Vol. 7, No. 1, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 12, 2133–2308
Issue 11, 1945–2131
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Period functions and cotangent sums

Sandro Bettin and Brian Conrey

Vol. 7 (2013), No. 1, 215–242
Abstract

We investigate the period function of n=1σa(n)e(nz), showing it can be analytically continued to |argz| < π and studying its Taylor series. We use these results to give a simple proof of the Voronoi formula and to prove an exact formula for the second moments of the Riemann zeta function. Moreover, we introduce a family of cotangent sums, functions defined over the rationals, that generalize the Dedekind sum and share with it the property of satisfying a reciprocity formula.

Keywords
period functions, moments, mean values, Riemann zeta function, Eisenstein series, Voronoi formula, cotangent sums, Vasyunin sum, Dedekind sum
Mathematical Subject Classification 2010
Primary: 11M06
Secondary: 11M41, 11L99
Milestones
Received: 1 December 2011
Revised: 15 January 2012
Accepted: 20 February 2012
Published: 28 March 2013
Authors
Sandro Bettin
School of Mathematics
University of Bristol
Howard House
Queens Avenue
Bristol BS82NF
United Kingdom
http://www.maths.bris.ac.uk/~maxsb/
Brian Conrey
American Institute of Mathematics
360 Portage Avenue
Palo Alto, CA 94306
United States