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Annihilating the cohomology
of group schemes

Bhargav Bhatt

Our goal in this note is to show that cohomology classes with coefficients in
finite flat group schemes can be killed by finite covers of the base scheme, and
similarly for abelian schemes with “finite covers” replaced by “proper covers.”
We apply this result to commutative algebra to give by a conceptual proof of
Hochster—Huneke’s theorem on the existence of big Cohen—Macaulay algebras
in positive characteristic; all previous proofs of this result were equational or
cocycle-theoretic in nature.

1. Introduction

Given a scheme S with a sheaf G and class @ € H"(S, G) for n > 0, a natural
question one may ask is if there exist covers & : T — § such that 7*« = 0? Of
course, as stated, the answer is trivially yes as we may take 7' to be a disjoint union
of suitable opens occurring in a Cech cocycle representing . However, the question
becomes interesting if we require geometric conditions on 7, such as properness
or even finiteness. Our goal is to study such questions for fppf cohomology in the
case that G is either a finite flat commutative group scheme or an abelian scheme.
Our main results are:

Theorem 1.1. Let S be a noetherian excellent scheme, and let G be a finite flat
commutative group scheme over S. Then classes in Hé’)pf(S , G) can be killed by
finite surjective maps to S for n > 0.

Theorem 1.2. Let S be a noetherian excellent scheme, and let A be an abelian
scheme over S. Then classes in Hf’;pf(S , A) can be killed by proper surjective maps
to S for n > 0. Moreover, there exists an example of a normal affine scheme S that
is essentially of finite type over C, and an abelian scheme A — S with a class in

Hflppf(S , A) that cannot be killed by finite surjective maps to S.

MSC2010: primary 14L.15; secondary 13D45, 14K05, 14F20.
Keywords: group schemes, abelian varieties, étale cohomology, fppf cohomology, big
Cohen—Macaulay algebras.
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We stress that there are no assumptions on the residue characteristics of S in
either theorem above.

Our primary motivation for proving the preceding results was to obtain a bet-
ter understanding of the Hochster—Huneke proof of the existence of big Cohen—
Macaulay algebras in positive characteristic commutative algebra; see [Hochster
and Huneke 1992]. We have succeeded in this endeavour as we can give a new
and essentially fopological proof of the Hochster—Huneke result by using the
cohomology-annihilation results discussed above in lieu of the more traditional
equational approaches; see Section 5 for more. We are hopeful that a similar
approach, coupled with the constructions in [Fontaine 1994] of mixed characteristic
rings admitting Frobenius actions, will eventually provide an approach to Hochster’s
homological conjectures in mixed characteristic commutative algebra; we refer the
interested reader to [Hochster 2007] for further information.

An informal summary of the proofs: To prove Theorem 1.1, we first use a theorem
of Raynaud to embed a finite flat group scheme into an abelian scheme; this
permits a reduction to from fppf cohomology to étale cohomology by a theorem
of Grothendieck. Next, using an observation due to Gabber, we reduce from étale
cohomology to Zariski cohomology, and then we solve the problem by hand. For
Theorem 1.2, we reduce as before to Zariski cohomology, and then solve the problem
using de Jong’s alterations results combined with an observation concerning rational
sections of an abelian scheme over a regular base scheme. The example referred to
in Theorem 1.2 is discussed in Section 6, and relies on a construction of Raynaud.
Lastly, the Hochster—Huneke theorem is reproved by first reformulating it as a
suitable cohomology-annihilation statement for the higher local cohomology of the
structure sheaf, and then deducing this statement from Theorem 1.1 by using finite
flat subgroup schemes of G, defined by additive polynomials in Frobenius.

Notations and conventions. All group schemes occurring in this note are commu-
tative; all the cohomology groups occurring in this note are computed in the fppf
topology unless otherwise specified. For a scheme X, the big site of X equipped
with the étale topology is denoted (Sch/ X ), while the small site is denoted Xg;
similarly for other topologies like the fppf and Zariski topologies.

Organisation of this note. In Section 2 we recall Gabber’s observation alluded
to above. Using this observation, we prove Theorem 1.1 in Section 3, and the
first half of Theorem 1.2 in Section 4. Next, in Section 5, we explain how to use
Theorem 1.1 to give a new proof of the Hochster—Huneke theorem. We close in
Section 6 by giving an example that illustrates the necessity of “proper” in the first
half of Theorem 1.2 and finishes its proof.
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2. An observation of Gabber

In this section, we recall a result of Gabber concerning the local structure of the étale
topology. This observation permits reduction of étale cohomological considerations
to those in finite flat cohomology and those in Zariski cohomology. We begin with
an elementary lemma on extending covers that will be used repeatedly in the sequel.

Lemma 2.1. Fix a noetherian scheme X. Given an open dense subscheme U — X
and a finite (surjective) morphism f : V — U, there exists a finite (surjective)
morphism f : V. — X such that fy is isomorphic to f. Given a Zariski open
cover W = {j; : U; — X} with a finite index set, and finite (surjective) morphisms
fi : Vi = Uj, there exists a finite (surjective) morphism f : Z — X such that fy,
factors through f;. The same claims hold if “finite (surjective)” is replaced by
“proper (surjective)” everywhere.

Proof. We first explain how to deal with the claims for finite morphisms. For the
first part, Zariski’s main theorem [Grothendieck 1966, Théoreme 8.12.6] applied
to the morphism V — X gives a factorisation V < W — X where V < W is an
open immersion, and W — X is a finite morphism. The scheme-theoretic closure
V of V in W provides the required compactification in view of the fact that finite
morphisms are closed.

For the second part, by the above, we may extend each j; o f; : V; = X to a finite
surjective morphism f; : V; — X such that f; restricts to f; over U; < X. Setting
W to be the fibre product over X of all the V; is then seen to solve the problem.

To deal with the case of proper (surjective) morphisms instead of finite (surjec-
tive), we repeat the same argument as above replacing the reference to Zariski’s
main theorem by one to Nagata’s compactification theorem; see [Conrad 2007,
Theorem 4.1]. ]

Next, we state Gabber’s result (see [Hoobler 1982, Lemma 5; Stacks, 02LH]):

Lemma 2.2. Let f : U — X be a surjective étale morphism of affine schemes. Then
there exists a finite flat map g : X' — X, and a finite Zariski open cover {U; — X'}
such that the natural map |_|; U; — X factors through U — X.

For completeness, we sketch a proof when X is local; this will be enough for
applications.

Sketch of proof. We only explain the proof when X = Spec(A) is the spectrum
of a local ring A, and U = Spec(B) is the spectrum of a local étale A-algebra B.
The structure theorem for étale morphisms (see [Grothendieck 1962, Exposé I,
Théoreme 7.6]) implies that B = Cy,, where

C=Ax]/(f(x)) with f(x)=x"4+ax" '+ +a,
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a monic polynomial, and m C C a maximal ideal with f’(x) ¢ m. We define
D=Alxi, ..., x]/(0i(x1, .. x) = (D" ")

where o1, ..., 0, are the elementary symmetric polynomials in the x;. This ring
is finite free over A of rank n!, admits an action of S, that is transitive on the
maximal ideals, and formalises the idea that the coefficients of f(x) can be written
as elementary symmetric functions in its roots. In particular, there is a natural
morphism C — D sending x to x;. As both C and D are finite free over A, there is
amaximal ideal m; C D lying over m C C. Thus, there is a natural map a : B — Dyy,.
By the S,-action, for every maximal ideal n C D, there is an automorphism D — D
sending m; to n. Composing such an automorphism with a, we see that for every
maximal ideal n C D, the structure map A — D,, factorises through A — B for
some map B — D,; the claim follows. U

Actually, we use a slight weakening of Gabber’s result —relaxing finite flat to
finite surjective — that remains true when the schemes under consideration are no
longer assumed to be affine.

Lemma 2.3. Let f : U — X be a surjective étale morphism of noetherian schemes.
Then there exists a finite surjective map g : X' — X, and a finite Zariski open cover
{U; — X'} such that the natural map | _|; U; — X factors through U — X.

Proof. We can solve the problem locally on X by Lemma 2.2 and a “smearing
out” argument. This means that there exists a Zariski open cover {V; — X}, finite
surjective (even flat) maps W; — V;, and Zariski covers {Y;; < W;} such that
L] Y;j — V; factors through U x x V; — V;. By Lemma 2.1, we may find a single
finite surjective map W — X such that W x x V; — V; factors through W; — V;.
Setting X" = W and pulling back the covers {Y;; — W;} to W xx V; then solves
the problem. ([

3. The theorem for finite flat commutative group schemes

In this section we prove Theorem 1.1 following the plan explained in the introduction.
To carry that program out, we first explain how to relate the fppf cohomology of
finite flat group schemes to étale cohomology; it turns out that they are almost the
same.

Proposition 3.1. Let S be the spectrum of a strictly henselian local ring, and let G
be a finite flat commutative group scheme over S. Then H' (S, G) =0 fori > 1.

Proof. We first explain the idea informally. Using a theorem of Raynaud, we can
embed G into an abelian scheme, which allows us to express the cohomology of
G in terms of that of abelian schemes. As abelian schemes are smooth, a result
of Grothendieck ensures that their fppf cohomology coincides with their étale
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cohomology. As the latter vanishes when S is strictly henselian, we obtain the
desired conclusion.

Now for the details: a construction of Raynaud (see [Berthelot et al. 1982,
Théoréme 3.1.1]) gives the existence of an abelian scheme A — S and an S-closed
immersion G < A of group schemes. By Deligne’s theorem [Tate and Oort 1970,
§1, Theorem], we have G C A[n] where n is the order of G. The quotient map
A/G — A/A[n] = A of fppf sheaves is an A[n]/G-torsor. Since A[n]/G is a
finite group scheme [Raynaud 1967, Théoreme 1.1 (v)], the map A/G — A is fppf
locally representable by a finite morphism of schemes. Since the quotient A is a
scheme, fppf descent for finite morphisms shows that A/G is also a scheme. The
map A/G — A is finite, so A/ G is proper over S and acquires the structure of an
S-group scheme by functoriality. Using the faithful flatness of A — A/G (asitis a
G-torsor) and A — S, one concludes:

« A/G — S is faithfully flat by an elementary flatness argument.

e A/G — S has geometrically regular fibres as these fibres admit a finite flat
cover that is smooth.

* A/G — S has geometrically connected fibres as these fibres are dominated by
those of A — S.

These properties show that A/G — S is an abelian scheme. Hence, we have a short
exact sequence
0->-G—>A—-A/G—0

of abelian sheaves on the fppf site of § relating the finite flat commutative group
scheme G to the abelian schemes A and A/G. This gives rise to a long exact
sequence

o> H"Y(S,A/G) — H"(S,G) — H"(S,A) > - -

of fppf cohomology groups. By Grothendieck’s theorem [1968b, Théoreme 11.7],
fppf cohomology coincides with étale cohomology when the coefficients are smooth
group schemes. Applying this to A and A/G shows H'(S, A) = H'(S,A/G) =0
for i > 0 as S is strictly henselian. The claim about G now follows from the
preceding exact sequence. U

Remark 3.2. Proposition 3.1 may be reformulated topologically to say for a scheme
X and a finite flat group scheme G — X, we have R’ f,G = 0 for i > 2, where
S (Sch/ X)gppr — (Sch/ X)g is the morphism of (big) topoi defined by viewing
étale covers as fppf covers. The Leray spectral sequence then reduces to a long
exact sequence

oo HY(X, G) > Hiw(X,G) — HT (X, R £,G) — - .
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Next, we explain how to deal with Zariski cohomology with coefficients in a
finite flat group scheme.

Proposition 3.3. Let S be a normal noetherian scheme, and let G — S be a finite
flat commutative group scheme. Then Hj; (S, G) =0 forn > 0.

Proof. We may assume that S is connected. As constant sheaves on irreducible
topological spaces are acyclic, it will suffice to show that G restricts to a constant
sheaf on the small Zariski site of S, that is, that the restriction maps G(S) - G(U)
are bijective for any nonempty open subset U < S. Injectivity follows from the
density of U < § and the separatedness of G — §. To show surjectivity, we note
that given a section U — G of G over U, we can simply take the scheme-theoretic
closure of U in G to obtain an integral closed subscheme S’ < G such that the
projection map S’ — S is finite and an isomorphism over U. By the normality of
S, this forces S’ = S. Thus, G restricts to a constant sheaf on S, as claimed. O

We can now complete the proof of Theorem 1.1 by following the outline sketched
in the introduction.

Proof of Theorem 1.1. Let S be a noetherian excellent scheme, and let G — S be a
finite flat commutative group scheme. We need to show that classes in H" (S, G)
can be killed by finite covers for S for n > 0. We deal with the n = 1 case on its
own, and then proceed inductively.

For n = 1, note that classes in H'(S, G) are represented by fppf G-torsors T
over S. By faithfully flat descent for finite flat morphisms, such schemes 7" — S are
also finite flat. Passing to the total space of T trivialises the G-torsor T'. Therefore,
classes in H'(S, G) can be killed by finite flat covers of S.

We now fix an integer n > 1 and a cohomology class ¢« € H"(S, G). By
Proposition 3.1, we know that there exists an étale cover of S over which « trivialises.
By Lemma 2.3, after replacing S by a finite cover, we may assume that there exists
a Zariski cover U = {U; < S} such that «|y, is Zariski locally trivial. The Cech
spectral sequence for this cover is

HP (U, H1(G)) = HP'I(S, G)

where H?(G) is the Zariski presheaf V +— H9(V, G). By construction, the class o
comes from some ' € H"~9(U, H1(G)) with ¢ < n. The group H"~2(U, HY(G))
is the (n — g)-th cohomology group of the standard Cech complex
[1#W. 6~ [[H Wy. G — -
i i<j
By the inductive assumption and the fact that g < n, terms of this complex can be

annihilated by finite covers of the corresponding schemes. By Lemma 2.1, we may
refine these finite covers by one that comes from all of S. In other words, we can find
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a finite surjective cover S’ — S such that o’|g¢ = 0. After replacing S with S’, the
Cech spectral sequence then implies that & comes from some H "*q’(ou, H q’(G))
with ¢’ < g. Proceeding in this manner, we can reduce the second index ¢ all the
way down to 0, that is, assume that the class « lies in the image of the map

H"(U, G) — H"(S, G).

Now we are reduced to the situation in Zariski cohomology that was tackled in
Proposition 3.3. ]

Remark 3.4. The proof given above for Theorem 1.1 used the intermediary of
abelian schemes to connect fppf cohomology and étale cohomology with coefficients
in a finite flat commutative group scheme G (see Proposition 3.1). When the
coefficient group scheme G is smooth (or equivalently étale), this reduction follows
directly from Grothendieck’s theorem. In general, one can avoid abelian schemes
by using a trick due to Messing to embed the group scheme in a smooth affine
group: any commutative finite flat S-group scheme G may be realised as a closed
subgroup of A =Resgv/5(Gy,) where G denotes the Cartier dual of G; the map
G — A is the tautological one coming from the definition G¥ = Hom(G, G,,); see
[Messing 1972, §IV.1] for more. One can then show that A and A/ G are S-smooth
and representable, so the rest of the proof of Proposition 3.1 goes through. We
thank Brian Conrad for pointing this out.

Remark 3.5. If G is a finite flat group scheme over S which is not necessarily
abelian, the H' part of Theorem 1.1 remains valid since one can trivialise a G-torsor
m : T — § using the finite flat morphism 7.

Example 3.6. We give an example showing that Zariski, étale, and fppf cohomolo-
gies can differ. Let k =T, and G = ), X u,, where n is prime to p.

. Hzlar(Spec(k), G) = 0. Indeed, Spec(k) is a Zariski point, so the higher
(Zariski) cohomology of all sheaves vanishes.

. Hélt(Spec(k), G) =k*/(k*)". This follows from the Kummer sequence
0— ,bLn_)G’m_)Gm_)O’

Hilbert’s theorem 90, and the fact that ., >~ 0 on the small étale site of k.

. flppf(Spec(k), G) = k*/(k*)" x k*/(k*)P. This follows from the Kummer
sequence for both w, and 1 ,; we need the flat topology to get right exactness
of the Kummer sequence for 1.

4. The theorem for abelian schemes

Our goal in this section is to prove the first half of Theorem 1.2. The arguments
here essentially mirror those for finite flat commutative group schemes presented in
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Section 3. The key difference is that annihilating Zariski cohomology requires more
complicated constructions when the coefficients are abelian schemes. We handle
this by proving a generalisation of Weil’s extension lemma (see Proposition 4.2).
This generalisation requires strong regularity assumptions on S and is one of the
two places in our proof of Theorem 1.2 that we need proper covers instead of finite
ones; the other is the case of H!.

We begin by recording an elementary criterion for a map to an abelian variety to
be constant.

Lemma 4.1. Let A be an abelian variety over an algebraically closed field k, and
let C be a reduced variety over k. Fix an integer £ invertible onk. Amap g :C — A
is constant if and only if it induces the O map H}(A, Q) — H}(C, Q).

Proof. It suffices to show that a map like g that induces the 0 map on H! is
trivial. As any k-variety is covered by curves, it suffices to show that the map
g is constant on all curves in C. Thus, we reduce to the case that C is a curve.
We may also clearly assume that C is normal, that is, smooth. Let C denote the
canonical smooth projective model of C. Since A is proper, the map g factors
through a map g : C — A. Since C and C are normal, the map m1(C) — 71 (C) is
surjective. Hence, the map Hé]t(a Q) — Hé]t(C, Q) is injective. Thus, to answer
the question, we may assume that C = C is a smooth projective curve.

Let A < P" be a closed immersion corresponding to a very ample line bundle
¥. The map g : C — A will be constant if we can show that g*<¥ is not ample,
that is, has degree 0. As the £-adic cohomology of an abelian variety is generated
in degree 1 (see [Milne 2008, §12]), the hypothesis on H' implies that the map
HZ(A, Q) — H*(C,Qy) is also 0. In particular, g*(c;¥) = 0, where ¢{(£) €
H?(A, Qu(1)) ~ H?*(A, Qp) is the first Chern class of the line bundle &. Since
applying g* commutes with taking the first Chern class, it follows that ¢ (g*&¥) =0,
hence g*& has degree 0 as desired. ([

We now prove the promised extension theorem for maps into abelian schemes.

Proposition 4.2. Let S be a regular connected excellent noetherian scheme, and
let f: A — S be an abelian scheme. For any nonempty open U C S, the restriction
map A(S) — A(U) is bijective.

Proof. Let j : U — S denote the open immersion defined by U. The bijectivity of
A(S) — A(U) will follow by taking global sections if we can show that the natural
map of presheaves a : A — j.(A|y) is an isomorphism on the small Zariski site of
S. As both the source and the target of a are actually sheaves for the étale topology
on S, we may localise to assume that S is the spectrum of a strictly henselian local
ring R. In this setting, we will show that A(S) — A(U) is bijective using ¢-adic
cohomology.
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The injectivity of A(S) — A(U) follows from the density of U C S and the sep-
aratedness of A — §. To show surjectivity, by the valuative criterion of properness,
we may assume that the complement S \ U has codimension at least 2 in S. Let
s : U — A be a section of A over U. By taking the normalised scheme-theoretic
closure of s(U) C A, we obtain a proper birational map p : S’ — S that is an
isomorphism over U, and an S-map i : " — A extending s over U. The desired
surjectivity then reduces to showing that i is constant on the fibres of p. Since
p«0s = Og, the rigidity lemma (see [Mumford et al. 1994, Proposition 6.1]) shows
that it suffices to show that i collapses the reduced special fibre S;, where s € S
is the closed point. By Lemma 4.1, it is enough to check that the induced map
H'(Ay, Qp) — H'(S., Qy) is trivial for some integer ¢ invertible on S. Note that
we have the following commutative diagram:

H'(A, Q) — H'(A;, Q)

| |

HY\(S', Q) — H'(S, Q).

The horizontal maps are isomorphisms by the proper base change theorem in étale
cohomology (see [Deligne 1977, Arcata IV-1, Théoréeme 1.2]) as S is a strictly
henselian local scheme. Hence, it suffices to show that H' (A4, Q;) — H'(S’, Q)
is 0. Since H'(S’, Q) = Homeons (71 (S”), Qy), it suffices to check that 771(S’) = 0.
As S’ is normal, we know that 771 (U) — 71(S’) is surjective. Moreover, by Zariski—
Nagata purity (see [Grothendieck 1968a, Exposé X, Théoréme 3.4]), we know that
m1(U) ~ 1 (S) since S\ U has codimension > 2 in S. Since S is strictly henselian,
we have 71(S) = 0 and hence 71(S") = 0 as desired. [l

Remark 4.3. The main idea for the proof of Proposition 4.2 comes from obstruction
theory in topology. Consider the universal family 7 : U, — o of abelian varieties
over the stack o, of abelian varieties. Proposition 4.2 can be rephrased as asking if
every map S — o, with a specified lift U — 9, over a dense open U C § admits an
extension § — AU, provided S is smooth. Since the stack ‘U, is a classifying space
for its fundamental group (since the same is true for s{, and the fibres of ), the
answer at the level of homotopy types would be yes if and only if 71 (U) — 71 (Ug)
factors through 71 (U) — m1(S). This is essentially what is verified above using
purity; Lemma 4.1 allows us to go from this homotopy-theoretic conclusion to a
geometric one.

Remark 4.4. Proposition 4.2 can be considered a generalisation of Weil’s extension
lemma when applied to abelian varieties. Recall that this lemma says that the domain
of definition of rational maps from a smooth variety to a group variety has pure
codimension 1. In case the target is proper, that is, an abelian variety A, this reduces
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to the statement that A(X) >~ A(U) for any smooth variety X, and dense open
U— X.

Remark 4.5. Our proof of Proposition 4.2 is topological as explained in Remark 4.3.
As pointed out to us by Jdnos Kollar after the present work was completed, one
can also give a more geometric proof of Proposition 4.2 as follows: a theorem of
Abhyankar (see [Kolldr 1996, §VI.1, Theorem 1.2]) implies that for any proper
modification p : S’ — § with S noetherian regular excellent, the positive dimensional
fibres of p contain nonconstant rational curves. Applying this theorem to the closure
S’ of the graph of a rational map defined by a section U — A over an open U C S
gives our desired claim as abelian varieties do not contain rational curves. We
prefer the cohomological approach as a slight variation on it (using cohomology of
the structure sheaf Oy instead of the constant sheaf in the proof of Proposition 4.2
and Lemma 4.1) shows that Proposition 4.2 remains valid in characteristic 0 if S
has rational singularities. This also suggests a question to which we do not know
the answer: if S is a scheme in positive characteristic satisfying some definition of
rational singularities (such F-rationality), does Proposition 4.2 hold for S?

Example 4.6. We give an example to show that the regularity condition on S cannot
be weakened too much in Proposition 4.2. Let (E, e¢) C P2 be an elliptic curve, and
let S be the affine cone on E with origin s. Note that S is a hypersurface singularity
of dimension 2 with O dimensional singular locus. In particular, it is normal. Let
A = § x E denote the constant abelian scheme on E over S. Then U = S\ {s}
can be identified with the total space of the (,,-torsor O(—1)|g — O(E) over E.
Thus, there exists a nonconstant section of A(U). On the other hand, all sections
S — A are constant. Indeed, every point in S lies on an A! containing s. As all
maps A! — E are constant, the claim follows. Thus, we obtain an example of
a normal hypersurface singularity S and an abelian scheme A — S such that the
conclusion of Proposition 4.2 fails for S. Of course, S is not a rational singularity,
a fact supported by Remark 4.5.

Next, we point out how to use Proposition 4.2 to prove the version of Theorem 1.2
involving Zariski cohomology under strong regularity assumptions on the base
scheme S; the proof is trivial.

Corollary 4.7. Let S be a regular excellent noetherian scheme, and let f : A — S
be an abelian scheme. Then Hj (S, A) =0 forn > 0.

Proof. By Proposition 4.2, we know that A restricts to a constant sheaf on the small
Zariski site of each connected component of S. By the vanishing of the cohomology
of a constant sheaf on an irreducible topological space, the claim follows. U

We are now in a position to complete the proof of Theorem 1.2.
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Proof of Theorem 1.2. Let S be a noetherian excellent scheme, and let A — S be
an abelian scheme. We will show that cohomology classes in H" (S, A) are killed
by proper surjective maps by induction on n provided n > 0. We may assume that
S is integral.

For n = 1, classes in H'(S, A) are represented by étale A-torsors T over S.
As T is an fppf S-scheme, there exists a quasifinite dominant morphism U — §
such that 7' (U) is nonempty. By picking an S-map U — T and taking the closure
of the image, we obtain a proper surjective cover S" — S such that 7'(§’) is not
empty. This implies that the cohomology class associated to 7' dies on passage to
S’, proving the claim.

We next proceed exactly as in the proof of Theorem 1.1 to reduce down to the case
of a Cech cohomology class associated to a Zariski cover. The only difference is that
the references to Proposition 3.1 should be replaced by references to Grothendieck’s
theorem [1968b, Théoreme 11.7] which, in particular, implies that cohomology

: n
classes in prp

To show the claim for a Cech cohomology class associated to a Zariski cover,
assume first that S is of finite type over Z. In this case, thanks to de Jong’s theorems
[1997], we can find a proper surjective cover of S with regular total space. Passing
to this cover and applying Corollary 4.7 then solves the problem. In the case that S is
no longer of finite type over Z, we reduce to the finite type case using approximation.

(S, A) trivialise over an €tale cover; we omit the details.

Indeed, the data (S, A, o) comprising of the base scheme S, the abelian scheme
A — S, and a Cech cohomology class & € H" (U, A) associated to a finite Zariski
open cover U of S can be approximated by similar data with all schemes involved
of finite type over Z. Given such an approximating triple (S, A’, ') with §” of
finite type over Z, we can find a proper surjective map S” — §’ killing o’ by the
earlier argument. By functoriality, the pullback S” x ¢ S — S is a proper surjective
cover of S killing . ([

Remark 4.8. Theorem 1.2 admits a topological reformulation as follows. Given a
noetherian scheme S and an abelian scheme G over S, let (Sch/S)prop, (Sch/S)gppt
and (Sch/S) prop, fppf denote the (big) topoi associated to the category of schemes over
S equipped with the topology generated respectively by proper surjective maps, fppf
maps, and both proper surjective and fppf maps. There are natural forgetful maps of
topoi a : (Sch/8) prop, ppt —> (Sch/S)prop and b : (Sch/S) prop, tppt —> (Sch/S)gppr Of
topoi. Given an abelian scheme G — S, let G also denote the sheafification of the
representable presheaf associated to G in all of the above topologies. Theorem 1.2
can be reformulated as saying that the sheaves R'a,G vanish for i > 0. Since
schemes are sheaves for the fppf topology, one can easily show that a,.a*G = G.
Thus, Theorem 1.2 can be reformulated saying that G >~ Ra,G. Note a consequence:
since cohomology on sites is computed using hypercovers by Verdier’s theorem
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[Artin and Mazur 1969, Theorem 8.16], we see that for a class o € H" (Sgppt, G)
with n > 0, there exists a proper hypercover f, : T, — S and a map of simplicial
schemes ¢ : T, — K (G, n) representing b*«. If G is instead a finite flat group
scheme, then the same remarks apply for Theorem 1.1, except that we replace
proper maps by finite ones.

5. An application: big Cohen—Macaulay algebras in positive characteristic

Let (R, m) be an excellent noetherian local domain containing [,. A fundamental
theorem of Hochster—Huneke [1992] asserts that the absolute integral closure R
(the integral closure of R in a fixed algebraic closure of its fraction field) is a
Cohen—Macaulay algebra. This result and the ideas informing it form the bedrock
of tight closure theory and huge swathes of positive characteristic commutative
algebra.

Our goal in this section is to give a new proof of the Hochster—Huneke theorem
using Theorem 1.1. We hasten to remark that there already exist alternative proofs in
the literature, all cocycle-theoretic or equational at the core. The approach adopted
here follows closely the relatively recent approach from [Huneke and Lyubeznik
2007], the essential new feature being the use of cohomology-annihilation result
proven in Theorem 1.1 in place of explicit cocycle manipulations.

We begin by recording a coherent cohomology-annihilation result one can deduce
from Theorem 1.1; this can be considered as the analogue of the “equational lemma’
of [Hochster and Huneke 1992]; see also [Huneke and Lyubeznik 2007, Lemma 2.2].

’

Proposition 5.1. Let (R, m) be a noetherian excellent local [ ,-algebra, and let
M C HL(R) be a Frobenius stable finite length R-submodule for some i > 0. Then
there exists a module-finite extension f : R — S such that f*(M) = 0 where
f*: H\il(R) — H];(S) is the induced map.

Proof. After normalising R, we may assume that i > 1. With U = Spec(R) — {m},
we have a Frobenius equivariant identification

H7Y(U,0) ~ H! (R)

which allows us to view M as a submodule of H'~!(U, 0). The Frobenius action
endows H'~1(U, 0) with the structure of a R{X?”}-module, where R{X”} is the
noncommutative polynomial ring over R with one generator X” satisfying the
commutation relation X”r = r? X? for r € R. The finite length assumption implies
that for each m € M, there exists some monic additive polynomial g(X?) € R{X?}
such that g(m) = 0. As g is additive and monic, we have a short exact sequence

0—>ker(g)—>@—g>@—>0
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of abelian sheaves on Spec(R)f,pr. Moreover, the monicity of g also shows that
the sheaf ker(g) is representable by a finite flat commutative group scheme over
Spec(R). As g(m) = 0, we see that m comes from a cohomology class m’ €
H'~Y(U, ker(g)). Since i — 1 > 0, Theorem 1.1 shows that there exists a finite
surjective map 7 : V — U such that 7*m’ = 0. Setting S to be the (global sections
of the) normalisation of R in V is then seen to solve the problem. (|

Using Proposition 5.1, we can give a proof that R™ is Co