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Fix a number field F ⊂ C, an abelian variety A/F and let G A be the Mum-
ford–Tate group of A/C. After replacing F by finite extension one can as-
sume that, for every prime number `, the action of the absolute Galois group
0F = Gal(F̄/F) on the étale cohomology group H1

t (A F̄ ,Q`) factors through
a morphism ρ` : 0F → G A(Q`). Let v be a valuation of F and write 0Fv for
the absolute Galois group of the completion Fv . For every ` with v(`) = 0,
the restriction of ρ` to 0Fv defines a representation ′WFv → G A/Ql of the Weil–
Deligne group.

It is conjectured that, for every `, this representation of ′WFv is defined over Q

as a representation with values in G A and that the system above, for variable `,
forms a compatible system of representations of ′WFv with values in G A. A
somewhat weaker version of this conjecture is proved for the valuations of F ,
where A has semistable reduction and for which ρ`(Frv) is neat.

Introduction

Let Fv be a finite extension of the field Qp (for some prime number p) and let X be
a proper and smooth variety over Fv . The Galois group 0Fv = Gal(F̄v/Fv) acts on
the étale cohomology groups Hi (X F̄v ,Q`) for each prime number ` and each i . It is
a major problem in arithmetic geometry to determine to what extent the properties
of these representations are independent of `. To obtain such independence results,
one has to consider the restrictions of the representations above to the Weil group
WFv of Fv. This is the subgroup formed by the elements of 0Fv , which induce an
integral power of the Frobenius automorphism on the residue field of Fv.

In what follows it will always be assumed that ` 6= p; the case where `= p will
be analysed in a later paper. Let us first assume that X has good reduction at v,
that is, that X extends to a proper and smooth scheme over the ring of integers of
Fv. This assumption implies that the inertia subgroup of 0Fv acts trivially on the
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étale cohomology groups of X . Moreover, it follows from Deligne’s work [1974a]
on the Weil conjectures that the character of the representation of WFv on each
Hi (X F̄v ,Q`) has values in Q and is independent of ` 6= p. In view of the triviality
of the action of inertia, this amounts to a statement on the action of the subgroup of
0Fv generated by a Frobenius element. We will summarise this statement by saying
that the representations of WFv on the Hi (X F̄v ,Q`) (for fixed i and variable `) are
defined over Q and that they form a compatible system of representations of WFv .

If X only has potentially good reduction, the inertia group no longer acts trivially
but its action on a given étale cohomology group of X factors through a finite
quotient. It is still conjectured that the system of Hi (X F̄v ,Q`) (as always for fixed i
and variable `) forms a compatible system of representations of WFv which are
defined over Q, see for example [Serre 1994, 12.13?].

Serre actually states his conjecture in more generality because it applies to
motives instead of varieties. The category of (pure) motives can be seen as an
intermediate between varieties and their cohomology. It is a Q-linear tannakian
category, that is, an abelian category in which the morphisms between two objects
form a Q-vector space and which is equipped with “tensor products”. All reasonable
cohomology functors on the category of varieties factor through the category of
motives so that any motive has cohomology groups in the same way as varieties do.
We also refer to the cohomology groups of a motive M as the realisations of M .
There are different constructions of motives, depending on how the morphisms are
defined, but in any case the category of motives has more morphisms and hence
also more objects than the category of varieties.

In this paper we will consider the category of motives for absolute Hodge
cycles developed in [Deligne and Milne 1982] where the morphisms are defined by
absolute Hodge classes. This theory is particularly efficient for dealing with abelian
varieties because the motivic Galois group of an abelian variety A coincides with
its Mumford–Tate group, defined by the Hodge structure on H1

B(A/C,Q).
The motivic version of the conjecture can be stated in terms of motivic Galois

groups in the following way. In any good category of motives it is possible to
associate a motivic Galois group to any subcategory. This group is a linear proalge-
braic group over Q. Its defining property is the fact that any category of motives
is equivalent to the category of representations of its motivic Galois group. The
motivic Galois group G M of any object M is defined as the group associated to
the tannakian category generated by M and the Tate motive. The group G M is
related to the étale cohomology of M by the fact that, for each prime number `,
the `-adic Galois representation associated to M factors through G M(Q`). This
implies that the corresponding representations of the Weil group factor through
G M/Q`

. Serre’s `-independence conjecture for objects in the ⊗-category generated
by M is then equivalent to the statement that the representations WFv → G M/Q`
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of the Weil group form a compatible system defined over Q, with values in G M ;
see 2.3 for the precise definition.

For abelian varieties of CM type, the conjecture follows from the theory of
complex multiplication developed by Shimura and Taniyama [1961], which yields
a considerably more precise result. Indeed, let F ⊂ C be a number field, A/F
an abelian variety of CM type and G A the motivic Galois group of A. Serre
[1968] constructs a commutative algebraic group SF,m and a canonical system of
representations ϕ` : 0F → SF,m(Q`). By the theory of complex multiplication,
the system of `-adic representations associated to A is the image of the system
(ϕ`) by a Q-rational morphism SF,m→ G A. Moreover, Deligne [1982] gives an
explicit description of the motivic Galois group of the category of abelian varieties
potentially of CM type in terms of the Taniyama group.

More generally, if F ⊂ C is a number field, A/F an abelian variety and v a
valuation of F where A has good reduction, the `-independence conjecture was
proved in [Noot 2009], by a method and under additional hypotheses similar to
those of the present paper. The case where A has ordinary reduction at v has
been treated in [Noot 1995] by a completely different method. In the latter case, a
stronger statement can be proved and it turns out that there is an element in G A(Q)

that is conjugate to the `-adic image of Frobenius for all ` 6= p. As noted in the
introduction of [Noot 1995], this is not the case in general. The reader may consult
the introduction to [Noot 2009] for a more detailed discussion.

One may ask if these results can be generalised without any assumptions on
the reduction of X . Before discussing the properties of the Galois representations
provided by the étale cohomology groups of a variety X , consider any `-adic
representation ρ` of 0Fv for ` 6= p. By a theorem of Grothendieck (see [Serre and
Tate 1968, Appendix; Deligne 1973, §2, §8]), the action of a sufficiently small
open subgroup of the inertia group can be described using a single endomorphism
N`, the monodromy operator. The restriction of ρ` to the Weil group WFv can
then be encoded by giving N` together with a representation ρ ′` of WFv , which
is trivial on an open subgroup of the inertia group. We will refer to such a pair
(ρ ′`, N`) as a representation of the Weil–Deligne group ′WFv of Fv. Where the
p-adic étale cohomology is concerned, Fontaine’s theory associates a representation
of the Weil–Deligne group to any semistable p-adic representation as well, but we
will not go into the details here.

It is conjectured that, applying the construction above to the system of Galois
representations provided by the Hi (X F̄v ,Q`), for fixed i and variable `, one obtains
a compatible system of representations of ′WFv which are defined over Q; see for
example [Fontaine 1994, 2.4.3, conjecture CWD] for a statement encompassing the
p-adic representation. The conjecture on the `-independence of the representa-
tion of the Weil–Deligne group hinges on the monodromy-weight conjecture; see
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[Illusie 1994, §3]. This elusive conjecture is somewhat more accessible under the
hypothesis that X has semistable reduction, a hypothesis which implies in particular
that the representations ρ ′` are trivial on the inertia subgroup of WFv . The action of
inertia on Hi (X F̄v ,Q`) is then determined by the monodromy operator N`. Even if
X has semistable reduction however, the monodromy-weight conjecture has so far
only been proved under far more restrictive hypotheses. Apart from the cases where
X is a curve or an abelian variety, the main achievement is due to [Rapoport and
Zink 1982], which treats the case where X has dimension 2. We refer to [Ochiai
1999; Ito 2004] and the work of Scholze for some recent and very recent progress
on the problems. It should finally be pointed out that the discussion above has an
analogue in equal characteristics, which has proved much more accessible; see for
example [Deligne 1980].

This paper aims to study the motivic version of Fontaine’s CWD conjecture.
Under some additional hypotheses, described below, we will prove the compatibility
conjecture for the system ′WFv→ G A/Q`

associated to an abelian variety A defined
over a number field F ⊂ C. Here v is a fixed valuation of F and ` runs through the
set of primes with v(`)= 0.

The hypotheses are twofold. First of all, we need to assume that the number
field F is sufficiently big. We do not only need to ensure that A has semistable
reduction, but also that the Mumford–Tate group G A is connected and even that
the Frobenius element at the given place of F is weakly neat; see Definition 3.5.
Secondly, in certain cases we will need to work in a group that is slightly larger than
the Mumford–Tate group; see Section 3.3. The Mumford–Tate group coincides with
the identity component of this larger group. Enlarging the group obviously weakens
the notion of conjugacy. The precise result is Theorem 3.6 and all definitions used
in the statement are given in Section 3.

The strategy of the proof is inspired by the previous paper [Noot 2009], which
treats the good reduction case. The idea is first to prove the statement for tractable
abelian varieties (called accomodantes [ibid.]). In Section 4, we recall the notion
of a tractable abelian variety as well as some related constructions stemming from
[ibid.]. Tractable abelian varieties have many endomorphisms and the theorem is
proved by combining more or less classical results concerning abelian varieties and
1-motives with the, equally classical, work of Springer and Steinberg on conjugacy
classes in linear algebraic groups. The necessary results on representations of the
Weil–Deligne group associated to a 1-motive follow from the theory sketched in
[Fontaine 1994] by adding the action of an endomorphism algebra throughout. We
make extensive use of [Raynaud 1994], which allows the reduction to the case
of strict 1-motives. This is discussed, together with the relevant prerequisites, in
Sections 1 and 2. Using the results of these sections, proof of the main theorem for
a tractable abelian variety is given in Sections 5 and 6.
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Once we have proved the main theorem for tractable abelian varieties, the general
case can be deduced using the theory, developed in [Noot 2006], of lifting Galois
representations along isogenies between the Mumford–Tate groups. This final step
of the proof is carried out in Section 7. In order to construct the liftings of the
Galois representations, one needs to extend the base field. At first, this leads to a
proof of the main theorem over an uncontrollable extension of the base field. The
results of Sections 1 and 2 are used again to deduce the theorem over the original
base field. The condition that the Frobenius element is weakly neat is essential in
this step.

In his thesis, Laskar [2011] generalises the results of this paper, as well as those
of [Noot 2009], to a larger class of varieties. He proves the main theorem of [ibid.]
for the absolute Hodge motive of any variety X with good reduction belonging
to the tannakian category generated by the motives of abelian varieties. Under
somewhat more restrictive conditions, Laskar also generalises the results of the
present paper, treating the case of curves, K 3 surfaces and a Fermat hypersurfaces
with semistable reduction.

Another direction for generalisation is the case of 1-motives. In this context, an
analogue of the theory of Mumford–Tate liftings remains to be developed. The
analogue of our results in the case where the base field is a function field in
characteristic p seems inaccessible with the techniques used in this paper. Indeed, it
would be necessary to develop a substitute for the theory of absolute Hodge motives
and, most importantly, the concept of Mumford–Tate liftings.

1. 1-motives with L-action

In this section, we indicate how the theory of 1-motives developed in [Raynaud
1994; Deligne 1974b, §10] works out for 1-motives with a given endomorphism
field. Most of the statements are easy generalisations of those given in [Fontaine
1994] for the case where L = Q. The results of this section will be applied to
the study of the monodromy of an abelian variety with a given endomorphism
algebra. Where these preliminary results are concerned, very little additional effort
is required to deal with the more general case of 1-motives.

We also review the construction of the Weil–Deligne group of a local field and
recall how to associate a representation of the Weil–Deligne group to a local Galois
representation.

1.1. Generalities on 1-motives. In all of this section, F is a finite extension of Qp

and `, `′ are prime numbers.
Let M be a 1-motive over F . By definition M is a complex u : Y → G where Y

is a K -group scheme which is locally isomorphic, in the étale topology, to Zr and
G is a semiabelian variety over K . In this complex, Y is placed in degree −1 and
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G in degree 0. The semiabelian variety G is an extension of an abelian variety A
of dimension g by a torus T of dimension r?. Let d = d(M)= r + r?+ 2g.

One defines the `-adic realisations of M following [Deligne 1974b, 10.1], taking
projective limits. This differs by a trivial manipulation from Raynaud’s definition
[1994, 3.1] where an inductive limit is used. To be precise, for an integer n, we
define Torsn(M) as the H−1 of the complex

Y → Y ⊕G(F̄)→ G(F̄),

x 7→ (−nx,−u(x)),

(x, y) 7→ u(x)− ny,

situated in degrees −2,−1, 0. Here and in what follows, F̄ is an algebraic closure
of F . For any ` we put

T`(M)= lim
←−

Tors`n (M) and V`(M)= T`(M)⊗Z` Q`.

Thus, T`(M) is a free Z`-module of rank d and V`(M) is a Q`-vector space of
dimension d. For each `, the absolute Galois group 0F = AutF (F̄)= Gal(F̄/F)
acts naturally on V`.

We fix a number field L ⊂ End0(M)= End(M)⊗Z Q. The endomorphism ring
End(M) can be interpreted either as the ring of endomorphisms of the complex
Y → G or as the ring of endomorphisms of its image in the derived category
Db(fppf); see [Raynaud 1994, 2.3]. The first interpretation of End(M) shows that
L acts on Y ⊗Q and that L embeds into End0(G). It follows (for example) from
[Milne 1986, 3.9] that any morphism of the torus T to an abelian variety is trivial.
This implies that we have an embedding L ⊂ End0(T ) so L also acts on Y ?⊗Q

where Y ? = Hom(T,Gm). Finally, by passing to the quotient A = G/T , we obtain
an embedding L ⊂ End0(A).

By functoriality, L acts on V` = V`(M), making it into an L ⊗Q Q`-module. To
ease notation, we will write L`= L⊗Q Q` from now on. The weight filtration of M
(see [Raynaud 1994, 2.2]) induces an increasing L`-linear filtration of V` such that
the nonzero components of the associated graded are

Gr−2(V`)∼= (Y ?)∨⊗Z Q`(1),

Gr−1(V`)∼= V`(A)= T`(A)⊗Z` Q`,

Gr0(V`)∼= Y ⊗Z Q`.

The action of 0F respects the weight filtration and commutes with the L`-action
so 0F acts L`-linearly on Gr•(V`). The isomorphisms above are L`-linear and
0F -equivariant. One has L` ∼=

⊕
λ Lλ, where λ runs through the primes of L lying
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over `. This decomposition gives rise to corresponding decompositions of each
L`-module occurring above as a direct sum of Lλ-modules of the same rank.

The next aim is to establish a common Q-structure V on the modules V`,
endowed with L-action and weight filtration. We first describe the associated
graded. For V 0

= Y ⊗Z Q, there is a system of canonical L`-linear isomorphisms
Gr0(V`)∼=V 0

⊗Q`. Next, put V−2
= (Y ?⊗ZQ)∨ and fix isomorphisms Q`(1)∼=Q`

for each `. This gives rise to a system of isomorphisms Gr−2(V`) ∼= V−2
⊗Q`,

depending only on the identifications Q`(1)∼=Q`.
We finally consider Gr−1. By the theorem of the primitive element, L =Q(α),

so it follows from [Mumford 1970, §19, Theorem 4] that there exists an L-vector
space V−1 endowed with L`-linear isomorphisms

Gr−1(V`)∼= V−1
⊗Q Q`

for every `; see [Noot 2006, proof of 6.13]. As a vector space is determined up to
isomorphism by its dimension, V−1 is unique up to L-linear isomorphisms and each
isomorphism Gr−1(V`)∼= V−1

⊗Q Q` is unique up to L`-linear automorphisms of
Gr−1(V`).

Define
V = V−2

⊕ V−1
⊕ V 0,

endowed with the natural L-action and the increasing filtration defined by the
grading. As L` is a semisimple algebra, V` is L`-isomorphic to its associated graded,
so the preceding discussion gives rise to a noncanonical L`-linear isomorphism
V` ∼= V ⊗Q Q` for every `. We proved the following lemma.

Lemma 1.2. There exists an L-vector space V endowed with an increasing filtration
and, for each `, an L`-linear isomorphism V` ∼= V ⊗Q Q` compatible with the
filtrations. In particular, each V` is a free L`-module whose rank is independent of
` and the weight filtration is a filtration by free L`-submodules of ranks independent
of `.

1.3. The group H. We fix an L-vector space V together with a system of isomor-
phisms as in the lemma. Let H = ResL/Q GL/L(V ) be the linear algebraic group
over Q of L-linear automorphisms of V and let h be its Lie algebra. This means
that h= glL(V ) is the Q-Lie algebra of L-linear endomorphisms of V . Obviously,
H acts on h through the adjoint representation. By means of the identifications
above, H/Q`

and h⊗Q Q` act on V`. This identifies H/Q`
with the group of L`-linear

automorphisms of V` and h⊗Q` with its Lie algebra. These identifications are
determined up to inner automorphisms for the groups and up to the adjoint action
of H/Q`

where the Lie algebras are concerned. Finally note that L = EndH (V ) and
that L` = EndH/Q` (V`).
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1.4. The monodromy operator. From now on we assume that the 1-motive M
is strict in the sense of [Raynaud 1994, Définition 4.2.3], which means that the
semiabelian variety G has potentially good reduction. In this case, [ibid., 4.3]
defines the geometric monodromy, a canonical additive map µ : Y ⊗ Y ? → Q.
Giving µ is equivalent to giving the induced map

N : V 0
= Y ⊗Q→ V−2

= (Y ?⊗Q)∨. (1.4∗)

By functoriality this map is L-linear, so we can interpret N as an element of the
Lie algebra hss

⊂ End(V ). As an endomorphism of V , it is nilpotent of echelon 2.
In what follows, the notation N will be reserved for this element of hss.

The map N defines a morphism Gr0(V`)→Gr−2(V`)(−1) and thus a morphism
N` : V`→ V`(−1). As N` is L`-linear, N` ∈ hss

⊗Q`(−1) for each `. Recall that
the identification V` ∼= V ⊗Q` depends on the identification Q`(1)∼=Q` fixed in
Section 1.1. Using the same identification, we identify hss

⊗Q`(−1) with hss
⊗Q`

and under these isomorphisms the images of N ⊗ 1 and N` in hss
⊗Q` coincide.

The discussion above only depends on the isomorphisms Gri (V`)∼= V i
⊗Q` for

i =−2, 0, which in turn depend only on the choice of an identification Q`(1)∼=Q`.
In what follows we may thus change the splitting of the weight filtration and the
identification Gr−1(V`) ∼= V−1

⊗Q` without affecting the properties above. We
have established the following proposition.

Proposition 1.5. Let notation and assumptions be as above, in particular the motive
M is assumed to be strict and N` : V`→ V`(−1) is the `-adic monodromy operator.
For each `, fix an identification of H/Q`

with the group of L`-linear automorphisms
of V` and an isomorphism Q`

∼=Q`(1). Using these identifications we consider N`
as an element of h⊗Q`.

• For every algebraically closed field �⊃Q` and every σ ∈ Aut(�), the image
of N` in (h⊗Q Q`)⊗Q`

� = h⊗� is conjugate to σ(N`) under the adjoint
action of H(�).

• If� is an algebraically closed field containing both Q` and Q`′ then the images
in h⊗� of N` and N`′ are H(�)-conjugate.

1.6. The action of inertia. The0F -action on each V` is L`-linear so the realisations
of M give rise to a system of representations

ρ` : 0F → H(Q`),

using the identifications from Section 1.1 and the group H from Section 1.3.
Following [Deligne 1973, §2] for the basic notation, we discuss the action of the

inertia group IF ⊂ 0F . Let v be the valuation of F with value group Z and let k be
the (finite) residue field. We will write v̄ for the valuation on F̄ extending v and
write k̄ for the residue field of F̄ .
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Let
Ẑ 6=p = lim

p-n
Z/nZ=

∏
`6=p

Z`

be the p-primary part of Ẑ and let A6=p = Ẑ 6=p ⊗Z Q. The prime-to-p part of
Q/Z is A6=p/Ẑ 6=p = (Q/Z)6=p. For every n with p - n, we identify ( 1

n Z/Z)(1)
with the group of n-th roots of unity in k̄. This identifies (Q/Z)6=p(1) with the
multiplicative group k̄×. There is a natural morphism t : IF → Ẑ 6=p(1) such that
σ(x)x−1

= [t (σ )v̄(x)] for all σ ∈ IF and x ∈ F̄×. Here [t (σ )v̄(x)] is the image in
k̄× ∼= (Q/Z)6=p(1) of t (σ )v̄(x) ∈ A 6=p(1). For ` 6= p, we write t` : IF → Z`(1) for
the composite of t with the projection Ẑ6=p(1)→ Z`(1).

In the case where Y and G have good reduction, it follows from [Raynaud 1994,
Proposition 4.6.1] that if ` 6= p then for each σ ∈ IF one has

ρ`(σ )= exp(N`⊗ t`(σ )), (1.6∗)

where N` ∈ hss
⊗Q`(−1) is the `-adic monodromy operator defined in Section 1.4.

For an arbitrary strict 1-motive, the equality above holds for all σ in a sufficiently
small open subgroup of IF . We finally note that (1.6∗) characterises the operator
N` as a map N` : V`→ V`(−1). This will play an important role in Section 2.2, in
particular in the formula (2.2∗).

1.7. Characteristic polynomials. Write q = |k| and let ϕ be the arithmetic Frobe-
nius automorphism ϕ : x 7→ xq of k̄ over k. The Weil group of F is the subgroup
of 0F consisting of the elements ψ inducing an integral power of ϕα(ψ) of ϕ. The
map α : WF→Z thus defined is a group homomorphism and its kernel is the inertia
group IF ⊂ 0F . We endow the Weil group with the topology determined by the
condition that IF ⊂WF is an open subgroup carrying the topology inherited from
its topology as a Galois group.

For a 1-motive M/F with L-action as before, k =−2,−1 or 0 and ψ ∈WF , let

P (k)L`,ψ ∈ L`[T ]

be the characteristic polynomial of ρ`(ψ) acting as an L`-linear endomorphism on
the free L`-module Grk(V`). Let PL`,ψ be the characteristic polynomial of ρ`(ψ)
acting L`-linearly on V`. Obviously, one has

PL`,ψ =

0∏
k=−2

P (k)L`,ψ .

Proposition 1.8. Let notation and hypotheses be as above; in particular M is
assumed to be strict. Let ` run though the primes different from p. Then for each
k = −2,−1, 0 and any ψ ∈ WF , we have P (k)L`,ψ ∈ L[T ]. For fixed k and ψ , the
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polynomial P (k)L`,ψ is independent of ` and all its complex roots have absolute value
q−α(ψ)k/2. The polynomial PL`,ψ belongs to L[T ] and is independent of `.

Proof. It is sufficient to prove the statements concerning the P (k)L`,ψ . For k =−2, 0,
these follow from the 0F -equivariant isomorphisms Gr−2(V`) ∼= (Y ?)∨ ⊗Q`(1)
and Gr0(V`) ∼= Y ⊗Q` and the fact that 0F acts on Y and on Y ? through finite
quotients.

For k = −1 we have Gr−1(V`) ∼= V`A, where A is an abelian variety with
L ⊂ End0(A). The statement about the absolute values of the roots of P (−1)

L`,ψ
therefore follows from the corollary to Theorem 3 in [Serre and Tate 1968]; see
also [Raynaud 1994, 4.7.4]. Under the assumption that A has good reduction and
that ψ is a Frobenius element, a proof of the claims that P (−1)

L`,ψ ∈ L[T ] and that
this polynomial is independent of ` is sketched in [Noot 2009, 2.1]. Taking into
account [Serre and Tate 1968, Theorem 2], the argument remains valid when A
only has potentially good reduction and ψ ∈ IF . For the case where ψ reduces to a
nontrivial power of the Frobenius element, one replaces the use of [Serre and Tate
1968, Theorem 2] by the corollary to Theorem 3 in the same paper. �

1.9. Remark. The action of any ψ ∈WF on Grk(V`) is semisimple for any k. For
k =−2, 0 this results from the fact that 0F acts on Gr0(V`) and on Gr−2(V`)(−1)
through a finite quotient. For k =−1 it follows from the fact that Gr−1(V`)∼= V`A,
where A is an abelian variety over F with potentially good reduction. Combining
this statement with the Proposition 1.8, it follows that each ψ ∈WF with α(ψ) 6= 0
acts semisimply on V`.

1.10. Frobenius weights. As before, M is a strict 1-motive over F with L-action.
We fix an arithmetic Frobenius element 8 ∈ 0F , that is, a lifting of the Frobenius
automorphism ϕ of k̄; see Section 1.7. The operator N` : V`→ V`(−1) defined in
Section 1.4 is 0F -equivariant, which implies that Ad(ρ`(8))(N`)= q N`.

As noted in Section 1.9, the image ρ`(8) is semisimple and by Proposition 1.8
its eigenvalues are algebraic integers and, for any eigenvalue, all complex absolute
values coincide and are equal to q, q1/2 or 1. For k = −2,−1, 0, let V k

` ⊗Q`

be the sum of the eigenspaces associated to the eigenvalues with absolute value
q−k/2. This defines a splitting V` = V−2

` ⊕ V−1
` ⊕ V 0

` of the weight filtration. The
Frobenius weight cocharacter w` : Gm/Q`

→ H/Q`
is the morphism making Gm/Q`

act on V k
` through the (k + 1)-st power map. The reader should take note of the

shift in filtration, which is introduced to simplify matters later on. Through the
adjoint representation, w`(t) acts on the line in hss

⊗Q`(−1) generated by N` as
multiplication by t−2.

If M/F is any, not necessarily strict, 1-motive with L-action, then the complex
absolute values of any eigenvalue of ρ`(8) are still equal to q, q1/2 or 1. This
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follows from the existence [Raynaud 1994, 4.2.2] of a strict 1-motive M ′ with
L-action endowed with a system of canonical isomorphisms V`(M)∼= V`(M ′). The
Frobenius weight cocharacter w` of M can therefore be defined exactly as before.
It corresponds to the cocharacter associated to M ′ by transport via the isomorphism
V`(M)∼= V`(M ′) above. In general, w` does not split the weight filtration.

Finally note that, for M strict, the identification V` ∼= V ⊗Q` can be modified,
without affecting its previously established properties, to ensure that the grading on
V` defined by the Frobenius weights corresponds to the grading on V .

2. The representations of the Weil–Deligne group associated to a 1-motive

2.1. The Weil–Deligne group. In addition to the conventions in Section 1.1, we
will from now on assume that `, `′ 6= p. As in Section 1.7, WF is the Weil group
of F . We briefly summarise some of the notions introduced in [Deligne 1973, §8];
see also [Fontaine 1994].

Letting ψ ∈WF operate on the additive group Ga/Q as multiplication by qα(ψ),
one defines an action of the constant topological group scheme WF on Ga/Q. The
Weil–Deligne group of F is the semidirect product

′WF =WF nGa

defined by this action, viewed as a group scheme over Q.
Fix an identification Q`

∼= Q`(1) as in Section 1.1, an arithmetic Frobenius
element 8 ∈WF as in Section 1.10 and consider the map t` from Section 1.6 as a
morphism

IF →Q`(1)∼=Q` = Ga(Q`).

We define a system of `-adic representations of WF with values in ′WF (Q`) by

ψ 7→
(
ψ, t`(8−α(ψ)ψ)

)
∈ (WF nGa) (Q`).

For a field E of characteristic 0 and a linear algebraic group G/E over E , giving
an algebraic representation (′WF )/E → G/E is equivalent to giving a pair (ρ ′, N )
where ρ ′ : WF → G/E(E) is a linear representation that is trivial on some open
subgroup of IF and N ∈ Lie(G/E) is a nilpotent element satisfying the condition
that

Ad(ρ ′(ψ))N = qα(ψ)N (2.1∗)

for all ψ ∈WF . The representation of (′WF )/E corresponding to the pair (ρ ′, N ) is
given by (ψ, x) 7→ ρ ′(ψ) exp(N x).

2.2. ′WF and `-adic Galois representations. Let H/Q`
be a Q`-linear algebraic

group and ρ` : WF → H/Q`
(Q`) a continuous representation. By Grothendieck’s
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`-adic monodromy theorem (see [Deligne 1973, 8.2]), there exists a nilpotent
element N ′` ∈ h

ss(−1)= Lie(H/Q`
)ss(−1) such that

ρ`(ψ)= exp(N ′`t`(ψ)) (2.2∗)

for all ψ in a sufficiently small open subgroup of IF ; see (1.6∗). One can therefore
associate to ρ` a representation (ρ ′`, N ′`) of ′WF with values in H/Q`

as follows.
Using the identification Q`

∼= Q`(1) to interpret N ′` as an element of hss, one
defines

ρ ′`(ψ)= ρ`(ψ) exp
(
−N ′`t`(8

−α(ψ)ψ)
)
.

Composing the corresponding algebraic representation of ′WF with the natural
representation WF →

′WF (Q`) defined above, one recovers ρ`.
According to [Deligne 1973, 8.11], the geometric conjugacy class of (ρ ′`, N ′`) is

independent of the choices of 8 and of the identification Q`
∼=Q`(1) made in this

construction.

2.3. Compatible systems of representations of ′WF . Let H be a reductive alge-
braic group over Q. For a fixed `, we say that a representation ′WF/Q`

→ HQ`
is

defined over Q (as a representation with values in H ) if for every algebraically
closed field �⊃Q`, the base extension ′WF/�→ H/� is conjugate under H(�)
to all its images under AutQ(�). In terms of the pair (ρ ′`, N ′`), let

ρ ′`⊗Q`
� : WF → H/�(�)

be the extension of scalars and let N ′`⊗Q`
1 ∈ (h⊗Q Q`)⊗Q`

� = h⊗� be the
image of N ′`. Then the condition above is equivalent to the condition that for every
σ ∈ AutQ(�) there is an element g ∈ H(�) such that

σ(ρ ′`⊗Q`
�)= g(ρ ′`⊗Q`

�)g−1 and σ(N ′`⊗Q`
1)=Ad(g)(N ′`⊗Q`

1). (2.3∗)

We say that a family of representations ′WF/Q`
→ H/Q`

is a compatible system
of representations of ′WF (with values in H ) if for every pair (`, `′) and every
algebraically closed field � containing Q` and Q`′ , the base extensions to � of
the `-adic and `′-adic representations of ′WF are H(�)-conjugate. In terms of the
pairs (ρ ′`, N ′`) and (ρ ′`′, N ′`′), this means that there is a g ∈ H(�) such that

ρ ′`⊗Q`
�=g(ρ ′`′⊗Q`′

�)g−1 and N ′`⊗Q`
1=Ad(g)(N ′`′⊗Q`′

1)∈h⊗�. (2.3†)

The action of H(�) by conjugation factors through H(�)→ H ad(�) so H(�)-
conjugacy may be replaced by H ad(�)-conjugacy everywhere.

2.4. Application to 1-motives. We apply the discussion above to the system of
`-adic representations V`(M) associated to a 1-motive M with L action. Let M
be as in Section 1.1 and, as was the case from Section 1.4 onward, continue to
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assume M to be strict. The numbers r = rank(Y ), r? = dim(T ) and g = dim(A)
are as in Section 1.1 and we fix an L-vector space V and a system of identifications
V` ∼= V ⊗Q` as in Lemma 1.2. Let the algebraic group H = ResL/Q GL/L(V )
be as in Section 1.3. For every `, the group H/Q`

identifies with the group of
L` = L⊗Q`-linear endomorphisms of V`. The action of 0F on V`(M) is L`-linear,
so it provides us with an `-adic representation of ′WF with values in H/Q`

, that is, a
system of pairs (ρ ′`, N ′`), where N ′` ∈ h⊗Q` = Lie(H)⊗Q` and ρ ′` : WF → H/Q`

.

Lemma 2.5. Let M/F be any 1-motive with L action. The Frobenius weight
cocharacter w` commutes with the representation ρ ′`.

Proof. By construction, ρ`(8)= ρ ′`(8) and the same equality holds for all powers
of 8. In the construction of the Frobenius weight cocharacter, one may replace the
Frobenius element8, and hence q , by any strictly positive power without modifying
w`. This means that it is sufficient to prove that there is a strictly positive power
8n such that ρ ′`(8

n) lies in the centre of the image of ρ ′`. This is obvious since
ρ ′` factors through an extension of the group generated by 8 by a finite quotient
of IF . �

Proposition 2.6. Assume that we are in the situation of Section 2.4, so in particular
M is strict. Each `-adic representation

′WF/Q`
→ H/Q`

is defined over Q and these representations form a compatible system of representa-
tions of ′WF with values in H.

Proof. We first show that each representation is defined over Q.
The operator N ′` is determined by the fact that it satisfies (2.2∗) for all ψ in

a sufficiently small open subgroup of the inertia group IF . The equality (1.6∗)
implies that the monodromy operator N` has the same property so we conclude that
N ′` = N`.

It follows from Proposition 1.5 that for every � ⊃ Q` and σ ∈ Aut(�) as in
Section 2.3, N` ∈ h⊗Q` is H(�)-conjugate to σ(N`). Let g ∈ H(�) be such that
σ(N`) = Ad(g)(N`). It is sufficient to show that ρ ′`⊗� and g−1σ(ρ ′`⊗�)g are
conjugate under the stabiliser of N` in H(�). By elementary representation theory
(see [Deligne 1973, Proposition 8.9]), it suffices to show that the representation ρ ′`
is semisimple and that, for every ψ ∈WF , the L`-linear characteristic polynomials
of ρ ′`(ψ) and of g−1σ(ρ ′`⊗�)g acting on each Grmon

i (V`) coincide. In fact, it is
sufficient to prove that the traces coincide. Here Grmon

i (V`) is the associated graded
of V` for the monodromy filtration defined by N`.

We first treat the semisimplicity. The restriction ρ ′`|IF is semisimple because
it factors through a finite quotient of IF . As the action of WF on each Gri (V`)
is semisimple, the semisimplicity of ρ ′` results from Section 1.9 applied to any
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ψ ∈WF with α(ψ) 6= 0 and the fact that WF is an extension of the group generated
by the Frobenius element to 8 by the inertia group IF .

To establish the putative equality of the characteristic polynomials we will prove
that the L`-linear characteristic polynomials of the ρ ′`(ψ) acting on the Grmon

i (V`)
lie in L[T ]. By Proposition 1.8 the corresponding statement is true for the action
of WF on the Gri (V`), the associated graded for the weight filtration. We finish the
argument by passing to the graded for the monodromy filtration.

This is accomplished by considering the filtration

W mon
−2 V` = im(N`)⊂W−2V` ⊂W−1V` ⊂W mon

−1 V` = ker(N`)⊂W0V` = V`.

The isomorphism Gr0(V`) ∼= V 0
⊗Q` is 0F -equivariant and the action of 0F on

V 0
⊗Q` comes from its L-linear action on V 0. Similarly, the action of 0F on

Gr−2(V`)∼= V−2
⊗Q`(1) comes from its L-linear action on V−2 and the cyclotomic

action on Q`(1). Finally, N` comes from the L-linear map N : V 0
→ V−2 so by

(2.1∗), the kernel of N in V 0 and the image of N in V−2 are WF -invariant L-linear
subspaces. The representation induced by ρ ′` on each of the spaces

Grmon
−2 V` = im(N`)⊂ Gr−2 V`, W−2V`/ im(N`)∼= Gr−2 V`/Grmon

−2 V`,

ker(N`)/W−1V` ⊂ Gr0 V`, and Grmon
0 V` = V`/ ker(N`),

therefore, is a base extension of a representation of WF on an L-vector space.
This proves the claim for Grmon

−2 V` and Grmon
0 V`. For Grmon

−1 V` the claim follows
similarly by considering the graded for the filtration

W−2V`/ im(N`)⊂W−1V`/ im(N`)⊂ ker(N`)/ im(N`)= Grmon
−1 V`.

The fact that the representations ′WF/Q`
→ H/Q`

form a compatible system is
proved by an analogous argument. One now has to prove that, for i =−2,−1, 0
and for each ψ ∈ WF , the L`-linear characteristic polynomials of ρ ′`(ψ) acting
on Grmon

i (V`) are independent of `. Again by Proposition 1.8, this is true for the
characteristic polynomials on the Gri (V`). The ` independence of the characteristic
polynomials on the Grmon

i (V`) follows from this by considering the combined
filtration and adapting the argument above. �

Corollary 2.7. Let M be any 1-motive over F with L-action. Then for each `,
the `-adic realisation V`(M) is a free L`-module. For ` 6= p, the representations
′WF/Q`

→ H/Q`
are defined over Q and form a compatible system of representations

of ′WF with values in H.

Proof. By Lemma 1.2, each V`(M) is a free L`-module. This implies that H/Q`
iden-

tifies with the group of L`-linear endomorphisms of V`(M) and that any two such
identifications differ by an inner automorphism of H/Q`

. It is therefore sufficient to
prove the second statement for one system of such identifications.
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By [Raynaud 1994, 4.2.2] there are a strict 1-motive M ′ over F and a system of
canonical isomorphisms V`(M)∼= V`(M ′) (for every `). Using these identifications
and the remark above, the corollary follows from Proposition 2.6. �

Corollary 2.8. With the notation and hypotheses of Corollary 2.7, ker(ρ ′`)⊂WF is
independent of `.

3. Application to abelian varieties and statement of the main theorem

We turn our attention to an abelian variety A over a number field F ⊂ C. If
F is sufficiently big, each `-adic representation associated to A factors through
ρ` : 0F → G A(Q`), where G A is the Mumford–Tate group of A/C. For a fixed
valuation v of F , the construction sketched in Section 2.2 gives rise to a system
of `-adic representations ′WFv/Q`

→ G A/Q`
of the Weil–Deligne group of Fv . It is

hoped that these representations are defined over Q and that they form a compatible
system of representations with values in G A.

The statement of the main theorem is somewhat weaker; loosely speaking,
it states that, after a finite extension of F , the representations of ′WFv form a
compatible system when G A is replaced by a larger group of which G A is the
identity component. As the construction will show, only certain factors of Gder of
type D are affected by this modification. In order to formulate the precise statement
we need a number of constructions from the previous paper [Noot 2009].

3.1. Notation. From now on, F ⊂C is a number field and A/F an abelian variety.
Let F̄ be the algebraic closure of F in C and 0F = Gal(F̄/F) the absolute Galois
group. We fix a valuation v̄ of F̄ and let v be its restriction to F . Let p be the
residue characteristic of v and Fv the completion of F at v. It is a finite extension
of Qp. Let `, `′ 6= p prime numbers.

3.2. Abelian varieties. Betti cohomology defines a fibre functor HB = H1
B on the

category of absolute Hodge motives generated by the motive of A and the Tate
motive Q(1). The Mumford–Tate G A of A is the group of ⊗-automorphisms
of this fibre functor; see [Noot 2009, 1.2] for a more detailed explanation. We
will assume throughout that G A is connected, this condition holds after replacing
F by a finite extension and it implies that G A is the smallest linear algebraic
Q-group such that the Hodge structure on H1

B(A(C),Q) is defined by a morphism
S = ResC/R Gm→ G A/R; see [ibid., 1.2]. Let gA be the Lie algebra of G A.

For every `, the fibre functor Hét,` defined by the `-adic étale cohomology is
canonically isomorphic to HB⊗Q`. The representation of 0F on the `-adic étale
cohomology makes 0F act on the functor Hét,` and this gives rise to a morphism

ρ` : 0F → G A(Q`).
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Let 8v an arithmetic Frobenius element, belonging to the decomposition group
0Fv
∼= Dv̄ ⊂ 0F . This gives rise to local data as in Section 2.1. We consider the

restriction of the ρ` to the Weil group Wv = WFv . As explained in Section 2.2,
it defines a representation of the Weil–Deligne group ′Wv =

′WFv , that is, a pair
(ρ ′`, N ′`) with ρ ′` : Wv→ G A(Q`) and N ′` ∈ g

ss
A ⊗Q`. By Corollary 2.8, there is an

open subgroup J of the inertia group Iv̄ such that each ρ ′` is trivial on J .
To apply the results above on 1-motives, it is convenient to work with Tate

modules instead of étale cohomology groups. The `-adic Galois representation
V`A = T`A ⊗Z` Q` is dual to H1

ét(A/F̄ ,Q`). Identification of the fibre functor
defined by V` to the dual of the one defined by Hét,` endows V` with the structure of
a representation of G A/Q`

. The action of 0F on V`A is given by the same morphism
ρ` : 0F → G A(Q`) as before. The corresponding representation (ρ ′`, N ′`) of the
Weil–Deligne group ′WFv is also unchanged.

3.3. The group G\ ad. In [Noot 2009, 1.5] one finds the construction of a group
Aut′(G)/Q of automorphisms of G A/Q. In this paper we will write G\ ad for this
“natural extension” of Gad. We briefly sketch its construction.

The derived group Gder
A/Q is the almost direct product of almost simple subgroups

Gi ⊂ G A/Q, for i in some index set I . Let J ⊂ I be the set of indices i such that
Gi ∼= SO(2ki )/Q for some ki ≥ 4 and for each i ∈ J put G ′i = O(2ki ) ⊃ Gi . We
define

G\ ad
=

∏
i∈J

G ′ ad
i ×

∏
i∈I\J

Gad
i ⊃ Gad

A/Q
.

As this group operates trivially on the centre of Gder
A/Q, we can define an action of

G\ ad on G A/Q extending the adjoint action on Gder
A/Q and with G\ ad acting trivially

on the centre of G A/Q. Through the adjoint representation, the group G\ ad also acts
on the Lie algebra g⊗Q.

3.4. Compatible systems revisited. We introduce a variant of the notion, introduced
in Section 2.3, of a compatible system defined over Q of representations of ′WFv
with values in G A. This time we allow conjugation by the group G\ ad so the
condition is weaker than G-conjugacy if Gder

A/Q has factors of the form SO(2k).
Let v, ′Wv and 8v be as in Sections 3.1 and 3.2. For a fixed `, let (ρ ′`, N ′`) define

a representation of ′Wv/Q`
with values in G A/Q`

. We say that this representation
is defined over Q modulo G\ ad

A if, for every algebraically closed field �⊃Q` and
every σ ∈ AutQ(�), there is a g ∈ G\ ad

A (�) such that

σ(ρ ′`⊗Q`
�)= g(ρ ′`⊗Q`

�)g−1 and σ(N ′`⊗Q`
1)= Ad(g)(N ′`⊗Q`

1).

We say that a system of representations (ρ ′`, N ′`) of ′Wv/Q`
is a compatible

system of representations of ′Wv modulo G\ ad
A if for every pair (`, `′) and every
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algebraically closed field �⊃Q`,Q`′ , there is a g ∈ G\ ad
A (�) such that

ρ ′`⊗Q`
�= g(ρ ′`′ ⊗Q`′

�)g−1 and N ′`⊗Q`
1= Ad(g)(N ′`′ ⊗Q`′

1) ∈ g⊗�.

Definition 3.5. Let � be an algebraically closed field, G a linear algebraic group
over a subfield of � and V a representation of G. A semisimple g ∈ G(�) is neat
if the Zariski closure of the subgroup of G(�) generated by g is connected. A
semisimple element g ∈ G(�) is weakly neat (with respect to V ) if 1 is the only
root of unity among the quotients λµ−1 of eigenvalues λ and µ of g.

For weak neatness, we will suppress the reference to V if it is clear which
representation is being considered. For elements of the Mumford–Tate group of an
abelian variety, we always consider the representation defined by the Tate module.
A neat element is weakly neat with respect to any representation.

Theorem 3.6. Assume that A has semistable reduction at v and that, for some `,
the image ρ ′`(8v) is weakly neat. Then the representations (ρ ′`, N ′`) of ′Wv cor-
responding to A are defined over Q modulo the action G\ ad

A . For ` 6= p, these
representations form a compatible system of representations of ′Wv modulo the
action of G\ ad

A .

3.7. Remarks.

3.7.1. The condition that A has semistable reduction at v implies that ρ ′` is trivial
on Iv̄. In particular, the condition that ρ ′`(8v) is weakly neat does not depend on
the choice of the Frobenius element 8v. Also note that ρ ′`(8v)= ρ`(8v) so that
the condition can also be checked on ρ`(8v). By the main theorem, or in a more
elementary fashion by Proposition 1.8, the condition that ρ ′`(8v) is weakly neat is
independent of `.

3.7.2. In general, A only has potentially semistable reduction at v. In this case,
ρ ′`|Iv̄ has finite image so, for σ ∈ Iv̄ , all eigenvalues of ρ ′`(σ ) are roots of unity. The
elements of ρ ′`(Iv̄) are not neat and the methods of this paper do not seem to permit
one to prove that the ρ ′` form a compatible system in this case. As the monodromy
operators are unchanged by a finite base extension, one may reduce to the case of
stable reduction to prove that the N ′` do form a compatible system defined over Q.

3.7.3. To check the condition of weak neatness, one has to determine the charac-
teristic polynomial of ρ`(8v) for at least one `, which is not always feasible in
practice. However, the condition always holds for a power of 8v, that is, after
replacing F by a finite extension F ′ and v by a valuation of F ′ lying over v. Also
note that if, for some ` 6= p, the elements of ρ`(0F ) are congruent to 1 modulo `
(or congruent to 1 modulo 4 if `= 2), then ρ`(8v) is necessarily weakly neat.

On the other hand, it is easy to construct abelian varieties, even with good
reduction, that do not satisfy the condition of weak neatness. For this, one may
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choose a pa-Weil number α having two conjugates differing by a nontrivial root
of unity. There exists an abelian variety A0 over a finite field of characteristic p
such that the characteristic polynomial of Frobenius is a power of the minimum
polynomial of α. Any lifting of A0 over a number field provides a counterexample
to the neatness condition of the theorem.

3.7.4. If the abelian variety A has good reduction at v then the monodromy N ′` is
trivial and the theorem reduces to the main result, [Noot 2009, Théorème 1.8].

3.7.5. We finally refer to [ibid., Remark 1.9(4)] for a note on the density of the set
of places v of good reduction where ρ`(8v) is weakly neat. Density statements of
this type are not useful in the present context as the number of places where A does
not have good reduction is finite.

3.8. G A, monodromy and Frobenius weights. As pointed out in Section 3.2, the
system (ρ`) is determined by the Galois representations on the Tate modules of A.
From now on, we systematically adopt this point of view.

In the proof of Corollary 2.7, we applied [Raynaud 1994, 4.2] to the motive
M in order to reduce to a strict motive M ′. Applying the same argument to the
abelian variety Av = A/Fv , one again obtains a strict 1-motive M ′/Fv endowed
with a system of canonical 0Fv -equivariant isomorphisms

V`(Av)= T`(Av)⊗Z` Q`
∼= V`(M ′).

Let M ′ = [Y →G], let Y ? be the character group of the toric part of G and write
r and r? for the ranks of Y and Y ?. Let g be the dimension of the quotient of G by
its maximal torus.

In Section 1.10 we defined the Frobenius weight cocharacter of a local Galois
representation associated to a 1-motive. Applying this construction to the restrictions
ρ`|Dv

we obtain the Frobenius weight cocharacter

w` : Gm→ GL(V`(A)).

Lemma 3.9. Under the conditions above we have r = r? and the monodromy
operator N : Y ⊗Q→ Y ?⊗Q associated to M ′ is an isomorphism. For each `, the
map N ′` defines an isomorphism from the t-eigenspace of w` acting on V`(A) onto
the t−1-eigenspace.

Proof. The arguments used in [Raynaud 1994, 4.2] show that Y =3, where 3 is
the Z-module in the diagram (**) of [loc. cit.], so r is equal to the rank of 3. This
reference also implies that r? is equal to the rank of 3, so r = r?. Still by [ibid.,
4.2], the intersection of 3 with the rigid analytic generic fibre of G is trivial. With
the notation of [ibid., 4.3], this means that for any y ∈ Y , there exists y? ∈ Y ? with
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µo(y⊗ y?)> 0. It follows that N induces an isomorphism Y⊗Q∼= Y ?⊗Q. All this
is classical; see for example [Grothendieck et al. 1972, Exposé IX, Théorème 10.4].

The monodromy filtration on V`(M ′) coincides with the weight filtration so the
last statement immediately follows from the previous ones. �

Lemma 3.10. The Frobenius weight cocharacter w` factors through G A/Q`
. In

fact, this cocharacter factors through a torus Tv ⊂ G A/Q`
containing ρ`(8v).

Proof. The Mumford–Tate group G A contains the group Gm/Q of scalar multiplica-
tions of H1

B(A(C),Q). Let w′` = t ·w`, let T ′v ⊂ G A/Q`
be the identity component

of the Zariski closure of the subgroup of G A/Q`
generated by ρ`(8v) and put

Tv = Gm T ′v . We will prove that w` factors through Tv by showing that w′` factors
through T ′v .

The last statement follows from the argument used in [Serre 2000], §4 of the
first letter. The proof comes down to the fact that the eigenvalues of w′`(t) satisfy
all the multiplicative relations satisfied by the archimedean absolute values of the
eigenvalues of ρ`(8v). �

4. Generalities on tractable abelian varieties

4.1. Tractable abelian varieties. The notion of “variété abélienne accommodante”
was introduced in [Noot 2009, 2.3]; in this paper we call such a variety a tractable
abelian variety. Let us recall the relevant ideas.

First of all, we define the notion of an admissible representation of a reductive
group. Heuristically, the admissible representations are the representations encoun-
tered when studying Shimura data of abelian type that admit an embedding into the
Siegel Shimura datum. We refer to [Deligne 1979, 1.3] for this classification. To
be precise, let K be a field of characteristic 0 and let � ⊃ K be an algebraically
closed extension. Assume that Gs is a linear algebraic group over K such that Gs

/�

is almost simple of type A, B, C or D. Let V s be a faithful K -linear representation
of Gs . We say that V s is an admissible representation of Gs in the following cases:

• Gs
/� is of type An and V s

⊗K � is a multiple of the direct sum of the rep-
resentations of highest weights $1 and $n if n ≥ 2 and a multiple of the
representation of highest weight $1 if n = 1.

• Gs
/� is of type Bn and V s

⊗K � is a multiple of the representation of highest
weight $n .

• Gs
/� is of type Cn and V s

⊗K � is a multiple of the representation of highest
weight $1.

• Gs
/� is of type Dn and V s

⊗K � is a multiple of the representation of highest
weight $1.
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• Gs
/� is of type Dn and V s

⊗K � is a multiple of the direct sum of the repre-
sentations of highest weights $n−1 and $n .

In the first three cases, we will say that the pair (Gs, V s) is of type An , Bn or Cn , in
the last two cases we say that (Gs, V s) is of type DH

n or of type DR
n , respectively.

Returning to abelian varieties, we let A be an abelian variety over C and write
V = H1

B(A(C),Q). We say that A is strictly tractable if

• there exists a totally real number field K and an almost simple linear algebraic
group Gs over K such that Gder

A = ResK/Q Gs ;

• as a representation of Gder
A , the cohomology group V is the restriction of scalars

of an admissible representation V s of Gs ;

• if (Gs, V s) is of type DR
n then every character space in V ⊗Q for the action

of the centre of G A/Q is an admissible representation of a factor of Gder
A/Q; and

• the conditions above do not hold for any proper abelian subvariety of A.

The type of a strictly tractable abelian variety is the type of the pair (Gs, V s).
We will say that A is tractable if A is isogenous to a product

∏m
i=1 Ai of strictly

tractable abelian varieties Ai and Gder
A
∼=
∏m

i=1 Gder
Ai

. If F ⊂ C is a subfield, an
abelian variety A/F is (strictly) tractable if A/C is and if G A is connected.

4.2. Remark. The concept of tractability is an auxiliary notion used in the proof
of the main theorem. It does not seem to be of independent interest, though it is
conceivable that the method of the present paper can be used in other contexts.

Heuristically, the fact that an abelian variety A is strictly tractable means that the
representation of Gder

A on V =H1
B(A(C),Q) decomposes over Q as a direct sum of

irreducible representations of the almost simple factors of Gder
A/Q. In particular, any

abelian variety A/C of dimension g with Gder
A = Sp2g is tractable. This means that,

in the moduli space of g-dimensional abelian varieties, the points corresponding to
nontractable varieties belong to a countable union of closed subvarieties and thus
the general abelian variety is tractable.

If the simple factors of V ⊗Q, as a representation of Gder
A/Q, are tensor products

of irreducible representations of the almost simple factors Gder
A/Q, then A is not

tractable. The simplest such example was given by Mumford [1969]. The generic
members of the families constructed there are not tractable.

More generally, any simple abelian variety A/C, with L = End0(A), whose
Mumford–Tate group coincides with the group of L-linear symplectic similitudes
of H1

B(A(C),Q) is tractable. The converse is not true, as can be seen for example in
the case where the Mumford–Tate group is of type Dn . Nevertheless, being tractable
still means that the endomorphism algebra is big compared to the Mumford–Tate
group. This is the key to the proof of the main theorem for tractable abelian varieties.
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By definition, abelian varieties of CM type are not tractable. As pointed out
in the introduction, the system of `-adic representations associated to an abelian
variety of CM type is described by the theory of complex multiplication and the
main theorem is true in the CM case.

4.3. The algebra L ⊂ End0(A). In the proof of the main Theorem 3.6, we will
adapt the ideas used in [Noot 2009]. We will in particular make use of the algebra
L ⊂ End(A)⊗Q constructed in the beginning of the proof of [ibid., Théorème 2.4].
For this construction, first decompose V ⊗Q =

⊕n
i=1Vi , where the Vi are the

isotypic components of the representation of G A/Q on V ⊗Q. In other words, each
Vi is a multiple of an irreducible representation of G A/Q and HomG A/Q(Vi , V j )= 0
for i 6= j . This decomposition defines a subalgebra Qn

⊂EndG A/Q(V ⊗Q), with the
i-th factor Q acting on the factor Vi by scalar multiplication. Taking 0Q-invariants,
this inclusion descends to

L ⊂ EndG A/Q(V ⊗Q)= End0(A/C)= End0(A),

where L is a finite, semisimple, commutative Q-algebra. The last equality follows
from the fact that G A is connected and is justified in [Noot 2009, proof of 2.4].

There is a canonical isomorphism L ⊗Q ∼=
∏
ι : L→Q Q; in fact L is defined

as the algebra of 0Q-invariants in the product on the right hand side. The direct
factors of V ⊗Q are indexed by the morphisms ι : L → Q, with the ι-factor of∏
ι Q acting on Vι by scalar multiplications and acting trivially on the other Vκ .

The decomposition of L ⊗Q thus gives rise to a decomposition V ⊗Q =
∏
ι Vι.

There is a similar decomposition V ⊗�=
∏
ι Vι for any algebraically closed field

� of characteristic 0, with the product taken over all morphisms ι : L→�.

Lemma 4.4. Assume that A/C is a strictly tractable abelian variety. Unless A is
of type DR

n , the algebra above L ⊂ End(A)⊗Q is a field. If A/C of type DR
n then

the algebra L is either a field or it is isomorphic to L ′× L ′ for a field L ′.

Proof. As L is a semisimple algebra, it decomposes as a product of fields. This
decomposition gives rise to a corresponding decomposition of A and unless the
pair (Gs, V s) associated to A is of type An or DR

n , each factor still satisfies the first
three conditions of the definition of a strictly tractable abelian variety. If there is
more than one factor, this violates the minimality condition.

If the pair (Gs, V s) associated to A is of type An , then the argument used in
[Noot 2006, 5.1] shows that the complex conjugation acts on the Dynkin diagram
of Gs by the main involution. This implies that a direct factor of V ⊗Q, which is a
representation of highest weight $1 of some factor of Gder

A/Q belongs to the same
0Q-orbit as the representation of highest weight $n of the same factor. It follows
that for any decomposition of A as above, each factor still satisfies the first three



264 Rutger Noot

conditions of the definition. The minimality condition again implies that there is
only one factor.

If (Gs, V s) is of type DR
n , then a direct factor L ′ of L may define a factor A′

of A such that the associated pair (Gs, V s) is a half spin representation. In that
case, A has a factor A′′ for which (Gs, V ′s) is the other half spin representation.
By minimality, one must have A ∼ A′⊕ A′′. In this case, the set of vertices $n−1

and the set of vertices $n of the Dynkin diagram of Gder
A form two separate orbits

for the 0Q action. Since these orbits are isomorphic as 0Q-sets, it follows that
L = L ′⊕ L ′. �

4.5. The group H. For the rest of this section we will assume, in addition to the
hypotheses of Section 3.1, that A/F is tractable. Let G\ ad

A be the linear algebraic
group over Q introduced in Section 3.3.

To prove the theorem for A, we will use the results on 1-motives obtained
in Section 2 so it is convenient to study the Galois representations defined by
the Tate-modules; see Section 3.2. Let V = H1(A(C),Q) and for each prime
number ` put V` = T`(A)⊗Z` Q`, where T`(A) is the `-adic Tate module of A.
As in Section 3.2, there is a natural representation of G A on V and there are
canonical isomorphisms V` ∼= V ⊗Q`. The action of 0F on the V` is given by the
representations ρ` : 0F → G A(Q`).

We closely follow the proof of [Noot 2009, Théorème 2.4]. Let the endo-
morphism algebra L ⊂ End0(A) be as in Section 4.3. It is a product of number
fields L i for i = 1, . . . , s. This decomposition gives rise to a decomposition up to
isogeny A ∼

∏s
i=1 Ai and to a corresponding decomposition V =

⊕s
i=1 Vi , where

Vi = H1(Ai (C),Q). For each i one has L i ⊂ End0(Ai ) and this action endows Vi

with the structure of L i -vector space. It follows from Lemma 4.4 that each factor
Ai is either strictly tractable or that it is of type DR

n . If Ai is not strictly tractable, it
follows from the definition and again from Lemma 4.4 that there is another factor
A j such that L i ∼= L j and the product Ai × A j is strictly tractable. In this case
we change definitions and put Ai = Ai × A j and L i = L i × L j . We suppress the
factors A j and L j and modify the value of s accordingly. After these modifications,
we have decompositions L =

∏s
i=1 L i and A ∼

∏s
i=1 Ai , where all factors Ai are

strictly tractable and each L i is either a field of a product L ′i × L ′i of fields.
Let di = dimL i Vi and let

H =
s∏

i=1

ResL i/Q GL/L i (Vi )=

s∏
i=1

Hi ∼=

s∏
i=1

ResL i/Q GLdi/L i

be the centraliser of L in GL(V ). In the case where L i ∼= L ′i × L ′i , the factor Hi is(
ResL ′i/Q GLdi/L ′i

)2
.
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It is a linear algebraic group over Q. The action of G A on V commutes with the
action of End0(A), so G A ⊂ H . The decomposition H =

∏s
i=1 Hi corresponds to

the decompositions of L , of A and of V . In particular, Hi is the only factor of H
acting nontrivially on Vi . Writing G Ai for the Mumford–Tate group of Ai one has
G Ai ⊂ Hi .

Let � be an algebraically closed extension of Q. For each Q-algebra homo-
morphism ι : L → � there is a unique index i = i(ι) such that ι factors through
L→ L i →�, where L→ L i is the projection and L i →� a ring homomorphism.
This final map is an embedding if L i is a field and an embedding of one of the
factors of L i if Ai is of type DR

n and L i is a product L ′i×L ′i . Let dι= di . Extending
the base field to � one obtains

H/� ∼=
∏

ι : L→�

GLdι/� .

The group G A/� embeds into this product and for ι : L→� we let Gι be its image
in the factor GLdι/� corresponding to ι.

This gives rise to similar decompositions of the Lie algebras. For h=Lie(H) we
have h⊗Q�=

⊕
hι =

⊕
End(Vι)∼=

⊕
gldι/�. The inclusion G A ⊂ H induces

gA⊗�= Lie(G A)⊗� ↪→
⊕

ι : L→�
gι ⊂

⊕
ι

End(Vι)= h⊗�, (4.5∗)

where gι ⊂ hι = End(Vι ⊗ �) is the Lie algebra of Gι. For both the group
H/� ∼=

∏
GLdι/� and the Lie algebra h ⊗Q � ∼=

∏
gldι/�, the obvious action

of σ ∈ Aut(�) on the left hand side translates on the right hand side to

σ : (xι)ι : L→� 7→ (σ (xσ−1ι))ι : L→� . (4.5†)

4.6. Monodromy and Frobenius weights. The `-adic realisations of A decompose
in the same way as the Betti realisation. Define Vi,`= T`(Ai )⊗Q` for every `. The
decomposition of A gives rise to 0Fv -equivariant L`= L⊗Q`-linear decompositions
V` =

⊕s
i=1 Vi,` and we have canonical L i -linear isomorphisms Vi,` ∼= Vi ⊗Q Q`.

Assume that A has semistable reduction at v and let further notation be as in
Section 3.1. Let q be the order of the residue field of Fv . To study the monodromy we
follow Section 2.2, so we fix identifications Q`(1)∼=Q` and define the monodromy
operators N ′` by (2.2∗). One has N ′` ∈ gss

A ⊗Q` by Section 3.2. Similarly, for
each Ai we have the monodromy operator N ′i,` ∈ g

ss
Ai
⊗Q`. Under the embedding

gA ⊂
⊕s

i=1gAi the element N ′` maps to (N ′i,`)i=1,...,s .
For A and each one of the Ai , let the Frobenius weight cocharacters

w` : Gm/Q`
→ G A/Q`

and wi,` : Gm/Q`
→ G Ai/Q`
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be as in Section 3.8. These cocharacters factor through the Mumford–Tate groups
by Lemma 3.10. As in the case of the monodromy operators, the cocharacter

(wi,`)i=1,...,s : Gm/Q`
→

∏
i=1,...,s

G Ai/Q`

is the composite of w` with the inclusion G A ⊂
∏

G Ai . It follows from Lemma 3.9
that w` and the wi,` split the monodromy filtrations on V` and on the Vi,`, respec-
tively.

5. Strictly tractable abelian varieties of types An, Cn and DH
n

5.1. We keep the notation of Section 3.1. In this section, we will assume that A is
a strictly tractable abelian variety and that its Mumford–Tate group G A is of type
An , Cn or DH

n . According to Lemma 4.4, the algebra L then is a field. In particular,
where the group H introduced in Section 4.5 is concerned, we have dι = d1 = d
for all ι : L→�. As in Section 4.6, consider the monodromy operator N ′` and the
weight cocharacter w`. It follows from Corollary 2.7 that the H -conjugacy class of
(N ′`, w`) is defined over Q and that it is independent of `, in accordance with the
terminology developed in Section 2.3.

For any algebraically closed extension � of Q, the Lie algebra gss
⊗� is a direct

sum of simple Lie algebras. The groups Gad
A (�) and G\ ad

A (�) act on each direct
factor of this Lie algebra factor through a unique simple factor. Fix a factor gss

ι of
gss
⊗� and consider the corresponding factors Gder

ι of Gder
A/� and G\ ad

ι of G\ ad
A/�.

Under the sequence of embeddings (4.5∗), gι embeds into a simple factor hι ∼= gld
of h⊗�. If G A is of type An , then gss

ι and Gder
ι act on the direct factor Vι of V ⊗�

either as a multiple of the standard representation or as its dual. If G A is of type Cn

or DH
n in the classification, gss

ι and Gder
ι act on Vι as a multiple of the symplectic or

the orthogonal representation respectively.
Let � ⊃ Q` be an algebraically closed field and let σ ∈ Aut(�). As we saw

above, (N ′`, w`) and σ(N ′`, w`) ∈ h⊗� are conjugate under the adjoint action of
H(�). Writing N ′` = (N

′

`,ι)ι ∈
∏

hι as in (4.5∗) and w` = (w`,ι)ι it follows from
the formula (4.5†) that the projections (N ′`,ι, w`,ι) and σ(N ′

`,σ−1ι
, w`,σ−1ι) of these

pairs are Hι(�)-conjugate.
In the case where G A is of type An , it trivially follows that N ′`,ι and σ(N ′

`,σ−1ι
)

are conjugate under the action of Gad
ι (�) = G\ ad

ι (�) on gι. In the cases where
G A is of type Cn or Dn , it follows from [Springer and Steinberg 1970, IV §2], in
particular from 2.14, that N ′`,ι and σ(N ′`,σ−1ι) are conjugate under the action of
G\ ad
ι (�) on gι. See also [Humphreys 1995, 7.11] for a summary of the results

concerning the nilpotent conjugacy classes in the classical Lie algebras.
Similarly, if � is an algebraically closed field containing Q` and Q`′ then the

images of N ′` and N ′`′ in hss
⊗� are conjugate under H(�). The argument above
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implies that, for each ι, the operators N ′`,ι and N ′`′,ι are conjugate under the action
of G\ ad

ι (�) on gι.
Next consider the weight cocharacter w`. For each ι, let w`,ι be the projection

of w` to Gι. Recall that by Lemma 3.9, the monodromy operator N ′`,ι induces
an isomorphism of the t-eigenspace of w`,ι in Vι onto the t−1-eigenspace. Going
through the arguments of [Springer and Steinberg 1970, IV], with N ′`,ι playing the
role of X , one deduces that there exists a basis of Vι satisfying the conditions of
[ibid., IV, 2.19(b)] such that w`,ι is the inverse of the cocharacter λ defined in [ibid.,
IV, 2.22]. In particular, w`,ι factors through the derived group Gder

ι . This fact can
also quite easily be shown directly.

If � is an algebraically closed field and σ ∈ Aut(�) then, for X = σ(N ′
`,σ−1ι

),
there is a basis of Vι as in [ibid., IV, 2.19(b)] such that σ(w`,σ−1ι) coincides
with σ(λ−1). We know that N ′`,ι and σ(N ′`,σ−1ι) are conjugate under G\ ad

ι (�).
Moreover, any two bases of V that satisfy the conditions of [ibid., IV, 2.19(b)] are
conjugate under the centraliser Z \ ad

`,ι of N ′`,ι in G\ ad
ι . It follows that (N ′`,ι, w`,ι) and

σ(N ′
`,σ−1ι

, w`,σ−1ι) are G\ ad
ι (�)-conjugate.

If ` and `′ are two prime numbers and if � is an algebraically closed field
containing both Q` and Q`′ , then the same argument, applied to (N ′`,ι, w`,ι) and
(N ′`′,ι, w`′,ι), proves that these two pairs are G\ ad

ι (�)-conjugate.

Proposition 5.2. Let notation and assumptions be as above. In particular, A/F is
a strictly tractable abelian variety of type An , Bn or DH

n .

• For every `, every algebraically closed field � ⊃ Q` and every σ ∈ Aut(�),
the image of (N ′`, w`) in g⊗�× X (G A/�) is conjugate to σ(N ′`, w`) under
the adjoint action of G\ ad

A (�).

• If� is an algebraically closed field containing both Q` and Q`′ , then the images
in g⊗�× X (G A/�) of (N ′`, w`) and (N ′`′, w`′) are G\ ad

A (�)-conjugate.

Proof. As A is tractable, the group Gder
A/� is the product of its almost simple factors.

If G A is of type Cn or DH
n , then Gder

A/� is the product of the Gder
ι . In the case where

G A is of type An , we saw in the proof of Lemma 4.4 that the complex conjugation
acts nontrivially on each component of the Dynkin diagram. If n ≥ 2, it follows
from [Noot 2006, 5.1] that L is a CM field and hence that the complex conjugation
defines an nontrivial involution ι 7→ ι′ on the set of embeddings L→�. In this case,
Gder

A/� is a product of groups 1{ι,ι′}, where each 1{ι,ι′} ⊂Gder
ι ×Gder

ι′ is the graph of
an isomorphism Gder

ι
∼=Gder

ι′ . Identifying 1{ι,ι′} with Gder
ι through the projection on

the first factor, the representation of 1{ι,ι′} on Vι is a multiple of the representation
with highest weight $1 and Vι′ is its dual, a multiple of the representation with
highest weight $n . The case where n = 1 is left to the reader.

The N ′`,ι belong to gss
ι and, as we pointed out in Section 5.1, the w`,ι factor

through Gder
ι . The proposition follows from the fact, proved in Section 5.1, that
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(N ′`,ι, w`,ι) and σ(N ′`,ι, w`,ι) are G\ ad
ι (�)-conjugate for each ι, combined with the

formula (4.5†). �

5.3. The centraliser of (N ′`,w`) in G\
A/Q`

. We return to the construction 3.3 of
the group G\ ad

A . In the case considered here, this group is the adjoint group of a
Q-group G\

A containing the derived Mumford–Tate group Gder
A/Q. In fact, one has

to take G\

A = Gder
A/Q if G A is of type An or Cn and in this case we put G\

ι = Gder
ι

for each embedding ι : L→Q. If G A is of type DH
n , then

Gder
A/Q
=

∏
Gder
ι ,

where each Gder
ι
∼= SO2n . We put G\

ι =O2n and G\

A =
∏

G\
ι . In all cases, it is clear

from the construction Section 3.3 that Gder
A/Q ⊂ G\

A is the identity component and
that the group G\ ad

A defined in that construction is indeed the adjoint group of G\

A.
Working with this group G\

A, we may apply [Springer and Steinberg 1970, IV].
In what follows, the centralisers C \

`⊂G\

A/Q`
and C`⊂G A/Q`

of the pair (N ′`, w`)
will play an important role. The group C` is the subgroup of G A/Q`

generated by
C \

` ∩Gder
A/Q`

and the centre of G A/Q`
. The embedding

G\

A/Q`
→

∏
ι

G\

ι/Q`

gives rise to a similar embedding C \

`/Q`
→
∏
ι C

\

`,ι, where each C \

`,ι is the centraliser
of (N ′`,ι, w`,ι) in G\

ι. We first determine these groups C \
`,ι.

By Lemma 3.9, N ′` induces an isomorphism from the t-eigenspace of w` onto the
t−1-eigenspace of w`. As we saw in Section 5.1, this implies that, taking G = G\

ι

and X = N ′`,ι in [Springer and Steinberg 1970, IV §2], the proper choice of a basis
of Vι ensures that the cocharacter w`,ι is the inverse of the cocharacter λ defined
in that paper, IV 2.22. The group C \

`,ι is therefore equal to the group C of [ibid.,
IV 2.23(iii)]. Note that, contrary to what is affirmed in that statement, this group is
not necessarily connected. Indeed, there may be two connected components; see
[ibid., 2.25 and 2.26].

To give an explicit description of C \

`,ι, let the 1-motive M ′ and the dimensions
r = r? and g be as in Section 3.8. In this case, r = r? is equal to the dimension of
both the t and the t−1-eigenspaces of w`. Since N ′`,ι is nilpotent of echelon at most
2, it is easily deduced from [ibid., IV 1.8, 2.25] that the group C \

`,ι is isomorphic to
the Q`-group

• SLr ×SL2g if G A is of type An ,

• Or ×Sp2g if G A is of type Cn or

• Spr ×O2g if G A is of type Dn .
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Each factor C \

`,ι is therefore a product C \

`,ι,0×C \

`,ι,−1 and this decomposition is
determined by the cocharacter w`,ι. In fact, for each integer k let V k−1

` and V k−1
`,ι be

the tk-eigenspaces of w` and w`,ι in V` = V ⊗Q` and Vι⊗Q`, respectively. This
seemingly confusing notation is consistent with Section 1.10. As C \

`,ι commutes
with w`,ι, it respects the grading V`,ι =

⊕
k=−2,−1,0 V k

`,ι and it follows from [ibid.,
IV 1.8, 2.25] that for k = 0,−1, the group C \

`,ι,k is the image of C \

` in GL(V k
`,ι). For

a group of type An or Cn , this embedding is given by the standard or symplectic
representation, respectively, and for a group of type Bn or Dn it is defined by the
orthogonal representation. The monodromy operator N`,ι defines an isomorphism
of the representations of C \

`,ι,0 on V 0
`,ι and on V−2

`,ι .
The decomposition above can be defined on the level of the group C` by taking

C`,k equal to the image of C` in GL(V k
` ), for k = 0,−1. Finally, let C`,ι,k be the

image of C`/Q`
in GL(V k

`,ι), so that each Cder
`,ι,k ⊂ C \

`,ι,k is the identity component,
with equality for all factors other than those isomorphic to an SO2n .

5.4. The representations ρ′`. We now turn to the representations ρ ′` of the Weil
group Wv =WFv . For general ψ ∈Wv , the image ρ ′`(ψ) does not belong to C`(Q`)

so in order to apply the arguments of [Noot 2009, §2], we replace C` by the group
C̃` ⊂ G A/Q`

generated by C` and the image of w`. For ψ ∈Wv one has

Ad
(
ρ ′`(ψ)

)
(N ′`)= qα(ψ)N ′` = Ad

(
w`(qα(ψ)/2)

)
(N ′`).

On the other had, it follows from Lemma 2.5 that ρ ′`(ψ) and w` commute. This
implies that ρ ′`(ψ)w`(q

−α(ψ)/2) lies in C`(Q`) and hence that ρ ′`(ψ) ∈ C̃`(Q`).
The action of C̃` on V` respects the grading V` =

⊕
k=−2,−1,0 V k

` so, for k = 0,−1,
it makes sense to define C̃`,k as the image of C̃` in GL(V k

`,ι). The adjoint action of
C \

` on C` extends to an action of C \

` on C̃`, with the former group acting trivially
on the image of w`.

Recall that, according to Lemma 4.4, the algebra L is a field in the cases con-
sidered here. We write Ad

(L) = ResL/Q Ad
/L . The discussion above shows that

taking the L`-linear characteristic polynomials of the elements of C̃` acting on the
w`-eigenspace V−1

` , one defines a map

P ′L : C̃`→ C̃`,−1→ A
2g
(L)/Q`

. (5.4∗)

We will also write P ′L for the map C̃`,−1→ A
2g
(L)/Q`

. As in [Noot 2009], the maps
P ′L factor through the quotients of C̃` and C̃`,−1 by the adjoint C \

`-action.
It follows from Proposition 1.8 and from Section 3.8 that for any ψ ∈Wv, the

characteristic polynomial of ρ ′`(ψ) acting as an L`-linear automorphism on V−1
`

has coefficients in L and is independent of `. This proves the following lemma.

Lemma 5.5. Under the hypotheses above, the image of ρ ′`(ψ) ∈ C̃`(Q`) under the
map P ′L defined in (5.4∗) lies in A

2g
(L)(Q) and is independent of `.



270 Rutger Noot

5.6. Remark. The statement of the lemma also holds for the image of ρ ′`(ψ) under
the map P ′′L : C̃`→ Ar (L) defined by taking the characteristic polynomial on V 0

` .
This observation is of little interest for weakly neat elements.

Proposition 5.7. The main theorem, Theorem 3.6, holds if A is strictly tractable
and its Mumford–Tate group G A is of type An , Cn or DH

n .

Proof. As the assumptions of Theorem 3.6 are now in force, A has semistable
reduction at v and the image ρ ′`(8v) of Frobenius is weakly neat. This implies that
the restriction of ρ ′` to Ib̄ is trivial and that ρ ′`(8v) acts on V 0

` as multiplication by
ε =±1 and on V−2

` as multiplication by qε.
As in Section 5.1, let �⊃Q` be an algebraically closed field and let σ ∈Aut(�).

We have to show that the pairs (N ′`, ρ
′

`(8v)) and (σ (N ′`), σ (ρ
′

`(8v))) are conjugate
under the action of G\

A(�). By Proposition 5.2, there is a g ∈ G\

A(�) such that

(N ′`, w`)= Ad(g)(σ (N ′`), σ (w`)).

This implies that ρ ′`(8v) and gσ(ρ ′`(8v))g
−1 belong to C̃`(�). As C \

` centralises
(N ′`, w`), it is enough to show that ρ ′`(8v) and gσ(ρ ′`(8v))g

−1 are conjugate under
C \

`(�). By Section 1.9 and the proof of Proposition 2.6, the element ρ ′`(8v) is
semisimple. Moreover

P ′L(gσ(ρ
′

`(8v))g
−1)= σ(P ′L(ρ

′

`(8v)))= P ′L(ρ
′

`(8v)),

where the former equality is elementary and the latter one follows from Lemma 5.5.
The projections of these elements to C̃`,−1(�) are semisimple and weakly neat and
their projections to C`,0(�) lie in the centre of this group. The required statement
therefore follows from Lemma 5.8.

For the `-independence, let ` and `′ be two prime numbers and let � be an
algebraically closed field containing Q` and Q`′ . It follows from Proposition 5.2
that there exists g∈G\

A(�) such that (N ′`, w`)=Ad(g)(N ′`′, w`′). Exactly as before
we combine the Lemmas 5.5 and 5.8 to show that ρ ′`(8v) and ρ ′`′(8v) are conjugate
under C \

`(�). �

Lemma 5.8. Let C̃`, C \

` and P ′L be as above and let g1, g2 ∈ C̃`(�) be semisimple
elements whose projections to C \

`,−1(�) are weakly neat and whose projections to
C̃`,0(�) act on V 0

` by the same scalar multiplication. If P ′L(g1)= P ′L(g2) then g1

and g2 are conjugate under C \

`(�).

Proof. This essentially results from [Noot 2009, Lemmas 2.5 and 2.6]. First
note that the variety Conj′(C̃`) considered in [ibid., Lemma 2.5] is the variety of
semisimple C \

`-conjugacy classes in C̃`. Similarly, for each ι and k, the variety
Conj′(C̃`,ι,k) is the variety of semisimple C \

`,ι,k-conjugacy classes in C̃`,ι,k . It
follows that Conj′(C̃`)(�) and Conj′(C̃`,ι,k)(�) are the sets of semisimple C \

`(�)

and C \

`,ι,k(�)-conjugacy classes in C̃`(�) and in C̃`,ι,k(�), respectively.
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It thus follows from [ibid., Lemma 2.5] and its proof that the map

C̃`(�)→ C̃`,0(�)× C̃`,−1(�)→
∏
ι

C̃`,ι,0(�)×
∏
ι

C̃`,ι,−1(�)

induces an injection on weakly neat C \

`(�)-conjugacy classes. As the images of
g1 and g2 in C̃`,0(�) are equal and since these images are C \

`(�)-invariant, it is
sufficient to show that the images of g1 and g2 in each Conj′(C̃`,ι,−1)(�) coincide.

To this end, note that each map

P ′L : Conj′(C̃`,ι,−1)(�)→ A2g(�)

is injective. This is the statement of [ibid., Lemma 2.6] for the group Cder
`,ι,−1, with

� instead of Q. Since Cder
`,ι,−1 is of type An , Cn or DH

n , it follows from the remark
in the beginning of the proof of [ibid., Lemma 2.6] that the lemma in question is
valid in this setting. �

6. Strictly tractable abelian varieties of types Bn and DR
n

6.1. The monodromy in a Mumford–Tate group of type Bn. With the notation of
Section 3.1, we turn to the case where A/F is a strictly tractable abelian variety with
Mumford–Tate group G A of type Bn . We will adapt the arguments of Section 5 to
this case. The endomorphism algebra L and the group H are defined as in Sections
4.3 and 4.5. As in the previous cases, it follows from Lemma 4.4 that L is a field.
Moreover we have G\ ad

A =Gad
A . For each prime number `, the monodromy operator

N ′` and the Frobenius weight cocharacter w` are defined as before. Each w` acts
on V` = V ⊗Q` with at most three eigenvalues. It presents a single weight if and
only if A has good reduction, which is the case if and only if N ′` = 0.

Recall the decomposition L ⊗Q =
⊕

ιQ from Section 4.3, where the direct
sum is indexed by the maps ι : L→ Q. As in Sections 4.3 and 4.5, we consider
the resulting decompositions V ⊗Q =

⊕
ι Vι and h⊗Q =

⊕
ι hι as well as the

embedding g⊗Q ↪→
⊕

ι gι. We write Gι for the image of G A/Q in GL(Vι). The
derived group Gder

A/Q identifies with the product
∏
ι Gder

ι . Each Gder
ι is a spin group

of type Bn and its representation on Vι is a multiple of the irreducible representation
V irr
ι of highest weight $n and hence of dimension d = 2n .
As before, let (N ′`,ι)ι be the image of N ′` in

⊕
ι gι⊗Q`. Of course, N ′` lies in

gss
⊗Q` and N ′`,ι ∈ g

ss
ι ⊗Q`. The operator N ′` is L`-linear so it belongs to h⊗Q`

and it follows from the Corollary 2.7 that its H(Q`)-orbit is defined over Q. This
implies the rank of the projection N ′`,ι is independent of ι. If N ′`,ι = 0 for some ι,
then all N ′`,ι are trivial and then the abelian variety A has potentially good reduction.
This is the situation treated in [Noot 2009]. In what follows, we will assume that this
is not the case. We investigate the possible ranks of the N ′`,ι and the corresponding
forms of the cocharacters w`,ι.
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Let Tι be a maximal torus of Gι and let T̃ι =Gd
m be a maximal torus of GL(V irr

ι )

containing it. According to [ibid., 2.6.4] we have d = 2n and we can assume that Tι
is the image of the application Gn+1

m → T̃ι given by

(λ0, λ1, . . . , λn) 7→ (λ0λ
ε1
1 · · · λ

εn
n )(ε1,...,εn)=(±1,...,±1),

where the factors of T̃ι are indexed by n-tuples of signs (ε1, . . . , εn).
For each ι, the Frobenius weight cocharacter w` defines a cocharacter w`,ι of

Gι/Q`
. The monodromy operator N ′`,ι defines an isomorphism between the t and

t−1 eigenspaces of w`,ι acting on Vι, so these eigenspaces have the same dimension
and it follows that w`,ι factors through Gder

ι/Q`
. Up to conjugation by an element

of Gder
ι (Q`), we can assume that w`,ι factors through Tι/Q`

. It then lifts to a
quasicocharacter w̃`,ι with values in Gn+1

m . The filtration on V irr
ι defined by w`,ι

has at most three weights and it follows that w̃`,ι projects nontrivially to at most
two factors of Gn

m . Moreover, if it projects nontrivially to two factors, then the two
projections must coincide.

The filtration by Frobenius weights coincides with the monodromy filtration and
it follows that

• if w̃`,ι is trivial, then N ′`,ι = 0;

• if w̃`,ι projects nontrivially to exactly one factor of Gn
m , then N ′`,ι is of rank

2n−1 (as an endomorphism of V irr
ι ); and

• if w̃`,ι projects nontrivially to exactly two factors of Gn
m , then N ′`,ι is of rank

2n−2.

The first possibility is excluded by the hypothesis that N ′` 6= 0.
As for the other cases, we consider the adjoint group Gad

ι of Gder
ι , which is

isomorphic to the special orthogonal group SO2n+1/Q`
. Let Wι be the orthogonal

representation of this group, that is, the representation with highest weight $1, and
let wad

`,ι be the projection of the cocharacter w`,ι to Gad
ι .

If we are in the second case then wad
`,ι acts on Wι with eigenvalues t , 1 and t−1

and the eigenspaces for t and for t−1 are 1-dimensional. The relation

Ad(w`,ι(t))(N ′`,ι)= t2 N ′`,ι

implies that the same relation holds with wad
`,ι instead of w`,ι. It follows that the

Jordan normal form of the image of N ′`,ι in the orthogonal representation of gss
ι

has one block of size 2 and that all other blocks are of size 1. This is impossible
according to [Springer and Steinberg 1970, IV 2.14; Humphreys 1995, 7.11] so the
second possibility is excluded.

We study of the conjugacy class of (N ′`, w`) in the third, and only possible, case.
The argument above shows that the image of N ′`,ι in the orthogonal representation
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Wι of gss
ι has two blocks of size 2 and that all other blocks are of size 1. Considering

the orthogonal representation Wι, we also see that if we take X = N ′`,ι in [Springer
and Steinberg 1970, IV 2.19(b)], then we can assume that wad

`,ι is the inverse
of the cocharacter λ of [ibid., IV 2.22]. This remains true after passing to any
algebraically closed field � ⊃ Q` and also after replacing the data (N ′`, w`) by
σ(N ′`, w`), where σ is an automorphism of �. Applying [ibid., IV, §2] in the same
way as in Section 5.1, we prove that for any such � and σ , the pairs (N ′`,ι, w

ad
`,ι)

and σ(N ′`,ι, w
ad
`,ι) are conjugate under the Gder

ι (�)-action. It follows that this is also
the case for (N ′`,ι, w`,ι) and σ(N ′`,ι, w`,ι).

One shows by the same argument that if `′ is a second prime number and if � is
an algebraically closed field containing Q` and Q`′ , then (N ′`, w`) and (N ′`′, w`′)
are G A(�)-conjugate. This proves Proposition 5.2 in the case where A/F is a
strictly tractable abelian variety of type Bn .

6.2. The Frobenius elements in Mumford–Tate groups of type Bn. To prove the
conjugacy of the Frobenius elements, we adapt the argument used from Section 5.3
to Lemma 5.8. On the one hand, notation is simplified because G\ ad

A = Gad
A , but

on the other hand, they are complicated by the fact that we need to consider
the orthogonal groups Gad

ι in order to apply [Springer and Steinberg 1970]. As
in Section 5.3, consider the centraliser C` ⊂ G A/Q`

of (N ′`, w`) and note that
ρ ′`(8v) ∈ C̃`(Q`), where C̃` is the subgroup of G A/Q`

generated by C` and the
image of w`. For any fixed embedding ι : L→Q, let Gι be the image of G A/Q`

in
GL(Vι). The centraliser C`,ι ⊂ Gι/Q`

of (N ′`,ι, w`,ι) can be described by projecting
it to the adjoint group.

The action of Gι on itself by conjugation factors through the adjoint group
Gad
ι
∼= SO2n+1. Recall that Wι is the orthogonal representation of this group. In

view of [ibid., IV §2] and the dimension count carried out in Section 6.1, the
centraliser C [

`,ι ⊂ Gad
ι/Q`

of the pair (N`,ι, wad
`,ι) satisfies

C [

`,ι
∼= SL2/Q`

×SO2n−3/Q`
. (6.2∗)

Consider the tori Tι ⊂ T̃ι defined in Section 6.1. Up to conjugation, we can
assume that w`,ι factors through Tι and that its lift w̃`,ι along Gn+1

m → T̃ι is given
by

w̃`,ι : Gm→ Gn+1
m , t 7→ (1, t1/2, t1/2, 1, . . . , 1).

The image 1′′ ⊂ Tι ⊂ T̃ι of the map t 7→ (1, t1/2, t−1/2, 1, . . . , 1) then projects to
a maximal torus of the factor SL2 of C [

`,ι ⊂ Gad
ι/Q`

. The product 1′ = Gn−2
m of the

last n− 2 factors projects to a maximal torus of the factor SO2n−3.
The group C`,ι ⊂ Gι is the inverse image of C [

`,ι. Its derived group therefore
admits an isogeny

C ′′`,ι×C ′`,ι = SL2/Q`
×C ′`,ι→ Cder

`,ι ,
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where C ′`,ι is a spin group of type Bn−2.
The map from 1′′ to Gder

ι factors through C ′′`,ι× 1= SL2 in the product above
and the image of 1′′ in C ′′`,ι is a maximal torus. Similarly, 1′ maps through 1×C ′ι
and defines a maximal torus in C ′ι . Recall from Section 6.1 that Vι is a multiple
of the spin representation V irr

ι of Gι. Considering the characters occurring in
the representation of 1′′×1′ on V irr

ι , one concludes that, as a representation of
SL2/Q`

×C ′ι , the space V irr
ι is a tensor product V ′′ι ⊗V ′ι . Here V ′′ι is a multiple of the

direct sum of the standard representation and two copies of the trivial representation
of SL2 and V ′ι is the spin representation of C ′ι . As representations of C`,ι, the t-
and t−1-eigenspaces V 0

`,ι and V−2
`,ι ⊂ V`,ι of w`,ι are both isomorphic to a multiple

of V ′ι , so the representation of C ′′`,ι×C ′`,ι on V 0
`,ι identifies C ′`,ι with its image in

GL(V 0
`,ι).

These observations imply that the isogeny above is in fact an isomorphism
C ′′`,ι×C ′`,ι = SL2/Q`

×C ′`,ι ∼= Cder
`,ι and hence

Cder
`/Q`

∼=
∏

ι : L→Q`

(C ′′`,ι×C ′`,ι).

It also follows that Cder
` itself decomposes as a product C ′′` ×C ′` of algebraic groups

over Q`. The group C` is generated by Cder
` and the centre of G A/Q`

and C̃` is
generated by C` and the image of w`. We will show that ρ ′`(8v) lies in C̃ ′′` ⊂ C̃`,
the subgroup generated by C ′′` and the centre of C̃`.

Indeed, as in Section 5.4, we consider the action of ρ ′`(8v) on the differ-
ent w`-eigenspaces in V`. It was pointed out in the beginning of the proof of
Proposition 5.7 that, since ρ ′`(8v) is weakly neat, it acts on V 0

` as multiplication by
ε =±1 and on V−2

` as multiplication by εq . This means that ρ ′`(8v) ∈ C̃ ′′` (Q`), as
claimed.

The group C ′′`,ι, which is isomorphic to SL2, acts trivially on V 0
`,ι and on V−2

`,ι and
V−1
`,ι is a multiple of the standard representation. The centre of C` acts on each Vι

through a fixed character. Through w`, the group Gm acts on V−2
` , on V−1

` and on
V 0
` as multiplication by t−1, by 1 and by t , respectively. For the group C̃ ′′` defined

above, this discussion implies that the map

C̃ ′′` → GL(V−2
` )×GL(V−1

` )×GL(V 0
` )

is injective. As in the proof of Lemma 5.5, the image of ρ ′`(8v) under the map
P ′L , defined in (5.4∗) by taking the L-linear characteristic polynomial on V−1

` , lies
in A

2g
(L)(Q) and is independent of `. We already know that the images of ρ ′`(8v)

in GL(V−2
` ) and in GL(V 0

` ) are rational scalars, independent of `. In the case of
an abelian variety of type Bn , the main theorem now follows using a variant of
Lemma 5.8, again using [Noot 2009, 2.5, 2.6]. Note that, as before, the statement of
[ibid., 2.6] is valid for any �, instead of just Q, because the group C̃ ′′` is of type A1.
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6.3. Abelian varieties of type DR
n . The case where the abelian variety A is strictly

tractable with Mumford–Tate group of type DR
n can be treated by analogous argu-

ments. We will just indicate the points where the discussion of Sections 6.1 and 6.2
needs to be modified.

First of all, the quotient of G A one has to consider in order apply [Springer and
Steinberg 1970] is not the adjoint group, but the intermediate quotient of G A/Q`

for
which the simple factors G[

ι are groups of the form SO2n . Also, A is not necessarily
simple in this case. If it is not, then the endomorphism algebra L is of the form
L = L ′× L ′, where L ′ is a number field; see Lemma 4.4.

We now follow the proof of [Noot 2009, Théorème 2.4] for this type. For each
ι : L→Q, let Vι be the direct factor of V ⊗Q on which L acts through ι. The group
Gder

A/Q acts on Vι through a single direct factor Gder
ι , but for n ≥ 4 this factor does

not act faithfully on Vι. In fact Vι is a multiple of a semispin representation V irr
ι of

Gι, with highest weight $n−1 say. For ι= ι+, there is a ι− : L→Q such that Vι− is
a multiple of the other semispin representation V irr

ι−
of Gι, with highest weight $n .

The representation of G A/Q on Vι+ ⊕ Vι− restricts to a faithful representation of
Gder
ι . We redefine Gι as the image of Gder

A/Q in GL(Vι+)×GL(Vι−).
If L is a field, then it is a CM field and the involution ι+ 7→ ι− on the set of

maps L → Q defined by this construction is given by the composition with the
complex conjugation on L . If L = L ′ × L ′ is a product of two fields, then ι− is
the composite of ι+ with the involution exchanging the factors. Using the spin
representation V irr

ι+
⊕ V irr

ι−
instead of V irr

ι , the arguments of Section 6.1 and hence
the proof of Proposition 5.2 carry over to this case.

Where the discussion of Section 6.2 is concerned, the analogue of (6.2∗) states
that the centraliser C [

`,ι of (N`,ι, wad
`,ι) in G[

ι is given by

C [

`,ι
∼= SL2,Q`

×SO2n−4 .

Once again, C`,ι ⊂ Gι is the inverse image of C [

`,ι and there is an isogeny

C ′′`,ι×C ′`,ι ∼= SL2/Q`
×C ′`,ι→ Cder

`,ι .

Here the group C ′`,ι is a spin group of type Dn−2. Similarly to the previous case,
one shows that V irr

ι+
⊕ V irr

ι−
is of the form V ′′ι ⊗ V ′ι , where V ′′ι is a multiple of the

direct sum of the standard representation and two copies of the trivial representation
of SL2 and V ′ι is the spin representation of C ′ι . We prove once again that

Cder
`,ι = C ′′`,ι×C ′`,ι

and we define C̃` and C̃ ′′` as before. As in Section 6.2 one has ρ ′`(8v) ∈ C̃ ′′` (Q`).
For each pair ι+, ι− as above, the image of C ′′` in C ′′

`,ι+
×C ′′

`,ι−
is the graph of an

isomorphism. Each C ′′` is again a group of type A1, acting on the 1-eigenspace
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V−1
ι+
⊕ V−1

ι−
for w` as a multiple of the standard representation. The argument can

be completed as in Section 6.2.

7. The proof of the main theorem, Theorem 3.6

Proposition 7.1. Assume that we are in the situation of Theorem 3.6 and that the
variety A is tractable. Then there is a finite extension F ′ of F such that Theorem 3.6
holds for A/F ′ .

Proof. The Proposition 5.7 and the results of Section 6 prove the proposition in the
case where A is strictly tractable.

If A is tractable then there exists a finite extension F ′ ⊃ F , strictly tractable
abelian varieties A1, . . . Am/F ′ and an isogeny A/F ′ ∼

∏m
i=1 Ai such that the

inclusion f : G A→
∏m

i=1 G Ai induces an isomorphism Gder
A
∼=
∏m

i=1 Gder
Ai

. In that
case there are isomorphisms

gss
A
∼=

m⊕
i=1

gss
Ai

and G\

A
∼=

m∏
i=1

G\

Ai
.

For the induced map

f` : G A(Q`)→

m∏
i=1

G Ai (Q`),

one has f` ◦ ρA,` = (ρAi ,`)i=1,...,m , so the tangent map to f` sends the monodromy
operator N ′` ∈g

ss
A⊗Q` to the m-tuple in

⊕m
i=1 g

ss
Ai
⊗Q` of the monodromy operators

associated to the Ai . This obviously implies that f` ◦ ρ ′A,` = (ρ
′

Ai ,`
)i=1,...,m . The

statement for A/F ′ therefore results immediately from the corresponding statements
for the Ai . �

7.2. Preliminaries to the proof of Theorem 3.6. We use the method of the proof
of [Noot 2009, Théorème 1.8] in Section 3 of that paper. After fixing the notation
we will indicate an omission, pointed out by Abhijit Laskar, in [Noot 2009] and
explain how to complete the argument.

In what follows, the notation and the hypotheses of Section 3.1 and of Theorem 3.6
are in force, so A has semistable reduction at v and the image ρ`(8v) of the arith-
metic Frobenius is weakly neat. However, since the argument involves auxiliary
abelian varieties, we write (ρ ′A,`, N ′A,`) for the representation of ′Wv associated
to A/Fv .

By [Noot 2006, §2 and Corollary 3.2] of that paper, there is a tractable abelian
variety B/F̄ such that B/C provides a weak Mumford–Tate lift of A/C. Following
[Noot 2009, §3], this implies that there exists an abelian variety of CM-type C/F̄ such
that A/F̄ belongs to the category of absolute Hodge motives generated by B/F̄ and
C/F̄ . This fact determines a morphism of Mumford–Tate groups π : G B×C → G A
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but, contrary to what is stated in [ibid., §3], not a morphism G B ×GC → G A. In
fact, G B×C is a closed subgroup of the product G B×GC and the inclusion identifies
the derived groups. This means that the diagram considered in the proof of [ibid.,
Théorème 1.8] has to be replaced by the diagram

0F ′
ρB×C,` //

ρA,`

**

(ρB,`,ρB,`)

))
G B×C(Q`)

π

��

� � // G B(Q`)×GC(Q`)

G A(Q`),

(7.2∗)

which commutes for a sufficiently large finite extension F ′ of F . None of the above
depends on v but this will not play any role in what follows.

7.3. Addendum to the proof of [Noot 2009, Théorème 1.8]. Recall that the state-
ment of the theorem in question is essentially the special case of the main theorem
of this paper where A has good reduction. In [Noot 2009] it is formulated in terms
of the variety of geometric conjugacy classes of the Mumford–Tate group. We have
to prove that there exists a conjugacy class ClA Frv ∈ Conj′(G A)(Q) containing
the image of ρA,`(8

−1
v ) of any ` with v(`)= 0. Here Conj′(G A)/Q is the quotient

of G A/Q by the adjoint action of G\ ad
A . We refer to [ibid., 1.5] for the construc-

tion of a natural model Conj′(G A) over Q. Assume for the moment that [ibid.,
Theorem 1.8] holds for B×C/F ′, where F ′ is a sufficiently big finite extension
of F and v′ an extension of the valuation v to F ′. We then obtain a conjugacy
class ClB×C Frv′ ∈Conj′(G B×C)(Q) and its image ClA Frv′ ∈Conj′(G A)(Q) fulfils
the statement [ibid., Theorem 1.8] for A/F ′ . The proof of Theorem 1.8 there then
applies and it follows that the theorem also holds for A/F .

It remains to construct ClB×C Frv′ . As GC is a torus, Conj′(G B×C)/Q and
Conj′(G B × GC)/Q are the quotients of G B×C/Q and of G B/Q × GC/Q for the
adjoint action by the same group, denoted Aut′(G B) in [Noot 2009, 1.5] and G\ ad

B
in Section 3.3 of this paper. If TB×C ⊂ TB ×GC denote maximal tori of G B×C and
of G B ×GC , then Conj′(G B×C) and Conj′(G B ×GC) are also quotients of these
tori by the finite group W̃ of [ibid., 1.6]. The group W̃ is an extension of a finite
group of outer automorphisms by the Weyl group of Gder

B . We claim that the closed
immersion TB×C ⊂ TB ×GC induces a closed immersion on the quotients for the
W̃ -action.

To justify the claim, assume that R→ S is a surjective morphism of Q-algebras
with W̃ action. Let b ∈ SW̃ and assume that a ∈ R maps to b. The average of the
elements of the W̃ -orbit of a then is an element of RW̃ mapping to b. It follows
that RW̃

→ SW̃ is also surjective.
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As B is tractable, Thórème 2.4 of [Noot 2009] provides a conjugacy class

(ClB Frv′,ClC Frv′) ∈ Conj′(G B ×GC)(Q)

containing (ρB,`(8
−1
v′ ), ρC,`(8

−1
v′ )) for any ` 6= p. As (ρB,`, ρC,`) factors through

G B×C for all `, it follows that (ClB Frv′,ClC Frv′) ∈ Conj′(G B×C)(Q). It is obvi-
ously the class ClB×C Frv′ we had to construct.

Proof of Theorem 3.6. We take up the thread of the proof of Theorem 3.6 by
considering the diagram (7.2∗). In this diagram, the map G B×C ↪→ G B × GC

induces an isomorphism on the derived groups and it follows that G\ ad
B×C = G\ ad

B
and that both the subgroup G B×C/Q ⊂ (G B × GC)/Q and the Lie subalgebra
gB×C ⊗Q ⊂ (gB ⊕ gC)⊗Q are stable under the adjoint action of G\ ad

B . Taking
F ′ big enough and fixing an extension v′ of the valuation, we can assume, by
Proposition 7.1, that the conclusion of the main theorem holds for B. By [Noot
2009, Corollaire 2.2] we can also assume that it is valid for C . This implies that
the theorem is true for (B×C)/F ′ .

Consider the statement of Theorem 3.6 for the representation of ′WF ′
v′

associated
to AF ′ . The monodromy operators are unaffected by passing from A to AF ′ , whereas
8v, and hence the ρ ′A,`(8v), are replaced by their f -th powers, where f is the
residue degree of the extension F ′v′/Fv. This exponent is independent of `.

The variety C has potentially good reduction at v′, so for every prime number `,
the monodromy operator N ′A,` ∈ gA⊗Q` is the image of

(N ′B,`, 0) ∈ gB×C ⊗Q` ⊂ (gB ⊕ gC)⊗Q`

under the tangent map to π . Here N ′B,` is the monodromy operator associated to
B/Fv . We have made use of the fact, expressed by the diagram (7.2∗), that the
product of the `-adic Galois representations associated to B and C factors through
G B×C(Q`).

Similarly,
ρ ′A,`(8v′)= π(ρ

′

B,`(8v′), ρ
′

C,`(8v′)),

which makes sense since (ρ ′B,`(8v′), ρ
′

C,`(8v′)) ∈ G B×C(Q`)⊂ (G B ×GC)(Q`).
As the theorem holds for (B×C)/F ′ , it follows that the theorem is true for A/F ′ .

Now return to the original field F . Let � ⊃ Q` be an algebraically closed
field and σ ∈ Aut(�). By what we just proved, the images of (N ′A,`, ρ

′

`(8
f
v )) and

σ(N ′A,`, ρ
′

`(8
f
v )) in gA⊗�×G A(�) are conjugate by an element g∈G\

A(�). Thus
N ′A,` = Ad(g)(σ (N ′A,`)) and we will show that ρ ′`(8v)= gσ(ρ ′`(8v))g

−1 as well.
Indeed, applying [Raynaud 1994, 4.2] as in Section 3.8, we obtain a strict 1-motive
M ′/Fv and a system of 0Fv -equivariant isomorphisms V`(A/Fv )

∼= V`(M ′). By
Proposition 1.8, the characteristic polynomials of ρ ′`(8v) and σ(ρ ′`(8v)) acting on
V`(A) coincide. This common polynomial is also the characteristic polynomial of
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gσ(ρ ′`(8v))g
−1. As we already know that ρ ′`(8

f
v )= gσ(ρ ′`(8

f
v ))g−1, the equality

ρ ′`(8v)= gσ(ρ ′`(8v))g
−1 follows from Lemma 7.4 below.

Similarly, let � be an algebraically closed field containing Q` and Q`′ . We know
that the images of the pairs (N ′A,`, ρ

′

`(8
f
v )) and (N ′A,`′, ρ

′

`′(8
f
v )) are conjugate by

some g ∈ G\

A(�). Again by Proposition 1.8, the characteristic polynomials of
ρ ′`(8v) and ρ ′`′(8v)) coincide so Lemma 7.4 implies that ρ ′`(8v)= ρ

′

`′(8v)). This
proves the theorem for A. �

Lemma 7.4. Assume that � is an algebraically closed field, d > 0 is an integer
and that x, y ∈ GLd(�) are two semisimple and weakly neat elements. Assume
that x f

= y f for some integer f and that x and y have the same characteristic
polynomial. Then x = y.

Proof. This is a variant of [Noot 2009, Proposition 3.2].
For any semisimple element z ∈ GLd(�), let Tz ⊂ GLd be the torus acting by

scalar multiplication on each eigenspace of z. Up to conjugation, z is a point of
the diagonal torus Gd

m ⊂GLd and, writing t1, . . . , td for the coordinates on Gd
m and

z = (z1, . . . , zd), one then has

Tz = {(t1, . . . , td) ∈ Gd
m | ti = t j if zi = z j }. (7.4∗)

Note that for every positive integer n one has Tzn ⊂ Tz and that this inclusion is an
equality if z is weakly neat.

With this notation we prove the lemma. As x and y are weakly neat and
satisfy x f

= y f , we get Tx = Tx f = Ty f = Ty . This implies in particular that
y ∈ Tx(�). We can assume that x lies in the diagonal torus Gd

m ⊂ GLd and we
write x = (x1, . . . , xd) ∈Gd

m(�). The fact that x and y have the same characteristic
polynomial implies that there is a permutation σ ∈Sd of the factors of the product Gd

m
such that y=σ(x). We have x f

= y f
=σ(x f ) and, considering the equations (7.4∗)

for Tx f , it follows that σ |Tx f = id. Since Tx f = Tx we conclude that x = σ(x)= y
as claimed. �
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