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We show that the compatibility of the relative canonical sheaf with base change
fails generally in families of normal varieties. Furthermore, it always fails if the
general fiber of a family of pure dimension n is Cohen–Macaulay and the special
fiber contains a strictly Sn−1 point. In particular, in moduli spaces with functorial
relative canonical sheaves Cohen–Macaulay schemes can not degenerate to Sn−1

schemes. Another, less immediate consequence is that the canonical sheaf of an
Sn−1, G2 scheme of pure dimension n is not S3.

1. Introduction

The canonical sheaf plays a crucial role in the classification of varieties of char-
acteristic zero. Global sections of its powers define the canonical map, which
is birational onto its image for varieties of general type with mild singularities.
The image is called the canonical model, and it is a unique representative of the
birational equivalence class of the original variety. In particular, the canonical
model can be used to construct a moduli space that classifies varieties of general
type up to birational equivalence. This moduli space Mh of stable schemes is the
higher dimensional generalization of the intensely investigated space Mg of stable
curves. In order to build Mh , it is important to understand when the canonical sheaf
behaves functorially in families, that is, when it is compatible with base change.

More precisely, to obtain a compact moduli space, in Mh , not only canonical
models are allowed, but also their generalizations, the semi-log canonical models
[Kollár 2010, Definition 15]. By definition these are projective schemes with semi-
log canonical singularities [Hacon and Kovács 2010, Definition 3.13.5] and ample
canonical bundles. The first naive definition of the moduli functor of stable schemes
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with Hilbert function h is then as follows. Here h : Z→ Z is an arbitrary function.

Mh(B)=

{
f : X→ B

∣∣∣∣∣
f is flat, proper, X b̄ is a semi-
log canonical model (∀b ∈ B),
h(m)= χ(ω[m]Xb

) (∀m ∈ Z, b ∈ B)

}/
∼= over B (1.0.a)

As usual, the naive definition works only in the naive cases but not in general.
More precisely, (1.0.a) is insufficient to prove the existence of a projective coarse
moduli space or a proper Deligne–Mumford stack structure on Mh; see [Kollár
2008; 2010]. In general, (1.0.a) has to be complemented with

ω
[m]
X/B

∣∣
Xb
∼= ω

[m]
Xb

for every integer m and b ∈ B. (1.0.b)

Usually (1.0.b) is referred to as Kollár’s condition (for instance, in [Hassett and
Kovács 2004, page 238]). Note also that (1.0.b) is not necessary for reduced B, but
it does add important extra restrictions when B is nonreduced.

Currently, it is not understood in every aspect why and how deeply this condition
is needed. For example it is not known if in characteristic zero it is equivalent or
not to the other possible choice, called Viehweg’s condition (see [Viehweg 1995,
Assumption 8.30; Hassett and Kovács 2004, page 238]):

There is an integer m such that ω[m]X/B is a line bundle. (1.0.c)

The starting point of this article is the m= 1 case of (1.0.b), that is, the compatibility
of the relative canonical sheaf with base change. We will try to understand how
restrictive this condition is on flat families. The results will also yield statements
about how Serre’s Sn condition behaves in families and for the canonical sheaves
of single schemes.

Recently it has been proven in [Kollár and Kovács 2010, Theorem 7.9.3] that
the relative canonical sheaf of flat families of projective schemes (over C) with
Du Bois fibers is compatible with base change. According to [Kollár and Kovács
2010, Theorem 1.4] this pertains to families with semi-log canonical fibers as well.
Furthermore, compatibility holds whenever the fibers are Cohen–Macaulay [Conrad
2000, Theorem 3.6.1].

It is important to note at this point that the m=1 case of (1.0.b) behaves differently
than the rest. For m > 1 there are examples of families of normal surfaces for which
(1.0.b) does not hold; see [Hacon and Kovács 2010, Section 14.A]. However, since
normal surfaces are Cohen–Macaulay, condition (1.0.b) with m = 1 holds for every
flat family of normal surfaces. Hence, any incompatibility can be observed only
in higher dimensions. Partly due to this fact, there has been a common misbelief,
sometimes even stated in articles, that the relative canonical sheaf is compatible with
base change for flat families of normal varieties. The question if this compatibility



Base change behavior of the relative canonical sheaf 355

holds indeed was asked about the same time independently by János Kollár and
the author.

Question 1.1 (Kollár). Is ωX/B |Xb
∼=ωXb for every flat family X→ B of normal va-

rieties?

Here we construct examples showing that the answer is no. That is, there are
flat families of normal varieties over smooth curves such that the relative canonical
sheaves are not compatible with base change. The examples also show that the
known results are optimal in many senses. That is, the fibers of the given families
can be chosen to be S j for any n > j ≥ 2 and their relative canonical sheaves to
be Q-line bundles. The precise statement is as follows.

Theorem 1.2. For each n ≥ 3 and n > j ≥ 2 there is a flat family H→ B of S j

(but not S j+1) normal varieties of dimension n over some open set B ⊆ P1, with
ωH/B a Q-line bundle, such that

ωH/B |H0 6
∼= ωH0, (1.2.a)

(Here H0 is the central fiber of H.)
Moreover, the general fiber of H can be chosen to be smooth and the central

fiber to have only one singular point.

When j = n−1 and the general fiber is Cohen–Macaulay, somewhat surprisingly,
the incompatibility of (1.2.a) always holds. Furthermore, one can allow Sn−1 points
also in the general fibers provided the relative Sn−1 locus has a component in the
central fiber. The precise statement is as follows. (See Section 2 for the assumptions
of the article, for instance, scheme is always separated and of finite type over k = k̄,
etc.)

Theorem 1.3. If f :H→ B is a flat family of schemes of pure dimension n over a
smooth curve, such that a component of the locus

{x ∈H | x is closed, depth OH f (x),x = n− 1} (1.3.a)

is contained in the special fiber H0, then the restriction homomorphism ωH/B |H0→

ωH0 is not an isomorphism.

In particular, the contrapositive of Theorem 1.3 when the general fiber is Cohen–
Macaulay yields the following corollary.

Corollary 1.4. If f :H→ B is a flat family of schemes of pure dimension n such
that ωH/B is compatible with base change and the general fiber of f is Cohen–
Macaulay, then the central fiber of f cannot have a closed point x such that
depth OH f (x),x = n− 1.
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Corollary 1.4 has many geometric consequences with respect to building moduli
spaces with functorial relative canonical sheaves. For example, cone singularities
over abelian surfaces cannot be smoothed over irreducible bases. It also generalizes
some aspects of theorems by Kollár and Kovács [2010, Theorem 7.12] and Hassett
[2001, Theorem 1.1] stating that if all fibers are Du Bois schemes or log canonical
surfaces and the general fiber is Sk or Cohen–Macaulay, respectively, then so is the
central fiber.

Interestingly, the nonexistence of a depth n− 1 point is the strongest implication
of the compatibility of the relative canonical sheaf with base change.

Proposition 1.5. Corollary 1.4 is sharp in the sense that n− 1 cannot be replaced
by i for any i < n− 1.

Summarizing, Corollary 1.4 and Proposition 1.5 state that in moduli spaces satis-
fying Kollár’s condition, Sn−1 schemes do not appear in the irreducible components
containing Cohen–Macaulay schemes. However, S j schemes can possibly show up
for some j < n− 1.

If a scheme X is Cohen–Macaulay, which by definition means that OX is Cohen–
Macaulay, then ωX is Cohen–Macaulay as well [Kollár and Mori 1998, Corol-
lary 5.70]. One would expect that if OX is only Sn−1, then typically ωX is also Sn−1

or at least it can be Sn−1. Surprisingly the truth is quite the opposite. The following
application of Theorem 1.3 states that in certain cases an Sn−1 scheme cannot have
even an S3 canonical sheaf.

Theorem 1.6. If X is an S3,G2 scheme of pure dimension n, which has a closed
point with depth n− 1, then ωX is not S3.

The most immediate consequences of Theorem 1.6 deal with compatibility of
restriction to subvarieties. For example, one can show that on a cone X over a
Calabi–Yau threefold Y with h2(OY ) 6= 0, for an effective, normal Cartier divisor D,

ωX (D)|D ∼= ωD ⇐⇒ D does not pass through the vertex.

Or more generally, for an Sn−1, normal variety X and an effective, normal Cartier
divisor D,

ωX (D)|D∼=ωD ⇐⇒ D does not pass through any closed point with depth n− 1.

Theorem 1.6 can also be related to log canonical centers. If (X, D) is a log
canonical pair, D ∼Q −K X and ωX is not S3 at x ∈ X , then x is a log canonical
center of the pair (X, D) [Kollár 2011, Theorem 3]. Hence by Theorem 1.6, if X
is Sn−1 and (X, D) log canonical such that D ∼Q −K X , then (X, D) has a log-
canonical center at all closed points with depth n− 1. This statement is of course
obvious if we know that the depth n− 1 closed points are already log-canonical
centers of X . However, that is not always the case. For example, let X be the
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cone, with high enough polarization, over the product Y of a K3 surface with the
projective line and let D be the cone over an anti canonical divisor of Y . Then,
(X, D) is log-canonical, X is Sn−1 and the cone point is the only closed point with
depth n− 1; see Lemma 4.3. Still, the vertex is not a log-canonical center of X ,
because K X is not Q-Cartier.

Theorem 1.6 raises the following question as well.

Question 1.7. Is it true that if X is a pure n-dimensional scheme such that OX is
Sl , but not Sl+1, and ωX is S j , but not S j+1, for some j, l < n, then j + l ≤ n+ 1?

Remark 1.8. By the methods of Section 4, the answer to Question 1.7 is positive
if X is a cone over a smooth projective variety.

There are a couple of intuitive reasons for the failure of compatibility in (1.2.a).
First, compatibility holds for the relative dualizing complex if the base is smooth
by Proposition 3.3.(1). Hence ωH/B is a nonfunctorial component, the −n-th
cohomology sheaf, of the functorial object ω•H/B . For example, by the proof of
Theorem 1.3, if the general fiber is Cohen–Macaulay and the central fiber is Sn−1,
the restriction homomorphism fits into an exact sequence as follows, with a nonzero
term on the right.

0→ ωH/B |Xb → ωHb → Tor 1
(h−(n−1)(ω•H/B),OH0)→ 0 (1.8.a)

This shows in a precise way how the functoriality might be destroyed by passing to
the lowest cohomology sheaf of ω•H/B .

Another explanation for the incompatibility (1.2.a) is that H0 is too singular.
Using stable reduction one may find a replacement for H0 with the mildest possible
singularities. The reduction steps consist of blow-ups, finite surjective normalized
base changes and contractions on the total space of the family. The output is a family,
the relative canonical sheaf of which is compatible with base change by [Kollár
and Kovács 2010]. At the end of the article, we also present the stable reduction
of our construction using a straightforward ad hoc method. The algorithmic, and
lengthy, method can be found in the preprint version of the article.

In Section 3, we start with a short background overview on the base-change
properties of relative dualizing complexes and relative canonical sheaves. The
proofs of the main theorems can be found in Section 6 and Section 7. Some of these
results are based on the existence of projective cones with appropriately chosen
singularities. In Section 4 we give a cohomological characterization of when certain
sheaves on a cone are Sd . Then in Section 5 we use this characterization to give the
desired examples of projective cones. In Section 8 we compute the stable limit of
our construction.

http://arxiv.org/abs/1005.5207
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2. Notation and assumptions

Unless otherwise stated, scheme means a separated scheme of finite type over a
fixed field k of characteristic zero and every morphism is separated. A variety is
an integral scheme. A projective or quasiprojective scheme means a projective or
quasiprojective scheme over k. A curve is a quasiprojective, integral scheme of
dimension one. If Y is a subscheme of X , then IY,X is the ideal sheaf of Y in X .
If IY,X is a line bundle (that is, a locally free sheaf of rank one), then we define
OX (−Y ) := IY,X and OX (Y ) := OX (−Y )−1. Notice that IY,X being a line bundle
is equivalent to Y being defined around every point P by a single nonzero divisor
element of OX,P .

A hypersurface of a quasiprojective scheme X ⊆ PN is a subscheme H ⊆ X
defined by a section of OX (d) for some d > 0. If H and H ′ are hypersurfaces
of a quasiprojective scheme X ⊆ PN , defined by f0 and f∞ ∈ H 0(PN ,OPN (d)),
respectively, then the pencil generated by H and H ′ is the subscheme H⊆ X ×P1

defined by the section f0t0+ f∞t1 of H 0(X ×P1,O(d, 1)). Here t0 and t1 are the
usual parameters of P1, and f0 and f∞ are viewed as elements of H 0(X,OX (d))
via the natural homomorphism H 0(PN ,OPN (d))→ H 0(X,OX (d)).

For a complex C• of sheaves, hi (C•) is the i-th cohomology sheaf of C. For a
morphism f : X→Y , ω•X/Y := f !OY , where f ! is the functor obtained in [Hartshorne
1966, Corollary VII.3.4.a]. If f has equidimensional fibers of dimension n, then
ωX/Y := h−n(ω•X/Y ). Every complex and morphism of complexes is considered
in the derived category D(qc/ · ) of quasicoherent sheaves up to the equivalences
defined there. If Z is a closed subscheme of X , where ι : Z→ X is the embedding
morphism, then the map Rι∗ ∼= ι∗ identifies D(qc/Z) with a full subcategory of
D(qc/X). We use this identification at multiple places, equating C• and Rι∗C

•

for every C• ∈ D(qc/Z). If Z is a closed subscheme of a scheme X , then ( · )|LZ
denotes the derived restriction functor, which is naturally isomorphic to · ⊗L OZ

via the identification mentioned above. A line bundle is a locally free sheaf of rank
one.

If X → B is a morphism of schemes, then Xb is the scheme theoretic fiber of
X over B. If a sheaf F on X is given, then Fb := F|Xb . The dimension dimX P
of a point P ∈ X is the dimension of its closure in X . The acronym slc stands for
semi-log canonical [Hacon and Kovács 2010, Definition 3.13.5].

The depth of a coherent sheaf F at a point x ∈ X is by definition the depth of
Fx with respect to the maximal ideal m X,x at x and is denoted by depth Fx . The
depth of a scheme X at x is depth OX,x . A coherent sheaf F is Sd on X if for every
x ∈ X ,

depth Fx ≥min{d, dim OX,x}. (2.0.b)
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Note that there is an ambiguity in the literature about the definition of Sd sheaves.
Many sources replace OX,x in (2.0.b) by Fx , thus gaining a weaker notion. Since
every sheaf of this article has full support, or equivalently every sheaf is considered
over its support, the two definitions are equivalent for all cases considered here.
Hence, we decided to include the stronger notion, but the reader should feel free to
think about the other one as well. For a morphism f : X→ B, F is relative Sd if
F|Xb is Sd for all b ∈ B. The word (relative) Cohen–Macaulay is a synonym for
(relative) Sdim X .

A scheme X is Gr for some r ≥ 0 if it is Gorenstein in codimension r . A point
P ∈ X is an associated point of a coherent sheaf F if m X,P is the annihilator of
some element of FP . An associated component of a coherent sheaf is the closure of
an associated point. One can show that if Q ∈ X , FQ 6= 0 and P is the set of prime
ideals of OX,Q corresponding to generalizations of Q that are associated points of
F, then ⋃

P∈P

P = {x ∈ OX,Q | there exists 0 6= m ∈ FQ with xm = 0}

Consequently, if s is a section of a line bundle, then it does not vanish on any
associated component of X (that is, of OX ) if and only if sP is not a zero divisor
for every P ∈ X . That is, if H is the subscheme of X cut out by s, then IH,X is a
line bundle if and only if s does not vanish on any associated component of X .

For an S2, G1 scheme and an arbitrary coherent sheaf F, the n-th reflexive power
is

F[n] :=

{
(F⊗n)∗∗ if n ≥ 0,
(F⊗(−n))∗ if n < 0.

That is, it is the reflexive hull of the n-th tensor power. A coherent sheaf F is a
Q-line bundle if F[n] is a line bundle for some n > 0. Note that if f : X → B is
a family with ωXb a Q-line bundle for all b ∈ B, then ωX/B is not necessarily a
Q-line bundle [Hacon and Kovács 2010, Section 14.A]. However, if the Xb are S2,
G1 schemes and ωX/B a Q-line bundle then ωXb is a Q-line bundle for all b ∈ B;
see [Hassett and Kovács 2004, Lemma 2.6].

3. Background on base change for dualizing complexes

This section contains a general overview on the base change properties of relative
dualizing complexes and relative canonical sheaves. For experts, some of the
statements might be well known, but they are included here for completeness and
easier reference. Readers more interested in geometric arguments and willing to
accept the statements of this section without proof should feel free to skip to the
next section.
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Recall that the relative dualizing complex ω•X/B of a quasiprojective family
f : X→ B is defined as f !OB . Here f ! is the functor constructed in [Hartshorne

1966, Corollary VII.3.4.a]. The following technical point should be noted here.

Remark 3.1. There is also another definition of f ! in [Neeman 1996] as the right
adjoint of R f∗. The two definitions coincide for proper morphisms by [Hartshorne
1966, Theorem VII.3.3; Neeman 1996, Section 6], but not in general. For example,
if X is smooth affine variety over B = Spec k and f is the structure map, then
Hartshorne’s definition of f !OSpec k lives in cohomological degree − dim X while
Neeman’s is in cohomological degree zero. See [Lipman and Hashimoto 2009,
Part I, Exercise 4.2.3.d] for more details on the differences (Neeman’s f ! is denoted
f × there). We use Hartshorne’s definition in this article.

The dualizing complex of a single scheme Y is ω•Y := ω
•

Y/Spec k . The following
fact is needed in the proof of Proposition 3.3(11). It follows from the invariance of
the length of maximal regular sequences [Bruns and Herzog 1993, Theorem 1.2.5].

Fact 3.2. Let P be a point of a subscheme H of a scheme X such that (IH,X )P is a
line bundle, d is an integer, and F is a coherent S1 sheaf with full support (that is,
supp F= X ) on X.

(1) depth FP ≥ d ⇐⇒ depth(F|H )P ≥ d−1 (here F|H is regarded as a sheaf
on H , not on X ),

(2) depth FP ≥min{d, dim OX,P} ⇐⇒ depth(F|H )P ≥min{d−1, dim OH,P}.

Proposition 3.3. Suppose we have a flat family f : H→ B of schemes of pure
dimension n over a smooth base, a point 0 ∈ B and a single quasiprojective scheme
X of pure dimension n.

(1) There is an isomorphism

ω•H/B |
L
H0
∼= ω

•

H0
. (3.3.a)

(2) Fixing any isomorphism in (3.3.a) yields natural homomorphism

ωH/B |H0 → ωH0 . (3.3.b)

(3) If B is of pure dimension d with OB ∼= ωB , then ω•H/B
∼= ω•H[−d].

(4) If V ⊆ X is any open set, then ω•V ∼= ω
•

X |V .

(5) If U ⊆H is any open set, then ω•U/B
∼= ω•H/B |U .

(6) If P ∈ X is a point, then depthP OX = d if and only if hi (ω•X )P is zero for
i >−d − dimX P and nonzero for i =−d − dimX P.

(7) If P ∈H is a point, then depthP OH f (P) = d if and only if hi (ω•H/B)P is zero for
i >−d − dimH f (P) P and nonzero for i =−d − dimH f (P) P.



Base change behavior of the relative canonical sheaf 361

(8) ωX is S2.

(9) ωH/B is S2.

(10) If the fibers of f are Cohen–Macaulay then ωH/B ∼= ω
•

H/B and consequently
(3.3.b) is an isomorphism.

(11) If H0 is S2 and G1, then (3.3.b) is isomorphism if and only if

depthωH/B,P ≥min{3, dim OH,P} for every P ∈H0. (3.3.c)

Furthermore if (3.3.c) is not satisfied then not only is (3.3.b) not an isomor-
phism, but ωH/B |H0 6

∼= ωH0 .

Proof. First, we prove point (1). It will be an ad hoc proof, since we have not found
the exact statement in the literature. The statements we found are either only for
flat base change morphisms [Hartshorne 1966, Corollary VII.3.4.a] or for proper f
[Lipman and Hashimoto 2009, Part I, Corollary 4.4.3]. Note that, however, it might
seem that point (1) follows from base change for proper f , to the best knowledge
of the author, it is not clear whether one can compactify a flat morphism to a flat
morphism.

First, by [Hartshorne 1966, Corollary VII.3.4.a], ω•H/B is compatible with flat
base change. So, since Spec ÔB,0 is flat over B, we may assume that B is the
spectrum of a complete local ring of a smooth scheme and 0 is the unique closed
point. In particular, then B ∼= Spec k[[x1, . . . , xm]]. Hence, by induction on m, it is
enough to prove that

ω•H/B |Y
∼= ω

•

Y/C , (3.3.d)

where C :=Spec k[[x1, . . . , xm−1]] and Y :=H×B C . To prove (3.3.d), first consider
the usual exact triangle

OH
µ
−→ OH→ OY

+1
−→ , (3.3.e)

where µ is multiplication by xm . Tensoring (3.3.e) by ω•H/B yields

ω•H/B

µ⊗idω•H/B
−−−−−−→ ω•H/B→ ω•H/B |

L
Y
+1
−→ . (3.3.f)

On the other hand, applying RHom( · , ω•H/B) and a rotation to (3.3.e) yields

ω•H/B

µ⊗idω•H/B
−−−−−→ ω•H/B→RHom(OY , ω

•

H/B)[1]
+1
−→ . (3.3.g)

So, (3.3.f) and (3.3.g) together imply that

RHom(OY , ω
•

H/B)[1] ∼= ω
•

H/B |Y . (3.3.h)
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Denote by ι and g the maps Y→ X and Y→C , respectively. The following stream
of isomorphisms finishes then the proof of point (1).

ω•H/B |Y
∼=RHom X (Rι∗OY , ω

•

H/B)[1]︸ ︷︷ ︸
by (3.3.h)

∼=RHomY (OY , ι
!ω•H/B)[1]︸ ︷︷ ︸

by Grothendieck duality

∼= ι
!ω•H/B[1]! ∼= ι! f !OB[1]︸ ︷︷ ︸

definition of ω•H/B

∼= i ! f !ω•B[−(m− 1)]︸ ︷︷ ︸
ω•B [−m]∼=OB

∼= ω
•

Y [−(m− 1)]︸ ︷︷ ︸
ω•Y
∼=( f ◦ι)!ω•B

∼= g!ω•C [−(m− 1)]︸ ︷︷ ︸
ω•Y
∼=g!ω•C

∼= g!OC︸ ︷︷ ︸
ω•C [−(m−1)]∼=OC

∼= ω
•

Y/C .

To prove point (2), notice that sinceωH/B :=h−n(ω•H/B) is the lowest cohomology
sheaf of ω•H/B , there is a homomorphism

ωH/B[n] → ω•H/B . (3.3.i)

Applying ( · )|LH0
to (3.3.i) and then composing with the isomorphism given by (3.3.a)

yields a homomorphism

ωH/B[n]|LH0
→ ω•H0

. (3.3.j)

Finally taking −n-th cohomology sheaves of (3.3.j) yields the restriction homomor-
phism of (3.3.b).

Point (3) is shown by the following line of isomorphisms:

ω•H/B = f !OB ∼= f !ωB ∼= f !ω•B[−d] ∼= ω•H[−d].

To prove point (4), consider the following commutative diagram.

V
j //

ν

""

X

µ

��
Spec k

Since j is smooth of relative dimension 0, using the notation of [Hartshorne 1966],
we have j ! ∼= j# ∼= j∗, and then

ω•V = ν
!OSpec k ∼= j !µ!OSpec k ∼= j !ω•X ∼= j∗ω•X = ω

•

X |V .

Point (5) follows from points (4) and (3).
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Point (6) is proved in [Kovács 2011, Proposition 3.2] (by taking F := OX ). To
prove point (7), let b := f (P) and consider the following Cartesian square.

H

f
��

H′
λ′

oo

f ′

��
B Spec OB,b

λ
oo

By flat base change,

(λ′)∗ω•H/B
∼= ω

•

H′/Spec OB,b
. (3.3.k)

That is,

hi (ω•H/B)P ∼= hi (ω•H′/Spec OB,b
)P︸ ︷︷ ︸

by (3.3.k)

∼= hi (ω•H′[− dim OB,b])P︸ ︷︷ ︸
by point (3)

∼= hi−dim OB,b(ω•H′)P .

Hence,

hi (ω•H/B)P is
{

0 if i >−d − dimHb P,
6= 0 if i =−d − dimHb P.

KS

��

hi (ω•H′)P is
{

0 if i >−d − dimHb P − dim OB,b,

6= 0 if i =−d − dimHb P − dim OB,b.KS

��
depthP OH′ = d + dim OB,bKS

(by Fact 3.2)
��

(depthP O(H′) f (P) =) depthP OH f (P) = d.

To prove point (8), by point (4) we may assume that X is affine. Using point
(4) again we may also assume that it is projective. Then [Kollár and Mori 1998,
Corollary 5.69] concludes the proof of point (8). Point (9) is a consequence of point
(8) and point (3). Point (10) is shown in [Conrad 2000, Theorem 3.5.1].

To prove point (11), notice that by point (8), ωH0 is S2. Also since H0 is G1, using
point (10), the homomorphism ωH/B |H0→ωH0 is isomorphism in codimension one.
Then by [Hartshorne 1994, Theorem 1.9 and Theorem 1.12], using that H0 is S2

and G1, ωH/B |H0 → ωH0 is an isomorphism if and only if ωH/B |H0 is S2. Finally,
by Fact 3.2(2), this is equivalent to (3.3.c).
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Notice that if (3.3.c) is not satisfied, then ωH/B |H0 is not S2 over H0. Hence in
this case not only can (3.3.b) not be isomorphism, but any isomorphism between
ωH/B |H0 and ωH0 is impossible. �

Remark 3.4. A priori, saying that (3.3.b) is an isomorphism is a stronger state-
ment than that ωH/B |H0 is isomorphic to ωH0 . However, if B is smooth, H0 is
projective, S2 and G1, they are equivalent by the following argument. In this
case ωH0 is S2 and is a line bundle over the Gorenstein locus U . Assume that
ωH/B |H0

∼= ωH0 via an arbitrary isomorphism α. Then ωH/B |H0 is also S2 and
a line bundle over U . Since both are S2, homomorphisms ωH/B |H0 → ωH0 are
determined in codimension one, e.g., over U . Furthermore, any two isomorphisms
over U between any two line bundles differ by multiplication with an element of
H 0(U,OH0), where H 0(U,OH0)

∼= k∗, by H0 being S2 and projective. Since the
restriction of the natural morphism β :ωH/B |H0→ωH0 over U is an isomorphism, α
differs from β over U by a multiplication with an element of k∗. However, then the
same is true over entire X , by the codimension one determination. Hence β is also
an isomorphism.

Finally, we conclude with a statement about restriction behavior of relative
dualizing complexes and relative canonical sheaves to hypersurfaces. For that we
also need a lemma about flatness of hypersurfaces.

Lemma 3.5. If f : X→ B is a flat morphism onto a smooth curve and H⊆ X is a
subscheme for which IH,X is a line bundle, then the following are equivalent:

(1) IHb,Xb is a line bundle for every b ∈ B.

(2) H is flat over B.

In particular, if f : X→ B is flat with fibers of pure dimension n and H⊆ X is also
flat with IH,X a line bundle, then fibers of H are of pure dimension n− 1.

Proof. We prove only the equivalence statement, since the addendum follows from
the ideals IHb,Xb being line bundles.

The statement is local on H. So, fix P ∈H and let Q := f (P). By [Hartshorne
1977, Proposition 9.1A.a], H and X are flat over B at P if and only if the respective
homomorphisms OH,P → OH,P and OX,P → OX,P induced by multiplication with
some power of the local parameter t of OB,Q are injective. Furthermore, by induction
this is equivalent to the injectivity of multiplication with the first power t .

The assumptions of the lemma state that (IH,X)P ⊆ OX,P is generated by a
nonzero divisor element s. Hence there is a commutative diagram with exact rows
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and columns as follows.

0 0

0 // ker( · s) // OXQ ,P
·s //

OO

OXQ ,P

OO

0 // OX,P
·s //

OO

OX,P
·s //

OO

OH,P // 0

0 // OX,P
·s //

·t

OO

OX,P
·s //

·t

OO

OH,P //

·t

OO

0

0

OO

0

OO

ker( · t)

OO

0

OO

By the snake lemma applied vertically, ker( · t)= ker( · s). In particular, ker( · t)= 0
if and only if ker( · s) = 0. The former is equivalent to flatness of H→ B at P
while the latter is equivalent to IHQ ,XQ being a line bundle at P . �

Proposition 3.6. If X→ B is a flat family of pure n-dimensional schemes, and
H⊆ X a flat subscheme such that IH,X is a line bundle, then

(1) there is an isomorphism

ω•X/B(H)|
L
H[−1] ∼= ω•H/B, (3.6.a)

(2) there is a homomorphism

ωX/B(H)|H→ ωH/B, (3.6.b)

which is isomorphism over the relative Cohen–Macaulay locus of H→ B.

Proof. Notice first that by Lemma 3.5, H has equidimensional fibers and hence
ωH/B is defined indeed. To prove point (1), consider the exact sequence

0→ OX→ OX(H)→ OH(H)→ 0. (3.6.c)

Applying ( · )⊗L ω•X/B to (3.6.c) and then translating yields the exact triangle

ω•X/B(H)|
L
H[−1] → ω•X/B→ ω•X/B(H)

+1
−→ . (3.6.d)



366 Zsolt Patakfalvi

On the other hand if ι :H→ X is the embedding morphism, then

ω•H/B
∼= ι
!ω•X/B = RHomH(OH, ι

!ω•X/B)
∼= RHomX(OH, ω

•

X/B)︸ ︷︷ ︸
by Grothendieck duality

.

Now, applying RHomX( · , ω
•

X/B) to the twist of (3.6.c) by OX(−H) yields the exact
triangle

ω•H/B
∼= RHomX(OH, ω

•

X/B)→ ω•X/B→ ω•X/B(H)
+1
−→ . (3.6.e)

Putting together (3.6.d) and (3.6.e) finishes the proof of point (1).
To prove (2), take the natural map ωX/B[n] → ω•X/B , twist it with OX(H) and

then restrict to H. This yields the commutative diagram

ωX/B[n− 1](H)|LH //
**

ω•X/B(H)[−1]|LH ∼=︸︷︷︸
by point (1)

// ω•H/B (3.6.f)

Applying then h−(n−1)( · ) to the long composition arrow of (3.6.f) yields the homo-
morphism (3.6.b).

Let P be a point of H that is relatively Cohen–Macaulay over B, and let b be the
image of P in B. By the openness of the relative Cohen–Macaulay locus, there is a
neighborhood U of P where X→ B is relatively Cohen–Macaulay. In particular,
then ωX/B[n− 1] → ω•X/B[−1] is an isomorphism over U by Proposition 3.3(10)
and hence so is the first arrow of (3.6.f). This proves that (3.6.b) is an isomorphism
in a neighborhood of P , which finishes the proof of point (2) as well. �

Remark 3.7. The homomorphisms constructed in Propositions 3.3 and 3.6, for
example the isomorphisms (3.3.a) and (3.6.a), are not canonical in any sense.

4. Serre’s condition on projective cones

In this section we consider sheaves on projective cones that are isomorphic to
pullbacks from the base outside the vertex. Lemma 4.3 gives a cohomological
description of when such sheaves are Sd . Before that we also need a short lemma,
Lemma 4.2, about how the property Sd pulls back in flat relatively Cohen–Macaulay
families.

We cite the following fact separately here, because it is used at many places
throughout the article, including the aforementioned Lemma 4.2.

Fact 4.1 [Grothendieck 1965, Proposition 6.3.1]. Let X and Y be two noetherian
schemes, f : X→ Y a flat morphism, P ∈ X arbitrary and F a coherent Y module.
In this situation,

depthOX,P
( f ∗F)P = depthOY, f (P)

F f (P)+ depthOX f (P),P
OX f (P),P .
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Lemma 4.2. If G is a full-dimensional coherent Sd sheaf on the scheme X , and
f : X→ X is a flat, relatively Cohen–Macaulay family, then F := f ∗G is Sd as
well.

Proof. For every x ∈ X ,

depth Fx = depth G f (x)+ depth OX f (x),x︸ ︷︷ ︸
Fact 4.1

= depth G f (x)+ dim OX f (x),x︸ ︷︷ ︸
X f (x) is Cohen–Macaulay

≥min{d, dim OX, f (x)}+ dim OX f (x),x︸ ︷︷ ︸
G is Sd

≥min{d, dim OX, f (x)+ dim OX f (x),x}

= min{d, dim OX,x}︸ ︷︷ ︸
dim OX, f (x)+dim OX f (x),x=dim OX,x

by [Matsumura 1989, Theorem 15.1.ii].

�

Lemma 4.3. Assume that we are in the following situation:
• Y is a projective scheme,

• X is the projectivized cone over Y ,

• P is the vertex of X and V := X \ P ,

• d is an integer such that 2≤ d ≤ dim X , and

• F is a coherent sheaf on X , such that F|V = π
∗G for some Sd coherent sheaf

G on Y , where π : V → Y is the natural projection.

Then the following conditions are equivalent:

(1) depth FP ≥ d.

(2) depth FP ≥min{d, dim OX,P}.

(3) F is Sd .

(4) F is S2 and H i (Y,G(n))= 0 for all 0< i < d − 1 and n ∈ Z.

Proof. Since G is Sd , F is Sd everywhere except at the vertex P by Lemma 4.2.
Hence, using the assumption d ≤ dim X ,

F is Sd ,KS

��
depth FP ≥min{d, dim OX,P}KS

��
depth FP ≥ d

KS

��
H i

P(Z ,F)= 0 for all i < d and for the affine cone Z ,
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where the latter equivalence follows from [Hartshorne 1977, Exercises III.3.4.b and
III.2.5]. So, we are left to show that the condition H i

P(Z ,F) = 0 for all i < d is
equivalent to point (4). Define U := Z \ P . Then there is a long exact sequence

· · · → H i
P(Z ,F)→ H i (Z ,F)→ H i (U,F)→ · · · .

Since Z is affine H i (Z ,F)= 0 for all i > 0. Hence

H i (U,F)∼= H i+1
P (Z ,F) for all i > 0. (4.3.a)

So, since H 0
P(Z ,F)= H 1

P(Z ,F)= 0 is assumed in point (4), it is enough to show
that for all 0< i < d − 1,

H i (U,F)∼=
⊕
n∈Z

H i (Y,G(n)). (4.3.b)

In fact we will prove this for all i . First, notice that U ∼= SpecY (
⊕

n∈Z OY (n)) and
the natural projection SpecY (

⊕
n∈Z OY (n))→ Y can be identified with π |U via this

isomorphism. Hence (π |U )∗OU ∼=
⊕

n∈Z OY (n) and Ri (π |U )∗OU = 0 for i > 0. So:

H i (U,F)∼= H i (Y, (π |U )∗F|U )∼= H i (Y, (π |U )∗(π |U )∗G)∼=
∼= H i (Y,

⊕
n∈Z

G(n))∼=
⊕
n∈Z

H i (Y,G(n))

as claimed in (4.3.b). �

5. Construction of varieties with prescribed singularities

In this section, normal S j (but not S j+1) varieties of dimension n ≥ 3 with Sl (but
not Sl+1), Q-line bundle canonical sheaves are constructed for certain values of j
and l. They are going to be used in Section 6 and in Section 7 to build families
with prescribed base change behavior for the relative canonical sheaves. First we
need some lemmas.

Lemma 5.1. If H is a general, high enough degree hypersurface in a projective
variety X , then H i (H,OH )∼= H i (X,OX ) for every i such that 0< i < dim H.

Proof. We start with the usual exact sequence

0→ OX (−H)→ OX → OH → 0. (5.1.a)

Since deg H � 0,

H i (X,OX (−H))= 0 whenever i < dim X. (5.1.b)

Taking the cohomology long exact sequence of (5.1.a) and using (5.1.b) finishes
the proof. �

Iterated use of Lemma 5.1 yields the following:
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Lemma 5.2. If H is a general, high enough degree complete intersection (that is,
it is the intersection of hypersurfaces, all of which are high enough degree) in a
smooth projective variety X , then H i (H,OH ) ∼= H i (X,OX ) for every i such that
0< i < dim H.

Finally, iterated use of the adjunction formula yields the following:

Lemma 5.3. If H is a complete intersection in a smooth projective variety X , then
ωH ∼= ωX (m)|H for some m > 0 (here OX (1) is the very ample line bundle given by
the projective embedding of X ).

Proposition 5.4. For each n ≥ 2 and 2≤ d, l ≤ n such that l ≤ d and d+ l ≤ n+2
there is an (n+1-dimensional projective variety Xn+1 for which

• Xn+1 is the projective cone over a smooth projective variety Yn with vertex P ,

• Xn+1 is Sd and depth OXn+1,P = d ,

• ωXn+1 is Sl and depthωXn+1,P = l, and

• ωXn+1 is a Q-line bundle.

Proof. Take first two Calabi–Yau hypersurfaces Z and W of dimensions d − 1 and
n + 1− l, respectively. Let Y := Yn be a general high enough degree complete
intersection of codimension d − l in Z ×W . Notice that d − l ≥ 0 by assumption.
Finally, let Xn+1 be the projective cone over Y polarized by OY (1) := OZ×W (p)|Y
for some p� 0 (after fixing Y ). Here OZ×W (1) is the very ample line bundle on
Z ×W coming from its projective embedding.

The Künneth isomorphism yields

Hq(Z ×W,OZ×W )∼=

q⊕
r=0

H r (Z ,OZ )⊗ Hq−r (W,OW ).

Since Z and W are Calabi–Yau hypersurfaces of dimension d − 1 and n+ 1− l,
respectively, the following holds for their cohomology table:

Hq(Z ,OZ ) 6= 0 ⇐⇒ q = 0 or d − 1,

H s(W,OW ) 6= 0 ⇐⇒ s = 0 or n+ 1− l.

Hence

Hq(Z × E,OZ×E) 6= 0 ⇐⇒ q = 0, d − 1, n+ 1− l or n− l + d.

Using Lemma 5.2 yields, for 0< q < n,

Hq(Y,OY ) 6= 0 ⇐⇒ q = d − 1 or n+ 1− l. (5.4.a)

Since p� 0, also,

Hq(Y,OY (r))= 0 for every r and 0< q < n.
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Then by Lemma 4.3 using that d − 1 ≤ n + 1 − l by assumption, Xn+1 is Sd

and depth OXn+1,P = d (Xn+1 is S2 at the vertex, because p � 0 and hence Y is
projectively normal).

Serre duality implies that

Hq(Y, ωY )∼= (H n−q(Y,OY ))
∗.

So, by (5.4.a), for 0< q < n,

Hq(Y, ωY ) 6= 0 ⇐⇒ q = l − 1 or n+ 1− d.

Since Xn+1 is an affine bundle over Y , ωXn+1 is isomorphic to the pullback of ωY

outside of the vertex. Then by Lemma 4.3 using that l − 1≤ n+ 1− d , ωXn+1 is Sl

and depthωXn+1,P = l (ωXn+1 is always S2 by Proposition 3.3(8)).
We have left to show that the ωXn+1 are Q-Cartier. By Lemma 5.3,

ω
⊗p
Y
∼= (ωZ×E(m)|Y )⊗p ∼= (OZ×E(m)|Y )⊗p ∼= OY (m).

That is, ω⊗p
Y is an integer multiple of the polarization of Y used at the construction

of Xn+1. Hence, [Hacon and Kovács 2010, Exercise 3.5] concludes the proof. �

6. Construction of families without the base change property

In this section we present the proof of Theorem 1.2. The following lemma contains
the key argument. It is also used in the proofs of Proposition 1.5 and Theorem 1.6.

Lemma 6.1. Let f : H→ B = P1 be a flat pencil of hypersurfaces of a quasi-
projective, equidimensional scheme X , such that IH,X×B is a line bundle and H

and the closed fibers of f are S2 and G1.

(1) If ωX is S3, the restriction map ωH/B |H0 → ωH0 is an isomorphism.

(2) If depthωX,P 6≥ min{3, dim OX,P} for some P ∈ X , such that P ∈ H0, but
P 6∈H∞, then ωH/B |H0 6

∼= ωH0 .

Proof. Notice that by flatness of H and by Lemma 3.5, it does make sense to
talk about ωH/B . Define X := X × B. Then H is a hypersurface of X. By
Proposition 3.6.(2) there is a homomorphism ωX/B(H)|H → ωH/B , which is an
isomorphism in codimension one, over the Gorenstein locus of H. Fix this homo-
morphism for the course of the proof.

Now, we show point (1). If ωX is S3, then so is ωX/B ∼= p∗1ωX by Lemma 4.2.
Hence, by Fact 3.2.(2), ωX/B(H)|H is S2. Then, since ωH/B is S2 by Proposition
3.3(9), ωX/B(H)|H→ ωH/B is an isomorphism everywhere by [Hartshorne 1994,



Base change behavior of the relative canonical sheaf 371

Theorems 1.9 and 1.12]. However, for every P ∈ X0,

depthωX/B,P = depthωX,p1(P)+ 1︸ ︷︷ ︸
Fact 4.1, applied to ωX/B ∼= p∗1ωX

≥min{3, dim OX,p1(P)}+ 1︸ ︷︷ ︸
ωX is S3

=min{4, dim OX,P}. (6.1.a)

But then, for every P ∈H0,

depthωH/B,P = depth(ωX/B(H)|H)P︸ ︷︷ ︸
ωH/B∼=ωX/B(H)|H

≥min{3, dim OH,P}︸ ︷︷ ︸
Fact 3.2.(2) and (6.1.a)

,

which implies point (1) by Proposition 3.3(11).
To prove point (2), denote by U the open set p−1

1 (X \ (H0 ∩H∞))⊆ X. This is
the set of points, the first coordinates of which are not contained in every element
of the pencil H→ B. By Proposition 3.3(4) and 3.3(5), we may replace X by U ,
or with other words, X by X \ (H0∩H∞). In particular, then H0∩H∞ =∅ and P
is an arbitrary point of H0, such that

depthωX,P 6≥min{3, dim OX,P}. (6.1.b)

Then all fibers of the projection p1|H :H→ X have dimension zero. So, for every
Q ∈H,

depthωX/B,Q = depthωX,p1(Q)+ 1︸ ︷︷ ︸
Fact 4.1, applied to ωX/B ∼= p∗1ωX

≥min{2, dim OX,p1(Q)}+ 1︸ ︷︷ ︸
Proposition 3.3.(8)

=min{3, dim OX,Q}.

Then, repeating the argument of the previous paragraph ωX/B(H)|H ∼= ωH/B . Also,
at the fixed P ∈H0, the following computation estimates the depth more precisely.

depthωX/B,P = depthωX,P + 1︸ ︷︷ ︸
Fact 4.1, applied to ωX/B ∼= p∗1ωX

6≥min{3, dim OX,P}+ 1︸ ︷︷ ︸
(6.1.b)

=min{4, dim OX,P} (6.1.c)

However, then

depthωH/B,P = depth(ωX/B(H)|H)P︸ ︷︷ ︸
ωH/B∼=ωX/B(H)|H

6≥min{3, dim OH,P}︸ ︷︷ ︸
by Fact 3.2.(2)

,

which concludes the proof by Proposition 3.3(11). �
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Remark 6.2. The condition of IH,X being a line bundle in Lemma 6.1 might look
superfluous at first sight, since H is a hypersurface in X. However, according to
Section 2, the latter only means that H is the zero locus of some special section of
a line bundle. That is, H or Hb for some b ∈ B could contain an entire irreducible
component of X or Xb, respectively. Then Proposition 3.6 would not apply. Such
situations should definitely be avoided.

The following is the main construction to which Lemma 6.1 is applied in this
section.

Construction 6.3. Consider a projective cone X over a variety Y . Let P be the
vertex of X . Take two hypersurfaces in X . The first one H is a projective cone
over a degree d generic hypersurface D of Y . The second one H̃ is a general
degree d hypersurface of X . Denote by H→ B the pencil generated by H and H̃
(for which H = H0 and H̃ = H∞). Throughout the paper we allow ourselves to
replace this family by its restriction to a small enough open neighborhood of 0 ∈ B.
Furthermore, when we compute stable reduction in Section 8, we will assume that
d � 0.

Lemma 6.4. In the situation of Construction 6.3, if X is S3 and Y is R1, then

(1) H and the closed fibers of f are normal varieties,

(2) IH,X×B is a line bundle,

(3) f is flat.

Proof. We use the notation X := X × B. Since Y is a variety (that is, integral), so
are D, X , X, H0 and H∞. By the definition of a pencil, H is defined by a single
nonzero equation locally on X. So, since X is integral, point (2) follows. Similarly,
for every b ∈ B, Hb is defined locally by a single nonzero equation locally. Hence
by integrality of X , IHb,Xb is also a line bundle for every b ∈ B. Thus, Lemma 3.5
yields point (3).

To prove point (1), note that X is S3 by Lemma 4.2 and by the assumption of
the lemma. So, by Fact 3.2, H and the closed fibers of H are S2. (Remember,
in Construction 6.3 we allowed ourselves to shrink B around 0 ∈ B). Since D
is general and Y is R1, D is R1 as well by Bertini’s theorem; see [Harris 1992,
Theorem 17.16]. Therefore, so is H . Then, by possibly shrinking B, each closed
fiber of H is R1. Thus all closed fibers of H, and H itself, are normal. �

Theorem 6.5. In the situation of Construction 6.3, if dim X ≥ 3, X is S3, Y is R1,
and depthωX,P = 2, then

ωH/B |H0 6
∼= ωH0 . (6.5.a)

In addition:
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(1) If ωX is a Q-line bundle, then ωH/B is a Q-line bundle. In particular then ωHb

is a Q-line bundle for all b ∈ B.

(2) If X is Sd and depth OX,P = d, then Hb is Sd−1 for all b ∈ B, and

depth OH0,P = d − 1.

Proof. By Lemma 6.4, we may apply Lemma 6.1(2) to obtain the main statement
of the theorem.

To prove addendum (1), note that the normality of H and Hb for every b ∈ B,
[Hartshorne 1994, Theorem 1.12] and Proposition 3.6 imply that

ω
[n]
Hb
∼= (ωXb(Hb)|Hb)

[n] for any b ∈ B, and ω[n]H/B
∼= (ωX/B(H)|H)

[n] (6.5.b)

for all n ∈ Z. Hence if ωX is a Q-line bundle, then (6.5.b) implies that so is ωH/B

and ωHb for all b ∈ B. To prove (2) we use Fact 3.2 once again. �

Theorem 1.2 now follows as a corollary:

Proof of Theorem 1.2. It follows by combining Proposition 5.4 (setting d = j + 1
and l = 2), Construction 6.3 and Theorem 6.5. �

7. Degenerations and Serre’s condition

We turn to proving the statements relating Serre’s condition Sd to degenerations of
flat families. The first half of the section is devoted to Theorem 1.3.

Remark 7.1. By the restriction homomorphism ωH/B→ ωH0 we mean any homo-
morphism obtained as in Proposition 3.3(2).

Theorem 1.3 might look technical, but it applies for example to the special case,
when the general fiber is Cohen–Macaulay and the central fiber contains at least
one closed point with depth n− 1.

Proof of Corollary 1.4 and Proposition 1.5. Fix a 2 ≤ i < n − 1. Consider the
projective cone X given by Proposition 5.4, setting d = i + 1 and l = 3. Use then
Construction 6.3 for X . By Lemma 6.4, this yields a flat family f :H→ B of normal
varieties for which Lemma 6.1(1) applies. That is, the restriction homomorphisms
ωH/B |Hb → ωHb are isomorphisms for every b ∈ B. Finally, since X is Cohen–
Macaulay outside of P and depth OX,P = i+1, by Fact 3.2, Hb is Cohen–Macaulay
outside of P , where depth OH0,P = i . �

We also need the following lemma in the proof of Theorem 1.3.

Lemma 7.2. If f :H→ B is a flat morphism of schemes onto a smooth curve, F is
a coherent OH-module on H, and P ∈H0, then

(1) Tor 1
H(F,OH0)P 6= 0 if and only if F has an associated component W such that

P ∈W ⊆H0, and
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(2) Tor i
H(F,OH0)= 0 for i > 1.

Proof. By restricting B, we may assume that I0,B ∼= OB . Denote by s a generator
of I0,B and consider the exact sequence

0→ OH
·s
−→ OH→ OH0 → 0. (7.2.a)

Then the long exact sequence of Tor •H(F, · ) applied to (7.2.a) yields

Tor 1
H(F,OH)= 0→ Tor 1

H(F,OH0)→ F
·s
−→ F.

Hence Tor 1
H(F,OH0)P 6= 0 if and only if s annihilates something in FP , if and only

if F has an associated component W such that P ∈W ⊆H0.
Another part of the long exact sequence of Tor •H(F, · ) applied to (7.2.a) yields

the following for i > 1:

Tor i
H(F,OH)= 0→ Tor i

H(F,OH0)→ Tor i−1
H (F,OH)= 0.

Hence, Tor i
H(F,OH0)= 0 indeed if i > 1. �

Proof of Theorem 1.3. Fix a closed point x ∈ H0 with depth OH0,x = n − 1,
contained in a component W ⊆ H0 of the locus (1.3.a). The locus (1.3.a) is
supp(h−(n−1)(ω•H/B)) by Proposition 3.3(7); hence W is also an associated compo-
nent of h−(n−1)(ω•X/B). Consider an open neighborhood of x , where every closed
point has depth at least n− 1. Replacing H by this neighborhood, all assumptions
of the theorem stay valid, and moreover we may assume that every closed point of
H has depth at least n− 1. In particular, then

hi (ω•H/B) 6= 0 ⇐⇒ i =−n or − (n− 1). (7.2.b)

Define E := h−(n−1)(ω•H/B). By (7.2.b), there is an exact triangle

ωH/B[n] → ω•H/B→ E[n− 1]
+1
−→ . (7.2.c)

Applying · ⊗L OH0 to (7.2.c) and then considering the long exact sequence of
cohomology sheaves yields

h−n−1(E[n− 1]⊗L OH0)→ h−n(ωH/B[n]⊗L OH0)→ h−n(ω•H/B ⊗L OH0)

→ h−n(E[n− 1]⊗L OH0)→ h−n+1(ωH/B[n]⊗L OH0), (7.2.d)

where

• h−n−1(E[n− 1]⊗L OH0)
∼= Tor 2

H(E,OH0)= 0 by Lemma 7.2,

• h−n(ωH/B[n]⊗L OH0)
∼= ωH/B |H0 ,

• h−n(ω•H/B ⊗L OH0)
∼= h−n(ω•H0

)∼= ωH0 by Proposition 3.3(1),

• h−n(E[n− 1]⊗L OH0)
∼= Tor 1

H(E,OH0) and
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• h−n+1(ωH/B[n]⊗L OH0)
∼=h1(ωH/B⊗L OH0)=0 since ·⊗L OH0 is a left derived

functor, so ωH/B ⊗L OH0 is supported in negative cohomological degrees.

Therefore, (7.2.d) is isomorphic to the exact sequence

0→ ωH/B |H0 → ωH0 → Tor 1
H(E,OH0)→ 0.

Since E has an associated component through x contained in H0, we know that
Tor 1

H(E,OH0)x 6= 0 by Lemma 7.2, which concludes our proof. �

Having finished the proof of Theorem 1.3, the rest of the section is devoted its
consequence, Theorem 1.6. See Section 1 for its motivation.

Proof of Theorem 1.6. Since the statement of the theorem is local, we may assume X
is affine and hence quasiprojective. Restricting to a sufficiently small neighborhood
of a point with depth n− 1, all assumptions of the theorem stay valid and we may
assume that all closed points of X have depth at least n− 1. We use the notation
X := X × B. Let X =

⋃r
i=1 X i be the decomposition into irreducible components.

Consider a pencil f :H→ B = P1 of hypersurfaces of X such that

(1) H0 contains the entire non-Gorenstein locus,

(2) ∅ 6=H0 ∩ X j 6= X j for every 1≤ j ≤ r ,

(3) H∞ is a general hypersurface.

In particular then,

(H0 \H∞)∩ X j 6=∅ for every 1≤ j ≤ r. (7.2.e)

By definition of the pencil, if P ∈ H0 \H∞, then P /∈ Hb for any b 6= 0. Hence
assumption (2) and (7.2.e) imply that for all b ∈ B, there is a point of X j not
contained in Hb. Note now, that since X is S1, by Lemma 4.2, so is X. In particular,
then all associated points of X and X are general points of components. So, since
none of the Hb contains any of the X j , IH,X and IHb,Xb for every b ∈ B have
nonzero divisor local generators and hence are line bundles. Then H is flat over B
by Lemma 3.5.

Define the loci

Z := {x ∈ X | x is closed, depth OX,x = n− 1},

W := {x ∈ X | x is closed, depth OH f (x),x = n− 2}.

By construction and by Fact 3.2, W0 = Z and W = (p−1 Z)red, where p :H→ X
is the natural projection. Let Z ′ be an irreducible component of Z of the highest
dimension. By the choice of H0 and H∞, we have Z ′ ⊆ H0, and Z ′ 6⊆ H∞.
Furthermore, H∞ does not contain any of the irreducible components of Z . Hence,
the general fiber of the map W → B will have dimension at most dim Z ′− 1. So,
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W has dimension dim Z ′. Hence, Z ′ ⊆ W0 is an irreducible component of W . In
particular, by Theorem 1.3, the restriction morphism ωH/B |H0 → ωH0 is not an
isomorphism.

On the other hand assume thatωX is S3. Since X is G2, H and Hb are G1 for every
b∈ B. In fact, H, and Hb for a general b∈ B, are G2 also, but for H0 only G1 can be
guaranteed. Also, X is S3 by assumption and X is S3 because of Lemma 4.2. Then
H and Hb are S2 for every b ∈ B by Fact 3.2. That is, we may apply Lemma 6.1(1),
which states that the restriction homomorphism ωH/B |H0→ωH0 is an isomorphism.
This is a contradiction; hence ωX cannot be S3. �

8. Stable reduction

In Construction 6.3, although the general fiber of H→ B has mild, that is, log
canonical, singularities, H0 is very singular. The failure of base change for ωH/B

implies that by [Kollár and Kovács 2010, Theorem 7.9] H0 is not Du Bois. By
[ibid., Theorem 1.4], it is also not log canonical. In this section, we compute the
stable limit of H→ B. It is the limit at 0 of some stable family H′→ B̃. This
family has two important properties. First, H×B B̃|B̃\{0} ∼= H′|B̃\{0} for a finite
cover φ : (B̃, 0)→ (B, 0) totally ramified at 0. Second, (H′)0 is log canonical,
and hence by [ibid., Theorems 1.4 and 7.9], ωH′/B̃ commutes with base change.
So, (H′)0 is the “right” limit of H, and the incompatibility of Theorem 1.2 can be
thought of as a consequence of using the wrong limit in Construction 6.3.

Proposition 8.1. Assuming that Y is smooth, the stable limit of Construction 6.3
is the d-fold cyclic cover of Y ramified exactly over D, with eigen-line bundles
OY (−i) for i = 0, . . . , d − 1.

Proof. First, shrink B if necessary so that∞ /∈ B and that every fiber apart from
H0 is log canonical. This is possible because the general fiber of H is smooth
by Bertini’s theorem. Also, since we assumed that d � 0, the family H→ B
has canonically polarized fibers and hence is stable over B∗ := B \ {0}. Define
X := X × B.

The closed embedding Y ⊆ PN−1 induces a natural closed embedding X ⊆ PN .
This yields very ample line bundles OPN (1) and OX (1). Then, H is the zero locus
of a section f0+ t f∞ of OX(d) := p∗1OX (d) for some f0, f∞ ∈ H 0(PN ,OPN (d)),
as explained in Section 2.

Choose a basis z0, . . . , zN of H 0(PN ,OPN (1)), such that z0, . . . , zN−1 form a
basis of H 0(PN−1,OPN−1(1)). Then f0 and f∞ correspond to degree d homoge-
neous polynomials in variables z0, . . . , zN−1 and z0, . . . , zN , respectively. Also,
the fact that P /∈H∞ implies that the coefficient of zd

N in f∞ is nonzero, say c.
Let φ : (B̃, 0)→ (B, 0) be the degree d cyclic cover branched only at 0, where

it is totally ramified, and let s be a local parameter of B̃ at 0, such that sd
= t .
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Consider the subscheme H′ ⊆ X×B B̃ =: Xφ defined by

f0(z0, . . . , zN−1)+ sd f∞
(
z0, . . . , zN−1,

1
s zN

)
∈ H 0(Xφ,OXφ (d)),

where OXφ (d) is the pullback of OX(d) to Xφ .
By the uniqueness of stable limit, H′ is a stable reduction of H (that is, a stable

family isomorphic generically to the pullback of H), if

(1) (H′)0 is a canonically polarized manifold, and

(2) H′|B̃∗
∼=Hφ|B̃∗ , where Hφ :=H×B B̃ and B̃∗ := B̃ \ {0}.

To prove point (1), notice that (H′)0 is defined by the zero locus of s on H′ or
equivalently by the zero locus of the following section of OX (d) on X :

f0(z0, . . . , zN−1)+ czd
N .

Hence it is the cyclic cover of Y of degree d branched along D with eigensheaves
OY (−i) for 0 ≤ i ≤ d − 1. So first, it is smooth by [Kollár and Mori 1998,
Lemma 2.51]. Second, since (H′)0 is contained in the smooth part of X , we have
ω(H′)0

∼= ωX (d)|(H′)0 by Proposition 3.6 and it is a line bundle. So, since d � 0,
(H′)0 is a canonically polarized manifold indeed.

To prove point (2), notice that the equation of Hφ in Xφ is

f0(z0, . . . , zN−1)+ sd f∞(z0, . . . , zN−1, zN ) ∈ H 0(Xφ,OXφ (d)).

Hence, Hφ|B̃∗
∼=H′|B̃∗ via the isomorphism induced by the following automorphism

of PN
× B̃∗:

(z0, . . . , zN+1, zN ) 7→ (z0, . . . , zN−1, szN ).

We proved both points (1) and (2). Consequently, H′ is a stable reduction of H

indeed. Through the course of the proof of point (1), we also proved that (H′)0 is
indeed the cyclic cover described in the statement of the proposition. �
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