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Small-dimensional projective
representations of symmetric and

alternating groups
Alexander S. Kleshchev and Pham Huu Tiep

We classify the irreducible projective representations of symmetric and alternating
groups of minimal possible and second minimal possible dimensions, and get a
lower bound for the third minimal dimension. On the way we obtain some new
results on branching which might be of independent interest.

1. Introduction

We denote by OSn and OAn the Schur double covers of the symmetric and alternating
groups Sn and An (see Section 2C for the specific choice we make). The goal of
this paper is to describe irreducible projective representations of symmetric and
alternating groups of minimal possible and second minimal possible dimensions, or,
equivalently the faithful irreducible representations of OSn and OAn of two minimal
possible dimensions. We also get a lower bound for the third minimal dimension.

Our ground field is an algebraically closed field F of characteristic p ¤ 2. If
p D 0, then the irreducible representations of OSn and OAn over F are roughly labeled
by the strict partitions of n, i.e., the partitions of n with distinct parts. To be more
precise to each strict partition of n, one associates one or two representations of OSn

(of the same dimension if there are two) and similarly for OAn.
Now, when p D 0, the representations corresponding to the partition .n/ are

called basic, while the representations corresponding to the partition .n� 1; 1/ are
called second basic. To define the basic and the second basic representations of
OSn and OAn in characteristic p > 0, one needs to reduce the first and second basic
representations in characteristic zero modulo p and take appropriate composition
factors. This has been worked out in detail by Wales [1979]. Again, there are one
or two basic representations for OSn and one or two basic representations for OAn (of
the same dimension if there are two), and similarly for the second basic.
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The dimensions of the basic and the second basic representations have also been
computed in [Wales 1979]. To state the result, set

�n WD

�
1 if p j n;

0 otherwise.

In particular, �n D 0 if p D 0. Then the dimensions of the basic representations for
OSn and OAn are:

a.OSn/ WD 2b
n�1��n

2
c; a. OAn/ WD 2b

n�2��n
2
c:

The dimensions of the second basic representations for OSn and OAn are:

b.OSn/ WD 2b
n�2��n�1

2
c.n� 2� �n� 2�n�1/;

b. OAn/ WD 2b
n�3��n�1

2
c.n� 2� �n� 2�n�1/:

Main Theorem. Let n� 12, G D OSn or OAn, and V be a faithful irreducible repre-
sentation of G over F. If dim V < 2b.G/, then V is either a basic representation
(of dimension a.G/) or a second basic representation (of dimension b.G/).

The assumption n� 12 in the Main Theorem is necessary — for smaller n there
are counterexamples. On the other hand, this assumption is not very important,
since dimensions of all irreducible representations of OSn and OAn are known for
n� 11 anyway; see [Jansen et al. 1995].

We prove the Main Theorem by induction, for which we need to establish some
new results on branching (see Sections 3–5). These results might be of independent
interest. We establish other useful results on the way. For example, we find the
labels for second basic representations in the modular case (see Section 3). Such
labels were known so far only for basic representations.

The scheme of our inductive proof of the Main Theorem is as follows. First of all,
it turns out that the treatment is much more streamlined if, instead of G-modules for
G 2 fOSn; OAng, one works with supermodules over certain twisted groups algebras
Tn and Un. This framework is prepared in Section 2. Consider now a faithful
irreducible G-module W which is neither a basic nor a second basic module. Then
there is an irreducible Tn-supermodule V such that W is a composition factor of
the G-module V . We aim to show that the restriction of V to a natural subalgebra
Tm with m2 fn�1; n�2; n�3g, contains enough “large” composition factors, i.e.,
composition factors which again are neither a basic nor a second basic supermodule
of Tm. In this case we can invoke the induction hypothesis to show that dim V

is at least a certain bound, which guarantees that dim W � 2b.G/ (cf. Section 6).
Otherwise, our branching results (Sections 4, 5) imply that V is labeled by a so-
called Jantzen–Seitz partition, in which case we have to restrict V further down to
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a natural subalgebra Tm with m 2 fn� 6; n� 7; n� 8g, and again show that this
restriction contains enough large composition factors.

The Main Theorem substantially strengthens Theorem A of [Kleshchev and
Tiep 2004], which in turn strengthened [Wagner 1977], and fits naturally into the
program of describing small dimension representations of quasisimple groups. For
representations of symmetric and alternating groups results along these lines were
obtained in [James 1983] and [Brundan and Kleshchev 2001b, Section 1]. For
Chevalley groups, similar results can be found in [Landazuri and Seitz 1974; Seitz
and Zalesskii 1993; Guralnick and Tiep 1999; Brundan and Kleshchev 2000; Hiss
and Malle 2001; Guralnick et al. 2002; Guralnick and Tiep 2004] and many others.

Throughout the paper we assume that n� 5, unless otherwise stated. For small
n symmetric and alternating groups are too small to be interesting.

2. Preliminaries

We keep the notation introduced in the Introduction.

2A. Combinatorics. We review combinatorics of partitions needed for projective
representation theory of symmetric groups, referring the reader to [Kleshchev 2005,
Part II] for more details. Let

` WD

�
1 if p D 0,
.p� 1/=2 if p > 0;

and I WD

�
Z�0 if p D 0,
f0; 1; : : : ; `g if p > 0.

For any n� 0, a partition �D .�1; �2; : : : / of n is p-strict if �r D �rC1 for some
r implies p j �r . A p-strict partition � is restricted if in addition�

�r ��rC1 < p if p j�r ;

�r ��rC1 � p if p−�r ;

for each r � 1. If p D 0, we interpret p-strict and restricted p-strict partitions as
strict partitions, i.e., partitions all of whose nonzero parts are distinct. Let RPp.n/

denote the set of all restricted p-strict partitions of n. The p0-height hp0.�/ of
� 2 Pp.n/ is:

hp0.�/ WD
ˇ̌
fr j 1� r � n and p−�r g

ˇ̌
.� 2RPp.n//:

Let � be a p-strict partition. We identify � with its Young diagram consisting of
certain nodes (or boxes). A node .r; s/ is the node in row r and column s. We use
the repeating pattern 0; 1; : : : ; `�1; `; `�1; : : : ; 1; 0 of elements of I to assign (p-)
contents to the nodes. For example, if pD5 then �D .16; 11; 10; 10; 9; 5; 1/2RP5,
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and the contents of the nodes of � are:

0 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0

0 1 2 1 0 0 1 2 1 0 0

0 1 2 1 0 0 1 2 1 0

0 1 2 1 0 0 1 2 1 0

0 1 2 1 0 0 1 2 1

0 1 2 1 0

0

The content of the node A is denoted by contp A. Since the content of the node
AD .r; s/ depends only on the column number s, we can also speak of contp s for
any s 2 Z>0.

Let � be a p-strict partition and i 2 I . A node AD .r; s/ 2 � is i -removable (for
�) if one of the following holds:

(R1) contp AD i and �A WD ��fAg is again a p-strict partition.

(R2) The node BD .r; sC1/ immediately to the right of A belongs to �, contp AD

contp BD i D 0, and both �B D ��fBg and �A;B WD ��fA;Bg are p-strict
partitions.

A node B D .r; s/ 62 � is i -addable (for �) if one of the following holds:

(A1) contp B D i and �B WD �[fBg is again an p-strict partition.

(A2) The node AD .r; s � 1/ immediately to the left of B does not belong to �,
contp AD contp B D i D 0, and both �AD �[fAg and �A;B WD �[fA;Bg

are p-strict partitions.

Now label all i-addable nodes of � by C and all i-removable nodes of � by �.
The i -signature of � is the sequence of pluses and minuses obtained by going along
the rim of the Young diagram from bottom left to top right and reading off all the
signs. The reduced i -signature of � is obtained from the i -signature by successively
erasing all neighboring pairs of the form C�. Nodes corresponding to �’s in the
reduced i-signature are called i-normal. The rightmost i-normal node is called
i -good. Define

"i.�/D #fi -normal nodes in �g D #f�’s in the reduced i -signature of �g:

Continuing with the example above, the 0-addable and 0-removable nodes are
labeled in the diagram at the top of the next page. The 0-signature of � is
�;�;C;C;�;�;�, and the reduced 0-signature is �;�;�. The nodes corre-
sponding to the �’s in the reduced 0-signature have been circled in the diagram.
The rightmost of them is 0-good.
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� �

�

�

�

hh

h

C

C

Set

Qei�D

�
�A if A is the i -good node,
0 if � has no i -good nodes:

The definitions imply that Qei�D 0 or Qei� 2RPp.n� 1/ if � 2RPp.n/.

2B. Crystal graph properties. We make RPp WD
F

n�0 RPp.n/ into an I -colored
directed graph as follows: � i

!� if and only if �D Qei�. Kang [2003, Theorem 7.1]
proves that this graph is isomorphic to B.ƒ0/, the crystal graph of the basic
representation V .ƒ0/ of the twisted Kac–Moody algebra of type A

.2/
p�1

(interpreted
as B1 if p D 0). The Cartan matrix .aij /i;j2I of this algebra is0BBBBBBBBB@

2 –2 0 � � � 0 0 0

–1 2 –1 � � � 0 0 0

0 –1 2 � � � 0 0 0
: : :

0 0 0 � � � 2 –1 0

0 0 0 � � � –1 2 –2

0 0 0 � � � 0 –1 2

1CCCCCCCCCA
if `� 2,

�
2 –4

–1 2

�
if `D 1,0BBBB@

2 –2 0

–1 2 –1 0

0 –1 2 –1

0 –1 2
: : :

: : :
: : :

1CCCCA if `D1.

In view of Kang’s result, we can use some nice properties of crystal graphs:

Lemma 2.1 [Stembridge 2003, Theorem 2.4]. Let i; j 2 I and i ¤ j . Then

(i) If "i.�/ > 0, then 0� "j . Qei�/� "j .�/� �aji .

(ii) If "i.�/ > 0 and "j . Qei�/D "j .�/ > 0, then Qei Qej�D Qej Qei�.
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2C. Double covers and twisted group algebras. There are two double covers of
the symmetric group but the corresponding group algebras over F are isomorphic,
so it suffices to work with one of them. Let OSn be the Schur double cover of the
symmetric group Sn in which transpositions lift to involutions. It is known that OSn

is generated by elements z; s1; : : : ; sn�1 subject only to the relations

zsr D sr z; z2
D 1; s2

r D 1;

sr srC1sr D srC1sr srC1;

sr st D zstsr .jr � t j> 1/

for all admissible r; t . Then z has order 2 and generates the center of OSn. We have
the natural map � W OSn! Sn,

1! hzi ! OSn
�
! Sn! 1;

which maps sr onto the simple transposition .r; r C 1/ 2 Sn. The Schur double
cover OAn is ��1.An/. We introduce the twisted group algebras:

Tn WD FOSn=.zC 1/; Un WD F OAn=.zC 1/:

Spin representations of OSn and OAn are representations on which z acts nontrivially.
The irreducible spin representations are equivalent to the irreducible projective
representations of Sn and An (at least when n¤ 6; 7). Moreover, z must act as �1

on the irreducible spin representations, so the irreducible spin representations of OSn

and OAn are the same as the irreducible representations of the twisted group algebras
Tn and Un, respectively. From now on we just work with Tn and Un.

We refer the reader to [Kleshchev 2005, Section 13.1] for basic facts on these
twisted group algebras. In particular, Tn is generated by the elements t1; : : : ; tn�1,
where tr D sr C .zC 1/, subject only to the relations

t2
r D 1; tr trC1tr D trC1tr trC1; tr ts D�tstr .jr � sj> 1/:

Moreover, Tn has a natural basis ftg j g 2 Sng such that Un D span.tg j g 2 An/.
This allows us to introduce a Z2-grading on Tn with .Tn/ N0 D Un and .Tn/ N1 D

span.tg j g 2 Sn nAn/. Thus Tn becomes a superalgebra, and we can consider its
irreducible supermodules.

2D. Supermodules over Tn and Un. Here we review some known results on rep-
resentation theory of Tn and Un described in detail in [Kleshchev 2005, Chapter 22]
following [Brundan and Kleshchev 2001a; 2002]. It is important that the different
approaches of these last two papers are reconciled in [Kleshchev and Shchigolev
2012], where some additional branching results, which will be crucial for us here,
are also established.
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First of all, we consider the irreducible supermodules over Tn. These are labeled
by the partitions � 2RPp.n/. It will be convenient to set

�.m/ WD

�
0 if m is even,
1 if m is odd;

(2-1)

and
a.�/ WD �.n� hp0.�//: (2-2)

The irreducible Tn-supermodule corresponding to � 2RPp.n/ will be denoted
by D�, so that

fD�
j � 2RPp.n/g

is a complete and irredundant set of irreducible Tn-supermodules up to isomorphism.
Moreover, D� is of type M if a.�/D 0 and D� is of type Q if a.�/D 1. Recall the
useful fact that a.�/ has the same parity as the number of nodes in � of nonzero
content; see [Kleshchev 2005, (22.15)].

Let V be a Tn-supermodule, m1; : : : ;mr 2 Z>0, and �1; : : : �r 2RPp.n/. We
use the notation m1D�1

C � � � Cmr D�r

2 V to indicate that the multiplicity of
each D�k

as a composition factor of V is at least mk .

2E. Modules over Tn and Un. Now, we pass from supermodules over Tn to
usual modules over Tn and Un. This is explained in detail in [Kleshchev 2005,
Section 22.3]. Assume first that a.�/ D 0. Then D� is irreducible as a usual
Tn-module. We denote this Tn-module again by D�. Moreover, D� splits into two
nonisomorphic irreducible modules on restriction to Un: resTn

Un
D� D E�

C˚E�
�.

On the other hand, let a.�/D 1. Then, considered as a usual module, D� splits as
two nonisomorphic Tn-modules: D� DD�

C˚D�
�. Moreover, E� WD resTn

Un
D�
C Š

resTn

Un
D�
� is an irreducible Un-module. Now,

fD�
j � 2RPp.n/; a.�/D 0g [ fD�

C;D
�
� j � 2RPp.n/; a.�/D 1g

is a complete irredundant set of irreducible Tn-modules up to isomorphism, and

fE�
j � 2RPp.n/; a.�/D 1g [ fE�

C;E
�
� j � 2RPp.n/; a.�/D 0g

is a complete irredundant set of irreducible Un-modules up to isomorphism.
We note that it is usually much more convenient to work with Tn-supermodules,

and then “desuperize” at the last moment using the theory described above to obtain
results on usual Tn-modules and Un-modules; see Remark 22.3.17 in [Kleshchev
2005]. For future use, we also point out that if V is an irreducible Tn-supermodule
and W is an irreducible constituent of V as a usual Tn-module (or OSn-module),
then

dim V

dim W
D 2a.V /:
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2F. Weight spaces and superblocks. Let V be a Tn-supermodule. We recall the
notion of the formal character of V following [Brundan and Kleshchev 2003] and
[Kleshchev 2005, Section 22.3]. Let M1; : : : ;Mn be the Jucys–Murphy elements
of Tn; see [Kleshchev 2005, (13.6)]. The main properties of the Jucys–Murphy
elements are as follows:

Theorem 2.2.

(i) [Kleshchev 2005, Lemma 13.1.1] M 2
k

and M 2
l

commute for all 1� k; l � n.

(ii) [Kleshchev 2005, Lemma 22.3.7] If V is a finite-dimensional Tn-supermodule,
then for all 1� k � n, the eigenvalues of M 2

k
on V are of the form i.i C 1/=2

for some i 2 I .

(iii) [Brundan and Kleshchev 2003, Theorem 3.2] The even center of Tn is the set
of all symmetric polynomials in the M 2

1
; : : : ;M 2

n .

For an n-tuple i D .i1; : : : ; in/ 2 In, the i -weight space of a finite-dimensional
Tn-supermodule V is:

Vi WD fv 2 V j .M 2
k � ik.ik C 1/=2/N v D 0 for N � 0 and k D 1; : : : ; ng:

By Theorem 2.2, we have V D
L

i2I n Vi : If Vi ¤ 0, we say that i is a weight of
V .

We denote by "i.V / the maximal nonnegative integer m such that D� has a
nonzero i -weight space with the last m entries of i equal to i .

The superblock theory of Tn is similar to the usual block theory but uses even
central idempotents. Denote

�n WD f
 W I ! Z�0 j

X
i2I


 .i/D ng:

Also denote by �i the function from I to Z�0 which maps i to 1 and j to 0 for all
j ¤ i . For 
 2 �n, we let

I
 WD fi D .i1; : : : ; in/ 2 In
j �i1
C � � �C �in

D 
 g:

If V is a finite-dimensional Tn-supermodule, then by Theorem 2.2(iii),

V Œ
 � WD
M
i2I


Vi

is a Tn-superblock component of V , referred to as the 
 -superblock component
of V , and the decomposition of V into the Tn-superblock components (some of
which might be zero) is:

V D
M

2�n

V Œ
 �:
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The 
 -superblock consists of all Tn-supermodules V with V Œ
 �D V .
Let � 2 RPp.n/. For any i 2 I denote by 
i.�/ the number of nodes of � of

content i . Then we have a function


 .�/ WD
X
i2I


i.�/�i 2 �n:

Theorem 2.3 [Kleshchev 2005, Theorem 22.3.1 (iii)]. Let �2RPp.n/ and 
 2�n.
Then D� is in the 
 -superblock of Tn if and only if 
 .�/D 
 .

2G. Branching rules. Given a function 
 W I ! Z�0 and i 2 I we can consider
the function 
 � �i W I ! Z�0 if 
 .i/ > 0. Now, let � 2RPp.n/. Denote

resi D�
WD

�
resTn

Tn�1
D�
�
Œ
 .�/� �i � .i 2 I/

interpreted as zero if 
i.�/D 0. In other words,

resi D�
WD

M
i2I n; inDi

D�
i .i 2 I/: (2-3)

We have
resTn

Tn�1
D�
D

M
i2I

resi D�:

Moreover, either resi D� is zero, or resi D� is self-dual indecomposable, or resi D�

is a direct sum of two self-dual indecomposable supermodules isomorphic to each
other and denoted by eiD

�. If resi D� is zero or indecomposable we denote
eiD

� WD resi D�. From now on, for any Tn-supermodule V we will always denote

resn�j V WD resn
n�j V WD resTn

Tn�j
V:

Theorem 2.4 [Kleshchev 2005, (22.14), Theorem 22.3.4; Kleshchev and Shchigolev
2012, Theorem A]. Let � 2 RPp.n/. There exist Tn�1-supermodules eiD

� for
each i 2 I , unique up to isomorphism, satisfying the following conditions:

(i) resn�1 D� is isomorphic to�
e0D�˚ 2e1D�˚ � � �˚ 2e`D

� if a.�/D 1,
e0D�˚ e1D�˚ � � �˚ e`D

� if a.�/D 0.

(ii) For each i 2 I , eiD
� ¤ 0 if and only if � has an i-good node A, in which

case eiD
� is a self-dual indecomposable supermodule with irreducible socle

and head isomorphic to D�A .

(iii) If � has an i-good node A, then the multiplicity of D�A in eiD
� is "i.�/.

Furthermore, a.D�A/ equals a.D�/ if and only if i D 0.
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(iv) If � 2 RPp.n� 1/ is obtained from � by removing an i-normal node then
D� is a composition factor of eiD

�.

(v) eiD
� is irreducible if and only if "i.�/D 1;

(vi) resn�1 D� is completely reducible if and only if "i.�/D 0 or 1 for all i 2 I .

(vii) "i.D
�/D "i.�/.

(viii) [Brundan and Kleshchev 2006, Theorem 1.2 (ii)] Let A be the lowest re-
movable node of � such that �A 2RPp.n� 1/. Assume that A has content
i and that there are m i-removable nodes strictly below A in �. Then the
multiplicity of D�A in eiD

� is mC 1.

Finally, one rather special result:

Lemma 2.5 [Phillips 2004, Proposition 3.17]. Let p > 3 and D;E be irreducible
Tn-supermodules such that resn�1 D and resn�1 E are both homogeneous with the
same unique composition factor. Then D ŠE.

2H. Reduction modulo p. To distinguish between the irreducible modules in char-
acteristic 0 and p in this section we will write D�

0 versus D�
p . We also distinguish

between I0 D Z�0 and Ip D f0; 1; : : : ; `g. To every i 2 I0 we associate Ni 2 Ip via
Ni WD contp i . If i D .i1; : : : ; in/ 2 In

0
then Ni WD .Ni1; : : : ; Nin/ 2 In

p .
Denote reduction modulo p of a finite-dimensional Tn-supermodule V in char-

acteristic zero by V . In particular we have D�
0 for any strict partition � of n.

In fact, let .K;R; F/ be the splitting p-modular system which is used to perform
reduction modulo p. In particular, FDR=.�/ where .�/ is the maximal ideal of
R. So we have NV D VR˝R F for some Tn-invariant superhomogeneous lattice VR

in V .
Recall that char F¤ 2 so we may assume that all i.i C 1/=2 with i 2 I belong

to the ring of integers R. As usual we consider elements of Ip as elements of F.
Then it is easy to see that

i.i C 1/=2C .�/D Ni.Ni C 1/=2 .i 2 I0/: (2-4)

Let again V be an irreducible Tn-supermodule in characteristic zero. When
performing its reduction modulo p we can choose a Tn-invariant R-lattice VR

of V that respects the weight space decomposition: VR D
L

i2I n
0

Vi ;R, where
Vi ;R D VR \ Vi . Then Vi WD Vi ;R ˝R F � V Ni . It follows that for an arbitrary
j 2 In

p we have

Vj D

M
i2I n

0

NiDj

Vi : (2-5)
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This implies the following result (see the proof of [Kleshchev and Shchigolev 2012,
Lemma 8.1.10]):

Proposition 2.6. Let � be a strict partition of n and D�
0 be the corresponding

irreducible Tn-supermodule in characteristic zero. Then all composition factors of
the reduction D�

0 modulo p belong to the superblock 
 , where 
 D
P

A2� �contp A,
where the sum is over all nodes A of �.

We now use reduction modulo p to deduce some very special results on branching.

Lemma 2.7. We have:

(i) if p > 5 and nD pC 1, then resn�1 D
.p�1;2/
p has a composition factor D�

with "2.�/D 1;

(ii) if p > 3 and nD pC 4, then resn�1 D
.pC2;2/
p has a composition factor D�

with "0.�/D 2.

Proof. We will use the characterization of "i.�/ given in Theorem 2.4(vii).

(i) Let 
 D 3�1 C �` C 2
P

i¤1;` �i . Note that D
.p�1;2/
0

is the only ordinary
irreducible in the 
 -superblock, and D

.p�1;2/
p is the only p-modular irreducible in

the 
 -superblock. It follows that

D
.p�1;2/
0

DmD.p�1;2/
p

for some multiplicity m. So the restriction resn�1 D
.p�1;2/
p has the same composi-

tion factors as the reduction modulo p of the restriction

resn�1 D
.p�1;2/
0

DD
.p�1;1/
0

˚D
.p�2;2/
0

:

Now, note using (2-5) that "2.D
.p�2;2/
0

/D 1.

(ii) Let 
 D4.�0C�1/C�`C2
P

i¤0;1;` �i . Note that D
.pC2;2/
0

is the only ordinary
irreducible in the 
 -superblock, and D

.pC2;2/
p is the only p-modular irreducible in

the 
 -superblock. It follows that

D
.pC2;2/
0

DmD.pC2;2/
p

for some multiplicity m. So the restriction resn�1 D
.pC2;2/
p has the same composi-

tion factors as the reduction modulo p of the restriction

resn�1 D
.pC2;2/
0

DD
.pC2;1/
0

˚D
.pC1;2/
0

:

Now, note using (2-5) that "0.D
.pC1;2/
0

/D 2. �
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3. Basic and second basic modules

3A. Definition, properties, and dimensions. If the characteristic of the ground
field is zero, then the basic supermodule An and the second basic supermodule
Bn over Tn are defined as

An WDD.n/ and Bn WDD.n�1;1/:

If the ground field has characteristic p > 0, it follows from the results of [Wales
1979] that reduction modulo p of the characteristic zero basic supermodule has only
one composition factor (which could appear with some multiplicity). We define the
basic supermodule An in characteristic p to be this composition factor.

Moreover, again by [Wales 1979], reduction modulo p of the characteristic
zero second basic supermodule will always have only one composition factor
(with some multiplicity) which is not isomorphic to the basic supermodule — this
new composition factor will be referred to as the second basic supermodule in
characteristic p and denoted by Bn.

Thus we have defined the basic supermodule An and the second basic supermod-
ule Bn for an arbitrary characteristic.

When p > 0, write n in the form

nD apC b .a; b 2 Z; 0< b � p/: (3-1)

Define the functions 
An ; 
Bn 2 �n by


An WD a.2�0C � � �C 2�`�1C �`/C
bP

sD1

�contp s;


Bn WD a.2�0C � � �C 2�`�1C �`/C
b�1P
sD1

�contp sC �0:

Lemma 3.1. An is in the 
An-superblock and Bn is in the 
Bn-superblock.

Proof. This follows from the definitions of An and Bn above in terms of reductions
modulo p and Proposition 2.6. �

Theorem 3.2 [Wales 1979].

(i) dim An D 2b
n��n

2
c
D

�
2b

n
2
c if p−n,

2b
n�1

2
c if p j n.

(ii) An is of type M if and only if n is odd and p−n, or n is even and p j n.

(iii) The only possible composition factor of resn�1 An is An�1.

Theorem 3.3 [Wales 1979].
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(i) dim Bn D 2b
n�1��n�1

2
c.n� 2� �n� 2�n�1/; equivalently,

dim Bn D

8̂<̂
:

2b
n�1

2
c.n� 2/ if p−n.n� 1/,

2b
n�1

2
c.n� 3/ if p j n,

2b
n�2

2
c.n� 4/ if p j .n� 1/.

(ii) Bn is of type M if and only if n is odd and p j .n�1/, or n is even and p−.n�1/.

(iii) The only possible composition factors of resn�1 Bn are An�1 and Bn�1.

Finally, we state two results concerning the weights of basic modules.

Lemma 3.4 [Phillips 2004, Corollary 3.12]. The only weight appearing in An is

.contp 0; contp 1; : : : ; contp.n� 1//:

Lemma 3.5 [Phillips 2004, Lemma 3.13]. Let p > 3 and D be an irreducible
Tn-supermodule. Suppose that there exist i; j ; k 2 I (not necessarily distinct) such
that every weight i appearing in D ends on ij k. Then D is basic.

3B. Labels. It is important to identify the partitions which label the irreducible
modules An and Bn in characteristic p. Recall the presentation (3-1). Define the
partitions ˛n 2RPp.n/ as follows:

˛n WD

�
.pa; b/ if b ¤ p,
.pa;p�1; 1/ if b D p,

and the partitions ˇn 2RPp.n/ by

ˇn WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.n�1; 1/ if n< p,

.p�2; 2/ if nD p,

.p�2; 2; 1/ if nD pC1,

.pC1;pa�1; b�1/ if n> pC1 and b ¤ 1,

.pC1;pa�2;p�1; 1/ if n> pC1 and b D 1.

For technical reasons we will also need the partition 
n 2RPp.n/ only defined
for n 6� 0; 3 .mod p/:


n WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.n�2; 2/ if n< p or nD pC1,

.p�1; 2; 1/ if nD pC2,

.pC2;pa�2;p�1/ if n> pC2 and b D 1,

.pC2;pa�2;p�1; 1/ if n> pC2 and b D 2,

.pC2;pa�1; b�2/ if n> pC2 and b ¤ 1; 2; 3;p.

For p D 3 we define

ın WD .5; 3
a�1; 1/ .if a� 2 and b D 3/:

Finally, for p > 3 we define (for n 6� 1; 4 .mod p/)
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ın WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

.n�3; 3/ or .n�3; 2; 1/ if n� p,

.p�1; 3/ if nD pC2,

.p�1; 3; 1/ or .p; 2; 1/ if nD pC3,

.pC2; 2; 1/ if nD pC5> 10,

.pC3; b�3/ or .pC2; b�3; 1/ if aD 1 and 5< b < p,

.pC2;p�3; 1/ or .pC2;p�2/ if nD 2p,

.pC3;pa�2;p�1/ if a� 2 and b D 2,

.pC2;pa�1; 1/ or .pC3;pa�2;p�1; 1/ if a� 2 and b D 3,

.pC2;pC1;pa�2; 2/ if a� 2 and b D 5< p,

.pC3;pa�1; b�3/ or

.pC2;pC1;pa�2; b�3/
if a� 2 and 5< b < p,

.pC2;pa�1;p�2/ or

.pC2;pC1;pa�2;p�3/
if a� 2 and b D p.

(In the cases where ın is not unique, this notation is used to refer to either of the
two possibilities).

The cases where the formulas above do not produce a partition in RPp.n/ should
be ignored. For example, if p D 3, there is no 
5, because the second line of the
definition of 
n gives .2; 2; 1/ 62RP3.5/.

Theorem 3.6. Let � 2RPp.n/.

(i) An ŠD˛n .

(ii) Bn ŠDˇn .

(iii) If D˛n�1 appears in the socle of resn�1 D� then �D ˛n or ˇn.

(iv) If Dˇn�1 appears in the socle of resn�1 D� then �D ˇn or 
n. In particular,
� must be ˇn if n� 0; 3 .mod p/.

(v) If D
n�1 appears in the socle of resn�1 D� then � D 
n or ın. Conversely,
D
n�1 appears in the socle of resn�1 Dın .

Proof. (i) is proved in [Kleshchev 2005, Lemma 22.3.3].

(iii), (iv), and (v) come from Theorem 2.4 by analyzing how good nodes can be
added to ˛n�1; ˇn�1, and 
n�1, respectively.

(ii) If n<p then the irreducible Tn-supermodules in characteristic p are irreducible
reductions modulo p of the irreducible modules in characteristic zero corresponding
to the same partition. So the result is clear in this case. We now apply induction on
n to prove the result for n�p. Let BnDDˇ . By Theorem 3.3(iii) and the inductive
assumption, ˇ can be obtained from ˛n�1 or ˇn�1 by adding a good node.
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By (iii), the only partition other than ˛n, which can be obtained out of ˛n�1 by
adding a good node is ˇn. Moreover, ˇn can indeed be obtained out of ˛n�1 in such
a way provided n 6� 0; 1 .mod p/. This proves that ˇDˇn unless n� 0; 1 .mod p/.

By (iv), the only partition other than ˇn, which can be obtained out of ˇn�1 by
adding a good node is 
n. Let n� 0 .mod p/. Then there is no 
n, and it follows
that ˇ D ˇn in this case also.

Finally, to complete the proof of the theorem, we just have to prove that ˇ D ˇn

when n� 1 .mod p/. But we have only two options ˇ D ˇn and ˇ D 
n, and the
second one is impossible by Lemma 3.1. �

3C. Some branching properties.

Lemma 3.7. Let D be an irreducible Tn-supermodule.

(i) If all composition factors of resn�1 D are isomorphic to An�1, then D ŠAn.

(ii) If all composition factors of resn�1 D are isomorphic to An�1 or Bn�1, then
D ŠAn or D Š Bn, with the following exceptions, when the result is indeed
false:

(a) p > 5, nD 5, and D DD.3;2/;
(b) p D 5, nD 6, and D DD.4;2/;
(c) p D 3, nD 7, and D DD.5;2/.

(iii) Suppose that all composition factors of resm D are isomorphic to Am or Bm

for some 8�m� n. Then D ŠAn or D Š Bn.

Proof. (i) is proved in [Kleshchev and Tiep 2004, Lemma 2.4]. For (ii), if An�1

appears in the socle of resn�1 D then by Theorem 3.6(iii), D is isomorphic to An

or Bn. Thus we may assume that the socle of D� is isomorphic to a direct sum of
copies of Bn�1 D Dˇn�1 . By Theorem 3.6(iv) we just need to rule out the case
D DD
n .

When n< p we have 
n D .n� 2; 2/, and D.n�3;2/ is a composition factor of
resn�1 D
n , unless nD 5, when we are in (a), and this is indeed an exception.

If n > p, let �n�1 be the partition obtained from 
n by removing the bottom
removable node. It is easy to see using the explicit definitions of the partitions
involved, that �n�1 is a restricted p-strict partition of n� 1 different from ˛n�1

and ˇn�1, unless n D pC 1 or n D pC 4. Since the bottom removable node is
always normal, in the nonexceptional cases we can apply Theorem 2.4(iv) to get a
composition factor D�n�1 in resn�1 D
n .

Now we deal with the exceptional cases n D pC 1 and n D pC 4. If p D 3,
then the case n D pC 1 does not arise since we are always assuming n � 5. If
nD pC 4D 7, we are in the case (c), which is indeed an exception, as for p D 3

the only irreducible supermodules over T6 are basic and second basic.
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Similarly, we get the exception (b) for p D 5, nD pC 1. All the other cases do
not yield exceptions in view of Lemma 2.7.

To prove (iii), we proceed by induction on k D n�m, where the case k D 0

is obvious, and the case k D 1 follows from (ii). For the induction step, if U

is any composition factor of resn�1 D, then any composition factor of resm U is
isomorphic to Am or Bm. By the induction hypothesis, U is isomorphic to An�1

or Bn�1. Hence D ŠAn or D Š Bn by (ii). �

In the following two results, which are obtained applying Theorem 2.4, ın means
any of the two possibilities for ın if ın is not uniquely defined.

Lemma 3.8. Let n� 6, and denote R WD resn�1 D
n . We have:

(i) If n< p, then RŠ 2�.n/.D
n�1 ˚Dˇn�1/.

(ii) If nD pC 1, then D˛n�1 C 2Dˇn�1 2R.

(iii) If a � 2 and b D 1, then 2�.n/.2Dˇn�1 CDın�1/ 2 R, except for the case
nD 7;p D 3, when we have 4Dˇn�1 2R.

(iv) If b D 2, then 2�.nC1/Dˇn�1 CD
n�1 2R.

(v) If aD 1 and b D 4, then 4Dˇn�1 2R.

(vi) If a� 2 and b D 4, then 2�.n/.2Dˇn�1 CDın�1/ 2R.

(vii) If a� 1 and 4< b < p, then 2�.aCb/.Dˇn�1 CD
n�1/ 2R.

Notation. Let � 2 RPp.n/ and j 2 Z>0. We denote by dj .�/ the number of
composition factors (counting multiplicities) not isomorphic to An�j ;Bn�j in
resn

n�j D�.

Lemma 3.9. We have d1.ın/ � 2 and d2.ın/ � 3, except possibly in one of the
following cases:

(i) n D 6, p > 5, and ın D .3; 2; 1/, in which case resn�1 Dın D D
n�1 and
resn�2 Dın D 2Dˇn�2 .

(ii) nD 7, p > 3, and ın D .4; 3/, in which case

resn�1 Dın D 2D
n�1 ;

resn�2 Dın D 2Dˇn�2 C 2D
n�2 if p > 5;

resn�2 Dın 3 4Dˇn�2 C 2D˛n�2 if p D 5I

(iii) nD 7, p > 5, and ın D .4; 2; 1/, in which case

resn�1 Dın DD
n�1 CDın�1 ;

resn�2 Dın DDˇn�2 C 2D
n�2 :
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(iv) p > 3, nD pC 3, ın D .p; 2; 1/, in which case

resn�1 Dın 3 2D
n�1 CD˛n�1 ;

resn�2 Dın 3D˛n�2 C 2Dˇn�2 C 2D
n�2 :

(v) p > 3, nDmpC 3 with m� 2, ın D .pC 2;pm�1; 1/, in which case

resn�1 Dın 3 2D
n�1 ; resn�2 Dın 3 2 � 2�.m�1/Dˇn�2 C 2D
n�2 :

(vi) p > 5, nD pC 6, ın D .pC 3; 3/, in which case

resn�1 Dın 3 2D
n�1 ; resn�2 Dın 3 2Dˇn�2 C 2D
n�2 :

(vii) p D 3 and ın D .5; 3a�1; 1/, in which case

resn�1 Dın 3 2D
n�1 ; resn�2 Dın 3 2 � 2�.a�1/Dˇn�2 C 2D
n�2 :

(viii) p > 3, n D pm for an integer m � 2, and ın D .p C 2;pm�2;p � 2/, in
which case resn�1 Dın D 2�.m/D
n�1 and

resn�2 Dın 3

8<:
2D
n�2 C 2Dˇn�2 if p > 5,
2Dın�2 C 4Dˇn�2 if p D 5 and n> 10,
4Dˇn�2 if p D 5, and nD 10.

4. Results involving Jantzen–Seitz partitions

4A. JS-partitions. Let � 2 RPp.n/. We call � a JS-partition, written � 2 JS, if
there is i 2 I such that "i.�/ D 1 and "j .�/ D 0 for all j 2 I n fig. In this case
we also write � 2 JS.i/ or D� 2 JS.i/. The notion goes back to [Jantzen and Seitz
1992; Kleshchev 1994].

Note that if � D .�1 � �2 � � � � � �h > 0/ is a JS-partition then the bottom
removable node A WD .h; �h/ is the only normal node of �, and in this case we have
� 2 JS.i/, where i D cont A.

Lemma 4.1. Let ın be one of the explicit partitions defined in Section 3B. Then
ın 2 JS.i/ for some i if and only if p > 3 and one of the following happens:

(i) nD 6, p > 5, and ın D .3; 2; 1/; in this case ın 2 JS.0/ and a.�/D 1;

(ii) nD 7, p > 3, and ın D .4; 3/; in this case a.�/D 1 and ın 2 JS.2/;

(iii) n D mp for m � 2 and ın D .pC 2;pm�2;p � 2/; in this case ın 2 JS.2/,
a.�/D �.m/, and

resn�2 Dın 3

8<:2D
n�2 C 2Dˇn�2 if p > 5,
2Dın�2 C 4Dˇn�2 if p D 5 and n> 10,
4Dˇn�2 if p D 5, and nD 10.
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Proof. This is proved by inspection of the formulas for ın and applying the definition
of the Jantzen–Seitz partitions. �

Now, we record some combinatorial results of A. Phillips.

Lemma 4.2 [Phillips 2004, Lemma 3.8]. For � 2RPp.n/ the following are equiv-
alent:

(i) � 2 JS.0/;

(ii) � 2 JS.0/ and Qe0� 2 JS.1/;

(iii) �2 JS.i/ and Qei�2 JS.j / for some i; j 2 I and exactly one of i and j is equal
to 0.

Lemma 4.3 [Phillips 2004, Lemma 3.14]. Let � 2RPp.n/. Then:

(i) �D ˛n and n� 1 .mod p/ if and only if "i.�/D 0 for all i ¤ 0 and Qe0.�/ 2

JS.0/;

(ii) �D ˛n and n 6� 0; 1; 2 .mod p/ if and only if � 2 JS.i/ and Qei� 2 JS.j / for
some i; j 2 I n f0g.

Lemma 4.4 [Phillips 2004, Lemma 3.7]. Let � D .la1

1
; : : : ; l

am
m / 2 RPp.n/ with

l1 > l2 > � � � > lm > 0. Then � 2 JS.0/ if and only if lm D 1 and contp ls D

contp.lsC1C 1/ for all s D 1; 2; : : : ;m� 1.

4B. Jantzen–Seitz partitions and branching.

Lemma 4.5. Let � 2 JS.i/ and assume that D� is not basic. Then one of the
following happens:

(i) i D 0 and Qe0� 2 JS.1/;

(ii) i D `, "`�1. Qe`�/� 2 and "j . Qe`�/D 0 for all j ¤ `� 1.

(iii) i D 1, "0. Qe1�/� 2 and "j . Qe1�/D 0 for all j ¤ 0.

(iv) p > 3, i ¤ 0; `, "i�1. Qei�/ � 1, "iC1. Qei�/ D 1 and "j . Qei�/ D 0 for all j ¤

i�1; iC1. Moreover, if in addition, we have i ¤ 1, then "i�1. Qei�/D 1.

Proof. Assume first that Qei� 2 JS.j / for some j . Then by Lemma 4.3, exactly one
of i; j is 0. Hence by Lemma 4.2, we are in (i).

Now, let Qei� 62 JS. Then, by Lemma 2.1, "j . Qei�/ > 0 implies that j D i ˙ 1;
moreover "iC1. Qei�/ � 1, and "i�1. Qei�/ � 1 if i ¤ 1; `. If i D `, it now follows
that we are in (ii). If i D 1 we are in (iii) or in (iv). If i ¤ 0; 1; `, we are in (iv). �
Lemma 4.6. Let � 2 RPp.n/ satisfy Lemma 4.5 (iv). Then one of the following
occurs:

(i) d2.�/� 4.

(ii) a.�/D 0, i D 1, and d2.�/� 3.
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(iii) D� Š Bn.

(iv) p > 5, n D mp for m � 2, � D ın D .p C 2;pm�2;p � 2/ 2 JS.2/, and
resn�2 Dın 3 2D
n�2 C 2Dˇn�2 :

(v) nD 5, p > 5, and �D .3; 2/.

(vi) nD 7, p > 3, and �D .4; 3/.

Proof. We may assume that D� is not basic. We may also assume that D� is not
second basic — otherwise we are in (iii). By Theorem 2.4 we have

resn�1 D�
D 2a.�/D Qei�:

Assume that i ¤ 1. Then i � 1¤ 0 and a. Qei�/C a.�/D 1, so we have

resn�2 D�
D 2.D Qei�1 Qei�CD QeiC1 Qei�/:

If none of D Qei˙1 Qei� is basic or second basic, we are in (i).
Suppose that D Qei˙1 Qei� ŠAn�2. By Theorem 3.6, we may assume that �D 
n.

But inspection shows that 
n is never JS, unless nD 5 and p > 5, in which case,
however, � 2 JS.1/. Suppose now that D Qei˙1 Qei� Š Bn�2. Then we may assume
that �D ın. It follows from Lemma 4.1 that we are in the cases (iv) or (vi).

Now, let i D 1. Theorem 2.4 then gives

resn�2 D�
3 2a.�/e0D Qe1�C 2D Qe2 Qe1�:

If one of D Qe1˙1 Qe1� is basic or second basic then �D 
n or �D ın. If �D 
n then
we are in (v). The case �D ın is impossible by Lemma 4.1. So we may assume
that neither of D Qe1˙1 Qe1� is basic or second basic.

If "0. Qe1�/� 2, then D Qe0 Qe1� appears in e0D Qe1� with multiplicity at least 2, and
we are in (i). Finally, let "0. Qe1�/D "2. Qe1�/D 1. Then

resn�2 D�
D 2a.�/D Qe0 Qe1�C 2D Qe2 Qe1�:

If a.�/D 1, we still get 4 composition factors, but if a.�/D 0, we do get only 3

composition factors, which is case (ii). �

Lemma 4.7. Let p > 3 and let � 2 RPp.n/ satisfy Lemma 4.5 (ii) or (iii). Then
one of the following occurs:

(i) d2.�/� 4.

(ii) D� ŠAn.

(iii) p D 5, nDmp for m� 2, �D ın D .pC 2;pm�2;p� 2/, and

resn�2 Dın 3

�
2Dın�2 C 4Dˇn�2 if n> 10,
4Dˇn�2 if nD 10.
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Proof. It follows from the assumption that all weights of D� are of the form
.�; i�1; i/ and that D� has a weight of the form .�; i�1; i�1; i/. If all weights
of D� are of the form .�; i�1; i�1; i/, then D� is basic by Lemma 3.5. If
a weight of the form .�; i; i�1; i/ appears in D�, then so does .�; i; i; i�1/

or .�; i�1; i; i/ thanks to [Kleshchev 2005, Lemma 20.4.1], which leads to a
contradiction. If .�; j ; i�1; i/ appears with j ¤ i; i�2, then .�; i�1; j ; i/ also
appears, again leading to a contradiction. So i D ` and weights of the form
.�; `�1; `�1; `/ and .�; `�2; `�1; `/ appear in D�. In this case a.�/Ca. Qe`�/D1,
and so Theorem 2.4 yields a contribution of 4D Qe`�1 Qe`� into resn�2 D�. So, we
are in (i) unless Qe`�1 Qe`�D ˛n�2 or ˇn�2. If Qe`�1 Qe`�D ˛n�2, then �D ˇn or 
n,
which never satisfy the assumptions of the lemma. If Qe`�1 Qe`� D ˇn�2, then we
may assume that �D ın, which by Lemma 4.1 leads to the case (iii). �

Note that if p D 3 then the cases (ii) and (iii) of Lemma 4.5 are the same.

Lemma 4.8. Let p D 3 and � 2 RPp.n/ satisfy Lemma 4.5 (ii). Then one of the
following occurs:

(i) d2.�/� 4;

(ii) � is of the form .�; 5; 4; 2/, a.�/D0, in which case resn�2 D� has composition
factor D.�;5;3;1/ 6ŠAn�2;Bn�2 with multiplicity 3. In particular, d2.�/� 3.

(iii) D� ŠAn or Bn.

Proof. If � is neither basic nor second basic, then the assumptions imply that �
has one of the following forms: .�; 5; 4; 3a; 2/, .�; 6; 4; 3b; 2/, or .�; 5; 4; 2/ with
a > 0 and b � 0. In the first two cases, Theorem 2.4 gives at least 4 needed
composition factors. So we may assume that we are in (ii). The rest now follows
from Theorem 2.4. �

4C. Class JS.0/. This is the most difficult case since modules D� 2 JS.0/ tend to
branch with very small amount of composition factors.

Lemma 4.9. Let � 2 RPp.n/ and assume that there exist distinct i; j 2 I n f0g

such that "i.�/D "j .�/D 1 and "k.�/D 0 for all k ¤ i; j . Then Qei Qej� 62 JS.0/.

Proof. Assume first that j ¤ 1. Then by Lemma 2.1, we have "0. Qej�/D 0. Now,
if i ¤ 1 then similarly "0. Qei Qej�/ D 0, and Qei Qej� 62 JS.0/. If i D 1, we note by
Lemma 4.2 that

P
k "k. Qej�/> 1. So there must exist k¤ 0; 1 such that "k. Qej�/� 1.

Now by Lemma 2.1, we have "k. Qei Qej�/� 1, which shows that Qei Qej� 62 JS.0/.
Now assume that j D1. Taking into account Lemma 2.1, we must have "i. Qe1�/D

"0. Qe1�/D 1. By Lemma 4.4, Qe1� is obtained from Qei Qe1� by adding a box of content
i to the first row. Now � must be obtained from Qe1� by adding a box of residue 1

to the last row, but then again by Lemma 4.4, we must have "1.�/� 2. �
Our main result on branching of JS.0/-modules is as follows:
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Proposition 4.10. Let � 2 RPp.n/ belong to JS.0/ and � ¤ ˛n; ˇn. Assume in
addition that

(i) n> 12 if p D 3.

(ii) n> 16 if p D 5,

(iii) n> 10 if p � 7.

Then d6.�/� 24, with three possible exceptions:

(i) p > 7, �D .p� 3; 3; 2; 1/, in which case we have

4Ap�3C 20Bp�3C 16D.p�5;2/
C 4D.p�6;2;1/

2 respC3
p�3

D�:

(ii) p � 7, �D .pC 2;pC 1;pa;p� 1; 1/ with a� 0, in which case we have

4D.pC2;pC1;pa;p�6/
C 16D.pC2;paC1;p�5/

C 4An�6C 20Bn�6 2 resn�6 D�:

(iii) p D 5, nD 18, and �D .7; 6; 4; 1/, in which case

20D.7;4;1/
C 16B12C 8A12 2 res12 D�:

Proof. We will repeatedly use the notation �D .�; lar
r ; l

arC1

rC1
; : : : ; l

am
m / if we only

want to specify the last m� r C 1 lengths of the parts of �.
First we consider the case p D 3. In this case, using Lemma 4.4 we see that � is

of the form .�; 2; 1/. Since n> 12 we could not have � D∅, and by Lemma 4.4
again, we must have �D .�; 3a; 2; 1/ with a> 1 or �D .�; 4; 2; 1/. We could not
have �D∅ since �¤ ˛n; ˇn, so by Lemma 4.4, we can get more information about
�, namely �D .�; 4; 3a; 2; 1/ or �D .�; 5; 4; 2; 1/. Since �¤ ˇn and n> 12, we
conclude that � ¤∅ in both cases.

Now, we get some information on the restriction resn�6 D� using Theorem 2.4.
If �D .�; 4; 3a; 2; 1/, then 2a.�/D.�;4;3a;1/ 2 resn�2 D�. Now, the last node in the
last row of length 3 in .�; 4; 3a; 1/ satisfies the assumptions of Theorem 2.4(viii), so
we conclude that 2D.�;4;3a�1;2;1/ 2 resn�2

n�3
D.�;4;3a;1/. Furthermore, the last node

in the row of length 4 in .�; 4; 3a; 1/ is the third normal 0-node from the bottom.
If it is 0-good, then 3D.�;3aC1;1/ 2 resn�2

n�3
D.�;4;3a;1/ by Theorem 2.4(iii). If it is

not good, then the 0-good node is above it and "0.�/ � 4, in which case we get
4D.�;4;3a;1/ 2 resn�2

n�3
D.�;4;3a;1/, where by the first .�; 4; 3a; 1/ we understand a

partition obtained from the second .�; 4; 3a; 1/ by removing a box from a row of
length greater than 4. Thus we have

2a.�/C1D.�;4;3a�1;2;1/
C 3 � 2a.�/D.�;3aC1;1/

2 resn�3 D�

or

2a.�/C1D.�;4;3a�1;2;1/
C 2a.�/D.�;3aC1;1/

C 4 � 2a.�/D.�;4;3a;1/
2 resn�3 D�:
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The second case is much easier so we continue just with the first one. On restriction
to n� 4, we now get

2a.�/C1D.�;4;3a�1;2/
C 6 � 2a.�/D.�;3a;2;1/

2 resn�4 D�

Note that a.�/C a..�; 4; 3a�1; 2//D 1, so we further get

4D.�;4;3a�1;1/
C 6 � 2a.�/D.�;3a;2/

2 resn�5 D�:

Now consider resn�5
n�6

4D.�;4;3a�1;1/. Note that "0..�; 4; 3
a�1; 1// � 3, so re-

moval of the 0-good node yields a contribution of at least 12 composition fac-
tors, none of which is isomorphic to a basic or a second basic module. Finally
resn�5

n�6
6 �2a.�/D.�;3a;2/ yields 12D.�;3a;1/, which again cannot be basic or second

basic, since here � stands for some parts of length greater than 4. The restriction
resn

n�6
D.�;5;4;2;1/ is treated similarly.

Now, let p D 5. Using Lemma 4.4 and the assumptions n> 16 and �¤ ˛n; ˇn,
we arrive at the following six possibilities for �:

.�; 5; 4; 3; 2; 1/; .�; 6; 4; 3; 2; 1/; .�; 7; 3; 2; 1/;

.�; 6; 5a; 4; 1/; .�; 7; 6; 4; 1/; .�; 9; 6; 4; 1/;

with a�1 and �¤∅, except possibly in the last two cases. Now we use Theorem 2.4
to show that:

� resn�6 D.�;5;4;3;2;1/ contains 48D.�;5;3;2/ or 20D.�;5;3;1/ C 4D.�;4;3;2/ or
20D.�;5;3;1/C 12D.�;4;3;2;1/.

� resn�6 D.�;6;4;3;2;1/ 3 4D.�;6;4/C 20D.�;6;3;1/.

� resn�6 D.�;7;3;2;1/ 3 20D.�;6;1/C 10D.�;5;2/.

� resn�6 D.�;6;5a;4;1/ has at least 4 composition factors of the form D.�;6;5a�1;4/

and either 20 composition factors of the form D.�;5a;4;1/, or 12 composi-
tion factors of the form D.�;5a;4;1/ and 16 composition factors of the form
D.�;6;5a�1;4;1/.

� In the case � D∅ we get the exception (c), while in the case � ¤∅ we get
resn�6 D.�;7;6;4;1/ 3 20D.�;7;4;1/C 4D.�;6;5;1/.

� 20D.�;9;4;1/C 4D.�;8;5;1/ 2 resn�6 D.�;9;6;4;1/.

Finally, let p � 7. Using Lemma 4.4 and the assumptions n> 10 and �¤ ˛n; ˇn

we arrive at the following possibilities for � (with a� 0):

.�; 4; 3; 2; 1/; .�;p�3; 3; 2; 1/; .�;p�1;p�2; 2; 1/; .�;pC2;p�2; 2; 1/;

.�;pC2;pC1;pa;p�1; 1/; .�; 2p�1;pC1;pa;p�1; 1/:
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If �D .�; 4; 3; 2; 1/ then � ¤∅ as n> 10. In this case we get

4D.�;4/
C20D.�;3;1/

2 resn�6 D�:

If � D .�;p�3; 3; 2; 1/, we may assume that p > 7 (otherwise we are in the
previous case). If � D ∅, we are in the exceptional case (a), and Theorem 2.4
yields the composition factors of the restriction as claimed in the theorem. If �¤∅,
we get similar composition factors but with partitions starting with ‘�’, and such
composition factors are neither basic nor second basic.

If �D .�; p�1; p�2; 2; 1/, we have

12D.�;p�1;p�5/
C12D.�;p�2;p�4/

2 resn�6 D�:

Let �D .�; pC2; p�2; 2; 1/. If �D∅, then a.�/D 1, and using Theorem 2.4,
we get 16D.pC2;p�5/C8D.pC1;p�5;1/ 2 resn�6 D�. Otherwise, we get

16D.�;pC2;p�5/
C20D.�;pC1;p�4/

2 resn�6 D�:

If �D .�; pC2; pC1; pa; p�1; 1/, then

4D.�;pC2;pC1;pa;p�6/
C16D.�;pC2;paC1;p�5/

C20D.�;pC1;paC1;p�4/

C4D.�;paC2;p�3/
2 resn�6 D�:

If � ¤ ∅, all of these composition factors are neither basic nor second basic.
Otherwise we are in the exceptional case (b).

The case �D .�; 2p�1; pC1; pa; p�1; 1/ is similar to the case

�D .�; pC2; pC1; pa; p�1; 1/: �

We will also need the following result on JS.0/-modules:

Lemma 4.11. Let �2RPp.n/ for n� 12. Assume �2 JS.0/ and �¤ ˛n; ˇn. Then
either

(a) d3.�/� 3, or

(b) d3.�/D 2, p � 5, and nDmpC 1 for some m� 2.

Proof. Applying Lemma 4.5 to V WD D� we have resn�1 V D U D D� with
� 2 JS.1/. Assume d3.V /� 2 so that d2.U /� 2. Now we can apply Lemma 4.5
to � 2 JS.1/ and arrive at one of the three cases (ii)–(iv) described in Lemma 4.5.
In the case (ii) (so p D 3), the condition d2.U / � 2 implies by Lemma 4.8 that
�D ˛n�1 or ˇn�1. In the case (iii) (and p > 3), then since n� 12 by Lemma 4.7
either we have �D˛n�1 or we arrive at (b). Similarly, in the case (iv) by Lemma 4.6
either we have �D ˇn�1 or we arrive at (b).
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Assuming furthermore that (b) does not hold for V , we conclude that � 2
f˛n�1; ˇn�1g. Since �¤ ˛n; ˇn, by Theorem 3.6 we must have �D 
n. But then
� 62 JS.0/ by Lemma 3.8. �

5. The case
P
"i .�/D 2

5A. The subcase where all "i .�/� 1.

Lemma 5.1. Let � 2 RPp.n/. If there exist i ¤ j with "i.�/ D "j .�/ D 1 and
"k.�/D 0 for all k ¤ i; j , then at least one of Qei�, Qej� is not JS.

Proof. Assume that Qei�; Qej� 2 JS. Then by Theorem 2.4, we have

resn�1 D�
Š n1D Qei�˚ n2D Qej�

and
resn�2 D�

D n1m1D Qej Qei�˚ n2m2D Qei Qej�;

for some n1; n2;m1;m2 2 f1; 2g. Moreover, by Lemma 2.1, we have Qei Qej�D Qej Qei�.
It follows that the restrictions resn�2 D Qei� and resn�2 D Qej� are both homogeneous
with the same composition factor D Qei Qej�. So, if p > 3, we get a contradiction with
Lemma 2.5.

Let p D 3. Then we may assume that i D 0 and j D 1. Note that by the
assumption "0.�/D "1.�/D 1, each weight appearing in D� ends on 1; 0 or on
0; 1, and both of these occur. After application of Qe1 to D� only the weights of
the form .�; 0; 1/ survive and yield weights of the form .�; 0/. Since Qe1� 2 JS.0/,
we conclude that "0. Qe1�/D 1, and so all weights of D Qe1� are of the form .�; 1; 0/.
Similarly all weights of D Qe0� are of the form .�; 0; 1/. Thus the weights of D� are
actually of the form .�; 0; 1; 0/ and .�; 1; 0; 1/. However, by the “Serre relations”
[Kleshchev 2005, Lemma 20.4.2 and Lemma 22.3.8], the existence of a weight
.�; 1; 0; 1/ implies the existence of .�; 1; 1; 0/ or .�; 0; 1; 1/, which now leads to a
contradiction. �

Lemma 5.2. Let � 2 RPp.n/ n f˛n; ˇn; 
n; ıng. Suppose that "i.�/ D "j .�/ D 1

for some i ¤ j in I n f0g, and "k.�/D 0 for all k ¤ i; j . Then:

(i) resn�1 D� Š 2a.�/D Qei�˚ 2a.�/D Qej�. Moreover, Qei� and Qej� are not both JS,
and Qei�; Qej�¤ ˛n�1; ˇn�1; 
n�1. In particular, d1.�/� 2.

(ii) d2.�/� 5.

Proof. By Theorem 2.4, we have resn�1 D� Š 2a.�/D Qei�˚ 2a.�/D Qej�: In view of
Lemma 5.1, we now have (i).

By Lemma 2.1, "i. Qej�/ > 0 and "j . Qei�/ > 0, so

2a.�/2a.Qei�/D Qej Qei�C 2a.�/2a.Qej�/D Qei Qej� D 2D Qej Qei�C 2D Qei Qej� 2 resn�2 D�
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(it might happen that Qei Qej�D Qej Qei�, in which case the above formula is interpreted
as 4D Qei Qej� 2 resn�2 D�). Moreover, since not both Qei� and Qej� are JS, we may
assume without loss of generality that Qei� is not JS, i.e.,

P
k "k. Qei�/> 1. Therefore

"j . Qei�/� 2 or there exists k ¤ i; j with "k. Qei�/ > 0. In the first case, we conclude
that actually 4D Qej Qei�C 2D Qei Qej� 2 resn�2 D�, whence d2.�/ � 6. In the second
case we get 2D Qej Qei�C 2D Qei Qej�C 2a.�/D Qek Qei� 2 resn�2 D�, so d2.�/� 5. �

Lemma 5.3. Let � 2 RPp.n/ n f˛n; ˇn; 
n; ıng. Suppose that "i.�/ D "0.�/D 1

for some i in I n f0g, and "k.�/D 0 for all k ¤ i; 0. Then:

(i) resn�1 D� Š 2a.�/D Qei�˚D Qe0�. Moreover, Qei� and Qe0� are not both JS, and
Qei�; Qej�¤ ˛n�1; ˇn�1; 
n�1. In particular, d1.�/� 2.

(ii) d2.�/� 3.

Proof. By Theorem 2.4, resn�1 D� Š 2a.�/D Qei�˚D Qe0�: In view of Lemma 5.1,
we now have (i). By Lemma 2.1, "i. Qe0�/ > 0 and "0. Qei�/ > 0, so

2a.�/D Qe0 Qei�C 2a.Qe0�/D Qei Qe0� D 2a.�/.D Qe0 Qei�CD Qei Qe0�/ 2 resn�2 D�:

Moreover, from (i), not both Qei� and Qe0� are JS. Assume that Qei� 62 JS. Then
"0. Qei�/� 2 or there exists k ¤ i; 0 with "k. Qei�/ > 0. In the first case, we conclude
that actually 2 �2a.�/D Qe0 Qei�C2a.�/D Qei Qe0� 2 resn�2 D�, whence d2.�/� 3. In the
second case we get 2a.�/.D Qe0 Qei�CD Qei Qe0�/C2D Qek Qei� 2 resn�2 D�, so d2.�/� 4.
The case Qe0� 62 JS is considered similarly. �

Corollary 5.4. Let � 2RPp.n/n f˛n; ˇn; 
n; ıng, and i ¤ j be elements of I such
that "i.�/¤ 0, "j .�/¤ 0, and "k.�/D 0 for all k 2 I nfi; j g. Then resn�2 ei.D

�/

or resn�2 ej .D
�/ is reducible.

Proof. If "i.�/� 2, then by Lemma 2.1, we have "i. Qej�/� 2. Since D Qej� 2 ej .D
�/

by Theorem 2.4, we conclude that resn�2 ej .D
�/ is reducible. So we may assume

that "i.�/ D 1 and similarly "j .�/ D 1. If both i; j are not 0, we can now use
Lemma 5.2(i). If one of i; j is 0 use Lemma 5.3(i) instead. �

5B. The subcase where some "i .�/D 2.

Lemma 5.5. Let � 2RPp.n/ n f˛n; ˇn; 
n; ıng. Suppose that "i.�/D 2 for some
i 2 I , and "k.�/D 0 for all k ¤ i . If Qei� 2 JS, then i ¤ 0 and

2a.�/.2D Qei�CD�/ 2 resn�1 D�;

where Qei�¤ ˛n�1; ˇn�1; 
n�1 and �¤ ˛n�1.

Proof. First of all, by Lemma 4.3(i), we have i ¤ 0. By Theorem 2.4,

resn�1 D�
Š 2a.�/ei.D

�/;
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and 2D Qei� 2 ei.D
�/. Since � ¤ ˛n; ˇn; 
n, we get Qei� ¤ ˛n�1; ˇn�1; 
n�1. It

remains to prove that ei.D
�/ has another composition factor which is not basic

spin.
The partition � has two i -normal nodes. Denote them by A and B, and assume

that A is above B. Then A is good and Qei� D �A. Moreover, since the bottom
removable node of � is always normal, we know that B is in the last row.

Assume first that �B 2RPp.n� 1/. In this case D�B 2 resn�1 D� by condition
(iv) in the conclusion of Theorem 2.4. Assume that �B D ˛n�1. Inspecting the for-
mulas for the partitions ˛n�1 and taking into account the assumption �¤˛n; ˇn; 
n,
we see that B must be of content 0 which contradicts the assumption i ¤ 0.

Assume finally that �B 62 RPp.n � 1/. In this case � is of the form � D

.�; kCp; k/, and A is in the second row from the bottom, i.e., �AD .�; kCp�1; k/.
Since �A 2 JS.i/, B should be the only normal node of �A. In particular the node C

immediately to the left of A should not be normal in �A. It follows that kD .pC1/=2

and i D `.
Note that D� has a weight of the form

.i1; : : : ; in�3; `� 1; `; `/

since "`.�/D 2. By [Kleshchev 2005, Lemma 20.4.2 and Lemma 22.3.8],

.i1; : : : ; in�3; `; `� 1; `/

is also a weight of D�. Therefore e`�1.e`.D
�//¤ 0. Since e`�1.D

Qe`�/D 0, this
shows that there is a composition factor D� of e`.D

�/ not isomorphic to D Qe`�,
and containing the weight .i1; : : : ; in�3; `; `� 1/.

If �D ˛n�1 for all such composition factors, then it follows that all the weights
.i1; : : : ; in�3; `; `� 1/ are the same and are equal to

.contp 0; contp 1; : : : ; contp.n� 1//;

see Lemma 3.4. Hence the only weights appearing in D� are of the form

.contp 0; contp 1; : : : ; contp.n� 3/; `� 1; `; `/

or
.contp 0; contp 1; : : : ; contp.n� 3/; `; `� 1; `/:

Hence D˛n�3 is the only composition factor of resn�3 D�. So D˛n�2 or Dˇn�2 are
the only modules which appear in the socle of resn�2 D�. Therefore D˛n�1 , Dˇn�1

or D
n�1 are the only modules which appear in the socle of resn�1 D�, whence
� 2 f˛n; ˇn; 
n; ıng, giving a contradiction. �
Lemma 5.6. Let � 2RPp.n/ n f˛n; ˇn; 
n; ıng. Suppose that "i.�/D 2 for some
i 2 I , and "k.�/D 0 for all k ¤ i . Then d2.�/� 3.
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Proof. By Theorem 2.4, we have 21�ıi;0 � 2D Qe
2
i
�
2 resn�2 D�, so we may assume

that i D 0. Then by Lemma 4.3, Qe0� is not JS , and hence "1. Qe0�/ > 0. So D Qe1 Qe0�

is also a composition factor of resn�2 D�. �
Lemma 5.7. Let �2RPp.n/nf˛n; ˇn; 
ng. If d2.�/� 2, then �2 JS.0/, or �D ın
and one of the conclusions (i)–(viii) of Lemma 3.9 holds.

Proof. By Lemma 3.9, we may assume that �¤ ın. Further, it is clear that we may
assume that

P
i "i.�/� 2. If � 2 JS.i/, then it follows from Lemmas 4.5, 4.6, 4.7,

and 4.8 that i D 0. Finally, suppose that
P

i "i.�/D 2. These cases follow from
Lemmas 5.2, 5.3, and 5.6. �

6. Proof of the Main Theorem

6A. Preliminary remarks. We denote

an WD dim An D 2b
n��n

2
c;

bn WD dim Bn D 2b
n�1��n�1

2
c.n� 2� �n� 2�n�1/:

Define the following nondecreasing functions (of n):

f .n/ WD 2bn D 2b
nC1��n�1

2
c.n� 2� �n� 2�n�1/;

f �.n/ WD
4bn

2a.ˇn/
D 2b

nC2��n�1
2

c.n� 2� �n� 2�n�1/:

Clearly, f �.n/� f .n/.
We say that an irreducible Tn-supermodule V is large, if it is neither a basic,

nor a second basic module. We also denote by d.p; n/ the smallest dimension of
large irreducible Tn-supermodules. By Lemma 3.7(iii), the sequence d.p; n/ is
nondecreasing for n� 8 (and p fixed).

Lemma 6.1. The Main Theorem is equivalent to the following statement: If an
irreducible Tn-supermodule V satisfies at least one of the two conditions

(i) dim V < f .n/,

(ii) dim V < f �.n/ and a.V /D 1,

then V is either An or Bn.

Proof. Let W be a faithful irreducible FG-module, where G D OAn or OSn, and
consider an irreducible Tn-supermodule V such that W is an irreducible constituent
of V considered as an FG-module. If G D OAn, then dim V D 2.dim W /, and the
bound stated in the Main Theorem for G D OAn is precisely f .n/=2. Consider
the case G D OSn. Then dim V D 2a.V /.dim W /, and the bound specified in the
Main Theorem for G D OSn is f �.n/=2.
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Assume the Main Theorem holds. If dim V satisfies (i), then taking G D OAn we
see that dim W < f .n/=2 and so W is a basic or second basic representation. If V

satisfies (ii), then taking G D OSn we see that dim W < f �.n/=2 and so W is again
a basic or second basic representation. In either case, we can conclude that V is
either An or Bn.

In the other direction, let dim W satisfy any of the bounds stated in the Main The-
orem. Then dim V satisfies (i) if G D OAn or if G D OSn but a.V /D 0, and dim V

satisfies (ii) if G D OSn and a.V /D 1. By our assumption, V is either An or Bn,
whence W is a basic or a second basic representation. �

Set �n WD b.n� �n/=2c. Then .n�2/=2� �n � n=2, and so for m� n we have

.n�m/=2� 1� �n��m � .n�m/=2C 1:

In particular, 0� �n��n�1 � 1, and so the sequence f�ng
1
nD1

is nondecreasing;
also, �n�1��n�3 � 2.

6B. Induction base: 11� n� 15. We will prove the Main Theorem by induction
on n� 11. First, we establish the induction base:

Lemma 6.2. The statement of the Main Theorem holds true if 12 � n � 15, or if
nD 11 but .n;p;G/¤ .11; 3; OA11/.

Proof. If 11 � n � 13 then one can use [Conway et al. 1985; Jansen et al. 1995;
Breuer et al.] to verify the Main Theorem. Also observe that

d.p; 13/D

8̂̂̂<̂
ˆ̂:

3456; p D 0; 3; 7; or > 13;

2240; p D 5;

1664; p D 11;

2816; p D 13:

(6-1)

Now assume that nD 14 or 15. By Lemma 6.1, it suffices to show that dim V �

f �.n/ for any large irreducible Tn-supermodule V D D�. By Lemma 3.7(iii),
res13 V has a large composition factor, and so dim V � d.p; 13/. Direct compu-
tation using (6-1) shows that d.p; 13/ � f �.n/, unless nD 14 and p D 5; 11, or
nD 15 and p D 5; 11; 13. To treat these exceptions, we observe that

d.p; 12/D

�
1408; p D 11 or � 13;

1344; p D 5I
(6-2)

in particular, 3d.p; 12/ > f �.15/. So we may assume that d2.V / � 2, dim V <

f �.n/, and apply Lemma 5.7 to V . Moreover, since d.p; 13/>f .14/, we may also
assume a.V /D 1 for nD 14. Furthermore, for nD 15 we may assume V 62 JS.0/ as
otherwise dim V � 3d.p; 12/ by Lemma 4.11. Now we will rule out the remaining
exceptions case by case.
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� .n;p/D .14; 11/. Under this condition, 
14 does not exist, so either �D ı14 or
V 2 JS.0/. In the former case, by Lemma 3.9 we must have ı14 D .11; 2; 1/ and

dim V � 2.dim D
13/C dim D˛13 > 2 � 1664> 2 � 1536D f �.14/:

In the latter case, res13 V D D� with � 2 JS.1/ and a.D�/ D a.V / D 1 by
Lemma 4.5. It then follows that res12 V D 2W for some faithful irreducible
T12-supermodule W . By our assumption,

1664D d.p; 13/� dim V D dim D� < f �.14/D 3072;

and dim D� is twice the dimension of some irreducible OA13-module. Inspecting
[Breuer et al.] we see that dim D� D 1664, whence dim W D 832. However, OA12

does not have any faithful irreducible representation of degree 416; see [Jansen
et al. 1995].

� .n;p/D .14; 5/. Under this condition, ı14 does not exist, so either �D 
14 or
V 2 JS.0/. In the former case, by Lemma 3.8 we have

dim V � 2.dim Dˇ13/C dim Dı13 > 2.2 � 352C 1120/ > 2 � 1536D f �.14/:

In the latter case, as before we can write res13 V DD� with �2 JS.1/ and a.D�/D

a.V /D 1, and res12 V D 2W for some faithful irreducible T12-supermodule W .
By our assumption,

2240D d.p; 13/� dim V D dim D� < f �.14/D 3072:

Inspecting [Breuer et al.] we see that dim D� 2 f2240; 2752g, so dim W 2

f1120; 1376g. However, OA12 does not have any faithful irreducible representation
of degree 560 or 688; see [Jansen et al. 1995].

� .n;p/D .15; 5/. Under this condition 
15 does not exist, so we need to consider
only �D ı15. Now by Lemma 3.9 we have �D .7; 5; 3/ and

dim V � 2.dim Dı13/C 4.dim Dˇ13/ > 6B13 D 4224> 2 � 1536D f �.15/:

� .n;p/ D .15; 11/. Here ı15 does not exist, so we may assume � D 
15. By
Lemmas 3.7(iii) and 3.8 we have

dim V � 4.dim Dˇ14/C d.p; 13/D 4736> 2 � 1664D f �.15/:

� .n;p/D .15; 13/. By Lemma 3.9 we may assume �¤ ı15 and so �D 
15. Now
by Lemma 3.8 we have

dim V � dim Dˇ14Cdim D
14 �B14Cd.p; 13/D 3456> 2 �1664Df �.15/: �
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6C. The third basic representations D
n . The following result will be fed into
the inductive step in the proof of the Main Theorem:

Proposition 6.3. Let n� 12 and V DD
n . Assume in addition that the dimension
of any large irreducible Tm-supermodule is at least f .m/ whenever 12�m� n�1.
Then dim V � f �.n/. If moreover V satisfies the additional conditions

n� 15 is odd; p−.n� 1/; and d1.V /� 2; (6-3)

then dim V � f �.nC 1/=2.

Proof. We will proceed by induction on n� 12 according to the cases in Lemma 3.8.

(i) First we consider the case where p D 0 or p > n. Then 
n D .n� 2; 2/. By the
dimension formula given in [Hoffman and Humphreys 1992] we have

dim V D 2b
n�3

2
c.n� 1/.n� 4/:

In particular, dim V > 4bn � f
�.n/. Also, dim V > f �.nC 1/=2 if n� 15 is odd.

(ii) Next assume that nD pC 1. By Lemma 3.8(ii),

dim D
n � an�1C 2bn�1 D
an

2
C 2bn: (6-4)

Since f �.n/D 2bn in this case, we get dim V > f �.n/.

(iii) Assume we are in the case (iii) of Lemma 3.8; in particular n� 13. In this case
we have

dim D
n

2�.n/
� 2bn�1C dim Dın�1 � 4bn�1 D 4bn: (6-5)

It follows that dim V � 4bn D 2f .n/� f �.n/.

(iv) Consider the case (iv) of Lemma 3.8. If n D 12, then p D 5, and dim V �

1344 > 1280D f �.12/. Assume now that n � 13 and a � 2. By Lemma 3.8(iv)
and (6-5),

dim V � 2�.n�1/bn�1Cdim D
n�1 � 2�.n�1/
�5bn�1 D 2b

n�3
2
cC�.n�1/.5n�25/:

(6-6)
On the other hand,

f �.n/D 2b
nC2

2
c.n� 2/D 2b

nC1
2
cC�.n�1/.n� 2/:

Hence dim.V /� f �.n/ if n� 17. If nD 16, then p D 7. In this case, instead of
(6-5) we use the stronger estimate

dim D
15

2�.15/
� 2b14C dim Dı14 � 2b14C d.p; 13/D 4864;
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yielding dim V � 11136 > 7168D f �.16/. If nD 14, then p D 3, and dim V �

d.p; 13/ D 3456 > 3072 D f �.14/. The cases n D 13; 15 cannot occur since
nD apC 2 with a� 2. If moreover V satisfies (6-3), then since resn�1 V contains
an additional large composition factor in addition to D
n�1 , instead of (6-6) we
now have

dim V � 2�.n�1/bn�1C dim D
n�1 Cf .n� 1/

D 2.n�3/=2.7n� 35/ > 2.nC1/=2.n� 1/� f �.nC 1/=2:

Next suppose that nDpC2�15. By Lemma 3.7(iii), resn�2 D
n�1 must contain
a large composition factor Y , and dim Y � f .n�2/D 2bn�2 by our assumption. It
follows by Lemma 3.8(ii) that dim D
n�1�an�2C4bn�2. Applying Lemma 3.8(iv),
we obtain

dim V � bn�1C dim D
n�1 � bn�1C .an�2C 4bn�2/D 2
n�3

2 .5n� 24/: (6-7)

Since f �.n/D 2.nC1/=2 � .n� 2/, we are done if n � 16. If nD 15, then p D 13

and by (6-1) we have

dim V � b14C dim D
14 � b14C d.p; 13/D 3456> 3328D f �.15/:

If nD 13, then p D 11 and dim V � d.p; 13/D 1664> 1408D f �.13/ by (6-1).
If moreover V satisfies (6-3), then since resn�1 V contains an additional large
composition factor in addition to D
n�1 , instead of (6-7) we now have

dim V � bn�1C dim D
n�1 Cf .n� 1/D 2.n�3/=2.7n� 34/

> 2.nC1/=2.n� 1/� f �.nC 1/=2:

(v) Now we consider the case nD pC 4 and p � 11. Again by Lemma 3.7(iii),
resn�1 D
n must contain a large composition factor X , and dim X � f .n� 1/ by
our assumption. In fact, since 
n has exactly one good node (a 1-good node) with
two 1-normal nodes and a.
n/D 1, by Theorem 2.4 we see that resn�1 D
n D 2W ,
where the Tn�1-supermodule W has Dˇn�1 as head and socle and X as one of the
composition factors in between. Thus X has multiplicity at least 2 in resn�1 D
n�1 .
Hence by Lemma 3.8(v) we have

dim D
n � 4bn�1C 2.dim X /� 8bn�1 D 2
n�3

2 .8n� 24/: (6-8)

Since f �.n/D 2.nC1/=2.n� 2/ and f �.nC 1/� 2.nC3/=2.n� 1/ in this case, we
get dim V >maxff �.n/; f �.nC 1/=2g.

(vi) Assume we are in the case (vi) of Lemma 3.8; in particular, n� 14. Suppose
first that 2 j n. By Theorem 3.6, D
n�2 appears in soc.resn�2 Dın�1/; furthermore,
d1.D

ın�1/�2 by Lemma 3.9. Thus resn�2 Dın�1 has at least two large composition
factors: D
n�2 and another one, say, Y . According to (iv), dim D
n�2 � f �.n�2/.
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On the other hand, dim Y �f .n�2/ by our assumption. It follows that dim Dın�1�

f �.n� 2/Cf .n� 2/. Hence Lemma 3.8(vi) implies

dim D
n � 2bn�1Cdim Dın�1 � 2bn�1Cf
�.n�2/Cf .n�2/D 2

n�2
2 .5n�18/:

Since f �.n/D 2.nC2/=2.n� 2/, we obtain dim V > f �.n/.
Now let n be odd. Then Lemma 3.8(vi) implies that

dim D
n � 4bn�1C 2.dim Dın�1/� 8bn�1 D 2
n�3

2 .8n� 24/: (6-9)

Also, f �.n/D 2.nC1/=2.n� 2/ and f �.nC 1/ � 2.nC3/=2.n� 1/ in this case, so
dim V >maxff �.n/; f �.nC 1/=2g.

(vii) Finally, we consider the case (vii) of Lemma 3.8; in particular, p � 7 and
n� 12. If nD 12, then p D 7, and so by [Breuer et al.] we have dim V � 1408>

1280D f �.12/. Now we may assume that n� 13.
Suppose in addition that n is odd, so that �.aC b/D 1. According to (v) and

(vi), dim D
n�1 � f �.n� 1/D 4bn�1. Hence by Lemma 3.8(vii) we have

dim D
n � 2.bn�1C dim D
n�1/� 10bn�1 D 2
n�3

2 .10n� 30/: (6-10)

Since f �.n/D 2.nC1/=2.n� 2/ and f �.nC 1/� 2.nC3/=2.n� 1/, we are done.
Assume now that n is even. If b D 5, then dim D
n�1 � 8bn�2 by (6-8) and

(6-9). On the other hand, if b > 5, then dim D
n�1 � 10bn�2 by (6-10). Thus in
either case we have dim D
n�1 � 8bn�2. Now Lemma 3.8(vii) implies that

dim V � bn�1C dim D
n�1 � bn�1C 8bn�2 D 2
n�4

2 .10n� 38/:

Since f �.n/D 2.nC2/=2.n� 2/, we again have dim.V / > f �.n/. �

Proposition 6.4. Let n�14, and let V DD� be a large irreducible Tn-supermodule.
Assume in addition that the dimension of any large irreducible Tm-supermodule is
at least f .m/ whenever 12�m� n� 1. Then one of the following holds.

(i) d2.�/� 3.

(ii) � 2 JS.0/.

(iii) �D 
n, � 62 JS, and dim V � f �.n/.

(iv) �D ın, n� 0; 3; 6. mod p/, one of the conclusions (iv)–(viii) of Lemma 3.9
holds, and dim V � f �.n/.

Proof. (1) Assume that � 62 JS.0/ and d2.�/� 2. Then we can apply Lemma 5.7. If
�D 
n, then � 62 JS (see e.g. Lemma 3.8), and dim V � f �.n/ by Proposition 6.3.
We may now assume that � D ın, in particular, one of the cases (iv)–(viii) of
Lemma 3.9 occurs. By Proposition 6.3 and our assumptions, dim D
m � f �.m/

for mD n� 1 and mD n� 2.
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(2) Here we consider the case n D pC 3 (so that p � 11). By Lemma 3.7(iii),
resn�3 D
n�2 must have some large composition factor Z, and dim Z�f .n�3/D

2bn�3 by the assumptions. Applying items (ii) and (iv) of Lemma 3.8 we get

dim D
n�2 � an�3C 2bn�3C dim Z; dim D
n�1 � bn�2C dim D
n�2 : (6-11)

Together with Lemma 3.9(iv), this implies

dim V �an�1C2.dim D
n�1/�an�1C2.an�3C4bn�3Cbn�2/D2
n�2

2 .5n�28/:

Since f �.n/D 2.nC2/=2.n� 2/, we are done if n � 20. Suppose that n � 19, so
that nD pC 3D 16 or nD 14. If nD 16, then dim Z � d.p; 13/D 2816, and so
(6-11) implies

dim D
14 � 4160; dim D
15 � 4800:

It follows that dim V � 9728 > 7168 D f �.16/. If n D 14, then dim D
13 �

d.p; 13/D 1664, so

dim V � a13C 2.dim D
13/D 3392> 3072D f �.14/:

(3) Next suppose that nDmpC 3 with p > 3 and m � 2. By items (iii) and (iv)
Lemma 3.8 we have

dim D
n�2 � 2�.n/.2bn�3C dim Dın�3/; dim D
n�1 � 2�.n/bn�2C dim D
n�2 :

(6-12)
By our assumptions, dim Dın�3 � f .n�3/D 2bn�3. Together with Lemma 3.9(v),
this implies

dim V �2.dim D
n�1/�21C�.n/.bn�2C4bn�3/D2�.n/Cb
n�2

2
c.5n�30/: (6-13)

Since f �.n/D 2b.n�2/=2c.4n�8/, we are done unless 2 j n� 20. In the remaining
case, .n;p/ D .18; 5/. Then d1.ı15/ � 2 by Lemma 3.9, and so dim Dı15 �

2d.p; 13/D 4480. Thus (6-12) implies that

dim D
16 � 7552; dim D
17 � 9088;

whence dim V � 18176> 16384D f �.18/.

(4) If p > 5 and n D p C 6, then since dim D
n�2 � f .n � 2/ D 2bn�2, by
Lemma 3.9(vi) we have

dim V � 6bn�2 D 2.n�3/=2.6n� 24/ > 2.nC1/=2
� .n� 2/D f �.n/: (6-14)

If p D 3 j n, then since dim D
n�1 � f �.n� 1/, by Lemma 3.9(vii) we have

dim V � 2f �.n� 1/� 2b
nC1

2
c.2n� 6/� 2b

nC2
2
c.n� 3/D f �.n/:
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If 5< p j n, then using dim D
n�2 � f �.n� 2/ and Lemma 3.9(viii) we obtain

dim V � 2bn�2C 2f �.n� 2/� 2b
n�2

2
c.5n� 20/ > 2b

nC2
2
c.n� 3/D f �.n/:

If p D 5 j n and n is odd, then Lemma 3.9(viii) and our assumptions imply

dim V � 4bn�2C 2f .n� 2/D 2
nC3

2 .n� 4/ > 2
nC1

2 .n� 3/D f �.n/:

Finally, assume that p D 5 j n and n � 20 is even. By Lemma 3.9, d1.ın�2/ � 2,
whence dim Dın�2 � 2f .n�3/ by our assumptions. Hence Lemma 3.9(viii) yields

dim V � 4bn�2C 2.dim Dın�2/� 4bn�2C 4f .n� 3/

D 2n=2.3n� 14/ > 2.nC2/=2.n� 3/D f �.n/: �

6D. The case V 2 JS.

Lemma 6.5. If n� 23 and .n;p/¤ .24; 17/, then f �.n/� 24f .n� 6/.

Proof. First assume that p j .n � 7/. Then f .n � 6/ D 2b.n�6/=2c.n � 10/. In
particular, f �.n/ � 24f .n � 6/ if n � 26. If n D 25, then p D 3, f �.25/ D

213 � 21< 24 � .29 � 15/D 24f .19/. If nD 24, then p D 17. If nD 23, then p > 2

cannot divide n� 7.
Next assume that p−.n�7/. Then f .n�6/� 2b.n�5/=2c.n�9/, and so f �.n/�

24f .n� 6/ if n� 23. �

Proposition 6.6. Let n� 16 and V 2 JS.0/ be a large irreducible Tn-supermodule.
Assume in addition that, if m WD n � 6 � 12, then the dimension of any large
irreducible Tm-supermodule is at least f .m/. Then dim V � f �.n/.

Proof. Using the fact that 
n is never in JS.0/ (see Lemma 3.8, for instance), we
may assume that V DD� and �¤ 
n.

(i) First we claim that if p D 17 then the dimension of any large irreducible T16-
supermodule Y D D� is at least 3d.p; 13/ D 10368. This is certainly true if
dj .Y / � 3 for any j � 3. Otherwise d2.Y / � 2, and so by Lemma 5.7 either
� 2 JS.0/, or �D ı16; 
16. In the former case d3.Y / � 3 by Lemma 4.11. Also
d2.ı16/� 3 by Lemma 3.9. So we may assume �D 
16. Applying Lemma 3.8(i)
three times, we see that

res13 Y Š 2D
13 C 2b13C 2b14C b15:

Since dim D
13 � d.p; 13/, we also have dim Y > 3d.p; 13/ in this case.
By Lemma 3.7(iii), any large irreducible T18-supermodule X has dimension at

least 10368.



Representations of symmetric and alternating groups 1807

(ii) Now we consider the case n� 23 and apply Proposition 4.10 to �. In particular,
d6.�/� 20; more precisely, either d6.�/� 24, or

dim V � 20f .n� 6/C 20bn�6C 4an�6 > 30f .n� 6/:

Thus we always have dim V � 24f .n � 6/. If furthermore .n;p/ ¤ .24; 17/,
then the last inequality implies dim V � f �.n/ by Lemma 6.5. Assume now that
.n;p/D .24; 17/. Then by the result of (i) we have

dim V � 20 � 10368> 213
� 22D f �.24/:

(iii) The rest of the proof is to handle the cases 16� n� 22.

� Consider the case n D 16; 17. First suppose that p ¤ 5; 11. By Lemma 4.11,
d3.�/� 3, hence

dim V � 3d.p; 13/� 8448> 7680� f �.n/

by (6-1). If .n;p/D .16; 5/, then d2.�/� 2 by Lemma 4.11, whence

dim V � 2d.p; 13/� 4480> 3072D f �.16/

by (6-1). On the other hand, the proof of Proposition 4.10 shows that if .n;p/D
.16; 11/ then � can be only .6; 4; 3; 2; 1/ which however does not belong to JS.0/.
If nD 17 and p D 5 or p D 11, then d6.�/� 24 by Proposition 4.10, whence

dim V � 24d.p; 11/� 24 � 864> 7680D f �.17/:

� Let nD 18. By Proposition 4.10, d6.�/� 24 if p ¤ 5 and d6.�/� 20 if p D 5.
Now if p ¤ 3, then

dim V � 20d.p; 12/� 20 � 1344> 16384� f �.18/:

If p D 3, then

dim V � 24d.p; 12/D 24 � 640D 15360D f �.18/:

� Suppose 19� n� 21. By Proposition 4.10, d6.�/� 24 if .n;p/¤ .20; 17/ and
d6.�/� 20 otherwise. Now if .n;p/¤ .20; 17/, then

dim V � 24d.p; 13/� 24 � 1664> 38912� f �.n/:

If .n;p/D .20; 17/, then

dim V � 20d.p; 13/D 20 � 3456> 36864D f �.20/:

� Finally, let nD 22. By Proposition 4.10, d6.�/� 24 if p ¤ 19 and d6.�/� 20 if
p D 19. By the assumptions, the dimension of any large irreducible T16-module
Y is at least f .16/D 3584 if p ¤ 5. We claim that dim Y > 3584 also for p D 5.
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(Indeed, by Lemmas 5.7, 4.11, and 3.9, either dj .Y / � 2 for some j 2 f2; 3g, or
Y ŠD
16 . In the former case, dim Y � 2d.p; 13/D 4480. In the latter case, by p.
(iii) of the proof of Proposition 6.3, dim Y � 4b15 D 6144.) Now if p ¤ 19, then

dim V � 24 � 3584> 81920� f �.22/:

If p D 19, then by Proposition 4.10 we have

dim V �minf20f .16/C 20b16; 24f .16/g D 24f .16/D 24 � 3584> f �.22/: �

Proposition 6.7. Let n� 16 and V be a large irreducible Tn-supermodule. Assume
that:

(i) resn�1 V is irreducible but V 62 JS.0/;

(ii) the dimension of any large irreducible Tm-supermodule is at least f .m/ for
12�m� n� 1.

Then a.V /D 0 and dim V � f .n/.

Proof. The assumptions in (i) imply that V 2 JS.i/ for some i > 0 and that a.V /D 0.
By Proposition 6.4 we may assume that d2.V /� 3 (as otherwise dim V � f �.n/);
i.e., resn�2 V contains at least three large composition factors Wj , 1 � j � 3.
Applying the hypothesis of (ii) to m D n� 2, we get dim Wj � f .n� 2/ and so
dim V � 3f .n� 2/. Assume in addition that �n�1��n�3 � 1. Then

3f .n� 2/� 2�n�3.6n� 36/� 2�n�1�1.6n� 36/� 2�n�1C1
� .n� 2/� f .n/;

and we are done.
Next we consider the case .n;p/ D .17; 7/. Then res13 Wj contains a large

composition factor. Hence, by (6-1) we have dim Wj � d.p; 13/D 3456, whence
dim V � 3 � 3456> 7680D f .17/, and we are done again.

So we may assume that �n�1��n�3 � 2; equivalently, n is odd and p j .n� 3/.
Since we have already considered the case .n;p/D .17; 7/, we may assume that
n � 21. It suffices to show that dim Wj � f .n/=3 for 1 � j � 3. There are the
following four possibilities for Wj .

� Wj ŠD
n�2 . By Proposition 6.3 we have

dim Wj � f
�.n� 2/D 2

n�1
2 .n� 6/ > 2

nC1
2 .n� 2/=3D f .n/=3:

� resn�3 Wj is reducible but Wj 6ŠD
n�2 . Since Wj is large, it must have a large
composition factor by Lemma 3.7(iii); furthermore, resn�3 Wj can contain neither
An�3 nor Bn�3 in its socle. It follows that d1.Wj / � 2, and so, applying the
hypothesis of (ii) to mD n� 3 we get

dim Wj � 2f .n� 3/D 2
n�1

2 .n� 6/ > 2
nC1

2 .n� 2/=3D f .n/=3:
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� Wj 2 JS.0/. Applying Proposition 4.10 to Wj and the hypothesis of (ii) to
mD n� 8 we get

dim Wj � 24f .n� 8/� 24 � 2
n�9

2 .n� 12/� 2
nC1

2 .n� 2/=3D f .n/=3:

� Wj 2 JS.k/ for some k > 0. Then d2.Wj / � 3 by Proposition 6.4 (note that
the conclusion (iv) of Proposition 6.4 cannot hold since p j .n� 3/). Applying the
hypothesis of (ii) to mD n� 4 we get

dim Wj � 3f .n� 4/D 3 � 2
n�3

2 .n� 6/� 2
nC1

2 .n� 2/=3D f .n/=3:

The proposition is proved. �
Proposition 6.8. Let n� 16 and V be a large irreducible Tn-supermodule. Assume
that:

(i) V 2 JS.i/ for some i ¤ 0 and a.V /D 1;

(ii) for 12�m� n� 1, the dimension of any large irreducible Tm-supermodule
X is at least f .m/ if a.X /D 0, and at least f �.m/ if a.X /D 1.

Then dim V � f �.n/.

Proof. (1) The assumptions imply that resn�1 V D2U , where U is a large irreducible
Tn�1-supermodule with a.U /D 0. By Proposition 6.4, d1.U /D d2.V /=2> 1 (as
otherwise dim V � f �.n/); in particular, U 62 JS.0/. Applying Proposition 6.4 to
U we see that either U ŠD
n�1 , or p j .n� 1/.n� 4/.n� 7/ and U ŠDın�1 , or
d2.U /� 3.

(2) Assume we are in the first case: U Š D
n�1 . Then by Theorem 3.6, either
V ŠD
n or V ŠDın . The first possibility is ruled out since V 2 JS. If the second
possibility occurs, then Lemma 4.1 implies that nDmp for some m � 2, p > 3,
and ın D .pC 2;pm�2;p� 2/, which means that ın satisfies the conclusion (viii)
of Lemma 3.9. In this case, part (4) of the proof of Proposition 6.4 shows that
dim V � f �.n/.

(3) Consider the second case: U ŠDın�1 but d2.U /� 2. Then dim U � f �.n�1/

by Proposition 6.4. Now if p j .n� 1/, then

dim V � 2f �.n� 1/D 2b.nC3/=2c.n� 4/ > 2b.nC1/=2c.n� 4/D f �.n/:

Likewise, if 5� p j .n� 4/ and n is odd then

dim V � 2f �.n� 1/D 2
nC3

2 .n� 3/ > 2
nC1

2 .n� 2/D f �.n/:

Suppose that 5 � p j .n � 4/ and 2 j n; in particular, we are in the case (v) of
Lemma 3.9. Then (6-13) implies that

dim V � 2
n
2 .5n� 35/ > 2

nC2
2 .n� 2/D f �.n/:
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Suppose that nD pC 7� 16; in particular, we are in the case (vi) of Lemma 3.9.
Then (6-14) implies that

dim V � 2
n
2 .3n� 15/ > 2

nC2
2 .n� 2/D f �.n/:

(4) From now on we may assume that d2.U /� 3 and so resn�3 U contains at least
three large composition factors Tj , 1 � j � 3. Applying the hypothesis of (ii)
to m D n� 3, we get dim Tj � f .n� 3/ and so dim V � 6f .n� 3/. Assume in
addition that either n is odd, or 2 j n� 18 and p−.n� 4/. Then

dim V � 6f .n� 3/� 6 � 2b
n�2

2
c.n� 7/� 2b

nC2
2
c.n� 2/� f �.n/:

If nD 16, then dim Tj � d.p; 13/� 1664 by (6-1), whence

dim V � 6 � 1664D 9984> 7168� f �.16/:

If n 2 f18; 20g and p j .n � 4/, then .n;p/ D .18; 7/, in which case dim Tj �

d.p; 13/� 3456 by (6-1) and so

dim V � 6 � 3456D 20736> 16384D f �.18/:

(5) It remains to consider the case where n� 22 is even, p j .n� 4/, and dim U <

f �.n/=2. Recall that U is large, a.U / D 0, d1.U / � 2 and U 6Š D
n�1 . Thus
resn�2 U cannot contain An�2 or Bn�2 in its socle. Also, since

f .n� 2/D 2.n�2/=2.n� 4/ > f �.n/=5;

we have that dim U < .5=2/f .n� 2/ and so d1.U / � 2 by the hypothesis in (ii)
for mD n� 2. It follows that d1.U /D 2, i.e., resn�2 U contains exactly two large
composition factors Wj , j D 1; 2. Assume in addition that some Wj has a.Wj /D 1.
By the hypothesis in (ii) for mD n� 2, in this case we have

dim U � f .n� 2/Cf �.n� 2/D 2.n�2/=2.3n� 12/ > 2n=2.n� 2/� f �.n/=2;

and we are done again.
We conclude by Theorem 2.4 that resn�2 U D e0.U / is reducible, with a large

irreducible Tn�2-supermodule W ŠW1 ŠW2 as its socle and head. Furthermore,
if p D 3, then by the hypothesis in (ii) for mD n� 1 we have

dim U � f .n� 1/D 2.n�2/=2.n� 4/D f �.n/=2:

So we may assume p > 3. We will distinguish the following three subcases
according to Proposition 6.4 applied to W (note that n�2� 2. mod p/ and so the
conclusion (iv) of Proposition 6.4 cannot hold) and show that dim W � f �.n/=4,
which contradicts the assumption dim U < f �.n/=2.
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� d2.W /� 3. Applying the hypothesis of (ii) to mD n� 4 we get

dim W � 3f .n� 4/D 3 � 2.n�4/=2.n� 7/ > 2.n�2/=2.n� 2/D f �.n/=4

as n� 22, and so we are done.

�W 2 JS.0/. Since n� 22, we can apply Proposition 4.10 to W and the hypothesis
of (ii) to mD n� 8 to get

dim W � 24f .n� 8/� 24 � 2.n�8/=2.n� 12/ > 2.n�2/=2.n� 2/D f �.n/=4:

� W ŠD
n�2 . Recall that 2p j .n� 4/. Hence by Proposition 6.3 we have

dim W � f �.n� 2/D 2n=2.n� 4/ > 2.n�2/=2.n� 2/D f �.n/=4: �

6E. Inductive step of the proof of the main theorem. As a consequence of the
results proved in Sections 6A–6D we obtain the following:

Corollary 6.9. For the induction step of the proof of the Main Theorem, it suffices
to prove that, if V D D� is any irreducible Tn-supermodule satisfying all the
following conditions

(i) n� 16, �¤ ˛n; ˇn; 
n;

(ii) V 62 JS, d1.V /� 2, d2.V /� 3, and all the simple summands of the head and
the socle of resn�1 V are large

then dim V � f .n/, and, furthermore, dim V � f �.n/ when a.V /D 1.

Proof. By the induction hypothesis, the dimension of any irreducible Tm-super-
module X is at least f .m/ if a.X / D 0 and at least f �.m/ if a.X / D 1 for
12 � m � n� 1. By Lemma 6.2 and Propositions 6.3, 6.6 we may now assume
that n � 16, �¤ ˛n; ˇn; 
n and V 62 JS.0/. Now, if resn�1 V is irreducible, then
V 2 JS.i/ for some i > 0 and a.V /D 0, in which case we also have dim V � f .n/

by Proposition 6.7. The case V 2 JS.i/ with a.V /D 1 is treated in Proposition 6.8.
So we may assume that V 62 JS. Since � ¤ ˛n; ˇn; 
n, resn�1 V cannot contain
An�1 or Bn�1 in the socle or in the head. It now follows that d1.V /� 2. Also, if
d2.V /� 2, then we may assume dim V � f �.n/ by Proposition 6.4. �

Now we will complete the induction step of the proof of the Main Theorem.
Arguing by contradiction, we will assume that the irreducible Tn-supermodule V

satisfies the conditions listed in Corollary 6.9, but

dim V <

�
f .n/ if a.V /D 0;

f �.n/ if a.V /D 1:

The condition d1.V / � 2 implies that resn�1 V contains at least two large com-
position factors Uj , j D 1; 2, and dim Uj � f .n� 1/ by the induction hypothesis,
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whence dim V � 2f .n � 1/. Similarly, the condition d2.V / � 3 implies that
dim V � 3f .n� 2/.

We distinguish between the following three cases.

6E.1. Case I: �n�1��n�3 D 2. This case happens precisely when n is odd and
p j .n� 3/, whence

f �.n/D f .n/D 2
nC1

2 .n� 2� �n/; f .n� 1/D 2
n�1

2 .n� 3/D
f �.n� 1/

2
:

In particular, if pD 3 then f �.n/D 2f .n�1/� dim V . So we may assume p > 3.
Then

dim V � 2f .n� 1/ < f .n/� 2f .n� 1/D 2.nC1/=2
D 2an�1 < bn�1 < f .n� 1/:

It follows that d1.V /D 2, and aside from U1, U2, resn�1 V can have at most one
more composition factor which is then isomorphic to An�1. Also, if a.Uj /D 1 for
some j , then by the induction hypothesis, dim Uj � f

�.n� 1/D 2f .n� 1/, and
so we would have dim V � 3f .n� 1/ > f .n/. Thus a.Uj /D 0 for j D 1; 2.

Suppose that a.V /D0. The above conditions on resn�1 V imply by Theorem 2.4
that resn�1 V D e0.V / has socle and head both isomorphic to U ŠU1ŠU2. Since
d2.V /�3 (and all composition factors of resn�2 An�1 are isomorphic to An�2), we
see that d1.U /� 2; in particular, U 62 JS.0/. Also, dim U � .dim V /=2<f �.n�1/.
Hence Proposition 6.4 applied to U yields d2.U /� 3. It follows that

dim V � 2.dim U /� 6f .n� 3/D 2
n�3

2 .6n� 36/ > 2
nC1

2 .n� 2/D f .n/:

Next suppose that a.V /D 1. Then the above conditions on resn�1 V imply by
Theorem 2.4 that resn�1 V D 2ei.V /D 2U with U Š U1 Š U2 and i > 0. Since
d2.V /� 3 we see that d1.U /� 2 and so U 62 JS.0/. Also, dim U � .dim V /=2<

f �.n � 1/. Hence Proposition 6.4 applied to U again yields d2.U / � 3 and
dim V � 6f .n� 3/ > f .n/. In either case we have reached a contradiction.

6E.2. Case II: �n�1��n�2D0. This case happens precisely when either p j .n�1/,
or p−.n� 1/.n� 2/ and 2 j n. In the former case,

f �.n/D 2b
nC1

2
c.n� 4/� 21Cbn

2
c.n� 4/D 2f .n� 1/� dim V

a contradiction. Likewise, in the latter case,

f .n/D 2
n
2 .n� 2� �n/� 21Cn

2 .n� 3/D 2f .n� 1/� dim V:

If in addition p j n, then

f �.n/D 21Cn
2 .n� 3/D 2f .n� 1/� dim V:
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Hence we may assume that p−n.n� 1/.n� 2/, 2 j n, and a.V /D 1. In this case

dim V �2f .n�1/ < f �.n/�2f .n�1/D 2.nC2/=2
D 4an�1 < bn�1 < f .n�1/:

It follows that d1.V /D 2, and aside from U1, U2, all other composition factors of
resn�1 V (if any) must be isomorphic to An�1.

Suppose in addition that ei.V /¤ 0 for some i > 0. Then we may assume that
U1 is in soc.ei.V //. As a.V / D 1, 2ei.V / is a direct summand of resn�1 V . In
particular, if there is some k ¤ i such that ek.V /¤ 0, then soc.ek.V // must be
An�1, contrary to our hypotheses. Thus resn�1 V D 2ei.V / in this case. Now
ei.V / has a composition factor U1 with multiplicity one and all other composition
factors (if any) are isomorphic to An�1. By our hypotheses, soc.ei.V //D U1. It
follows that "i.�/D 1, and so ei.V /D U1 is irreducible by Theorem 2.4(v). Thus
V 2 JS.i/, a contradiction.

We have shown that resn�1 V D e0.V /, with

U WD U1 D soc.e0.V //Š head.e0.V //D U2;

"0.�/ D 2, and a.U / D a.V / D 1. Now d1.U / D d2.V /=2 > 1; in particular,
U 62 JS.0/. Thus we can apply Proposition 6.4 and distinguish the following
subcases.

(a) Suppose d2.U /� 3 and p−.n� 4/. Then

dim V � 2.dim U /� 6f .n� 3/� 2.n�2/=2.6n� 36/ > 2.nC2/=2.n� 2/D f �.n/:

(b) Suppose p j .n� 4/ and U 6Š D
n�1 . Recall that d1.U / � 2. If d1.U / � 3,
or if some large composition factor X of resn�2 U has a.X / D 1, then since
f �.n� 2/D 2f .n� 2/, the induction hypothesis implies

dim V � 2.dim U /� 6f .n� 2/� 2.n�2/=2.6n� 24/ > 2.nC2/=2.n� 2/D f �.n/:

Thus d1.U /D 2 and every large composition factor W of resn�2 U has a.W /D 0.
Moreover, the socle and head of resn�2 U can contain neither An�2 nor Bn�2. It
follows by Theorem 2.4 that resn�2 U D 2ei.U /D 2W for some i > 0 and some
irreducible Tn�2-supermodule W . In particular, U 2 JS.i/. We have shown that
"k.�/D 2ık;0 and Qe0�D U 2 JS. Furthermore, �¤ 
n by our assumption. Hence,
by Lemma 5.5 we must have �D ın. But in this case D
n�1 appears in the socle
of resn�1 V by Theorem 3.6(v). Thus U ŠD
n�1 , contrary to our assumption.

(c) Suppose p−.n�4/, d2.U /� 2 and U 6ŠD
n�1 . Since p−.n�1/ and U 62 JS.0/,
by Proposition 6.4 this can happen only when nD pC7 (so that p � 11), and U D

Dın�1 as specified in Lemma 3.9(vi). Applying Lemma 3.9(vi) and Proposition 6.3,
we obtain

dim V � 2.dim U /� 4f �.n� 2/� 2n=2.4n� 16/ > 2.nC2/=2.n� 2/D f �.n/:
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(d) Suppose U Š D
n�1 . In this case 
n�1 satisfies the condition (6-3). Hence
dim U � f �.n/=2 by Proposition 6.3, yielding a contradiction again.

6E.3. Case III: �n�1��n�2D �n�1��n�3D 1. This case arises precisely when
either p j .n� 2/, or p−.n� 1/.n� 2/.n� 3/ and 2−n. In particular,

dim V � 3f .n� 2/� 2b
n�1

2
c.3n� 15/ > 2b

nC1
2
c.n� 2/� f .n/:

Thus we get a contradiction if a.V /D 0, or if f �.n/D f .n/.
Hence a.V /D 1 and f �.n/ > f .n/, i.e., n is even and p j .n� 2/; in particular,

f �.n/ D 2.nC2/=2.n � 2/. If n D 16 then p D 7. In this case, since d3.V / �

d2.V /� 3, by (6-1) we must have

dim V � 3d.p; 13/� 10368> 7168D f �.16/;

a contradiction.
So we may assume that n� 20. We will show that each of the large composition

factors Uj of resn�1 V has dimension at least f �.n/=2D 2n=2.n� 2/, leading to
the contradiction that dim V �f �.n/. Since n�1� 1. mod p/, by Proposition 6.4
we need to consider the following three possibilities for Uj .

(a) d2.Uj /� 3. Applying the induction hypothesis to the large composition factors
of resn�3 Uj we get

dim Uj � 3f .n� 3/D 2.n�2/=2.3n� 15/� f �.n/=2:

(b) Uj ŠD
n�1 . Recall that 2p j .n� 2/ (in particular n � 2pC 2), hence using
(6-5) we have

dim Uj � 8bn�2 D 2n=2.2n� 10/ > f �.n/=2:

(c) Uj 2 JS.0/. Applying Proposition 4.10 and the induction hypothesis to the large
composition factors of resn�7 Uj we get

dim Uj � 24f .n� 7/� 24 � 2.n�8/=2.n� 11/� 2n=2.n� 2/D f �.n/=2

if n� 29. Also, if p ¤ 3, then

dim Uj � 24f .n� 7/� 24 � 2.n�6/=2.n� 10/� 2n=2.n� 2/D f �.n/=2:

It remains to rule out the cases where 16� n� 28 and 2pD 6 j .n�2/, i.e., nD 20

or nD 26. If nD 20, then by Proposition 4.10 and (6-1) we have

dim Uj � 24 � d.p; 13/� 24 � 3456> 18432D f �.20/=2:

Finally, assume .n;p/ D .26; 3/. We claim that any large irreducible T19-
supermodule X has dimension at least 3d.p; 13/D 10368. (Indeed, this is certainly
true if d2.X / � 3 or d3.X / � 3. If d2.X /; d3.X / � 2, then X Š D
19 by
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Proposition 6.4 and Lemma 4.11. In this case dim X � f �.19/ D 15360 by
Proposition 6.3.) Now applying Proposition 4.10 to Uj we get

dim Uj � 24 � 10368D 248832> 196608D f �.n/=2:

We have completed the proof of the Main Theorem.
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