\langle [da_K] - [0_K], \Theta_{a'_K} - \Theta_{z_K} \rangle \mod \mathbb{Z}.
\]
Finally, note that $(\Theta_{a'_K} - \Theta_{z_K}) = -\varphi(a'_K - z_K) \in J'(K)$ and $a'_K - z_K$ specializes to $a' \in \Phi_J$. Consequently, if we use $-\varphi$ to identify J_K with its dual, Theorem 3.4.1 tells us that
\[
-\langle [da_K] - [0_K], \Theta_{a'_K} - \Theta_{z_K} \rangle = \langle da, a' \rangle \mod \mathbb{Z}.
\]
Whence $\langle a, da' \rangle_M = \langle da, a' \rangle$, as claimed. \hfill \Box

Acknowledgments

I would like to thank Michel Raynaud for many enlightening discussions about Néron’s and Grothendieck’s pairings. I am indebted to Qing Liu for his valuable teaching of intersection theory on relative schemes. I am very grateful to Pascal Autissier, Siegfried Bosch, Dino Lorenzini and Laurent Moret-Bailly for their careful reading and for many helpful comments. I thank the referee for his meticulous reading and for many useful remarks.

References

Néron’s pairing and relative algebraic equivalence

Communicated by Barry Mazur
Received 2011-02-19 Revised 2011-12-21 Accepted 2012-01-18

cedric.pepin@wis.kuleuven.be
KU Leuven, Departement Wiskunde, Celestijnenlaan 200B, 3001 Heverlee, Belgium
https://perswww.kuleuven.be/~u0079577/
On the rank of the fibers of rational elliptic surfaces
CECÍLIA SALGADO 1289

Néron’s pairing and relative algebraic equivalence
CÉDRIC PÉPIN 1315

Free subalgebras of quotient rings of Ore extensions
JASON P. BELL and DANIEL ROGALSKI 1349

Classes de cycles motiviques étalés
BRUNO KAHN 1369

Higher-order Maass forms
ROELOF BRUGGEMAN and NIKAOS DIAMANTIS 1409

Log canonical thresholds, F-pure thresholds, and nonstandard extensions
BHARGAV BHATT, DANIEL J. HERNÁNDEZ, LANCE EDWARD MILLER and MIRCEA MUSTAŢĂ 1459

The semistable reduction problem for the space of morphisms on \mathbb{P}^n
ALON LEVY 1483

Grothendieck’s trace map for arithmetic surfaces via residues and higher adèles
MATTHEW MORROW 1503

Crystalline extensions and the weight part of Serre’s conjecture
TOBY GEE, TONG LIU and DAVID SAVITT 1537

Annihilating the cohomology of group schemes
BHARGAV BHATT 1561