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Suppose X is a hyperelliptic curve of genus g defined over an algebraically
closed field k of characteristic p = 2. We prove that the de Rham cohomology
of X decomposes into pieces indexed by the branch points of the hyperelliptic
cover. This allows us to compute the isomorphism class of the 2-torsion group
scheme JX [2] of the Jacobian of X in terms of the Ekedahl–Oort type. The
interesting feature is that JX [2] depends only on some discrete invariants of X ,
namely, on the ramification invariants associated with the branch points. We give
a complete classification of the group schemes that occur as the 2-torsion group
schemes of Jacobians of hyperelliptic k-curves of arbitrary genus, showing that
only relatively few of the possible group schemes actually do occur.

1. Introduction

Suppose k is an algebraically closed field of characteristic p > 0. There are several
important stratifications of the moduli space Ag of principally polarized abelian
varieties of dimension g defined over k, including the Ekedahl–Oort stratification.
The Ekedahl–Oort type characterizes the p-torsion group scheme of the correspond-
ing abelian varieties and, in particular, determines invariants of the group scheme
such as the p-rank and a-number. It is defined by the interaction between the
Frobenius F and Verschiebung V operators on the p-torsion group scheme. Very
little is known about how the Ekedahl–Oort strata intersect the Torelli locus of
Jacobians of curves. In particular, one would like to know which group schemes
occur as the p-torsion JX [p] of the Jacobian JX of a curve X of genus g.

In this paper, we completely answer this question for hyperelliptic k-curves X of
arbitrary genus when k has characteristic p=2, a case that is amenable to calculation
because of the confluence of hyperelliptic and Artin–Schreier properties. We first
prove a decomposition result about the structure of H1

dR(X) as a module under the
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actions of F and V , where the pieces of the decomposition are indexed by the branch
points of the hyperelliptic cover. This is the only decomposition result about the
de Rham cohomology of Artin–Schreier curves that we know of, though the action
of V on H0(X, �1) and the action of F on H1(X,O) have been studied for Artin–
Schreier curves under less restrictive hypotheses [Madden 1978; Sullivan 1975].

The second result of this paper is a complete classification of the isomorphism
classes of group schemes that occur as the 2-torsion group scheme JX [2] for a
hyperelliptic k-curve X of arbitrary genus when char(k)= 2. The group schemes
that occur decompose into pieces indexed by the branch points of the hyperelliptic
cover, and we determine the Ekedahl–Oort types of these pieces. In particular, we
determine which a-numbers occur for the 2-torsion group schemes of hyperelliptic
k-curves of arbitrary genus when char(k)= 2. Before describing the result precisely,
we note that it shows that the group scheme JX [2] depends only on some discrete
invariants of X and not on the location of the branch points or the equation of the
hyperelliptic cover. This is in sharp contrast to the case of hyperelliptic curves in
odd characteristic p, where even the p-rank depends on the location of the branch
points [Yui 1978].

Notation 1.1. Suppose k is an algebraically closed field of characteristic p = 2.
Let X be a k-curve of genus g that is hyperelliptic, in other words, for which there
exists a degree two cover π : X → P1. Let B ⊂ P1(k) denote the set of branch
points of π , and let r := #B− 1. After a fractional linear transformation, one may
suppose that 0 ∈ B and∞ /∈ B.

For α ∈ B, the ramification invariant dα is the largest integer for which the
higher ramification group of π above α is nontrivial. By [Stichtenoth 2009, Propo-
sition III.7.8], dα is odd. Let cα := (dα − 1)/2, and let xα := (x −α)−1.

The cover π is given by an affine equation of the form y2
− y = f (x) for some

nonconstant rational function f (x) ∈ k(x). After a change of variables of the form
y 7→ y + ε, one may suppose the partial fraction decomposition of f (x) has the
form

f (x)=
∑
α∈B

fα(xα), (1-1)

where fα(x) ∈ xk[x2
] is a polynomial of degree dα containing no monomials of

even exponent. In particular, the divisor of poles of f (x) on P1 has the form

div∞( f (x))=
∑
α∈B

dαα.

By the Riemann–Hurwitz formula [Serre 1968, IV, Proposition 4], the genus g
of X satisfies

2g+ 2=
∑
α∈B

(dα + 1).
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Recall that the 2-rank of (the Jacobian of) the k-curve X is dimF2 Hom(µ2, JX [2]),
where µ2 is the kernel of Frobenius on Gm . By the Deuring–Shafarevich formula
[Subrao 1975, Theorem 4.2; Crew 1984, Corollary 1.8], the 2-rank of X is r . Note
that g= r+

∑
α∈B cα . The implication of these formulas is that, for a given genus g

(and 2-rank r ), there is an additional discrete invariant of the hyperelliptic k-curve X ,
namely, a partition of 2g+ 2 into r + 1 positive even integers dα+ 1. In Section 5a,
we show that the Ekedahl–Oort type of X depends only on this discrete invariant.

Theorem 1.2. Suppose X is a hyperelliptic curve defined over an algebraically
closed field k of characteristic 2 with affine equation y2

− y= f (x), branch locus B,
and polynomials fα for α ∈ B as described in Notation 1.1. For α ∈ B, consider the
Artin–Schreier k-curve Yα with affine equation y2

−y= fα(x). Let E be an ordinary
elliptic k-curve. As a module under the actions of Frobenius F and Verschiebung V ,
the de Rham cohomology of X decomposes as

H1
dR(X)∼= H1

dR(E)
#B−1
⊕

⊕
α∈B

H1
dR(Yα).

As an application of Theorem 1.2, we give a complete classification of the
Ekedahl–Oort types that occur for hyperelliptic k-curves. Recall that the 2-torsion
group scheme JX [2] of the Jacobian of a k-curve is a polarized BT1 group scheme
over k (short for polarized Barsotti–Tate truncated level-1 group scheme) and that
the isomorphism class of a BT1 group scheme determines and is determined by
its Ekedahl–Oort type; see Section 2 for more details. For p = 2 and a natural
number c, let Gc be the polarized BT1 group scheme of rank p2c with Ekedahl–Oort
type [0, 1, 1, 2, 2, . . . , bc/2c]. For example, G1 is the 2-torsion group scheme of a
supersingular elliptic k-curve. The group scheme G2 occurs as the 2-torsion of a
supersingular nonsuperspecial abelian surface over k. The group scheme Gc is not
necessarily indecomposable. More explanation about Gc is given in Sections 2c
and 5b.

Before stating the classification result, we note that it also includes a complete
description of which a-numbers occur for the Jacobians of hyperelliptic k-curves.
Recall that the a-number of X is defined as aX := dimk Hom(α2, JX [2]), where α2

is the kernel of Frobenius on Ga .

Theorem 1.3. Let X be a hyperelliptic k-curve with affine equation y2
− y = f (x)

defined over an algebraically closed field of characteristic 2 as described in
Notation 1.1. Then the 2-torsion group scheme of the Jacobian variety of X is

JX [2] ' (Z/2⊕µ2)
r
⊕

⊕
α∈B

Gcα ,

and the a-number of X is aX = (g+ 1− #{α ∈ B | dα ≡ 1 mod 4})/2.
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Theorem 1.3 is stated without proof in [van der Geer 1999, 3.2] for the special
case when f (x) ∈ k[x], that is, r = 0. There are two interesting things about
Theorem 1.3. First, it shows that the Ekedahl–Oort type of X : y2

− y = f (x)
depends only on the orders of the poles of f (x). This is in sharp contrast to the
case of hyperelliptic curves in odd characteristic p, where even the p-rank depends
on f (x) and the location of the branch points [Yui 1978]. Similarly, it differs from
the results of [Bouw 2001; Elkin 2011; Johnston 2007], all of which give bounds
for the p-rank and a-number of various kinds of curves that depend strongly on the
coefficients of their equations. Likewise, preliminary calculations indicate that it is
in contrast to the situation for Artin–Schreier curves in odd characteristic.

Secondly, Theorem 1.3 is interesting because it shows that most of the possibilities
for the 2-torsion group scheme of an abelian variety over k do not occur for
Jacobians of hyperelliptic k-curves when char(k) = 2. Specifically, there are 2g

possibilities for the 2-torsion group scheme of a g-dimensional abelian variety
over k. We determine a subset of these of cardinality equal to the number P(g+ 1)
of partitions of g+ 1 and prove that the group schemes in this subset are exactly
those that occur as the 2-torsion JX [2] for a hyperelliptic k-curve X of genus g.
Recall [Hardy and Ramanujan 1918] that P(g + 1) grows asymptotically like
eπ
√

2(g+1)/3/(4
√

3(g + 1)) as g goes to infinity. Also, Theorem 1.3 gives the
nontrivial bounds (g− r)/2≤ aX ≤ (g+ 1)/2 for the a-number.

An earlier nonexistence result of this type is due to Ekedahl [1987], who proved
that a curve X of genus g> p(p−1)/2 in characteristic p>0 cannot be superspecial
and thus aX < g. There are also other recent results about Newton polygons of
hyperelliptic (that is, Artin–Schreier) curves in characteristic 2, including several
nonexistence results [Blache 2012; Scholten and Zhu 2002]. In addition, there are
closed formulas for the number of hyperelliptic curves of genus 3 with given 2-rank
over each finite field of characteristic 2 [Nart and Sadornil 2004].

Here is an outline of this paper. Section 2 contains notation and background.
Results on H0(X, �1) and the a-number are in Section 3. Theorem 1.2 is with the
material on the de Rham cohomology in Section 4. Section 5 contains the results
about the Ekedahl–Oort type, including Theorem 1.3.

2. Background

In this paper, all objects are defined over an algebraically closed field k of charac-
teristic p > 0, and all curves are smooth, projective, and connected. This section
includes background on p-torsion group schemes, Ekedahl–Oort types, the de Rham
cohomology, and Frobenius and Verschiebung.

2a. The p-torsion group scheme. Suppose A is a principally polarized abelian
variety of dimension g defined over k. For example, A could be the Jacobian of a
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k-curve of genus g. Consider the multiplication-by-p morphism [p] : A→ A that is
a finite flat morphism of degree p2g. It factors as [p] = V ◦ F . Here F : A→ A(p)

is the relative Frobenius morphism coming from the p-power map on the structure
sheaf; it is purely inseparable of degree pg. Furthermore, V : A(p) → A is the
Verschiebung morphism.

The p-torsion group scheme of A, denoted A[p], is the kernel of [p]. It is a finite
commutative group scheme annihilated by p, again having morphisms F and V .
By [Oort 2001, 9.5], the p-torsion group scheme A[p] is a polarized BT1 group
scheme over k (short for polarized Barsotti–Tate truncated level-1 group scheme)
as defined in [Oort 2001, 2.1, 9.2]. The rank of A[p] is p2g.

We now give a brief summary of the classification [Oort 2001, Theorems 9.4
and 12.3] of polarized BT1 group schemes over k in terms of Dieudonné modules and
Ekedahl–Oort type; other useful references are [Kraft 1975] (without polarization)
and [Moonen 2001] (for p ≥ 3).

2b. The Dieudonné module and polarizations. It is useful to describe the group
scheme A[p] using (the modulo p reduction of) the covariant Dieudonné module
[Oort 2001, 15.3]. This is the dual of the contravariant theory found in [Demazure
1972]. In brief, consider the noncommutative ring E = k[F, V ] generated by
semilinear operators F and V with the relations FV = V F = 0 and Fλ = λp F
and λV = Vλp for all λ ∈ k. Let E(A, B) denote the left ideal EA + EB of E

generated by A and B. A deep result is that the Dieudonné functor D gives an
equivalence of categories between BT1 group schemes over k (with rank p2g) and
finite left E-modules (having dimension 2g as a k-vector space). We use the notation
D(G) to denote the Dieudonné module of G. For example, the Dieudonné module
of the p-torsion group scheme of an ordinary elliptic curve is D(Z/p ⊕ µp) '

E/E(F, 1− V )⊕ E/E(V, 1− F) [Goren 2002, Examples A.5.1 and A.5.3].
The polarization of A induces a symmetry on A[p] as defined in [Oort 2001, 5.1],

namely, an antisymmetric isomorphism from A[p] to the Cartier dual group scheme
A[p]dual of A[p]. Unfortunately, in characteristic 2, there may be antisymmetric
morphisms A[p] → A[p]dual that do not come from a polarization. Luckily, this
issue can be resolved by defining a polarization on A[p] in terms of a nondegenerate
alternating pairing on D(A[p]) [Oort 2001, 9.2, 9.5, 12.2].

2c. The Ekedahl–Oort type. As in [Oort 2001, Sections 5 and 9], the isomorphism
type of a BT1 group scheme G over k can be encapsulated into combinatorial data.
If G is symmetric with rank p2g, then there is a final filtration N1⊂ N2⊂ · · · ⊂ N2g

of G as a k-vector space that is stable under the action of V and F−1 such that
i = dim(Ni ) [Oort 2001, 5.4]. If w is a word in V and F−1, then wD(G) is an
object in the filtration; in particular, Ng = V D(G)= F−1(0).



512 Arsen Elkin and Rachel Pries

The Ekedahl–Oort type of G, also called the final type, is ν= [ν1, . . . , νg], where
νi = dim(V (Ni )). The Ekedahl–Oort type of G does not depend on the choice of a
final filtration. There is a restriction νi ≤ νi+1 ≤ νi + 1 on the final type. There are
2g Ekedahl–Oort types of length g since all sequences satisfying this restriction
occur. By [Oort 2001, 9.4, 12.3], there are bijections between (i) Ekedahl–Oort
types of length g, (ii) polarized BT1 group schemes over k of rank p2g, and (iii)
principal quasipolarized Dieudonné modules of dimension 2g over k.

2d. The p-rank and a-number. Two invariants of (the p-torsion of) an abelian
variety are the p-rank and a-number. The p-rank of A is r =dimFp Hom(µp, A[p]),
where µp is the kernel of Frobenius on Gm . Then pr is the cardinality of A[p](k).
The a-number of A is a=dimk Hom(αp, A[p]), where αp is the kernel of Frobenius
on Ga . It is well known that 0 ≤ f ≤ g and 1 ≤ a+ f ≤ g. The p-rank of A[p]
equals the dimension of V g D(G). The a-number of A[p] equals g−dim(V 2 D(G))
[Li and Oort 1998, 5.2.8]. The p-rank equals max{i | νi = i}, and the a-number
equals g− νg.

2e. The de Rham cohomology. Suppose X is a k-curve of genus g, and recall the
definition of the noncommutative ring E= k[F, V ] from Section 2b. By [Oda 1969,
Section 5], there is an isomorphism of E-modules between the Dieudonné module
of the p-torsion group scheme JX [p] and the de Rham cohomology group H1

dR(X).
In particular, ker(F)= H0(X, �1)= im(V ). Recall that dimk H1

dR(X)= 2g.
In [Oda 1969, Section 5], there is the following description of H1

dR(X). Let
U = {Ui } be a covering of X by affine open subvarieties, and let Ui j := Ui ∩U j

and Ui jk :=Ui ∩U j ∩Uk . For a sheaf F on X , let

C0(U,F) := {κ = (κi )i | κi ∈ 0(Ui ,F)},

C1(U,F) := {φ = (φi j )i< j | φi j ∈ 0(Ui j ,F)},

C2(U,F) := {ψ = (ψi jk)i< j<k | ψi jk ∈ 0(Ui jk,F)}.

For convenience, let φi i := 0 for any φ ∈C1(U,F). There are coboundary operators
δ :C0(U,F)→C1(U,F) defined by (δκ)i< j =κi−κ j and δ :C1(U,F)→C2(U,F)

by (δφ)i< j<k=φi j−φik+φ jk . All other maps are applied to Cm(U,F) elementwise,
for example, (Fφ)i := Fφi . As expected, δ2

= 0.
The de Rham cocycles are defined by

Z1
dR(U) := {(φ, ω) ∈ C1(U,O)×C0(U, �1) | δφ = 0, dφ = δω},

that is, φi j − φik + φ jk = 0 and dφi j = ωi − ω j for all indices i < j < k. The
de Rham coboundaries are defined by

B1
dR(U) := {(δκ, dκ) ∈ Z1

dR(U) | κ ∈ C0(U,O)}.



Ekedahl–Oort strata of hyperelliptic curves in characteristic 2 513

Finally,

H1
dR(X)∼= H1

dR(U) := Z1
dR(U)/B

1
dR(U).

There is an injective homomorphism λ :H0(X, �1)→H1
dR(X) denoted informally

by ω 7→ (0, ω), where the second coordinate is defined by ωi = ω|Ui . This map
is well-defined since d(0) = ω|Ui − ω|U j = (δω)i< j . It is injective because if
(0, ω1) ≡ (0, ω2) mod B1

dR(U), then ω1 − ω2 = dκ , where κ ∈ C0(U,O) is such
that δκ = 0; thus, κ ∈H0(U,O)' k is a constant function on X , and so ω1−ω2= 0.

There is another homomorphism γ :H1
dR(X)→H1(X,O) sending the cohomology

class of (φ, ω) to the cohomology class of φ. The choice of cocycle (φ, ω) does not
matter since the coboundary conditions on H1

dR(X) and H1(X,O) are compatible.
The homomorphisms λ and γ fit into a short exact sequence

0→ H0(X, �1)
λ
−→ H1

dR(X)
γ
−→ H1(X,O)→ 0 (2-1)

of k-vector spaces. In Sections 4d and 4f, we construct a suitable section σ :
H1(X,O)→ H1

dR(X) of γ when X is a hyperelliptic k-curve with char(k)= 2.

2f. Frobenius and Verschiebung. The Cartier operator C on the sheaf �1 is de-
fined in [Cartier 1957]. Its three principal properties are that it annihilates exact dif-
ferentials, preserves logarithmic ones, and induces a p−1-linear map on H0(X, �1).
The Cartier operator can be computed as follows. Let x ∈ k(X) be an element that
forms a p-basis of k(X) over k(X)p, that is, an element such that every z ∈ k(X)
can be written as

z := z p
0 + z p

1 x + · · ·+ z p
p−1x p−1

for uniquely determined z0, . . . , z p−1 ∈ k(X). Then

C(z dx/x) := z0 dx/x .

The Frobenius operator F on the structure sheaf O of X induces a p-linear
map F on H1(X,O). By Serre duality, the k[F]-module H1(X,O) is dual to the
k[C]-module H0(X, �1).

The p-linear operator F and the p−1-linear operator V are defined on H1
dR(X)

as follows. Let V (ω) := C(ω) and F(ω) := 0 for ω ∈ H0(X, �1) and V ( f ) := 0
for f ∈ H1(X,O). Then

F( f, ω) :=(F( f ), F(ω))=( f p, 0) and V ( f, ω) :=(V ( f ), V (ω))=(0,C(ω)).

With E= k[F, V ] defined in Section 2c, the short exact sequence (2-1) is an exact
sequence of E-modules. However, the section σ of (2-1) constructed in Section 4d
is not a splitting of E-modules.
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3. Results about regular 1-forms and the a-number

We specialize to the case when the algebraically closed field k has characteristic
p = 2. Consider a hyperelliptic k-curve X with affine equation y2

− y = f (x)
as described in Section 1. For each branch point α ∈ B, recall the definitions
of the ramification invariant dα = 2cα + 1, the function xα = (x − α)−1, and
the polynomial fα(xα) appearing in the partial fraction decomposition of f (x).
Important facts mentioned in Section 1 are that the genus is determined from the
ramification invariants by the formula 2g+ 2=

∑
α∈B(dα + 1) and that the 2-rank

of JX equals r = #B− 1.
For α ∈ B, let Pα := π−1(α) ∈ X (k) be the ramification point above α, and

define the divisor D∞ := π−1(∞) on X . Recall that 0 ∈ B and ∞ /∈ B, and let
B∞ := B ∪ {∞} and B ′ := B−{0}.

3a. The space H0(X,�1). For an integer j and for α ∈ B, consider the 1-forms

ωα, j := x j−1
α dxα on X .

Note that ωα, j =−(x−α)− j−1 dx and if α∈ B ′, then ωα,0−ω0,0=−α dx/x(x−α).
For completeness, we prove the next lemma, a variation of a special case of

[Sullivan 1975, Lemma 1(c)].

Lemma 3.1. A basis for H0(X, �1) is given by the 1-forms ωα, j for α ∈ B and
1≤ j ≤ cα and ωα,0−ω0,0 for α ∈ B ′.

Proof. For α∈ B, we can calculate the following divisors on X : div(xα)=D∞−2Pα ,

div(dxα)= (dα − 3)Pα +
∑

β∈B−{α}

(dβ + 1)Pβ, (3-1)

div(ωα, j )= 2(cα − j)Pα + ( j − 1)D∞+
∑

β∈B−{α}

(dβ + 1)Pβ . (3-2)

Thus, ωα, j is regular for 1≤ j ≤ cα, and (ωα,0−ω0,0) is regular for α ∈ B ′ since

div(ωα,0−ω0,0)= 2cαPα + 2c0 P0+
∑

β∈B−{0,α}

(dβ + 1)Pβ .

This set of regular differentials of X is linearly independent because the correspond-
ing set of divisors is linearly independent over Z. It forms a basis since the set has
cardinality r +

∑
α∈B cα = g. �

Lemma 3.2. If α ∈ B, then

C(ωα, j )=

{
ωα, j/2 if j is even,
0 if j is odd.

In particular, C(ωα,0−ω0,0)= ωα,0−ω0,0 for all α ∈ B ′.
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Proof. Using the properties of the Cartier operator found in Section 2f, one computes
when j is even that

C(x j−1
α dxα)= x j/2

α C(dxα/xα)= x j/2−1
α dxα

and when j is odd that

C(x j−1
α dxα)= x ( j−1)/2

α C(dxα)= 0. �

Let W ′α,ss := 〈ωα,0−ω0,0〉 for α ∈ B ′, and let W ′α,nil := 〈ωα, j | 1 ≤ j ≤ cα〉 for
α ∈ B, where 〈 · 〉 denotes the k-span. These subspaces are invariant under the
Cartier operator by Lemma 3.2.

Lemma 3.3. The subspaces W ′α,ss and W ′α,nil of H0(X, �1) are stable under the
action of Verschiebung for each α ∈ B. There is an isomorphism of V -modules

H0(X, �1)'
⊕
α∈B ′

W ′α,ss⊕
⊕
α∈B

W ′α,nil.

Proof. This follows immediately from Lemmas 3.1 and 3.2. �

3b. Application: The a-number.

Proposition 3.4. Let X be a hyperelliptic k-curve with affine equation y2
−y= f (x)

as described in Notation 1.1. If div∞( f (x)) =
∑

α∈B dαα is the divisor of poles
of f (x) on P1, then the a-number of X is

aX =
g+ 1− #{α ∈ B | dα ≡ 1 mod 4}

2
.

Proof. The a-number of G= JX [2] is aX = g− dim(V 2 D(G)) [Li and Oort 1998,
5.2.8]. The action of V on V D(G) is the same as the action of the Cartier operator C

on H0(X, �1). So aX equals the dimension of the kernel of C on H0(X, �1). By
Lemma 3.2, the kernel of C on H0(X, �1) is spanned by ωα, j for α ∈ B and j odd
with 1≤ j ≤ cα = (dα − 1)/2. Thus, the contribution to the a-number from each
α∈ B is b(dα+1)/4c. In other words, if dα≡1 mod 4, the contribution is (dα−1)/4,
and if dα ≡ 3 mod 4, the contribution is (dα+1)/4. Since g+1=

∑
α∈B(dα+1)/2,

this yields
2aX = (g+ 1)− #{α ∈ B | dα ≡ 1 mod 4}. �

3c. Examples with large p-rank. Let A be a principally polarized abelian variety
over k with dimension g and p-rank r . If r = g, then A[p] ' (Z/p⊕µp)

g and the
a-number is a = 0. If r = g− 1, then A[p] ' (Z/p⊕µp)

g−1
⊕ E[p], where E is

a supersingular elliptic curve and the a-number is a = 1. So the first case where
A[p] and a are not determined by the p-rank is when r = g− 2.
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Example 3.5. Let g≥ 2. There are two possibilities for the p-torsion group scheme
of a principally polarized abelian variety over k with dimension g and p-rank g−2.
When p=2, both of these occur as the 2-torsion group scheme JX [2] of the Jacobian
of a hyperelliptic k-curve X of genus g.

Proof. If A is a principally polarized abelian variety over k with dimension g and
p-rank g − 2, then A[p] ' (µp ⊕ Z/p)g−2

⊕ G, where G is isomorphic to the
p-torsion group scheme of an abelian surface Z with p-rank 0. The abelian surface
can be superspecial or merely supersingular. In the superspecial case, G= (G1)

2,
where G1 denotes the p-torsion group scheme of a supersingular elliptic k-curve;
in the merely supersingular case, we denote the group scheme G2; see [Goren 2002,
Example A.3.15; Pries 2008, Example 2.3] for a complete description of G2.

To prove the second claim, consider the two possibilities for a partition of 2g+2
into r + 1 = g− 1 even integers: (A) {2, 2, . . . , 2, 4, 4} or (B) {2, 2, . . . , 2, 2, 6}.
In case (A), consider f (x) ∈ k(x) with g − 1 poles such that 0 and 1 are poles
of order 3 and the other poles are simple. In case (B), consider f (x) ∈ k(x) with
g− 1 poles such that 0 is a pole of order 5 and the other poles are simple. The
kernel of the Cartier operator on H0(X, �1) is spanned by dx/x2 and dx/(x − 1)2

in case (A) and by dx/x2 in case (B). Thus, the a-number equals 2 in case (A) and
equals 1 in case (B). In both cases, this completely determines the group scheme.
Namely, the group scheme JX [2] is isomorphic to (Z/2⊕µ2)

g−2
⊕ (G1)

2 in case
(A) and to (Z/2⊕µ2)

g−2
⊕G2 in case (B). �

For g ≥ 3 and r ≤ g− 3, the action of V on H0(X, �1) (and, in particular, the
value of the a-number) is not sufficient to determine the isomorphism class of the
group scheme JX [2]. To determine this group scheme, in the next section we study
the E-module structure of H1

dR(X).

4. Results on the de Rham cohomology

4a. An open covering. Let V ′ = P1
− B∞ and U ′ = π−1(V ′) = X − π−1(B∞).

For α ∈ B∞, let Vα = V ′ ∪ {α} and Uα := U ′ ∪ {π−1(α)}. Then the collection
U := {Uα | α ∈ B∞} is a cover of X by open affine subvarieties. By construction, if
α, β ∈ B∞ are distinct, then Vαβ := Vα ∩ Vβ = V ′ and Uαβ := Uα ∩Uβ = U ′. In
particular, the subvarieties Uαβ do not depend on the choice of α and β.

For a sheaf F, let Z1(U,F) and B1(U,F) denote the closed cocycles and
coboundaries of F with respect to U. Recall the definition of the noncommutative
ring E= k[F, V ] and the notation about H1

dR(X) from Section 2e. In this section,
we compute H1(X,O)'H1(U,O) and H1

dR(X)'H1
dR(U) with respect to the open

covering U of X .

4b. Defining components. Given a sheaf F and a cocycle φ ∈ Z1(U,F), consider
its components φα∞ ∈ 0(U ′,F) for α ∈ B. We call {φα∞ | α ∈ B} the set of
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defining components of φ. The reason is that the remaining components of φ are
determined by the coboundary condition φαβ =φα∞−φβ∞. A collection of sections
{φα∞ ∈ 0(U ′,F) | α ∈ B} determines a unique closed cocycle φ ∈ Z1(U,F). Thus,

Z1(U,F)∼=
⊕
α∈B

0(U ′,F). (4-1)

For β ∈ B, consider the natural k-linear map

ϕβ : 0(U ′,O)→ Z1(U,O)

whose defining components for α ∈ B are

(ϕβ(h))α∞ :=
{

h if α = β,
0 otherwise.

Also, consider the k-linear map ϕ∞ : 0(U ′,O)→ Z1(U,O) defined by

(ϕ∞(h))α∞ := −h for all α ∈ B.

Observe that if h ∈ 0(U ′,O), then∑
β∈B∞

ϕβ(h)= 0. (4-2)

For β ∈ B∞, consider the natural k-linear map

ψβ : 0(Uβ,O)→ C0(U,O)

given for α ∈ B∞ by

(ψβ(h))α :=
{

h if α = β,
0 otherwise.

(4-3)

It is straightforward to verify the next lemma.

Lemma 4.1. Suppose β ∈ B∞ and h ∈ 0(Uβ,O) (that is, h is regular at Pβ if
β 6= ∞ and h is regular at the two points in the support of D∞ if β =∞). Then
ϕβ(h|U ′)= δψβ(h) is a coboundary.

4c. The space H1(X,O). In this section, we find an F-module decomposition
of H1(X,O) ' H1(U,O). The results could be deduced from Section 3a using
the duality between H1(X,O) and H0(X, �1). Instead, we take a direct approach
because an explicit description of H1(X,O) is helpful for studying H1

dR(X) in
Section 4f.

Lemma 4.2. Write D∞ = P∞,1+ P∞,2. Then ordP∞,1(y) = 0 and ordP∞,2(y) = s
for some s ≥ 0 (possibly after reordering). For α ∈ B and j ∈ Z, the divisor of poles
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on X of the function yx− j
α = y(x −α) j satisfies

div∞(y(x −α) j )

=max(dα − 2 j, 0)Pα +max( j, 0)P∞,1+max( j − s, 0)P∞,2+
∑

β∈B−{α}

dβ Pβ .

Proof. Recall that div∞(y) =
∑

β∈B dβ Pβ . Note that ordP∞,i (y) ≥ 0 for i = 1, 2
since∞ 6∈ B. If ordP∞,2(y) > 0, that is, if y has a zero at P∞,2, then the value of y
is one at the Galois conjugate P∞,1 of P∞,2. Thus, y cannot have a zero at both
points in the support of D∞. The second claim follows from the additional fact that
div(x −α)= 2Pα − D∞ for α ∈ B. �

Lemma 4.2 implies that y(x −α) j
∈ 0(U ′,O) for all α ∈ B and j ∈ Z.

Lemma 4.3. With notation as above,

(i) Z1(U,O)= 〈ϕβ((x −α) j ), ϕβ(y(x −α) j ) | α, β ∈ B, j ∈ Z〉, and

(ii) if α ∈ B, then 〈ϕα(y(x−β) j ) | j ≥ 0〉 = 〈ϕα(y(x−α) j ) | j ≥ 0〉 as subspaces
of Z1(U,O) for each β ∈ B.

Proof. (i) This is immediate from Equation (4-1) because

Z1(U,O)=
⊕
β∈B

〈ϕβ(h) | h ∈ 0(U ′,O)〉.

(ii) Both are equal to the subspace {ϕα(yh(x)) | h(x) ∈ k[x]}. �

Lemma 4.4. Let α ∈ B ⊂ k and j ∈ Z. Then

(i) ϕβ((x −α) j ) ∈ B1(U,O) for all β ∈ B∞,

(ii) ϕα(y(x −α) j ) ∈ B1(U,O) if j > cα, and

(iii) ϕ∞(y(x −α) j ) ∈ B1(U,O) if j ≤ 0.

Proof. (i) Suppose that β ∈ B. If β 6= α or if j ≥ 0, then (x −α) j is regular at Pβ ,
and so ϕβ((x − α) j ) ∈ B1(U,O) by Lemma 4.1. For j ≥ 0, it follows from this
and Equation (4-2) that the cocycle ϕ∞((x − α) j ) = −

∑
β∈B ϕβ((x − α)

j ) is a
coboundary. If j < 0, then ϕ∞((x −α) j ) ∈ B1(U,O) by Lemma 4.1.

Finally, (x −α) j
∈ 0(Uγ,O) for all γ ∈ B∞−{α} if β = α 6= ∞ and j < 0. By

Equation (4-2),

ϕα((x −α) j )=−
∑

γ∈B∞−{α}

ϕγ((x −α) j )=−
∑

γ∈B∞−{α}

δψγ((x −α) j ), (4-4)

which is a coboundary.

(ii) If j > cα, then y(x −α) j
∈ 0(Uα,O) and ϕα(y(x −α) j )= δψα(y(x −α) j ).

(iii) If j ≤ 0, then y(x−α) j
∈0(U∞,O) and ϕ∞(y(x−α) j )= δψ∞(y(x−α) j ). �
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Consider the cocycles φα, j ∈ Z1(U,O) for α ∈ B and j ∈ Z defined by

φα, j := ϕα(y(x −α) j ).

Given φ ∈Z1(U,O), φ̃ denotes the cohomology class of φ in H1(U,O). For α ∈ B∞,
define the map

ϕ̃α : 0(U ′,O)→ H1(U,O), f 7→ ϕα( f ) mod B1(U,O).

We now study H1(U,O); the following lemma is a variant of a special case of
[Madden 1978, Lemma 6]:

Lemma 4.5. A basis for H1(U,O) is given by the cohomology classes φ̃α, j for
α ∈ B and 1≤ j ≤ cα and φ̃α,0 for α ∈ B ′.

Proof. The set of cohomology classes S={φ̃α, j |α ∈ B, 1≤ j ≤ cα}∪{φ̃α,0 |α ∈ B ′}
has cardinality r +

∑
α∈B cα = g. By Lemmas 4.3(i) and 4.4(i), it suffices to show

that ϕβ(y(x −α) j ) is in the span of S for α, β ∈ B and j ∈ Z. By Lemmas 4.3(ii)
and 4.4(ii), it suffices to show that the span of S contains φ̃0,0 and ϕ̃β(y(x −α)− j )

for α, β ∈ B and j > 0.
The cocycle ϕ∞(y) is a coboundary by Lemmas 4.1 and 4.2. Using this and

Equation (4-2), one computes in H1(U,O) that

φ̃0,0 = ϕ̃0(y)+ ϕ̃∞(y)=−
∑
β∈B ′

ϕ̃β(y)=−
∑
β∈B ′

φ̃β,0,

which is in the span of S.
Now consider ϕ̃β(y(x −α)− j ) for α, β ∈ B and j > 0. If 0= r := #B− 1, then

this cocycle is a coboundary by Equation (4-2) and Lemma 4.4(iii).
Let r > 0; first suppose that α 6= β. Consider the rational function h = (x−α)− j ,

which has no pole at β. Write h = T + E , where T is the degree-cβ Taylor
polynomial of h at β. Then ϕβ(yh)= ϕ(yT )+ ϕ(yE). Note that the function E
on P1 has a zero at β of order at least cβ + 1. Recall that ordPβ (x − β) = 2, and
observe that ordPβ (E)≥ 2(cβ+1)= dβ+1 on X . Since ordPβ (y)=−dβ , it follows
that yE ∈0(Uβ,O) and thus ϕβ(yE) ∈B1(U,O) by Lemma 4.1. The term ϕβ(yT )
is, by construction, a linear combination of ϕβ(y(x −β) j )= φβ, j for 0≤ j ≤ cβ .
Thus, ϕ̃β(yh) is in the span of S, which completes the case when α 6= β.

If α=β and j > 0, one can reduce to the previous case by adding the coboundary
ϕ∞(y(x −α)− j ) to ϕα(y(x −α)− j ) and using Equation (4-2) to see that

ϕ̃α(y(x −α)− j )=−
∑

γ∈B−{α}

ϕ̃γ(y(x −α)− j ). �

The next lemma is important for describing the F-module structure of H1(U,O).
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Lemma 4.6. If α ∈ B and j ≥ 0, then

F φ̃α, j =

{
φ̃α,2 j if 2 j ≤ cα,
0 otherwise.

Proof. Since (Fφα, j )βγ = (φα, j )
2
βγ , one computes that

(y(x −α) j )2 = (y+ f (x))(x −α)2 j

= y(x −α)2 j
+ f (x)(x −α)2 j .

The statement follows from the definition of φ̃α, j and Lemma 4.4(i). �

Now define

W ′′α,ss := 〈φ̃α,0〉 for α ∈ B ′ and

W ′′α,nil := 〈φ̃α, j | 1≤ j ≤ cα〉 for α ∈ B.

Lemma 4.7. The subspaces W ′′α,ss and W ′′α,nil of H1(U,O) are stable under the
action of Frobenius for each α ∈ B. There is an isomorphism of F-modules

H1(U,O)'
⊕
α∈B ′

W ′′α,ss⊕
⊕
α∈B

W ′′α,nil.

Proof. This follows immediately from Lemmas 4.5 and 4.6. �

4d. Auxiliary map. The next goal is to define a section σ :H1(X,O)→H1
dR(X). To

do this, the first step will be to define a homomorphism ρ : Z1(U,O)→ C0(U, �1)

by defining its components ρα : Z1(U,O) → 0(Uβ, �
1) for α, β ∈ B. Given

φ ∈ Z1(U,O) and α ∈ B, the idea is to separate dφ into two parts: The first part
will be regular at Pα and thus belong to 0(Uα, �

1), and the second part will be
regular away from Pα and hence belong to 0(Uβ, �

1) for every β 6= α.

Notation 4.8. Define the truncation operator 2≥i : k[x, x−1
] → k[x, x−1

] by

2≥i

(∑
j

a j x j
)
:=

∑
j≥i

a j x j .

Operators 2>i ,2≤i ,2<i : k[x, x−1
] → k[x, x−1

] can be defined analogously.
These operators can also be defined on k[xα, x−1

α ]. To clarify some ambiguity in
notation, if m(xα) ∈ k[xα, x−1

α ], then let 2≥i (m(xα)) denote 2≥i (m(x))|x=xα .

Recall that xα := (x −α)−1, and so φα, j = ϕα(yx− j
α ). Then

d(yx− j
α )=− j x− j−1

α y dxα + x− j
α dy. (4-5)
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Using partial fractions and the fact that dy =−d( f (x)), one sees that

dy =−
∑
β∈B

f ′β(xβ) dxβ . (4-6)

In light of these facts, consider the following definition:

Notation 4.9. For α ∈ B and j ≥ 0, define

Rα, j :=2≥0(x− j
α f ′α(xα)) dxα and Sα, j := d(yx− j

α )+ Rα, j .

Remark 4.10. Let aα,i ∈ k be the coefficients of the (odd-power) monomials of
the polynomials fα(xα) defined in the partial fraction decomposition (1-1):

fα(xα)=
cα∑

i=0

aα,i x2i+1
α .

Then
Rα, j =

∑
j/2≤i≤cα

aα,i x2i− j
α dxα =

∑
j/2≤i≤cα

aα,iωα,2i− j+1.

Lemma 4.11. Let α ∈ B and j ≥ 0.

(1) The differential form Rα, j is regular away from Pα, that is, Rα, j ∈ 0(Uβ, �
1)

for all β ∈ B∞−{α}

(2) The differential form Sα, j is regular at Pα for 0 ≤ j ≤ cα, that is, Sα, j ∈

0(Uα, �
1).

Proof. (1) This follows from Remark 4.10 and Equation (3-2).

(2) By Notations 4.8 and 4.9 and Equations (4-5) and (4-6), one sees that

Sα, j = d(yx− j
α )+2≥0(x− j

α f ′α(xα)) dxα (4-7)

=− j x− j−1
α y dxα −2<0(x− j

α f ′α(xα)) dxα −
∑

β∈B−{α}

x− j
α f ′β(xβ) dxβ . (4-8)

In the first part of Equation (4-8), note that the order of vanishing of x− j−1
α y dxα

at Pα is 2dα−1+2 j by Lemma 4.2 and Equation (3-1), so this term is regular at Pα .
In the second part of Equation (4-8), note that 2<0(x

− j
α f ′α(xα)) is contained

in x−1
α k[x−1

α ]. Thus, 2<0(x
− j
α f ′α(xα)) has a zero of order at least 2 at Pα. As

seen in the proof of Lemma 3.1, dxα has a zero of order dα − 3 at Pα. Thus,
2<0(x

− j
α f ′α(xα)) dxα is regular at Pα.

The last part of Equation (4-8) is regular at Pα since x−1
α and f ′β(xβ) dxβ are

regular at Pα. �

4e. Definition of ρ. We define a k-linear morphism

ρ : Z1(U,O)→ C0(U, �1).
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4e.1. Definition of ρ on B1(U,O). If φ ∈ B1(U,O), then for some κ ∈ C0(U,O),
φ = δκ . Define

ρ(φ) := dκ

with differentiation performed component-wise. This map is well-defined since if
κ is regular at P ∈ X (k), then so is dκ . Moreover, if κ ′ is another element such
that φ = δκ ′, then δ(κ − κ ′)= 0, and therefore, κ − κ ′ ∈ H0(U,O) is constant and
annihilated by d . Let ρβ(φ) denote (ρ(φ))β .

It follows from the definition that C(ρ(B1(U,O)))= 0 since the Cartier operator
annihilates all exact differential forms. Explicitly, the map ρ is computed as follows:

Lemma 4.12. (i) If α ∈ B∞ and h ∈ 0(Uα,O), then ρϕα(h|U ′)= dψα(h).

(ii) If α ∈ B and j ≤ 0, then

ρϕα((x −α) j )=−
∑

γ∈B∞−{α}

dψγ((x −α) j ).

Proof. (i) This is immediate from the definition of the map ρ and Lemma 4.1.

(ii) This follows from part (i), Equation (4-4), and the definition of ρ. �

Example 4.13. We find the value of ρ on the 1-coboundary ϕα( f (x)x− j
α ) if α ∈ B

and j ≥ 0. Let

rα, j :=2>0(x− j
α fα(xα)) and sα, j :=2≤0(x− j

α fα(xα))+
∑
β 6=α

x− j
α fβ(xβ).

Then

f (x)x− j
α = rα, j + sα, j ,

and rα, j has a pole at Pα but is regular everywhere else while sα, j is regular at Pα , so

ϕα( f (x)x− j
α )= δψα(sα, j )−

∑
β∈B∞−{α}

δψβ(rα, j ).

Therefore, for β 6= α, by Lemma 4.12, ρβϕα( f (x)x− j
α ) = −d(rα, j ). Since

fα(xα) ∈ xαk[x2
α], this simplifies to

ρβϕα( f (x)x− j
α )=

{
−Rα, j if j is even,
0 if j is odd.

(4-9)

Similarly,

ραϕα( f (x)x− j
α )=

{
−Sα, j if j is even,
d( f (x)x− j

α ) if j is odd.
(4-10)
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4e.2. Definition of ρβ on Z1(U,O). By Lemma 4.5, Z1(U,O) is generated by
B1(U,O) and φα, j for α ∈ B and 0≤ j ≤ cα. For α, β ∈ B, define

ρβ(φα, j ) :=

{
Rα, j if β 6= α,
Sα, j if β = α,

and extend ρβ to Z1(U,O) linearly. For all β ∈ B−{α}, note that

ρα(φα, j )= d(yx− j
α )+ ρβ(φα, j ).

Lemma 4.14. There is a well-defined map ρ : Z1(U,O)→ C0(U, �1) given by

ρ :=
⊕
β∈B∞

ρβ .

Proof. By Section 4e.1 and Lemma 4.11, ρβ(Z1(U,O))⊂0(Uβ, �
1) if β ∈ B∞. �

Here is an example of a computation of the map ρ.

Lemma 4.15. Let α ∈ B and j ≥ 0. For each β ∈ B, in 0(Uβ, �
1),

ρβϕα(y2x−2 j
α )=

{
0 if 0≤ 2 j ≤ cα,
−Rα,2 j if 2 j > cα.

In particular, ρϕα(y2x−2 j
α ) lies in the subspace W ′α,nil of H0(U, �1).

Proof. We have y2x−2 j
α = yx−2 j

α + f (x)x−2 j
α , and therefore

ϕα(y2x−2 j
α )= φα,2 j +ϕα( f (x)x−2 j

α ).

Suppose 0≤ 2 j ≤ cα . If β 6= α, then ρβ(φα,2 j )= Rα,2 j =−ρβ(ϕα( f (x)x−2 j
α ))

by Equation (4-9). By Equation (4-10), ρα(φα,2 j )= Sα,2 j =−ρα(ϕα( f (x)x−2 j
α )).

Thus, ρ(φα,2 j )+ ρ(ϕα( f (x)x−2 j
α ))= 0.

Now, suppose that 2 j > cα . Then yx−2 j
α is regular at Pα , and therefore, φα,2 j is

a coboundary with ρ(φα,2 j )= dϕα(yx2 j
α ). Therefore, for β 6= α,

ρβ(φα,2 j )+ ρβ(ϕα( f (x)x−2 j
α ))=−Rα,2 j ,

and

ρα(φα,2 j )+ ρα(ϕα( f (x)x−2 j
α ))= d(yx−2 j

α )+ d( f (x)x−2 j
α )− Rα,2 j =−Rα,2 j .

By Remark 4.10, Rα,2 j ∈ 〈ωα,2i−2 j+1 | j ≤ i ≤ cα〉. If 2 j > cα and j ≤ i ≤ cα,
then 1 ≤ 2i − 2 j + 1 ≤ cα, and so Rα,2 j ∈ W ′α,nil. Finally, since ρβϕα(y2x−2 j

α )

is independent of the choice of β ∈ B∞, we have ρϕα(y2x−2 j
α ) lies in the kernel

H0(U, �1) of the coboundary map δ : C0(U, �1)→ C1(U, �1). �

Lemma 4.16. (i) If φ ∈ Z1(U,O), then δρ(φ)= dφ.

(ii) In particular, C(ρα(φ))= C(ρβ(φ)) for all α, β ∈ B∞.
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(iii) For all α ∈ B and β ∈ B∞, we have C(ρβ(φα, j ))= C(Rα, j ).

Proof. (i) The definition of ρβ implies that ρα(φ)−ρβ(φ)=d(φ)αβ for all α, β ∈ B∞.

(ii) This follows from part (i) since the Cartier operator annihilates exact differential
forms.

(iii) This follows from part (ii) and the definition of ρβ . �

Remark 4.17. With aα,i defined as in Remark 4.10, one can explicitly compute

C(Rα, j )=

{∑cα
i=( j+1)/2

√
aα,iωα,i−( j−1)/2 if j is odd,

0 if j is even.

In particular, C(Rα, j ) ∈W ′α,nil.

4f. The E-module structure of the de Rham cohomology. Consider the exact se-
quence of E-modules

0→ H0(X, �1)
λ
−→ H1

dR(X)
γ
−→ H1(X,O)→ 0,

where E= k[F, V ] is the noncommutative ring defined in Section 2a. Consider the
k-linear function

σ : H1(X,O)→ H1
dR(X)

defined by σ(φ)= (φ, ρ(φ)) for φ ∈ Z1(U,O).

Lemma 4.18. The function σ is a section of γ : H1
dR(X)→ H1(X,O).

Proof. The function σ is well-defined because σ(B1(U,O)) ⊂ B1
dR(U) by the

definition of ρβ on B1(U,O). It is clearly a section of γ. �

Note that σ is not a splitting of E-modules.
For α ∈ B, let λα, j := λ(ωα, j ) and σα, j := σ(φ̃α, j ).

Proposition 4.19. For 0≤ j ≤ cα, the action of F and V on H1
dR(X) is given by

(i) Fλα, j = 0,

(ii) Vλα, j =

{
λα, j/2 if j is even,
0 if j is odd,

(iii) Fσα, j =

{
σα,2 j if j ≤ cα/2,
λ(Rα,2 j ) if j > cα/2,

(iv) Vσα, j =

{
λ(C(Rα, j )) if j is odd,
0 if j is even.

Proof. (i) This follows from Section 2f.

(ii) This follows from Lemma 3.2 after applying λ.
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(iii) In Z1
dR(U),

F(σα, j )= (Fφα, j , 0)

=
(
ϕα(y2x−2 j

α ), ρϕα(y2x−2 j
α )

)
− (0, ρϕα(y2x−2 j

α ))

= σϕα(y2x−2 j
α )− (0, ρϕα(y2x−2 j

α )).

Since y2x−2 j
α = yx−2 j

α + f (x)x−2 j
α , linearity of σ and ϕα yields that

σϕα(y2x−2 j
α )= σϕα(yx−2 j

α )+ σϕα( f (x)x−2 j
α ).

The term σϕα( f (x)x−2 j
α ) is a coboundary by Lemma 4.4(i), and σϕα(yx−2 j

α )

equals σα,2 j if 0≤ 2 j ≤ cα and is a coboundary if 2 j > cα by Lemma 4.4(ii). By
Lemma 4.15,

(0, ρϕα(y2x−2 j
α ))=

{
0 if 0≤ 2 j ≤ cα,
−λ(Rα,2 j ) if 2 j > cα.

(iv) Since V (φ, ρ(φ))= (0,C(ρ(φ))), the result follows by Lemma 4.16(iii). �

Consider the subspaces of H1
dR(X) given by

Wα,ss := 〈λα,0− λ0,0, σα,0〉,

Wα,nil := 〈λα, j , σα, j | 1≤ j ≤ cα〉.

Theorem 4.20. The subspaces Wα,ss and Wα,nil of H1
dR(X) are stable under the

action of Frobenius and Verschiebung for each α ∈ B. There is an isomorphism of
E-modules

H1
dR(X)=

⊕
α∈B ′

Wα,ss⊕
⊕
α∈B

Wα,nil.

Proof. The stability is immediate by Proposition 4.19, Remark 4.10, and Lemma 4.15.
The decomposition follows from Lemmas 4.18, 3.3, and 4.7. �

Theorem 1.2 is immediate from Theorem 4.20.

5. Results on the Ekedahl–Oort type

For a natural number c, let Gc be the unique symmetric BT1 group scheme of
rank p2c with Ekedahl–Oort type [0, 1, 1, 2, 2, . . . , bc/2c]. In other words, this
means that there is a final filtration N1 ⊂ N2 ⊂ · · · ⊂ N2c of D(Gc) as a k-vector
space, which is stable under the action of V and F−1 and with i = dim(Ni ), such
that dim(V (Ni )) = bi/2c. In Section 5a, we prove that group schemes of the
form Gc appear in the decomposition of JX [2] when X is a hyperelliptic k-curve.
In Section 5b, we describe the Dieudonné module of Gc for arbitrary c and give
examples.
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5a. The final filtration for hyperelliptic curves in characteristic 2. Suppose X
is a hyperelliptic k-curve with affine equation y2

− y = f (x) as described in
Notation 1.1. For α ∈ B, recall that cα = (dα − 1)/2, where dα is the ramification
invariant of X above α. Recall the subspaces Wα,nil of H1

dR(X) from Section 4f.
Define subspaces Nα,i of Wα,nil for 0≤ i ≤ 2cα as follows: Nα,0 := {0} and

Nα,i :=
{
〈λα, j | 1≤ j ≤ i〉 if 1≤ i ≤ cα,
Nα,cα ⊕〈σα, j | 1≤ j ≤ i〉 if cα + 1≤ i ≤ 2cα.

Proposition 5.1. The filtration Nα,0⊂ Nα,1⊂ Nα,2⊂· · ·⊂ Nα,2cα is a final filtration
of Wα,nil for each α ∈ B. Furthermore, V (Nα,i )= Nα,bi/2c.

Proof. Let 0≤ i≤2cα . Then dim(Nα,i )= i . By Proposition 4.19, V (Nα,i )=Nα,bi/2c,
and F−1(Nα,i )= Nα,cα+di/2e. Thus, the filtration Nα,0⊂ Nα,1⊂ Nα,2⊂ · · ·⊂ Nα,2cα
is stable under the action of V and F−1. �

Theorem 5.2. Let k be an algebraically closed field of characteristic p = 2. Let
X be a hyperelliptic k-curve with affine equation y2

− y = f (x) as described in
Notation 1.1. Then the 2-torsion group scheme of X decomposes as

JX [2] ' (Z/2⊕µ2)
r
⊕

⊕
α∈B

Gcα ,

and the a-number of X is

aX = (g+ 1− #{α ∈ B | dα ≡ 1 mod 4})/2.

Proof. By [Oda 1969, Section 5], there is an isomorphism of E-modules between
the Dieudonné module D(JX [2]) and the de Rham cohomology H1

dR(X). By
Theorem 4.20, there is an isomorphism of E-modules

H1
dR(X)=

⊕
α∈B ′

Wα,ss⊕
⊕
α∈B

Wα,nil.

If α∈ B ′, then Wα,ss is isomorphic to E/E(F, 1−V )⊕E/E(V, 1−F)'D(Z/2⊕µ2).
Finally, Proposition 5.1 shows Wα,nil ' D(Gcα ), which completes the proof of the
statement about JX [2]. The statement about aX can be found in Proposition 3.4. �

As a corollary, we highlight the special case when r = 0 (for example, when
f (x) ∈ k[x]). Corollary 5.3 is stated without proof in [van der Geer 1999, 3.2].

Corollary 5.3. Let k be an algebraically closed field of characteristic p = 2.
Suppose X is a hyperelliptic k-curve of genus g and p-rank r =0. Then the Ekedahl–
Oort type of JX [2] is [0, 1, 1, 2, 2, . . . , bg/2c], and the a-number aX = b(g+1)/2c.

Proof. This is a special case of Theorem 5.2 where #B = 1. �
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The next immediate corollary of Theorem 5.2 is included to emphasize that
Theorem 5.2 gives a complete classification of the 2-torsion group schemes that
occur as JX [2] when X is a hyperelliptic k-curve.

Corollary 5.4. Let k be an algebraically closed field of characteristic p= 2. Let G
be a polarized BT1 group scheme over k of rank p2g. Let 0≤ r ≤ g. Then G' JX [2]
for some hyperelliptic k-curve X of genus g and p-rank r if and only if there exist
nonnegative integers c1, . . . , cr+1 such that

∑r+1
i=1 ci = g− r and such that

G ' (Z/2⊕µ2)
r
⊕

⊕
α∈B

Gcα .

Remark 5.5. For fixed g, the number of isomorphism classes of polarized BT1

group schemes of rank p2g that occur as JX [2] for some hyperelliptic k-curve X
of genus g equals the number of partitions of g + 1. To see this, note that the
isomorphism class of JX [2] is determined by the multiset {d1, . . . , dr+1}, where
di = 2ci + 1 and

∑r+1
i=1 (di + 1)= 2g+ 2. So the number of isomorphism classes

equals the number of partitions of 2g+ 2 into positive even integers.

Remark 5.6. The examples in Section 5b show that the factors Gc appearing
in the decomposition of JX [2] in Theorem 5.2 may not be indecomposable as
polarized BT1 group schemes.

5b. Description of a particular Ekedahl–Oort type. Recall that Gc is the unique
polarized BT1 group scheme over k of rank p2c that has Ekedahl–Oort type
[0, 1, 1, 2, 2, . . . , bc/2c]. Recall that E = k[F, V ] is the noncommutative ring
defined in Section 2b. In this section, we describe the Dieudonné module D(Gc). We
start with some examples to motivate the notation. These show that Gc is sometimes
indecomposable and sometimes decomposes into polarized BT1 group schemes of
smaller rank. The first four examples were found using preexisting tables.

Example 5.7. (i) For c = 1, the Ekedahl–Oort type is [0]. This Ekedahl–Oort type
occurs for the p-torsion group scheme of a supersingular elliptic curve. See [Goren
2002, Example A.3.14; Pries 2008, Example 2.3] for a description of G1. It has
Dieudonné module E/E(F + V ).

(ii) For c=2, the Ekedahl–Oort type is [0, 1]. This Ekedahl–Oort type occurs for the
p-torsion group scheme of a supersingular abelian surface that is not superspecial.
See [Goren 2002, Example A.3.15; Pries 2008, Example 2.3] for a description
of G2. It has Dieudonné module E/E(F2

+ V 2).

(iii) For c = 3, the Ekedahl–Oort type is [0, 1, 1]. This Ekedahl–Oort type occurs
for an abelian threefold with p-rank 0 and a-number 2 whose p-torsion is indecom-
posable as a polarized BT1 group scheme. By [Pries 2008, Lemma 3.4], G3 has
Dieudonné module E/E(F2

+ V )⊕ E/E(V 2
+ F).
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(iv) For c= 4, the Ekedahl–Oort type is [0, 1, 1, 2]. This Ekedahl–Oort type occurs
for an abelian fourfold with p-rank 0 and a-number 2 whose p-torsion decomposes
as a direct sum of polarized BT1 group schemes of rank p2 and p6. By [Pries 2008,
Table 4.4], G4 has Dieudonné module E/E(F + V )⊕ E/E(F3

+ V 3).

We now provide an algorithm to determine the Dieudonné module D(Gc) for all
positive integers c ∈ N following the method of [Oort 2001, Section 9.1].

Proposition 5.8. The Dieudonné module D(Gc) is the E-module generated as a
k-vector space by {X1, . . . , Xc, Y1, . . . , Yc} with the actions of F and V given by

(i) F(Y j )= 0,

(ii) V (Y j )=

{
Y2 j if j ≤ c/2,
0 if j > c/2,

(iii) F(X i )=

{
X j/2 if j is even,
Yc−( j−1)/2 if j is odd,

(iv) V (X j )=

{
0 if j ≤ (c− 1)/2,
−Y2c−2 j+1 if j > (c− 1)/2.

Proof. By definition of Gc, there is a final filtration N1 ⊂ N2 ⊂ · · · ⊂ N2c of D(Gc)

as a k-vector space, which is stable under the action of V and F−1 and with
i = dim(Ni ), such that νi := dim(V (Ni )) = bi/2c. This implies that νi = νi−1 if
and only if i is odd. In the notation of [Oort 2001, Section 9.1], this yields mi = 2i
and ni = 2g− 2i + 1 for 1≤ i ≤ g; also, let

Zi :=

{
X i/2 if i is even,
Yc−(i−1)/2 if i is odd.

By [Oort 2001, Section 9.1], for 1≤ i ≤ g, the action of F is given by F(Yi )= 0 and
F(X i )= Zi and the action of V by V (Zi )= 0 and V (Z2g−i+1)= (−1)i−1Yi . �

More notation is needed to give an explicit description of D(Gc).

Notation 5.9. Let c ∈N be fixed. Let I := { j ∈N | d(c+ 1)/2e ≤ j ≤ c}, which is
a set of cardinality b(c+1)/2c. For j ∈ I , let `( j) be the odd part of j , and let e( j)
be the nonnegative integer such that j = 2e( j)`( j). Let s( j) := c− (`( j)− 1)/2.
One can check that {s( j) | j ∈ I } = I . Also, let m( j) := 2c− 2 j + 1, and let ε( j)
be the nonnegative integer such that t ( j) := 2ε( j)m( j) ∈ I . One can check that
{t ( j) | j ∈ I }= I . Thus, there is a unique bijection ι : I→ I such that t (ι( j))= s( j)
for each j ∈ I .

Proposition 5.10. Recall Notation 5.9. For c ∈ N, the set {X j | j ∈ I } generates
the Dieudonné module D(Gc) as an E-module subject to the relations, for j ∈ I ,
Fe( j)+1(X j )+ V ε(ι( j))+1(X ι( j)) = 0. Also, {X j | j ∈ I } is a basis for the quotient
of D(Gc) by the left ideal D(Gc)(F, V ).



Ekedahl–Oort strata of hyperelliptic curves in characteristic 2 529

Proof. Proposition 5.8 implies that Fe( j)(X j )= X`( j) and F(X`( j))= Ys( j). Also,
V (X j ) = −Ym( j), and so V ε( j)+1(X j ) = −Yt ( j). This yields the stated relations.
To complete the first claim, it suffices to show that the span of {X j | j ∈ I }
under the action of F and V contains the k-module generators of D(Cc) listed
in Proposition 5.8. This follows from the observations that X i = F(X2i ) if
1≤ i ≤ bc/2c, that Yi = V (Yi/2) if i is even, and that Yi = V (−Xc−(i−1)/2) if i is
odd. By [Li and Oort 1998, 5.2.8], the dimension of D(Gc) modulo D(Gc)(F, V )
equals the a-number. Since a = |I | by Corollary 5.3, it follows that the set |I | of
generators of D(Gc) is linearly independent modulo D(Gc)(F, V ). �

Here are some more examples. The columns of the table below list the value of c,
the generators of D(Gc) as an E-module (X i1 − X i2 denotes {X i | i1 ≤ i ≤ i2}), and
the relations among these generators. The last column is the number of summands
of D(Gc) in its decomposition as an E-module (as opposed to as a polarized
E-module). The table can be verified in two ways: first, by checking it with
Proposition 5.10 and second, by computing the action of F and V on a k-basis
for D(Gc), using this to construct a final filtration of D(Gc) stable under V and F−1,
and then checking that it matches the Ekedahl–Oort type of Gc. In Example 5.11,
we illustrate the second method.

c generators relations # summands

5 X3− X5 F X3+ V 3 X5, F3 X4+ V X3, F X5+ V X4 1
6 X4− X6 F3 X4+ V 2 X5, F X5+ V 3 X6, F2 X6+ V X4 1
7 X4− X7 F3 X4+ V X4, F X5+ V X5,

F2 X6+ V 2 X6, F X7+ V 3 X7 4
8 X5− X8 F X5+ V 2 X7, F2 X6+ V X5,

F X7+ V X6, F4 X8+ V 4 X8 2
9 X5− X9 F X5+ V X6, F2 X6+ V 4 X9, F X7+ V 2 X8,

F4 X8+ V X5, F X9+ V X7 1
10 X6− X10 F2 X6+ V X6, F X7+ V X7, F4 X8+ V 2 X8,

F X9+ V 2 X9, F2 X10+ V 4 X10 5

Example 5.11. For c = 7, the group scheme G7 that has Ekedahl–Oort type
[0, 1, 1, 2, 2, 3, 3] is isomorphic to a direct sum of polarized BT1 group schemes
of ranks p2, p4, and p8 and has Dieudonné module

M := E/E(F + V )⊕ E/E(F2
+ V 2)⊕ E/E(V + F3)⊕ E/E(F3

+ V ).

Proof. Let {1A, VA} be the basis of the submodule A = E/E(F + V ) of M,
{1B, VB, V 2

B, F2
B} the basis of the submodule B = E/E(F2

+V 2), {1C , VC , V 2
C , V 3

C}

the basis of the submodule C = E/E(F + V 3), and {1C ′, FC ′, F2
C ′, F3

C ′} the basis of
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the submodule C ′ = E/E(F3
+ V ). The action of Frobenius and Verschiebung on

the elements of these bases is

x 1A VA 1B VB V 2
B FB 1C VC V 2

C V 3
C 1C ′ FC ′ F2

C ′ F3
C ′

V x VA 0 VB V 2
B 0 0 VC V 2

C V 3
C 0 F3

C ′ 0 0 0
Fx VA 0 FB 0 0 V 2

B V 3
C 0 0 0 FC ′ F2

C ′ F3
C ′ 0

To verify the proposition, one can repeatedly apply V and F−1 to construct a
filtration N1 ⊂ N2 ⊂ · · · ⊂ N14 of M as a k-vector space that is stable under the
action of V and F−1 such that i = dim(Ni ). To save space, we summarize the
calculation by listing a generator ti for Ni/Ni−1:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ti V 3
C V 2

C V 2
B VC VA F3

C ′ VB 1C F2
C ′ 1A FB FC ′ 1C ′ 1B

Then one can check that V (Ni )= Nbi/2c and F−1(Ni )= N7+di/2e, which verifies
that the Ekedahl–Oort type of M is [0, 1, 1, 2, 2, 3, 3]. �

Remark 5.12. One could ask when D(Gc) decomposes as much as numerically
possible, in other words, when the a-number equals the number of summands
of D(Gc) in its decomposition as an E-module. For example, D(Gc) has this
property when c ∈ {1, 2, 3, 4, 7, 10} but not when c ∈ {5, 6, 8, 9}. This phenomenon
occurs if and only if the bijection ι from Notation 5.9 is the identity.

Remark 5.13. The group scheme G8 decomposes as the direct sum of two indecom-
posable polarized BT1 group schemes, one whose Ekedahl–Oort type is [0, 0, 1, 1]
and the other whose covariant Dieudonné module is E/E(F4

+ V 4). We take this
opportunity to note that there is a mistake in [Pries 2008, Example in Section 3.3].
The covariant Dieudonné module of I4,3 = [0, 0, 1, 1] is stated incorrectly. To fix
it, consider the method of [Oort 2001, Section 9.1]. Consider the k-vector space of
dimension 8 generated by X1, . . . , X4 and Y1, . . . , Y4. Consider the operation F
defined by F(Yi )= 0 for 1≤ i ≤ 4,

F(X1)= Y4, F(X2)= Y3, F(X3)= X1, F(X4)= Y2.

Consider the operation V defined by

V (X1)= 0, V (X2)=−Y4, V (X3)=−Y2, V (X4)=−Y1,

V (Y1)= Y3, V (Y2)= 0, V (Y3)= 0, V (Y4)= 0.

Thus, D(I4,3) is generated by X2, X3, and X4 modulo the three relations

F X2+ V 2 X4, F2 X3+ V X2, V X3+ F X4.
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5c. Newton polygons. There are several results in characteristic 2 about the Newton
polygons of hyperelliptic (for example, Artin–Schreier) curves X of genus g and 2-
rank 0. For example, [Blache 2012, Remark 3.6] states that if 2n−1

−1≤ g≤ 2n
−2,

then the generic first slope of the Newton polygon of an Artin–Schreier curve of
genus g and 2-rank 0 is 1/n. This statement is generalized to odd primes p in
[Blache 2012, Proposition 3.5]. See also earlier work in [Scholten and Zhu 2002,
Theorem 1.1(III)].

The Ekedahl–Oort type of JX [2] gives information about the Newton polygon
of X but does not determine it completely. Using Corollary 5.3 and [Harashita
2007, Section 3.1 and Theorem 4.1], one can show that the first slope of the Newton
polygon of X is at least 1/n. Since this is weaker than [Blache 2012, Theorem 4.3],
we do not include the details.

More generally, one could consider the case that X is a hyperelliptic k-curve of
genus g and arbitrary p-rank. One could use Theorem 5.2 to give partial information
(namely, a lower bound) for the Newton polygon of X .
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