Vol. 7, No. 10, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
Editors' interests
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author index
To appear
Other MSP journals
On Kato's local $\epsilon$-isomorphism conjecture for rank-one Iwasawa modules

Otmar Venjakob

Vol. 7 (2013), No. 10, 2369–2416

This paper contains a complete proof of Fukaya and Kato’s ϵ-isomorphism conjecture for invertible Λ-modules (the case of V = V 0(r), where V 0 is unramified of dimension 1). Our results rely heavily on Kato’s proof, in an unpublished set of lecture notes, of (commutative) ϵ-isomorphisms for one-dimensional representations of Gp, but apart from fixing some sign ambiguities in Kato’s notes, we use the theory of (ϕ,Γ)-modules instead of syntomic cohomology. Also, for the convenience of the reader we give a slight modification or rather reformulation of it in the language of Fukuya and Kato and extend it to the (slightly noncommutative) semiglobal setting. Finally we discuss some direct applications concerning the Iwasawa theory of CM elliptic curves, in particular the local Iwasawa Main Conjecture for CM elliptic curves E over the extension of p which trivialises the p-power division points E(p) of E. In this sense the paper is complimentary to our work with Bouganis (Asian J. Math. 14:3 (2010), 385–416) on noncommutative Main Conjectures for CM elliptic curves.

Mathematical Subject Classification 2010
Primary: 11R23
Secondary: 11F80, 11R42, 11S40, 11G07, 11G15
Received: 17 May 2012
Revised: 21 January 2013
Accepted: 23 February 2013
Published: 18 January 2014
Otmar Venjakob
Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 288
D-69120 Heidelberg