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The main goal of this article is to construct and study a family of Weil repre-
sentations over an arbitrary locally noetherian scheme without restriction on
characteristic. The key point is to recast the classical theory in the scheme-
theoretic setting. As in work of Mumford, Moret-Bailly and others, a Heisenberg
group (scheme) and its representation can be naturally constructed from a pair
of an abelian scheme and a nondegenerate line bundle, replacing the role of a
symplectic vector space. Once enough is understood about the Heisenberg group
and its representations (e.g., the analogue of the Stone–von Neumann theorem), it
is not difficult to produce the Weil representation of a metaplectic group (functor)
from them. As an interesting consequence (when the base scheme is Spec Fp),
we obtain the new notion of mod p Weil representations of p-adic metaplectic
groups on Fp-vector spaces. The mod p Weil representations admit an alternative
construction starting from a p-divisible group with a symplectic pairing.

We have been motivated by a few possible applications, including a conjectural
mod p theta correspondence for p-adic reductive groups and a geometric approach
to the (classical) theta correspondence.

1. Introduction

For a quick overview of contents and results, see Section 1H.

1A. Motivation from theta correspondence. The Heisenberg groups, their rep-
resentations and the Weil representations (also called oscillator or metaplectic
representations) play interesting roles in a wide range of mathematics. In the
context of number theory and representation theory, they give rise to the theta
correspondence, which enables us to relate automorphic forms or representations of
one connected reductive group (or its covering group) to those of another group. It
not only helps to establish instances of the Langlands functoriality but also reveals
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deep information about arithmetic invariants and as such has led to numerous
profound applications. The theta correspondence has been developed very well in
both local and global contexts (namely, for p-adic/real groups and adelic groups,
respectively), though there are still many open questions, for representations on
vector spaces over C (or an algebraically closed field of characteristic 0).

On the other hand, there has been growing interest in the representations of
p-adic reductive groups on vector spaces over Fl (l 6= p) and Fp (as well as
representations with p-adic analytic structure) in connection with Galois theory
as part of the extended Langlands philosophy under the motto “mod l, mod p
and p-adic local Langlands program”. From the global perspective, one seeks the
theta correspondence for mod p or p-adic automorphic forms.1 Thus, it is a very
natural question to ask whether there is a reasonable theory of local and global theta
correspondence for representations on Fl and Fp vector spaces and more ambitiously
for representations of p-adic analytic nature.

In the classical theory, the following basic ingredients are needed to formulate
the local theta correspondence for p-adic groups. The global setup is similar.
(Unfortunately the exceptional theta correspondence is not going to be considered
in our work.) We need

(i) a p-adic Heisenberg group arising from a symplectic vector space (V, 〈 · , · 〉)
over Qp,

(ii) the Stone–von Neumann theorem and Schur’s lemma for representations of
the Heisenberg group,

(iii) the Weil representation of the p-adic metaplectic group Mp(V, 〈 · , · 〉), and

(iv) reductive dual pairs in Sp(V, 〈 · , · 〉).

It is natural to try to extend (i)–(iv) to a more general setting. The current paper
will do this for (i)–(iii), leaving (iv) (and a conjectural mod p theta correspondence)
to a sequel [Shin ≥ 2012].

1B. Mod p Weil representations, prelude. Let us briefly point out some difficulty
when trying to construct the Weil representation of a p-adic metaplectic group
on an Fp-vector space, which was not done before but is a special case of our
results. There would be two naïve approaches. If one tries to define an Fp-version
of a classical p-adic Heisenberg group (e.g., [Mœglin et al. 1987, Chapter 2]) by
replacing the role of C by Fp, it is impossible to obtain a reasonable group, ruling
out (ii) above. For instance, every continuous additive character Qp→ F

×

p is trivial.

1The p-adic version of the Shimura–Shintani correspondence was studied in [Stevens 1994;
Ramsey 2009; Park 2010]. Their work interpolates the classical correspondence p-adically and does
not require much use of representation theory. The author does not know yet whether or how their
work could be interpreted in the framework of representation theory.
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Another approach would be to take an explicit (Schrödinger or lattice) model for
the Weil representation and switch the coefficient from C to Fp. Then the problem
is that the group actions are no longer well defined. In the Schrödinger model, some
group action is given by Fourier transform, which cannot be defined for Fp-valued
functions on a p-adic group. (See Remark 7.9 for a related discussion.) In the lattice
model, the formula involves p in the denominator, which no longer makes sense. It
is not immediately clear how to fix these problems unless new ideas are introduced.

1C. Geometric construction via Mumford’s theory. We remedy the situation by
giving a uniform geometric construction of (i)–(iii) regardless of the characteristic
of the coefficient field, starting from an abelian scheme A→ S and a nondegenerate
line bundle L instead of a symplectic vector space. In the local case, the effect
is roughly to replace (V, 〈 · , · 〉) by the rational p-adic Tate module Vp A of A
with L-Weil pairing. (Here Vp A is regarded as an ind-group scheme as explained
in Section 3A.) The construction makes sense even in characteristic p; it just
behaves differently. (For an analogy, think about A[p∞] in characteristic p and
away from p.) Actually (i) and (ii) are basically treated in Mumford’s theory of
abelian varieties and theta functions. (As the results are often not in the desired
generality in the literature, we fill the gaps along the way. See the next paragraph.)
Once (i) and (ii) are done, (iii) is obtained without much difficulty. The theory is so
flexible as to allow the construction of the objects (i)–(iii) over an arbitrary locally
noetherian base scheme S.

Sections 2–4 of our paper follow the approach of [Mumford 2007, §§3–5] and
[Moret-Bailly 1985, §5] closely while adapting several facts in the classical theory
of theta correspondence (e.g., [Mœglin et al. 1987]) to the geometric setting. In
[Mumford 2007, §§3–5], the Heisenberg groups and their representations are studied
mostly over an (algebraically closed) field, and the scheme-theoretic approach in the
relative setting is only sketched on a few pages. Moret-Bailly consistently works in
the relative setting, but the theory is treated only at finite level. Our contribution is
to carry out the construction and justify necessary facts (e.g., Theorems 1.1 and 1.2)
at infinite level (in a p-adic or a finite adelic limit). As a byproduct we obtain
the (dual) lattice model over a general locally noetherian base scheme and deduce
the restriction property of Heisenberg and Weil representations (Section 4E and
Lemma 5.10) from the Künneth formula. (It turns out that lattice models always
exist, but Schrödinger models are often missing.) We can also make sense of matrix
coefficients and dual representations in this generality. It is hoped that the geometric
interpretation will shed light on some facts well known by other methods.

Our work is definitely not the first attempt toward a geometric construction of Weil
representations. This was considered in an unpublished manuscript of Harris [1987].
(It appears that the manuscript was planned to include an application to some cases
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of the symplectic-orthogonal theta correspondence, but that part was not written to
our knowledge.) His approach to Heisenberg groups and representations closely
follows that of Mumford [1966, 1967a, 1967b] and works only in characteristic 0
(even though ideas are often generalizable). Hence, his setting is simpler than
ours, and many scheme-theoretic issues do not arise there. His innovation is to
construct a Weil representation in the way that it is closely tied with the geometry
of Siegel modular varieties. On the other hand, our construction is so general that
it applies to almost any families of abelian varieties, but when specialized to the
universal abelian scheme over a Siegel modular variety, the two constructions of
Weil representations by us and by Harris are orthogonal in some sense.

From a different perspective and motivation, [Gurevich and Hadani 2007] con-
structs classical Weil representations for finite metaplectic groups as perverse
sheaves (Deligne’s idea), and the function field analogue is dealt with in [Lysenko
2006; Lafforgue and Lysenko 2009], for instance. Their constructions are quite
different from ours and do not seem to carry over to the number field case. In the
converse direction, our construction does not work in the function field case either.
The basic reason is that the p-adic symplectic (or metaplectic) group in our setting
appears as the automorphism group of a rational p-adic Tate module, which is a
vector space over Qp rather than something like Fp((t)).

In our setup, symplectic groups and metaplectic groups are defined as group
functors varying over the base. By introducing a level structure, we can trivialize the
rational Tate module (ind-scheme), which has the effect that those group functors
may be identified with constant families of groups. When the base is Spec C, we
precisely recover the classical notion of (i)–(iv) from our construction.

It is worth emphasizing that we have completely avoided the use of harmonic
analysis. This is only natural for our method to work in all characteristics uniformly.
In this regard, even when specialized to the classical case (over Spec C), our
construction of the Weil representation is different from the classical treatment (e.g.,
[Mœglin et al. 1987]).

As the reader can see, one of our crucial observations was to realize that Mum-
ford’s theory had the key to the main question raised in Section 1A. This may appear
to be a simple idea, but when we consulted a few experts on theta correspondence,
we learned that the idea was largely unnoticed though a similar idea must have been
conceived by some experts (e.g., [Harris 1987]).

1D. Mod p Weil representations. To study finite adelic objects, one may concen-
trate on one place at a time. So let us restrict ourselves to p-adic Heisenberg
groups and p-adic metaplectic groups. By the Stone–von Neumann theorem (more
precisely, its analogue in our setting), a family of Heisenberg representations, as
well as that of Weil representations, tends to be a constant family (modulo the
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line bundle pulled back from the base). However, things do change when moving
between points of different residue characteristic. Unsurprisingly, new phenomena
essentially occur in characteristic p. (This is related to the fact that A[p∞] is étale
away from characteristic p.) It is worth noting that the Heisenberg and metaplectic
groups vary significantly in characteristic p as the isogeny type of A[p∞] varies over
fibers. On the other hand, over a base ring like Zp, a classical Weil representation
(over the generic fiber) specializes to a mod p Weil representation (Section 7D).

In view of these new phenomena, we feel that it is fundamental to understand
mod p Weil representations, namely when the base is Spec Fp. In order to make their
local nature more transparent, we present an alternative construction of mod p Weil
representations using p-divisible groups instead of abelian schemes (Section 6D).
Then lattice and Schrödinger models are studied in Sections 7B and 7C. There
remains the question of whether the Schrödinger model exists in the nonordinary
case (see the paragraph below Proposition 7.10). Another interesting question about
the p-adic metaplectic group itself is whether it arises from a double covering of
the p-adic symplectic group (see the questions in Section 5D).

1E. Weil representations of real metaplectic groups. Real Heisenberg groups and
real metaplectic groups do not appear in this paper. This is not defective but quite
natural if we want a uniform theory that works in positive characteristics as real
groups are not expected to have nice representations on Fp-vector spaces. In the
special case where the base is Spec C, it is possible to extend the Heisenberg
representations to real places (thereby one can define the real Weil representa-
tion) as explained in [Mumford 2007, §5, Application I] (also see Proposition 3.2
of the book).

1F. Summary of main results. Let A be an abelian scheme over a locally noether-
ian scheme S. Let f : L→ A be a symmetric nondegenerate line bundle of index i
over A (0≤ i ≤ dimS A). Following Mumford, we construct the adelic Heisenberg
group Ĝ(L)= Ĝ(A, L) fitting in a short exact sequence 1→Gm→ Ĝ(L)→VA→ 1.
A weight-1 representation of Ĝ(L) is defined to be a quasicoherent OS-module
equipped with Ĝ(L)-action such that λ ∈ Gm acts by λ. An (adelic) Heisenberg
representation of Ĝ(L) is an irreducible admissible and smooth Ĝ(L)-representation
of weight 1 that does not vanish anywhere on S. (Admissibility and smoothness
are defined in Definitions 4.7 and 4.8.)

Theorem 1.1 (Stone–von Neumann theorem and Schur’s lemma, Theorem 4.15).
For any Heisenberg representation H of Ĝ(L), there is an equivalence of categories( weight-1 smooth

Ĝ(L)-representations

)
∼
→

( quasicoherent
OS-modules

)
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given by M 7→ HomĜ(L)(H,M) and N 7→H⊗N, which are quasi-inverses of each
other.

Theorem 1.2 (Construction of Heisenberg representations, Corollary 4.14). The
OS-module V̂(L) := lim

−→n
Ri f∗(n∗L) is a Heisenberg representation of Ĝ(L).

Theorem 1.3 (Construction of Weil representations, Section 5A). For any Heisen-
berg representation H of Ĝ(L), we can construct a “metaplectic” group functor
Mp(VA, êL) sitting in a sequence of group functors on (Sch/S)

1→ Gm→Mp(VA, êL)→ Sp(VA, êL)→ 1, (1-1)

which is an exact sequence of groups upon evaluation at any locally noetherian
S-scheme.

Theorem 1.4 (Comparison with classical theory, Section 6A). In case S = Spec C,
a choice of level structure for VA equipped with L-Weil pairing allows one to identify
Ĝ(L), V̂(L), Sp(VA, êL) and Mp(VA, êL) with the following objects in the classical
finite adelic setting: the Heisenberg group, Heisenberg representation, symplectic
group and metaplectic group, respectively. (Here the metaplectic group is a central
extension of the symplectic group by C× as can be seen from (1-1).)

The preceding theorems are also valid in the p-adic setting instead of the finite
adelic setting. (In particular, take limits over powers of p rather than all positive
integers, and use Vp A in place of VA.) Moreover, the analogous construction works
for (6, 〈 · , · 〉) in place of (A, L), where 6 is a p-divisible group over S with a
symplectic pairing 〈 · , · 〉, granted that a Heisenberg representation exists for the
Heisenberg group associated with (6, 〈 · , · 〉). This is most interesting when S is
an Fp-scheme. A Heisenberg representation for (6, 〈 · , · 〉) can be exhibited when
S = Spec k for an algebraically closed field k of characteristic p (but the author
does not know in what generality it exists) and leads to a construction of a mod p
Weil representation of a p-adic group functor over Spec k.

1G. Scope of applications and further developments. As we construct a family
of Weil representations from a family of abelian varieties and line bundles, it would
be natural to apply our results to the universal family of abelian varieties over
moduli spaces such as Shimura varieties. This should be related to metaplectic
automorphic forms and a worthy object already in characteristic 0. We hope that
our results will be of some use when studying theta correspondence via Shimura
varieties by methods in algebraic geometry, for instance in the context of Kudla’s
program [2002].

When there is a Weil representation, it is very natural to consider a reductive
dual pair and the resulting theta correspondence (Section 1A). In the sequel [Shin
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≥ 2012], we do this for the newly constructed mod p Weil representation of a
p-adic metaplectic group.

In order to access many cases of mod p Weil representations and theta corre-
spondence, a necessary step would be to explicate the models in Section 7 further,
especially in the case of supersingular abelian varieties (or p-divisible groups).

1H. Contents and organization of the paper. This article is naturally divided into
two parts. Under each part we have listed some of the main contents. The sequel
[Shin ≥ 2012] may be regarded as Part III.

Part I. Heisenberg groups and Heisenberg representations

• Construction of the p-adic or adelic Heisenberg group and Heisenberg repre-
sentation from an abelian scheme A and a nondegenerate line L bundle over a
locally noetherian scheme S. (Sections 2–4)

• A description of the Heisenberg group as Gm ×VA with a twisted group law,
where VA is the “rational Tate module”, when L is symmetric. (Section 3E)

• A study of the category of representations of the Heisenberg group, subsuming
the Stone–von Neumann theorem and Schur’s lemma. (Proposition 2.12 and
Theorem 4.15)

Part II. Weil representations, level structures and explicit models

• Construction of the p-adic or adelic metaplectic group and the Weil represen-
tation over S. (Sections 5A and 5D)

• Comparison with classical theory via level structure. (Sections 6A–6B)

• Weil representations over Fp of p-adic metaplectic group; Igusa level structure;
an approach via a p-divisible group replacing the role of an abelian variety.
(Sections 6C–6D)

• Study of lattice and Schrödinger models; examples. (Section 7)

1I. Notation and convention. If S is a scheme, denote by (Sch/S), (Flat/S) and
(LocNoeth/S) the categories of S-schemes, flat S-schemes and locally noetherian
S-schemes, respectively. All fppf sheaves on S in sets or groups are considered
on a small fppf site. Their category is a full subcategory of the category functors
from (Flat/S) to the category of sets or groups. An OS-module always means a
quasicoherent OS-module in this article and is often viewed as an fppf sheaf on S
as well. The category of OS-modules is denoted QCohS .

An object of (Flat/S) may be viewed as an fppf sheaf in sets on S, and this
induces a fully faithful functor. The underlined notation such as Hom, End and
Aut denotes a sheaf or a functor (rather than just a set, a group, a ring, etc.) in the
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appropriate category determined by the context. Often Mp and Sp are defined as
group functors on (Sch/S).

In this article we will usually work in (Sch/S) for a base scheme S. In particular,
any morphism of schemes is always assumed to be an S-morphism, and a fiber
product is taken over S unless specified otherwise. The tensor product of two
OS-modules is denoted by ⊗ (rather than ⊗OS ) if there is no danger of confusion.

2. Finite Heisenberg groups and their representations

We use the following notation:

• S is a scheme,

• f : A→ S is an abelian scheme over S of relative dimension g ≥ 1,

• f ∨ : A∨→ S is the dual abelian scheme (cf. [Faltings and Chai 1990, I.1]),

• L is a line bundle over A,

• Tx : A×S T → A×S T is the translation by x , where T is an S-scheme and
x ∈ A(T ),

• λL : A→ A∨ is the morphism sending x to T ∗x L ⊗ L−1.

When we think of L , we will often go between two equivalent viewpoints: either
as an invertible sheaf L of OS-modules on A or as a line bundle equipped with a
projection π : L→ A (cf. [Mumford et al. 1994, I.3]). Given L , the corresponding L

is described as L(U )= { s :U→ L | π ◦s = idU } for each open subscheme U of A.
By setting L = Spec(⊕n≤0L⊗n) (relative spectrum over A), we recover L from L.
In order to avoid cumbersome switch of notation, we just write L for either L or
the corresponding L.

2A. Nondegenerate line bundles.

Definition 2.1. A line bundle L over A is (relatively) nondegenerate if λL : A→ A∨

is a finite morphism.

Lemma 2.2. If L is nondegenerate, then

(i) λL is an isogeny (a surjective quasifinite homomorphism of group schemes) and

(ii) ker λL is a finite flat group scheme over S.

Proof. We know that λL is compatible with the group scheme structures. Surjectivity
and quasifiniteness follow from the case of S=Spec k for a field k when the result is
well known (cf. [Bosch et al. 1990, Lemma 1, page 178]). Part (ii) is a consequence
of the fact that any isogeny of abelian schemes is finite flat. �

Lemma 2.3. The following are equivalent:

(i) L is nondegenerate in the above sense.
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(ii) For every point s ∈ S, the fiber Ls over As is nondegenerate (i.e., λLs is finite).

(iii) For every geometric point s ∈ S, the fiber Ls over As is nondegenerate (i.e.,
λLs is finite).

Proof. It is obvious that (i) implies (ii). By the flat base change theorem (applied to
the base extension from s to s), (ii) and (iii) are equivalent. It remains to deduce (i)
from (ii). Observe that (ii) implies that λL is quasifinite. An easy application of the
valuative criterion shows that λL is proper. Hence, λL is finite. �

Lemma 2.4. Suppose that A is defined over S = Spec k, where k is a field. For
a nondegenerate line bundle L , there exists a unique integer 0 ≤ ind(L) ≤ g (the
index of L) such that H ind(L)(A, L) 6= 0.

Proof. See [Mumford 1974, §16] when k is algebraically closed. The general case
is reduced to the algebraically closed case by the flat base change theorem. �

In general the following result is well known. We present a proof as we were
incompetent in finding a handy reference.

Lemma 2.5. Suppose that S is locally noetherian. Let L be a nondegenerate line
bundle over A. The index function s 7→ ind(Ls) from S to Z is locally constant (with
Zariski topology on S).

Proof. As the question is local, we may assume that S is noetherian and con-
nected. We know that s 7→ dim H i (As, Ls) is upper semicontinuous and that
s 7→ χ(Ls) is constant. Let m be the maximum value of i such that the function
s 7→ dim H i (As, Ls) is nonzero. (We know m ≤ g.) The constancy of χ(Ls) and
Lemma 2.4 imply that ind(Ls) ∈ {m,m − 2,m − 4, . . . } for all s ∈ S. Since the
specialization map φm+1(s) : Rm+1 f∗L ⊗ k(s)→ H m+1(As, Ls) = 0 is trivially
surjective, [Hartshorne 1977, Theorem III.12.11(a)] says that it is an isomorphism
for every s ∈ S; hence, Rm+1 f∗L=0. Then Part (b) of the cited theorem implies that
φm(s) is surjective for all s∈ S. On the other hand, φm−1(s) is also trivially surjective
for s ∈ S, so the same theorem shows that Rm f∗L is locally free on S and that φm(s)
is an isomorphism. Therefore, ind(Ls)= m for all s ∈ S, and we are done.2 �

Definition 2.6. A line bundle L over A is nondegenerate of index i ∈Z if ind(Ls)= i
for all s ∈ S.

Remark 2.7. A nondegenerate line bundle of index 0 is none other than a relatively
ample line bundle.

2We refer to [Hartshorne 1977] only for convenience as it has the exact form of the theorem we
need. As it is written, it applies to a (locally) projective abelian scheme A over S. This is no problem
as projectivity can be relaxed to properness by [Grothendieck 1963, III.7.7].
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2B. Heisenberg groups. Define an S-subgroup scheme K (L) :=ker λL of A. Con-
cretely, the group K (L)(T ) for each S-scheme T consists of x ∈ A(T ) such that
T ∗x (L×T )' (L×T )⊗ p∗2 M for some line bundle M on S, where p2 : A×T → T
is the projection map. If L is nondegenerate, then K (L) is a finite flat group scheme
by Lemma 2.2.

Let us define a group-valued contravariant functor Aut(L/A) on (Sch/S). The
group Aut(L/A)(T ) consists of pairs (ψ, x), where x ∈ A(T ) andψ : L×T→ L×T
is an isomorphism such that the following diagram commutes:

L × T
ψ //

(π,1)
��

L × T

(π,1)
��

A× T
Tx // A× T

The group law is provided by (ψ1, x1)(ψ2, x2) = (ψ1ψ2, x1 + x2). The functor
Aut(L/A) is representable by a group scheme denoted G(L) and called a theta group
or a Heisenberg group (scheme). There is a natural sequence of S-group schemes

1→ Gm→ G(L)→ K (L)→ 1, (2-1)

where the maps are respectively α 7→ (α, 0) and (ψ, x) 7→ x on T -valued points.
We identified Gm with the automorphisms of L over A. The argument in the proof
of [Mumford 1974, §23, Theorem 1] shows that (2-1) is exact as Zariski sheaves.
The commutator map G(L)×G(L)→ G(L) given by (γ1, γ2) 7→ γ1γ2γ

−1
1 γ−1

2 has
image in Gm and induces a bilinear pairing

eL
: K (L)× K (L)→ Gm .

Lemma 2.8. If L is nondegenerate, then eL is symplectic, namely alternating and
nondegenerate. (The latter means that an isomorphism K (L) ∼→HomOS

(K (L),Gm)

is induced by eL .)

Proof. See [Moret-Bailly 1985, IV.2.4(ii)]. �

2C. The Stone–von Neumann theorem and Schur’s lemma. From here on we
will always assume that L is nondegenerate, unless it is said otherwise.

Definition 2.9 [Moret-Bailly 1985, V.1.1]. Let G be a group scheme over S and
F an OS-module (always assumed to be quasicoherent). We say that F is a G-
representation (on an OS-module) when F is equipped with a morphism of fppf
sheaves in groups G→AutOS

(F). A morphism between two G-representations F1

and F2 is a morphism of OS-modules F1→ F2 compatible with G-actions. The
same definition makes sense when G is replaced with an fppf sheaf in groups.
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Remark 2.10. When G is a group functor on (Sch/S), a representation of G will
mean an OS-module F equipped with a morphism of group functors G→AutOS

(F),
where AutOS

(F) is regarded as the group functor T 7→AutOT (F⊗OS OT ) on (Sch/S).

Definition 2.11 [Moret-Bailly 1985, V.2.1, V.2.3]. A G(L)-representation F is of
weight w ∈ Z if Gm acts on F via the character λ 7→ λw. A G(L)-representation F

is irreducible if every G(L)-subrepresentation F′ of F has the form F′ = F⊗OS I

for some ideal sheaf I of OS (equipped with trivial G(L)-action).

Most of the time our focus will be on representations of weight 1 or −1. The
following result due to Moret-Bailly (but see Remark 2.14 below) is crucial in
understanding weight-1 representations of G(L).

Proposition 2.12. Let F be a G(L)-representation of weight 1. Suppose that F is a
locally free OS-module of rank deg L.

(i) F is an irreducible G(L)-representation.

(ii) There is an equivalence between the category of OS-modules and the category
of G(L)-representations of weight 1 on OS-modules given by N 7→ F⊗ N

and M 7→ HomG(L)(F,M), which are canonically quasi-inverses of each other.
(The composition of the two functors in any order is canonically isomorphic to
the identity functor.)

(iii) If F′ is another weight-1 G(L)-representation that is locally free of rank deg L ,
then there exists a unique (up to isomorphism) line bundle M on S such that

F′ = F⊗M.

(iv) EndG(L)(F)' OS canonically.

Proof. The first two assertions are contained in [Moret-Bailly 1985, V.2.4.2, V.2.4.3].
As for (iii), clearly (ii) implies that there is an OS-module M such that F′ =F⊗M.
As F′ and F are locally free of the same rank, it follows that M is locally free of
rank 1. Part (iv) is a consequence of (ii) since EndG(L)(F)' EndOS

(OS)' OS . �

For each 0 ≤ j ≤ g, note that R j f∗L is naturally a G(L)-representation of
weight 1 (which could be the zero sheaf) in the above sense. We will need the
following fundamental result on G(L)-representations:

Proposition 2.13. Assume that S is locally noetherian and that L has index i .

(i) R j f∗L = 0 unless j = i .

(ii) Ri f∗L is locally free, and (rankOS Ri f∗L)2 = rankOS K (L) = (deg L)2. In
particular, it satisfies the condition of Proposition 2.12.

(iii) (Ri f∗L)s ' H i (As, Ls) for each s ∈ S.
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Proof. When i = 0, (i) and (ii) were deduced in [Mumford et al. 1994, Chapter 0, §5]
from [Grothendieck 1963, III.7.7.5, III.7.7.10, III.7.8.4.]. The same results of
[Grothendieck 1963] imply (i) and (ii) for arbitrary i . Part (iii) amounts to the
assertion that φi (s) is an isomorphism as shown in the proof of Lemma 2.5. �

Remark 2.14. When S = Spec k for an algebraically closed field k, the results of
this subsection in this case were proved in the appendix of [Sekiguchi 1977]. (The
proof is attributed to Mumford; cf. [Mumford 1966, §1].) The sheaf Ri f∗L provides
us with a k-vector space H i (A, L) with an action of G(L). Proposition 2.13 says
that H i (A, L) is the unique (up to isomorphism) irreducible G(L)-representation
of weight 1. When S = Spec C, Proposition 2.12 implies the classical Stone von–
Neumann theorem for finite Heisenberg groups on C-vector spaces.

2D. Matrix coefficient map. Let F be as in Proposition 2.12. Then

F∨ = HomOS
(F,OS)

is a G(L)-representation of weight −1 via

(γ · v∨)(v)= v∨(γ−1
· v), γ ∈ G(L), v ∈ F, v∨ ∈ F∨. (2-2)

Equip HomGm
(G(L),OS) with a structure of G(L)×G(L)-representation via

((γ1, γ2)·φ)(γ )=φ(γ
−1
2 γ γ1), γ1, γ2, γ ∈G(L), φ ∈HomGm

(G(L),OS). (2-3)

Lemma 2.15. The map sending v⊗ v∨ to γ 7→ v∨(γ v) yields an isomorphism of
G(L)×G(L)-representations

F⊗F∨ ∼→ HomGm
(G(L),OS).

Proof. See [Moret-Bailly 1985, Theorem V.2.4.2(i)]. �

3. Adelic and p-adic Heisenberg groups

In this section we consider not only a single abelian scheme A but also coverings
of A simultaneously in order to obtain a theory of p-adic and adelic Heisenberg
groups. Although it would be natural to deal with a tower of abelian schemes in the
sense of Mumford [1967b, §7], which involves all isogenies to A, we have chosen
to work with only multiplication-by-n maps (n ∈ Z>0) in favor of simplicity and
concreteness. (If one wishes to make the analogue of Mumford’s polarized tower of
abelian schemes in our context, one may relax the ampleness condition and allow
line bundles to be nondegenerate.)

Keep the notation from the previous section. In particular, L is a nondegenerate
line bundle over A. We do not assume that L is symmetric until Section 3E. No
condition (such as being locally noetherian) is imposed on S in Section 3.
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3A. Construction of T and V. This subsection is about a general construction.
Let X be a commutative group scheme over S. For each n ∈ Z>0, let n : X → X
denote the multiplication-by-n map by a slight abuse of notation. Assume that

for every n ≥ 1, the map n is finite and flat. (∗)

Set X [n] := ker n, which is a finite flat group scheme, and

T X := lim
←−n

X [n]

with respect to m : X [mn] → X [n] for each m, n ≥ 1. Since the latter maps are
finite (thus affine) S-morphisms, [Grothendieck 1964, IV.8.2.3] implies that the
limit T X exists in the category of S-group schemes. The underlying structure ring
is T X = Spec(lim

−→
OX [n]), and as a group functor

T X (T )= { (xr )r≥1 | xr ∈ X [r ](T ), r xrs = xs, if r, s ≥ 1 }.

Define an ind-group scheme
V X := lim

−→
T X

with respect to m : T X→ T X (from the n-th copy of T X to the mn-th copy for all
m, n ≥ 1). As a group functor, for each S-scheme T ,

V X (T )= { (xr )r≥1 | xr ∈ X (T ), N x1 = 0 for some N ≥ 1, r xrs = xs, ∀r, s ≥ 1 }.
(3-1)

By a variant of Yoneda’s lemma, V X is determined as an ind group scheme by
the above description as a group functor. By allowing m and n to run over powers
of a prime p, we can similarly define Tp and Vp. Note that there is a canonical
isomorphism T X '

∏
pTp X , functorial in X .

There is a canonical action of Ẑ on T X coming from the compatible canonical
actions of Z/rZ on X [r ] for r ≥ 1. The Ẑ-action on T X patches to an action of
A∞ = lim

−→n
1
n Ẑ on V X . Similarly Zp and Qp act on Tp X and Vp X , respectively.

The construction of T X , V X , Tp X and Vp X is functorial in X and carries over
to commutative flat ind-group schemes X satisfying (∗) above. For instance, Tp X
and Vp X make sense for p-divisible groups X over S.

Example 3.1. There exist natural isomorphisms T Gm ' Tµ∞, T (Q/Z) ' Ẑ,
Tp(Qp/Zp)' Zp and TpGm ' Tpµp∞ .

Example 3.2. We have Tpµp∞ = Spec(lim
−→

OS[T ]/(T pn
−1)) with transition maps

f (T ) 7→ f (T p).

Example 3.3. If X has bounded torsion (there exists n≥ 1 such that X [n] = X [mn]
for all m ≥ 1), then T X , V X , Tp X and Vp X are all trivial group schemes.
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An important case is when X is an abelian scheme. An isogeny of abelian scheme
α : A′→ A is said to be bounded if kerα ⊂ A[n] for some n ≥ 1. (This condition
is automatic if S has finitely many connected components because the fiberwise
rank of kerα is locally constant on S but not in general; suppose that S =

∐
j≥1 S j

and that for each j , S j 6=∅ and α is the multiplication by j on A×S S j . Then α is
not bounded.) A map of ind-group schemes β : VA′→ VA is said to be bounded
if mTA⊂ β(nTA′)⊂ TA for some m, n ≥ 1. The same notion is defined for a map
Vp6

′
→ Vp6, where 6′ and 6 are p-divisible groups over S.

Lemma 3.4. Let α : A′→ A be a bounded isogeny of abelian schemes. The induced
map V (α) : VA′→ VA sending (xr )r≥1 to (α(xr ))r≥1 is a bounded isomorphism.

Proof. We remark that the boundedness of α is needed to ensure that V (α) is an
invertible map. Also note that if kerα ⊂ A′[m], then mTA⊂ V (α)(TA′)⊂ TA. �

Remark 3.5. In the geometric theory of theta functions à la Mumford, one reason
why VA naturally shows up is that an (ample) line bundle over A can be trivialized
over VA. In this regard, VA is the analogue of the universal covering spaces for com-
plex abelian varieties. Unsurprisingly, we will see VA appearing in the construction
of adelic Heisenberg groups and Weil representations.

Lemma 3.6. The scheme TA is flat over S and defines an fppf sheaf in groups on
(Flat/S). The ind-scheme VA also defines an fppf sheaf in groups on (Flat/S). The
same is true for Tp A and Vp A.

Proof. Let us show that TA is flat over S. We may assume that S is affine. Let
S = Spec C and A[n] = Spec Bn for n ≥ 1. As m : A[mn]→ A[n] is surjective, we
see that m∗ : Bn → Bmn is injective. Since Bn is a flat C-algebra, lim

−→
Bn is also

one. Hence, the assertion about TA follows. The fppf sheaf axiom for VA is easily
deduced from that for TA. The case of Tp A and Vp A is proved in the same way. �

Consider a category of p-divisible groups over S in which morphisms are bounded
isogenies, and then obtain a new category by inverting bounded isogenies. When 6
is a p-divisible group over S, let Aut0,bS (6) denote the automorphism group functor
on (Sch/S) arising from the latter category. Let AutbS(Vp6) be the group functor
on (Sch/S) assigning bounded automorphisms. Define a map

ξ : Aut0,bS (6)→ AutbS(Vp6)

by α 7→ ((x pr )r≥0 7→ (α(x pr ))r≥0), where x1 ∈6 and x pr = px pr+1 .

Lemma 3.7. The above map ξ is an isomorphism.

Proof. It suffices to present the inverse map ξ−1 of ξ . Let α ∈ AutbS(Vp6) so that
pm Tp6 ⊂ pnα(Tp6) ⊂ Tp6 for some m ≥ n ≥ 0. For each r ≥ 0, pnα maps
(1/pr )Tp6 to itself, thus inducing a map 6[pr

] → 6[pr
] by taking quotients
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by Tp6. By patching these maps, we obtain a map α′ :6→6 such that kerα′ is
killed by pm ; hence, α′ is bounded. Then we define ξ−1(α)= p−nα′. It is routine
to verify that ξ−1 is indeed the inverse map of ξ . �

3B. Construction of adelic and p-adic Heisenberg groups. Let Ã be the S-group
scheme equipped with u : Ã → A, which is the inverse limit of the coverings
n : A→ A for all integers n ≥ 1 (cf. [Mumford 2007, 4.27]). The limit Ã exists as
a group scheme because the maps n are affine, again due to [Grothendieck 1964,
IV.8.2.3]. We have that TA = ker u in the notation of Section 3A. Set 1

n TA :=
u−1(A[n])= ker(nu). (We interpret u−1(A[n]) as Ã×u,A A[n].)

Lemma 3.8. For each n ∈ Z>0, K (n∗L) ' A×n2,A K (L) canonically. In other
words,

K (n∗L)(T )= { x ∈ A(T ) | n2x ∈ K (L)(T ) }.

Proof. Set LT := L × T . For x ∈ A(T ),

T ∗x n∗LT ⊗ (n∗LT )
−1
' n∗(Tnx LT ⊗ L−1

T )' T ∗n2x LT ⊗ L−1
T ,

where the second isomorphism results from the theorem of the square. Therefore,
x ∈ K (n∗L)(T ) if and only if n2x ∈ K (L)(T ). �

Set T (A, L) := u−1(K (L)) and 1
n T (A, L) := (nu)−1(K (L)). There are canoni-

cal identifications (as schemes over A)

1
n

TA' lim
←−m≥1

A[mn] and T (A, L)' lim
←−m≥1

K (m∗L).

We have a natural projection u : 1
n TA→ A[n]. For m, n ∈ Z>0, m : A→ A induces

1
mn TA ∼

→
1
n TA. Its inverse map is denoted by 1

m :
1
n TA ∼
→

1
mn TA. Similarly, there are

natural maps

1
n2 T (A, L)= T (A, n∗L)� K (n∗L) and 1

m
:

1
n

T (A, L) ∼→ 1
mn

T (A, L).

A concrete description of T (A, L) is that for each S-scheme T ,

T (A, L)(T )= { (xr )r≥1 | xr ∈ A(T ), x1 ∈ K (L)(T ), xr = sxrs, ∀r, s ≥ 1 }.

The ind-group scheme VA (Section 3A) is canonically identified with the ind-scheme
arising from { 1n TA}n≥1 with the inclusions 1

n TA ↪→ 1
mn TA for m, n ≥ 1 as can be

seen by the commutative diagram

· · · // TA
m // TA // · · ·

· · · // 1
n TA � � //

n ∼

OO

1
mn TA

mn ∼

OO

// · · ·
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There are natural inclusions 1
n TA ↪→ VA and 1

n T (A, L) ↪→ VA for each n ≥ 1.
Set G̃(n∗L) := G(n∗L)×K (n∗L)

1
n2 T (A, L). We will denote by jn the canonical

projection G̃(n∗L)→ 1
n2 T (A, L). The next lemma will endow us with an inclusion

later. (See (3-4).)

Lemma 3.9. Let T be an S-scheme, x ′ ∈ A(T ) and (ψ, x) ∈ G(n∗L)(T ). Suppose
that x = mx ′. Then there exists a unique ψ ′ : (mn)∗L ∼

→ (mn)∗L such that
(ψ ′, x ′) ∈ G((mn)∗L)(T ) and

(mn)∗L
ψ ′

∼
//

��

(mn)∗L

��
n∗L

ψ

∼
// n∗L

(3-2)

commutes, where the vertical maps are the projection maps (as (mn)∗L is the fiber
product of n∗L with A over m : A→ A).

Proof. Without loss of generality, we may assume that n = 1. The uniqueness
is easy. If (ψ ′, x ′), (ψ ′′, x ′) ∈ G(m∗L)(T ) have the property as above, then the
difference (ψ ′′(ψ ′)−1, 0) is in the image of some t ∈ Gm(T ) under Gm → G(L).
This means that (3-2) remains commutative after multiplying t to the top arrow.
This implies that t = 1 and ψ ′ = ψ ′′.

Let us verify the existence of ψ ′. The fact that (ψ, x) ∈ G(L)(T ) induces an
isomorphism ξ : L ∼

→ T ∗x L making the top triangle in the left diagram commute. In
the following two diagrams, the rectangles are cartesian squares. (We are abusing
the notation to use A and L to denote A×S T and L ×S T .)

L ψ

∼

��

ξ

∼ !!
T ∗x L

��

∼ // L

��
A

∼

Tx

// A

m∗L ψ ′

∼

##

m∗ξ

∼ $$
T ∗x ′m

∗L

��

∼ // m∗L

��
A

∼

Tx

// A

Then m∗L
m∗ξ
' m∗T ∗x L ' T ∗x ′m

∗L . (The latter holds because m ◦ Tx ′ = Tx ◦m.) Let
ψ ′ ∈ Aut(m∗L)(T ) be the latter map composed with T ∗x ′m

∗L ' m∗L in the above
diagram. Then (ψ ′, x ′) ∈ G(m∗L)(T ), so (3-2) commutes up to an automorphism
of L fixing L → A. Such an automorphism is a multiplication by s ∈ O×T . The
commutativity of (3-2) is achieved by multiplying t to ψ ′. �

Remark 3.10. (This remark is to be recalled in the proof of Lemma 4.5.) By
associating ψ ′ to x ′ ∈ A[m](T ) with x = 0 and ψ = id in Lemma 3.9, we can define
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an action of A[m] on (mn)∗L . This action is the same as the A[m]-action induced
on (mn)∗L via Proposition 4.1 (by taking G = A[m] and ξ to be n : A→ A). This
can be seen from the fact that the quotient of (mn)∗L with respect to the former
A[m]-action is n∗L , as shown in the proof of Lemma 3.15.

Corollary 3.11. For each S-scheme T , the set G̃(n∗L)(T ) may be described as the
set of (ψr , xr )r≥1 such that

(i) (ψr , xr ) ∈ G((rn)∗L)(T ) for all r ≥ 1,

(ii) xr = sxrs for all r, s ≥ 1 and

(iii) the following diagram commutes for all r, s ≥ 1:

(rsn)∗L
ψrs //

��

(rsn)∗L

��
rn∗L

ψr // rn∗L

Proof. The set of (ψr , xr )r≥1 in the corollary will be temporarily called G̃0(n∗L)(T ).
As G̃(n∗L) = G(n∗L)×K (n∗L)

1
n2 T (A, L), we see that G̃(n∗L)(T ) consists of ψ1

and (xr )r≥1 such that (ψ1, x1) ∈ G(n∗L)(T ) and xr = sxrs for all r, s ≥ 1.
There is an obvious map

G̃0(n∗L)(T )→ G̃(n∗L)(T ) (3-3)

forgetting ψr for r ≥ 2. By Lemma 3.9, for a choice of ψ1 and (xr )r≥1, there exists
a sequence (ψr )r≥2 satisfying (iii) of the corollary, and such a sequence is unique.
Therefore, (3-3) is a bijection. �

Henceforth, G̃(n∗L) is viewed as the S-group scheme whose associated group
functor is described as in Corollary 3.11. It is flat over S and defines an fppf sheaf
on S by essentially the same argument as in the proof of Lemma 3.6. Thanks to
Lemma 3.9, we have a map of group schemes

in,mn : G̃(n∗L)→ G̃((mn)∗L) (3-4)

sending ((ψr , xr )r≥1) 7→ ((ψ ′r , x ′r )r≥1) on T -valued points, where x ′r = xrm and
ψ ′r = ψrm .

Lemma 3.12. The following diagram commutes, and its rows are fppf exact:

1 // Gm //

id

��

G̃(n∗L)
jn //

in,mn

��

1
n2 T (A, L) //

1/m
��

1

1 // Gm // G̃((mn)∗L)
jmn // 1

(mn)2 T (A, L) // 1
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Proof. Everything is obvious except perhaps the surjectivity. The map jn is fppf
surjective as it is a base change of the fppf surjective map G(n∗L)→ K (n∗L)
(cf. Section 2B). Similarly, jmn is fppf surjective. �

Let us define an ind-group scheme via in,mn:

Ĝ(L) := lim
−→n

G̃(n∗L).

Under the limit, the maps njn : G̃(n∗L)→ 1
n T (A, L) induce a map ĵ : Ĝ(L)→ VA.

The fact that G̃(n∗L) are fppf sheaves shows that Ĝ(L) is also one. We have a
commutative diagram where rows are fppf exact sequences:

1 // Gm //

id
��

G̃(n∗L)
njn //

��

1
n T (A, L) //

natural
��

1

1 // Gm // Ĝ(L)
ĵ // VA // 1

(3-5)

Lemma 3.13. Let A′ be an abelian scheme over S and α : A′ → A a bounded
isogeny. Then α induces an isomorphism Ĝ(α) : Ĝ(α∗L)→ Ĝ(L) fitting in the
commutative diagram below:

1 // Gm //

id
��

Ĝ(α∗L) //

Ĝ(α)∼

��

VA′ //

∼ V (α)
��

1

1 // Gm // Ĝ(L) // VA // 1

Proof. The map Ĝ(α) comes from the maps G̃(α∗n∗L)→ G̃(n∗L) for n ≥ 1, which
are constructed as (ψ, xr )r≥1 7→ (φ, α(xr ))r≥1. Here φ : L ∼

→ L is obtained from
G̃(α∗n∗L) by taking the quotient of the diagram below by the action of kerα:

α∗n∗L
ψ

∼
//

��

α∗n∗L

��
A

Tx1

∼
// A

It is straightforward to verify that Ĝ(α) is compatible with the maps id and V (α)
and thus an isomorphism. �

Now let L ′ be a line bundle over A′ such that L ′ ' α∗L . This induces an
isomorphism Ĝ(L ′) ' Ĝ(α∗L). It is easy to check that the latter isomorphism is
independent of the choice of the isomorphism L ′ ' α∗L . By composing with Ĝ(α),
we obtain an isomorphism Ĝ(L ′)' Ĝ(L).
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Lemma 3.14. Let A, A′, α, L and L ′ be as above. The isomorphism Ĝ(L ′)' Ĝ(L)
fits into the following commutative diagram:

1 // Gm //

id
��

Ĝ(L ′) //

∼

��

VA′ //

∼

��

1

1 // Gm // Ĝ(L) // VA // 1

Proof. In view of Lemma 3.13, it is enough to note the obvious commutativity:

Gm //

id
��

Ĝ(L ′) //

∼

��

VA′

id
��

Gm // Ĝ(α∗L) // VA′ �

3C. The map σ̂ . Define σ1 : TA→ G(L) by (xr )r≥1 7→ (id, x1) and

σ̃1 : TA→ G̃(L)= G(L)×K (L) T (A, L)

by σ1 and the natural inclusion TA ↪→ T (A, L). For n> 1, set σ̃n := i1,n◦σ̃1. Further
composing with the projection G̃(n∗L)→ G(n∗L), we obtain σn : TA→ G(n∗L).
By construction, σ̃ns are compatible with the inclusions in,mn for m, n ≥ 1 and thus
yield a map σ̂ : TA→ Ĝ(L). Note that σ̃n , σn (n ≥ 1) and σ̂ are morphisms of
(ind-)group schemes and that Gm ∩ σ̂ (nTA)= {1} in Ĝ(L) for every n ≥ 1.

Lemma 3.15 [Mumford 2007, Proposition 4.13].

(i) NĜ(L)(σ̂ (nTA))= ZĜ(L)(σ̂ (nTA)).

(ii) ZĜ(L)(σ̂ (nTA))' G̃(n∗L) canonically.

(iii) There is an isomorphism NĜ(σ̂ (nTA))/σ̂ (nTA) ∼→ G(n∗L) induced by the
canonical maps

NĜ(L)(σ̂ (nTA))' G̃(n∗L)� G(n∗L).

Proof. As usual, we implicitly work on T -points for some S-scheme T . Let
X = (φr , xr )r≥1 ∈ NĜ(L)(σ̂ (nTA)) and Y = (ψr , yr )r≥1 ∈ σ̂ (nTA). Part (i) follows
from the fact that

XY X−1Y−1
∈ Gm ∩ σ̂ (nTA)= {1}.

Let us prove (ii). For some m ≥ 1, (φ′r , x ′r )r≥1 ∈ G̃((mn)∗L) may represent
an element of Ĝ(L). It suffices to show that if (φ′r , x ′r )r≥1 centralizes σ̂ (nTA),
then (φ′r , x ′r )r≥1 = in,mn((φr , xr )r≥1) for some (φr , xr )r≥1 ∈ G̃(n∗L). Consider the
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commutative diagram

(rmn)∗L
φ′r //

��

(rmn)∗L

��
A

Tx ′r // A

(3-6)

The image of σ̂ (nTA) in G̃((mn)∗L) is none other than σ̃mn(nTA), which consists of
(ψr , yr )r≥1 such that yr ∈ A[rm]. Recall that A[m] acts on (rmn)∗L as explained
at the beginning of Remark 3.10. Let us verify that the whole diagram (3-6) is A[m]-
equivariant. (In fact it is even A[rm]-equivariant.) Since (φ′r , x ′r )r≥1 commutes
with elements of σ̃mn(nTA), the top arrow in the diagram is A[m]-equivariant. The
vertical maps are A[m]-equivariant by [Mumford 2007, Lemma 4.11]. The same
fact is obvious for the bottom map. By taking quotients of (3-6) by A[m], we
obtain φr such that the following commutes:

(rn)∗L
φr //

��

(rn)∗L

��
A

Tmx ′r // A

By Lemma 3.9, (φ′r , x ′r )r≥1 = in,mn((φr ,mx ′r )r≥1). The proof of (ii) is complete.
For the proof of (iii), it is enough to note that the image of σ̂ (nTA) in G̃(n∗L)

consists of (φr , xr )r≥1 such that (φ1, x1) is the identity element. �

Lemma 3.16. Let (A, L) be as before, α : A′ → A be a bounded isogeny and
L ′= α∗L. Let σ̂ ′ : TA′→ Ĝ(L ′) denote the analogue of σ̂ constructed from (A′, L ′).
Then the following commutes:

TA′

α

��

σ̂ ′ // Ĝ(L ′)

Ĝ(α)∼

��
TA

σ̂ // Ĝ(L)

Proof. Let (xr )r≥1 ∈ TA′. Both Ĝ(α)◦ σ̂ ′ and σ̂ ◦α map (xr )r≥1 to (id, α((xr )r≥1))

in G̃(L). �

3D. The pairing êL . In analogy with eL in Section 2B, we obtain a bilinear com-
mutator pairing from the bottom row of (3-5),

êL
: VA×VA→ Gm,
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which is a morphism of ind-group schemes over S. On the other hand, the Z/nZ-
linear Weil pairings

eL ,Weil
n : A[n]× A[n] → µn ↪→ Gm

for n ≥ 1 are glued to an A∞-linear pairing (cf. Section 3A)

êL ,Weil
: VA×VA→ V Gm .

Concretely on the functors of points, the map is

((xn)n≥1, (yn)n≥1) 7→
(
eL ,Weil

N 2n (xNn, yNn)
)

n≥1,

where N ≥ 1 is such that x1, y1 ∈ A[N 2
]. The definition is independent of N . The

right side is an element of V Gm since eL ,Weil
N 2mn (xNmn, yNmn)

m
= eL ,Weil

N 2n (xNn, yNn) for
any m, n≥ 1. Let [ :V Gm→Gm be the map [((xr )r≥1)= x1 in the notation of (3-1).

Lemma 3.17. The pairing êL is nondegenerate, and êL
= [ ◦ êL ,Weil.

Proof. The nondegeneracy of êL is deduced from the nondegeneracy of en∗L for all
n ≥ 1 (Lemma 2.8). Indeed, if êL were degenerate, there would be an S-scheme T
and a nonzero section x ∈ 1

n T (A, L)(T ) such that êL(x, y)= 1 for any section y of
VA in a T -scheme. Choose a large enough m≥1 such that x /∈ σ̂ (mnTA). Then x has
nontrivial image x in 1

mn T (A, L)/σ̂ (mnTA)' K ((mn)∗L), but by the assumption,
x pairs trivially with any section of K ((mn)∗L) via e(mn)∗L . This contradicts the
nondegeneracy of e(mn)∗L .

Let us now prove the second assertion. Let (φ, x), (ψ, y) ∈ Ĝ(L), and write
x = (xn)n≥1, y = (yn)n≥1 ∈ VA. For any N ≥ 1 chosen as above,

[
(
êL ,Weil((xn)n≥1, (yn)n≥1)

)
= eL ,Weil

N 2n (xNn, yNn)= eL(xN , yN )
N 2
= eL(x1, y1).

(The second equality is standard. See Property (5) of [Mumford 1974, §23] for
instance.) Consider the following commutative diagram:

1 // Gm // G((N 2)∗L)
j // K ((N 2)∗L) // 1

1 // Gm

id

OO

//

id
��

G̃((N 2)∗L)

OOOO

jN2 //

��

T (A, (N 2)∗L) //

OOOO

N 2

��

1

1 // Gm // Ĝ(L)
ĵ // VA // 1

Let x ′ = (x ′n)n≥1 and y′ = (y′n)n≥1 be such that x ′n = xN 2n and y′n = yN 2n . Note that
x ′1, y′1 ∈ A[N 4

] ⊂ K ((N 2)∗L); thus, x ′, y′ ∈ T (A, (N 2)∗L). The commutativity of
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the diagram allows us to equalize the commutator pairing for each row. The second
assertion follows from

êL(x, y)= φψφ−1ψ−1
= e(N

2)∗L(x ′1, y′1)= eL(N x ′1, N y′1)= eL(x1, y1). �

3E. Symmetric line bundles and the map τ̂ . Our construction of τ̂ is based on
[Mumford 2007, §4] as well as Step V in Appendix I of that book. From here
on, assume that L is symmetric, i.e., (−1)∗L ' L . There is an isomorphism (e.g.,
appeal to Lemma 3.14 with A = A′, α =−1 and L ′ = L)

Ĝ((−1)∗L) ∼→ Ĝ(L) (3-7)

uniquely characterized as follows. If (φr , xr )r≥1 is mapped to (ψr ,−xr )r≥1, then
the diagram below commutes, where the vertical maps are induced by the pullback
along (−1) : A→ A:

(−1)∗L
ψr //

��

(−1)∗L

��
L

φr // L

A choice of an isomorphism I : L ' (−1)∗L induces Ĝ(L) ∼→ Ĝ((−1)∗L). By
composing with (3-7), we obtain an isomorphism

i L
: Ĝ(L) ∼→ Ĝ(L)

and can show that it is independent of the choice of I (cf. [Mumford 2007, Propo-
sition 4.16]). The situation may be understood through a commutative diagram:

1 // Gm //

id
��

Ĝ(L)
ĵ //

i L

��

VA //

−1
��

1

1 // Gm // Ĝ(L)
ĵ // VA // 1

(3-8)

For each n ≥ 1, clearly the map x 7→ xi L(x)−1 from G̃(n∗L) to G̃(n∗L) factors
as the composite of jn : G̃(n∗L)→ 1

n2 T (A, L) and hn :
1
n2 T (A, L)→ G̃(n∗L). We

construct τ̃2n as the composite

1
2n2 T (A, L)

1
2
→

1
(2n)2

T (A, L)
h2n
→ G̃((2n)∗L).

When n is odd, τ̃n :
1
n2 T (A, L)→ G̃(n∗L) is defined as

1
n2 T (A, L)

1
2
'

1
n2 T (A, L)

hn
→ G̃(n∗L).
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It is readily checked that τ̃n are compatible with in,mn for m, n ≥ 1 so that they glue
together to a map τ̂ : VA→ Ĝ(L). (Note that τ̃n and τ̃mn provide sections in the
diagram of Lemma 3.12.) By construction, τ̂ is a section of ĵ , namely

ĵ ◦ τ̂ = id. (3-9)

The map τ̂ enables us to identify Ĝ(L) with Gm ×VA equipped with a certain
group law that resembles the classical Heisenberg group law. To be precise, define
a group law on Gm ×VA by

(λ, x) · (µ, y)= (λµ · êL( 1
2 x, y), x + y). (3-10)

Lemma 3.18 [Mumford 2007, Proposition 4.18.B]. The map

Gm ×VA→ Ĝ(L), (λ, x) 7→ λ · τ̂ (x)

is an isomorphism of ind-group schemes over S.

Proof. The above map is readily seen to be an isomorphism of ind-schemes over S
from the row exactness of (3-8) together with (3-9). It remains to check the
homomorphism property. Set x̃ = τ̂ (x/2) and ỹ = τ̂ (y/2). Let λ,µ ∈ Gm . Then

λτ̂ (x)µτ̂ (y)= λµτ̂ (x) τ̂ (y)

= λµx̃ i L(x̃)−1 ỹi L(ỹ)−1

= λµx̃ i L(x̃)−1 ỹ(x̃ i L(x̃)−1 ỹ)−1 ỹ x̃ i L(x̃)−1i L(ỹ)−1

= λµêL( ĵ(x̃ i L(x̃)−1), ĵ(ỹ)
)

ỹ x̃ i L((ỹ x̃)−1)

= λµêL(x, y/2) τ̂ (x̃ + ỹ)= λµêL(x/2, y) τ̂ (x̃ + ỹ). �

It is natural to ask about the difference between σ̂ and τ̂ |TA, which are maps
from TA to Ĝ(L). Consider the map

eL
∗
:

1
2 TA→ Gm, eL

∗
(x)= σ̂ L(2x) τ̂ (2x)−1. (3-11)

Lemma 3.19. The map eL
∗

is a quadratic form factoring as

1
2 TA � A[2] → µ2 ↪→ Gm,

where 1
2 TA � A[2] and µ2 ↪→ Gm are canonical surjection and injection. In

particular, σ̂ and τ̂ coincide on 2 · TA. For all x, y ∈ 1
2 TA (viewed as T -valued

points for each S-scheme T ),

eL
∗
(x + y) eL

∗
(x)−1eL

∗
(y)−1

= eL(x, y)2.

Proof. The proof of [Mumford 2007, Proposition 4.18.C] is easily adapted to the
scheme-theoretic setting as in the proof of the last lemma. �
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Lemma 3.20. Consider (A′, L ′) and (A, L) with a bounded isogeny α : A′→ A
such that L ′ = α∗L. Suppose that L ′ and L are symmetric. Then the following
diagram commutes, where the row isomorphisms are as in Lemma 3.18:

Gm ×VA′
∼ //

∼ (id,V (α))
��

Ĝ(L ′)

∼ Ĝ(α)
��

Gm ×VA ∼ // Ĝ(L)

Proof. The proof is reduced to checking i L
◦ Ĝ(α)= Ĝ(α) ◦ i L ′ , which amounts to

the commutativity of the outer rectangle below:

Ĝ(L ′)
I1 //

Ĝ(α)
��

Ĝ((−1)∗L ′)
Ĝ(−1) //

Ĝ(α)
��

Ĝ(L ′)

Ĝ(α)
��

Ĝ(L)
I2 // Ĝ((−1)∗L)

Ĝ(−1) // Ĝ(L)

The maps I1 and I2 are induced by any choice of isomorphisms L ′ ' (−1)∗L ′

and L ' (−1)∗L (since such isomorphisms allow us to make the identifications
Aut(L ′/A)' Aut((−1)∗L ′/A) and Aut(L ′/A)' Aut((−1)∗L ′/A) ), and they are
easily seen to be independent of the choice. The right half commutes because
Ĝ(α)Ĝ(−1)= Ĝ(−1)Ĝ(α)= Ĝ(−α). In order to verify that the left half commutes,
one reduces to the situation where Ĝ, L ′ and L are replaced with G̃, n∗L ′ and n∗L ,
respectively. Then by using the description of Corollary 3.11, one checks that

(ψr , xr )r≥1
I1 //

Ĝ(α)
��

(ψr , xr )r≥1

Ĝ(α)
��

(ψr , α(xr ))r≥1
I2 // (ψr , α(xr ))r≥1

where ψr is the induced automorphism of L→ A obtained from taking quotient
by kerα of ψr . (The latter is an automorphism of L ′→ A′.) �

3F. p-adic Heisenberg groups. It is easy to adapt the construction of this section
to obtain p-adic analogues. There are obvious definitions of 1

pn Tp(A, L) and
G̃p((pn)∗L). In order that Tp(A, L) be contained in Vp A, we need to assume that
deg L is a power of p (including deg L = 1) or equivalently that K (L) is a p-group.
Then we have 1

pn Tp(A, L) ↪→ Vp A for all n ≥ 1. Define

Ĝp(L) := lim
−→n

G̃p((pn)∗L).
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There is a commutative diagram similar to (3-5):

1 // Gm //

id
��

G̃p((pn)∗L)
pn jpn

//

��

1
pn T (A, L) //

natural
��

1

1 // Gm // Ĝp(L)
ĵp // Vp A // 1

The commutator pairing yields êL
p : Vp A × Vp A → Gm . A group morphism

σ̂p : Tp A→ Ĝp(L) is constructed as before. Now suppose that L is symmetric.
Then there is a map τ̂p : Vp A → Ĝp(L) (which is not compatible with group
structure) such that ĵp ◦ τ̂p = id. If p 6= 2, then σ̂ L

p = τ̂p|Tp A and eL
p,∗ ≡ 1. If

p = 2, the map eL
2,∗ :

1
2 T2 A→ Gm sending x to σ̂ L

2 (2x) τ̂2(2x)−1 factors through
1
2 T2 A � A[2] → µ2 ↪→ Gm and satisfies the same formula as in Lemma 3.19.
Using τ̂p we get an isomorphism Gm × Vp A ∼

→ Ĝp(L) (for any p including p = 2)
if the group law on the left-hand side is as in (3-10).

4. Adelic and p-adic Heisenberg representations

As before, A is an abelian scheme over S, and L is a nondegenerate line bundle
over A. Throughout Section 4, S is locally noetherian, but L is not assumed to be
symmetric except briefly at the end of Section 4D.

4A. Some preliminaries on group actions. The following general notation will
be used in Section 4A:

• G is a finite flat group scheme over S (not necessarily étale), and

• α : X→ S is an S-scheme of finite type equipped with a strictly free G-action
(i.e., G ×S X → X ×S X via (g, x) 7→ (gx, x) is a closed immersion) such
that every orbit is contained in an affine open set.

Then a general theorem of Grothendieck (cf. [Tate 1997, Theorem 3.4]) ensures
that the quotient Y := X/G, along with β : Y → S and ξ : X → Y , exists in the
category of S-schemes. (This is a universal geometric quotient and an fppf quotient.
See [van der Geer and Moonen ≥ 2012, Theorem 4.16, Theorem 4.35] for details.)

Proposition 4.1. Let F′ and F be a coherent OX -module and a coherent OY -module,
respectively. The canonical maps F → (ξ∗ξ

∗F)G and ξ∗(ξ∗(F′)G) → F′ are
isomorphisms. (The maps are given by the fact that ξ∗ is the left adjoint of ξ∗.)
The map F 7→ ξ∗F induces an equivalence of the category of coherent OY -modules
(resp. locally free OY -modules of finite rank) with the category of coherent OX -
modules with G-action (resp. locally free OY -modules of finite rank with G-action).

Proof. The statement and proof of [Mumford 1974, §12 Theorem 1] can be adapted
to the relative setting over S. �



1744 Sug Woo Shin

Lemma 4.2. The category of G-representations on OS-modules has enough injec-
tives.

Proof. Let F be a G-representation on an OS-module. Since the category of
OS-modules has enough injectives, there exists an injective OS-module I with
i :F ↪→ I. The OS-module Ĩ :=HomOS

(G,I) is an injective object in the category
of G-representations on OS-modules since, by the injectivity of I, the functor

M 7→ HomG(M,HomOS
(G,I))' HomOS

(M,I)

is exact. (The latter isomorphism is given by φ 7→ (m 7→ φ(m)(e)), where e is the
identity of G.) The isomorphism for M= F yields HomG(F, Ĩ)' HomOS

(F,I),
and the map ĩ : F→ Ĩ corresponding to i is an injection. �

There is a functor V 7→ VG from the category of G-representations on OS-
modules to the category of OS-modules. (By [Moret-Bailly 1985, V.1.2], VG is an
OS-module.) For i ≥ 0, let Hi (G,V) denote the i th right derived functor of the left
exact functor V 7→ VG .

Lemma 4.3. There is a spectral sequence E i, j
2 =Hi (G, R jα∗(ξ

∗F))⇒ Ri+ jβ∗F.

Proof. Let Rep(G) denote the category of G-representations on OS-modules. Con-
sider the left exact functors QCohY → Rep(G) and Rep(G)→ QCohS given by
F 7→ α∗(ξ

∗F) and V 7→ VG , respectively. Note that

α∗(ξ
∗F)G = β∗F. (4-1)

The desired spectral sequence is none other than the Grothendieck spectral sequence.
We only need to show that the functor F 7→ α∗(ξ

∗F) carries injective objects to
acyclic objects.

Set GY := G×S Y . Note that α∗(ξ∗F)= β∗ξ∗ξ∗F, ξ∗ξ∗F' HomOS
(G,F) and

β∗HomOS
(G,F)' HomOS

(G, β∗F).

For any OS-module F′, HomOS
(G,F′) is acyclic for taking G-invariants, so the

proof is complete. (The argument is the same as the one showing the acyclicity of
induced modules in group cohomology. Indeed, if F′→I• is an injective resolution
in OS-modules, then HomOS

(G,F′)→ HomOS
(G,I•) is an injective resolution in

Rep(G). When G-invariants are taken, the latter resolution becomes F′ → I•,
which is exact.) �

Corollary 4.4. Suppose that R jα∗(ξ
∗F)= R jβ∗F= 0 for an integer q ≥ 0 unless

j = q. Then the canonical morphism Rqβ∗F→ (Rqα∗(ξ
∗F))G (cf. Equation (4-1))

is an isomorphism.

Proof. The spectral sequence of Lemma 4.3 degenerates at E2 by the assumption
and induces the desired isomorphism. �
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4B. Construction of adelic Heisenberg representations. Temporarily, we make
an assumption that L is nondegenerate of index i for some i ≥ 0. (This will be
removed at the end of this subsection.) Set

V(n)(L) := Ri f∗(n∗L).

Note that G̃(n∗L) acts on V(n)(L) through its projection onto G(n∗L), whose action
was discussed in Section 2C. For m, n ∈ Z>0, there is a natural map functorial in L

f∗n∗L→ f∗m∗m∗(n∗L)' f∗(mn)∗L

induced by the adjunction map n∗L→ m∗m∗(n∗L). It works similarly with higher
direct image of f (since m∗ is exact). Let νn,mn : V(n)(L)→ V(mn)(L) be the
functorial map Ri f∗(n∗L)→ Ri f∗((mn)∗L). Clearly νmn,mnkνn,mn=νn,mnk for any
m, n, k ∈ Z>0 as both sides are the functorial map with respect to (mnk)∗L→ n∗L
covering mk : A→ A. Also, νn,mn is compatible with in,mn : G̃(n∗L) ↪→ G̃((mn)∗L);
namely, for all γ ∈ G̃(n∗L) and v∈V(n)(L), we have in,mn(γ )·νn,mn(v)=νn,mn(γ ·v).
Indeed, this results from the commutativity of

(mn)∗L
in,mn(γ ) //

��

(mn)∗L

��
n∗L

γ // n∗L

where γ and in,mn(γ ) act through their respective images in G(n∗L) and G((mn)∗L).

Lemma 4.5. As OS-modules, for all m, n ≥ 1,

V(n)(L)' (V(mn)(L))A[m]
= (V(mn)(L))σ̃mn(nTA),

where the first isomorphism is induced by νn,mn .

Proof. Take α = β = f , ξ = m, F= n∗L and q = i in Corollary 4.4 to obtain the
first isomorphism

V(n)(L)' (V(mn)(L))A[m]. (4-2)

We claim that
(V(mn)(L))A[m]

= (V(mn)(L))σ̃mn(nTA). (4-3)

On the right-hand side, G̃((mn)∗L) acts through G((mn)∗L). The action of the
subgroup scheme σ̃mn(nTA) of G̃((mn)∗L) factors through

σ̃mn(nTA)/σ̃mn(mnTA)' A[m].

In view of Corollary 3.11, the latter A[m]-action (on the right-hand side of (4-3))
is described as follows: x ′ ∈ A[m] acts on (mn)∗L via ψ ′, which is obtained from
Lemma 3.9 by taking x=0 andψ= id, and this induces the action of x ′ on V(mn)(L).
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The claim (4-3) follows from the fact that this A[m]-action is the same as the one
used in Corollary 4.4 and thus used in (4-2). (See Remark 3.10.) �

Using the fact that νn,mn are compatible with in,mn as explained above, we obtain

V̂(L) := lim
−→n

V(n)(L)

as a Ĝ(L)-representation, where νn,mn are transition maps. The OS-module V̂(L)
carries a weight-1 action by Ĝ(L). Its properties will be investigated in Section 4C.

Remark 4.6. A more concise definition of V̂(L) would be Ri f∗(u∗L). (We defined
u in Section 3B.) It is useful to view Ĝ(L) as a compatible system of G̃(n∗L)-actions
on V(n)(L) as this allows us to derive properties of V̂(L) from those of V(n)(L).

Now we drop the assumption that the index of L is constant over S. Let g be
the relative dimension of A over S. Since the index function s 7→ Ls is locally
constant, we can decompose S =

∐g
i=0 Si into open and closed subschemes such

that the index function is constantly i on each Si . The previous paragraphs construct
V(n)(L), V̂(L) and so on over each Si ; thereby, we obtain them over S.

4C. Basic properties. Just like at the end of the last subsection, we no longer
assume that L has fixed index over S.

Definition 4.7. A Ĝ(L)-representation F on an OS-module is admissible if Fσ̂ (n·TA)

is a coherent OS-module for every n ≥ 1. (We always have that Fσ̂ (nTA) is an
OS-submodule of F.)

Definition 4.8. A Ĝ(L)-representation F is smooth if

F=
⋃

n≥1
Fσ̂ (n·TA).

A useful observation is that Fσ̂ (n·TA) is a module over NĜ(σ̂ (nTA))/σ̂ (nTA)'
G(n∗L), cf. Lemma 3.15. This will be exploited several times.

Remark 4.9. If L is a symmetric line bundle so that τ̂ is available, an equivalent
criterion for smoothness is that F =

⋃
n≥1 Fτ̂ (n·TA). The obvious reason is that

σ̂ = τ̂ on 2TA.

Remark 4.10. It is not inconceivable that any weight-1 Ĝ(L)-representation is
smooth, but we have not checked this.

Lemma 4.11. Suppose that L is nondegenerate of index i . Then

(i) V̂(L)σ̂ (nTA)
= V(n)(L), and

(ii) the Ĝ(L)-representation V̂(L) is admissible and smooth.
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Proof. Clearly (i) implies (ii). Part (i) is obtained from Lemma 4.5 by taking limit
over m. Note that this works even if ind(L) is not constant on S, cf. the end of
Section 4B. �

We give a tentative definition of a (finite) adelic Heisenberg representation.
Perhaps a more satisfactory definition is (ii) of Proposition 4.19 below.

Definition 4.12. An adelic Heisenberg representation H of Ĝ(L) is a smooth Ĝ(L)-
representation of weight 1 such that Hσ̂ (nTA) is a locally free OS-module of rank
n2g
· deg L for all n ≥ 1.

Lemma 4.13. An adelic Heisenberg representation H of Ĝ(L) is a locally free
OS-module3 and irreducible. (The notion of irreducibility is as in Definition 2.11.)

Proof. Let H′ ⊂H be a smooth Ĝ(L)-subrepresentation, so (H′)σ̂ (nTA)
⊂Hσ̂ (nTA) is

a G̃(n∗L)- and G(n∗L)-subrepresentation. By Proposition 2.12(i), there is an ideal
sheaf In of OS such that

(H′)σ̂ (nTA)
= In ·H

σ̂ (nTA). (4-4)

By taking σ̂ (TA)-invariants, where σ̂ (TA) acts through its image in G̃(n∗L), we get

(H′)σ̂ (TA)
= In ·H

σ̂ (TA).

Since Hσ̂ (TA) is locally free, the comparison with (4-4) for n= 1 shows that In =I1

for all n ≥ 1. Hence, H′ =H⊗I1. The local freeness of H follows from the fact
that

Hs = lim
−→n

(Hσ̂ (n!TA))s

is free over OS,s , as it is an increasing union of finite free modules. (Since each
transition map has a section, a basis can be written down easily.) �

Corollary 4.14. The Ĝ(L)-representation V̂(L) is an adelic Heisenberg represen-
tation of Ĝ(L) in the sense of Definition 4.12.

Proof. This follows from Proposition 2.13(ii) and Lemmas 4.11 and 4.13. �

Theorem 4.15. Let H be a Heisenberg representation of Ĝ(L). Then there is an
equivalence of categories

Rep1
sm(Ĝ(L))

∼
→ QCohS

given by M 7→ HomĜ(L)(H,M) and N 7→H⊗N, which are quasi-inverses of each
other.

3Note that we are dealing with an OS-module, which is typically of infinite rank. We consider an OS-
module H locally free if the Zariski localization Hs is a free OS,s -module for all s ∈ S. This does not
automatically imply that H|U is a free OU -module in some open neighborhood U of s for a given s ∈ S.
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Proof. To simplify notation, let us write V̂ for V̂(L). Suppose that the proposition
is known for H = V̂. Then it implies that any Heisenberg representation H′ is
isomorphic to V̂⊗F for an OS-module F. Since the σ̂ (TA)-invariants in H′ and V̂

are locally free of the same rank, we see that F is an invertible OS-module. By
using this, the proposition for H′ is easily deduced from the case for V̂.

Consider the case H= V̂. We will show that the natural map

V̂⊗HomĜ(L)(V̂,M)→M (4-5)

sending v ⊗ f to f (v), which is clearly functorial in M, is an isomorphism
in Rep1

sm(Ĝ(L)). Once this is shown, the same argument as on page 113 of [Moret-
Bailly 1985] proves that N→ HomĜ(L)(V̂, V̂⊗N) is a functorial isomorphism
in QCohS , and we will be done. As a preparation, let us consider the functors

OS−mod
F2

((

F1 // Rep1
sm(G(n

∗L))
G1

oo

Rep1
sm(G((mn)∗L))

G2

hh
F3

55

where F1, F2, G1 and G2 are the functors in Proposition 2.12(ii), which give
equivalences of categories, and F3 is given by the rule F3(M0) = MA[m]

0 . Then
F3 ◦F2 ' F1 canonically. Indeed, in view of Lemma 4.11(i),

F1(M0)=M0⊗V(n)
' (M0⊗V(mn))A[m]

= F3(F2(M0)).

Now let M ∈ Rep1
sm(Ĝ(L)), and set M(n)

:= Mσ̂ (nTA) for n ≥ 1. It is implied
by F3 ◦F2 ' F1 that canonically

G1F3(F2G2)' (G1F1)G2.

Thanks to Proposition 2.12(ii), we get a canonical isomorphism G1F3 ' G2. Ap-
plying to M(mn) and unraveling the functors, we have a canonical isomorphism

HomG̃((mn)∗L)(V
(mn),M(mn)) ∼→ HomG̃(n∗L)(V

(n),M(n)) (4-6)

induced by the restriction to V(n). (The right-hand side of (4-6) is a rewriting
of HomG(n∗L)(V

(n),M(n)), where we use the fact that σ̂ (nTA) is trivial on V(n)

and M(n). What happens to the left-hand side is similar.) We obtain the following
commutative diagram in which the vertical maps come from natural inclusions
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V(n) ↪→ V(mn), M(n) ↪→M(mn) and (4-6):

V(n)
⊗HomG̃(n∗L)(V

(n),M(n))
∼ //

��

M(n)

��
V(mn)

⊗HomG̃((mn)∗L)(V
(mn),M(mn))

∼ // M(mn)

By taking limit over n, we deduce that (4-5) is an isomorphism. �

Corollary 4.16. The canonical map OS→EndĜ(L)(H) (via the OS-module structure
on H) is an isomorphism.

Proof. By Theorem 4.15, EndĜ(L)(H)' EndOS
(OS)' OS . �

Corollary 4.17. Let H be as in Lemma 4.13. If H′ is another Ĝ(L)-representation
with the same property, then there exists an invertible OS-module N such that

H′ 'H⊗N.

Proof. This is proved as in the first paragraph of the proof of Theorem 4.15. �

Corollary 4.18. Suppose that S = Spec R for a local ring R. Then any two Heisen-
berg representations are isomorphic.

Proof. Immediate from Corollary 4.17. �

This subsection ends with an alternative characterization of Heisenberg represen-
tations. It will be used in Section 5A.

Proposition 4.19. The following are equivalent:

(i) H is a Heisenberg representation of Ĝ(L). (See Definition 4.12.)

(ii) H is a weight-1 admissible smooth irreducible representation of Ĝ(L) on a
locally free OS-module such that H does not vanish anywhere on S.

Remark 4.20. In (ii) above, it is enough to require H 6= 0 when S is connected.
On the other hand, one could show that the admissibility in (ii) is superfluous by
extending Lemma 4.22 to the case when F may be of infinite rank. That proof is
easily reduced to the finite rank situation.

Proof. Lemma 4.13 says that (i) implies (ii). In order to show the other implication,
let H be as in (ii) and H′ be a Heisenberg representation of Ĝ(L) (in the sense of
Definition 4.12). Theorem 4.15 tells us that H'H′⊗N for some OS-module N.
By taking invariants under σ̂ (nTA) for a large enough n (so that the invariants are
nontrivial), we see that N has to be a coherent OS-module. It suffices to show that N

is locally free of rank 1.
Choose an arbitrary s ∈ S. The stalks at s are related by Hs 'H′s ⊗OS,s Ns . We

see that Ns is a projective OS,s-module as H′s and Hs are free over OS,s . Since Ns is
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finitely generated over the noetherian ring OS,s , it is free of finite rank. Now let U
be an open affine noetherian neighborhood of s in S. The proof will be complete
if N|U is shown to be an invertible OU -module.

Suppose this is not the case. Lemma 4.23 tells us that N|U has an OU -submodule
M that is not given as N|U⊗OU J for any ideal sheaf J⊂OU . Applying Lemma 4.22,
we obtain an OS-submodule N′ of N such that N′|U = M. Then it is impossible
that N′ = N⊗OS I for an ideal sheaf I⊂ OS . (If it were possible, by restricting to
U , we would get M = NU ⊗OU I|U , but this is a contradiction.) This means, via
Theorem 4.15 (applicable to H′), that H allows a Ĝ(L)-subrepresentation H′⊗N′

not given by an ideal sheaf, contradicting the assumption that H is irreducible. �

Corollary 4.21. Consider (A′, L ′) and (A, L) with a bounded isogeny α : A′→ A
such that L ′ = α∗L. Let Ĝ(α) : Ĝ(L ′) ∼→ Ĝ(L) be defined as in Lemma 3.13. If
ρ : Ĝ(L)→AutOS

(H) is a Heisenberg representation, then ρ ◦ Ĝ(α) is a Heisenberg
representation of Ĝ(L ′).

Proof. This is clear from criterion (ii) of Proposition 4.19 and Lemma 3.16. (Thanks
to the latter, the fact that ρ is admissible and smooth shows that ρ ◦ Ĝ(α) is also.) �

The following two lemmas were used in the proof of Proposition 4.19:

Lemma 4.22. Let F be an OS-module and U an open affine subscheme of S. Let
M be an OU -module defined by an OS(U )-submodule of F(U ). Define a Zariski
presheaf F′ on S by

F′(V )=
{

a ∈ F(V )
∣∣ a|U∩V ∈M(U ∩ V )

}
.

Then F′ is a Zariski sheaf and an OS-submodule of F. (Recall that every OS-module
(likewise, every OU -module) is required to be quasicoherent in our convention.)

Proof. It is a routine check that F′ is a Zariski sheaf. By construction, F′ is a
subsheaf of F. The verification that F′ is an OS-module reduces to the affine case,
in which case it is elementary. �

Lemma 4.23. Let U be a noetherian scheme. Let F be a locally free OU -module
of finite rank. Suppose that F has rank at least 1 at every point of U and rank
greater than 1 at some point u ∈ U. (Note that U may not be connected.) Then
there exists an OU -submodule M⊂ F that is not of the form M= F⊗OU I for any
ideal sheaf I⊂ OU .

Proof. We can find an affine subscheme V = Spec B of U containing u on which
F|V is free of rank at least 2. Let M be any rank-1 free B-submodule of F(V ),
and denote by M′ the corresponding OV -module. Extend M′ to an OU -module M

by the previous lemma. We claim that M satisfies the condition of the lemma.
Indeed, if we had M = F⊗OU I for some ideal I ⊂ OU , then we would reach a
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contradiction by taking stalk at u and computing the k(u)-dimension after tensoring
k(u) := OU,u/mU,u . (Here mU,u denotes the unique maximal ideal of OU,u .) �

4D. Dual Heisenberg representations and matrix coefficients. As we have seen
in Section 2D, there are isomorphisms of G(n∗L)×G(n∗L)-representations

V(n∗L)⊗V(n∗L)∨ ∼→ HomGm
(G(n∗L),OS) (4-7)

for varying n. On the right-hand side, Gm acts on G(n∗L) and OS by multiplication.
We will promote (4-7) to an adelic isomorphism.

Definition 4.24. Define an OS-module

Homsm
Gm
(Ĝ(L),OS) :=

⋃
n≥1

HomGm
(Ĝ(L)/σ̂ (nTA),OS)

=

⋃
n≥1

HomGm
(Ĝ(L),OS)

σ̂ (nTA)×{1}.

A section φ of HomGm
(Ĝ(L),OS) is said to be smooth if it is a section of the above

OS-module. (The definition is equivalent if τ̂ is used in place of σ̂ ; cf. Remark 4.9.)

Lemma 4.25. The map

V̂(L)⊗ V̂(L)∨→ Homsm
Gm
(Ĝ(L),OS) (4-8)

v⊗ v∨ 7→ (γ 7→ v∨(γ v)) (4-9)

is an isomorphism of Ĝ(L) × Ĝ(L)-representations. Here, V̂(L)∨ is equipped
with an action of Ĝ(L) by the same formula as (2-2). On the right-hand side, the
action is described by ((γ1, γ2)ψ)(γ ) = ψ(γ

−1
2 γ γ1) for ψ ∈ Homsm

Gm
(Ĝ(L),OS)

and γ1, γ2 ∈ Ĝ(L).

Proof. Recall from Lemma 3.15 that G̃(n∗L)/σ̂ (nTA) ' G(n∗L) naturally. Thus,
(4-7) may be rewritten as

V(n∗L)⊗V(n∗L)∨ ∼→ HomGm
(G̃(n∗L),OS)

σ̂ (nTA)×σ̂ (nTA)

= HomGm
(G̃(n∗L),OS)

σ̂ (nTA)×{1},

where the last equality holds thanks to Lemma 3.15(ii). By taking further invariant,
we obtain

V(L)⊗V(n∗L)∨ ∼→ HomGm
(G̃(n∗L),OS)

σ̂ (TA)×{1}

as maps of G̃(L) × G̃(n∗L)-representations. (Note that V(L) is acted upon by
NG̃(n∗L)(σ̂ (TA))/σ̂ (TA)= G̃(L)/σ̂ (TA).)

We patch these isomorphisms via inverse limit, which are compatible as n varies
(as they are given by the same formula as (4-9)), to obtain an isomorphism of
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G̃(L)× Ĝ(L)-representations

V(L)⊗ V̂(L)∨ ∼→ HomGm
(Ĝ(L),OS)

σ̂ (TA)×{1}. (4-10)

Likewise, there is an isomorphism of G̃(n∗L)× Ĝ(L)-representations

V(n∗L)⊗ V̂(L)∨ ∼→ HomGm
(Ĝ(L),OS)

σ̂ (nTA)×{1}

given by the same formula as (4-9). By patching again, we arrive at the map (4-8)
and see that it is an isomorphism. �

Corollary 4.26. For any Heisenberg representation H, (4-9) induces an isomor-
phism of Ĝ(L)× Ĝ(L)-representations

H⊗H∨ ' Homsm
Gm
(Ĝ(L),OS).

Proof. Corollary 4.17 tells us that H⊗H∨' V̂(L)⊗V̂(L)∨ canonically. Composing
this with (4-8), we derive the desired isomorphism. �

Definition 4.27. Set Homsm
OS
(VA,OS) :=

⋃
n≥1 HomOS

(VA/nTA,OS). A section of
Homsm

OS
(VA,OS) is said to be smooth.

From here until the end of this subsection, assume in addition that L is symmetric.
There is a further isomorphism of OS-modules

HomGm
(Ĝ(L),OS)' HomOS

(VA,OS) (4-11)

by restricting from Ĝ(L) ' Gm × VA (Lemma 3.18) to {1} × VA. Then (4-11)
induces an isomorphism from Homsm

Gm
(Ĝ(L),OS) onto Homsm(VA,OS), and the

Ĝ(L)× Ĝ(L)-action may be transported to them. This action will be used in the
following corollary:

Corollary 4.28. Suppose deg L= 1. There is a Heisenberg representation H so that

H∨ = HomOS
(VA,OS)

σ̂ (TA)×{1}

=
{
φ ∈HomOS

(VA,OS)
∣∣ φ(x)= eL

∗
(1

2 y) êL( 1
2 x, y) ·φ(x+ y),∀x ∈ VA, y ∈ TA

}
=
{
φ ∈Homsm

OS
(VA,OS)

∣∣ φ(x)= eL
∗
(1

2 y) êL( 1
2 x, y) ·φ(x+ y),∀x ∈VA, y ∈ TA

}
.

The action of (λ, z) ∈ Gm ×VA' Ĝ(L) (cf. Lemma 3.18, (3-10)) is described by

((λ, z)φ)(x)= λ−1êL(x, z/2) ·φ(x − z).

Proof. Set H := V̂(L)⊗V(L)∨. By the assumption V(L) is an invertible OS-module.
The isomorphism (4-10) provides

H∨ ∼→ HomGm
(Ĝ(L),OS)

σ̂ (TA)×{1}
' HomOS

(VA,OS)
σ̂ (TA)×{1}.
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Let y ∈ TA. If φ ∈ HomGm
(Ĝ(L),OS), then σ̂ (y) = τ̂ (y) eL

∗
(y/2) acts on φ as

follows, where the elements of Ĝ(L) are written using Lemma 3.18:

(σ̂ (y) ·φ)((1, x))= φ(eL
∗
(1

2 y)(1, x)(1, y))

= eL
∗
( 1

2 y) ·φ((êL(1
2 x, y), x + y))

= eL
∗
( 1

2 y)êL( 1
2 x, y) ·φ((1, x + y)).

Thus, the condition that σ̂ (y) · φ = φ for all y ∈ TA produces the transformation
formula for φ. Such a φ is automatically smooth. Indeed, for any x ∈ VA, choose
n ≥ 1 such that x ∈ 1

n TA. The transformation formula tells us that φ(x+ y)= φ(x)
for all y ∈ 2nTA since eL

∗
|2TA ≡ 1 and êL

|TA×TA ≡ 1.
To compute the group action, let ψ ∈HomGm

(Ĝ(L),OS) be the map correspond-
ing to φ via (4-11). Then (using Lemma 3.18 in the third equality)

((λ, z)φ)(x)= (λτ̂ (z)ψ)(τ̂ (x))= λ−1ψ(τ̂ (z)−1τ̂ (x))

= λ−1ψ(êL(z/2, x)−1τ̂ (x − z))= λ−1êL(z/2, x)−1ψ(τ̂ (x − z))

= λ−1êL(x, z/2) ·φ(x − z). �

Remark 4.29. Corollary 4.28 may be thought of as presenting the (dual) lattice
model for H∨, whose dual gives rise to the lattice model for H.

Remark 4.30. Although H is a smooth Ĝ(L)-representation, there is no reason to
expect H∨ to be smooth in general. We caution the reader that the smoothness of φ
in Corollary 4.28 does not imply that H∨ is smooth as a Ĝ(L)-representation.

Remark 4.31. Let us assume that L has index 0, namely that L is relatively ample.
By choosing a particular section l0 ∈ H 0(S, V̂(L)∨), one can associate theta func-
tions for each element of H 0(S, V̂(L)) as explained in [Mumford 2007, §5, Appli-
cation 2]. More precisely, take l0 to be “the evaluation at 0” map V̂(L)→ OS . Then
(4-8) (by taking v∨= l0) and (4-11) induce a map H 0(S, V̂(L))→HomOS (VA,OS),
which is a geometric construction of theta functions.

4E. An application of the Künneth formula, Part I. For r = 1, 2, let fr : Ar→ S
be an abelian scheme with a nondegenerate line bundle Lr of index ir . Define
A := A1 ×S A2 with projections pr : A→ Ar and the structure map f : A→ S.
Take L := p∗1 L1⊗ p∗2 L2.

Lemma 4.32. We have canonical isomorphisms

R j f∗L =
{

Ri1 f1,∗L1⊗ Ri2 f2,∗L2 if j = i1+ i2,

0 if j 6= i1+ i2.

In particular, L is nondegenerate of index i1+ i2.
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Proof. This is a consequence of [Grothendieck 1963, Théorème 6.7.8]. (Take the
two complexes of OS-modules there to be L1 and L2, where each of them is viewed
as a complex concentrated in degree 0.) �

By checking that the isomorphisms in Lemma 4.32 for n∗L are compatible with
transition maps for varying n (namely νn,mn in Section 3B and its analogues for
(A1, L1) and (A2, L2)), we obtain a canonical isomorphism

V̂(L1)⊗ V̂(L2)' V̂(L). (4-12)

Moreover, we have a natural embedding

G(n∗L1)×G(n∗L2) ↪→ G(n∗L)

for each n ≥ 1, sending ((φ1, x1), (φ2, x2)) to (p∗1φ1⊗ p∗2φ2, (x1, x2)). This map
lifts to a map G̃(n∗L1)× G̃(n∗L2) ↪→ G̃(n∗L) and patches to

Ĝ(n∗L1)× Ĝ(n∗L2) ↪→ Ĝ(n∗L). (4-13)

It is a routine check that (4-12) is equivariant with respect to (4-13). Namely, the
restriction of the Ĝ(n∗L)-representation V̂(L) to Ĝ(n∗L1)× Ĝ(n∗L2) via (4-13) is
identified via (4-12) with the Ĝ(n∗L1)×Ĝ(n∗L2)-representation on V̂(L1)⊗V̂(L2).
In Section 5C, we will see an analogous result for Weil representations.

4F. Representations of p-adic Heisenberg groups. We return to the p-adic setup
of Section 3F; in particular, deg L is assumed to be a power of a prime p. Define a
Ĝp(L)-representation

V̂p(L) := lim
−→n

V(pn)(L).

The admissibility and smoothness are defined for Ĝp(L)-representations as in
Definitions 4.7 and 4.8 by letting n run over powers of p. A Heisenberg repre-
sentation of Ĝp(L) is defined exactly as in Proposition 4.19(ii) and induces an
equivalence of categories as in Theorem 4.15. The representation V̂p(L) is a
Heisenberg representation of Ĝp(L), and any two Heisenberg representations differ
by a tensoring with a line bundle over S. We also have the analogues of results in
Section 4D and Section 4E.

5. Weil representations

As in the previous section, let A be an abelian scheme over a locally noetherian
scheme S. Now L is a nondegenerate symmetric line bundle over A.
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5A. Adelic Weil representations. Let ρ : Ĝ(L)→AutOS
(H) be any adelic Heisen-

berg representation (Definition 4.12, cf. Proposition 4.19). Define a group functor
Spb(VA, êL) on (Sch/S) by

Spb(VA, êL)(T )= { g ∈ AutbT (VA×S T ) | êL
◦ (g, g)= êL

}. (5-1)

(The superscript b stands for “bounded”.) Note that g ∈ Spb(VA, êL)(T ) acts on
Gm(T )× VA(T ) by g · (λ, x) = (λ, gx) and that this action preserves the group
law of (3-10). The automorphism Ĝ(L) ' Gm ×VA of Lemma 3.18 allows us to
transport the Spb(VA, êL)-action to the side of Ĝ(L).

Let T be a locally noetherian S-scheme. Write LT := L ×S T , and define
ρT : Ĝ(L)× T → AutOT

(H⊗OT ) to be the representation induced from ρ by base
extension. It can be seen from the construction of Ĝ(L) that Ĝ(L)× T ' Ĝ(LT )

canonically. Moreover, H⊗OT is a Heisenberg representation of Ĝ(LT ). For each
g ∈ Spb(VA, êL)(T ), define ρg

T := ρT ◦ g, a weight-1 representation of Ĝ(LT ).

Lemma 5.1.

(i) ρg
T is a Heisenberg representation of Ĝ(LT ).

(ii) ρg
T ' ρT as Ĝ(LT )-representations.

Proof. Without loss of generality, we may assume T = S. Since g is a bounded
automorphism, there exist m,m′ ≥ 1 such that for every n ≥ 1, g(mnTA) ⊂ nTA
and g(nTA)⊃ m′nTA. Thus,

Hρg(τ̂ (mnTA))
⊃Hρ(τ̂ (nTA)) and Hρg(τ̂ (nTA))

⊂Hρ(τ̂ (m′nTA)).

Therefore, ρg is smooth and admissible. Further, ρg is irreducible since any Ĝ(L)-
subrepresentation of ρg is also a Ĝ(L)-subrepresentation of ρ, which is irreducible.
Part (i) follows from Proposition 4.19.

Corollary 4.17 shows that ρg
' ρ ⊗OS N as Ĝ(L)-representations for some

invertible sheaf N on S (equipped with trivial Ĝ(L)-action). The isomorphism
provides f :H'H⊗N as OS-modules. But f obviously induces an isomorphism
ρ ' ρ⊗N of Ĝ(L)-representations. Therefore, ρg

' ρ. �

Now define a group functor Mpb(VA, êL) on (Sch/S) such that for locally noe-
therian T ,

Mpb(VA, êL)(T )

=
{
(g,M) ∈ Spb(VA× T, êL)×AutOT

(H⊗OT )
∣∣ M ◦ ρT ◦M−1

= ρ
g
T

}
(5-2)

with group law (g1,M1)(g2,M2)= (g1g2,M1 M2). (The definition is understood
as a functor of points.) Similarly define Mpb(TA, êL) with TA in place of VA. There
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is a sequence of group functors

1→ Gm→Mpb(VA, êL)→ Spb(VA, êL)→ 1. (5-3)

The first map Gm → Mpb(VA, êL) is given by α 7→ (1, α) using the canonical
isomorphism Gm ' AutOS

(H), and the next map sends (g,M) to g.
We define variants Sp(VA, êL) and Mp(VA, êL), which are also group functors on

(Sch/S) and (LocNoeth/S), respectively. For an S-scheme T , write T =
∏

i∈I Ti

as a disjoint union of connected components. Set

Sp(VA, êL)(T ) :=
∏
i∈I

Spb(VA, êL)(Ti )

and similarly for Mp(VA, êL)(T ). By the paragraph above Lemma 3.4, The bound-
edness condition is vacuous in Spb(VA, êL)(Ti ). As the analogue of (5-3), we
have

1→ Gm→Mp(VA, êL)→ Sp(VA, êL)→ 1. (5-4)

Remark 5.2. In general, we do not address the issue of representability of Sp, Mp,
Spb and Mpb by ind-group schemes. When there is a level structure (Section 6),
we will see that Sp is often representable.

Lemma 5.3. For any locally noetherian S-scheme T , the sequence of groups ob-
tained from (5-3) by taking T -points is exact. The same is true for (5-4).

Proof. It is enough to deal with (5-3), which implies the other case easily. The lemma
is obvious except for the surjectivity, which we check now. Let g ∈ Sp(VA, êL)(T ).
It suffices to show that HomĜ(LT )

(ρT , ρ
g
T ) has a T -point. Since ρT ' ρ

g
T by the

preceding lemma, we have a (noncanonical) isomorphism HomĜ(LT )
(ρT , ρ

g
T ) '

AutĜ(LT )
(ρT ). The latter is isomorphic to Gm(T ) by Theorem 4.15, which is

certainly nonempty. �

Remark 5.4. In the classical analogue of (5-3) (or (5-4)), the exactness in the
middle results from the irreducibility of the Heisenberg representation and Schur’s
lemma. The surjectivity results from the Stone–von Neumann theorem.

Definition 5.5. The tautological representations Mpb(VA, êL)→ AutOS
(H) and

Mp(VA, êL)→ AutOS
(H), respectively, given as a morphism of group functors on

(LocNoeth/S) by (g,M) 7→ M is called the Weil representation or the oscillator
representation (cf. Remark 2.10).

For the rest of Section 5, we mostly focus on Mpb and Spb. The results carry over
to Mp and Sp easily (Section 5E). The Weil representation is independent of the
choice of the Heisenberg representation H in a suitable sense, as we will soon see.
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Lemma 5.6. If Mpb
H
(VA, êL) and Mpb

H′
(VA, êL) denote the group functors arising

from Heisenberg representations H and H′, respectively, then there is a canonical
isomorphism of metaplectic group functors sitting in a commutative diagram below:

1 // Gm // Mpb
H
(VA, êL) //

can∼

��

Spb(VA, êL) // 1

1 // Gm // Mpb
H′
(VA, êL) // Spb(VA, êL) // 1

Proof. By Corollary 4.17, H′ =H⊗N for an invertible OS-module N. Thus, there
is a canonical isomorphism α :AutOS

(H)'AutOS
(H′). Then (g,M) 7→ (g, α(M))

clearly induces the desired isomorphism. �

Corollary 5.7. With the notation in the previous lemma, we have the following
commutative diagram:

Mpb
H
(VA, êL)

Weil //

can∼

��

AutOS
(H)

can∼

��
Mpb

H′
(VA, êL)

Weil // AutOS
(H′)

Proof. This result follows immediately from the proof of Lemma 5.6. �

We would like to find a splitting of (5-3) over an “open compact subgroup”
of Spb(VA, êL). Let m, n ≥ 1. Let Spb( 1

m T (A, L); nTA, êL) denote the subgroup
functor of Spb(VA, êL) consisting of g that stabilizes 1

m T (A, L) and nTA and
induces the identity map on 1

m T (A, L)/nTA. Note that Spb( 1
m T (A, L); nTA, êL)=

Spb(T (A, L);mnTA, êL). (We will favor the expression on the left-hand side when
it seems conceptually helpful.) Now suppose that (g,M) ∈Mpb(VA, êL) with
g ∈ Spb(1

2 T (A, L); 2TA, êL). The latter condition implies the g-action on Ĝ(L)

• preserves τ̂ (2TA), which is equal to σ̂ (2TA), and

• leaves G̃(2∗L) stable and induces the identity map on

G(2∗L)' G̃(2∗L)/τ̂ (2TA).

By restriction, M induces an isomorphism of representations

M0 :
(
ρ|G̃(2∗L),Hσ̂ (2TA))

'
(
ρg
|G̃(2∗L),Hσ̂ (2TA)).

The representations factor through the quotient G(2∗L) of G̃(2∗L). Since g acts
as the identity on G(2∗L), we deduce that ρg

= ρ (not just an isomorphism) as
G(2∗L)-representations on Hσ̂ (2TA). Hence, by Proposition 2.12(iv),

M0 ∈ AutG(L)(H
σ̂ (2TA))' AutOS

(OS)' Gm . (5-5)
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The former of the two canonical isomorphisms above is given by Proposition 2.12(ii).
In light of (5-5), there is a unique choice of M (when g is fixed) that restricts to M0.
This leads to our next result.

Lemma 5.8. There is a canonical splitting of (5-3) over Spb(TA, êL). Namely, there
is a map of group functors

spl : Spb(1
2 T (A, L); 2TA, êL)→Mpb(TA, êL)

such that if spl(g)= (g,Mg), then Mg corresponds to the identity of Gm via (5-5).

Proof. Let α : T → S be an S-scheme. For each g ∈ Spb(1
2 T (A, L); 2TA, êL), let

us define Mg. As was seen in the proof of Lemma 5.3, there exists M ′g such that
(g,M ′g) ∈Mpb(TA, êL)(T ). Such an M ′g defines an automorphism a ∈Gm(T ) by
(5-5). Set Mg := a−1

·M ′g. Then (g,Mg) ∈Mpb(VA, êL)(T ), and Mg corresponds
to 1 ∈ Gm(T ) via (5-5). Moreover, it is straightforward to verify (g1g2,Mg1g2)=

(g1g2,Mg1 Mg2) as the images of Mg1g2 and Mg1 Mg2 in Gm via (5-5) are both 1. �

Corollary 5.9. Suppose that deg L = 1. Then there is a canonical splitting of (5-3)
over Spb(TA, 4TA, êL).

Proof. Immediate, since T (A, L)= TA and

Spb(TA, 4TA, êL)= Spb(1
2 TA, 2TA, êL). �

5B. Dual Weil representations. The dual Heisenberg representation H∨ also plays
the role of the dual Weil representation. Namely, Mpb(A, êL) acts on H∨ by the rule

((g,M) · v∨)(v)= v∨(M−1v), v ∈H, v∨ ∈H∨.

5C. An application of the Künneth formula, Part II. We continue Section 4E
with the same notation as in that subsection. Note that there is an obvious embedding

Spb(A1, êL1)×Spb(A2, êL2) ↪→ Spb(A, êL).

The following is the analogue of a classical result [Mœglin et al. 1987, II.1(6)]:

Lemma 5.10. The isomorphism

i : V̂(L1)⊗ V̂(L2)' V̂(L)

of (4-12) is an isomorphism of Mpb(VA1, êL1)×Mpb(VA2, êL2)-representations
(the notion of representations as in Remark 2.10) if the action on the right-hand
side is pulled back via

Mpb(VA1, êL1)×Mpb(VA2, êL2)→Mpb(VA, êL)

((g1,M1), (g2,M2)) 7→ (g1⊗ g2, i(M1⊗M2)i−1).
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Proof. This is a tautology in view of the way the metaplectic group action is defined.
�

5D. Local Weil representations. Let ρp : Ĝp(L)→AutOS
(Hp) be a p-adic Heisen-

berg representation. As in Section 5A, we define Mpb(Vp A, êL
p ) and Spb(Vp A, êL

p )

and fit them into a sequence (cf. (5-3)) that is exact in the sense of Lemma 5.3:

1→ Gm→Mpb(Vp A, êL
p )→ Spb(Vp A, êL

p )→ 1. (5-6)

The local Weil representation at p is the tautological representation

Mpb(Vp A, êL
p )→ AutOS

(Hp).

There is a splitting of (5-6) over Spb(Tp(A, L), Tp A, êL
p ) if p 6= 2 and over

Spb(1
2 Tp(A, L); 2Tp A, êL) if p = 2 (cf. Lemma 5.8). Natural questions on the

structure of Mpb(Vp A, êL
p ) are:

(i) When is (5-6) split?

(ii) If (5-6) is not split, does it come from a double cover? Namely, can we show
that Mpb(Vp A, êL

p ) has a subgroup functor S̃pb(Vp A, êL
p ) that is an extension

of Spb(Vp A, êL
p ) by µ2?

For the classical p-adic metaplectic group, it is known that the answers to (i) and
(ii) are “never” and “yes”, respectively, at least when p 6= 2. The questions seem
subtle if S is an Fp-scheme and already when S = Spec Fp. We will see a positive
answer to (i) when A is an ordinary abelian variety (Corollary 7.7). We do not have
a clue to (ii). See Example 6.9 for the case of supersingular abelian varieties.

5E. From Mpb to Mp. Most results of Section 5 have been stated about Mpb and
Spb. Everything we have proved or asked about Mpb and Spb applies to Mp and
Sp. The proof is easily reduced to the case of connected base schemes, in which
case Mpb and Mp coincide as well as Spb and Sp.

6. Level structures

In our context, a level structure is a trivialization of VA, Vp A and so on. This allows
us to compare our theory with the representation theory of the usual symplectic
and metaplectic groups over number fields and p-adic fields (which are defined
independently of abelian schemes and line bundles). This resembles the level
structure arising naturally in the moduli-theoretic setting. It is interesting to note
new characteristic p phenomena, which are not observed in the classical theory of
Weil representations, when studying the Weil representation of a p-adic metaplectic
group in characteristic p (Section 6C). Throughout Section 6, we assume that S is
locally noetherian.
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6A. Level structure on VA. Let S be a Q-scheme and (V, 〈 · , · 〉) be an even-
dimensional Q-vector space with a symplectic pairing. Let ψ : A∞→ Gm be a
nontrivial morphism of (ind-)group schemes over S. (This is the analogue of the
additive character in the classical setting.) By composing, we obtain

〈 · , · 〉ψ : V ⊗A∞× V ⊗A∞→ Gm .

Suppose that there is an isomorphism of ind-group schemes over S

η : V ⊗A∞ ' VA

that carries 〈 · , · 〉ψ to êL . This forces ψ to factor through µ∞ ↪→ Gm since êL

factors through µ∞ ↪→ Gm (Lemma 3.17).
Lemma 3.18 together with η allows us to identify Gm×(V⊗A∞)' Ĝ(L), where

the left-hand side, to be denoted Ĝ(V, 〈 · , · 〉ψ), has group law

(λ, x) · (µ, y)= (λµ · 〈x/2, y〉ψ , x + y). (6-1)

Again via η, the exact sequences in (3-5) and (5-4) become

1→ Gm→ Ĝ(V, 〈 · , · 〉ψ)→ V ⊗A∞→ 0,

1→ Gm→Mp(V ⊗A∞, 〈 · , · 〉ψ)→ Sp(V ⊗A∞, 〈 · , · 〉ψ)→ 1.

(The analogue for Mpb and Spb is also obtained from (5-3).) The group functor
Sp(V ⊗A∞, 〈 · , · 〉ψ) is represented by the constant group scheme associated with
the usual symplectic group Sp(V ⊗A∞, 〈 · , · 〉ψ) while Mp is defined by the same
recipe as in (5-2) (using Sp in place of Spb).

Remark 6.1. Note that η does not exist unless S is in characteristic 0 because Vp A
is not a constant ind-group scheme at any point s ∈ S of residue characteristic p.
See Section 6C for a different kind of level structure.

Remark 6.2. In the simple case when S = Spec k and k is an algebraically closed
field of characteristic 0, a choice of χ :Q/Z ∼

→ µ∞ over k gives rise to ψ in the
following manner:

ψ : A∞→ A∞/Ẑ
can
' Q/Z

χ
' µ∞ ↪→ Gm .

6B. Local level structure, Part I. We consider two kinds of level structures on Vp A.
The first one is the local analogue of Section 6A. Let (Vp, 〈 · , · 〉) be a symplectic
Qp-vector space and ψ :Qp→ Gm a nontrivial morphism of (ind-)group schemes
over S. Thereby, obtain 〈 · , · 〉ψ : Vp × Vp → Gm , where Vp is also viewed as a
constant ind-group scheme over S. A level structure is a Qp-linear isomorphism

η : Vp ' Vp A
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(Qp acts on Vp A as explained in Section 3A) carrying 〈 · , · 〉ψ to êL
p . As in

Section 6A, this forces ψ to factor through µp∞ ↪→ Gm . The map η and the
p-adic analogue of Lemma 3.18 enable us to identify Ĝp(Vp, 〈 · , · 〉ψ) :=Gm × Vp

with Ĝp(L), where the former is equipped with the same group law as in (6-1). We
obtain exact sequences

1→ Gm→ Ĝp(Vp, 〈 · , · 〉ψ)→ Vp→ 0, (6-2)

1→ Gm→Mp(Vp, 〈 · , · 〉ψ)→ Sp(Vp, 〈 · , · 〉ψ)→ 1.

6C. Local level structure, Part II. When S is in characteristic p, a different level
structure is desirable (cf. Remark 6.1). Let k be a field extension of Fp. Suppose
that S is a k-scheme. Let (6, 〈 · , · 〉0) be a p-divisible group 6 over k with an
alternating pairing 〈 · , · 〉0 :6×6→ µp∞ . This can be promoted to

〈 · , · 〉1 : Vp6× Vp6→ Vpµp∞

by the functoriality of Vp. Let [p : Vpµp∞ → µp∞ be the p-adic analogue of [
in Section 3D. Set 〈 · , · 〉 := [p ◦ 〈 · , · 〉1. Then a level structure is a Qp-linear
isomorphism

ζ : Vp6×k S ∼→ Vp A

matching 〈 · , · 〉 and êL
p . Set Ĝp(6, 〈 · , · 〉0) := Gm × Vp6 with the group law

(λ, x) · (µ, y)= (λµ · 〈12 x, y〉, x + y). (6-3)

In light of the p-adic analogue of Lemma 3.18, ζ induces an isomorphism

Ĝp(6, 〈 · , · 〉0)' Ĝp(L).

The p-adic analogues of exact sequences in (3-5) and (5-4) are identified via ζ with
the following, where Mp and Sp are defined as in Section 5A:

1→ Gm→ Ĝp(6, 〈 · , · 〉0)→ Vp6→ 0, (6-4)

1→ Gm→Mp(Vp6, 〈 · , · 〉)→ Sp(Vp6, 〈 · , · 〉)→ 1.

A priori Mp(Vp6, 〈 · , · 〉) depends not only on (6, 〈 · , · 〉0) but also on (A, L)
because the definition involves the Heisenberg representation, which is constructed
from (A, L). But Corollary 4.17 shows that two Heisenberg representations
of Ĝp(6, 〈 · , · 〉0) (constructed from two choices of (A, L)) differ by a tensoring
with an invertible OS-module, so Mp(Vp6, 〈 · , · 〉) and its Weil representation
depend (up to isomorphism) only on (6, 〈 · , · 〉0) thanks to Corollary 5.7.

Remark 6.3. One can consider a variant when S is not entirely in characteristic p.
For instance, if 6 = (Qp/Zp × µp∞)

g for some g ≥ 1, which can be defined
(together with 〈 · , · 〉0) over Spec Z, one can take S to be any locally noetherian



1762 Sug Woo Shin

scheme, and the construction above goes through. On the other hand, if (6, 〈 · , · 〉0)
is as above except that the base ring is not k but the integer ring O in an algebraic
extension field of Qp, the discussion can be adapted to any O-scheme S.

Remark 6.4. The level structure ζ is the analogue of the Igusa level structure used
in the literature (e.g., [Katz and Mazur 1985; Harris and Taylor 2001; Hida 2004]).

Remark 6.5. It is an interesting phenomenon that the Heisenberg group and the
metaplectic group at p heavily depend on the isogeny type of 6 (or A[p∞]) when
S is in characteristic p. This is evident in (6-4), for instance. Each isogeny type
gives rise to a different mod p Weil representation.

6D. Weil representations associated with p-divisible groups, without abelian va-
rieties. Assume p 6= 2. Let (6, 〈 · , · 〉0) and 〈 · , · 〉 be as in Section 6C with k = Fp.
For simplicity, assume that 〈 · , · 〉0 is a perfect pairing. (In general it is enough to
require 〈 · , · 〉 to be a perfect pairing.) We know that there exists an (A, L) such
that there is a symplectic isomorphism ζ : Vp6 ' Vp A thanks to Oort’s result
([Rapoport 2005, Theorem 7.4], cf. [Oort 2001]) that any Newton polygon stratum
in the mod p fiber of the Siegel modular variety with hyperspecial level at p is
nonempty. Then Section 6C attaches the Heisenberg group/representation and Weil
representation to (6, 〈 · , · 〉0). The goal of this subsection is to sketch an alternative
approach without using (A, L) at all.

Recall that Ĝp := Ĝp(6, 〈 · , · 〉0) is already defined in Section 6C independently
of (A, L). The key point will be to prove the existence of the Heisenberg repre-
sentation of Ĝp without resorting to (A, L). In particular, we use the fact that any
nondegenerate theta group possesses a weight-1 irreducible representation over an
algebraically closed field [Moret-Bailly 1985, Chapter 5, Theorem 2.5.5].

Take σ̂p : Tp6 → Ĝp(6, 〈 · , · 〉0) to be the natural embedding x 7→ (1, x).
(The assumption p 6= 2 is used to ensure that the latter embedding preserves group
structure.) It is easy to verify the analogue of Lemma 3.15 for Ĝp, σ̂p, etc. (replacing
G̃((pn)∗L) there with G̃(pn) := Gm ×

1
pn Tp6 in Ĝp), in which σ̂p(Tp6) embeds via

the map 1× pn . Set G(pn) := G̃(pn)/σ̂p(Tp6), which is isomorphic to Gm×6[p2n
]

(which inherits the twisted group law). By the theorem of [Moret-Bailly 1985] cited
above, each G(pn) possesses a Heisenberg representation (irreducible representation
over k of dimension pn) for n ≥ 1. The Heisenberg representation H of Ĝp is
obtained by patching via the analogue of Lemma 4.5, and then one can check the
analogues of Theorem 4.15, Proposition 4.19 and Corollaries 4.26 and 4.28. (Of
course TA, VA and êL should be replaced by Tp6, Vp6, and 〈 · , · 〉, and eL

∗
should

be ignored.) The construction of Section 5A carries over to Mp(Vp6, 〈 · , · 〉0) and
its Weil representation on H.

Remark 6.6. What we have denoted σ̂p should be thought of as the analogue of τ̂p

in the previous sections (although there is no distinction when p 6= 2). Perhaps
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one can still work with p = 2 if we select e∗ : 6[2] ×6[2] → µ2, satisfying the
properties of Lemma 3.19, to play the role of eL

∗
. Then the above definition of σ̂2

should be multiplied by e∗ (cf. (3-11)).

Remark 6.7. If char(k) 6= p and k= k, then one can identify Vp6 with a symplectic
Qp-vector space (as a constant group scheme), and the above construction still
goes through without (A, L). When k = C, this essentially recovers the classical
construction.

Remark 6.8. We have worked with 6 over Fp rather than over a more general
scheme S. The only essential reason is that the existence of Heisenberg represen-
tations (i.e., the analogue of [Moret-Bailly 1985, Chapter 5, Theorem 2.5.5]) no
longer holds in general. A sufficient condition for the existence of a Heisenberg
representation is that 6 over S comes from some (A, L).

Example 6.9. Let61/2 denote a supersingular p-divisible group over Fp of height 2
and dimension 1 equipped with a perfect pairing ( · , · ) :61/2×61/2→ µp∞ . Let
D1/2 be a central quaternion algebra over Qp of invariant 1/2. It is well known that
EndFp

(61/2) is isomorphic to the maximal order of D1/2, so EndFp
(V61/2)' D1/2.

(In general, one can use Dieudonné theory to classify p-divisible groups 6 over
Fp up to isogeny and identify EndFp

(V6) as a semisimple Qp-algebra. See any
standard reference such as [Demazure 1972].)

Set 6 := (61/2)
g, and define 〈 · , · 〉 :6×6→ µp∞ by

〈(xi )
g
i=1, (yi )

g
i=1〉 =

g∏
i=1
(xi , yi ).

Then
Sp(Vp6, 〈 · , · 〉0)' Spg(D1/2)

as constant group schemes over Fp. Observe that this group is an inner form of
Sp2g(Qp). The questions (i) and (ii) of Section 5D would be especially interesting
to answer in this case. We would guess “no” to (i) and “yes” to (ii) in this case
but without much evidence. The only heuristic reason is that this 6 is the unique
p-divisible group over Fp (up to isogeny) that is self-dual and isoclinic, so it makes
harder for (5-6) (or the analogous sequence for 6) to split. (For any other choice
of a self-dual 6, the group of Fp-points of Sp(Vp6, 〈 · , · 〉0) is isomorphic to the
group of Qp-points of an inner form of a proper Levi subgroup of Sp2g(Qp). This
is a well known fact in the theory of isocrystals applied to Sp2g, where the former
group is often denoted Jb(Qp). See [Kottwitz 1997] for instance.)

6E. Global level structure. It is clear how to put together local level structures to
get a global one. Let A∞,p be the prime-to-p part of A∞, namely Ẑp

:=
∏

l 6=p Zl

and A∞,p := lim
−→n

1
n Ẑp, where n runs over positive integers prime to p. When S is

a Q-scheme, this is done in the obvious manner by globalizing Section 6B. Let us
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say a few words when S is an Fp-scheme. Consider the analogue ψ p
:A∞,p→Gm

of ψ so that we have 〈 · , · 〉ψ p : V ⊗A∞,p×V ⊗A∞,p→Gm (cf. Section 6B). Let
(6, 〈 · , · 〉0) be as in Section 6C, and set 〈 · , · 〉p := [p ◦〈 · , · 〉1 using notation there.
A level structure in this setting is an A∞-linear isomorphism

(ηp, ζ ) : V ⊗A∞,p× (Vp6×k S) ∼→ VA

carrying (〈 · , · 〉ψ p , 〈 · , · 〉p) to êL . We have exact sequences that look like (6-2)
away from p and (6-4) at p.

7. Explicit models

In the study of Weil representations and the theta correspondence, it is important to
find a good model on which the group action can be described explicitly. For p-adic
or finite adelic metaplectic groups, the most popular models in the classical context
are Schrödinger and lattice models. In Section 7, we focus on the p-adic setting
and describe the models for Heisenberg and Weil representations in some simple
cases. In those cases S is local, so the Heisenberg representation is unique up to
isomorphism (Corollary 4.18). The mixed characteristic phenomenon of Section 7D
is intriguing and begs further investigation.

Throughout Section 7, L is assumed to be symmetric and nondegenerate of
degree 1. (The assumption on degree may not be essential but is very convenient.
Degree 1 can be achieved over an algebraically closed field for any (A, L) without
disturbing symmetry and nondegeneracy if we are allowed to modify (A, L) by an
isogeny. See [Mumford 1974, §23, Theorem 4, cf. Corollary 1].) Let C∞( · , k) and
C∞c ( · , k) denote the k-vector spaces of locally constant and, respectively, locally
constant and compactly supported k-valued functions and D∞( · , k) denote the
k-vector space dual of C∞( · , k). Throughout this section, a k-valued function is
understood without further comments as a sheaf-theoretic homomorphism with
target OSpec k , but note that in the setting of Section 7A, this is no different from a
function in the naïve sense.

7A. Over a field of characteristic not equal to p. Suppose that S=Spec k, where k
is algebraically closed of characteristic unequal to p. Therefore, Vp A is isomorphic
to the constant ind-group scheme Q

2g
p over S. In this subsection, we may and will

view Vp A as a Qp-vector space with symplectic pairing êL
p : Vp A× Vp A→ k×.

Similarly, Tp A is regarded as a free Zp-module sitting inside Vp A.
Corollaries 4.28 and 4.18, adapted to the local setting, tell us that the lattice

model for the dual Heisenberg representation may be described as

H∨lattice =
{
φ ∈ C∞(Vp A, k)∣∣ φ(x)= eL

∗
(1

2 y)êL( 1
2 x, y) ·φ(x + y),∀x ∈ Vp A, y ∈ Tp A

}
(7-1)
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with (λ, z) ∈ Gm ×VA ' Ĝ(L) acting as ((λ, z)φ)(x) = λ−1êL(x/2, z) · φ(x − z).
Note that eL

∗
≡ 1 unless p = 2 (see Section 3F). The lattice model Hlattice, the dual

of H∨lattice, admits a concrete description

Hlattice =
{
φ ∈ C∞c (Vp A, k)∣∣ φ(x)= eL

∗
(1

2 y)êL( 1
2 x, y)−1

·φ(x + y),∀x ∈ Vp A, y ∈ Tp A
}

(7-2)

with the dual action; namely, (λ, z) acts as ((λ, z)φ)(x)= λêL(z/2, x) ·φ(x + z).
Indeed the pairing

Hlattice×H∨lattice→ k, ( f, g) 7→
∑

x∈Vp A/Tp A

f (x) g(x)

is easily verified to be k-linear, perfect and Ĝ(L)-equivariant. Refer to the literature
such as [Mœglin et al. 1987, Chapter 2.II.8] (when p 6= 2) for a precise description
of the Weil representation on Hlattice. That reference treats the case k = C, but the
same formula applies if p 6= char(k).

On the other hand, let Tp A = 31 ⊕ 32 be a decomposition into free Zp-
submodules that are totally isotropic for êL

p and in perfect duality with respect
to êL

p . Setting Vi = 3i ⊗Zp Qp for i = 1, 2, we have Vp A = V1 ⊕ V2 and may
identify V2 with V∨1 . When p = 2, we assume that

∀x = (x1, x2) ∈31⊕32, eL
∗
(x/2) êL

p (x1/2, x2)= 1. (7-3)

The above condition amounts to assuming that L is even symmetric in the terminol-
ogy of [Mumford 2007, Proposition 4.20]. This can always be achieved by pulling
back L via the translation Tx for a suitable x ∈ A[2](k). See [Mumford 2007, Corol-
lary 4.24]. The Schrödinger model is (e.g., [Mœglin et al. 1987, Chapter 2.I.4.1],
[Mumford 2007, Proposition 5.2.A])

HSch = C∞c (V2, k), ((λ, z1, z2) ·φ)(x2)= λêL(x2, z1) êL(z2/2, z1) ·φ(x2+ z2),

(7-4)
where we write z= (z1, z2)∈ V1⊕V2. Corollary 4.18 ensures that Hlattice'HSch as
Ĝ(L)-representations on k-vector spaces. Refer to [Mumford 2007, Proposition 5.2],
for example, to see an explicit isomorphism. Let us recall an explicit formula for the
Weil representation on HSch to be compared to the mod p case later (Section 7C).

Proposition 7.1. Consider Mg ∈ Autk(HSch) for g ∈ Sp(Vp A, êL
p ) in the following

three cases. (Here Mg and g are implicitly T -valued points for a locally noetherian
k-scheme T . The matrices below are written with respect to Vp A ' V∨2 ⊕ V2. In
(iii), we choose a k-valued Haar measure on V2, which exists since p 6= char(k).)

(i) g =
(tB−1 0

0 B

)
, (Mgφ)(x)= |det B|−1/2

p φ(B−1x) for any B ∈ GLk(V2).



1766 Sug Woo Shin

(ii) g =
(

I C
0 I

)
, (Mgφ)(x) = êL

p (Cx, x) φ(x), where C ∈ Homk(V2, V∨2 ) is

symmetric (i.e., C = C∨).

(iii) g =
(

0 I
−I 0

)
, (Mgφ)(x)=

∫
V2

êL
p (x, y) φ(y) dy.

Then we have (g,Mg) ∈Mp(Vp A, êL
p ) in all three cases.

Proof. This is proved by the same computation as in the proof of [Mumford 2007,
Lemma 8.2] (cf. [Mœglin et al. 1987, Chapter 2.II.6]). �

Remark 7.2. Classically the factor |det B|−1/2
p in (i) is inserted to make Mg a unitary

operator. Of course (g,Mg) ∈Mp(Vp A, êL
p ) still holds if |det B|−1/2

p is erased.

Example 7.3. The classical Heisenberg and Weil representations (for p-adic groups)
are obtained when k = C and A = Cg/3 with 3= Zg

+ iZg, and L arises from a
Riemann form 3×3→ Z defining a principal polarization.

Remark 7.4. In the definition of HSch, one cannot use C∞(V2, k) because the latter
is not smooth with respect to the Ĝ(L)-action (defined by the same formula). As for
Hlattice, C∞c cannot be replaced by C∞ either for the same reason: the Ĝ(L)-action
on the C∞-space is not smooth. Likewise, H∨lattice is nonsmooth.

7B. Lattice model over F p. Suppose that S = Spec k with k = Fp. The dual lattice
model H∨lattice, which is again unique up to isomorphism, has the same description as
Corollary 4.28 (cf. (7-1)). As before, Hlattice is defined to be the dual of H∨lattice (and
equipped with the dual action). Unlike (7-2), we do not have the notion of compact
support on Vp A, so view Hlattice just as a space of distributions. An interesting
problem would be to find an explicit formula for the Weil representation on Hlattice.

7C. Schrödinger model over F p. Let k = Fp as before. Unlike lattice models,
Schrödinger models do not always exist. The first obstruction is that Vp A or
A[p∞] is not always completely polarizable. For instance, if A is a supersingular
elliptic curve, then A[p∞] does not admit a product decomposition. According to
Dieudonné theory, we can achieve

ζ :61×62 ' A[p∞] (7-5)

for mutually dual p-divisible groups 61 and 62 over k, by modifying A with an
isogeny if necessary, if there are an exactly even number of simple p-divisible
groups of slope 1

2 in A[p∞]. Let us suppose that this is the case so that (7-5)
exists. Also suppose that (7-5) is a complete polarization, i.e., êL

p |61×61 ≡ 1,
êL

p |62×62 ≡ 1 and êL
p defines a perfect pairing between 61 and 62. Then we also

have Vp A'Vp(A[p∞])'Vp61×Vp62. Now that there is a complete polarization,
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one can ask whether there is a Schrödinger model for H. The answer is positive in
the simplest case.

Proposition 7.5. Suppose that A is ordinary; in other words, there exists an isomor-
phism A[p∞] '61×62 with 61 = (µp∞)

g and 62 = (Qp/Zp)
g. If p= 2, assume

that (7-3) holds with Tp61× Tp62 in place of 31⊕32. Then the k-vector space
HSch := C∞c (Vp62, k) (where Vp62 is viewed as a Qp-vector space) on which
(λ, z1, z2) ∈ Gm × Vp61× Vp62 ' Ĝ(L) acts by

((λ, z1, z2) ·φ)(x2)= λêL
p (x2, z1) êL

p (z2/2, z1) ·φ(x2+ z2)

is a Heisenberg representation of Ĝ(L).

Remark 7.6. The above formula is the same as (7-4) except that it should be
interpreted scheme-theoretically. On the other hand, the lemma does not generalize
to the nonordinary case as C∞c (Vp62, k) has no natural meaning if 62 is not étale.

Proof. Without loss of generality, we may assume êL
p is the standard symplectic

pairing (of the form (7-7)). Then it is easily verified that

H
pn Tp6

Sch = C∞( 1
pn Tp62/pnTp62, k).

Hence, HSch is smooth and admissible. By the Stone–von Neumann theorem
(Theorem 4.15), HSch is isomorphic to a Heisenberg representation tensored with
a k-vector space. But the fact that dimk H

pn Tp6

Sch = p2n shows that the latter vector
space has dimension 1. Hence, HSch is itself a Heisenberg representation. �

We introduce an ind k-group scheme

P :=
{(

(B∨)−1 C
0 B

) ∣∣∣∣ B ∈ Aut(Vp62), C ∈ Hom(Vp61, Vp62), C∨ = C
}
.

(The dual ∨ between Vp61 and Vp62 is taken with respect to êL
p .) Once a basis

is chosen, we can identify Aut(Vp62) ' GLg(Qp) and Hom(Vp61, Vp62) '

Mg(Vpµp∞) in view of (7-6) below. (We apologize for two different usages of Mg.)

Corollary 7.7. In the setting of Proposition 7.5, we have

(i) a canonical isomorphism Sp(Vp A, êL
p )' P as group functors and

(ii) Gm × P 'Mp(Vp A, êL
p ) as group functors via (λ, g) 7→ λMg, where Mg is

defined on HSch as

• g =
(
(B∨)−1 0

0 B

)
, (Mgφ)(x)= φ(B−1x).

• g =
(

I C
0 I

)
, (Mgφ)(x)= êL

p (Cx, x) φ(x).
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Remark 7.8. The action in (ii) above is the same as (i) and (ii) of Proposition 7.1.
Since Sp(Vp A, êL

p ) is smaller when char(k) = p, the action (iii) simply does not
show up here. Also note that the above Mg-action does not involve |det B|−1/2

p ,
which does not make sense in k.

Proof. Part (i) is derived from the canonical isomorphisms

Homk(Z/pnZ,Z/pnZ)' Z/pnZ, Homk(Z/pnZ, µpn )' µpn ,

Homk(µpn ,Z/pnZ)= 0, Homk(µpn , µpn )' Z/pnZ.
(7-6)

For (ii), the given action of (λ, g) obviously defines a splitting of (5-3). Since
Gm × Sp(Vp A, êL

p ) is representable by a k-group scheme, the same is true for
Mp(Vp A, êL

p ). �

Remark 7.9. If one naïvely attempts to find a mod p Weil representation, then
one could guess that C∞c (Q

g
p, Fp) is the right model just by imitating the classical

Schrödinger model without using the Heisenberg representation (which may be dif-
ficult to come up with unless the Heisenberg group is defined scheme-theoretically).
But then one gets into trouble in defining a projective representation of Sp2g(Qp).
Indeed, the group action in (iii) of Proposition 7.1, which amounts to the Fourier
transform, does not make sense over Fp. (For instance, there is no Fp-valued Haar
measure on V2.) The virtue of our scheme-theoretic approach is that it renders a
precise meaning to C∞c (Q

g
p, Fp), which is but a special case of a mod p Weil repre-

sentation corresponding to the ordinary p-divisible group. In addition, our approach
explains why the Fourier transform action should disappear from the picture.

Denote by D∞(Vp61, k) the dual k-vector space of C∞(Vp61, k). The following
proposition allows us to transport the Heisenberg representation structure from
C∞(Vp61, k) to D∞(Vp61, k):

Proposition 7.10. There is a canonical isomorphism of k-vector spaces

C∞c (Vp62, k)' D∞(Vp61, k).

Proof. For a finite group scheme G and its dual G∨ over k, recall the standard fact
that their rings of functions are canonically k-dual, namely OG ' (OG∨)

∨. When
applied to G= 1

pn Zp/Zp, this provides a canonical isomorphisms C( 1
pn Zp/Zp, k)'

D(µpn , k) for all n ≥ 1, where D denotes the distribution. By taking inverse limit,
Cc(Qp/Zp, k) ' D∞(Tpµp∞, k). Now by taking the direct limit along the maps
on Cc and D∞ induced by

Qp/Zp
p
←Qp/Zp

p
← · · · , Tpµp∞

p
→ Tpµp∞

p
→ · · · ,

we obtain C∞c (Qp, k)' D∞(Vpµp∞, k). The same argument with multiple copies
of Qp and Vpµp∞ proves the proposition. �
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So far we have considered only ordinary p-divisible groups 6. For a general 6
with a complete polarization 6 =61×62 with respect to êL

p (where C∞c (Vp62, k)
does not make sense), it remains to be answered whether D∞(Vp62, k) is a Heisen-
berg representation.

Remark 7.11. When p > 2, the material of this subsection can be rewritten in
terms of only (6, 〈 · , · 〉0) by using Section 6D, getting rid of (A, L) from the
picture. (See Remark 6.6 for p = 2.) We retained (A, L) to make the analogy with
Section 7A more transparent and also not to make an exception p 6= 2.

7D. Over a ring of mixed characteristic (0, p). In this final example, consider the
case when:

• K is a field extension of Qp complete with respect to a p-adic valuation
vp : K×→ R. Assume that x pn

− 1 splits completely in K for all n ≥ 1.

• OK := { a ∈ K× | vp(a)≥ 0 } ∪ {0}.

• S = Spec OK .

• 6 =61×62 with 61 = (µp∞)
g and 62 = (Qp/Zp)

g over S.

• 〈 · , · 〉0 :6×6→ µp∞ is a symplectic pairing sending

(
((xi )

g
i=1, (yi )

g
i=1), ((x

′

i )
g
i=1, (y

′

i )
g
i=1))

)
7→

g∏
i=1

(xi , y′i )
g∏

i=1

(x ′i , yi )
−1, (7-7)

where ( · , · ) : µp∞ ×Qp/Zp→ µp∞ is the canonical pairing and 〈 · , · 〉 is as
in Section 6C.

• If p = 2, assume that (7-3) holds with Tp61× Tp62 in place of 31⊕32.

As in the previous subsection, define an ind-group scheme over OK by

P :=
{(tB−1 C

0 B

) ∣∣∣∣ B ∈ GLg(Qp), C ∈ Hom(Qg
p, (Vpµp∞)

g), C∨ = C
}
.

Since (7-6) still holds with OK in place of k, the exact analogue of Corollary 7.7 holds
over OK . The P-representation on the free OK -module HSch,OK := C∞c (Vp62,OK )

is the Weil representation. It is instructive to note how this specializes to Spec K
and Spec k, where k now denotes the residue field of K . By passing to Spec k, we
recover the Weil representation of Corollary 7.7, which is again a P-representation.
Over the generic fiber, 61 becomes isomorphic to (Qp/Zp)

g noncanonically. There-
fore, Sp(Vp6, 〈 · , · 〉0)(K ) is isomorphic to Sp2g(Qp). The Weil representation
C∞c (Vp62, K ) over the generic fiber is the classical one described in Section 7A and
contains HSch,OK as an “integral model”. This example illustrates that the integral
model may admit a smaller action than the generic fiber. It would be worthwhile to
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describe a similar phenomenon for Weil representations in the case of nonordinary
p-divisible groups over OK .
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