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In this paper, we consider congruences of Hilbert modular forms. Sturm showed
that mod ` elliptic modular forms of weight k and level 01(N ) are determined by
the first (k/12)[01(1) :01(N )] mod ` Fourier coefficients. We prove an analogue
of Sturm’s result for Hilbert modular forms associated to totally real number fields.
The proof uses the positivity of ample line bundles on toroidal compactifications
of Hilbert modular varieties.

1. Introduction

In this paper, we consider congruences of Hilbert modular forms. Sturm [1987,
Theorem 1] showed that mod ` modular forms of weight k and level 01(N ) are
determined by the first (k/12)[01(1) :01(N )] mod ` Fourier coefficients. We prove
an analogue of Sturm’s result for Hilbert modular forms associated to totally real
number fields not equal to Q.

Doi and Ohta [1977, Lemma 2.1] showed a result similar to Sturm’s theorem for
elliptic cusp forms of weight 2 by a geometric method. Sturm improves the result
for general weights and general levels by a technical method. For the case that the
coefficient field is C, the similar result was long known [Miyake 1989, Corollary
2.3.4]. Recently, Baba, Chakraborty and Petridis [Baba et al. 2002, Theorem 3]
obtained its generalization for complex Hilbert modular forms by using the Rayleigh
quotient for the Laplace operator. It seems difficult to apply their method to the mod
` case. For the mod ` case, Burgos Gil and Pacetti [Dieulefait et al. 2010, Appendix
B] showed a generalization for Hilbert modular forms associated to Q(

√
5) and

level 00(6
√

5) by a method similar to ours.
As mentioned above, the aim of the article is to prove an analogue of Sturm’s

theorem for Hilbert modular forms. In other words, we obtain an upper bound of
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the order at zeros of Hilbert modular forms at the exceptional locus of resolution of
cusp singularities.

To explain our main result, we prepare several notions (see Sections 2.1–2.2 for
more precise definitions). Let N ≥ 3 be an integer, F a totally real number field of
finite degree g ≥ 2, OF the ring of integers of F , dF the discriminant of F , and c a
nonzero integral ideal of F . Let F̃ be the Galois closure of F and OF̃ the ring of
integers of F̃ . For a field K that is an OF̃ [1/(NdF ), µN ]-algebra, MK = MK (c, N )
denotes the open connected Hilbert modular variety over K defined as a moduli
of c-polarized Hilbert–Blumenthal abelian varieties with 0(N )-structure. Then
M K = M K ,6 denotes the toroidal compactification associated to a collection 6 of
cone decompositions, ωk

=⊗iω
ki
i denotes the automorphic line bundle on M K of

weight k = (k1, . . . , kg)∈Z
g
≥0, and M∗ denotes the minimal compactification of M .

When k = (1, 1, . . . , 1), we write ω instead of ωk . Our main result is the following:

Theorem 1. Let N ≥ 3 be an integer, k = (k1, k2, . . . , kg) ∈ Z
g
≥0, c a nonzero inte-

gral ideal of F , K a field that is an OF̃ [1/(NdF ), µN ]-algebra (a Z[1/(NdF ), µN ]-
algebra if k is parallel), and S a nonempty finite set of irreducible components of
codimension 1 in M K \ MK . Let f be a c-polarized geometric Hilbert modular
form over K of weight k and level 0(N ), i.e., f ∈ H 0(MK (c, N ), ωk). Then

f 6≡ 0⇒min
E∈S
{ordE( f )}< κ

for

κ = κS = κS(k, N )= Cg−1
g∑

i=1

ki {(ω
(g−1)
·ωi )+ (I

(g−1)
·ωi )}(

I(g−1) ·
∑

E∈S E
) ,

where C is a positive integer independent of k and N , I is the inverse image of
the ideal sheaf defining M∗K \MK by π : M K → M∗K , and the dot ( · ) denotes the
intersection number (see Section 2.1).

The reason why we call Theorem 1 an “analogue” of Sturm’s theorem is that
the constant κ includes a strange constant C . When g = 2 and the canonical
divisor KM of M is nef (numerically effective), we may take an explicit constant
as κ (Theorem 16). Moreover, when the field K is of positive characteristic and
M is a minimal surface of general type, using Ekedahl’s result [1988, Chapter
III, Proposition 1.13], we may take a slightly better form of κ than Theorem 16
(Theorem 19). Applying Theorem 1 to classical Hilbert modular forms, we obtain
the more useful results for the complex case (Corollary 9) and the mod ` case
(Corollary 12). Corollary 9 gives another proof of [Baba et al. 2002, Theorem
3]. As another application of Theorem 1, we obtain a rough upper bound of the
dimension of vector space of Hilbert modular forms (Corollary 15). Because the
dimension for weight 1 is unknown, Corollary 15 is not trivial. We remark that
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we can also show the results for the congruence subgroup 01 by changing 0 in
the proofs to 01 and using theory of the arithmetic compactifications of Hilbert
modular varieties for 01 by Dimitrov [2004].

Theorem 1 is proved by a method extending Doi and Ohta’s algebraic geometric
one. To obtain an upper bound of the order of zeros of modular forms at cusps,
Doi and Ohta used Riemann–Roch’s theorem on modular curves over finite fields.
However, to obtain the bound for Hilbert modular forms, we use the positivity of
ample line bundles. The key point of the proof is the construction of a specific ample
line bundle on the toroidal compactification. To do this, we use the semiampleness
of the automorphic line bundle on the minimal compactification proved by Moret-
Bailly [1985, Chapter V, Theorem 2.1]. Combining the inverse image of the ample
line bundle onto a toroidal compactification with a certain relatively ample line
bundle, a specific ample line bundle on the toroidal compactification is constructed.

This article is organized as follows. In Section 2.1, the notation of intersection
numbers and the two facts of ampleness are explained. In Section 2.2, the definitions
and the properties of integral models of Hilbert modular varieties, these arithmetic
toroidal and minimal compactifications, and the geometric Hilbert modular forms
are recalled. In Section 3.1, for Hilbert modular forms associated to totally real
number fields that are not Q, Theorem 1 is proved. As consequences of Theorem 1,
Corollaries 9–15 are obtained. In Section 3.2, for the case that F is a real quadratic
field, we obtain more explicit forms for κ in Theorems 16 and 19.

2. Preliminaries

Notation and conventions.

• Let F denote a totally real number field and g = [F : Q] < ∞. Let OF ,
d= dF , and dF be the ring of integers of F , the different ideal of F/Q, and
the discriminant of F/Q, respectively. Furthermore, I = IF denotes the set of
the embeddings of F into R, and F∞ = F ⊗Q R.

• For a nonzero fractional ideal a of F , a∗ = a−1d−1, and (a)+ denotes the
subset of a consisting of the totally positive elements.

• Let Sch/R denote the category of the schemes over a ring R, R-Alg the category
of the R-algebras, and Sets the category of the sets.

• Let X be a normal variety. For a Cartier divisor D on X , [D] denotes the Weil
divisor associated to D. For a rational function f on X , div( f ) denotes the
divisor associated to f . A Q-Cartier divisor D on X is a divisor such that m D
is a Cartier divisor for a nonzero integer m.

• For two functions f, g : Rn
→ R≥0, f � g denotes that there is a positive

constant A such that f (x)≤ Ag(x) for all x ∈ Rn .
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2.1. Intersection numbers and ampleness. In this section, we recall some facts in
intersection theory [Fulton 1998, Chapter 2; Lazarsfeld 2004, Chapter 1].

Let d and n be positive integers such that d < n, K a field, and X a normal
proper variety of dimension n over K . For Cartier divisors D1, D2, . . . , Dd on X
and a d-dimensional irreducible closed subvariety V of X , the intersection number
of D1, D2, . . . , Dd and V , denoted (D1 · · · Dd · V ), is defined by several methods.
But it is unique [Hartshorne 1977, Appendix A]. If D = D1 = · · · = Dd , then we
write (D(d)

·V ) instead of (D1 · · · Dd ·V ). For a Cartier divisor E , the intersection
number (D1 · · · Dn−1 ·E) of D1, . . . , Dn−1 and E is defined by (D1 · · · Dn−1 · [E])
and linearity. If D= E = D1= · · · = Dn−1, we write (D(n)) instead of (D(n−1)

·D).
For line bundles Li ' OX (Di ) for 1≤ i ≤ n− 1 and L′ ' OX (E), the intersection
number (L1 · · ·Ln−1 ·L

′) is defined as (D1 · · · Dn−1 · E). For Q-Cartier divisors
D1, . . . , Dn−1 and a Q-Cartier divisor E , their intersection number (D1 · · · Dn−1·E)
is defined by (m1 D1 · · ·mn−1 Dn−1·mn E)/m1m2 · · ·mn , where mi are integers such
that mi Di and mn E are Cartier.

We recall a fact on the ampleness of line bundles:

Lemma 2 [Lazarsfeld 2004, Proposition 1.7.10]. Let X and Y be proper varieties,
f : X→ Y a proper morphism, L an f -ample line bundle on X , and M an ample
line bundle on Y . Then the line bundle ( f ∗M)⊗m

⊗L is ample on X for a sufficiently
large positive integer m.

We also recall that ampleness of line bundles is preserved by the pullback of
finite morphisms.

Lemma 3 [Lazarsfeld 2004, Proposition 1.2.13, Corollary 1.2.28]. Let X and Y be
two projective varieties, and let f : X→ Y be a finite morphism. If a line bundle L

on Y is ample, then f ∗L is ample. Moreover, when f is finite and surjective, a line
bundle L on Y is ample if and only if f ∗L is ample.

2.2. Hilbert modular varieties and geometric modular forms. Let c ⊂ F be a
fixed nonzero integral ideal, N a positive integer, and R a Z[1/(NdF )]-algebra. For
an R-algebra B, let A = (A, ι, λ, φN ) be a c-polarized Hilbert–Blumenthal abelian
variety with 0(N )-structure over B; i.e.,

(1) ρ : A→ Spec(B) is an abelian scheme,

(2) ι : OF ↪→ EndB(A) is an injective ring homomorphism taking 1 to the identity,

(3) λ is a c-polarization (see [Hida 2004, Section 4.1.1] for the definition),

(4) φN : A[N ] ' (OF/NOF )
2 is a 0(N )-structure (i.e., an isomorphism as OF -

modules), and

(5) ρ∗�1
A/Spec B is a locally free OF ⊗Z B-module of rank 1.
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A suitable rule defines the isomorphism on such schemes [Hida 2004, Section 4.1.1].
We consider the contravariant functor E=E(c, 0(N )) : Schop

/R→ Sets defined by

E(c, 0(N ))(B)= {(A, ι, λ, φN )/B/isom.}.

The functor E(c, 0(N )) admits a coarse moduli scheme over R. When N ≥ 3,
E(c, 0(N )) is representable by a scheme over R. Its fine moduli scheme is
denoted M = MR = MN = MR,N = M(c, 0(N )) = MR(c, 0(N )), and the uni-
versal object is denoted AU

→ MN . Remark that M is naturally defined over
R[µN ] = R[x]/(8N (x)) [Deligne and Rapoport 1973, Section 3.20], where 8N

is the N th cyclotomic polynomial. Furthermore, M is a smooth, geometrically
irreducible scheme of finite type and relative dimension g over R[µN ].

Next we define the cusps of MN . Let a and b be nonzero fractional ideals of F
such that c= ab−1, and let

φN : b⊕ a∗/N (b⊕ a∗)' (OF/NOF )
2

be an isomorphism as OF -modules. We set

0(N ; a, b)=
{(

a b
c d

)
∈ SL2(F)

∣∣∣∣ a, d ∈ 1+ NOF ,

b ∈ N (ab)∗, c ∈ N (abdF )

}
.

We define the action of γ ∈ 0(N ; a, b) on b⊕ a∗ by

γ =

(
a b
c d

)
: b⊕ a∗→ b⊕ a∗ : (α, β) 7→ (α, β)γ−1

= (dα− cβ,−bα+ aβ).

A cusp of M(c, 0(N )) is defined to be (a, b, φN ) mod BQ∩0(N ; a, b), where BQ

is the standard Borel subgroup of ResF
Q GL2.

Let6={6s} be a collection of0(N )-admissible polyhedral cone decompositions
[Hida 2004, Section 4.1.4], and M = M R = M R,N = M R,N ,6 denotes the toroidal
compactification of MR(c, 0(N )) associated to 6. Then M is normal over R[µN ].
We can take 6 such that M is smooth or projective over R[µN ] [Hida 2004,
Section 4.1.4].

Let F̃ be the Galois closure of F and OF̃ the ring of integers. Then, for an
OF̃ [1/(NdF ), µN ]-algebra R, we have the isomorphism

OF ⊗Z R '
g⊕

i=1

R : a⊗ b 7→ (σ1(a)b, σ2(a)b, . . . , σg(a)b).

For the structure morphism ρ : AU
→ MR(c, 0(N )), ω denotes the locally free

OF⊗Z OM -module ρ∗�1
A/R of rank 1. By the above isomorphism, ω is decomposed

ω'
⊕

i ωi , whereωi is the locally free OM -module of rank 1 corresponding to σi ∈ I .
For k= (k1, k2, . . . , kg)∈Zg, we define the line bundle ωk

R=ω
k
N ,R=⊗iω

⊗ki
i called
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by the automorphic line bundle of weight k. When the weight k= (k0, k0, . . . , k0) is
parallel, we can construct the automorphic line bundle ωk

R′= (
∧g

ω)⊗k0=det(ω)⊗k0

over every Z[1/(NdF ), µN ]-algebra R′.
A c-polarized holomorphic geometric Hilbert modular form (abbreviated as

GHMF) associated to F of weight k = (k1, k2, . . . , kg) and level 0(N ) defined
over R is an element of H 0(MR, ω

k
R).

There is the semiabelian scheme G over M R that is an extension of the universal
abelian scheme AU

→ MR . Thus, ωk is extended on M . When [F :Q] ≥ 2, by the
Koecher principle [Chai 1990, Section 4.3], we have

H 0(MR, ω
k
R)= H 0(M R, ω

k
R).

Let ρ : G→ M R be the structure morphism and ω = det(ρ∗�1
G/M R

).
By Moret-Bailly [1985, Chapter V, Theorem 2.1], ω is semiample; i.e., there

is a positive integer n0 such that ω⊗n0 is generated by global sections. Thus, the
canonical rational map

φω⊗n0 : M→ Pr
R, P 7→ (s0(P) : s1(P) : · · · : sr (P))

is a morphism, where s0, s1, . . . , sr ∈ H 0(M, ω⊗n0) are global sections gener-
ating ω⊗n0 . We set π = πN = φω⊗n0 . The minimal compactification, denoted
M∗ = M∗R = M∗R,N = M∗R(c, 0(N )), of M is defined to be the image of π , and

M∗ ' Proj
(⊕

n≥0
H 0(M, ω⊗n0n)

)
.

By the semiampleness of ω, the graded ring
⊕

n∈Z≥0
H 0(M, ω⊗n0n) is finitely

generated over R [Chai 1990, Section 4.4]; in particular, M∗ is of finite type over R.
And M is isomorphic to an open dense subscheme of M∗, also denoted M . When
g = [F : Q] ≥ 2, by the Koecher principle M∗ does not depend on the choice of
cone decompositions. And M∗ is also normal. The connected components M∗ \M
are in one-to-one correspondence with the cusps of M . The direct image π∗ω is
Q-Cartier; i.e., there is a positive integer n0 such that π∗ω⊗n0 is a line bundle. Then
π∗ω

⊗n0 is ample [Chai 1990, Section 4.3].
There is another useful definition equivalent to the above definition. We consider

the covariant functor P= PR(c, 0(N )) : R-Alg→ Sets with

P(B)=
{
(A, ω)/B/isom.

∣∣ A ∈ E(B), ρ : A→ Spec(B),

H 0(A, ρ∗�1
A/B)' (OF ⊗ B)ω

}
.

Then for every R-algebra B, TZ(B)= (OF⊗Z B)× acts on P(B), and P/TZ'E. If
E is representable, so is P. And M denotes the moduli scheme over R representing
P. Then M is a TZ-torsor over M . It is known that H 0(M, ωk) ⊂ H 0(M,OM)

[Dimitrov and Tilouine 2004, Remarque 4.5]. Thus, f ∈ H 0(M, ωk) is regarded as
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a function such that a pair (A, ω)/B , for every R-algebra B, associates an element
f ((A, ω)/B) ∈ B that satisfies the following:

(1) The value of f depends only on the isomorphism class of (A, ω).

(2) Given a base change map ρ : B→ B ′, f satisfies

ρ( f ((A, ω)/B))= f ((A, ω)/B ′).

(3) For every α ∈ (OF ⊗Z B)× = TZ(B),

f (A, αω)=
g∏

i=1

σi (α)
−ki f (A, ω).

Let R=OF̃ [1/(NdF ), µN ], and let B be an R-algebra and f a c-polarized GHMF
of weight k = (k1, k2, . . . , kg) and level 0(N ) defined over B. Let a and b⊂ F be
nonzero fractional ideals such that ab−1

= c, φN : (b⊕a
∗)/N (b⊕a∗)' (OF/NOF )

2

an isomorphism, s a cusp of 0(N ) parametrized by (a, b, φN ), and σ a cone in the
cone decomposition 6s . We set

Rσ (N )= R[qξ ]ξ∈N−1ab∩σ∨ and R0(N )= R[qξ ]ξ∈N−1(ab)+∪{0},

where σ∨ is the dual of σ . Let Sσ (N )= Spec Rσ (N ) and S0(N ) = Spec R0(N ).
Let Ŝσ (N ) be the formal completion of Sσ (N ) along S∞σ (N ) = Sσ (N ) \ S0(N ).
The formal scheme Ŝσ (N ) is affine, and we define R̂σ (N ) as its coordinate ring.
Then we can show that

R[[qξ ]]ξ∈N−1(ab)+∪{0} ↪→ R̂σ (N ).

The Tate object Tate(a,b)(q) corresponding to the cusp s is a Hilbert–Blumenthal
abelian variety defined over the quotient field Q(R̂σ (N )⊗R B). The q-expansion
of f at the cusp s is defined to be the value of f at the Tate object corresponding to s:

f (Tate(a,b)(q), φN , ω)= a0+
∑

ξ∈N−1ab∩σ∨

aξqξ ∈ Q(R̂σ (N )⊗R B),

where ω is the canonical nonvanishing differential form on Tate(a,b)(q).
The following fact is known as the q-expansion principle:

Lemma 4. Let B ′ be a subring of B such that B ′ is an R-algebra, and let f be as
above. Then f is defined over B ′ if and only if aξ ∈ B ′ for all ξ ∈ (ab)+ ∪ {0}.

Proof. See [Rapoport 1978, Theorem 6.7]. �

There is a correspondence between the classical Hilbert modular forms and the
geometric Hilbert modular forms defined over C. Let H=Hg be the g-tuple product
of the complex upper half-plane. Then the holomorphic function f : H→ C is a
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classical Hilbert modular form of weight k = (k1, . . . , kg) of level 0(N ; a, b) if f
satisfies the following equation:

f (γ z)=
∏
σi∈I

(σi (c)zi + σi (d))ki f (z) for all γ =
(

a b
c d

)
∈ 0(N ; a, b).

Here Mk(0(N ; a, b)) denotes the complex vector space of the classical Hilbert
modular forms of weight k and level 0(N ; a, b).

To show corollaries of our main result, we need the following lemma:

Lemma 5. As C-vector spaces, Mk(0(N ; a, b)) and H 0(MC(ab
−1, 0(N )), ωk

C
)

are canonically isomorphic.

Proof. See [Rapoport 1978, Lemme 6.12]. �

For f ∈ Mk(0(N ; a, b)), let f ′ ∈ H 0(MC, ω
k
C
) be the form corresponding

to f . We remark that replacing qξ by e2π i Tr(ξ z), the q-expansion of f ′ at a cusp s
corresponds to the Fourier expansion of f at the cusp s.

Remark 6. Let K be a field that is a Z[1/(NdF ), µN ]-algebra. For the open
Hilbert modular variety MK ⊂ M K , the Kodaira–Spencer isomorphism [Katz
1978, Section 1.0] gives ω⊗OF⊗OM ω '�

1
M/K . Therefore, ω⊗2

K = ωK ⊗OM ωK '

det(ω⊗OF⊗OM ω)'�
g
M/K . Observing the behaviors of sections at cusps, we have

ω⊗2
'�

g
M/K

(log D∞)' OM(KM + D∞),

where KM is the canonical divisor of M , and the Cartier divisor D∞ =
∑

E ,
where E runs over the irreducible components of codimension 1 in M K \MK .

3. Proofs of the main theorems

3.1. Main result. We assume g = [F :Q] ≥ 2 so that we use intersection theory.
Let N be a positive integer such that N ≥ 3, k = (k1, . . . , kg) ∈ Z

g
≥0, c a nonzero

integral ideal of F , and K a field that is a Z[1/(NdF ), µN ]-algebra if k is parallel
or an OF̃ [1/(NdF ), µN ]-algebra otherwise. Let MK = MK ,N = MK (c, 0(N ))
be the moduli scheme over K defined in Section 2.2. We choose a collection
of projective 0(N )-admissible polyhedral cone decompositions 6 = {6s}. Let
M K = M K ,N = M K ,N ,6 be the toroidal compactification of MK associated to 6,
M∗K = M∗K ,N the minimal compactification of MK , and π = πN : M K → M∗K the
canonical morphism defined in Section 2.2. We set D∞ =

∑
E , where E runs over

the irreducible components of codimension 1 in M K \MK . Let S be a nonempty
finite set of irreducible components of codimension 1 in M K \MK . For a closed
point P ∈ M∗K , IP denotes the ideal sheaf on M∗K defining P . And I= IN denotes
the inverse image ideal sheaf π−1

N (⊗P∈M∗K \MK IP) ·OM K
.

For convenience, we restate Theorem 1.
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Theorem 1. Retain the notation above and let f be a c-polarized geometric Hilbert
modular form over K of weight k and level 0(N ), i.e., f ∈ H 0(M K (0(N ), c), ωk).
Then, if f 6≡ 0, we have minE∈S{ordE( f )}< κ for

κ = κS = κS(k, N )= Cg−1
g∑

i=1

ki
{
(ω(g−1)

·ωi )+ (I
(g−1)
·ωi )

}(
I(g−1) ·

∑
E∈S E

) ,

where C is a positive integer which is independent of k or N.

Remark 6. If f is a cusp form, κ can be smaller. More generally, for a nonnegative
integer a, if f has zeros of order a at all irreducible components of codimension 1
in M \M , we may take κ as

κ = Cg−1
g∑

i=1

ki {(ω
(g−1)
·ωi )+ (I

(g−1)
·ωi )}(

I(g−1) ·
∑

E∈S E
) − a

(
(I(g−1)

· D∞)(
I(g−1) ·

∑
E∈S E

) − 1
)
.

Remark 7. When the weight is parallel, k = (k0, . . . , k0), we have∑
i

k0(I
(g−1)
·ωi )= k0(I

(g−1)
·ω)= 0

by the projection formula. This implies

κ =
k0Cg−1(ω(g))(

I(g−1) ·
∑

E∈S E
) .

By Hirzebruch’s proportionality theorem [Mumford 1977, Theorem 3.2], we have

(ω(g))= A vol(M)c1(�
1
P

g
C

)g = A′(−1)gζF (−1)[0(1; a, b) : 0(N ; a, b)],

where A and A′ are positive constants not depending on the level N . In this case,
we obtain

κ = k0Cg−1 A′(−1)gζF (−1)
[0(1; a, b) : 0(N ; a, b)](

I(g−1) ·
∑

E∈S E
) .

To prove Theorem 1, we introduce the following lemma:

Lemma 8. For a sufficiently large integer C , ω⊗C
⊗ I is ample on M K .

Proof. We know that π∗ω is Q-Cartier; i.e., π∗ω⊗k0 is a line bundle on M∗K for a
sufficiently large k0. Then this is ample [Chai 1990, Section 4.3]. Since M K is
the normalization of the blowing-up of M∗K along the ideal sheaf ⊗P∈M∗K \MK IP

[Ash et al. 1975, Chapter IV; Faltings and Chai 1990, Chapter V, Theorem 5.8], I
is π -ample.

Lemma 2 implies the line bundle (π∗π∗ω)⊗k0n
⊗I is ample for an integer n� 0.

Because ω is semiample, π∗π∗ω⊗k0 ' ω⊗k0 . Thus, ω⊗k0n
⊗I is also ample for n.

Replacing k0n with C , we obtain the lemma. �
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Proof of Theorem 1. We assume that f 6≡ 0 and set

ν =min
E∈S
{ordE( f )}.

Then f ∈ H 0(M K , ω
k(−ν

∑
E∈S E)). Thus,

OM K
(div( f ))⊂ ωk

(
−ν

∑
E∈S

E
)
,

and they are effective. By positivity of ample line bundles,(
(ω⊗C

⊗ I)(g−1)
·ωk

(
−ν

∑
E∈S

E
))

> 0

for the integer C in Lemma 8. Thus, we have

ν < Cg−1
g∑

i=1

ki {(ω
(g−1)
·ωi )+ (I

(g−1)
·ωi )}(

I(g−1) ·
∑

E∈S E
) .

The independence of C and k and N refers to Lemma 14. �

Next we apply Theorem 1 for classical Hilbert modular forms. For this purpose,
we start with a review of the relation between smooth cone decompositions and
local structures of M at cusps.

We assume that the cone decompositions in 6 are smooth. Let s be a cusp of
M(c, 0(N )) parametrized by (a, b, φN ), where a and b are two nonzero fractional
ideals such that ab−1

= c and φN :b⊕a
∗/N (b⊕a∗)' (OF/NOF )

2 is an isomorphism
(see Section 2.2). We can take the quotient

6s/UN =

g⋃
i=1

{σi, j }
ri
j=1,

where UN ={ ε∈O×F |ε≡1 mod N }, ri is a positive integer, and σi, j ≡σi, j mod UN

with an i-dimensional cone σi, j ∈ 6s . Let 1 ≤ d ≤ g and σ ∈ 6s be a smooth
d-dimensional cone. Since σ is smooth, we can take part of a Z-basis α1, . . . , αd of
N−1ab∩σ∨ such that N−1ab∩σ∨=Z≥0α1+· · ·+Z≥0αd+Zβd+1+· · ·+Zβg with
some part of a Z-basis βd+1, . . . , βg [Hida 2004, Section 4.1.4]. We regard 0 as a
cone in6s . Then 0∨= F∞= F⊗QR. We remark that 0∨=

⋃
σ∈6s

σ∨; in particular,
0∨ ⊃ σ∨. Thus, we have N−1ab∩ 0∨ = Zα1+ · · ·+Zαd +Zβd+1+ · · ·+Zβg for
the above Z-basis α1, . . . , βg.

For the above cone σ ∈6s and the ring R = Z[1/(NdF ), µN ], the ring R̂σ (N )
defined in Section 2.2 is the completion of Rσ (N ) by the principal ideal (qα1 · · · qαd ).
We set

R̂0
σ (N )= R̂σ (N )⊗Rσ (N ) R0(N ).
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It is easy to show that, if τ ∈6s is a face of σ , Spec(R̂τ (N ))⊂ Spec(R̂σ (N )). The
exceptional locus of π :M→M∗ is defined by gluing Spec(R̂σ (N ))\Spec(R̂0

σ (N ))
along 6s/UN by the above rule.

For one element αi of the basis, the divisor Ei associated to αi is defined by
the closed irreducible subvariety of codimension 1 in M that contains the affine
subvariety defined by {qαi = 0} in the exceptional locus.

For a GHMF f over a field K that is an OF̃ [1/(NdF ), µN ]-algebra and its
q-expansion

f =
∑

ξ∈N−1(ab)+∪{0}

aξqξ

at the cusp s, the order of f at Ei,K = Ei ×Spec(K ) is

ordEi,K ( f )=min{mi ∈ Z | am1α1+···+mgαg 6= 0 in K }.

Corollary 9. Let f ∈ Mk(0(N ; a, b)) and

f (z)=
∑

ξ∈N−1(ab)+∪{0}

aξe2π i Tr(ξ z)

be the Fourier expansion of f at cusp s. We fix a g-dimensional cone σ ∈ 6s .
Let {α1, . . . , αg} be a Z-basis of N−1(ab) corresponding to σ and Ei the divisor
associated to αi . For a fixed i ∈ {1, 2, . . . , g}, we set

κi = Cg−1
g∑

j=1

k j {(ω
(g−1)
·ω j )+ (I

(g−1)
·ω j )}

(I(g−1) · Ei,C)
,

Si =
{
ξ ∈ m1α1+ · · ·+mgαg ∈ N−1(ab)+ ∪ {0}

∣∣ 0≤ mi ≤ κi
}
,

where C is the integer in Theorem 1. Then, if aξ = 0 for every ξ ∈ Si , we have
aξ = 0 for every ξ ∈ N−1(ab)+ ∪ {0}.

Proof. By Lemma 5, f is regarded as a global section of H 0(MC, ω
k), and the

q-expansion of f at cusp s = (a, b, φN ) is

f (Tate(a,b), φN , ω)=
∑

ξ∈N−1(ab)+∪{0}

aξqξ ,

where ω is a nonvanishing differential form on Tate(a,b). Applying Theorem 1 for f
as K = C and S = {Ei,C}, the corollary is proved. �

Remark 10. We can easily show that the subset Si is a finite set. Indeed, by
Proposition 13 and an easy calculation, we have an upper bound

#Si �max{ki }
g N 3g2

.

Remark 11. Corollary 9 gives a different proof of the result of [Baba et al. 2002].
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Next we discuss the case of positive characteristic. The following corollary is an
analogue of Sturm’s theorem:

Corollary 12. Let f ∈ Mk(0(N ; a, b)) and

f (z)=
∑

ξ∈N−1(ab)+∪{0}

aξe2π i Tr(ξ z)

be the Fourier expansion of f at the cusp s= (a, b, φN ). We assume g=[F :Q] ≥ 2
and fix a g-dimensional cone σ ∈ 6s . Let {α1, . . . , αg} be a Z-basis of N−1(ab)

corresponding to σ and Ei the divisor associated to αi . Let L be a number field, OL

the ring of integers of L , and λ a prime ideal in OL such that λ - NdF OL . Assume
aξ ∈ OL for every ξ . For a fixed i ∈ {1, 2, . . . , g}, we set

κi = Cg−1
g∑

j=1

k j {(ω
(g−1)
·ω j )+ (I

(g−1)
·ω j )}

(I(g−1) · Ei,F)
,

where C is the integer in Theorem 1 and F is a finite extension of OL/λ (defined in
the proof ), and set Si to be same as in Corollary 9.

Then, if aξ ≡ 0 mod λ for every ξ ∈ Si , we have aξ ≡ 0 mod λ for every ξ in
N−1(ab)+ ∪ {0}.

Proof. Lemma 5 implies that f is regarded as an element of H 0(MC, ω
k). Let L̃

be the composition field of L and F̃ . By the assumption, all the Fourier coefficients
of f are in OL and thus in OL̃ [1/(NdF ), µN ]. Let λ′ be a maximal ideal of ring
OL̃ [1/(NdF ), µN ] such that λ′ | λOL̃ [1/(NdF ), µN ]. Remark that λ′ ∩OL = λ. By
Lemma 4 and the commutativity with base change maps of GHMF (see Section 2.2),
we regard f as a GHMF defined over the field OL̃ [1/(NdF ), µN ]/λ

′, and the q-
expansion of f at cusp s = (a, b, φN ) is

f (Tate(a,b), φN , ωcan)=
∑

ξ∈N−1(ab)+∪{0}

(aξ mod λ′)qξ .

Applying Theorem 1 for f as K = F = OL̃ [1/(NdF ), µN ]/λ
′ and S = {Ei,F}, if

f 6≡ 0 mod λ′, an integer mi such that 0≤ mi ≤ κi and am1α1+···+mgαg 6≡ 0 mod λ′

exists. Thus, am1α1+···+mgαg /∈ λ
′
∩OK = λ, and the contrapositive of the corollary

is proved. �

Next we examine the growth of κ=κ(k, N ) associated to weight k= (k1, . . . , kg)

and level N .

Proposition 13. We may take κ in Theorem 1 as

κ(k, N )�max
i
{ki }N 3g.

Let ωN be the automorphic line bundle on M N . To show Proposition 13, we
introduce the following lemma:
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Lemma 14. Let ` be the characteristic of K , N and N ′ two positive integers such
that N ≥ 3 and N | N ′ and ` - N ′, and C a positive integer. Then ω⊗C

N ⊗ IN is
ample if and only if ω⊗C

N ′ ⊗ IN ′ is ample.

Proof. We can take a finite étale morphism h :MN ′,K→MN ,K over Z[1/(N ′)] [Chai
1990, Section 2.2]. Let 6 be a collection of cone decompositions of level N and
M N ,K ,6 the toroidal compactification associated to 6. We define M N ′,K to be the
normalization of M N ,K in MN ′,K , and h̃ :M N ′,K→M N ,K denotes the normalization
morphism. Then the normalization M N ′,K is the toroidal compactification of MN ′,K

associated to 6 [Faltings and Chai 1990, Chapter IV, Theorem 6.7(1)]. Here 6 is
regarded as a collection of cone decompositions of level N ′. Remark that M N ′,K

may not be smooth. Then h̃ is an extension of h to toroidal compactifications
[Faltings and Chai 1990, Chapter IV, Theorem 6.7(2)]. In particular, h̃|MN ′,K

is étale.
We can show that h̃∗ω⊗2

N ' ω
⊗2
N ′ . Indeed by Remark 6,

ω⊗2
N ' OM N ,K

(KM N ,K
+ D∞,N ),

where D∞,N =
∑

E such that E runs over the irreducible components of codimen-
sion 1 in M N ,K \MN ,K . Since h̃|MN ′,K

is étale, the ramification of h̃ occurs only
at M N ,K \MN ,K . Thus, we can show that

h̃∗ω⊗2
N ' h̃∗OM N ,K

(KM N ,K
+ D∞,N )' OM N ′,K

(KM N ′,K
+ D∞,N ′)' ω⊗2

N ′ .

It is known that h̃∗IN ' IN ′ [Faltings and Chai 1990, Chapter V, proof of Corollary
5.14]. Assume that C is even and that ω⊗C

N ⊗ IN is ample. Since h̃ is finite and
surjective, ω⊗C

N ⊗IN is ample if and only if ω⊗C
N ′ ⊗IN ′ is ample by Lemma 3. �

Proof of Proposition 13. Let N and N ′ be positive integers such that N , N ′ ≥ 3 and
char(K ) - N N ′ and C a positive integer such that ω⊗C

N ⊗ IN is ample. According
to Lemma 14, ω⊗C

N N ′⊗IN N ′ is ample. Thus, ω⊗C
N ′ ⊗IN ′ is also ample. This implies

that we may take C independent of N . By Remark 7, we have

κ(k, N )= Cg−1
g∑

i=1

ki {(ω
(g−1)
·ωi )+ (I

(g−1)
·ωi )}(

I
(g−1)
N ·

∑
E∈S E

)
≤ Cg−1 max

i
{ki }(ω

(g))

= C (g−1)A max
i
{ki }ζF (−1)[0(1; a, b) : 0(N ; a, b)]

�max
i
{ki }N 3g. �

As a consequence of Theorem 1, Proposition 13, and Remark 10, we obtain an
upper bound for the dimension of the vector space of the Hilbert modular forms.
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Corollary 15. Let N be an integer such that N ≥3, k= (k1, . . . , kg)∈Z
g
≥0 a weight

vector, and K a field that is an OF̃ [1/(NdF ), µN ]-algebra (a Z[1/(NdF ), µN ]-
algebra if k is parallel). Then

dimK H 0(M K , ω
k)� (max

i
{ki })

g N 3g2
.

3.2. The case that F is a real quadratic field. In this section, for some special
situations, we investigate the strange constant C appearing in Theorem 1.

Assume that g = 2 and the canonical bundle KM K
is nef. For the invertible sheaf

IN in Theorem 1, we set

OM K

(
−

∑
i

ni Ei

)
= IN ,

where {Ei } are the exceptional curves of π :M K→M∗K and ni are positive integers.
We set nmax =maxi {ni }. Then we may take 2nmax as the constant C .

Theorem 16. In the above setting, we may take C = 2nmax. Thus, in this situation,
we may take

κ = 2nmax

∑2
j=1 k j {(ω ·ω j )− (

∑
i ni Ei ·ω j )}

−
(∑

i ni Ei ·
∑

E∈S E
) .

Proof. For our purpose, we need a line bundle L on M that is nef and (L ·E)> 0 for
all exceptional curves E . Thus, it is sufficient to prove that (ω⊗2nmax ⊗IN ·C)≥ 0
for every irreducible curve C in M K . In particular, it is not necessary to prove that
the line bundle is ample. First, assume that the curve C is exceptional. Then, by
the π -ampleness of IN , we have

(ω⊗2nmax ⊗ IN ·C)= (π
∗π∗ω

⊗2nmax ·C)+ (IN ·C)

= (π∗ω
⊗2nmax ·π∗C)+ (IN ·C)= (IN ·C) > 0.

Next assume C is an irreducible curve such that π(C) is an irreducible curve. Then

(ω⊗2nmax ⊗ IN ·C)=

(
OM K

(
nmaxKM K

+ nmax D∞−
∑

i

ni Ei

)
·C

)
= (nmaxKM K

·C)+

(∑
i

(nmax− ni )Ei ·C

)
≥ 0. �

We give an example for Theorem 16 in the setting of [Dieulefait et al. 2010,
Appendix B].

Example 17. Let F = Q(
√

5), N = 3, and k1 = k2 = 2k ∈ 2Z>0. Then there are
the exceptional curves Ei (i = 1, 2, . . . , 10) and the curve F1 defined in [van der
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Geer 1988, page 88]. These intersection numbers are as follows:

(Ei · E j )=

{
0 if i 6= j,
−4 if i = j,

(F1 · F1)=−60,

(Ei · F1)= 12 for i = 1, 2, . . . , 10.

We set

D′ = 1
5

( 10∑
i=1

Ei + 2F1

)
,

then D′ is nef and (D′ ·D′)= 8, and it is known that D′ equals the canonical divisor
KM . In particular, M is a minimal surface of general type. Then we may take 1 as
nmax because we may use O(−D∞) as the ideal sheaf I3, where D∞ =

∑10
i=1 Ei .

Thus, by easy calculation, we have κ = 12k. This estimate is the same as [Dieulefait
et al. 2010, Theorem B.3].

Next we consider a more particular case. Assume that the toroidal compactifi-
cation MF is a minimal surface of general type (i.e., the canonical divisor KMF

of
MF is nef and (KMF

· KMF
) > 0) over a field F of positive characteristic `. Under

the above assumption, we have:

Lemma 18 [Ekedahl 1988, Chapter III, Proposition 1.13]. Let F be a field of positive
characteristic, X a minimal surface of general type over F, and Z the fundamental
cycle on X. Then 2K X − Z is numerically positive.

Here the fundamental cycle of X is the fundamental cycle associated to the
canonical morphism φ = φmK X : X → Xcan with a sufficiently large integer m,
where Xcan is the canonical model of X . The Weil divisor Z is the fundamental
cycle of φ if Z is the smallest element in the set{

D =
∑

mi Ei

∣∣∣ Ei ∈ Ex(φ), mi > 0, (D · E)≤ 0 for all E ∈ Ex(φ)
}
,

where Ex(φ) is the set of the exceptional curves of φ (i.e., the irreducible curves
contracted by φ) on X . For an irreducible curve C⊂ X , C is contracted by φ if and
only if (K X ·C)= 0. If C'P1 and C is contracted by φ, by the adjunction formula

pa(C)= 1+ 1
2((C ·C)+ (K X ·C)),

we have (C ·C)=−2. Thus, Xcan is obtained by contracting all (−2)-curves on X .
Return to our case. Let π be the morphism MF→M∗F , φ=φmKMF

:MF→MF,can

with a sufficiently large integer m, and Ex(π) and Ex(φ) the sets of the exceptional
curves of π and φ, respectively. Then we have

Ex(φ)= { E ∈ Ex(π) | (E · E)=−2 }.
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We can take Z =
∑

E∈Ex(φ) E as the fundamental cycle of φ. Remark 6 implies

OMF
(2KMF

− Z)' ω⊗4
⊗OMF

(−2D∞− Z).

Thus, we obtain:

Theorem 19. Let N ≥ 3 be an integer, k = (k1, k2) ∈ Z2
≥0, ` an odd prime number

such that ` - NdF , c a nonzero integral ideal of F , and F a field of characteristic
`. Assume that KMF

is nef and (KMF
· KMF

) > 0. Let S be nonempty finite set of
exceptional curves of π : MF→ M∗F . Let f be a c-polarized geometric Hilbert
modular form over F of weight (k1, k2) and level 0(N ). Then, if f 6≡ 0, we have
minE∈S{ordE( f )}< κ . Here

κ =

2∑
i=1

ki {4(ω ·ωi )− ((2D∞+ Z) ·ω j )}(
(−2D∞− Z) ·

∑
E∈S E

) ,

where D∞ and Z are the above Weil divisors.

Remark 20. In the settings of Theorem 19, 2nmax = 6 if Ex(φ) is nonempty. Thus,
when the weight is parallel (k, k) and Ex(φ) is not empty, Theorem 16 implies

κ =
6k(ω ·ω)(

(−2D∞− Z) ·
∑

E∈S E
) .

But on the same assumptions, Theorem 19 implies

κ =
4k(ω ·ω)(

(−2D∞− Z) ·
∑

E∈S E
) .

Therefore, the estimate of κ in Theorem 19 is slightly better than in Theorem 16.

Remark 21. In the situation of Theorems 16 and 19, if f is a cusp form, we
can take a smaller bound as Remark 6. For example, under the assumption of
Theorem 16, for f having zeros of order a at all the irreducible components of
codimension 1 in M \M , the bound can be taken as

κ − a
(

(
∑

i ni Ei · D∞)(∑
i ni Ei ·

∑
E∈S E

) − 1
)
.
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