Vol. 7, No. 2, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
The phase limit set of a variety

Mounir Nisse and Frank Sottile

Vol. 7 (2013), No. 2, 339–352
Abstract

A coamoeba is the image of a subvariety of a complex torus under the argument map to the real torus. We describe the structure of the boundary of the coamoeba of a variety, which we relate to its logarithmic limit set. Detailed examples of lines in three-dimensional space illustrate and motivate these results.

Keywords
coamoeba, amoeba, initial ideal, toric variety tropical geometry
Mathematical Subject Classification 2010
Primary: 14T05
Secondary: 32A60
Milestones
Received: 7 June 2011
Revised: 14 February 2012
Accepted: 16 March 2012
Published: 25 April 2013
Authors
Mounir Nisse
Department of Mathematics
Texas A&M University
College Station, TX 77843
United States
http://www.math.tamu.edu/~nisse/
Frank Sottile
Department of Mathematics
Texas A&M University
College Station, TX 77843
United States
http://www.math.tamu.edu/~sottile/