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We give explicit descriptions of the higher Chow groups of toric bundles and flag
bundles over schemes. We derive several consequences of these descriptions for
the equivariant and ordinary higher Chow groups of schemes with group action.

We prove a decomposition theorem for the equivariant higher Chow groups of
a smooth scheme with action of a diagonalizable group. This theorem is applied
to compute the equivariant and ordinary higher Chow groups of smooth toric
varieties. The results of this paper play fundamental roles in the proof of the
Riemann–Roch theorems for equivariant higher K -theory.

1. Introduction

A scheme in this paper will mean a separated and reduced scheme of finite type
over a perfect field k, which admits an ample line bundle. This base field k will
be fixed throughout this paper. A linear algebraic group G over k will mean a
smooth and affine group scheme over k. By a closed subgroup H of an algebraic
group G, we shall mean a morphism H → G of algebraic groups over k that is
a closed immersion of k-schemes. In particular, a closed subgroup of a linear
algebraic group will be of the same type and hence smooth. Recall from [Borel
1991, Proposition 1.10] that a linear algebraic group over k is a closed subgroup of
a general linear group, defined over k.

Recall that an action of a linear algebraic group G on a k-scheme X is said
to be linear if X admits a G-equivariant ample line bundle, a condition that is
always satisfied if X is normal (see [Sumihiro 1975, Theorem 2.5] for G connected
and [Thomason 1988, 5.7] for G general). All G-actions in this paper will be
assumed to be linear. Let Vk denote the category of quasiprojective k-schemes
and let VS

k denote the full subcategory of smooth k-schemes. We shall denote the
category of quasiprojective G-schemes with G-equivariant maps by VG , and the
full subcategory of smooth G-schemes will be denoted by VS

G .
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The G-equivariant higher Chow groups CHG
∗
(X, i) of X ∈ VG were defined by

Edidin and Graham [1998] in terms of the ordinary higher Chow groups (motivic
Borel–Moore homology) of the quotient space X ×G U . Here, U is a G-invariant
open subscheme of a finite-dimensional representation V of G such that it acts
freely on U and V \U is of sufficiently high codimension. This definition of Edidin
and Graham is based on an earlier construction of Totaro [1999], who invented the
idea above to define the Chow groups of the classifying spaces of linear algebraic
groups.

In this paper, we develop further the Edidin–Graham theory of equivariant higher
Chow groups and establish many important properties of this theory. We also prove
some decomposition theorems for the equivariant higher Chow groups of smooth
schemes with torus action. These results turn out to have many applications.

Brion [1997] proved many results about the equivariant Chow groups of the form
CHG
∗
(X, 0). Many of the structural results in this paper can be described as the

generalization of the results of [Brion 1997] to the case of equivariant higher Chow
groups. In Section 2, we recall the definition of equivariant higher Chow groups
from [Edidin and Graham 1998] and prove its basic properties, which are all well
known for the ordinary higher Chow groups; see [Bloch 1986]. As a consequence,
one finds that the equivariant higher Chow groups form a Borel–Moore oriented
bigraded homology theory in the category of schemes with the action of a given
linear algebraic group. Other important results about these groups such as the
Morita isomorphism are proven in Section 3. We also prove a structure theorem
(see Theorem 3.5) for the equivariant higher Chow groups of schemes with action
of tori.

Section 4 contains the proof of the self-intersection formula for the higher Chow
groups. This formula plays a very important role in the proofs of the main results
of this paper. In Section 5, we construct Demazure operators on equivariant higher
Chow groups and give some consequences of these operators.

In Section 6, we prove the Leray–Hirsch theorem for the higher Chow groups. As
a consequence of this theorem, we compute the higher Chow groups of toric bundles
in Section 7. In Section 8, we turn to the description of the higher Chow groups of
principal bundles and flag bundles over schemes. We give several applications of
these descriptions in the study of equivariant higher Chow groups.

In Sections 9 and 10, we prove a decomposition theorem (see Theorem 10.3)
for the equivariant higher Chow groups of smooth schemes with action of a diago-
nalizable group G. This result describes the equivariant higher Chow group of a
G-scheme in terms of the equivariant higher Chow groups of the loci where the
stabilizers have a fixed dimension. This result is an analogue of a similar result
of Vezzosi and Vistoli [2003] in equivariant K -theory and has many important
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applications in the study of equivariant and ordinary higher Chow groups of smooth
schemes.

Theorem 10.3 is the basic step in the proof of the equivariant Riemann–Roch
theorem in [Krishna 2009b]. This theorem presents an explicit relation between
the equivariant K -theory and the equivariant higher Chow groups. Like in the
ordinary case, this Riemann–Roch is a fundamental result in equivariant algebraic
geometry. This theorem was in fact one of the main motivations for the author to
work on this paper. We expect Theorem 10.3 to have many more applications in the
computation of equivariant and ordinary higher Chow groups. In Section 11, we
apply this theorem to compute the equivariant and ordinary higher Chow groups of
smooth toric varieties. We shall follow the following convention while studying the
equivariant and ordinary higher Chow groups with the rational coefficients.

Convention. In this paper, all the results and statements up to Section 7 do not
make any assumption on the coefficient ring of the higher Chow groups. On the
other hand, all the results and statements from Section 8 onwards assume rational
coefficients. In order to simplify the notation, the following convention will be
followed.

From Section 8 onwards, an abelian group A will actually mean its extension
A⊗Z Q. In particular, all higher Chow groups and other cohomology groups will be
considered with the rational coefficients. For Q-vector spaces A and B, the tensor
product A⊗Q B will be simply written as A⊗ B. We shall however, indicate the
appropriate coefficients in the statements of the all results.

2. Equivariant higher Chow groups

In this section, we recall the definition of the equivariant higher Chow groups from
[Edidin and Graham 1998] and review their main functorial properties. It turns out
in particular that the equivariant higher Chow groups have all the properties of an
oriented bigraded Borel–Moore homology theory.

Let G be a linear algebraic group and let X be a scheme over k with a G-action.
We shall denote the dimension of the underlying group G usually by the letter g.
All representations of G in this paper will be finite-dimensional. The definition of
equivariant higher Chow groups of X needs one to consider certain kind of mixed
spaces which in general may not be schemes even if the original spaces are schemes.
The following well-known (see [Edidin and Graham 1998, Proposition 23]) lemma
shows that this problem does not occur in our context and all the mixed spaces in
this paper are schemes with ample line bundles.

Lemma 2.1. Let H be a linear algebraic group acting freely and linearly on a
k-scheme U such that the quotient U/H exists as a quasiprojective scheme. Let X
be a k-scheme with a linear action of H. Then the mixed quotient X×H U exists for
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the diagonal action of H on X ×U and is quasiprojective. Moreover, this quotient
is smooth if both U and X are so. In particular, if H is a closed subgroup of a
linear algebraic group G and X is a k-scheme with a linear action of H , then the
quotient G×H X is a quasiprojective scheme.

Proof. It is already shown in [Edidin and Graham 1998, Proposition 23] using
[Mumford et al. 1994, Proposition 7.1] that the quotient X ×H U is a scheme.
Moreover, as U/H is quasiprojective, [Mumford et al. 1994, Proposition 7.1] in fact
shows that X ×H U is also quasiprojective. The similar conclusion about G×H X
follows from the first case by taking U =G and by observing that G/H is a smooth
quasiprojective scheme; see [Borel 1991, Theorem 6.8]. The assertion about the
smoothness is clear since X ×U → X ×H U is a principal H -bundle. �

2a. Good pairs and equivariant higher Chow groups. For any integer j ≥0, let V
be an l-dimensional representation of G and let U be a G-invariant open subset of V
such that the codimension of the complement V \U in V is sufficiently larger than j ,
and G acts freely on U such that the quotient U/G is a quasiprojective scheme.
Such a pair (V,U ) will be called a good pair for the G-action corresponding to j .
It is easy to see that a good pair always exists; see [Edidin and Graham 1998,
Lemma 9].

For an equidimensional G-scheme X , let XG denote the quotient X ×G U of the
product X×U by the diagonal action of G, which is free. We define the equivariant
higher Chow group CH j

G(X, i) as the homology group Hi (Z
j (XG, • )), where

Z j (XG, • ) is the Bloch cycle complex of the scheme XG . It is known [Edidin and
Graham 1998, Section 2] that this definition of CH j

G(X, i) is independent of the
choice of a good pair (V,U ) for the G-action up to unique isomorphisms. One
should also observe that CH j

G(X, i) may be nonzero for infinitely many values of j ,
a crucial change from the case of nonequivariant (ordinary) higher Chow groups.

If X is of dimension d, which is not necessarily equidimensional, one defines
the equivariant higher Chow groups as

CHG
j (X, i) := Hi (Z j+l−g(XG, • )), (2-1)

where (V,U ) is an l-dimensional good pair for the G-action corresponding to d− j ,
and Zp(XG, • ) is the homological cycle complex of Bloch such that Zp(XG, i) is
the group of admissible algebraic cycles on XG ×1

i of dimension p+ i . We write

CHG
∗
(X, i)=

⊕
−∞< j≤d

CHG
j (X, i) and CHG

∗
(X)=

⊕
i≥0

CHG
∗
(X, i). (2-2)

It is easy to see that CHG
j (X, i)=CHd− j

G (X, i) if X is equidimensional of dimension
d . For most of this paper, we shall use the cohomological indexing for the equivariant
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higher Chow groups while dealing with smooth schemes. In particular, CH∗G(X)
will denote the sum

⊕
i≥0 CH∗G(X, i).

For a commutative ring R, the equivariant higher Chow groups CH j
G(X, i; R)

are defined as the homology groups of the complex Z j (XG, • )⊗Z R. The symbol
CH∗G(X; R) will denote the direct sum of all CH j

G(X, i; R). We shall denote the
rings CH∗G(k, 0) and CH∗G(k, 0; R) by S(G) and S(G; R), respectively.

2b. Equivariant operational Chow groups. For X ∈ VG , we define

OPCH j
G(X, i)= lim

−→
CH j

G(Y, i), (2-3)

where the limit is taken over the category of arrows X → Y in VG with Y ∈ VS
G .

Notice that the natural map OPCH j
G(X, i)→ CH j

G(X, i) is an isomorphism if X is
smooth. We shall write the sum

⊕
i, j≥0 OPCH j

G(X, i) as OPCH∗G(X).
It follows from [Bloch 1986, Proposition 5.5, Corollary 5.6] that OPCH∗G(X)

has a ring structure and OPCH∗G(X, 0) is a subring of OPCH∗G(X). Moreover,
X 7→ OPCH∗G(X) is a contravariant functor on VG which acts on the higher Chow
groups of X . In particular, OPCH1

G(X, 0) −→∼ PicG(X) acts on CHG
∗
(X, i). This

action is same as the action of the Chern classes of equivariant line bundles on the
homology theory CHG

∗
(X, i).

2c. Main properties of equivariant higher Chow groups. The following result
summarizes most of the essential properties of the equivariant higher Chow groups
that will be used in this paper.

Proposition 2.2. The equivariant higher Chow groups as defined above satisfy the
following properties.

(1) Functoriality: Covariance for proper maps, contravariance for flat maps and
their compatibility. That is, for a fiber diagram

X ′
g′ //

f ′
��

X

f
��

Y ′ g
// Y

in VG with f proper and g flat, one has

g∗ ◦ f∗ = f ′∗ ◦ g′∗ : CHG
∗
(X, i)→ CHG

∗
(Y ′, i).

Moreover, if f : X→ Y is a morphism in VG with Y in VS
G , then there is a

pull-back map f ∗ : CHG
∗
(Y, i)→ CHG

∗
(X, i).

(2) Homotopy: If f : X→ Y is an equivariant vector bundle, then

f ∗ : CHG
∗
(Y, i)−→∼ CHG

∗
(X, i).
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(3) Exterior product: There is a natural product map

CHG
∗
(X, i)⊗CHG

∗
(Y, i ′)→ CHG

∗
(X × Y, i + i ′).

Moreover, if f : X → Y is such that Y ∈ VS
G , then there is a pull-back via

the graph map 0 f : X→ X × Y , which makes CH∗G(Y ) a bigraded ring and
CHG
∗
(X) a module over this ring. In particular, CHG

∗
(X, i) an S(G)-module

for X ∈ VG and i ≥ 0.

(4) Localization: If Y ⊂ X is a G-invariant closed subscheme with complement U ,
then there is a long exact localization sequence of S(G)-modules

· · · → CHG
∗
(Y, i)→ CHG

∗
(X, i)→ CHG

∗
(U, i)→ CHG

∗
(Y, i − 1)→ · · · .

This sequence is compatible with the push-forward and flat pull-back maps of
higher Chow groups.

(5) Chern classes: For any G-equivariant vector bundle of rank r , there are
equivariant Chern classes cG

l (E) : CHG
j (X, i)→ CHG

j−l(X, i) for 0 ≤ l ≤ r ,
having the same functoriality properties as in the nonequivariant case and
cG

0 (E)= 1.

(6) Projection formula: For a proper map f : X→ Y in VG and for x ∈ CHG
∗
(X),

y ∈ OPCH∗G(Y ), one has f∗( f ∗(y) · x) = y · f∗(x). Here, the action of
OPCH∗G(Y ) on CHG

∗
(X) is given by (3) above.

(7) Free action: If G acts freely on X with quotient Y , then there is a canonical
isomorphism CHG

∗
(X, i)−→∼ CH∗(Y, i).

Proof. Since the equivariant higher Chow groups of X are defined in terms of
the higher Chow groups of XG , the proposition (except possibly the last property)
can be easily deduced from the similar results for the nonequivariant higher Chow
groups as in [Bloch 1986] and the techniques of [Edidin and Graham 1998]. We
therefore skip the proof. To see that the maps in the localization sequence are
S(G)-linear, it suffices to know that for a good pair (V,U ), the long exact sequence

· · · → CH∗(YG, i)→ CH∗(XG, i)→ CH∗(UG, i)→ CH∗(YG, i − 1)→ · · ·

is a sequence of CH∗(U/G)-modules. But this is a well-known fact as U/G is
smooth and the above is a sequence of higher Chow groups of schemes over it; see
[Bloch 1986, Exercise 5.8(ii)].

To prove (6), we need to show that if Y
g
−→ Z is a G-equivariant map with Z ∈VS

G ,
then the map CHG

∗
(X)

f∗
−→CHG

∗
(Y ) is CH∗G(Z)-linear. Since the push-forward and

the pull-back maps of equivariant Chow groups are nothing but the maps of ordinary
higher Chow groups of suitable mixed quotients, it suffices to prove the statement
above for the push-forward map of the higher Chow groups corresponding to the
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maps of mixed quotients XG→ YG→ ZG . Since ZG is smooth, this nonequivariant
version is well-known [Bloch 1986, §5.5, Exercise 5.8].

For the last property, fix j ≤ d and choose a good pair (V,U ) of dimension l for
the G-action corresponding to d− j ≥ 0. Since G acts freely on X , it acts likewise
also on X×V with quotient, say XV . Then XG is an open subset of XV and XV→Y
is a vector bundle, which implies that the map CH j (Y, i)→ CH j+l(XV , i) is an
isomorphism by the homotopy invariance. On the other hand, the restriction map
CH j+l(XV , i)→ CH j+l(XG, i)= CHG

j−g(X, i) is an isomorphism by the property
(4) as d − j is sufficiently small. �

Remark 2.3. The reader should be warned that the various isomorphisms between
the (equivariant) higher Chow groups in the proposition above are true only up to
some obvious shift in the dimension of cycles, which we have chosen not to write.

We next recall from [Edidin and Graham 1998] that the Chern classes cG
l (E)

of an equivariant vector bundle E , as described in Proposition 2.2 above, live in
the operational Chow groups OPCHl(XG). If X is in VS

G however, this operational
Chow group is isomorphic to the equivariant Chow group CHl

G(X, 0) and the
action of cG

l (E) on CH∗G(X) then coincides with the intersection product in the
ring CH∗G(X).

Finally, we recall from [ibid.] that if H ⊂ G is a closed subgroup and if (V,U )
is a good pair, then for X ∈ VG , the natural map of quotients X ×H U → X ×G U
is an étale locally trivial G/H -fibration and hence there is a natural restriction map

r G
H,X : CHG

∗
(X, i)→ CHH

∗
(X, i). (2-4)

Taking H = {1}, one obtains the forgetful map

r G
X : CHG

∗
(X, i)→ CH∗(X, i). (2-5)

Moreover, as r G
H,X is the pull-back under a flat (in fact, a smooth) map, it commutes

(see Proposition 2.2) with the pull-back for any flat map, and with the push-forward
for any proper map in VG . We remark here that although the definition of r G

H,X uses
a good pair (V,U ) for any given j ≤ dim(X), it is easy to check from the homotopy
invariance that r G

H,X is independent of the choice of the good pair (V,U ).

3. Morita isomorphisms

In this section, we prove some Morita-type isomorphisms that address the question
of comparison between the equivariant higher Chow groups for the action of two
different algebraic groups. We also prove a structure theorem for these equivariant
higher Chow groups under the trivial action of split tori. These results are analogues
of the similar results of Thomason in equivariant K -theory; see [Thomason 1986,
Lemma 5.6; 1988, Section 1].
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Proposition 3.1 (Morita isomorphism). Let H be a normal subgroup of a linear
algebraic group G and let F =G/H. Let f : X→ Y be a G-equivariant morphism
of G-varieties that is an H-torsor for the restricted action. Then the map induced
on the equivariant higher Chow groups

CHF
∗
(Y, i)

f ∗
−→ CHG

∗
(X, i).

is an isomorphism.

Proof. We first observe from [Springer 1998, Corollary 12.2.2] that F is also a
linear algebraic group over the given ground field k. Now, since f is an H -torsor,
it is clear that G acts on Y via F . Fix j ≤ dim(X) and choose a good pair (V,U )
of dimension l for the F-action corresponding to dim(Y )− j . Then V is also a
representation of G in which U is G-invariant. In particular, G acts on X×U via the
diagonal action, which is easily seen to be free since H acts freely on X and F acts
freely on U . By the same reason, we see that X×U→ Y ×U , which is a principal
H -bundle, is G-equivariant. This in turn implies that the map (X ×U )/G→ YF

is an isomorphism and hence we get

CHF
j (Y, i)∼= CH j+l−g+h(YF , i)−→∼

f ∗
CH j+l−g+h(X ×G U, i), (3-1)

where dim(H)= h. On the other hand, we have

CHG
j+h(X, i)∼=CHG

j+h+l(X×V, i)∼=CHG
j+h+l(X×U, i)∼=CH j+h+l−g(X×GU, i),

where the first isomorphism is due to the homotopy invariance, the second follows
from the localization property (see Proposition 2.2(4)) as j is sufficiently small, and
the third isomorphism follows from Proposition 2.2(7). The proof of the proposition
now follows by combining this with (3-1). �

Corollary 3.2 (see [Edidin and Graham 2000]). Let H ⊂ G be a closed subgroup
and let X ∈ VH . Then for any i ≥ 0, there is a natural isomorphism

CHG
∗
(G×H X, i)−→∼ CHH

∗
(X, i). (3-2)

Proof. Define an action of H ×G on G× X by

(h, g) · (g′, x)= (gg′h−1, hx) (3-3)

and an action of H×G on X by (h, g)·x=hx . Then the projection map G×X
p
−→ X

is (H×G)-equivariant and is a G-torsor. Hence by Proposition 3.1, the natural
map

CHH
∗
(X, i)

p∗
−→ CHH×G

∗
(G× X, i)
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is an isomorphism. On the other hand, the projection map G × X → G ×H X is
(H×G)-equivariant and is an H -torsor. Hence we get an isomorphism

CHG
∗
(G×H X, i)−→∼ CHH×G

∗
(G× X, i).

The corollary follows by combining these two isomorphisms. �

Proposition 3.3. Let G be a connected reductive group over k. Let B be a Borel
subgroup of G containing a maximal torus T over k. Then for any i ≥ 0, the
restriction map

CHB
∗
(X, i)

r B
T,X
−−→ CHT

∗
(X, i) (3-4)

is an isomorphism for any X ∈ VB .

Proof. By Corollary 3.2, we only need to show that

CHB
∗
(X, i)−→∼ CHB

∗
(B×T X, i). (3-5)

By [M. Demazure 1970, XXII, 5.9.5], there exists a characteristic filtration

Bu
=U0 ⊇U1 ⊇ · · · ⊇Un = {1}

of the unipotent radical Bu of B such that U j−1/U j is a vector group, each U j

is normal in B and T U j = T nU j . Moreover, this filtration also implies that for
each j , the natural map B/T U j → B/T U j−1 is a torsor under the vector bundle
U j−1/U j × B/T U j−1 on B/T U j−1. Hence, the homotopy invariance gives an
isomorphism

CHB
∗
(B/T U j−1× X, i)−→∼ CHB

∗
(B/T U j × X, i).

Composing these isomorphisms successively for j = 1, . . . , n, we get

CHB
∗
(X, i)−→∼ CHB

∗
(B/T × X, i).

The canonical isomorphism of B-varieties B×T X ∼= B/T × X (see Corollary 3.2)
now proves (3-5) and hence (3-4). �

Recall that a linear algebraic group G over k of dimension g is diagonalizable if
Gk
∼= H × (Gm)

g, where H is a finite abelian group. The group G is called split
diagonalizable, if such an isomorphism is defined over k. A connected reductive
group G over k is said to be split if it contains a split maximal torus T over k such
that G is given by a root system relative to T . Every connected and reductive group
containing a split maximal torus is split; see [M. Demazure 1970, Chapter XXII,
Proposition 2.1].

Recall from [Springer 1998, Lemma 14.1.1] that every solvable group G over k
has a filtration {e} = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G by closed normal k-subgroups
such that each quotient group G j/G j−1 is either diagonalizable or an elementary
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unipotent group; see [Springer 1998, §3.4]. The group G is called split over k if
each G j/G j−1 is either split diagonalizable or Ga . It is known [Springer 1998,
Corollary 14.3.10] that every unipotent group over a perfect field is split.

Proposition 3.4. Let H be a possibly nonreductive group over k. Assume that H
has a Levi decomposition H = L n H u such that H u is split over k (for example, if
k is of characteristic zero). Then for each i ≥ 0, the map

CHH
∗
(X, i)

r H
L ,X
−−→ CHL

∗
(X, i) (3-6)

is an isomorphism.

Proof. Since the unipotent radical of H is split over k, the proof is exactly same
as in the proof of (3-4), where we just have to replace B and T by H and L ,
respectively. �

3a. A structure theorem for CHT
∗ (X). We end this section with the following

structure theorem for the equivariant higher Chow groups of a scheme with the
action of a split diagonalizable group on which certain subgroup acts trivially.
This theorem is the initial step in the proof of its far reaching generalization in
Theorem 10.3.

Theorem 3.5. Let T be a split diagonalizable group and let X ∈ VT . Let H be a
connected closed subgroup of T that acts trivially on X. Then there is a natural
isomorphism

CHT/H
∗

(X)⊗ZS(H)
i T
H,X
−−→ CHT

∗
(X).

This is a bigraded ring isomorphism if X is smooth.

Proof. Put T ′ = T/H . Since H is a split torus, we can choose a decomposition
(not necessarily canonical) T = H × T ′. Fix an integer j ≤ dim(X) and let (V,U )
and (V ′,U ′) be good pairs for the actions of H and T ′, respectively, corresponding
to dim(X)− j as in [Edidin and Graham 1998, Example 3.1]. Thus U is a product
of punctured affine spaces and U/H = (Pn)r for some n� 0, where r = rank(H).
Then (VT ,UT ), with VT = V × V ′ and UT =U ×U ′, is a good pair for the action
of T . We now have

XT = (X ×U ×U ′)/(H × T ′)= (X ×U ′)×T ′ U/H = XT ′ × (P
n)r ,

where the second equality holds since H acts trivially on X ×U ′ and the third
equality holds because T ′ acts trivially on U . It follows from the projective bundle
formula (see also Lemma 6.2) for the ordinary higher Chow groups that the map

CH∗(XT ′)⊗Z CH∗((Pn)r , 0)→ CH∗(XT ) (3-7)
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is an isomorphism. We conclude the proof by noting that CHp(XT ′)∼= CHT ′
p (X)

and CHp(XT ) ∼= CHT
p (X) for all p ≤ j . If X is smooth, the assertion about the

ring isomorphism of i T
H,X now follows because (3-7) is known to be a bigraded ring

isomorphism in that case. �

4. Self-intersection and projection formulas

Our aim in this section is to prove the following two results for the ordinary and
equivariant higher Chow groups. The first result is the self-intersection formula for
the higher Chow groups of smooth schemes. The analogue of this formula for the
higher K -theory was proven by Thomason [1993, Theorem 3.1]. Surprisingly, this
formula for the higher Chow groups has remained unnoticed. Its equivariant version
will play a very crucial role in the decomposition Theorem 10.3 for the equivariant
higher Chow groups of smooth schemes with an action of a diagonalizable group.

The second result of this section is a version of projection formula for the higher
Chow groups of singular schemes. Such a formula for the smooth schemes was
proven by Bloch [1986]. We shall need this version of the projection formula in
our construction of Demazure operators on the equivariant higher Chow groups.

4a. Self-intersection formula. We shall use the method of deformation to the
normal cone as the main technical tool to prove the self-intersection formula.
Since this technique will be used several times in this paper, we briefly recall the
construction from [Fulton 1984, Chapter 5] for our, as well as reader’s, convenience.
Let X be a smooth scheme over k and let f : Y ↪→ X be a smooth closed subscheme
of codimension d ≥ 1. Let M̃ be the blow-up of X×P1 along Y×∞. Then BlY (X)
is a closed subscheme of M̃ and one denotes its complement by M . There is a
natural map π : M→ P1 such that π−1(A1)∼= X ×A1 with π the projection map
and π−1(∞)∼= X ′, where X ′ is the total space of the normal bundle NY/X of Y in
X . One also gets the following diagram, where all the squares and the triangles
commute.

Y

u′ ##
f

��

i0

**
Y ×P1

pY
oo

F

��

Y
i∞oo

f ′

��

Y ×A1

F ′

��

j ′

99

X

h
**

u ##

M X ′
i

oo

X ×A1.

j

99

(4-1)
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In this diagram, all the vertical arrows are the closed embeddings, i0 and i∞ are the
obvious inclusions of Y in Y ×P1 along the specified points, i and j are inclusions
of the inverse images of ∞ and A1, respectively, under the map π , u and f ′

are zero section embeddings and pY is the projection map. In particular, one has
pY ◦ i0 = pY ◦ i∞ = idY .

In case X is a G-scheme and Y is G-invariant, then by letting G act trivially
on P1 and diagonally on X × P1, one gets a natural action of G on M , and all
the spaces in the diagram above become G-spaces and all the morphisms become
G-equivariant. This observation will be used later in this paper.

We shall need the following result about the higher Chow groups, which is an
easy consequence of Bloch’s moving lemma.

Lemma 4.1. Let

W
f ′ //

g′
��

Y

g
��

Z
f
// X

be a fiber diagram of closed immersions of schemes such that X and Y are smooth
and Y and Z intersect properly in X. Then one has for each i ≥ 0,

f ∗ ◦ g∗ = g′∗ ◦ f ′∗ : CH∗(Y, i)→ CH∗(Z , i).

Proof. Since X and Y are smooth, we can assume them to be equidimensional. Let

Z
p
Z W (Y, • )

iY
↪→ Zp(Y, • )

be the subcomplex that is generated by cycles on Y ×1• which intersect all faces
of Z ×1• and W ×1• properly. Similarly, let

Z
p
Z (X, • )

iX
↪→ Zp(X, • )

be the subcomplex generated by the cycles on X ×1• that intersect all faces of
Z ×1• properly. Then iX and iY are quasi-isomorphisms by the moving lemma;
see [Krishna and Levine 2008, Theorem 1.10]. However, if V ∈ Z

p
Z W (Y, • ) is an

irreducible cycle in Y ×1n , then the conclusion of the lemma is checked easily. �

Corollary 4.2. Let G be a linear algebraic group and let

W
f ′ //

g′
��

Y

g
��

Z
f
// X
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be a fiber diagram of closed immersions of smooth G-schemes such that Y and Z
intersect properly in X. Then one has f ∗◦g∗= g′∗◦ f ′∗ :CH∗G(Y, i)→CH∗G(Z , i).

Proof. By choosing a good pair (V,U ) for the G-action and then considering
the appropriate mixed quotients, we can reduce to proving the corollary for the
nonequivariant higher Chow groups. But this is shown in Lemma 4.1. �

Lemma 4.3. Consider the diagram (4-1) and let y ∈ CH∗(Y,m). Then there exists
z ∈ CH∗(M,m) such that f∗(y)= h∗(z) and f ′∗(y)= i∗(z).

Proof. Put ỹ = p∗Y (y) and z = F∗(ỹ). Then

f∗(y)= f∗((pY ◦ i0)
∗(x))= f∗ ◦ i∗0 ◦ p∗Y (y)= f∗ ◦ i∗0 (ỹ)= f∗ ◦ u′∗ ◦ j ′∗(ỹ)

= u∗ ◦ F ′∗( j ′∗(ỹ)) (by Lemma 4.1)

= u∗ ◦ j∗ ◦ F∗(ỹ) (since j is an open immersion)

= h∗ ◦ F∗(ỹ)= h∗(z).

Similarly,

f ′∗(y)= f ′∗((pY ◦ i∞)∗(x))= f ′∗ ◦ i∗
∞
◦ p∗Y (y)= f ′∗ ◦ i∗

∞
(ỹ)

= i∗ ◦ F∗(ỹ) (by Lemma 4.1)

= i∗(z). �

Theorem 4.4 (self-intersection formula). Let Y
f
↪→X be a closed immersion of

smooth varieties of codimension d ≥ 0, and let NY/X be the normal bundle of Y in
X. Then for every y ∈ CH∗(Y, i), one has f ∗ ◦ f∗(y)= cd(NY/X ) · y.

Proof. There is nothing to prove when d = 0 and so we assume d ≥ 1. We first
consider the case when X

p
−→ Y is a vector bundle of rank d and f is the zero

section embedding so that p ◦ f = idY . In that case, we have

f ∗ ◦ f∗(y)= f ∗ ◦ f∗( f ∗ ◦ p∗(y))= f ∗( f∗(1) · p∗(y)) (by Proposition 2.2(6))

= f ∗( f∗(1)) · ( f ∗ ◦ p∗(y))= f ∗( f∗(1)) · y = cd(NY/X ) · y,

where the last equality follows from the self-intersection formula for Fulton’s Chow
groups; see [Fulton 1984, Corollary 6.3]. This proves the theorem in the case of
zero section embedding.

Now let Y ↪→ X be as in the theorem. We consider the deformation to the normal
cone diagram (4-1) and choose z ∈ CH∗(M, i) as in Lemma 4.3. Then we have

f ∗ ◦ f∗(y)= f ∗ ◦ h∗(z)= i0
∗
◦ F∗(z)= i∗

∞
◦ F∗(z)= f ′∗ ◦ i∗(z)

= f ′∗ ◦ f ′∗(y) (by Lemma 4.3)

= cd(NY/X ′) · y (by the case of vector bundle above)

= cd(NY/X ) · y.
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This completes the proof of the theorem. �

Corollary 4.5. Let G be a linear algebraic group over k and let Y
f
↪→X be a closed

immersion of codimension d ≥ 0 in VS
G . Then for every i ≥ 0 and y ∈ CH∗G(Y, i),

one has f ∗ ◦ f∗(y)= cG
d (NY/X ) · y.

Proof. There is nothing to prove if d = 0 and so we assume d ≥ 1. Fix i, j ≥ 0
and choose a good pair (V,U ) for n � j + d. We can then identify CHp

G(X, i)
with CHp(XG, i) (and same for Y ) for p ≤ n. We can also identify cG

d (E) with
cd(EG) for any equivariant vector bundle E on Y ; see [Edidin and Graham 1998,
Section 2.4]. Now, the proof of the corollary would follow straightaway from
Theorem 4.4, once we show that (NY/X )G is the normal bundle of YG in XG . But
this follows immediately from the elementary fact that if G acts freely on a smooth
scheme Z and W is a smooth closed and G-invariant subscheme of Z with normal
bundle N , then G acts freely on N , and moreover, N/G is the normal bundle of
W/G in Z/G. We leave the proof of this fact to the reader. �

4b. A projection formula for singular schemes. Recall from Section 2b (see also
[Bloch 1986, Corollary 5.6]) that the operational Chow groups X 7→ OPCH∗(X)
form a ring-valued contravariant functor on Vk that acts on the higher Chow groups.
The action of OPCH1(X, 0)−→∼ Pic(X) on CH∗(X, j) coincides with the action of
the Chern classes of line bundles.

Proposition 4.6. Let X ∈ Vk and let f : Y = P(E)→ X be the projective bundle
associated to a vector bundle E of rank n+ 1 on X and let

ξ = c1(OY (1)) ∈ OPCH1(Y, 0)

be the first Chern class of the relative tautological line bundle on Y . Then for any
x ∈ CH∗(X, j), one has

f∗(ξ i
· f ∗(x))=

{
0 if i < n,
x if i = n.

Proof. If X is smooth, the proposition is an easy consequence of the projection
formula [Bloch 1986, Exercise 5.8], as this formula implies that

f∗(ξ i
· f ∗(x))= f∗(ξ i ) · x .

Moreover, it follows from [Fulton 1984, Proposition 3.1] that f∗(ξ i )= 1 if i = n
and zero otherwise. The case of singular schemes is the hard part of the theorem
because we cannot directly apply the projection formula of [Bloch 1986]. We obtain
a proof by an indirect approach of reduction to the smooth case and by unravelling
the action of Chern classes on the higher Chow cycles on singular schemes.
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By [Fulton 1984, Lemma 18.2], we can find a closed embedding ι : X→ X ′ and
a vector bundle E ′ of rank n+ 1 on X ′ such that E ∼= ι∗(E ′) and X ′ is smooth. We
set Y ′ = P(E ′), ξ ′ = c1(OY ′(1)) and consider the Cartesian diagram

Y ι′ //

f
��

Y ′

f ′
��

X
ι
// X ′.

(4-2)

Recall from the construction of the action of ξ ′i on CH∗(Y, j) in [Bloch 1986]
that for any irreducible cycle [V ] on Y ×1 j , the support of ξ i

· [V ] = ξ ′i · [V ] is
supp(V ∩α), where α is cycle on Y ′ representing ξ ′i and such that each component
of α intersects V properly. This is achieved by using the moving lemma on Y ′, a
smooth scheme. Since ξ ′ reduces the dimension of a cycle on Y×1 j by exactly one,
we see that dim(ξ i

· f ∗([W ]))= dim(W )+n−i and the support of f∗(ξ i
· f ∗([W ]))

is contained in W , whenever W is an irreducible admissible cycle on X ×1 j . We
conclude from the definition of the push-forward map that f∗(ξ i

· f ∗([W ])) must
be zero if n− i > 0. Since any admissible cycle on X ×1 j is a sum of irreducible
admissible cycles, this proves the first case.

We prove the case of i = n by induction on n. If E is of rank one, then f is
an isomorphism and OY (1) is trivial and hence c0(OY (1))= 1. So we assume that
n ≥ 1. We let ι : X ↪→ X ′ be a closed embedding into a smooth scheme as in (4-2).

By [Panin 2003, Lemma 3.24], there is a morphism φ′ : T ′→ X ′, which is a
composite of projective and affine bundles on X ′ such that φ′∗(E ′)= F ′⊕L ′, where
L ′ is a line bundle on T ′. Moreover, if φ : T → X is the restriction of φ′ on X ,
then the pull-back map φ∗ : CH∗(X, j)→ CH∗(T, j) is a split injection and the
same holds for φ′∗. Notice here that X is a closed subscheme of X ′ and hence
CH∗(X) −→∼ CHX

∗
(X ′) in the notation of [ibid., Definition 2.1]. We denote the

restrictions of F ′ and L ′ on X by F and L respectively.
Consider the Cartesian diagram

Z
ψ //

g
��

Y

f
��

T
φ
// X

(4-3)

and suppose the given assertion holds for the projective bundle g. We then have

φ∗( f∗(ξ n
· f ∗(x)))= g∗(ψ∗(ξ n

· f ∗(x)))= g∗((ψ∗(ξ))n ·ψ∗ ◦ f ∗(x))

= g∗((ψ∗(ξ))n · g∗ ◦φ∗(x))= φ∗(x),
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where the first equality holds by Proposition 2.2 and the last equality holds by our
assumption. Since φ∗ is injective, we see that the conclusion holds for f as well.
Thus we have reduced the problem to the case when E ′ = F ′⊕ L ′ and E = F ⊕ L .

If we set Ẽ = E ⊗ L−1 and Ỹ = P(Ẽ), there is a commutative diagram

Ỹ h //

f̃ ��

P(E)

f��
X

such that h is an isomorphism and OỸ (1)= h∗(OY (1))⊗ f̃ ∗(L−1). Set η = c1(L)
in OPCH1(X, 0) and η̃ = f̃ ∗(η) and ξ̃ = c1(OỸ (1)) in OPCH1(Ỹ , 0).

Suppose that our assertion holds for the projective bundle f̃ . In this case, we get

f∗(ξ n
· f ∗(x))= f̃∗((η̃+ ξ̃ )n · f̃ ∗(x))= f̃∗((ξ̃ )n · f̃ ∗(x))= x,

where the last equality holds by our assertion about f̃ . The second equality holds
because of the fact that

f̃∗
(
(η+ ξ̃ )n · f̃ ∗(x)

)
=

n∑
i=0

(n
i

)
f̃∗((η̃)i (ξ̃ )n−i

· f̃ ∗(x))

=

n∑
i=0

(n
i

)
ηi
· f̃∗((ξ̃ )n−i

· f̃ ∗(x))

(see [Bloch 1986, Exercise 5.8]) and that the term f̃∗((ξ̃ )n−i
· f̃ ∗(x)) vanishes for

0≤ n− i < n by the first assertion of proposition. Hence, we are further reduced to
the case when E ′ = F ′⊕OX ′ and E = F ⊕OX .

Let Z = P(F) and let p and q be the closed and the open inclusions of Z ↪→ Y
and F ↪→ Y , respectively. Let g : Z ↪→ Y → X be the composite map and set
ζ = c1(OZ (1)). We observe that Z is a Cartier divisor on Y such that OY (1)=L(Z).
In particular, the pull-back p∗ is defined and we have ξ · f ∗(a)= p∗(p∗ ◦ f ∗(a)).
Since F is of rank n, the desired assertion holds for g : Z→ X by induction. That
is, g∗(ζ n−1

· g∗(x))= x . We now have

f∗(ξ n
· f ∗(x))= f∗(ξ n−1 p∗(p∗ ◦ f ∗(x)))

= f∗(p∗(ζ n−1
· p∗ ◦ f ∗(x)))= g∗(ζ n−1

· g∗(x))= x .

This proves the desired assertion and the proof of the proposition is complete. �

5. Demazure operators on equivariant higher Chow groups

In this section, we introduce Demazure (divided difference) operators on the equi-
variant higher Chow groups of schemes. Such operators were constructed by Brion
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[1997] on the equivariant Chow groups CHG
∗
(X, 0) and by Holm and Sjamaar

[2008] on the equivariant singular cohomology H∗G(X). We extend these operators
to the higher Chow groups and discuss some consequences.

Let G be a connected reductive group with a split maximal torus T of rank n.
Let8=8(G, T )⊂X(T ) be the root system of G with respect to T , where X(T ) is
the character group of T . For any α ∈8, let Pα be the minimal parabolic subgroup
of G corresponding to α and let B = T UαU and B ′ = T U−αU be the opposite
Borel subgroups of G containing T in Pα. Let Wα = {sα, s−α} denote the Weyl
group of Pα, where sα is the reflection in X(T ) given by

sα(λ)= λ−〈α∨, λ〉α for λ ∈ X(T ).

Let X be a k-scheme with a free G-action and let B and B ′ act on X × Pα by
b · (x, g) = (x, bg) and b′ · (x, g) = (b′x, gb′−1). It is easy to check that the two
actions are free and they commute with each other. Hence we get a free action
of B × B ′ on X × G by (b, b′) · (x, g) = (b′x, bgb′−1). One checks that B acts
freely on X ′ = X ×B ′ Pα. Pα acts freely on X ′ by acting trivially on its X -factor
and by left multiplication on the Pα-factor. In particular, we have a B-equivariant
map X ′→ X given by [x, g] 7→ x , which yields the projection map on quotients
f1 : X ′/B→ X/B ∼= X ′/Pα. One also has the Pα-equivariant map X ′→ X given
by [x, g] 7→ [gx], which yields the map f2 : X ′/B → X/B on quotients by the
action of B. It is also easy to check that the data above yield the commutative
diagram

X ′/B
f2 //

f1

��

X/B

pX

��

σ2

��

X/B pX
//

σ1

;;

X/Pα,

(5-1)

which is Cartesian. The section σ2 of f2 is defined by σ2([x]) = [x, 1] and the
section σ1 of f1 is defined by σ1([x]) = [x, nα], where nα is a representative of
sα in NPα (T ). Since f2 is induced by a Pα-equivariant map, we see that it is
Wα-equivariant with respect to the natural action of Wα on X ′/B and X/B. In
particular, we get

f ∗2 ◦ sα = sα ◦ f ∗2 ,

f ∗2 (ax)= a f ∗2 (x) for all a ∈ S and x ∈ CH∗(X/B).
(5-2)

Note that the all the maps (except the sections) in (5-1) are Pα/B ∼= P1-bundles
and hence they are all smooth and projective. Let OX/B(1) denote the universal
quotient line bundle on X/B relative to pX .
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Let D denote the image of σ1 and let L(D) denote the associated line bundle
on X ′/B. Let Lλ and L′λ denote the line bundles X ×B Lλ and X ′ ×B Lλ on
X/B and X ′/B respectively, where Lλ is the B-equivariant line bundle on Spec(k)
corresponding to the character λ of T . It follows from [Demazure 1974, Lemme 2,
Proposition 2] that

L′α = f ∗1 (Lα)⊗ (L(D))⊗2,

sα(L(D))= (L(D)⊗ f ∗1 (Lα))
⊗(−1).

(5-3)

5a. Demazure operators on CH∗(X). Let G be a connected reductive group with
split maximal torus T as above and let X be a G-scheme of dimension d . Let j ≤ d
be an integer and let (V,U ) be a good pair for the G-action corresponding to d− j .
The smooth and projective morphism pX×U : X B→ X Pα yields the maps

p∗X×U :CHPα
j (X, i)→CHB

j (X, i) and pX×U ∗:CHB
j (X, i)→CHPα

j+1(X, i). (5-4)

For the rest of this text, the ring S will denote the equivariant Chow ring

S(T )= CH∗T (k, 0).

Lemma 5.1. The maps p∗X×U and pX×U ∗ do not depend on the choice of the good
pair (V,U ).

Proof. We prove the lemma for the push-forward map and a very similar proof
works also for the pull-back map; see [Edidin and Graham 1998, Section 1].

Let g and b denote the dimensions of Pα and B, respectively. Let (V,U ) and
(V ′,U ′) be good pairs of dimensions l and l ′, respectively, corresponding to d − j .
We let V = V ⊕ V ′ and U = (U ⊕ V ′) ∪ (V ⊕U ′). Let G act diagonally on V.
Then it is easy to see that the dimension of the complement of the open subset
X ×B (U ⊕ V ′) in X ×B U is sufficiently smaller than l + l ′ − b+ j . Similarly,
the dimension of the complement of the open subset X ×Pα (U ⊕ V ′) in X ×pα U

is sufficiently smaller than l + l ′ − g + j ≤ l + l ′ − b + j . It follows from the
localization sequence for the higher Chow groups and Lemma 5.2 that the there is
a commutative diagram

CHl+l ′+ j−b(X ×B U, i) //

��

CHl+l ′+ j−b(X ×B (U ⊕ V ′), i)

��
CHl+l ′+ j−b(X ×Pα U, i) // CHl+l ′+ j−b(X ×Pα (U ⊕ V ′), i)

where the vertical maps are the push-forward maps and the horizontal maps are
isomorphisms.

On the other hand, the maps

X ×G (U ⊕ V ′)→ X ×G U and X ×B (U ⊕ V ′)→ X ×B U
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are vector bundles of rank l ′ and hence we get another commutative diagram

CHl+ j−b(X ×B U, i) //

��

CHl+l ′+ j−b(X ×B (U ⊕ V ′), i)

��
CHl+ j−b(X ×Pα U, i) // CHl+l ′+ j−b(X ×Pα (U ⊕ V ′), i),

where the vertical arrows are the push-forward maps and the horizontal arrows are
isomorphisms by the homotopy invariance.

Combining the two isomorphisms above, we get the commutative diagram

CH j+l+l ′−b(X ×B U, i) //

��

CHl+ j−b(X ×B U, i)

��
CH j+1+l+l ′−g(X ×Pα U, i) // CHl+l ′+ j+1−g(X ×Pα (U ⊕ V ′), i),

where the horizontal maps are isomorphisms. By repeating the same argument
with U ′, we get the diagram above with U replaced by U ′ and V ′ replaced by V
on the right column. This proves the lemma. �

Lemma 5.2. Let p : X → Y be a morphism in VPα such that Pα acts freely on X
and Y . Then the diagram of quotients

X/B //

��

Y/B

��
X/Pα // Y/Pα

is Cartesian such that the vertical maps are smooth and projective.

Proof. This is an easy exercise. �

Proposition 5.3. For any X ∈ VG , one has the restriction and the push-forward
maps

r Pα
B,X : CHPα

∗
(X, i)→ CHB

∗
(X, i) and pPα

B,X : CHB
∗
(X, i)→ CHPα

∗+1(X, i).

These maps are contravariant with respect to the flat maps and covariant with
respect to the proper morphisms of schemes in VG .

Proof. Let j ≤ d be an integer and let (V,U ) be a good pair for the G-action corre-
sponding to d − j . We define r Pα

B,X and pPα
B,X to be p∗X×U and pX×U ∗ respectively.

It follows from Lemma 5.1 that these maps are well-defined.
The functoriality properties of r Pα

B,X is already known; see [Edidin and Graham
1998, Section 1]. To prove these properties for pPα

B,X , it suffices to prove the same
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for pX×U ∗. But this follows easily from Lemma 5.2 and the similar properties of
the ordinary higher Chow groups. �

The following result generalizes [Brion 1997, Theorem 6.3] to equivariant higher
Chow groups.

Theorem 5.4. Let α be a simple root of G. For any X ∈ VG and i ≥ 0, there is a
unique operator δX

α on CHT
∗
(X, i) such that for all u ∈ S and v ∈ CHT

∗
(X, i), we

have

(1) αδX
α (v)= v− sα(v) and

(2) δX
α (uv)= uδX

α (v)+ δ
k
α(u)sα(v) if X is smooth.

Moreover, δX
α commutes with the G-equivariant flat pull-back and proper push-

forward maps between T -equivariant higher Chow groups.

Proof. Let B and B ′ be the opposite Borel subgroups of Pα containing T . Using
Proposition 3.3, we can replace T by B to define δX

α . We let

δX
α := r Pα

B,X ◦ pPα
B,X : CHB

j (X, i)→ CHB
j+1(X, i). (5-5)

The co- and contravariant functoriality of δX
α follows from Proposition 5.3. The

uniqueness of δX
α follows from [Brion 1997, Theorem 6.3] since this definition of

δX
α coincides with the one defined for CHB

∗
(X, 0) by Brion. We only need to show

the first and the second assertions.
Let j ≤ dim(X) and (V,U ) be a good pair the G-action corresponding to d− j .

There is a G-equivariant projection X ×U → X such that

CHG
j (X, i)−→∼ CHG

j (X ×U, i)

and δX
α on CHG

j (X, i) coincides with the operator δX×U
α on CHG

j (X ×U, i) by its
construction. Hence we can assume that G acts freely on X .

We now consider the diagram (5-1). Since f2 is a P1-bundle, the map f ∗2 is split
injective by Proposition 4.6. Hence it suffices to show that the two assertions of the
theorem hold after applying f ∗2 .

On the other hand, f ∗2 (sα(v)) = sα( f ∗2 (v)) and f ∗2 (αδ
X
α (v)) = α f ∗2 (δ

X
α (v))

by (5-2). Since f2 is induced by a G-equivariant map X ′ → X , we also have
f ∗2 (δ

X
α (v))= δ

X ′
α ( f ∗2 (v)) by the functoriality of δα . Thus we need to show for u ∈ S

and v′ ∈ CH∗(X ′/B, i) that

αδX ′
α (v

′)=v′−sα(v′) and δX ′
α (uv

′)=uδX ′
α (v

′)+δk
α(u)sα(v

′) if X ∈VG . (5-6)

Let c : CH∗T (k, 0) ∼= OPCH∗T (k, 0)→ OPCH∗(X/B, 0) be the ring homomor-
phism on the operational Chow groups induced by the map on the Picard groups
Lα 7→ Lα. We denote the corresponding map OPCH∗T (k, 0)→ OPCH∗(X ′/B, 0)
by c′. We set ξ = c1(L(D)) and ζ = c1(OX ′/B(1)), where OX ′/B(1) is the universal
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quotient line bundle associated to the P1-bundle f1. We shall write δk
α simply as δα

in what follows.
Since L(D) and OX ′/B(1) have same degree on every fiber of f1, there is a line

bundle M on X/B such that OX ′/B(1)∼=L(D)⊗ f ∗1 (M). In particular, there exists
η ∈ OPCH1(X/B, 0) such that ζ = ξ + f ∗1 (η). Since f ∗1 commutes with the action
of OPCH∗(X/B, 0) on the higher Chow groups, it follows from Proposition 4.6
that we can write v′ ∈ CH∗(X ′/B, i) as

v′ = f ∗1 (a)+ ξ f ∗1 (b), with a, b ∈ CH∗(X/B, i). (5-7)

Furthermore, it also follows that for any b ∈ CH∗(X/B, i),

f1∗(ξ f ∗1 (b))= f1∗(ζ f ∗1 (b))− f1∗( f ∗1 (ηb))= b+ 0= b. (5-8)

Since sα keeps the elements of the form f ∗(a) invariant, we get

sα(v′)= f ∗1 (a)+ sα(ξ) f ∗1 (b)

= f ∗1 (a)− [ξ + f ∗1 (c(α))] f
∗

1 (b), (5-9)

where the second equality follows from (5-3).
On the other hand, we have seen in (5-1) that f1 is same as the quotient map

X ′/B→ X ′/Pα and hence δX ′
α = f ∗1 f1∗. This yields

v′− c′(α)δX ′
α (v

′)= f ∗1 (a)+ ξ f ∗1 (b)− c′(α) f ∗1 [ f1∗ f ∗1 (a)+ f1∗(ξ f ∗1 (b))]

=
† f ∗1 (a)+ ξ f ∗1 (b)− c′(α) f ∗1 (b)

=
‡ f ∗1 (a)+ ξ f ∗1 (b)− [ f

∗

1 (c(α))+ 2ξ ] f ∗1 (b)

= f ∗1 (a)− [ξ + f ∗1 (c(α))] f
∗

1 (b), (5-10)

where =† follows from Proposition 4.6 and (5-8), and =‡ follows from (5-3). The
first equality of (5-6) follows at once by comparing (5-9) and (5-10).

To prove the second equality of (5-6) for u ∈ S and v′ ∈ CH∗(X ′/B, i) with X
smooth, we can assume using (5-7) that v′ is either f ∗1 (a) or ξ f ∗1 (a). We now have

δX
α (u f ∗1 (a))= f ∗1 ◦ f1∗(u f ∗1 (a))=

1 f ∗1 ( f1∗(u) · a)= f ∗1 f1∗(u) · f ∗1 (a)

=
2 δk

α(u) · f ∗1 (a)= δ
k
α(u) · sα( f ∗1 (a))+ uδX

α ( f ∗1 (a)).

The equality =1 holds by the projection formula for smooth schemes (see [Bloch
1986, Exercise 5.8]) and =2 holds by [Brion 1997, Theorem 6.3]. The last equality
holds because f ∗1 (a) is invariant under sα and f ∗1 f1∗(a) vanishes, again by the
projection formula. The required formula for v′ = ξ f ∗1 (a) is proved exactly in the
similar way using the observation that f1∗(ξ)= 1 and that the equality =2 holds
even if we replace u by ξu. �
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Proposition 5.5. For X ∈ VG , let r G
T,X : CHG

∗
(X, i)→ CHT

∗
(X, i) be the restric-

tion map.

(1) δα ◦ r G
T,X = 0.

(2) If X is smooth, then δα is CH∗G(X)-linear.

(3) δ2
α = 0.

(4) sαδα = δα =−δ−α, δαsα =−δα.

Proof. Since r G
T,X = r Pα

T,X ◦ r G
Pα,X , we can replace G by Pα. It suffices then to

show that

pPα
B,X ◦ r Pα

B,X = 0.

But this follows immediately from Proposition 4.6. The second point follows from
the observation that f ∗1 and f1∗ in (5-1) are CH∗(X ′/G)-linear. The third point
follows directly from the first and the fourth point is an immediate consequence of
the other assertions of the proposition. �

5b. Ring of Demazure operators. Let {α1, . . . , αm} be the set of all simple roots
of G. For any sequence I = {i1, . . . , il} of integers in the interval [1,m], we define
the operator δX

I on CHT
∗
(X, i) by

δX
I = δαil

◦ · · · ◦ δαi1
. (5-11)

Following the notation of [Brion 1997, §6.4], we let D denote the subring of
EndZ(S) generated by the elements δk

α and the endomorphisms given by the multi-
plication in S. It is clear from the definition of D and Theorem 5.4 that D contains
the twisted group algebra S[W ] and there are inclusions of rings S ( S[W ](D. It
is known that D is a free S-module with basis {∂w}w∈W , where ∂w is same as δk

I
above whenever w = sαi1

· · · sαil
. As an immediate consequence of Theorem 5.4,

Proposition 5.5 and (5-11), we get:

Corollary 5.6. For any X ∈ VG and i ≥ 0, there is a unique D-module structure
on CHT

∗
(X, i), which extends the action of S[W ]. Moreover, the flat pull-back

and proper push-forward maps between the T -equivariant higher Chow groups
are D-linear. For X ∈VS

G , the D-module structure on CH∗T (X) commutes with its
CH∗G(X)-module structure.

Let I (D) be the subset of D consisting of those operators δ such that δ(1)= 0.
It is easy to check that I (D) is a left ideal of D generated by {∂w}w 6=1. For any
X ∈ VG , let

(CHT
∗
(X, i))I (D)

=
{

x ∈ CHT
∗
(X, i)

∣∣ δ(x)= 0 ∀δ ∈ I (D)
}
. (5-12)
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Since the Weyl group is generated by simple reflections, it follows from Theorem 5.4
and Proposition 5.5 that

r G
T,X (CHG

∗
(X, i))⊆ (CHT

∗
(X, i))I (D)

⊆ (CHT
∗
(X, i))W . (5-13)

Recall that the torsion index tG of the group G is the order of the cokernel of the
map SN→CHN (G/B), where N = dim(G/B)= |8+|. Let R denote the localized
ring Z[t−1

G ].

Theorem 5.7. Let X ∈ VS
G and i ≥ 0 be such that CH∗T (X, i) is torsion-free. Then

the map CHG
∗
(X, i)→ (CHT

∗
(X, i))W is an isomorphism over R.

Proof. Let B be a Borel subgroup of G containing T . Let (V,U ) be a good pair
for the G-action and consider the Cartesian diagram

X B
qB //

pX

��

U/B

p
��

XG qG
// U/G.

(5-14)

By the definition of tG , it follows that there is a ∈ CHN (U/B, 0) such that
p∗(a) = tG ∈ CH0(U/G, 0). Using the projection formula, we get for any x ∈
CH∗(XG, i),

pX ∗(q
∗

B(a)p
∗

X (x))= pX ∗(q
∗

B(a))x = q∗G(p∗(a))x = tG x .

In particular, r G
T,X is split injective over R.

To show the surjectivity, we see from the above that for any x ∈ CH∗(XG, i),

p∗X f p∗X (x)= p∗X (tG x)= tG p∗X (x),

where f (y)= pX ∗(ay). This in particular implies that p∗X f (y)= tG y for all y in
the image of p∗X . It follows from Corollary 8.7 that

p∗X f (y)= tG y for all y ∈ (CH∗(X B, i)Q)W .

Since CH∗T (X, i) is torsion-free, we must have

p∗X f (y)= tG y for all y ∈ (CH∗(X B, i))W .

Hence the map r G
T,X is surjective onto the W -invariants over R. �

Remark 5.8. The proof of the theorem above in fact shows that the map r G
T,X is

split injective over R for any X ∈ VS
G .
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Corollary 5.9. Let X be a smooth projective scheme with a G-action such that the
fixed point locus X T for the T -action is isolated. Then the map

CHG
∗
(X, 0)→ (CHT

∗
(X, 0))W

is an isomorphism over R.

Proof. This is an immediate consequence of [Krishna 2009a, Theorem 4.2] and
Theorem 5.7. �

6. The Leray–Hirsch Theorem

In algebraic topology, the Leray–Hirsch theorem is a very important tool for de-
scribing the cohomology of the total space of a fiber bundle. Since the arguments
in this theorem are mostly topological, one cannot always expect such results for
the cohomology theories of algebraic varieties. A version of the Leray–Hirsch
theorem was proven for the Chow groups of the total space of a Zariski-locally
trivial fibration in [Ellingsrud and Strømme 1989, Lemma 2.8; Edidin and Graham
1997, Lemma 6]. In this section, we prove the general form of the Leray–Hirsch
theorem for the higher Chow groups of schemes. We shall give several important
applications of this theorem in the next few sections.

6a. A Künneth formula. In [Fulton 1984, Example 1.9.1], a k-scheme L is called
cellular if it has a filtration ∅ = Ln+1 ( Ln ( · · · ( L1 ( L0 = L by closed
subschemes such that each L i \ L i+1 is an affine space A

ri
k .1 It follows from the

Bruhat decomposition that schemes of the type G/B are cellular, where B is a
Borel subgroup of a split reductive group G.

Lemma 6.1. Let L be a cellular scheme with the cellular decomposition

∅= Ln+1 ( Ln ( · · ·( L1 ( L0 = L

and let Ui = L \L i for 0≤ i ≤ n+1. Then for any 0≤ i ≤ n and p≥ 0, the sequence

0→ CH∗(Ui+1 \Ui , p)→ CH∗(Ui+1, p)→ CH∗(Ui , p)→ 0

is exact.

Proof. The proof is very similar to the arguments of [Kahn 1999, Lemma 3.3] using
an induction on the number of cells. �

Lemma 6.2. Let L be a cellular scheme and let X be a any k-scheme. Then the
exterior product map

CH∗(X)⊗Z CH∗(L , 0)→ CH∗(X × L) (6-1)

1Some authors allow L i \ L i+1 to be a disjoint union of affine spaces over k. But both definitions
are equivalent.
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is an isomorphism. In particular, the natural map CH∗(k)⊗Z CH∗(L , 0)→CH∗(L)
is an isomorphism.

Proof. Consider the cellular decomposition of L as in Lemma 6.1. Then each
Ui = L \ L i is also a cellular scheme. It suffices to show by induction that (6-1)
holds when L is any of these Ui . There is nothing to prove for i = 0 and the case
i = 1 follows by the homotopy invariance since U1 is an affine space. In general,
we have the short exact sequence

0→ CH∗(Ui+1 \Ui , 0)→ CH∗(Ui+1, 0)→ CH∗(Ui , 0)→ 0 (6-2)

by applying Lemma 6.1 with p = 0. Since each Ui+1 \Ui is an affine space, it also
follows from Lemma 6.1 and by induction on the number of affine cells that each
CH∗(Ui , 0) is a free abelian group of finite rank. Tensoring this with CH∗(X) over
CH∗(k, 0)= Z, we get a commutative diagram

0

�� ��
CH∗(X)⊗CH∗(Ui+1 \Ui , 0) //

��

CH∗(X × (Ui+1 \Ui ))

i∗
��

CH∗(X)⊗CH∗(Ui+1, 0) //

��

CH∗(X ×Ui+1)

j∗

��
CH∗(X)⊗CH∗(Ui , 0)

��

// CH∗(X ×Ui ),

��0

where the left column is exact by the freeness of each CH∗(Ui , 0) and the right
column is the localization exact sequence. The top horizontal arcolumn is an
isomorphism by the homotopy invariance and the bottom horizontal arcolumn is
an isomorphism by the induction. In particular, j∗ is surjective in all indices. We
conclude that i∗ is injective in all indices and the middle horizontal arcolumn is
also an isomorphism. �

6b. Leray–Hirsch with integral coefficients. Let F be a cellular scheme over k.
For any field extension k ↪→ l, the scheme Fl is also cellular, for which the cel-
lular decomposition and the affine cells are the base extensions of the cellular
decomposition and affine cells of F . It follows from Lemma 6.1 that the map
CH∗(F, 0)→ CH∗(Fl, 0) is an isomorphism. The following is the integral version
of the Leray–Hirsch theorem for the Zariski-locally trivial fibrations.
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Theorem 6.3. Let B be a smooth k-scheme and let F
i
−→ E

p
−→ B be a Zariski-

locally trivial fibration such that the fiber F is a smooth cellular scheme. Assume
that there are elements {e1, . . . , er } in CH∗(E, 0) such that

{ f1 = i∗(e1), . . . , fr = i∗(er )}

forms a Z-basis of CH∗(Fy, 0) for each fiber Fy of the fibration. Then the map

8 : CH∗(F, 0)⊗Z CH∗(B)→ CH∗(E),
∑

1≤i≤r

fi ⊗ bi 7→
∑

1≤i≤r

p∗(bi )ei

is an isomorphism. In particular, CH∗(E) is a free CH∗(B)-module with basis
{e1, . . . , er }.

Proof. Since k is perfect, we can find a filtration

∅= Bn+1 ( Bn ( · · ·( B1 ( B0 = B

of B by closed subschemes such that for each 0 ≤ i ≤ n, the scheme Bi \ Bi+1

is smooth and the given fibration is trivial over it. We set Ui = B \ Bi and
Vi = Ui \Ui−1 = Bi−1 \ Bi . Observe then that each of the Ui and Vi is smooth.
Set Ei = p−1(Ui ) and Wi = p−1(Vi ). We prove by induction on i that the map
CH∗(F, 0) ⊗Z CH∗(Ui ) → CH∗(Ei ) is an isomorphism, which will prove the
theorem. Since U0 = ∅ and E1 = U1 × F , the desired isomorphism for i = 1
follows from Lemma 6.2. We now consider the commutative diagram

CH∗(Ui )⊗CH∗(F, 0) //

��

CH∗(Ei )

��
CH∗(Vi+1)⊗CH∗(F, 0) //

��

CH∗(Wi+1)

��
CH∗(Ui+1)⊗CH∗(F, 0) //

��

CH∗(Ei+1)

��
CH∗(Ui )⊗CH∗(F, 0) //

��

CH∗(Ei )

��
CH∗(Vi+1)⊗CH∗(F, 0) // CH∗(Wi+1).

(6-3)

The left column is obtained by tensoring the long exact localization sequence
for higher Chow groups with CH∗(F, 0) over Z, and the right column is just the
localization exact sequence. Since CH∗(F, 0) is a free abelian group, the left column
is also exact.

It is easily checked that the second and the third squares commute using the
commutativity property of the push-forward and pull-back maps of higher Chow
groups in a fiber diagram. We show that the other squares also commute. It is
enough to show that the first square commutes as the fourth one is same as the first.
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Let δ denote the connecting homomorphism in a long exact localization sequence
for the higher Chow groups.

Before we show the required commutativity, let us recall that if (X, Y ) is pair of
k-schemes where i : Y ↪→ X is a closed subscheme with complement j :U ↪→ X ,
then the localization exact sequence is the long exact homology sequence associated
to the short exact sequence of cycle complexes

0→ Zn(Y, • )
i∗
−→ Zn(X, • )

j∗
−→

Zn(X, • )
Zn(Y, • )

→ 0,

where the natural map

Zn(X, • )
Zn(Y, • )

→ Zn(U, • )

is a quasi-isomorphism. So we identify the last term with Zn(U, • ). The formal-
ism of the homological algebra now shows that the connecting homomorphism
δ : CHn(U, i)→ CHn(Y, i − 1) is obtained as one obtains the connecting homo-
morphism in the snake lemma. In particular, this is same as the differential map
∂ : Zn(X, i)→ Zn(X, i − 1), evaluated on the homology groups. The Leibniz rule
for this differential now implies that the connecting homomorphism δ also satisfies
the Leibniz rule; see [Panin 2003, §2.4].

If we now start with an element b⊗ i∗(e j ) ∈ CH∗(Ui )⊗CH∗(F, 0) and map
this vertically, we get δb⊗ i∗(e j ), which maps horizontally down to p∗(δb) · e j .
On the other hand, if we first map horizontally, we get p∗(b) · e j which maps
vertically to δ(p∗(b) · e j ). Using the Leibniz rule above, this last term is same as
δp∗(b) · e j = p∗(δb) · e j since δe j = 0. We have shown that the diagram above
commutes.

The first and the fourth horizontal arrows in (6-3) are isomorphisms by induction.
The second and the fifth horizontal arrows are isomorphisms by Lemma 6.2. Hence
the middle horizontal arrow is also an isomorphism by the 5-lemma. �

6c. Leray–Hirsch with rational coefficients. We need the following step to prove
the rational version of the Leray–Hirsch theorem for the étale locally trivial fibrations
of smooth schemes.

Let F be a smooth cellular scheme over k. We have seen before that for any
field extension k ↪→ l, the natural map CH∗(F, 0)→CH∗(Fl, 0) is an isomorphism.
Moreover, each of these is a free abelian group with the basis vectors given by
the closures of the affine cells in the cellular decomposition. We fix this basis
{ f1, . . . , fr } of CH∗(Fl, 0) in what follows. For a complete flag variety G/B, this
set is same as the set of Schubert cycles {ζw}w∈W .
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Lemma 6.4. Let B be a smooth k-scheme and let F
i
−→ E

p
−→ B be an étale

locally trivial fibration such that the fiber F is a smooth cellular scheme. As-
sume that this fibration becomes trivial after a finite étale cover of B of degree d.
Assume furthermore that there are elements {e1, . . . , er } in CH∗(E, 0) such that
{ f1 = i∗(e1), . . . , fr = i∗(er )} is the basis of CH∗(Fy, 0) for each geometric fiber
Fy of the fibration. Then the map

8 : CH∗(F, 0)⊗Z CH∗(B)→ CH∗(E),
∑

1≤i≤r

fi ⊗ bi 7→
∑

1≤i≤r

p∗(bi )ei

is an isomorphism over Z[d−1
]. In particular, CH∗(E)[d−1

] is a free CH∗(B)[d−1
]-

module with basis {e1, . . . , er }.

Proof. Let B ′
q
−→ B be a finite étale cover such that E ′ = E ×B B ′

p′
−→ B ′ is a

trivial fibration and let q ′ : E ′→ E be the other projection. It follows from our
assumption and the isomorphism of CH∗(F, 0) under the field extensions that the
set {e′i = q ′∗(ei )} restricts to the basis { fi } of CH∗(Fy, 0) for every fiber Fy of the
fibration p′.

Setting 8′(b′ ⊗ f j ) = p′∗(b′)e′j and using the fact that q ′∗ ◦ p∗ = p′∗ ◦ q∗,
p∗ ◦ q∗ = q ′

∗
◦ p′∗ and q∗ ◦ q∗ = d = q ′

∗
◦ q ′∗ (see [Bloch 1986, Exercise 5.8(i)]),

one checks that the diagram

CH∗(B)
⊗

CH∗(F, 0)

q∗⊗1 //

8

��

CH∗(B ′)
⊗

CH∗(F, 0)

8′

��

q∗⊗1 //
CH∗(B)
⊗

CH∗(F, 0)

8

��
CH∗(E)

q ′∗
// CH∗(E ′)

q ′∗
// CH∗(E)

commutes. The middle vertical arrow is an isomorphism by Lemma 6.2. A diagram
chase shows that 8 is an isomorphism over Z[d−1

]. �

Theorem 6.5. Let B be a smooth k-scheme and let F
i
−→ E

p
−→ B be an étale locally

trivial fibration such that the fiber F is a smooth cellular scheme. Assume that there
are elements {e1, . . . , er } in CH∗(E, 0) such that { f1 = i∗(e1), . . . , fr = i∗(er )} is
the basis of CH∗(Fy, 0) for each geometric fiber Fy of the fibration. Then the map

8 : CH∗(F, 0)⊗Q CH∗(B)→ CH∗(E),
∑

1≤i≤r

fi ⊗ bi 7→
∑

1≤i≤r

p∗(bi )ei

is an isomorphism over the rationals. In particular, CH∗(E) is a free CH∗(B)-
module with basis {e1, . . . , er } over the rationals.
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Proof. We assume all abelian groups to be tensored with Q in this proof. Since k is
perfect and since every étale cover is generically finite, we can find a filtration

∅= Bn+1 ( Bn ( · · ·( B1 ( B0 = B

of B by closed subschemes such that for each 0≤ i ≤ n, the scheme Vi = Bi−1\Bi is
smooth and there is a finite étale cover V ′i →Vi such that the given fibration is trivial
over V ′i . We set Ui = B \ Bi as before, which implies that Vi =Ui \Ui−1. Observe
then that each of the Ui and Vi is smooth. Set Ei = p−1(Ui ) and Wi = p−1(Vi ).
We prove by induction on i that the map

CH∗(F, 0)⊗Q CH∗(Ui )→ CH∗(Ei )

is an isomorphism, which will imply the proposition. Since U0 =∅ and since the
map E1→U1 is a smooth fibration which becomes trivial over the finite étale cover
V ′1→ V1 =U1, the desired isomorphism for i = 1 follows from Lemma 6.4. We
now consider the diagram

CH∗(Ui )

⊗

CH∗(F, 0)

//

��

CH∗(Vi+1)

⊗

CH∗(F, 0)

��

//
CH∗(Ui+1)

⊗

CH∗(F, 0)

��

//
CH∗(Ui )

⊗

CH∗(F, 0)

//

��

CH∗(Vi+1)

⊗

CH∗(F, 0)

��
CH∗(Ei ) // CH∗(Wi+1) // CH∗(Ei+1) // CH∗(Ei ) // CH∗(Wi+1).

The top row is obtained by tensoring the long exact localization sequence for higher
Chow groups with CH∗(F, 0) over Q and hence is exact. The bottom row is just
the localization exact sequence.

One checks as in the proof of Theorem 6.3 that the diagram above is commutative.
The first and the fourth vertical arrows are isomorphisms by induction. The second
and the fifth vertical arrows are isomorphisms by Lemma 6.4. Hence the middle
vertical arrow is also an isomorphism by 5-lemma. �

7. Higher Chow groups of toric bundles and applications

As an application of Theorem 6.3, we describe the ordinary higher Chow groups of
toric bundles with integral coefficients. Let T be a split torus of rank n over k and
let M =Hom(Gm, T ) be the group of its one-parameter subgroups. Let X = X (1)
be a smooth projective toric variety associated to a fan 1 in MR (see Section 11).
Let B be a smooth k-scheme and let p : E→ B be a principal T -bundle. Setting
E(X)= E ×T X , we see that

π : E(X)→ B, π((e, x))= p(e)
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is a Zariski-locally trivial smooth fibration with all fibers isomorphic to X . Since
X is projective, it follows that π is a projective morphism.

We fix an ordering {σ1, . . . , σm} of 1max and let τi ⊂ σi be the cone that is the
intersection of σi with all those σ j such that j ≥ i and that intersect σi in dimension
n−1. Let τ ′i ⊂ σi be the cone such that τi ∩ τ

′

i = {0} and dim(τi )+dim(τ ′i )= n for
1≤ i ≤m. It is easy to see that τ ′i is the intersection of σi with all those σ j such that
j ≤ i and that intersect σi in dimension n− 1. Since X is smooth and projective, it
is well-known that we can choose the ordering above of 1max such that

τi ⊂ σ j implies i ≤ j and τ ′i ⊂ σ j implies j ≤ i. (7-1)

Let11={ρ1, . . . , ρd} be the set of one-dimensional cones in1 and let {v1, . . . , vd}

be the associated primitive elements of M . We choose {ρ1, . . . , ρn} to be a set of
one-dimensional faces of σm such that {v1, . . . , vn} is a basis of M . Let {χ1, . . . , χn}

be the dual basis of M∨.

Definition 7.1. Let A be a commutative ring with unit and let {r1, . . . , rn} be
a subset of A. Let IA denote the ideal of the polynomial algebra A[t1, . . . , td ]
generated by the elements

t j1 · · · t jl for 1≤ jp ≤ d (7-2)

such that ρ j1, . . . , ρ jl do not span a cone of 1. Let I1 denote the ideal of
A[t1, . . . , td ] generated by I1 and the relations

si :=

( d∑
j=1

〈χi , v j 〉t j

)
− ri for 1≤ i ≤ n. (7-3)

We define the A-algebras Req(A,1) and R(A,1) to be quotients of A[t1, . . . , td ]
by the ideals I1 and I1, respectively.

The ring Req(A,1) is also known in the literature as the Stanley–Reisner algebra
over A associated to the fan 1; see [Sankaran and Uma 2003, Definition 2.1].
Notice that any character χ of T acts on Req(A,1) through the multiplication by
the element

∑d
j=1〈χ, v j 〉 t j . This makes Req(A,1) into an S = S(T )-algebra.

Any T -equivariant line bundle L→ X uniquely defines a line bundle

E(L)= E ×T L

on E(X). Every ρ ∈11 defines a unique T -equivariant line bundle Lρ on X with
a T -equivariant section sρ : X → Lρ that is transverse to the zero section and
whose zero locus is the orbit closure Vρ = Oρ . For any σ ∈1, let uσ denote the
fundamental class of the T -invariant cycle [Vσ ] in CH∗(X, 0) and let yσ denote
the cycle [E(Vσ )] in CH∗(E(X), 0). Notice that πσ : E(Vσ )→ B is a smooth
projective toric subbundle of π : E(X)→ B with fiber Vσ .
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Suppose that ρ j1, . . . , ρ jl do not span a cone in 1. Then s = (s j1, . . . , s jl ) is a
nowhere vanishing section of Lρ j1

⊕ · · ·⊕ Lρ jl
and hence

c1(E(Lρ j1
)) · · · c1(E(Lρ jl

))= 0 in CH∗(E(X)).

In particular, we get

yρ j1
· · · yρ jl

= 0 in CH∗(E(X)). (7-4)

We now consider the commutative diagram

Xl
ι //

πl

��

E(X)

π

��

E × X

pE

��

pX //poo X

πX

��
Spec(l) // B Ep

oo
πE

// Spec(k),

(7-5)

where Spec(l) is any point of B. It is clear that all squares are Cartesian and all the
maps in the right square are T -equivariant. Let Lχ denote the T -equivariant line
bundle on Spec(k) associated to a character χ of T . Since p and p are principal
T -bundles, we see that there is a unique line bundle ζ on B such that

π∗E(Lχ )= p∗(ζ ) and p∗X ◦π
∗

X (Lχ )= p∗ ◦π∗(ζ ). (7-6)

Using the identity

π∗X (c
T
1 (Lχ ))=

∑
ρ∈11

〈χ, vρ〉 uρ in CH∗T (X)

and the isomorphisms CH∗(B) ∼= CH∗T (E), CH∗(E(X)) ∼= CH∗T (E × X), we see
that π∗(c1(ζ ))=

∑
ρ∈11
〈χ, vρ〉yρ . Let ζi ∈ Pic(B) be such that π∗E(Lχi )= p∗(ζi ),

where {χ1, . . . , χn} is a chosen basis of M∨ as above. Setting ri = c1(ζi )∈CH∗(B),
we conclude that

π∗(ri )=

d∑
j=1

〈χi , v j 〉yρ j in CH∗(E(X)), 1≤ i ≤ n. (7-7)

We define a homomorphism of CH∗(B)-algebras

CH∗(B)[t1, . . . , td ] → CH∗(E(X))

by the assignment ti 7→ yρi for 1≤ i ≤ d . It follows from (7-4) and (7-7) that this
homomorphism descends to a CH∗(B)-algebra homomorphism

ψ : R(CH∗(B),1)→ CH∗(E(X)). (7-8)
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The following result describes the higher Chow groups of the projective toric
bundle π : E(X)→ B and generalizes [Sankaran and Uma 2003, Theorem 1.2(iii)]
to higher Chow groups.

Theorem 7.2. The homomorphism ψ is an isomorphism.

Proof. To prove this theorem, we first observe that for any σ ∈ 1 and any point
Spec(l)→ B, one has ι∗(E(Vσ )) = (Vσ )l . Also, it is well-known [Sankaran and
Uma 2003, Lemma 3.1] that {ι∗(yτ1), . . . , ι

∗(yτm )} forms a Z-basis of CH∗(Xl, 0).
Since yτi = yρi1

· · · yρi p
for every 1 ≤ i ≤ m, where {ρi1, . . . , ρi p} is the set of

edges of τi , it follows from the proof of Theorem 6.3 that CH∗(E(X)) is generated
by {yρ1, . . . , yρd } as a CH∗(B)-algebra. In particular, the map ψ is surjective.

To prove injectivity, let x(σ ) denote the monomial ti1 · · · ti p in R(CH∗(B),1)
such that {ρi1, . . . , ρi p} is the set of edges of σ ∈ 1. Then by [Sankaran and
Uma 2003, Lemma 2.1(ii)], the set {x(τ1), . . . , x(τm)} spans R(CH∗(B),1) as a
CH∗(B)-module. Since ψ(x(τi )) = yτi for 1 ≤ i ≤ m and since CH∗(E(X)) is a
free CH∗(B)-module with basis {yτ1, . . . , yτm } by Theorem 6.3, we conclude that
ψ must be injective. �

7a. Equivariant and ordinary higher Chow groups of smooth projective toric
varieties. As a consequence of Theorem 7.2, we derive some explicit formulas for
the equivariant and ordinary higher Chow groups of smooth projective toric varieties
with integral coefficients. We shall later show in Section 11 that such formulas hold
for all smooth toric varieties with rational coefficients. Recall that if X = X (1) is a
toric variety, then for every σ ∈1, the orbit closure Vσ is a T -invariant closed toric
subvariety of X and hence uniquely defines a class yσ = [Vσ ] in CH∗T (X, 0); see
[Edidin and Graham 1998, Section 2.2]. This is called the fundamental equivariant
class of Vσ .

We consider A=CH∗(k)⊗Z S∼=CH∗(k)[t1, . . . , tn] as a graded CH∗(k)-algebra
whose degree zero part is CH∗(k). We have seen above that Req(CH∗(k),1) has
an action of S that makes it a graded A-algebra. Moreover, R(CH∗(k),1) is just
the quotient Req(CH∗(k),1)⊗S Z∼= Req(CH∗(k),1)⊗A CH∗(k).

Corollary 7.3. Let X = X (1) be a smooth projective toric variety as above. Then
the assignment ti 7→ yρi induces CH∗(k)-algebra isomorphisms

9X : Req(CH∗(k),1)−→∼ CH∗T (X), (7-9)

9X : R(CH∗(k),1))−→∼ CH∗(X). (7-10)

Proof. The second isomorphism is just a special case of Theorem 7.2 when B =
Spec(k).

To prove the isomorphism of (7-9), we first observe that 9X is a graded A-linear
homomorphism; see Section 11. Let M denote the kernel of this map. It follows



Higher Chow groups of varieties with group action 481

from [Krishna 2009a, Theorem 4.2] that CH∗T (X) is a free A-module with basis
{yτi }. It follows from this that 9X is surjective and we get an exact sequence of
graded A-modules

0→ M→ Req(CH∗(k),1)
9X
−−→ CH∗T (X)→ 0.

The freeness of CH∗T (X) as an A-module ensures that this sequence remains short
exact after tensoring with CH∗(k) via the augmentation A � CH∗(k).

It follows from [Krishna 2009a, Theorem 1.1] that

CH∗T (X)⊗A CH∗(k)−→∼ CH∗(X).

In particular, 9X becomes an isomorphism after tensoring with CH∗(k). We con-
clude that M ⊗A CH∗(k) = 0. Since M is a nonnegatively graded A-module, it
must be zero. �

8. Higher Chow groups of flag bundles and applications

We remind the readers of our convention that all the higher Chow groups for the
rest of this text will be considered with rational coefficients. We shall however,
indicate the coefficients in the statement of all results.

In this section, we describe a formula for the higher Chow groups of complete
flag bundles with rational coefficients. Such a formula for general flag bundles is
an immediate consequence of the case of complete flag bundles. We also give some
applications of this formula to the theory of equivariant higher Chow groups.

8a. Complete flag bundles. Let G be a connected reductive group over k and let
B be a Borel subgroup of G containing a split maximal torus T . Let X be a
k-scheme and let p : E → X be a principal G-bundle and let π : E/B → X be
the associated complete flag bundle. Vistoli [1989] described the classical Chow
groups CH∗(E, 0) and CH∗(E/B, 0) in terms of the Chow groups of X . In this
section we generalize Vistoli’s results to the case of higher Chow groups. The proof
below is completely different from Vistoli’s; it is much shorter and relies more on
the equivariant techniques.

The restriction map r G
T,X induces for every i ≥ 0, a natural map of S(T )-modules

CHG
∗
(E, i)⊗S(G) S(T )→ CHT

∗
(E, i), w⊗α 7→ α · r G

T,E(w).

Since G acts freely on E , one identifies CHG
∗
(E, i) with CH∗(X, i) by Proposition

2.2. The group CHB
∗
(E, i) is canonically identified with CH∗(E/B, i) for the same

reason. The map above then translates into a natural map of S(T )-modules

λX : CH∗(X, i)⊗S(G) S(T )→ CH∗(E/B, i). (8-1)
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Taking the direct sum over {CH∗(X, i)}i≥0, we get a natural map of S(T )-modules

λX : CH∗(X)⊗S(G) S(T )→ CH∗(E/B). (8-2)

This map is a ring homomorphism if X is smooth. One can easily check that λX

commutes with the flat pull-back and the proper push-forward maps between the
higher Chow groups of the base schemes of the bundle. We wish to show that λX

is an isomorphism. We begin with the following special case.

Lemma 8.1. Let X be a smooth (not necessarily connected) scheme over k and let
f : X ′→ X be a finite étale morphism such that the principal bundle p : E→ X is
trivialized over X ′. Then the map λX is an isomorphism with rational coefficients. In
particular, λX is an isomorphism with rational coefficients if X is zero-dimensional.

Proof. Since X is a disjoint union of connected smooth schemes, it is enough to
prove the lemma when X is smooth and connected. If E/B = G/B→ Spec(k) is
the flag variety, then we have

CH∗(k)⊗S(G) S(T )∼= CH∗(k)⊗CH∗(k,0) (CH∗(k, 0)⊗S(G) S(T ))
∼=

† CH∗(k)⊗CH∗(k,0) CH∗(G/B, 0)
∼= CH∗(G/B) (by Lemma 6.2),

where ∼=† follows from [Demazure 1973, théorème 2].
If G/B× X

π
−→ X is the trivial bundle, then we get

CH∗(X)⊗S(G) S(T )∼= CH∗(X)⊗CH∗(k,0) (CH∗(k, 0)⊗S(G) S(T ))
∼= CH∗(X)⊗CH∗(k,0) CH∗(G/B, 0)
∼= CH∗(G/B× X) (by Lemma 6.2).

In general, we consider the diagram

CH∗(X)⊗ S(T )
f ∗⊗id //

λX
��

CH∗(X ′)⊗ S(T )
f∗⊗id //

λX ′

��

CH∗(X)⊗ S(T )

λX
��

CH∗(E/B)
f
∗

// CH∗(EX ′/B)
f ∗

// CH∗(E/B),

where the tensor product in the top row is over S(G). We have just shown that
λX ′ is an isomorphism. It follows from the projection formula (see [Bloch 1986,
Exercise 5.8]) that the composite horizontal maps in both rows are multiplication
by [k(X ′) : k(X)]. Hence, λX must be an isomorphism too. �

Theorem 8.2. For any k-scheme X , the map λX is an isomorphism of S(T )-modules
with rational coefficients. This is a ring isomorphism if X is smooth.
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Proof. We only need to prove the first assertion, for which we use induction on the
dimension of X . The zero-dimensional case follows from Lemma 8.1. In general,
we can find an étale cover of X over which the bundle p : E→ X becomes trivial.
Since any such cover is generically finite and since the base field k is perfect, we
can find a dense open subset j :U ↪→ X and a finite étale cover f :U ′→U such
that U is a disjoint union of connected smooth schemes and the given bundle is
trivial over U ′. Let ι : Z ↪→ X be the complement of U with its reduced induced
closed subscheme structure.

We now consider the diagram

CH∗(U )
⊗

S(T )

∂ //

λU
��

CH∗(Z)
⊗

S(T )

λZ
��

ι∗ //
CH∗(X)
⊗

S(T )

λX
��

j∗ //
CH∗(U )
⊗

S(T )

∂ //

λU
��

CH∗(Z)
⊗

S(T )

λZ
��

CH∗(EU/B) // CH∗(EZ/B) // CH∗(E/B) // CH∗(EU/B) // CH∗(EZ/B)

of localization exact sequences, where the tensor product in the top row is over
the ring S(G). In particular, this row is exact by the flatness of S(T ) over S(G).
The second and the third squares commute by the compatibility of λX with the
push-forward and the pull-back maps as remarked above.

To see that the first square commutes, let us consider an element

a⊗ b ∈ CH∗(U )⊗S(T ).

If we map this horizontally, we get ∂(a)⊗ b, which is mapped vertically down to
b ·π∗Z ◦ ∂(a). Since the localization sequence of higher Chow groups is compatible
with respect to the flat pull-back, this last term is same as b ·∂ ◦π∗U (a). On the other
hand, mapping a⊗b vertically down gives b ·π∗U (a) and if we map this horizontally,
we get ∂(b ·π∗U (a)). Since the horizontal maps in the bottom row are S(T )-linear
(see Proposition 2.2), we conclude that the first (hence the fourth) square commutes.

The first and the fourth vertical arrows in the diagram above are isomorphisms
by Lemma 8.1. Since U is a dense open in X , the dimension of Z is strictly smaller
than that of X . Hence the second and the fifth vertical arrows are isomorphisms by
induction on the dimension and Lemma 8.1. We conclude from the 5-lemma that
λX is an isomorphism. �

8b. Principal bundles and flag bundles. The following extension of Theorem 8.2
to all flag bundles is a direct generalization of the projective bundle formula for
higher Chow groups.

Corollary 8.3. Let p : E→ X be a principal G-bundle over a k-scheme X and let
π : E/P→ X denote the flag bundle associated to a parabolic subgroup P. Then
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the natural map of S(P)-modules

λX : CH∗(X;Q) ⊗
S(G;Q)

S(P;Q)→ CH∗(E/P;Q), w⊗α 7→ α · r G
P,E(w).

is an isomorphism. This is a ring isomorphism if X is smooth.

Proof. We only need to prove the first assertion. Let B ⊆ P be a Borel subgroup of
G containing a split maximal torus T . Let 8(G, T ) be the root system of G with
respect to T such that B corresponds to the base 1 of 8(G, T ) and P corresponds
to a subset I ⊂1. Let P = MnN be the Levi decomposition and let BM = B∩M
be the Borel subgroup of M containing T . Let WP ⊂W be the Weyl group of P
with respect to T . It follows from Propositions 3.3, 3.4 and Corollary 8.7 that the
natural map

CH∗(E/P)→ (CH∗(E/B))WP (8-3)

is an isomorphism.
On the other hand, following the proof of Corollary 8.7, we get

(CH∗(X)⊗S(G) S(T ))WP ∼= CH∗(X)⊗S(G) (S(T ))WP

∼= CH∗(X)⊗S(G) S(M)
∼= CH∗(X)⊗S(G) S(P), (8-4)

where the last isomorphism follows again from Proposition 3.4. The corollary now
follows from Theorem 8.2 by combining (8-3) and (8-4). �

The following result generalizes [Vistoli 1989, Corollary 3.2] to higher Chow
groups.

Corollary 8.4. Let G be connected and split reductive group over k and let
p : E→ X be a principal G-bundle over a k-scheme X. Then there is a strongly
convergent spectral sequence

E p,q
2 = TorS(G;Q)

p (Q,CH∗(X, q;Q))⇒ CH∗(E, p+ q;Q).

The edge homomorphism yields an isomorphism

CH∗(X, 0;Q) ⊗
S(G;Q)

Q−→∼ CH∗(E, 0;Q).

Proof. This is an immediate consequence of Theorem 8.2, [Krishna 2009a, Theo-
rem 1.1] and flatness of S(T ) over S(G). �

8c. A change of groups isomorphism. The following theorem is an analogue of a
similar result in equivariant K -theory by Merkurjev [2005, Proposition 8]. However,
this result for the equivariant higher Chow groups has an advantage over Merkurjev’s
theorem in that it holds for the action of any split reductive group (though with
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rational coefficients) whereas [ibid., Proposition 8] is known only for the groups
whose derived subgroups are simply connected, for example, GLn . The special
case CHG

∗
(X, 0) of the result below was proven by Brion [1997, Theorem 6.7].

Theorem 8.5. Let G be a connected reductive group and let T be a split maximal
torus of G. Then for any X ∈ VG , the natural map of S(T )-modules

λX : CHG
∗
(X;Q) ⊗

S(G;Q)
S(T ;Q)→ CHT

∗
(X;Q) (8-5)

is an isomorphism. This is a ring isomorphism if X is smooth.

Proof. We only need to show the first assertion. If (V,U ) is a good pair for
the G-action, then CHG

∗
(X, i) and CHT

∗
(X, i) in suitable degrees are the same

as CH∗(XG, i) and CH∗(X B, i), respectively, where B is a Borel subgroup of G
containing T . Hence, it suffices to show that for any k-scheme Z with a free action
of G with quotients G/B and Z/G, the natural map

λZ/G : CH∗(Z/G)⊗S(G) S(T )→ CH∗(Z/B)

is an isomorphism. But this follows immediately by applying Theorem 8.2 to the
principal bundle Z→ Z/G. �

Remark 8.6. The first remark is that Theorem 8.5 holds if G is any connected linear
algebraic group (not necessarily reductive) if the base field is of characteristic zero.
This is an immediate consequence of Proposition 3.4. The second remark is that
the theorem above can also be proven as a simple consequence of the Leray–Hirsch
theorem 6.5. The case of smooth schemes is a direct consequence of Theorem 6.5
and the general case can be proven using noetherian induction and the localization
sequence. We leave it an exercise to fill in the details.

8d. Some consequences of Theorem 8.5. Recall that if G is a connected reductive
group with a split maximal torus T , then the normalizer N of T in G and all its
connected components are defined over k and the quotient N/T is the Weyl group
W of the corresponding root system. In particular, W ⊂G/T . If G acts on a variety
X and if (V,U ) is a good pair for the G-action, then X ×T U → X ×G U is an
étale-locally trivial smooth fibration with fiber G/T . In particular, W acts on each
CHT

j (X, i) and the map CHG
j (X, i)→CHT

j (X, i) factors through the W -invariants.
We get the following consequence of Theorem 8.5.

Corollary 8.7 (see Theorem 5.7). Let G be a connected reductive group and let T
be a split maximal torus of G with the Weyl group W . Then for any X ∈ VG , the
restriction map r G

T,X induces an isomorphism

CHG
∗
(X;Q)−→∼ (CHT

∗
(X;Q))W .
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Proof. Since W is a finite group, the trivial Q[W ]-module Q is a projective
Q[W ]-module of finite rank. In particular, it follows from Theorem 8.5 that

(CH∗T (X))
W
= HomQ[W ](Q,CHG

∗
(X)⊗S(G)S(T ))

= CHG
∗
(X)⊗S(G) HomQ[W ](Q, S(T ))

= CHG
∗
(X)⊗S(G) (S(T ))W

=
† CHG

∗
(X)⊗S(G) S(G)

= CHG
∗
(X),

where =† holds by [Edidin and Graham 1998, Proposition 6]. �

As an important consequence of the result above, we get the following analogue
of a similar result of Thomason [1988, Theorem 1.13] in equivariant K -theory.

Corollary 8.8 (see Remark 5.8). Let G be a connected and reductive group over k
and let T be a split maximal torus in G. Then the restriction map

CHG
∗
(X;Q)

r G
T,X
−−→ CHT

∗
(X;Q) (8-6)

is a split monomorphism. Moreover, this splitting is natural for morphisms in VG .
In particular, if H is any closed subgroup of G, then there is a split injective map

CHH
∗
(X;Q)

r G
T,X
−−→ CHT

∗
(G×H X;Q). (8-7)

Proof. The first statement follows directly from Corollary 8.7, where the splitting
is given by the trace map into the subgroup of W -invariants. The last statement
follows from (8-6) and Corollary 3.2. �

Remark 8.9. Let % ∈ S(T )∼= CH∗G(G/B, 0) be such that the forgetful map takes
% to the class of the zero-dimensional Schubert cycle in CH∗(G/B, 0). For a flag
bundle π : E/B → X over a scheme X , if we define ψX : CH∗(X)→ CH∗(X)
by ψX (α) = π∗(% · π

∗(α)), then it can be shown that ψX is an isomorphism. In
particular, π∗ is split injective. This gives another (and more conceptual) proof
of Corollary 8.8. In fact, this proof shows that r G

T,X is split injective with integer
coefficients if G is special.

Let G be a connected reductive group and let B be a Borel subgroup of G
containing a split maximal torus T . It follows from [Demazure 1973, théorème 2]
that the forgetful map S(T )→ CH∗(G/B, 0) is surjective. Moreover, if {%w}w∈W

are polynomials in S(T ) which map to the classes of Schubert cycles {ζw}w∈W in
CH∗(G/B, 0), then S(T ) is a free S(G)-module with basis {%w}w∈W . The following
is a direct generalization of Demazure’s theorem to the case of all smooth schemes
and all higher Chow groups. This also strengthens Corollary 8.7 for smooth schemes.
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Corollary 8.10. Let X ∈VS
G and let X

pX
−→Spec(k) be the structure map. Set %w,X =

p∗X (%w). Then CH∗T (X;Q) is a free CH∗G(X;Q)-module with basis {%w,X }w∈W .

Proof. It follows from the construction that the map

λX : CH∗G(X)⊗S(G) S(T )→ CH∗T (X)

takes 1 ⊗ %w onto %w,X . The corollary is now an immediate consequence of
Theorem 8.5. �

9. Cohomological rigidity and specializations

Let G be a split diagonalizable group over k acting on a smooth scheme X . Recall
[Springer 1998, 13.2.5] that all the diagonalizable subgroups of G are defined
and split over k. The equivariant K -theory of X for the G-action was studied by
Vezzosi and Vistoli [2003]. Their main result (Theorem 1) is to reconstruct the
equivariant K -theory ring of X in terms of the equivariant K -theory of the loci
where the stabilizers have constant dimension. In the next two sections, we use
the ideas of Vezzosi and Vistoli to prove an analogous decomposition theorem
(see Theorem 10.3) for the equivariant higher Chow groups of X for the G-action.
As mentioned in the introduction, this theorem and its compatibility with the
corresponding result for the equivariant K -theory play fundamental roles in the
proof of the equivariant Riemann–Roch theorems in [Krishna 2009b]. This theorem
is very useful in computing the equivariant and ordinary higher Chow groups of
smooth schemes with torus action. Some applications of this kind are given in
Section 11.

This section is concerned with the study of the notion of cohomological rigidity
and the construction of certain specialization maps in equivariant higher Chow
groups. In this and the next section, the group G will denote a split diagonalizable
group and the all schemes will be assumed to be smooth with G-action. We have
seen (Proposition 2.2) that for such a scheme X , CH∗G(X) is a bigraded ring, which
is an algebra over the ring CH∗G(k).

9a. Cohomological rigidity.

Definition 9.1. Let Y ⊂ X be a smooth and G-invariant closed subscheme of
codimension d ≥ 0 and let NY/X denote the normal bundle of Y in X . We say that
Y is cohomologically rigid inside X if cG

d (NY/X ) is a not a zero-divisor in the ring
CH∗G(Y ).

As one observes, this definition has reasonable meaning only in the equivariant
setting, since every element of positive degree in the nonequivariant Chow ring
is nilpotent. The importance of cohomological rigidity for the equivariant higher
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Chow groups comes from the following analogue of the K -theory splitting theorem
(Proposition 4.3) of [Vezzosi and Vistoli 2003].

Proposition 9.2. Let Y be a smooth and G-invariant closed subscheme of X of
codimension d ≥ 0. Assume that Y is cohomologically rigid inside X , and put
U = X \ Y . Let i : Y ↪→ X and j :U ↪→ X be the inclusion maps.

(i) The localization sequence

0→ CH∗G(Y ;Q)
i∗
−→ CH∗G(X;Q)

j∗
−→ CH∗G(U ;Q)→ 0

is exact.

(ii) The restriction ring homomorphisms

CH∗G(X;Q)
(i∗, j∗)
−−−→ CH∗G(Y ;Q)×CH∗G(U ;Q)

give an isomorphism of rings

CH∗G(X;Q)−→∼ CH∗G(Y ;Q) ×
˜CH∗G(Y ;Q)

CH∗G(U ;Q),

where ˜CH∗G(Y ;Q)= CH∗G(Y ;Q)/(c
G
d (NY/X )), and the maps

CH∗G(Y ;Q)→ ˜CH∗G(Y ;Q), CH∗G(U ;Q)→ ˜CH∗G(Y ;Q)

are, respectively, the natural surjection and the map

CH∗G(U ;Q)=
CH∗G(X;Q)

i∗(CH∗G(Y ;Q))
i∗
−→

CH∗G(Y ;Q)
cG

d (NY/X )
= ˜CH∗G(Y ;Q),

which is well-defined by Corollary 4.5.

Proof. Part (i) follows directly from Corollary 4.5 and the definition of cohomolog-
ical rigidity. Since i∗ and j∗ are ring homomorphisms, the proof of the second part
follows directly from the first part and [Vezzosi and Vistoli 2003, Lemma 4.4]. �

To apply the result above in our context, we need to find some sufficient conditions
for checking the cohomological rigidity in specific examples. We begin with the
following elementary result.

Lemma 9.3. Let A be a ring which is a Q-algebra. Then an element of the form td ,
where t =

∑r
j=1 a j ti j ∈ A[t1, . . . , tn], is not a zero-divisor for any d ≥ 0 whenever

a j ∈Q for all j and a j 6= 0 for some j .

Proof. Since all a j ∈Q and some a j 6= 0, we see that td is a nonzero element of
Q[t1, . . . , tn] and hence a nonzero divisor in this ring. Since tensoring with A over
Q is exact, we see that the multiplication by td is injective in A[t1, . . . , tn] too. �
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Proposition 9.4. Let G be a split diagonalizable group acting on a smooth scheme
X and let E be a G-equivariant vector bundle of rank d on X. Assume that there
is a subtorus T ⊂ G of positive rank which acts trivially on X , such that in the
eigenspace decomposition of E with respect to T , the submodule corresponding to
the trivial character is zero. Then cG

d (E) is not a zero-divisor in CH∗G(X;Q).

Proof. By [Thomason 1986, Lemma 5.6], E has a unique direct sum decomposition

E =
r⊕

i=1

Eχi ⊗ Lχi ,

where we choose a splitting G = D× T , Eχi are D-bundles and χi are characters
of T with associated line bundles Lχi ∈ PicT (k). This decomposition is via the
functor

BunD
X ×Rep(T )→ BunG

X , (F, ρ) 7→ p∗1(F)⊗p∗2(ρ),

where p1 : D× T → D and p2 : D× T → T are the projections.
Since rank(E)=d , the Whitney sum formula yields cG

d (E)=
∏r

i=1 cG
di
(Eχi⊗Lχi ),

where di = rank(Eχi ). We can thus assume that E = Eχ⊗Lχ , where χ is not a
trivial character by our assumption. In particular, we can write

cT
1 (Lχ )= t =

p∑
i=1

ni ti ∈Q[t1, . . . , tn] (9-1)

with ni 6= 0 for some i . By neglecting those i for which the coefficients ni are zero,
we can assume that ni 6= 0 for all i . Now we have

cG
d (E)= cG

d (p
∗

1(Eχ )⊗p∗2(Lχ ))=
†

d∑
i=0

cG
d−i (p

∗

1(Eχ )) · (c
G
1 (p

∗

2(Lχ )))
i

=

d∑
i=0

p∗1(c
D
d−i (Eχ )) · p

∗

2((c
T
1 (Lχ ))

i
)=

d∑
i=0

αi t i ,

where αi ∈ CH∗D(X) and cG
d (E) ∈ CH∗G(X) ∼= CH∗D(X)⊗ S(T ) by Theorem 3.5

and =† holds by [Fulton 1984, Remark 3.2.3]. Furthermore, αd = p∗1(c
D
0 (Eχ ))= 1.

Thus we get cG
d (E)= td

+αd−1td−1
+ · · ·+α1t +α0 = g(t).

We need to show that g(t) is not a zero divisor in CH∗D(X)[t1, . . . , tn]. So
suppose f (t) is a nonzero polynomial such that g(t) f (t)= 0, and let f ′(t) be the
homogeneous part of f (t) of largest degree which is not zero. By comparing the
homogeneous parts, it is easy to see that g(t) f (t)= 0 only if td f ′(t)= 0. But this
is a contradiction since t satisfies the condition of Lemma 9.3 by (9-1), and hence
is not a zero-divisor. �
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Let G be a split diagonalizable group as above and let X ∈ VS
G . Following the

notation of [Vezzosi and Vistoli 2003], for any s ≥ 0, we let X≤s ⊂ X be the open
subset of points whose stabilizers have dimension at most s. We shall often write
X≤s−1 also as X<s . Let Xs = X≤s \ X<s denote the locally closed subset of X ,
where the stabilizers have dimension exactly s. We think of Xs as a subspace of
X with the reduced induced structure. It is clear that X≤s and Xs are G-invariant
subspaces of X . Let Ns denote the normal bundle of Xs in X≤s , and let N 0

s denote
the complement of the 0-section in Ns . Then G clearly acts on Ns . The following
result describes some very useful properties of these subspaces.

Proposition 9.5. Let s ≥ 0 be an integer.

(i) There exists a finite number of s-dimensional subtori T1, . . . , Tr in G such that
Xs is the disjoint union of the fixed point spaces X T j

≤s .

(ii) Xs is smooth locally closed subscheme of X.

(iii) N 0
s = (Ns)<s .

Proof. Since the base field k is perfect, this is a special case of [Vezzosi and Vistoli
2003, Proposition 2.2], which holds for regular G-schemes over any connected and
separated Noetherian base scheme. �

Remark 9.6. We mention here that although the proposition above has been stated
for the smooth schemes, part (i) of the proposition holds also when X is not
necessarily smooth, since the proof given in [loc. cit.] only uses Thomason’s
generic étale slice theorem, which holds very generally.

Corollary 9.7. For s ≥ 1, Xs is cohomologically rigid inside X≤s .

Proof. Let ds be the codimension of Xs in X≤s . We need to show that cG
ds
(Ns) is not

a zero-divisor in CH∗G(Xs). By Proposition 9.4, it suffices to show that there exists a
subtorus T in G of positive rank that acts trivially on Xs , such that in the eigenspace
decomposition of Ns with respect to T , the submodule corresponding to the trivial
character is zero. But this follows directly from parts (i) and (iii) of Proposition 9.5
and the fact that s ≥ 1; see [Vezzosi and Vistoli 2003, Proposition 4.6]. �

9b. Specialization maps. Let G and X be as above and let n be the dimension
of G. As seen above, there is a filtration of X by G-invariant open subsets

∅= X≤−1 ⊂ X≤0 ⊂ · · · ⊂ X≤n = X.

In particular, G acts on X≤0 with finite stabilizers, and the toral component of G
acts trivially on Xn . We fix 1≤ s ≤ n and let fs : Xs ↪→ X≤s and gs : X<s ↪→ X≤s

denote the closed and the open embeddings, respectively. Let π : Ms → P1 be
the deformation to the normal cone for the embedding fs as in Section 4. We
have already observed there that for the trivial action of G on P1, Ms has a
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natural G-action. Moreover, the deformation diagram (4-1) is a diagram of smooth
G-spaces. For 0 ≤ t ≤ s, we shall often denote the open subspace (Ms)≤t of
Ms by Ms,≤t . The terms like Ms,t and Ms,<t (and also for Ns) will have similar
meaning in what follows. Since G acts trivially on P1, it acts on Ms fiberwise with
Ns = π

−1(∞) and

Ms,≤t ∩π
−1(A1)= X≤t ×A1, Ms,t ∩π

−1(A1)= X t ×A1. (9-2)

Let is,≤t : Ns,≤t ↪→ Ms,≤t and js,≤t : X≤t ×A1 ↪→ Ms,≤t denote the obvious closed
and open embeddings. We define is,t and js,t similarly. Let ηs,t : Ns,t ↪→ Ns,≤t and
δs,t : Ms,t ↪→ Ms,≤t denote the other closed embeddings. One has a commutative
diagram

X≤t
g≤t //

fs,≤t
��

X≤t ×A1 js,≤t //

��

Ms,≤t

��
X≤s

g≤s // X≤s ×A1 j≤s // Ms // X≤s ×P1 // X≤s,

(9-3)

where g≤t is the 0-section embedding, and the composite of all the maps in the
bottom row is identity. This gives us the diagram

CH∗G(Ns,t)
is,t ∗ //

ηs,t ∗
��

CH∗G(Ms,t)
j∗s,t //

δs,t ∗��

CH∗G(X t ×A1)
g∗t //

ft ∗��

CH∗G(X t)

ft ∗��
CH∗G(Ns,≤t)

is,≤t ∗ // CH∗G(Ms,≤t)
j∗s,≤t // CH∗G(X≤t ×A1)

g∗≤t // CH∗G(X≤t)

of equivariant higher Chow groups, where the left square commutes by the covari-
ance of the push-forward map, the middle commutes by Proposition 2.2(1) and the
right commutes by Corollary 4.2. Since the last horizontal maps in both rows are
natural isomorphisms by the homotopy invariance, we shall often identify the last
two terms in both rows and use j∗s,≤t and ( js,≤t ◦ g≤t)

∗ interchangeably.

Theorem 9.8. The maps j∗s,≤t and j∗s,t are surjective and there are ring homomor-
phisms

Sp≤t
X,s :CH∗G(X≤t ;Q)→ CH∗G(Ns,≤t ;Q) and

Spt
X,s :CH∗G(X t ;Q)→ CH∗G(Ns,t ;Q)

such that i∗s,≤t = Sp
≤t
X,s ◦ j∗s,≤t and i∗s,t = Sp

t
X,s ◦ j∗s,t . Moreover, both the squares in

the following diagram commute:

CH∗G(X≤t ;Q)
f ∗t //

Sp
≤t
X,s ��

CH∗G(X t ;Q)

Sp
t
X,s��

ft ∗ // CH∗G(X≤t ;Q)

Sp
≤t
X,s��

CH∗G(Ns,≤t ;Q)
η∗s,t

// CH∗G(Ns,t ;Q) ηs,t ∗

// CH∗G(Ns,≤t ;Q)

(9-4)
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Proof. Using the results obtained so far in this section, one can define the spe-
cialization maps along the lines of the construction of such maps for K -theory
in [Vezzosi and Vistoli 2003, Theorem 3.2; 2005]. However, it is not at all clear
from the construction of the specialization maps in [Vezzosi and Vistoli 2005]
that these maps have good functorial properties, and, in particular, if they are ring
homomorphisms. Moreover, it is not clear if these maps will have the compatibility
properties with the Chern character and Riemann–Roch maps (see [Krishna 2009b])
from the equivariant K -groups to higher Chow groups.

We give here a more direct and functorial construction of the specialization maps,
which works both for the K -theory as well as the higher Chow groups, and the
proof of various compatibilities of these maps then becomes essentially obvious.
We give here the construction of these maps for the higher Chow groups. The same
construction works also for the K -theory without any change.

First of all, using Corollary 9.7 and Proposition 9.2, we see that for 1≤ s ≤ n
and 0 ≤ t ≤ s, the map CH∗G(X≤s)→ CH∗G(X≤t) is surjective. We now consider
the commutative diagram

CH∗G(Ms)
j∗≤s //

��

CH∗G(X≤s)

��
CH∗G(Ms,≤t)

j∗s,≤t // CH∗G(X≤t).

Since the composite map in the bottom row of (9-3) is identity, we see by the
homotopy invariance that j∗

≤s is surjective. Thus j∗s,≤t is also surjective. Applying
this surjectivity for j∗s,≤t and j∗s,≤t−1, we obtain the commutative diagram of Figure 1,
which is such that the second and the third rows are exact. All the columns are exact
by Corollary 9.7 and Proposition 9.2. We conclude that the localization sequence
of the top row is also exact. This proves the surjectivity part of the theorem.

Next, we apply the self-intersection formula (Corollary 4.5) to the inclusions
is,≤t and is,t to see that the composites i∗s,≤t ◦ is,≤t∗ and i∗s,t ◦ is,t∗ are multiplication
by the first Chern class cG

1 of the corresponding normal bundles. But these normal
bundles are the inverse images of a line bundle on P1. It follows that these normal
bundles are trivial, because the restriction of any line bundle on P1 to ∞ ∈ P1

and hence on the fiber over∞ is clearly trivial. We conclude that the composites
i∗s,≤t ◦ is,≤t∗ and i∗s,t ◦ is,t∗ are zero.

The diagram above now automatically defines the specializations Sp≤t
X,s and

Spt
X,s and gives the desired factorization of i∗s,≤t and i∗s,t . Since i∗s,t and j∗s,t are ring

homomorphisms, and since the latter is surjective as shown in 1, we deduce that
Sp

t
X,s is also a ring homomorphism. The map Sp

≤t
X,s is a ring homomorphism for

the same reason.
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0

��

0

��

0

��
0 // CH∗G(Ns,t)

is,t ∗ //

ηs,t ∗

��

CH∗G(Ms,t)
j∗s,t //

δs,t ∗
��

CH∗G(X t) //

ft ∗
��

0

0 // CH∗G(Ns,≤t)
is,≤t ∗ //

��

CH∗G(Ms,≤t)
j∗s,≤t //

��

CH∗G(X≤t) //

��

0

0 // CH∗G(Ns,≤t−1)
is,≤t−1∗//

��

CH∗G(Ms,≤t−1)
j∗s,≤t−1 //

��

CH∗G(X≤t−1) //

��

0

0 0 0

Figure 1

We are now left with the proof of the commutativity of (9-4). To prove that the
right square commutes, we consider the following diagram.

CH∗G(Ms,t)

j∗s,t && &&

δs,t ∗ //

i∗s,t

��

CH∗G(Ms,≤t)
j∗s,≤t

## ##
i∗s,≤t

��

CH∗G(X t)
Sp

t
X,s

xx
ft ∗

22 CH∗G(X≤t)

Sp
≤t
X,stt

CH∗G(Ns,t)
ηs,t ∗ // CH∗G(Ns,≤t)

(9-5)

It is easy to check that Ns,≤t and Ms,t are Tor-independent over Ms,≤t (see [Vezzosi
and Vistoli 2005, Lemma 1]) and hence the back face of the diagram above commutes
by Corollary 4.2. The upper face commutes by diagram 1. Since j∗s,t is surjective, a
diagram chase shows that the lower face also commutes, which is what we needed
to prove.

Finally, since we have shown that ηs,t∗ is injective, and the right square commutes,
it now suffices to show that the composite square in (9-4) commutes in order to
show that the left square commutes.

By the projection formula, the composite maps ft∗ ◦ f ∗t and ηs,t∗ ◦ η
∗
s,t are

multiplication by ft∗(1) and ηs,t∗(1) respectively. Since

Sp≤t
X,s and Spt

X,s
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are ring homomorphisms, it suffices to show that

Sp
≤t
X,s( ft∗ ◦ j∗s,t(1))= Sp

≤t
X,s( ft∗(1))= ηs,t∗(1).

But this follows directly from the commutativity of the right square. �

10. Decomposition theorem for equivariant higher Chow groups

We use the specialization maps to prove the main decomposition theorem for the
equivariant higher Chow groups of X ∈VS

G , where G is a split diagonalizable group.
We continue with the notation of the previous section.

Proposition 10.1. The restriction maps

CH∗G(X≤s;Q)
( f ∗s ,g

∗
s )

−−−−→ CH∗G(Xs;Q)×CH∗G(X<s;Q)

define an isomorphism of rings

CH∗G(X≤s;Q)−→
∼ CH∗G(Xs;Q) ×

CH∗G(N 0
s ;Q)

CH∗G(X<s;Q),

where CH∗G(Xs;Q)
η∗s,≤s−1
−−−→ CH∗G(N

0
s ;Q) is the pull-back

CH∗G(Xs;Q)−→
∼ CH∗G(Ns;Q)→ CH∗G(N

0
s ;Q)

and

CH∗G(X<s;Q)
Sp≤s−1

X,s
−−−→ CH∗G(Ns,≤s−1;Q)= CH∗G(N

0
s ;Q)

is the specialization map of Theorem 9.8.

Proof. We only need to identify the pull-back and the specialization maps with the
appropriate maps of Proposition 9.2. In the diagram

0 // CH∗G(Xs)
fs,∞∗ //

cG
ds &&

CH∗G(Ns)
η∗s,≤s−1 //

f ∗s,∞
��

CH∗G(N
0
s )

// 0

CH∗G(Xs),

where fs,∞ : Xs→ Ns is the 0-section embedding, the top sequence is exact, and
the lower triangle commutes by Corollary 4.5. Since f ∗s,∞ is an isomorphism, this
immediately identifies the pull-back map of the proposition with the quotient map

CH∗G(Xs)→
CH∗G(Xs)

(cG
ds
(Ns))

.
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Next, we consider the diagram

CH∗G(X≤s)
Sp
≤s
X,s //

f ∗s,≤s−1 ����

CH∗G(Ns)

��

f ∗s,∞ // CH∗G(Xs)

η∗s,≤s−1xx
CH∗G(X<s)

Sp
≤s−1
X,s

// CH∗G(N
0
s ).

(10-1)

Since the left vertical arrow in the diagram above is surjective, we only need to
show that

Sp≤s−1
X,s ◦ f ∗s,≤s−1 = η

∗

s,≤s−1 ◦ f ∗s

in order to identify Sp≤s−1
X,s with the map j∗ of Proposition 9.2. It is clear from the

diagram 1 and the definition of the specialization maps that the left square in the
diagram (10-1) commutes. We have just shown above that the right side triangle
also commutes. This reduces us to showing that

f ∗s,∞ ◦Sp
≤s
X,s = f ∗s . (10-2)

If Xs ×P1 Fs
−→ Ms denotes the embedding (see (4-1)), then for x ∈ CH∗G(X≤s), we

can write x = j∗
≤s(y) by Theorem 9.8. Then

f ∗s,∞ ◦Sp
≤s
X,s ◦ j∗

≤s(y)= f ∗s,∞ ◦ i∗s,≤s(y)=
†g∗
∞,≤s ◦ F∗s (y)

= g∗0,≤s ◦ F∗s (y)= f ∗s ◦ j∗
≤s(y)= f ∗s (x),

where =† follows from Corollary 4.2. This proves (10-2) and the proposition. �

We need the following algebraic result before we prove the main theorem. Let A
be a Q-algebra (not necessarily commutative) and let Z(A) denote the center of A.
For any linear form f (t)=

∑n
i=1 ai ti in A[t1, . . . , tn] such that ai ∈Q for each i ,

let c( f ) denote the vector (a1, . . . , an) ∈ Qn consisting of the coefficients of the
form f .

Lemma 10.2. Let A be as above and let S={ f1, . . . , fs} be a set of linear forms in
A[t1, . . . , tn] such that the vectors {c( f1), . . . , c( fs)} are pairwise nonproportional
in Qn . Let

γ j =
d j∑

i=0
m j

i f i
j

such that m j
d j
∈Q∗ for 1≤ j ≤ s, and m j

j ′ ∈ Z(A) for all j, j ′. Then one has

(γ1 · · · γs)=
⋂s

j=1(γ j )

as ideals in A[t1, . . . , tn].
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Proof. Using a simple induction, it suffices to show that for j 6= j ′, the relation
γ j |qγ j ′ implies that γ j |q. So we can assume S = { f1, f2}. Since c( f1) and
c( f2) are nonproportional, we can extend the set {c( f1), c( f2)} to a basis B of Qn .
Applying the linear automorphism of A[t1, . . . , tn] given by the invertible matrix
B, we can assume that f j = t j for j = 1, 2. Now the proof follows along the same
lines as the proof of [Vezzosi and Vistoli 2003, Lemma 4.9]. �

Theorem 10.3. Let G be a split diagonalizable group of dimension n and let
X ∈ VS

G . The ring homomorphism

CH∗G(X;Q)→
n∏

s=0

CH∗G(Xs;Q)

is injective. Moreover, its image consists of the n-tuples (αs) in the product with
the property that for each s = 1, . . . , n, the pull-back of αs ∈ CH∗G(Xs;Q) in
CH∗G(Ns,s−1;Q) is the same as Sps−1

X,s (αs−1) ∈ CH∗G(Ns,s−1;Q). In other words,
there is a ring isomorphism

CH∗G(X;Q)−→∼ CH∗G(Xn;Q) ×
CH∗G(Nn,n−1;Q)

· · · ×
CH∗G(N1,0;Q)

CH∗G(X0;Q).

Proof. We prove by induction on the largest integer s such that Xs 6=∅.
If s = 0, there is nothing to prove. If s > 0, we have by induction

CH∗G(X<s)
∼=
−→ CH∗G(Xs−1) ×

CH∗G(Ns−1,s−2)
· · · ×

CH∗G(N1,0)
CH∗G(X0). (10-3)

Using (10-3) and Proposition 10.1, it suffices to show that if αs ∈ CH∗G(Xs)

and if α<s ∈ CH∗G(X<s) with the restriction αs−1 ∈ CH∗G(Xs−1) are such that
αs 7→ α0

s ∈ CH∗G(N
0
s ) and αs 7→ αs,s−1 ∈ CH∗G(Ns,s−1), then

Sp≤s−1
X,s (α<s)= α

0
s if and only if Sp

s−1
X,s (αs−1)= αs,s−1.

Using the commutativity of the left square in Theorem 9.8, this is reduced to
showing that the restriction map

CH∗G(N
0
s )→ CH∗G(Ns,s−1) (10-4)

is injective.
To prove this, we first use Proposition 9.5 to assume that the toral component T

of the isotropy groups of the points of Xs is fixed, and choose a splitting G = D×T .
Now, following the proof of the analogous result for K -theory [Vezzosi and

Vistoli 2003, Theorem 4.5], we can write

Ns = E =
q⊕

i=1

Ei and Ns,s−1 =
∐

i

E0
i ,
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where each Ei is of the form
⊕

Em j ⊗ χ
m j
i such that for i 6= i ′, χi and χi ′ are

nonproportional characters of T , and E0
i is embedded in E by setting all the other

components equal to zero. Let di = rank(Ei ).
Now we see from Proposition 10.1 that

Ker(CH∗G(Xs)→ CH∗G(Ns,s−1))=
⋂

i

(cG
di
(Ei )),

Ker(CH∗G(Xs)→ CH∗G(N
0
s ))= (c

G
ds
(Ns)) with ds =

∑
di .

Put γi = cG
di
(Ei ) and γ = cG

ds
(Ns). Since the map CH∗G(Xs) → CH∗G(N

0
s ) is

surjective, showing the injectivity of the map in (10-4) is equivalent to showing that

(γ )=
(∏

i

γi

)
=

⋂
i

(γi ) (10-5)

in CH∗D(Xs)[t1, . . . , ts].
However, we have seen in the proof of Proposition 9.4 that each γi is of the form

γi = udi
i +α

i
di−1udi−1

i + · · ·+αi
1ui +α

i
0,

where αi
j ∈ CH∗D(Xs, 0) ⊆ Z(CH∗D(Xs)) and ui = cT

1 (Lχi ) =
∑s

j=1 bi
j t j 6= 0 in

Q[t1, . . . , ts]. Moreover, the pairwise nonproportionality of χi implies the same for
the vectors {c(u1), . . . , c(uq)} in Qs . We now apply Lemma 10.2 to conclude the
proof of (10-5) and hence the theorem. �

11. Equivariant higher Chow groups of toric varieties

In this section, we apply our decomposition theorem to give explicit descriptions
of the equivariant higher Chow groups of smooth toric varieties. An analogous
description of the equivariant cohomology of such varieties was earlier given by
Bifet, De Concini and Procesi in [Bifet et al. 1990] and such a description of
the equivariant K -theory was given by Vezzosi and Vistoli [2003]. Brion [1997,
Theorem 5.4] had proven similar results for the classical equivariant Chow groups
of toric varieties. As a consequence of our descriptions of the equivariant higher
Chow groups, we shall obtain formulas for the ordinary higher Chow groups (or
motivic cohomology) of smooth toric varieties.

Let T be a split torus of rank n over k. Let M = Hom(Gm, T ) be the lattice of
the one-parameter subgroups of T and let M∨ be the character lattice of T . Let
1 be a fan in MR and let 11 and 1max denote the subsets of the one-dimensional
cones and the maximal cones in 1, respectively.

Let X = X (1) be the smooth toric variety associated to the fan 1. The smooth-
ness of X is equivalent to the condition that every positive dimensional cone of 1
is generated by it edges such that the primitive vectors along these edges form a
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subset of a basis of M . In this case, there is an one-to-one correspondence between
the T -orbits in X and the cones in 1. For every cone σ ∈ 1, the corresponding
orbit Oσ is isomorphic to the torus T/Tσ , where Tσ is associated to the sublattice
Mσ of M generated by σ ∩M . Under this isomorphism, the origin (identity point)
of T/Tσ corresponds to the distinguished k-rational point xσ of Oσ . In particular,
for every 0≤ s ≤ n, Xs is of the form

Xs =
∐

dim(σ )=s

Oσ
∼=

∐
dim(σ )=s

T/Tσ . (11-1)

We shall write τ ≤ σ if τ is a face of σ as cones in 1. The orbit closure Vσ
of Oσ is the toric variety associated to the fan ∗(σ )= {τ ∈1 | σ ≤ τ }, called the
star of σ . Moreover, it is clear from the characterization of the smoothness of toric
varieties that Vσ is also smooth and is the disjoint union of all orbits Oτ such that
σ is a face of τ . In particular, Oσ is closed in X if and only if σ ∈ 1max. The
following is our first description of the equivariant higher Chow groups of smooth
toric varieties.

Theorem 11.1. Let X = X (1) be a smooth toric variety associated to a fan 1 in
MR. There is an injective homomorphism of S-algebras

8X : CH∗T (X;Q)→
∏

σ∈1max

CH∗(k;Q)⊗ S(Tσ ;Q).

An element
(aσ ) ∈

∏
σ∈1max

CH∗(k;Q)⊗ S(Tσ ;Q)

is in the image of this homomorphism if and only if for any two maximal cones σ1

and σ2, the restrictions of aσ1 and aσ2 to CH∗(k;Q)⊗ S(Tσ1∩σ2;Q) coincide.

Proof. We only need to appropriately identify the various terms and the maps in the
statement of Theorem 10.3. We follow the notation of Section 9 and Section 10. It
follows from [Vezzosi and Vistoli 2003, Lemma 6.1] that for every s ≥ 1, there is a
canonical isomorphism

Ns,s−1 =
∐
σ∈1

dim(σ )=s

∐
τ∈∂σ

Oτ . (11-2)

Furthermore, for each s-dimensional cone σ and τ ∈ ∂σ , the composition of the
map

Sps−1
X,s :CH∗T (Xs−1)=

∏
τ∈1

dim(τ )=s−1

CH∗T (Oτ )→CH∗T (Ns,s−1)=
∏
σ∈1

dim(σ )=s

∏
τ∈∂σ

CH∗T (Oτ )
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with the projection

Prσ,τ :
∏
σ∈1

dim(σ )=s

∏
τ∈∂σ

CH∗T (Oτ )→ CH∗T (Oτ )

is the projection map ∏
τ∈1

dim(τ )=s−1

CH∗T (Oτ )→ CH∗T (Oτ ).

The identification above of the specialization maps in [Vezzosi and Vistoli 2003,
Lemma 6.1] was shown for the equivariant K -theory, but the same holds in the
present case as well without any modification in view of the construction of these
specializations for higher Chow groups in Section 9.

It also follows from Corollary 3.2 and Theorem 3.5 that

CH∗T (Oσ )∼= CH∗T (T/Tσ )∼= CH∗Tσ (k)
∼= CH∗(k)⊗ S(Tσ ). (11-3)

We conclude now from (11-1) and Theorem 10.3 that CH∗T (X) is a subring of∏
σ∈1 CH∗(k) ⊗ S(Tσ ), consisting of elements (aσ ) with the property that the

restriction of aσ ∈ CH∗(k)⊗ S(Tσ ) to CH∗(k)⊗ S(Tτ ) coincides with aτ whenever
τ ≤ σ . The theorem now follows from the fact that every cone in 1 is contained in
a maximal cone in 1. �

As an immediate consequence of Theorem 11.1, we obtain the following local-
ization theorem for the equivariant higher Chow groups of smooth projective toric
varieties. This was earlier proven for CH∗T (X, 0) by Brion [1997, Theorem 3.4].

Corollary 11.2. Let X= X (1) be a smooth projective toric variety and {x1, . . . , xr }

be the fixed point locus of X. Then the map

CH∗T (X;Q)→ CH∗T (X
T
;Q)−→∼ (CH∗(k;Q)[t1, . . . , tn])r

is injective and its image is the set of all n-tuples ( f1, . . . , fn) such that fi ≡ f j

(mod χ) whenever xi and x j lie on a T -invariant smooth irreducible curve on which
T acts through its character χ .

Proof. This follows directly from Theorem 11.1 once we observe that the fixed points
of X for the torus action are same as the T -orbits corresponding to the maximal
cones in 1 that are n-dimensional. Moreover, the orbit closures corresponding to
the codimension one cones in 1 are the smooth T -invariant curves. �

11a. Stanley–Reisner presentation. Using Theorem 11.1, we now give another
explicit presentation of the equivariant higher Chow groups of smooth toric varieties.
This presentation is analogous to the Stanley–Reisner presentation of the equivariant
cohomology in [Bifet et al. 1990, Theorem 8] and equivariant K -theory in [Vezzosi
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and Vistoli 2003, Theorem 6.1]. This presentation has the advantage that it can
often be used to describe the ordinary higher Chow groups of smooth toric varieties.

Let T be a split torus of rank n and let M denote the lattice of the one-parameter
subgroups of T . Let X = X (1) be a smooth toric variety associated to a fan 1 in
MR. For r ≥ 1, let 1r denote the set of r-dimensional cones in 1. For σ ∈1max,
let Mσ denote the sublattice of one-parameter subgroups of Tσ so that T̂σ = M∨σ as
an abelian group. For any ρ ∈11, let vρ denote the generator of the monoid ρ∩M .
Note that if {ρ1, . . . , ρs} is the set of one-dimensional faces of σ ∈1max, then the
smoothness of X implies that {vρ1, . . . , vρs } is a basis of Mσ . Let {v∨ρ1

, . . . , v∨ρs
}

denote the dual basis of M∨σ .
We recall that for σ ∈ 1, there is a canonical isomorphism of abelian groups

T̂σ ↪→ S(Tσ )1 given by χ 7→ cTσ
1 (Lχ ). For each ρ ∈ 11, we define an element

uρ = (uσρ ) ∈
∏
σ∈1max

∏ S(Tσ ) such that

uσρ =
{
v∨ρ if ρ ≤ σ ,
0 otherwise.

(11-4)

Then uρ has the property that for all σ1, σ2 ∈1max, the restrictions of uσ1
ρ ∈ T̂σ1 and

uσ2
ρ ∈ T̂σ2 in T̂σ1∩σ2 coincide.

We have the obvious inclusion∏
σ∈1max

S(Tσ )⊆
∏

σ∈1max

CH∗(k)⊗ S(Tσ ) (11-5)

and using the description of CH∗T (X) in Theorem 11.1 and the description of uρ
above, we can consider these uρ as elements of the ring CH∗T (X). In other words,
we get a bigraded CH∗(k)-algebra homomorphism

CH∗(k)[tρ] → CH∗T (X), tρ 7→ uρ,

where CH∗(k)[tρ] is the polynomial algebra CH∗(k)[tρ | ρ ∈11].
If S is a subset of 11 that is not contained in any maximal cone of 1, then for

any given σ ∈1max, there is one ρ ∈ S such that ρ � σ . This implies in particular
that uσρ = 0. We conclude from this that the elements uρ satisfy the relation∏

ρ∈S

uρ = 0 in CH∗T (X) (11-6)

whenever S ⊆11 is such that it is not contained in any maximal cone of 1. We
shall denote the collection of all such subsets of 11 by 10

1. We conclude that
if I1 denotes the graded ideal of CH∗(k)[tρ] generated by the set of monomials
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ρ∈S tρ | S ∈10

1

}
, then there is a CH∗(k)-algebra homomorphism

9X :
CH∗(k)[tρ]

I1
→ CH∗T (X), tρ 7→ uρ . (11-7)

Note also that any character χ ∈ M∨ defines multiplication by the element
tχ =

∑
ρ∈11
〈χ, vρ〉tρ in CH∗(k)[tρ], and this makes the term on the left hand side

of (11-7) an S-algebra and 9X is also an S-algebra homomorphism. Furthermore,
it is easy to check from the definition of uρ that it is the fundamental class (see
[Edidin and Graham 1998, Section 2]) of the T -equivariant Chow cycle

[Vρ→ X ] ∈ CH1
T (X, 0)( CH∗T (X),

where Vσ is the orbit closure in X associated to a cone σ ∈1.

Theorem 11.3. For a smooth toric variety X = X (1) associated to a fan 1 in MR,
the homomorphism 9X is an isomorphism with rational coefficients.

Proof. We prove the theorem by induction on the number of maximal cones in 1.
Suppose 1max = {σ } is a singleton set. In that case, σ is the only maximal cone
and X =Uσ is a T -equivariant vector bundle over Oσ such that the inclusion

Oσ

iσ
↪→ X

is the zero-section embedding. Hence, we conclude from (11-3) that there are
isomorphisms

CH∗T (X)−→∼
i∗σ

CH∗T (Oσ )∼= CH∗(k)⊗ S(Tσ )= CH∗(k)[t1, . . . , ts],

where s is the dimension of σ . It is also clear in this case that the ideal I1 in (11-7)
is zero. Hence, we have isomorphisms

CH∗(k)[t1, . . . , ts] −→∼
9X

CH∗T (X)−→∼
8X

CH∗(k)⊗ S(Tσ ).

We consider now the general case. We assume that |1max| ≥ 2 and choose a
maximal cone σ of dimension s ≥ 1 in 1. Let X ′ = X ′(1′) be the toric variety
associated to the fan 1′ =1 \ {σ }. Note that Oσ is a closed T -orbit in X and X ′ is
the complement of Oσ in X . Let Uσ ⊂ X be the principal open set associated to the
fan consisting of all faces of σ and let U ′ be the complement of Oσ in Uσ . Then U ′

is nothing but the complement of the zero-section in the T -equivariant vector bundle
Uσ → Oσ . Let iσ : Oσ ↪→ X and jσ : X ′ ↪→ X denote the T -invariant closed and
open embeddings respectively. Let Sσ = {ρ1, . . . , ρs} be the set of one-dimensional
faces of σ and set

xσ =
s∏

j=1

tρ j ∈
CH∗(k)[tρ]

I1
and yσ =

s∏
j=1

uρ j ∈ CH∗T (X).
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Since NOσ /X = NOσ /Uσ
and since the latter is of the form

⊕s
j=1 Lχ j , where

{χ1, . . . , χs} is a basis of T̂σ , it follows from the definition of the elements uρ (see
Proposition 9.4) that

cT
s (NOσ /X )= yσ ∈ CH∗T (X). (11-8)

We consider the diagram

CH∗(k)[tρ1, . . . , tρs ]
∼= //

xσ
��

CH∗T (Oσ )

iσ ∗

��

∼= // CH∗(k)⊗ S(Tσ )

yσ

��CH∗(k)[tρ]
I1

9X // CH∗T (X)
8X //

∏
τ∈1max

CH∗(k)⊗ S(Tτ ),

(11-9)

where the horizontal maps on the top are the obvious isomorphisms taking tρ j to uρ j .
The left and the right vertical maps are the multiplication by the indicated elements
in the target rings. We claim that all the vertical arrows are injective and the left
square in this diagram commutes.

To prove the claim, notice that the composite outer square clearly commutes by
the definition of xσ and yσ and the map9X . Since8X is injective by Theorem 11.1,
we only need to show that the right square commutes and the right vertical arrow is
injective to prove the claim.

We first observe that the right vertical arrow is the multiplication by yσ on the
factor CH∗(k)⊗ S(Tσ ) and is zero on the other factors of

∏
τ∈1max

CH∗(k)⊗ S(Tτ ).
Thus the required injectivity is equivalent to showing that the multiplication by
yσ is injective in CH∗(k)⊗ S(Tσ ). We can thus assume that X = Uσ and then
CH∗T (X)∼= CH∗(k)[t1, . . . , ts]. In this case, y is just the element t1 · · · ts and hence
is a nonzero divisor in CH∗(k)[t1, . . . , ts].

To show the commutativity of the right square, we observe from the proof of
Theorem 11.1 that 8X is simply the product of the pull-back maps

i∗τ : CH∗T (X)→ CH∗T (Oτ ) for τ ∈1max.

Hence the composite 8X ◦ iσ ∗ is i∗σ ◦ iσ ∗ on the factor CH∗T (Oσ ) and zero on the
other factors of

∏
τ∈1max

CH∗T (Oτ ). Since we have just seen that the composite

CH∗T (Oσ )
yσ
−→

∏
τ∈1max

CH∗T (Oτ )
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is of similar type, we are reduced to showing that the triangle

CH∗T (Oσ )

yσ

$$
iσ ∗
��

CH∗T (X) i∗σ
// CH∗T (Oσ )

commutes. But this follows immediately from Corollary 4.5 and (11-8). This proves
the claim.

To complete the proof of the theorem, we now consider the diagram

0 // CH∗(k)[tρ1, . . . , tρs ]
xσ //

∼=

��

CH∗(k)[tρ]
I1

9X

��

j
∗

σ // CH∗(k)[tρ]
(I1, xσ )

9X ′

��

// 0

0 // CH∗T (Oσ ) iσ ∗
// CH∗T (X) j∗σ

// CH∗T (X
′) // 0,

(11-10)
where j

∗

σ is the natural quotient map by the ideal (xσ ) in CH∗(k)[tρ]/I1. Note that
the image of the first map in the top row is the ideal (xσ ) because the product of xσ
with any tρ for ρ /∈ {ρ1, . . . , ρs} is zero.

The left square in this diagram commutes and the first maps in both the rows are
injective by the claim above. The bottom row is exact by Proposition 2.2. Since σ
is not a cone of 1′, the element xσ is zero in CH∗(k)[tρ, ρ ∈1′1]/I1′ and hence
the map j∗σ ◦9X has a factorization:

CH∗(k)[tρ]
I1

�
CH∗(k)[tρ]
(I1, xσ )

→
CH∗(k)[tρ, ρ ∈1′1]

I1′
9X ′
−−→ CH∗T (X

′),

where the middle arrow is the natural map of the Stanley–Reisner rings induced by
the inclusion of the fans 1′ ⊂1. Letting 9X ′ denote the composite

CH∗(k)[tρ]
(I1, xσ )

→
CH∗(k)[tρ, ρ ∈1′1]

I1′
9X ′
−−→ CH∗T (X

′),

we see that the right square in the diagram (11-10) also commutes.
If all the cones of 1 are at most one-dimensional, then xσ = tρ , where ρ = σ

and it is obvious that CH∗(k)[tρ]/(I1, xσ ) is the Stanley–Reisner ring associated
to the fan 1′. If 1 has a cone of dimension at least two, we can assume that σ is
of dimension at least two. In that case, we have 1′1 =11 and the natural inclusion
10

1 ⊆1
′0
1 gives the equality 1′01 =1

0
1
∐
{Sσ }. In particular, we have

CH∗(k)[tρ, ρ ∈11]

(I1, xσ )
−→∼

CH∗(k)[tρ, ρ ∈1′1]
I1′

.
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On the other hand, 1′ is a fan with smaller number of maximal cones than in 1
and X ′ = X ′(1′). Hence the map

CH∗(k)[tρ, ρ ∈1′1]
I1′

9X ′
−−→ CH∗T (X

′)

is an isomorphism by induction. We conclude that the map 9X ′ in the dia-
gram (11-10) is an isomorphism. A diagram chase in (11-10) now shows that
9X is also an isomorphism. �

As an important application of Theorem 11.3, we obtain the following pre-
sentation of the ordinary higher Chow groups (motivic cohomology groups) of
smooth toric varieties. An explicit description of CH∗(X, 0) for a smooth projective
toric variety X was given in [Fulton 1993, Proposition 5.2]. The following result
extends this to all smooth toric varieties, not necessarily projective. In fact, such a
description extends to all higher Chow groups of smooth projective toric varieties.
In particular, we obtain another proof of Corollary 7.3 with rational coefficients.
Recall that for every σ ∈1, the orbit closure Vσ = Oσ in X is a T -invariant Weil
divisor and defines a unique element [Vσ ] ∈ CH1(X, 0).

Corollary 11.4. Let X = X (1) be a smooth projective toric variety. Then the
assignment tρ 7→ [Vσ ] defines a CH∗(k;Q)-algebra isomorphism

9X :
CH∗(k;Q)[tρ](

I1,
∑

ρ∈11
〈χ, vρ〉 tρ

) → CH∗(X;Q), (11-11)

where χ runs over M∨.
If X is not necessarily projective, the map

Q[tρ](
I1,

∑
ρ∈11
〈χ, vρ〉tρ

) → CH∗(X, 0;Q)

is a ring isomorphism.

Proof. We have already seen before that every character χ ∈M∨ acts on CH∗(k)[tρ]
by multiplication with the element

∑
ρ∈11
〈χ, vρ〉 tρ which makes the left hand side

of (11-11) an S-algebra. The corollary now follows directly from Theorem 11.3
and [Krishna 2009a, Theorem 1.3]. The second isomorphism follows in the same
way from Theorem 11.3 and [Brion 1997, Corollary 2.3]. �

Corollary 11.5. Let X = X (1) be a smooth toric variety. Then there are canonical
ring isomorphisms

CH∗(k;Q)⊗CH∗T (X, 0;Q)−→∼ CH∗T (X;Q),

CH∗(k;Q)⊗CH∗(X, 0;Q)−→∼ CH∗(X;Q).
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Proof. It follows from (11-7) that CH∗(k)⊗ (Q[tρ]/I1)−→∼ CH∗(k)[tρ]/I1. The
first part of the corollary now follows directly from Theorem 11.3. The second part
follows from the first and [Krishna 2009a, Theorem 1.1], which says that there is a
convergent spectral sequence

TorS
p(Q,CH∗T (X, q))⇒ CH∗(X, p+ q). �

Remark 11.6. All the results in this section about the (equivariant) higher Chow
groups of smooth toric varieties have been stated over the rationals. However,
an attentive reader can check that these results (and the proofs) for the subrings
CH∗T (X, 0) and CH∗(X, 0) hold true with the integral coefficients. The basic reason
is that CH∗T (k, 0) and CH∗(k, 0) are torsion-free abelian groups. But this is false
for the higher Chow groups of k.
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