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We develop the algebra of exponential fields and their extensions. The focus is on
ELA-fields, which are algebraically closed with a surjective exponential map. In
this context, we define finitely presented extensions, show that finitely generated
strong extensions are finitely presented, and classify these extensions. We give an
algebraic construction of Zilber’s pseudoexponential fields. As applications of
the general results and methods of the paper, we show that Zilber’s fields are not
model-complete, answering a question of Macintyre, and we give a precise state-
ment explaining how Schanuel’s conjecture answers all transcendence questions
about exponentials and logarithms. We discuss connections with the Kontsevich–
Zagier, Grothendieck, and André transcendence conjectures on periods, and
suggest open problems.

1. Introduction

An exponential field (or E-field) is a field F of characteristic zero equipped with
a homomorphism expF (also written exp, or x 7→ ex ) from the additive group
Ga(F)= 〈F;+〉 to the multiplicative group Gm(F)= 〈F×; · 〉. The main examples
are the real and complex exponential fields, Rexp and Cexp, where the exponential
map is given by the familiar power series.

Zilber [2005] gave axioms describing particular exponential fields, which he
called “pseudoexponential fields”. His construction is model-theoretic and focuses
mainly on the uncountable setting. In this paper we develop the algebra of expo-
nential fields leading, amongst other things, to an algebraic construction of the
pseudoexponential fields that gives some more information about them.

Some of the concepts in this paper appear also in Zilber’s, but here we present
them in a wider and more natural context. In particular, we do not assume that our
exponential fields satisfy the Schanuel property, so much of what we do applies
unconditionally to the complex setting. The main method of the paper is the use
of a predimension function δ. These functions were introduced by Hrushovski
[1993] for various model-theoretic constructions, but it appears they could have a
significant use in transcendence theory as well.

MSC2010: primary 03C65; secondary 11J81.
Keywords: exponential fields, Schanuel’s conjecture, pseudoexponentiation, transcendence.

943

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2013.7-4


944 Jonathan Kirby

We consider mainly those exponential fields that are algebraically closed and have
a surjective exponential map, in this paper called ELA-fields. In Section 2 we show
that an exponential field F , or even a field with a partially defined exponential map,
can be extended in a free way to an ELA-field and, under some extra assumptions
such as F being finitely generated, this free extension is unique up to isomorphism.

In Section 3 we give a definition of an extension of ELA-fields being finitely
presented. The finite presentations take the form of algebraic varieties that are the
locus of a suitable generating set. Compare the situation of a finitely generated
extension of pure fields, where the extension is determined up to isomorphism
by the ideal of polynomials satisfied by the generators, or equivalently by their
algebraic locus over the base field. The most important extensions of exponential
fields are the so-called strong extensions. In [Kirby 2010a] it was shown that these
are the extensions that preserve the notion of exponential algebraicity. We prove
that a finitely generated, kernel-preserving, strong extension of ELA-fields is a
finitely presented extension. This theorem could be viewed as the analogue for
exponential fields of the Hilbert basis theorem, which implies that any finitely
generated extension of fields is finitely presented.

The brief Section 4 explains the convention for defining finitely presented
ELA-fields (as opposed to finitely presented extensions). With this convention,
it follows at once that, if Schanuel’s conjecture is true, every finitely generated
ELA-subfield of Cexp is finitely presented. We can give a similar, unconditional
result. By [Kirby 2010a, Theorem 1.2], we know that Cexp is a strong extension of
its countable subfield C0 of exponentially algebraic numbers. It is therefore an im-
mediate consequence of Theorem 3.11 that every finitely generated ELA-extension
of C0 within Cexp is a finitely presented extension.

In Section 5 we show that whether or not a finitely presented extension is
strong can be detected from the algebraic variety that gives the presentation, and a
classification is given of all finitely generated strong ELA-extensions.

The analogue of the algebraic closure of a field is the strong exponential-algebraic
closure F∼ of an exponential field F . Zilber’s pseudoexponential fields are the
simplest examples of this construction. The main claim of [Zilber 2005] was that
the uncountable pseudoexponential fields are determined up to isomorphism by
their cardinality. Unfortunately there is a mistake in the proof there. In the proof of
[ibid., Proposition 5.15], there is no reason why A′B ′ should not lie in C , and then
V ′ would not contain V0. Indeed, that proposition as stated is false, because the
definition of finitary used there does not give sufficiently strong hypotheses. The
stronger hypotheses of [ibid., Lemma 5.14] would be enough to prove the main
result, but no correct proof is known to me, even with these hypotheses.1

1 Added in proof: A proof now appears in [Bays and Kirby 2013].



Finitely presented exponential fields 945

In Section 6 we construct F∼ and, under some basic assumptions including
countability, show that it is unique. In particular, we prove that the countable
pseudoexponential fields are determined up to isomorphism by their exponential
transcendence degree. In fact the uniqueness of the pseudoexponential field Bℵ1 of
cardinality ℵ1 then follows by Zilber’s methods, as explained for example in [Kirby
2010b, Theorem 2.1], but the higher cardinalities are still problematic.

In Section 7 we answer a question of Macintyre by showing that Zilber’s pseudo-
exponential fields are not model-complete, and in Section 8 we show that ELA-fields
satisfying the Schanuel Nullstellensatz are not necessarily strongly exponentially-
algebraically closed, in contrast to the situation for pure fields where the Hilbert
Nullstellensatz characterises algebraically closed fields.

In Section 9 we reflect on what the ideas of this paper show for transcendence
problems, and try to give a formal statement expressing the generally accepted
principle that Schanuel’s conjecture answers all transcendence problems about
exponentials and logarithms. We write B to mean a pseudoexponential field of
cardinality 2ℵ0 . Zilber’s conjecture is that Cexp ∼= B, which on the face of it
makes sense only if B is well-defined, currently proved only under the continuum
hypothesis, but the substance of the conjecture is the two assertions that Schanuel’s
conjecture is true and that Cexp is strongly exponentially-algebraically closed, both
of which make sense independently of the uniqueness of B. We explore connections
between Schanuel’s conjecture and conjectures on periods.

Finally, in Section 10 we suggest some open problems.

2. Free extensions

As an intermediate stage in constructing exponential fields we need the notion of a
partial E-field.

Definition 2.1. A partial E-field F consists of a field 〈F;+, · 〉 of characteristic zero,
a Q-linear subspace D(F) of the additive group of the field, and a homomorphism

〈D(F);+〉
expF
−−→ 〈F; · 〉.

D(F) is the domain of the exponential map of F , and I (F)= expF (D(F)) is
the image of the exponential map.

A homomorphism of partial E-fields is a field embedding F
θ
−→ F1 such that

θ(D(F))⊆ D(F1) and expF1
(θ(x))= θ(expF (x)) for every x ∈ D(F).

If X is a subset of a partial E-field F , we define the partial E-subfield of F gener-
ated by X , written 〈X〉F , to have D(〈X〉F ) equal to the Q-span of D(F)∩X , and the
underlying field of 〈X〉F to be the subfield of F generated by D(〈X〉F )∪I (〈X〉F )∪X .
Thus 〈X〉F contains all the exponentials in F of elements of X , but does not contain
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iterated exponentials. A different but equivalent definition of partial E-fields is
given in [Kirby 2010a], where D(F) is given as a separate sort.

In this paper we consider only those partial E-fields F that are algebraic over
D(F)∪ I (F).

Now let F be a partial E-field, x̄ a finite tuple from D(F), and B a subset of
D(F). We define the relative predimension function to be

δ(x̄/B)= td(x̄, exp(x̄)/B, exp(B))− ldimQ(x̄/B)

where td(X/Y )means the transcendence degree of the field extension Q(XY )/Q(Y )
and by ldimQ(X/Y ) we mean the dimension of the Q-vector space spanned by
X ∪ Y , quotiented by the subspace spanned by Y .

Definition 2.2. An extension F ⊆ F1 of partial E-fields is strong, written F C F1,
if and only if δ(x̄/D(F))> 0 for every tuple x̄ from D(F1).

If B is a subset of D(F), we define BC F if and only if 〈B〉F C F .

As explained in [Kirby 2010a], strong extensions are essentially those for which
the notion of exponential algebraicity is preserved, and are thus the most useful
extensions to consider. In this paper we see they are intimately connected with free
or finitely presented extensions.

The following basic properties are easy to verify.

Lemma 2.3 (basic properties of δ and strong extensions).

(1) (Addition property.) If x̄, ȳ ∈ D(F) are finite tuples and B ⊆ D(F), then

δ(x̄ ∪ ȳ/B)= δ(ȳ/B)+ δ(x̄/ȳ ∪ B).

(2) Given a finite tuple x̄ from D(F) and B ⊆ D(F), there is a finite tuple b̄ from
B such that δ(x̄/B)= δ(x̄/b̄).

(3) The identity F ⊆ F is strong.

(4) If F1CF2 and F2CF3 then F1CF3. (That is, the composite of strong extensions
is strong.)

(5) An extension F ⊆ F1 is strong if and only if , the subextension F ⊆ 〈F, x̄〉F1 is
strong for every tuple x̄ from F1.

(6) If F1C F2C · · ·C FnC · · · is an ω-chain of strong extensions then F1C
⋃

n<ω
Fn .

(7) If in addition each Fn CM , then
⋃

n<ω
Fn CM. �

We now explain how exponential maps can be constructed abstractly. Let F
be a field of characteristic zero, and D(F) a Q-subspace. We will construct an
exponential map defined on D(F).
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Construction 2.4. Choose a Q-basis {bi | i ∈ I } of D(F). For each i ∈ I we will
choose ci,1 ∈ F , and we will define exp(bi )= ci,1. The value of exp(bi/m) must
be an m-th root of ci,1, so we have to specify which. Furthermore, as m varies, we
must choose these roots coherently. So in fact for each i ∈ I and m ∈N we must
choose ci,m ∈ F such that cr

i,rm = ci,m for any r,m ∈ N. Every element of D(F)
can be written as a finite sum

∑
ri bi/m for some m ∈N and ri ∈ Z, and we define

exp( 1
m

∑
ri bi )=

∏
cri

i,m . The coherence condition shows that exp is well-defined.

This coherence property for the roots is important enough that we introduce
some terminology for it.

Definition 2.5. Given c1, a coherent system of roots of c1 is a sequence (cm)m∈N

such that for every r,m ∈ N we have cr
rm = cm .

Of course, for the exponential map to be nontrivial we need to have some
elements other than 1 (and 0) that have n-th roots for all n. In this case F will
have to be infinite-dimensional as a Q-vector space, so there will be a vast number
(indeed 2|F |) of different total exponential maps that can be defined on F . Thus, for
example there is no hope of classifying or understanding even all the exponential
maps on Qalg.

We will now explain how to construct exponential fields in as free a way as
possible.

Construction 2.6. Let F be any partial E-field. We construct an extension Fe of
F such that D(Fe)= F . First, embed F in a large algebraically closed field, C. Let
{bi | i ∈ I } be a Q-linear basis for F/D(F). Choose {ci,n | i ∈ I, n ∈N}⊆C such that
the ci,1 are algebraically independent over F , and (ci,n)n∈N is a coherent system of
roots of ci,1 for each i . Each r ∈ F is a finite sum of the form r0+

∑
mi bi/n for some

r0∈D(F), n∈N, and some mi ∈Z; we define exp
(
r0+

1
n

∑
mi bi

)
=expF (r0)

∏
cmi

i,n .
Then let Fe be the subfield of C generated by F ∪ {ci,n | i ∈ I, n ∈ N}.

A straightforward calculation shows that the isomorphism type of the extension
Fe of F does not depend on the choice of C, the choice of the bi , or the choice of
the ci,n .

The exponential map on Fe will be a total map only when F is already a total
E-field (and so Fe

= F). However, we can iterate the construction to get a total
E-field.

Construction 2.7. We write F E for the union of the chain

F ↪→ Fe ↪→ Fee ↪→ Feee ↪→ · · ·

and call it the free (total) E-field extension of F .
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We can also produce E-rings, and algebraically closed E-fields by slight variations
on this method. It is convenient (albeit rather ugly) to introduce some terminology
for the latter.

Definition 2.8. An EA-field is an E-field whose underlying field is algebraically
closed.

Construction 2.9. For any partial E-field F , let Fa be the algebraic closure of F ,
with D(Fa)= D(F).

We write F E A for the union of the chain

F ↪→ Fe ↪→ Fea ↪→ Feae ↪→ Feaea ↪→ · · ·

and call it the free EA-field extension of F .

These constructions can intuitively be seen to be free in that at each stage there
are no unnecessary algebraic or exponentially algebraic relations introduced. In
the case of exponential rings (rather than fields), the analogous construction of the
free E-ring extension can be seen to have the right category-theoretic universal
property of a free object. In [Macintyre 1991], a universal property of the free
E-field is given in terms of E-ring specialisations. The extension F E A has nontrivial
automorphisms over F , so cannot have a category-theoretic universal property, but
later we prove uniqueness statements about these extensions making the intuitive
notion of freeness precise.

Logarithms. A logarithm of an element b of an exponential field F is just some
a such that exp(a) = b. Of course such a logarithm will only exist if b is in
the image of the exponential map, and will be defined only up to a coset of the
kernel. In this algebraic setting there is no topology to make sense of a branch of
the logarithm function, as in the complex case. We want to consider exponential
fields, like Cexp, in which every nonzero element has a logarithm, so we extend our
terminology conventions.

Definition 2.10. An L-field is a partial exponential field in which every nonzero
element has a logarithm. An EL-field is a (total) exponential field in which every
nonzero element has a logarithm. It is an LA-field or ELA-field, respectively, if, in
addition, it is algebraically closed.

The additive group of a field of characteristic zero is just a Q-vector space,
whereas the multiplicative group has torsion, the roots of unity, so an L-field must
have nontrivial kernel. The most important case is when the kernel is an infinite
cyclic group.

Construction 2.11. Let Q0 be the partial E-field with underlying field Q, and
D(Q0)={0}. Write Qab for the maximal abelian extension of Q, given by adjoining
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all roots of unity. Let Qab(τ ) be a field extension with τ a single element, possibly in
Qab but nonzero. Let CKτ be the partial E-field with underlying field Qab(τ ), with
D(CKτ ) the Q-vector space spanned by τ and the exp(τ/m) forming a coherent
system of primitive m-th roots of unity. Then CKτ is defined uniquely up to
isomorphism by the minimal polynomial of τ over Q. The letters “CK” stand for
“cyclic kernel”. In the special case where τ is transcendental, we write SK for CKτ ,
meaning “standard kernel”.

More generally, following Zilber we say that a partial exponential field F has full
kernel if the image of the exponential map contains the subgroup µ of all roots of
unity (so, in particular, F extends Qab). The next proposition is implicit in [Zilber
2005] and shows that the terminology is justified because the property of F having
full kernel depends only on the isomorphism type of the kernel of the exponential
map as an abelian group.

Proposition 2.12. Let F be a partial E-field extending Qab, and let K be the kernel
of its exponential map. Then the following are equivalent.

(1) F has full kernel.

(2) QK/K ∼= µ.

(3) For each n ∈ N+, K/nK is a cyclic group of order n.

(4) For each n ∈ N+, |K/nK | = n.

(5) 〈K ;+〉 is elementarily equivalent to 〈Z;+〉.

Furthermore, if F is a field extending Qab, and K is a subgroup of its additive group
that satisfies the equivalent properties (2)–(5), then there is a partial exponential
map on F with kernel K .

We give the proof for the sake of completeness.

Proof. Note that for x ∈ D(F), we have expF (x) ∈ µ if and only if x lies in the Q-
linear span of the kernel. Thus (1)=⇒ (2). But alsoµ has no proper self-embeddings,
so (2) =⇒ (1).

Consider the “multiply by n map” n : QK → QK . For any x ∈ QK , exp(x)
lies in the n-torsion of QK/K if and only if nx ∈ K , so the n-torsion group of
QK/K is isomorphic to n−1K/K . Since QK is divisible and torsion-free, this
is isomorphic under the multiply by n map to K/nK . But the n-torsion of µ is
the cyclic group of order n, so we have (2) =⇒ (3). In fact, µ is defined up to
isomorphism by being a torsion abelian group with this n-torsion for each n, so (3)
=⇒ (2). Clearly (3) =⇒ (4). For the converse, it suffices to prove it where n = pr ,
a prime power. But then we have pr elements of K/pr K of order dividing pr and
only pr−1 have order dividing pr−1, and hence there is an element of order pr , so
K/pr K is cyclic of order pr .
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Property (4), together with being a torsion-free abelian group, gives a complete
axiomatisation of the elementary theory of 〈Z;+〉 by Szmielew’s theorem [Hodges
1993, Theorem A.2.7], so (4)⇐⇒ (5).

For the “furthermore” statement, by property (2) there is a homomorphism from
QK onto µ with kernel K that makes F into a partial E-field with full kernel. �

In this paper we are mainly interested in exponential fields with a surjective
exponential map, so most partial E-fields we consider will have full kernel. We also
assume that extensions of partial E-fields are kernel-preserving (that is, do not add
new kernel elements) unless otherwise stated.

Any partial E-field F with full kernel can be extended to an ELA-field without
adding new kernel elements. Indeed, we can produce free L-field, LA-field, EL-field,
and ELA-field extensions of F , written F L , F L A, F E L , and FELA in analogy
to before.
Construction 2.13. Let F be a partial E-field with full kernel. We start by con-
structing a partial E-field extension F l of F in which every element of F has a
logarithm, and there are no new kernel elements. Embed F in a large algebraically
closed field, C. Inside C we have F rad, the field extension of F obtained by adjoining
all roots of all elements of F and iterating this process. The multiplicative group
(F rad)× is divisible, and the image expF (D(F)) contains the torsion and is divisible,
so the quotient (F rad)×/ expF (D(F)) is a Q-vector space.

Choose (bi )i∈I from F such that the cosets bi · expF (D(F)) form a Q-linear
basis of (F rad)×/ expF (D(F)). In other words, the bi form a multiplicative basis of
(F rad)× over expF (D(F)). Now choose (ai )i∈I from C, algebraically independent
over F , and for each i ∈ I , choose a coherent system of roots (bi,m)m∈N of bi .

Let D(F l) be the Q-subspace of C spanned by D(F) and the ai . Define
exp(ai/m) = bi,m and extend the exponential map appropriately. Let F l be the
subfield of C generated by D(F l) and exp(D(F l)). Then every element of F has a
logarithm in F l . The isomorphism type of F l may depend on the choices made,
but we write F l for any resulting partial E-field.

Now we define FELA to be the union of any chain

F ↪→ Fe ↪→ Fel ↪→ Fela ↪→ Felae ↪→ Felael ↪→ · · ·

iterating the three operations. The chain and its union are not necessarily uniquely
defined because the operation F 7→ F l is not necessarily uniquely defined. Where
the union is uniquely defined we call it the free ELA-field extension of F . The
extensions F L , F L A, and F E L of F are defined in the obvious way.

Lemma 2.14. For any partial E-field, F , the extensions F ↪→ Fe, F ↪→ Fa ,
F ↪→ F E and F ↪→ F E A are strong. If F l , FELA are any results of Construction 2.13
then the extensions F ↪→ F l and F ↪→ FELA are strong.
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Proof. By construction, δ(ȳ/D(F)) = 0 for any ȳ from D(Fe). Hence F C Fe.
F C F l by the same argument. It is immediate that F C Fa because the domain of
the exponential map does not extend. The rest follows from Lemma 2.3. �

In Construction 2.6 of Fe from F we made choices, but in fact the isomor-
phism type of Fe as an extension of F did not depend on those choices. In
Construction 2.13 of F l and FELA we again made choices, but in this case the
isomorphism types of the extensions do in general depend on those choices. Before
giving conditions where the extensions do not depend on the choices, so are well-
defined, we illustrate the problem. Let F = CKa

τ , so D(F) is spanned by τ . We
want to define an extension F1 of F in which 2 has a logarithm. So let F1 = F(a)
as a field, with a transcendental over F . We define exp(a/m) to be an m-th root
of 2. There is no problem in doing this, but all of these roots lie in F because it
is algebraically closed, so if we make one choice of roots and produce F1, and
then make a different choice of roots and produce F2, then F1 and F2 will not be
isomorphic as partial E-field extensions of F . In fact these different choices will
all be isomorphic as partial exponential fields and even as extensions of CKτ . The
problem is just that we had fixed all the roots of 2 in F before we defined the
logarithms of 2. The way to solve the problem is to put in the logarithms earlier in
the construction. In fact it is often possible to do this because of an important fact
about pure fields known as the thumbtack lemma. (An explanation of the name can
be found in [Baldwin 2009, p. 19].)

The thumbtack lemma was proved by Zilber [2006, Theorem 2] (with a correction
to the statement and proof by Bays and Zilber [2011, Theorem 3]). We will give
three versions of it in this paper as we need them. All are special cases of Zilber’s
theorem (cases that are not affected by the correction in the later paper), but we
prefer to state exactly the form we need each time. Given an element b of a field,
we write

√
b for the set of all the m-th roots of b for all m ∈ N.

Fact 2.15 (thumbtack lemma, version 1). Let F =Qab(a1, . . . , ar ,
√

b1, . . . ,
√

br ),
an extension of Qab by finitely many generators together with all the roots of some
of those generators. Now suppose that c lies in some field extension of F and is
multiplicatively independent from b1, . . . , br . Then there is m ∈N and an m-th root
cm of c such that there is exactly one isomorphism type of a coherent system of roots
of cm over F. That is, if F1 and F2 are both obtained from F by adjoining cm and
any coherent system of roots of cm , then there is an isomorphism from F1 to F2 over
F that sends the chosen system of roots in F1 to the chosen system in F2.

Proof. This is the special case of [Zilber 2006, Theorem 2] with n= 0 and l = 1. �

Note that if c is transcendental over F then the result is trivial. However, when
c is algebraic over F then there is something to prove, and the condition that c
is multiplicatively independent of the bi is essential. Note also that we cannot
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necessarily take m = 1. For example, if F = Qab and c = 9 then F certainly
knows the difference between ±3, so we must take m > 2. Another version of the
thumbtack lemma applies to extensions of an algebraically closed field.

Fact 2.16 (thumbtack lemma, version 2). Let F = K (a1, . . . , ar ,
√

b1, . . . ,
√

br ),
where K is an algebraically closed field of characteristic zero. Suppose that c lies in
some field extension of F and is multiplicatively independent from K× · 〈b1, . . . , br 〉.
Then there is m ∈ N and an m-th root cm of c such that there is exactly one
isomorphism type of a coherent system of roots of cm over F.

Proof. This is the case n = 1 of Fact 3.7. See the proof there. �

Definition 2.17. Let F ⊆ F1 be an extension of partial E-fields. Then F1 is finitely
generated as an extension of F if and only if there is a finite subset X ⊆ F1 such
that F1 = 〈F ∪ X〉F1 .

Now let F be an ELA-field, and X ⊆ F a subset. We define 〈X〉ELA
F to be the

smallest ELA-subfield of F that contains X . Note that it always exists, as the
intersection of ELA-subfields of F is again an ELA-subfield of F .

Note also that 〈X〉ELA
F and (〈X〉F )ELA have different meanings. The first is the

smallest ELA-subfield of F that contains X , and the second is a free ELA-field
extension of the smallest partial E-subfield of F containing X , which may not be
uniquely defined. In favourable circumstances (as below) the latter is well-defined
and then the two ELA-fields will sometimes be isomorphic, but neither is generally
true.

We now give sufficient conditions on F for FELA to be well-defined. For example,
from the first case we deduce that CKELA

τ is well-defined. We only consider the
case where F is countable here. The general case seems to be more difficult.

Theorem 2.18. If F is a partial E-field with full kernel that is either finitely gen-
erated or a finitely generated extension of a countable LA-field, F0, and F C K ,
F CM are two strong extensions of F to ELA-fields that do not extend the kernel,
then 〈F〉ELA

K
∼= 〈F〉ELA

M as extensions of F. In particular:

(1) The free ELA-closure FELA of F is well-defined.

(2) The extension F C K factors as F C FELAC K .

Proof. Statements (1) and (2) are immediate from the main part of the theorem. For
the main part, enumerate 〈F〉ELA

K as s1, s2, s3, . . . , such that for each n ∈ N, either

(i) sn+1 is algebraic over F ∪ {s1, . . . , sn}, or

(ii) sn+1 = expK (a) for some a ∈ F ∪ {s1, . . . , sn}, or

(iii) expK (sn+1)= b for some b ∈ F ∪ {s1, . . . , sn}.
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This is possible by the definition of 〈F〉ELA
K . We will inductively construct chains

of partial E-subfields

F = K0 ⊆ K1 ⊆ K2 ⊆ · · · of K and F = M0 ⊆ M1 ⊆ M2 ⊆ · · · of M,

and nested isomorphisms θn : Kn→Mn such that for each n ∈N+ we have sn ∈ Kn ,
Kn C K and Mn CM . We also ensure that, as a pure field, each Kn has the form
F0(ᾱ,

√
β̄), where F0 is either Qab or a countable algebraically closed field and ᾱ

and β̄ are finite tuples.
We start by taking θ0 to be the identity map on F . Now assume we have Kn ,

Mn , and θn .

Case 1. sn+1 is algebraic over Kn (including the case where sn+1 ∈ Kn). Let p(X)
be the minimal polynomial of sn+1 over Kn . The image pθ of p is an irreducible
polynomial over Mn , so let t be any root of pθ in M . Let Kn+1 = Kn(sn+1),
Mn+1 = Mn(t), and let θn+1 be the unique field isomorphism extending θn and
sending sn+1 to t . We make Kn+1 and Mn+1 into partial exponential fields by taking
the graph of exponentiation to be the graph of expK or expM intersected with K 2

n+1
or M2

n+1, respectively. Suppose that (a, expK (a)) ∈ K 2
n+1. Since Kn C K , we have

td(a, expK (a)/Kn)− ldimQ(a/D(Kn)) > 0. But Kn+1 is an algebraic extension
of Kn , so it follows that ldimQ(a/D(Kn)) = 0, that is, that a ∈ D(Kn). Hence
D(Kn+1) = D(Kn). The same argument shows that D(Mn+1) = D(Mn). Now
if x̄ is any tuple from K , we have δ(x̄/D(Kn+1)) = δ(x̄/D(Kn)) > 0, and hence
Kn+1C K , and similarly Mn+1CM . It is immediate that the pure field Kn+1 is of
the form F0(ᾱ,

√
β̄) because Kn is of that form.

Case 2. sn+1 is transcendental over Kn and sn+1 = expK (a) for some a ∈ Kn .
Let Kn+1 = Kn(

√
sn+1) and Mn+1 = Mn(

√
expM(θn(a))). Extend θn by defining

θn+1(expK (a/m))= expM(θn(a)/m), and extending to a field isomorphism. This is
possible because sn+1 is transcendental over Kn and expM(θn(a)) is transcendental
over Mn (the latter because Mn CM), and so there is a unique isomorphism type
of a coherent system of roots of sn+1 over Kn , and of expM(θn(a)) over Mn . Then
td(Kn+1/Kn)= 1, a ∈ D(Kn+1)r D(Kn), and Kn C K , so D(Kn+1) is spanned
by D(Kn) and a. Similarly, D(Mn+1) is spanned by θn(a) over D(Mn), so θn+1 is
an isomorphism of partial E-fields.

Now if x̄ is any tuple from K , we have

δ(x̄/D(Kn+1))= δ(x̄, a/D(Kn))− δ(a/D(Kn))= δ(x̄, a/D(Kn))− 0> 0

as Kn C K , so Kn+1C K . The same argument shows that Mn+1CM . Again, it is
immediate that the pure field Kn+1 is of the required form.

Case 3. sn+1 is transcendental over Kn , not of the form expK (a) for any a ∈ Kn ,
but expK (sn+1)= b for some b ∈ Kn . By hypothesis, Kn has the form F0(ᾱ,

√
β̄)
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for some finite tuples ᾱ, β̄, and F0 either Qab or a countable algebraically closed
field. Hence, by either version 1 or version 2 of the thumbtack lemma, there is
N ∈ N+ and c such that cN

= b and there is a unique isomorphism type of a
coherent sequence of roots of c over Kn . Let t ∈ M be such that expM(t)= θn(c).
Let Kn+1 = Kn(sn+1,

√
c) and Mn+1 = Mn(t,

√
θn(c)). Extend θn by defining

θn+1(sn+1) = Nt , and θn+1(expK (sn+1/Nm)) = expM(t/m), and extending to a
field isomorphism. This is possible by the choice of N , the fact that sn+1 is
transcendental over Kn and (since MnCM) the fact that t is transcendental over Mn .
As in Case 2 above, we have Kn+1C K , Mn+1CM , and the pure field Kn+1 of the
required form.

Conclusion. That completes the induction. Let Kω=
⋃

n∈N Kn . Then Kω=〈F〉ELA
K

because Kω is an ELA-subfield of K containing F and is the smallest such because
at each stage we add only elements of K that must lie in every ELA-subfield of
K containing F . The union of the maps θn gives an embedding of Kω into M ,
and, for the same reason, the image must be 〈F〉ELA

M . Hence 〈F〉ELA
K
∼= 〈F〉ELA

M
as required. �

3. Finitely presented extensions

We say that a partial E-field F is finitely generated if there is a finite subset X of F
such that F = 〈X〉F . We restrict now to those partial E-fields F that are generated
as fields by D(F)∪ I (F) (call them exponential-graph-generated). Similarly, an
ELA-field F is finitely generated as an ELA-field if F = 〈X〉ELA

F for some finite
subset X of F . An extension F ⊆ F1 of ELA-fields is finitely generated if and
only if there is a finite subset X of F1 such that F1 = 〈F ∪ X〉ELA

F1
, and similarly for

partial E-fields.
Let F ⊆ F1 be a finitely generated extension of exponential-graph-generated

partial E-fields, say generated by a1, . . . , an ∈ D(F1). Then the isomorphism type
of the extension is given by the algebraic type of the infinite tuple (ā, exp(ā/m))m∈Z

over F . Let

I (ā)=
{

f ∈ F[X̄ , (Ym,i )m∈Z,i=1,...,n]
∣∣ f (ā, (eai/m))= 0

}
and for m ∈ N+, let

Im(ā)=
{

f ∈ F[X̄ , Ȳm, Ȳ−1
m ]

∣∣ f (ā/m, eā/m, e−ā/m)= 0
}
.

The ideal I (ā) contains all the coherence polynomials of the form Y r
mr,i−Ym,i for

each m, r ∈Z, and each i =1, . . . , n, which force each sequence eai , eai/2, eai/3, . . .

to be a coherent system of roots. Including the negative powers ensures that they
are nonzero. The ideal I (ā) determines all the ideals Im(ā) and if m1 divides m2

then Im1(ā) is determined by Im2(ā).
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Definition 3.1. An ideal I of the polynomial ring F[X̄ , (Ym,i )m∈Z,i=1,...,n] is addi-
tively free if and only if it does not contain any polynomial of the form

∑n
i=1 ri X i−c

with the ri ∈ Z, not all zero, and c ∈ D(F). It is multiplicatively free if and only
if it does not contain any polynomial of the form

∏n
i=1 Y ri

1,i − d with the ri ∈ Z,
not all zero, and d ∈ exp(D(F)). Similarly we say that Im is additively free or
multiplicatively free if it does not contain any polynomials of these forms.

If F ⊆ F1 is a finitely generated extension of exponential-graph-generated partial
E-fields, we may choose the generators a1, . . . , an to be Q-linearly independent
over D(F), and this corresponds to the ideal I (ā) being additively free. Conversely,
if I is any prime ideal of the polynomial ring F[X̄ , Ȳ1, Ȳ2, Ȳ3, . . .] that contains
the coherence polynomials and is additively free, then it defines an extension FI

of F , the field of fractions of the ring F[X̄ , Ȳ1, Ȳ2, Ȳ3, . . . ]/I , with exponentiation
defined in the obvious way. All we have really done is translated Construction 2.4
into the language of ideals.

Lemma 3.2. If I is a prime ideal containing the coherence polynomials and is
additively free, then the extension FI it defines has the same kernel as F if and only
if I is multiplicatively free.

Proof. Write ai for the image of X i in FI . If I is not multiplicatively free then
for some ri ∈ Z, not all zero, and some c ∈ D(F), we have

∏n
i=1 eri ai = ec, so

c−
∑n

i=1 ri ai lies in the kernel of expFI
. Since I is additively free, this element

does not lie in D(F), in particular it does not lie in the kernel of expF . Conversely,
if I is multiplicatively free and exp

(
c+ 1/m

∑n
i=1 ri ai

)
= 1 with c ∈ D(F) and

m, ri ∈ Z, then
∏n

i=1 exp(ai )
ri = exp(c)m , so ri = 0 for each i , and c lies in the

kernel of expF . �

Definition 3.3. We say that an extension F ⊆ F1 of partial E-fields is finitely
presented if and only if it has a finite generating set a1, . . . , an , which is Q-linearly
independent from D(F), such that I (ā) is generated as an ideal by the coherence
polynomials together with a finite set of other polynomials.

Definition 3.4. An additively free prime ideal J of F(X̄ , Ȳ1, Ȳ−1
1 ) is said to be

Kummer-generic if and only if there is only one additively free prime ideal I of

F[X̄ , (Ym,i )m∈Z,i=1,...,n],

containing the coherence polynomials, such that J = I1, as defined above.

The term Kummer-generic is due to Martin Hils [2012, p. 10]. The usage here is
not exactly the same as in that paper, because there they consider only adding new
points to the multiplicative group, whereas here we are adding ā to the additive
group as well as eā to the multiplicative group. The connection with Kummer
theory can be seen from [Bays and Zilber 2011, Lemma 5.1].
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Lemma 3.5. If F ⊆ F1 is a finitely presented extension of partial E-fields, then it
has a generating set a′1, . . . , a′n such that the ideal I1(ā′) is Kummer-generic.

Proof. Let g1, . . . , gr ∈ I (ā), together with the coherence polynomials, be a
generating set for I (ā). Let N ∈N be the least common multiple of the m such that
some variable Ym,i occurs in some g j . Then I (ā) is determined by IN (ā). Take
ā′ = ā/N , so I1(ā′)= IN (ā). Then I1(ā′) is Kummer-generic, as required. �

Example 3.6. Take an extension of an EA-field F generated by a1, a2, such that
ea1/2 = a2, ea2 = a1+ 1. Then

I1 = 〈Y1,1 = X2
2, Y1,2 = X1+ 1〉 and I2 = 〈Y2,1 = X2, Y 2

2,2 = X1+ 1〉.

In this case, I1 is not Kummer-generic because it does not resolve whether
ea1/2 =±a2.

There are finitely generated kernel-preserving extensions of some partial E-fields
that are not finitely presented. However, another version of the thumbtack lemma
gives conditions when this pathology does not occur.

Fact 3.7 (thumbtack lemma, version 3). Let F = K (a1, . . . , ar ,
√

b1, . . . ,
√

br ),
where K is an algebraically closed field of characteristic zero. Suppose that
c1, . . . , cn lie in some field extension of F and are multiplicatively independent from
K× ∪ {b1, . . . , br }. Then there is N ∈ N and N-th roots c′i of ci such that there is
exactly one isomorphism type over F of an n-tuple of coherent systems of roots of
the (c′i ).

Proof. It is enough to prove it in the case where K has finite transcendence degree,
since if two tuples of coherent systems of roots are not isomorphic over F then
that will be witnessed over a finite transcendence degree subfield. We show how it
follows from [Zilber 2006, Theorem 2] in this case. Let P be the field Q(ā) with a
transcendence base of K adjoined. We take our b̄ as the ā from Zilber’s theorem
and our c̄ as Zilber’s b̄. Then we take L1 = K , and apply Zilber’s theorem with
n = 1. �

As an immediate corollary, we have:

Corollary 3.8. If F is an LA-field, F1 is a finitely generated partial E-field extension
of F , and F2 is a finitely generated partial E-field extension of F1, which does not
extend the kernel, then F2 is a finitely presented extension of F1. In particular,
every finitely generated kernel-preserving partial E-field extension of an ELA-field
is finitely presented.

Our main interest is not with partial E-fields, but with ELA-fields.

Definition 3.9. A finitely generated extension F ⊆ F1 of countable ELA-fields is
said to be finitely presented if and only if there is a finite generating set ā such that,
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taking K = 〈F, ā〉F1 , the partial E-field extension of F generated by ā, we have
F1 ∼= K ELA.

Note that K ELA is well-defined by Theorem 2.18. From Construction 2.4 it is
clear that most finitely generated extensions of ELA-fields are not finitely presented.
Indeed there are only countably many finitely presented extensions of a given
countable ELA-field, but 2ℵ0 finitely generated extensions.

We introduce a notation for finitely presented extensions. Since these are given by
Kummer-generic ideals I1, which are ideals in a polynomial ring with finitely many
indeterminates, we can consider instead their associated varieties as subvarieties of
(Ga×Gm)

n .

Definition 3.10. Let F be an ELA-field. An irreducible subvariety V of (Ga×Gm)
n

defined over F is said to be additively free, multiplicatively free, and Kummer-
generic if and only if the corresponding ideal I (V ) is.

Suppose that V satisfies all three conditions. Then there is a uniquely determined
partial E-field extension K of F that is generated by a tuple (ā, eā) that is generic
in V over F . We write F |V , read “F extended by V ”, for the ELA-extension K ELA

of F .

Theorem 3.11. Let F C F1 be a finitely generated kernel-preserving strong exten-
sion of ELA-fields. Then F1 is a finitely presented extension of F.

Proof. Let ā be a finite set of generators of F1 over F . By extending ā if
necessary, we may assume that 〈F, ā〉F1 C F1. By Corollary 3.8, the extension
F ⊆ 〈F, ā〉F1 is a finitely presented extension of partial E-fields. By Theorem 2.18,
F1 ∼= (〈F, ā〉F1)

ELA, so is a finitely presented ELA-extension of F . �

Note that there are finitely generated strong extensions of partial E-fields, of
E-fields, of EA-fields, and of EL-fields that are not finitely presented, due to the
issue of uniqueness of coherent systems of roots. This is the main reason why we
work with ELA-fields. It is also important that the kernel does not extend, since if
a is a new kernel element then the values of exp(a/m) for m ∈ N+ cannot all be
specified by a finite list of equations.

4. Finitely presented ELA-fields

So far we have defined finitely presented extensions of ELA-fields, but it is natural
also to ask about finitely presented ELA-fields. The useful convention is as follows.

Definition 4.1. An ELA-field F is said to be finitely presented if and only if there
is a finitely generated partial E-field F0 (with full kernel) such that F = FELA

0 .

Note that a finitely presented ELA-extension of a finitely presented ELA-field
is still finitely presented, since if F = FELA

0 , V ⊆ (Ga×Gm)
n is defined over F ,
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additively free, multiplicatively free, and Kummer-generic, and (ā, eā)∈V generates
the extension F ⊆ F |V and F1 = 〈F0 ∪ ā〉F |V , then F |V ∼= FELA

1 .
The definition is just a convention since there is no way to specify any partial

E-field with full kernel within the category of partial E-fields, just by finitely many
equations between a given set of generators. Within the subcategory of partial
E-fields with full kernel, one might view the CKτ as finitely presented, with explicit
finite presentations

exp(τ/2)=−1, f (τ )= 0,

where f is the minimal polynomial of the cyclic generator τ . However it does not
follow that exp(τ/m) is a primitive m-th root of 1 for each m and this cannot be
specified by finitely many polynomial equations, for example τ/p could be the
cyclic generator for any odd prime p. On the other hand, within the category of
partial E-fields with cyclic kernel and named generator τ , the minimal polynomial
of τ does indeed determine CKτ precisely. So the matter of what constitutes a finite
presentation is somewhat dependent on the axioms specifying the category, and the
convention in Definition 4.1 is the useful one for the purposes of this paper.

5. Classification of strong extensions

It follows from Theorem 3.11 that finitely generated kernel-preserving strong
extensions of ELA-fields are all of the form F C F |V , where V is additively and
multiplicatively free, and Kummer-generic. We next discuss the properties of the
varieties V that occur in this way.

Let G = Ga × Gm. Each matrix M ∈ Matn×n(Z) defines a homomorphism
M : Gn

→ Gn by acting as a linear map on Gn
a and as a multiplicative map on Gn

m.
If V ⊆ Gn , we write M ·V for its image. Note that if V is a subvariety of Gn , then
so is M · V .

Definition 5.1. An irreducible subvariety V of Gn is rotund if and only if for every
matrix M ∈Matn×n(Z),

dim M · V > rk M.

A reducible subvariety is rotund if and only if at least one of its irreducible compo-
nents is rotund.

A subvariety V of Gn is perfectly rotund if and only if it is irreducible, dim V =n,
for every M ∈Matn×n(Z) with 0< rk M < n,

dim M · V > rk M + 1,

and also V is additively free, multiplicatively free, and Kummer-generic.
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Note that a reducible subvariety may satisfy the dimension property of rotundity
without being rotund. For example, take n = 2, V1 given by x1 = y1 = 1, V2 given
by x2 = y2 = 1, and V = V1 ∪ V2.

Proposition 5.2. Let F ⊆ F |V be an extension of ELA-fields, with V additively
and multiplicatively free, and Kummer-generic. Then the extension is strong if and
only if V is rotund.

In the proof, and subsequently, we will use the concept of the locus of a tuple.
If F ⊆ F1 is a field extension and ā ∈ Fn

1 , then the locus of ā over F , written
LocF (ā) or Loc(ā/F), is the smallest Zariski-closed subset of Fn

1 containing ā that
is defined over F .

Proof of Proposition 5.2. Let ā be the tuple generating F |V over F such that
(ā, eā) ∈ V . Suppose F C F |V , let M ∈ Matn×n(Z), and let b̄ = Mā. Then
LocF (b̄, eb̄)= M · V and ldimQ(b̄)= rk M , so

dim M · V − rk M = δ(b̄/F)> 0

and hence V is rotund.
Conversely, suppose that V is rotund, let F1 = 〈F, ā〉F |V , the partial E-field

extension of F generated by ā, and let b̄ be any tuple from D(F1). The tuple ā spans
D(F1)/F , so there is M ∈Matn×n(Z) such that there is an equality of Q-vector
spaces 〈Mā〉/F = 〈b̄〉/F . Then

δ(b̄/F)= δ(Mā/F)= dim M · V − rk M > 0

so F C F1. But F |V = FELA
1 , so F C F |V as required. �

Definition 5.3. A strong extension F C F1 of ELA-fields is simple if and only if
whenever F C F2C F1 is an intermediate ELA-field then F2 = F or F2 = F1.

It is easy to see that every simple extension of ELA-fields is finitely generated.
For, suppose ā is a nonempty finite tuple from F1 r F . Then there is a finite tuple
ā′, extending ā, such that 〈F, ā′〉F1 C F1. Then F C F2 := 〈F, ā′〉ELA

F1
and F2C F1,

so by simplicity F2 = F1 and the extension is finitely generated. However, simple
extensions are not necessarily generated by a single element.

It is important to distinguish between exponentially algebraic and exponentially
transcendental extensions. The full definition of exponential algebraicity is given
in [Kirby 2010a], but all we will use is the following fact:

Fact 5.4 [Kirby 2010a, Theorem 1.3]. Let F be an E-field and suppose C C F is
some strong subset, and ā is a finite tuple from F. Then the exponential transcen-
dence degree of ā over C in F satisfies

etdF (ā/C)=min
{
δ(ā, b̄/C)

∣∣ b̄ is a finite tuple from F
}
.
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Exponential transcendence degree is the dimension notion of a pregeometry,
analogous to transcendence degree in pure fields. An element a is exponentially
algebraic over C if and only if etdF (a/C)= 0.

Lemma 5.5. There is a unique simple exponentially transcendental extension of
any ELA-field.

Proof. Let FCF1 be simple, with a∈ F1, exponentially transcendental over F . Then
td(a, ea/F) = 2, so the partial E-field extension 〈F, a〉F1 is determined uniquely
up to isomorphism. But 〈F, a〉F1 C F1 by the above characterisation of exponen-
tial transcendence degree so, by Theorem 2.18, 〈F, a〉ELA

F1
∼= (〈F, a〉F1)

ELA. Then
〈F, a〉ELA

F1
C F1, so 〈F, a〉ELA

F1
= F1 because the extension is simple. �

Note that if a is exponentially transcendental over F then Loc(a, ea/F) = G
(recall that G =Ga×Gm), so the simple exponentially transcendental extension of
F can be written in our notation as F |G.

Proposition 5.6. If V is perfectly rotund then the strong extension of ELA-fields
F C F |V is simple and exponentially algebraic.

Conversely, if FC F ′ is a simple, exponentially algebraic extension of ELA-fields
then F ′ ∼=F F |V for some perfectly rotund V .

Proof. Let ā be the tuple generating F |V over F such that (ā, eā) ∈ V , and let
F1 = 〈F, ā〉F |V , the partial E-field extension of F generated by ā.

Since V is rotund and additively and multiplicatively free, F C F |V is exponen-
tially algebraic if and only if dim V = n. Now suppose F C F2C F |V , a proper
intermediate ELA-field. Then (F2 ∩ D(F1))/F is a nontrivial proper subspace
of D(F1)/F , which must be the span of Mā for some M ∈ Matn×n(Z), with
0< rk M < n. Since V is rotund, dim M · V > rk M . Extend Mā to a spanning set
Mā, b̄ of D(F1)/F . Then δ(b̄/F,Mā)> 0, because F2C F |V . But

δ(b̄/F,Mā)= td(b̄, eb̄/F,Mā, eMā)− ldimQ(b̄/F,Mā)

= [n− dim M · V ] − [n− rk M]

so dim M · V 6 rk M . Thus dim M · V = rk M , and V is not perfectly rotund.
For the converse, choose ā a tuple of smallest length that generates F ′ over F and

such that F1 := 〈F, ā〉F ′ C F ′, and let V = Loc(ā, eā/F)⊆ Gn . Then F ′ ∼= FELA
1 .

Since n is minimal, V is additively and multiplicatively free. By replacing ā by
ā/m for some m ∈N, we may assume V is Kummer-generic. Since the extension is
strong and exponentially algebraic, V is rotund and dim V = n. If V is not perfectly
rotund then there is a matrix M with 0 < rk M < n such that dim M · V = rk M .
Let F2 = 〈F,Mā〉ELA

F ′ . Then F C F2 C F ′, but F2 6= F and F C F ′ is simple, so
F2 = F ′. But F2 is generated by Mā, which is Q-linearly dependent over F , so by
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a basis for it that is a tuple shorter than ā. This contradicts the choice of ā. So V is
perfectly rotund. �

We now consider the problem of when two extensions F |V and F |W are
isomorphic. Suppose ā is a generator of F |V , with (ā, eā) ∈ V . Then if b̄ is a
different choice of basis of the extension, so F ∪ b̄ has the same Q-linear span as
F ∪ ā, and W = Loc(b̄, eb̄/F), then clearly F |W ∼= F |V , but there is no reason
why W should be equal to V . Essentially this is the only way an isomorphism can
happen.

Definition 5.7. Suppose V ⊆ Gn and W ⊆ Gm are two perfectly rotund varieties,
defined over F . Write V ∼F W if and only if n=m, there are M1,M2 ∈Matn×n(Z)

of rank n, and there is c̄ ∈ Fn , such that M1 · V = M2 · W + (c̄, ec̄) (where +
means the group operation in Gn , so multiplication on the Gm coordinates), and
furthermore M1 · V is Kummer-generic.

Proposition 5.8. If V and W are perfectly rotund and defined over F then

F |V ∼=F F |W if and only if V ∼F W.

Proof. Firstly suppose that V ∼F W , and let V ′ = M1 · V , where M1 is as above.
Let K = 〈F, ā〉F |V , where (ā, eā) ∈ V is the generating tuple. Let b̄ = M1ā. Then
〈F, b̄〉F |V = K , and (b̄, eb̄) is generic in V ′. Furthermore, since V ′ is Kummer-
generic (by assumption), K is well defined by V ′. Hence F |V ∼= F |V ′. Similarly,
translating V ′ to V ′−(c̄, ec̄) for some c̄∈ Fn does not change K . So F |V ∼=F F |W .

Conversely, suppose F |V ∼= F |W . Let (ā, eā) ∈ V be a generating tuple for
F |V . Let F1= 〈F, ā〉F |V , and write F |V as the union of a chain of partial E-fields

F C F1C F2C F3C · · · ,

where for n ∈ N+ we have ldimQ(D(Fn+1)/D(Fn)) = 1, which is possible since
F |V = FELA

1 . There is b̄ ∈ F |V such that Loc(b̄, eb̄/F) = W . Suppose that b̄ is
Q-linearly independent over D(F1). Then Loc(b̄, eb̄/F1)=W because F1C F |V .
Now each D(Fn+1) is generated over D(Fn) by a single element cn+1 such that
either cn+1 or ecn+1 is algebraic over Fn . By perfect rotundity of W , no b in the
Q-linear span of b̄ satisfies this, so inductively we see that b̄ is linearly independent
over D(Fn) for all n, a contradiction. So b̄ is not Q-linearly independent over
D(F1). Write B for the Q-linear span of F ∪ b̄. Then D(F1)C F |V and BC F |V ,
so D(F1)∩ B C F |V , and hence, since V and W are perfectly rotund, we must
have B = D(F1), and V ∼F W as required. �

We can give a normal form for a finitely generated strong ELA-extension FCF ′.
The key is that the order of making simple extensions can often be interchanged.
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Lemma 5.9. Let F be a countable ELA-field, and let V ⊆ Gn and W ⊆ Gr be
two additively and multiplicatively free, irreducible, Kummer-generic subvarieties,
defined over F. Then

(F |V )|W ∼= (F |W )|V ∼= F |(V ×W )

as extensions of F.

Proof. First note that the extension (F |V )|W makes sense, since in the base change
from F to F |V , the variety W remains free, irreducible, and Kummer-generic,
because both F and F |V are algebraically closed. Similarly (F |W )|V makes
sense. Now let ā, b̄ be the tuples in F1= (F |V )|W such that (ā, eā)∈V determines
the first extension and (b̄, eb̄) ∈W determines the second extension. Let ā′, b̄′ be
the equivalent tuples in F2 = (F |W )|V . Then the partial E-fields K1 = 〈Fā, b̄〉F1

and K2 = 〈Fā′, b̄′〉F2 are isomorphic extensions of F , as both (ā, eā, b̄, eb̄) and
(ā′, eā′, b̄′, eb̄′) are generic in V ×W over F . Now K1C F1 and K2C F2; hence
the result follows by Theorem 2.18. �

Indeed the extensions F |V and F |W can be freely amalgamated over F , and
the free amalgam is in fact given by F |(V ×W ).

Now consider a finitely generated strong extension of countable ELA-fields
F C F ′. Let ā1 be some tuple from F ′, Q-linearly independent over F , such that
V1 := Loc(ā1, eā1/F) is perfectly rotund. If it does not exists, then F = F ′. So we
have F = F0C F1 = 〈F, ā1〉

ELA
F ′ C F ′. Now iteratively choose tuples āi , which are

Q-linearly independent over Fi−1, such that Vi :=Loc(āi , eāi /F) is perfectly rotund
and defined over F j , where j is as small as possible, and define Fi = 〈Fi−1, āi 〉

ELA
F ′ .

At some finite stage we will exhaust F ′. The previous propositions show there
is only a very limited scope for choosing the tuples āi . Thus we have a Jordan–
Hölder-type theorem, showing how a finitely generated extension decomposes as a
chain of simple extensions, and the extent to which the chain is unique.

Theorem 5.10. If F C F ′ is a finitely generated strong extension of countable
ELA-fields, then it can be decomposed as

F = K0C K1C K2C · · ·C Kr = F ′

such that Ki = Ki−1 |Vi with Vi = Vi,1×· · ·×Vi,mi with each Vi, j perfectly rotund
and defined over Ki−1 but not defined over Ki−2. Furthermore, if there is another
decomposition

F = K0C K ′1C K ′2C · · ·C K ′s = F ′

such that K ′i = K ′i−1 |V
′

i with V ′i = V ′i,1 × · · · × V ′i,qi
, then s = r and, for each i ,

qi = mi and there is a permutation σ of {1, . . . ,mi } such that V ′i, j ∼F ′ Vi,σ ( j).
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A finer analysis is possible, in which one takes into account for each Vi, j precisely
which of the Vs,t for s < i are involved in the field of definition of Vi, j , to produce
a partial order on the simple extensions.

6. The strong exponential-algebraic closure

We now consider the analogue for exponential fields of the algebraic closure of a
field.

Definition 6.1. An exponential field F is said to be strongly exponentially-algebrai-
cally closed if and only if it is an ELA-field and for every finitely generated partial
E-subfield A of F , and every finitely generated kernel-preserving exponentially
algebraic strong partial E-field extension AC B, there is an embedding B ↪→ F
fixing A.

The word strongly in this definition actually does not refer to the strong ex-
tensions, but rather signifies that the property is stronger than another property,
called exponential-algebraic closedness, which was also considered by Zilber.
Exponential-algebraic closedness is a model-theoretic approximation to strong
exponential-algebraic closedness, which is first-order axiomatisable, but strong
exponential-algebraic closedness is the sensible notion from the algebraic point of
view taken in this paper.

We now show that every countable ELA-field has a well-defined strong exponen-
tial-algebraic closure.

Theorem 6.2. Let F be a countable ELA-field. Then there is a strongly exponen-
tially-algebraically closed F∼ with F C F∼ such that if F C K , K is strongly
exponentially-algebraically closed, and ker(K ) = ker(F), then there is a strong
embedding F∼C K such that

F ⊂ G- F∼

K

4

?

∩

⊂

G
-

commutes. Furthermore, F∼ is unique up to isomorphism as an extension of F. We
call it the strong exponential-algebraic closure of F.

The key property we need is the amalgamation property, which follows from
Lemma 5.9.

Proof of Theorem 6.2. Let F be a countable ELA-field. List the triples

(nα, Vα, Aα)α<ω

such that nα ∈N+, Vα is a perfectly rotund subvariety of Gnα (F), Aα is a finitely
generated subfield of F over which Vα is defined, and F does not contain b̄ such
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that (b̄, eb̄) is generic in Vα over Aα. Note that if F is not strongly exponentially-
algebraically closed then there will be ℵ0 such triples.

Let F1 be the ELA-extension of F obtained by making the simple ELA-extensions
determined by each Vα in turn. By Lemma 5.9 (and a back and forth argument), F1

does not depend on the choice of well-ordering. Now iterate the process to produce
a chain

F C F1C F2C F3C · · ·

and let F∼ be the union of this chain.
By construction, F∼ is strongly exponentially-algebraically closed, and F C F∼.

Furthermore if F is strongly exponentially-algebraically closed then F = F∼. The
primality property and the uniqueness of F∼ follow from a standard back-and-forth
argument. �

If F is a partial E-field such that FELA is well-defined, then we also write F∼

for (FELA)
∼.

Note that if F∼ 6= F then F∼ will not be minimal over F , that is, it will be
isomorphic over F to a proper subfield of itself. This is because we adjoin ℵ0

copies of the extension of F defined by V1 in constructing F1, and if we miss out
cocountably many of those realisations, we get a proper ELA-subfield of F1 that is
isomorphic over F to F1.

Definition 6.3. Zilber’s pseudoexponential fields are precisely the exponential fields
F satisfying the following properties:

(1) F is an ELA-field.

(2) F has standard kernel.

(3) The Schanuel property holds.

(4) F is strongly exponentially-algebraically closed.

(5) For any countable subset A ⊆ F , the exponential-algebraic closure eclF (A) is
countable.

Of course these are genuine exponential fields in our algebraic sense. The
prefix “pseudo” refers to Zilber’s programme of pseudoanalytic or pseudocomplex
structures.

Construction 6.4 (Zilber’s pseudoexponential fields). Let B0 = SK∼. For each
ordinal α, define Bα+1 = (Bα |G)∼ (where G = Ga×Gm as before). For limit α,
take unions. It is easy to see that the exponential transcendence degree of Bα is |α|,
and that the isomorphism type of Bα depends only |α|. For a cardinal κ we write
Bκ for the model of exponential transcendence degree κ .
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By construction, the Bκ satisfy Zilber’s axioms, and hence are pseudoexponential
fields. Although Bκ exists for all cardinals κ , we have only proved that FELA and
hence F∼ are uniquely defined for countable F , and hence the arguments of this
paper only show that Bκ is well-defined for countable κ .

We now proceed to examine strong exponential-algebraic closedness in more
detail before proving that the Bκ for countable κ are the only countable pseudoex-
ponential fields.

The property of strong exponential-algebraic closedness is most useful when
there is a proper subset of F that is strongly embedded in F , and especially when a
finite such subset exists.

Definition 6.5. An E-field F is said to have ASP, for almost the Schanuel property,
if and only if there is a finite tuple c̄ from F such that 〈c̄〉F C F .

Lemma 6.6. Any strong extension of a finitely presented ELA-field has ASP.

Proof. If F is a strong extension of a finitely presented ELA-field, then it is a
strong extension of a finitely generated partial E-field F0, and we can take c̄ to be a
generating tuple for F0. �

Example 6.7. Consider the exponential field C2x = 〈C;+, · , 2x
〉. Then C2x does

not satisfy the Schanuel property because 21
= 2, but if Schanuel’s conjecture is

true then it does satisfy ASP.

ASP is a slight weakening of the Schanuel property that allows for some extra
generality such as this example, but such that the theory works almost unchanged.

Lemma 6.8. Suppose F is an ELA-field. Then the following are equivalent.

(1) F is strongly exponentially-algebraically closed.

(2) For each n ∈ N, every perfectly rotund subvariety V ⊆ Gn(F), and every
finitely generated subfield A of F over which V is defined, there is (b̄, exp(b̄))
in F , generic in V over A.

(3) For each n ∈ N, every additively and multiplicatively free, rotund subvariety
V ⊆ Gn(F), and every finitely generated subfield A of F over which V is
defined, there are infinitely many distinct (b̄, exp(b̄)) in F , generic in V over A.

Furthermore, if F satisfies ASP then the next three conditions are also equivalent to
the first three.

(4) For each n∈N, every perfectly rotund subvariety V ⊆Gn(F), and every finitely
generated ELA-subfield A of F over which V is defined, there is (b̄, exp(b̄))
in F , generic in V over A.

(5) For each finitely generated ELA-subfield A of F , and each finitely generated
exponentially algebraic strong ELA-extension AC B, there is an embedding
B ↪→ F fixing A.
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(6) For each finitely generated strong ELA-subfield AC F , and each simple ex-
ponentially algebraic strong ELA-extension A C B, there is an embedding
B ↪→ F (necessarily strong) fixing A.

Proof. (1)⇐⇒ (2) by Proposition 5.6. (3) =⇒ (2) is trivial. To show (2) =⇒ (3),
first note that every finitely generated strong extension is the union of a chain of
simple strong extensions, so to find a point in an additively and multiplicatively
free rotund subvariety it is enough to find points in perfectly rotund subvarieties.
Now we show by induction on r ∈ N that there are at least r many such b̄. The
case r = 1 is (2). Now suppose we have b̄1, . . . , b̄r . Then by (2) there is a b̄r+1

such that (b̄r+1, exp(b̄r+1)) is generic in V over A∪{b̄1, exp(b̄1), . . . , b̄r , exp(b̄r )}

In particular, b̄1, . . . , b̄r+1 are distinct.
It is immediate that (4) implies (2), that (4) implies (5), and that (5) implies (6).

We now assume that there is a finite c̄C F . Assume (2), and let A = 〈ā, c̄〉ELA
F be

a finitely generated ELA-subfield of F . Since c̄C F , we may assume that AC F
by extending the tuple ā if necessary. By (2), there is (b̄, exp(b̄)) in F , generic in
V over ā. By Lemma 5.9, the ELA-subfield 〈ā, b̄〉ELA

F of F is isomorphic to A |V ,
and (b̄, exp(b̄)) is generic in V over A. Hence (4) holds.

Now assume (6), let V be perfectly rotund, and let A be a finitely generated
ELA-subfield over which V is defined. Then there is a finitely generated ELA-
subfield A′ of F containing A and c̄ such that A′C F . By (6), there is a realisation
of A′ |V in F over A′, say generated by (b̄, exp(b̄)), generic in V over A′. But then
(b̄, exp(b̄)) is generic in V over A as A ⊆ A′, hence (4) holds. �

Proposition 6.9. Let F0 be a finitely generated partial E-field with full kernel (or
a finitely presented ELA-field), and let F0C F be a countable, kernel-preserving,
strongly exponentially-algebraically closed strong extension of F0. Then F is deter-
mined up to isomorphism as an extension of F0 by the exponential transcendence
degree etd(F/F0).

Proof. Suppose F0 is as above and let C(F0) be the category of all countable
strong kernel-preserving ELA-extensions of F0, with strong embeddings fixing
F0 as the morphisms. Let C<ℵ0(F0) be the full subcategory of finitely generated
ELA-extensions of F0. Then C(F0) is an ℵ0-amalgamation category, that is:

• Every arrow is a monomorphism.

• C0(F) has unions of ω-chains (by Lemma 2.3).

• C<ℵ0(F0) has only countably many objects up to isomorphism (Theorem 3.11).

• For each A ∈ C<ℵ0(F0), there are only countably many extensions of A in
C<ℵ0(F0) up to isomorphism (also by Theorem 3.11).

• C<ℵ0(F0) has the amalgamation property (by Lemma 5.9).
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• C<ℵ0(F0) has the joint embedding property (since FELA
0 embeds in all of the

strong ELA-extensions of F0, by Theorem 2.18).

Thus by the Fraïssé amalgamation theorem, specifically the version in [Kirby 2009,
Theorem 2.18], there is a unique C<ℵ0(F0)-saturated extension F0C F in C(F0),
that is, one such that for any finitely generated ELA-extension A of F0 inside F , and
any finitely generated strong ELA extension AC B, there is a (necessarily strong)
embedding of B into F over A. Using part (6) of Lemma 6.8, this property is the
same as being strongly exponentially-algebraically closed together with etd(F/F0)

being infinite. Thus the proposition is proved in the case where etd(F/F0)= ℵ0.
Now suppose F0 C F is as in the proposition with etd(F/F0) = n ∈ N. Let

a1, . . . , an be an exponential transcendence base for F over F0, and let F1 =

〈F0, a1, . . . , an〉
ELA
F . Then F1 ∼=F0 F0 |Gn , and etd(F/F1) = 0. So it is enough to

consider the case etd(F/F0)=0. Let C0(F0) be the subcategory of C(F0) consisting
of the exponentially algebraic extensions. The same argument as above shows that
C(F0) is an ℵ0-amalgamation category, and we deduce that up to isomorphism
there is a unique countable, kernel-preserving, strongly exponentially-algebraically
closed strong extension of F0, which of course is F0

∼. �

Corollary 6.10. The countable pseudoexponential fields are precisely Bκ for κ a
countable cardinal.

Proof. The pseudoexponential fields are all kernel-preserving strongly exponentially-
algebraically closed strong extensions of SK. �

From the proof of Proposition 6.9 one can see that much of the machinery of
ℵ0-stable first-order theories can be brought to bear on the category C(F0) for any
finitely presented ELA-field F0. Indeed, the strongly exponentially-algebraically
closed kernel-preserving strong extensions of F0 (at least those with the countable
closure property) should be thought of as analogous to the algebraically closed pure
field extensions of a finitely generated field. They are the “universal domains” that
are saturated and ℵ0-homogeneous for the category C(F0). Of course this is not
saturation nor ℵ0-stability in the sense of first-order model theory, because we are
only considering extensions that do not extend the kernel. Also the ℵ0-stability is
with respect to counting types over strong ELA-subfields of F , not over arbitrary
subsets. Developing the homogeneity property further, we make some observations
about extending automorphisms.

Proposition 6.11. Suppose that F is a partial E-field with full kernel, which is
finitely generated or a finitely generated extension of a countable LA-field, and that
σ is an automorphism of F.

(1) σ extends uniquely to an automorphism of F E .
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(2) σ extends to automorphisms of F E A, FELA, and to any countable strongly
exponentially-algebraically closed kernel-preserving strong extension of F ,
including F∼.

Proof. To extend an automorphism σ of F to an automorphism of Fe we must
have σ(ci,n)= exp(σ (bi )/n), in the notation of Construction 2.6. This does define
a partial automorphism since the ci are algebraically independent over F , and it
extends uniquely to an automorphism of Fe because Fe is generated over F by
the ci,n . Thus, by induction, σ extends uniquely to an automorphism of F E .

We have an extension θ : F→ FELA, where θ is the inclusion map, and a second
extension θ ◦ σ : F → FELA. The partial E-field F satisfies the hypothesis of
Theorem 2.18, so by that theorem there is a map σ̄ : FELA

→ FELA that restricts
to σ on F . The image of σ̄ is an ELA-subfield of FELA containing F , so must be
all of FELA. Hence σ̄ is an automorphism of FELA extending σ . The restriction
of σ̄ to F E A is an automorphism of F E A extending σ . Similarly, we can use the
C<ℵ0(F0)-saturation and C<ℵ0

0 (F0)-saturation properties to extend σ̄ from FELA to
an automorphism of F∼ or of another countable strongly exponentially-algebraically
closed kernel-preserving strong extension of F . �

The partial E-field SK embeds in Cexp, so the restriction, σ0, of complex conjuga-
tion is an automorphism of SK, and it is easy to see that it and the identity map are
the only automorphisms of SK. By Proposition 6.11, σ0 extends to automorphisms
of Bκ for any countable κ , and in [Kirby et al. 2012], these extensions of σ0 are used
to identify the algebraic numbers that are pointwise definable in pseudoexponential
fields. However, the extensions of σ0 are far from being unique, so this argument
does not give an analogue of complex conjugation on any Bκ .

7. Nonmodel completeness

In this section we show that the Bκ , and other strongly exponentially-algebraically
closed E-fields, are not model complete. We use the submodularity property of δ,
which is well known from Hrushovski’s amalgamation constructions, and some
simple consequences.

Lemma 7.1 (submodularity). Let F be a partial E-field, and let C, X, Y be Q-
subspaces of D(F) such that C ⊆ X ∩ Y and ldimQ(X ∪ Y/C) is finite. Let x̄, ȳ, z̄
be finite tuples such that x̄ ∪C spans X , ȳ ∪C spans Y , and z̄ ∪C spans X ∩ Y .
Then

δ(x̄ ∪ ȳ/C)+ δ(z̄/C)6 δ(x̄/C)+ δ(ȳ/C). (1)

More prosaically, the predimension function δ( · /C) is submodular on the lattice of
Q-linear subspaces of D(F). We write

δ(XY/C)+ δ(X ∩ Y/C)6 δ(X/C)+ δ(Y/C).
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Proof. If δ is replaced by td then (1) holds, and if δ is replaced by ldimQ then it
holds with 6 replaced by = . Subtracting the latter from the former gives (1). �

Lemma 7.2. Suppose F is a partial E-field, and CCF. For each finite tuple ā from
F , there is a smallest Q-vector subspace dC, āeF of F containing ā and C , called
the hull of C∪ā, such that dC, āeFCF. Furthermore, dC, āeF is finite-dimensional
as an extension of C.

Proof. Since C C F , there is a finite-dimensional extension C ⊆ A ⊆ D(F) with
ā ∈ A such that δ(A/C) is minimal, say equal to d . If A1 and A2 are two such, then
by submodularity we see that δ(A1 ∩ A2/C)6 d, and hence we can take dC, āeF
to be the intersection of all such A. �

Remark 7.3. Often in amalgamation-with-predimension constructions, the ana-
logue of what is here called the hull is called the strong closure or, when self-
sufficient is used in place of strong, the self-sufficient closure. While the notion of a
self-sufficient subset makes semantic sense (X is self-sufficient in F if no witnesses
outside X are needed to realise its full type in F), the sense is lost when dealing with
extensions rather than subsets because in “F is a self-sufficient extension of X”, the
“self” should semantically refer to X rather than F , in conflict with the syntactic
construction of the phrase. Since the focus here is on extensions rather than subsets,
we do not use the terminology of self-sufficiency. Similarly, the terminology “strong
closure” conflicts with the notion here of strong exponential-algebraic closure. The
simplest amalgamation-with-predimension construction is that of the universal
acyclic graph, and there the concept corresponding to our hull is exactly the convex
hull of a set in the sense of the graph, that is, the hull of X is the union of all paths
between elements of X .

Proposition 7.4. Suppose F is an E-field, CC F , and ā is a tuple from F. Suppose
K ⊆ F is an E-subfield of F , containing C , such that dC, āeF ∩ K is spanned by
C ∪ ā. Let r = δ(ā/C)− δ(dC, āeF/C). Then etdK (ā/C)= etdF (ā/C)+ r .

Proof. By Fact 5.4 and the definition of the hull,

etdK (ā/C)=min
{
δ(ā, b̄/C)

∣∣ b̄ ⊆ K
}
= δ(dC, āeK /C),

and similarly,
etdF (ā/C)= δ(dC, āeF/C).

So we must show that δ(dC, āeK /C)= δ(ā/C), or equivalently that for any b̄ from
K , δ(ā, b̄/C)> δ(ā/C).

Let A be the Q-span of C ∪ ā, H = dā,CeF , and let B ⊆ K be an extension
of A, generated by some tuple b̄. Then, by the assumption on K , B ∩ H = A. By
the submodularity of δ,

δ(B/C)− δ(A/C)> δ(B H/C)− δ(H/C),
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but the right hand side is positive as H = dAeF . Hence δ(B/C) > δ(A/C) as
required. �

Proposition 7.5. Let F be a countable strongly exponentially-algebraically closed
E-field satisfying ASP, and of exponential transcendence degree at least 1. Then
there is K ⊆ F , a proper E-subfield such that K ∼= F but the inclusion K ↪→ F is
not an elementary embedding. In particular, F is not model-complete.

Proof. (My thanks to Alf Onshuus who noticed a mistake in an earlier version of
this proof.) Using the ASP assumption, let c̄ be a finite tuple such that c̄C F and
etd(F/c̄)> 1, and let F0=〈c̄〉ELA

F . So F0 is a finitely generated strong ELA-subfield
of F .

The precise variety V we use is not so important so we take a simple example,
the intersection of three generic hyperplanes in G3. That is, let α1, . . . , α18 ∈ F0

be algebraically independent and let V be the subvariety of G3 given by

α1 X1+α2 X2+α3 X3+α4Y1+α5Y2+α6Y3 = 1,

α7 X1+α8 X2+α9 X3+α10Y1+α11Y2+α12Y3 = 1,

α13 X1+α14 X2+α15 X3+α16Y1+α17Y2+α18Y3 = 1,

where X1, X2, X3 are the coordinates in Ga and Y1, Y2, Y3 are the coordinates in Gm.

Claim. V is perfectly rotund.

Proof. Certainly V is irreducible and has dimension 3. The projections to G3
a and

to G3
m are dominant, so V is additively and multiplicatively free. Similarly, for any

M ∈Mat3×3(Z), if rk M = 2 then dim M ·V = 3 and if rk M = 1 then dim M ·V = 2.
V must be Kummer-generic from its simple structure, but in any case we could
replace it by the locus of (X1/m, X2/m, X3/m, m

√
Y1,

m
√

Y1,
m
√

Y1 ) for a suitably
large integer m (where (X1, X2, X3, Y1, Y2, Y3) is generic in V ) without affecting
the rest of the argument. �

Choose (a1, a2, a3) ∈ F3 such that (a1, a2, a3, ea1, ea2, ea3) is generic in V
over F0. Since F is strongly exponentially-algebraically closed and has ASP,
such a point exists by Lemma 6.8. Now let t ∈ F be exponentially transcendental
over F0, let F1 = 〈F0(t)〉ELA

F , and let K1 = 〈F0(a1)〉
ELA
F .

Claim. a2, a3 /∈ K1.

Proof. The intuition here is that V already gives the maximum three constraints
between a1, a2, and a3. If a2 or a3 were to lie in K1 that would be an extra constraint,
or perhaps r + 1 extra constraints with r extra witnesses, which would contradict
F0 being strong in F .
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Suppose for a contradiction that a2 ∈ K1. Then there is a shortest chain of
subfields of K1, given by

aclF (F0(a1, ea
1))= L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lr ,

such that a2 ∈ Lr and, for each i ∈ {1, . . . , r}, there are xi , exi ∈ L i such that
L i = aclF (L i−1(xi , exi )) and either xi ∈ L i−1 or exi ∈ L i−1.

For each i ∈ {1, . . . , r}, we have td(L i/L i−1)= 1. We can consider each L i as
a partial exponential field by taking the intersection of the graph of expF with L2

i .
Then L i 6= L i−1 for each i , so xi ∈ D(L i )rD(L i−1), so in particular a1, x1, . . . , xr

are Q-linearly independent over F0, and ea1, ex1, . . . , exr are multiplicatively inde-
pendent over F0.

Let V ′ ⊆ G2 be the fibre of V given by fixing the coordinates X1 = a1 and
Y1 = ea1 . So V ′ is the locus of (a2, a3, ea2, ea3) over L0. Also dim V ′ = 1, and V ′

projects dominantly to each coordinate, so a2, a3, ea2, ea3 are interalgebraic over L0.
In particular, they all lie in Lr , and their locus over Lr−1 is V ′. Since V is additively
and multiplicatively free, so is V ′. So a2, a3 are Q-linearly independent over Lr−1

and ea2, ea3 are multiplicatively independent over Lr−1.
Thus if xr ∈ Lr−1 then a1, a2, a3, x1, . . . , xr are Q-linearly independent over F0.

Otherwise, exr ∈ Lr−1, and ea1, ea2, ea3, ex1, . . . , exr are multiplicatively indepen-
dent over F0, but then again (since the kernel of the exponential map lies in F0)
a1, a2, a3, x1, . . . , xr are Q-linearly independent over F0.

So we have

td(a1, a2, a3, x1, . . . , xr , ea1, ea2, ea3, ex1, . . . , exr /F0)

= td(Lr/L0)+ td(L0/F0)= r + 2,

and thus

δ(a1, a2, a3, x1, . . . , xr/F0)= r + 2− (r + 3)=−1,

which contradicts F0C F . Hence a2, a3 /∈ K1. �

Indeed, the proof of the claim shows that a2 and a3 must be Q-linearly indepen-
dent over K1 since their locus over K1 is the same as over L0. Now dF0, a1e

F is
spanned by F0, a1, a2, a3, so by Proposition 7.4,

etdK1(a1/F0)= etdF (a1/F0)+ δ(a1/F0)− δ(a1, a2, a3/F0)= 0+ 1− 0= 1.

Thus etdK1(a1/F0) = etdF1(t/F0) = 1, so there is an isomorphism θ1 : F1→ K1

taking t to a1 and fixing F0 pointwise. Now choose an ω-chain of ELA-subfields
of F

F1C F2C F3C · · ·C F
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such that Fn+1 is a simple strong ELA-extension of Fn , for each n, and
⋃

n∈N Fn= F .
Inductively we construct chains of ELA-subfields (Kn)n∈N of F and isomorphisms
θn : Fn → Kn , and we also prove that etd(F/Fn)+ 1 = etd(F/Kn). (If etd(F)
is infinite this is trivially true since both sides will be equal to ℵ0.) We already
have K1 and θ1. Note that etd(F/F1)+ 1= etd(F/K1) since {t} is an exponential
transcendence base for eclF (F1) over eclF (K1).

Suppose we have Kn and θn . If Fn C Fn+1 is an exponentially transcendental
simple extension, then choose any b∈ F that is exponentially transcendental over Kn ,
and take Kn+1 = 〈Kn(b)〉ELA

F . This b exists because etd(F/Fn)6 etd(F/Kn). Also
etd(F/Fn+1)+ 1= etd(F/Fn) and etd(F/Kn+1)+ 1= etd(F/Kn), so

etd(F/Fn+1)+ 1= etd(F/Kn+1).

By Lemma 5.5, θn extends to an isomorphism θn+1 : Fn+1→ Kn+1. Now suppose
that Fn C Fn+1 is exponentially algebraic. Let Vn+1 be the corresponding perfectly
rotund subvariety, say given by some equations fi = 0, with coefficients in Fn . Let
Wn+1 be the subvariety obtained from Vn+1 by applying θ−1

n to all the coefficients
of the fi . Then Wn+1 is a perfectly rotund subvariety defined over Kn , and Kn

is a finitely generated ELA-subfield of F , which satisfies ASP, so by Lemma 6.8
there is a realisation of the ELA-extension of Kn corresponding to Wn+1 in F . Let
Kn+1 be such a realisation, and let θn+1 be any isomorphism from Fn+1 to Kn+1

extending θn . Also etd(F/Fn+1)= etd(F/Fn) and etd(F/Kn+1)= etd(F/Kn).
Let K =

⋃
n∈N Kn and θ =

⋃
n∈N θn . Then θ : F→ K is an isomorphism. But

the inclusion K ⊆ F is not an elementary embedding, because

F |H ∃x2, x3[(a1, x2, x3, ea1, ex2, ex3) ∈ V ]

but K1C K , so etdK (a1)= 1, and hence

K |H ¬∃x2, x3[(a1, x2, x3, ea1, ex2, ex3) ∈ V ] �

Theorem 7.6. Zilber’s pseudoexponential fields (of exponential transcendence
degree at least 1) are not model-complete.

Proof. Proposition 7.5 shows that Bκ is not model-complete when 16 κ 6 ℵ0. By
[Zilber 2005, Theorem 5.13], every pseudoexponential field of infinite exponential
transcendence degree is Lω1,ω-equivalent to Bℵ0 , so in particular elementarily
equivalent, and hence also not model-complete. �

Remark 7.7. We know that the complex exponential field Cexp is not model com-
plete [Marker 2006, Proposition 1.1], but that proof uses topological methods and
the definability of Z and Q. Here we use exclusively algebraic methods, and in fact
we have shown more than nonmodel-completeness in the language of exponential
fields. We have shown that even if one adds symbols for every definable subset of
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the kernel, then the result is still not model-complete. I believe that it is not known
whether Cexp is model complete after adding symbols for every definable subset of
the kernel.

8. The Schanuel Nullstellensatz

D’Aquino, Macintyre and Terzo [D’Aquino et al. 2010] and also Shkop [2012]
have shown that every strongly exponentially-algebraically closed exponential field
satisfies the Schanuel Nullstellensatz:

Definition 8.1. An ELA-field F is said to satisfy the Schanuel Nullstellensatz if
and only if whenever f ∈ F[X1, . . . , Xn]

E is an exponential polynomial over F ,
not equal to exp(g) for any exponential polynomial g, then there are a1, . . . , an ∈ F
such that f (a1, . . . , an)= 0.

This statement was conjectured by Schanuel to hold in Cexp, and Henson and
Rubel [1984, Theorem 5.4] proved that it does indeed hold there.

To show that a pure field is algebraically closed it is enough to know that every
nontrivial polynomial has a root. The Schanuel Nullstellensatz is an analogue of
that statement, but it does not characterise strongly exponentially-algebraically
closed exponential fields.

Theorem 8.2. There are ELA-fields satisfying the Schanuel Nullstellensatz that are
not strongly exponentially-algebraically closed.

Proof. Suppose that F is an ELA-field and F ↪→ F ′ is a partial E-field extension
generated by a solution a1, . . . , an to an exponential polynomial f (allowing itera-
tions of exponentiation), not of the form exp(g). Following Shkop, we find F ′ is
also generated over F by a tuple b̄ such that V f := Loc(b̄, eb̄/F)⊆ Gm is rotund,
additively and multiplicatively free, and of dimension m+ n− 1. In particular, the
extension is strong. The method is to add extra variables to remove the iterations
of exponentiation, and then to remove variables to ensure freeness. It follows that
some choice of n− 1 of the ai are exponentially-algebraically independent over F ,
and the remaining one (say a1) satisfies an exponential polynomial equation in one
variable over F ∪ {a2, . . . , an}. Thus if F has infinite exponential transcendence
degree, then it satisfies the Schanuel Nullstellensatz if and only if it satisfies the
same statement just for exponential polynomials in one variable.

Now if FCF ′ is an E-field extension given by adjoining a root a of an exponential
polynomial f in one variable, then F ′ = 〈F, a〉EF ′ . That is, as an E-field extension
it is generated by the single element a.

Define a perfectly rotund variety V to have depth 1 if and only if in an extension
FCF |V with generating tuple ā, there is a single element c such that ā is contained
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in 〈F, c〉E . Equivalently, F C 〈F, c〉E C F |V . Since 〈F, c〉E is an E-field but not
an ELA-field, such an intermediate field is possible.

Let C<ℵ0
1 be the smallest category of finitely generated strong ELA-extensions

F of SKELA that is closed under simple extensions that are either exponentially
transcendental or given by perfectly rotund varieties of depth 1. Let C1 be the
closure of C<ℵ0

1 under unions of ω-chains. Then, as in the proof of Proposition 6.9,
C1 is an amalgamation category and hence has a unique Fraïssé limit, say U. Then U

satisfies the Schanuel Nullstellensatz. However, there are perfectly rotund varieties
V that do not have depth 1 such as the intersection of generic hypersurfaces in
G3 used in the proof of Proposition 7.5. By Theorem 5.10, for such V there is no
(ā, eā) in U that is generic in V over a field of definition of V , and hence U is not
strongly exponentially-algebraically closed. �

9. Transcendence problems

Schanuel’s conjecture has many consequences in transcendence theory. Ribenboim
[2000, pp. 323–326] gives a few examples of easy consequences, one being that
the numbers e, π , eπ , logπ , ee, π e, ππ , log 2, 2π , 2e, 2i , ei , π i , log 3, log log 2,
(log 2)log 3, and 2

√
2 are all algebraically independent.

When Lang [1966, p. 31] first published Schanuel’s conjecture, he wrote:

From this statement, one would obtain most statements about algebraic
independence of values of et and log t which one feels to be true.

We strengthen this empirical observation, and make it precise. To make a precise
statement we need a definition.

Definition 9.1. A particular transcendence problem is a problem of the following
form:

Given complex numbers a1, . . . , an in some way, what is the transcen-
dence degree of the subfield Q(a1, . . . , an) of C?

Since we are concerned with open problems, the way in which the complex
numbers are given is important. For example, it may be that ee is a rational number r .
The problem of finding the transcendence degree of Q(r) given r as an explicit
rational number is not the same as the problem of finding the transcendence degree
of Q(exp(exp(1))). This might lead one to ask how one is allowed to specify a
complex number, but we do not need to address this question in any generality. Note
that the example above of Ribenboim is a particular transcendence problem where
all the numbers are explicitly constructed from the rationals Q by the operations of
exponentiation, taking logarithms, taking roots of polynomials, and field operations.

Let C0 = eclCexp(∅) be the field of exponentially algebraic complex numbers.
By Fact 5.4, for any ā = (a1, . . . , an) ∈ Cn such that no Q-linear combination
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of them lies in C0, we have td(ā, eā/C0) > n + 1. Thus Schanuel’s conjecture
(for Cexp) is equivalent to its restriction to C0. Recall that SK embeds in C0, and
so Schanuel’s conjecture for C0 is equivalent to the assertion that SK CC0. By
Proposition 6.9, if SK CC0 then B0 ∼= C0

∼ (recall B0 = SK∼). Thus Schanuel’s
conjecture is equivalent to the assertion that C0 embeds in B0. If in addition C0

were strongly exponentially-algebraically closed, that is, C0 = C0
∼, then there

would be an isomorphism C0 ∼= B0. Since the automorphism group of B0 is very
large, such an isomorphism would be very far from being unique.

Theorem 9.2. Schanuel’s conjecture decides all particular transcendence problems
where the complex numbers a1, . . . , an ∈ C are given by an explicit construction
from Q by the operations of exponentiation, taking logarithms, taking roots of
polynomials, field operations, and taking implicit solutions of systems of exponential
polynomial equations.

Proof. The conditions on the ai are equivalent to them all lying in C0, that is,
being exponentially algebraic complex numbers. Assuming Schanuel’s conjecture,
C0 embeds in B0. Any explicit description of the ai defines a finitely generated
partial E-subfield F of B0, the smallest one containing all the coefficients of the
exponential polynomial equations used in the given descriptions of the ai . F is
necessarily strong in B0, since it contains witnesses of all of its elements being
exponentially algebraic. When taking logarithms or, more generally, taking implicit
solutions of systems of equations, there are countably many solutions in B0, but the
homogeneity of B0 for strong partial E-subfields (which follows from the Fraïssé
theorem used in the proof of Proposition 6.9) shows that these choices do not affect
the isomorphism type of F . Thus Schanuel’s conjecture determines the isomorphism
type of F as a partial E-field, and hence it determines the transcendence degree of
its subfield Q(a1, . . . , an). �

Note that if we do not allow taking implicit solutions of systems of exponential
polynomial equations then the construction stays inside the field SKELA, and the
proof depends only on Section 2 of this paper. In particular this covers the field SKE L ,
which, under Schanuel’s conjecture, is the field of all of what Chow [1999] calls
EL-numbers, that is, those complex numbers that have a closed-form representation
using 0, +, · , −, ÷, exp and the principal branch of the logarithm.

The construction will produce a generating set b̄ for D(F), and polynomial
equations with rational coefficients determining the locus V of (b̄, exp(b̄)). If we had
an algorithm to determine the Q-linear relations holding on b̄ and the multiplicative
relations holding on exp(b̄), that would give an algorithm for answering particular
transcendence problems of this form (assuming Schanuel’s conjecture of course).

There are other transcendence problems that are more general in nature, for
example the four exponentials conjecture that states that if x1, x2, y1, y2 ∈ C and
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ldimQ(x1, x2)= ldimQ(y1, y2)= 2, then

td(ex1 y1, ex1 y2, ex2 y1, ex2 y2)> 1.

The four exponentials conjecture is not a particular transcendence problem as
defined above, but nonetheless it can easily be seen to follow from Schanuel’s
conjecture. So the statement of Theorem 9.2 is not a complete answer to formalising
Lang’s observation. Nonetheless, the method of proof above does apply. The four
exponentials conjecture can be viewed as the conjunction of a set of particular
transcendence problems, namely every specific instance of the problem. More
generally, suppose P is a transcendence problem, such as the four exponentials
conjecture, which asserts that some transcendence degree is large given suitable
conditions (about exponentials, logarithms, and algebraic equations). Then either
(every instance of) P is true in B0 so it follows from Schanuel’s conjecture that it
is true in C0, or P is false in B0, in which case, since B0 is constructed in as free
a way as possible, P cannot be true in any exponential field F (unless it is true
trivially because the hypotheses are not satisfied by any numbers in F).

Connection with conjectures on periods. The two main conjectures about Cexp

are:

(1) Schanuel’s conjecture, or equivalently, Cexp embeds in B, or equivalently, C0

embeds in B0.

(2) Cexp is strongly exponentially-algebraically closed, or equivalently, Cexp =

Cexp
∼.

Together, they form Zilber’s conjecture that Cexp ∼= B (at least assuming the contin-
uum hypothesis, as discussed in the introduction). As discussed above, Schanuel’s
conjecture is equivalent to its restriction to C0. In the light of Lemma 7.2 and
Proposition 7.4, the restriction of the conjecture to C0 is equivalent to the assertion
that if a is an exponentially algebraic complex number then there is a unique reason
for that, meaning a unique smallest finite-dimensional Q-vector subspace dae of C

containing a such that δ(dae)= 0.
This formulation of Schanuel’s conjecture makes a visible connection with the

conjecture of Kontsevich and Zagier [2001, Section 1.2] on periods. They conjecture
that if a complex number is a period then there is a unique reason for that, up to
three rules for manipulating integrals: additivity, change of variables, and Stokes’
formula. Kontsevich and Zagier [2001, Section 4.1] give an alternative formulation
of their conjecture. There is a canonical surjective homomorphism from a formal
object, the vector space of effective periods, to the space of complex periods. The
periods conjecture is equivalent to this homomorphism being an isomorphism. In
the exponential case, the existence of automorphisms of B0 means there can be no
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canonical isomorphism from the formal object B0 to C0. Furthermore, since the
objects in question are fields rather than vector spaces, there cannot be a noninjective
map between them so if the conjecture is false then there is no map at all from B0 to
C0, although one could repair this by taking suitable subrings of B0 instead. Finally,
the open question of strong exponential-algebraic closedness of C0 means that any
map should go from C0 to B0 rather than the other way round, or that the subrings
of B0 chosen should be restricted in some way. The power of the predimension
method, as used in this paper, is that such considerations are not necessary.

The Kontsevich–Zagier conjecture does not imply Schanuel’s conjecture, because
for example e is (conjecturally) not a period. Even the expanded conjecture on
exponential periods [Kontsevich and Zagier 2001, Section 4.3] does not say much
about Schanuel’s conjecture, because (again conjecturally) ee is not an exponential
period. Furthermore Schanuel’s conjecture does not just refer to C0 but to all of
C whereas periods form a countable subset of C. André [2009, Section 4.4] has
observed that the Kontsevich–Zagier conjecture is equivalent to Grothendieck’s
conjecture on periods, and André [2009, Section 5.8.1] himself proposed a con-
jecture that encompasses both Grothendieck’s periods conjecture and Schanuel’s
conjecture, and applies to all of C.

10. Open problems

We end with some open problems. Schanuel’s conjecture is known to be very
difficult, and the conjecture that Cexp is strongly exponentially-algebraically closed
is also widely open (even assuming Schanuel’s conjecture). We suggest some
questions about complex exponentiation that may be easier.

(1) Define an ELA-field F to be locally finitely presented if and only if every
finitely generated ELA-subfield of F is finitely presented. Is Cexp locally
finitely presented?

(2) Is there any finitely presented exponential subfield of Cexp?

(3) Is there an exponential subfield C of C, and a finitely presented proper extension
of C realised inside C0, the subfield of exponentially algebraic numbers in C?
Since C0CCexp, the question is resolved outside C0.

(4) Let V ⊆ Gn(C) be perfectly rotund. From the Schanuel Nullstellensatz for
Cexp we see that if n = 1 then there is (a, ea) ∈ V in Cexp. How about n = 2,
or n = 3? Indeed, for which V can one show there are any solutions in Cexp?

(5) Is there any perfectly rotund V that is not of depth 1 with (a, ea) ∈ V in Cexp?

An apparently difficult problem is to construct an ordered analogue of pseudo-
exponentiation that should be conjecturally elementarily equivalent to the real
exponential field Rexp. Since the real exponential function is determined just by it
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being a homomorphism that is order-preserving, continuous, and by the cut in the
reals of e, one would have to assume Schanuel’s conjecture for Rexp to construct an
Archimedean model. The following problem is of the same nature, but may perhaps
be more straightforward.

(6) Can the automorphism σ0 on SK be extended to an automorphism of order 2
on a subfield of Bℵ0 larger than SKE , such as SKE A, SKELA, B0, or even Bℵ0

itself, in such a way that the exponential map is order-preserving on the fixed
field (which will necessarily be real-closed, and hence ordered)?

Mantova [2011] has shown that σ0 can be extended to an automorphism of order
2 on any Bκ for κ 6 2ℵ0 , but in his constructions the exponential map is not
order-preserving on the fixed field.

Finally, the predimension method used in this paper is very powerful, and can
be extended beyond the exponential setting, for example to the exponential maps
of semiabelian varieties [Kirby 2009] and to sufficiently generic holomorphic
functions known as Liouville functions [Zilber 2002; Koiran 2003; Wilkie 2005].
The periods conjecture of André encompasses the first of these settings and also
the Grothendieck–Kontsevich–Zagier periods conjecture.

(7) Is there a way to formulate André’s conjecture as the nonnegativity of some
predimension function, satisfying the essential properties such as the addition
formula and submodularity?
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