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On the discrete logarithm problem
in elliptic curves II

Claus Diem

We continue our study on the elliptic curve discrete logarithm problem over finite
extension fields. We show, among others, the following results:

For sequences of prime powers .qi/i2N and natural numbers .ni/i2N with
ni !1 and ni=log.qi/

2! 0 for i !1, the discrete logarithm problem in the
groups of rational points of elliptic curves over the fields Fq

ni
i

can be solved in
subexponential expected time .qni

i /
o.1/.

Let a, b > 0 be fixed. Then the problem over fields Fqn , where q is a prime
power and n a natural number with a � log.q/1=3 � n� b � log.q/, can be solved
in an expected time of eO.log.qn/3=4/.

1. Introduction

In our previous work [Diem 2011b] we have shown that there exist sequences of
finite fields over which the elliptic curve discrete logarithm problem can be solved
in subexponential expected time in the bit-length of the input.

In this work, we strengthen those results. We show that for larger classes of
ground fields the problem can still be solved in subexponential expected time.

Recall that the main result from [Diem 2011b] is as follows.

Theorem 1. The discrete logarithm problem in the groups of rational points of
elliptic curves over finite fields Fqn can be solved in an expected time of

eO.max.log.q/;n2//:

Here and in the following, q is always a prime power and n a natural number.
It follows from this theorem that, for any two sequences .qi/i2N and .ni/i2N of

prime powers and natural numbers with ni!1 and ni=log.qi/! 0 for i !1,
the discrete logarithm problem in the groups of rational points of elliptic curves
over the fields Fq

ni
i

can be solved in an expected time of .qni

i /
o.1/.

The main result of this work is the following stronger theorem.
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Theorem 2. The discrete logarithm problem in the groups of rational points of
elliptic curves over finite fields Fqn can be solved in an expected time of

eO.max.log.q/;n � log.q/1=2;n3=2//:

Note here that

max.log.q/; n �.log.q//1=2; n3=2/D

8<:
log.q/ for n� log.q/1=2;

n �.log.q//1=2 for log.q/1=2� n� log.q/;
n3=2 for log.q/� n:

Theorem 2 gives the following results.

(i) Let sequences of prime powers .qi/i2N and natural numbers .ni/i2N with qi!1

and ni=log.qi/
2! 0 for i !1 be given. Then the discrete logarithm problem in

the groups of rational points of elliptic curves over the fields Fq
ni
i

can be solved in
an expected time of

.q
ni

i /
o.1/:

(ii) Let ˇ 2 Œ1
2
; 1� and a, b > 0 be fixed. Let

˛ WD
1

2ˇC 1
and 
 WD 1�

1

2
�

1

ˇC 1
D
ˇC 1

2

ˇC 1
:

Then the discrete logarithm problem in the groups of rational points of elliptic
curves over finite fields Fqn with

a � log.q/˛ � n� b � log.q/ˇ (1)

can be solved in an expected time of

eO.log.qn/
 /:

Note that ˛ � 1
2

(with equality if ˇ D 1
2

), and 
 is maximal if ˛ D ˇ D 1
2

, and
then it is equal to 2

3
.

As a special case we obtain that for a, b > 0 the discrete logarithm problem in
the groups of rational points of elliptic curves over finite fields Fqn with

a � log.q/1=3 � n� b � log.q/

can be solved in an expected time of eO.log.qn/3=4/.

(iii) Let ˇ 2 Œ1; 2/ and a, b > 0 be fixed. Let

˛ WD
2�ˇ

3ˇ
and 
 WD

3

2
�
ˇ

1Cˇ
:
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Then the discrete logarithm problem in the groups of rational points of elliptic
curves over finite fields Fqn with

a � log.q/˛ � n� b � log.q/ˇ

can be solved in an expected time of

eO.log.qn/
 /:

The first statement follows immediately from Theorem 2.

The derivation of the second statement from Theorem 2 is as follows:
We have ˇ D .
 � 1

2
/=.1� 
 / and ˛ D 1=
 � 1.

The first inequality in (1) is equivalent to n�a�log.q/1=
�1, and this is equivalent
to .1=a
 / � .n log.q//
 � log.q/.

The second inequality is equivalent to b1�
 � log.q/
�1=2 � n1�
 , and this is
equivalent to b1�
 � .n log.q//
 � n � log.q/1=2.

Additionally, except if q D 2, we have log.q/ � log.q/ˇ � .1=b/ � n and thus
n � log.q/1=2 � .1=b/ � n3=2.

The results now follow with Theorem 2.

We now show how the third statement follows from Theorem 2. We have
ˇ D 2
=.3� 2
 / and — as above —˛ D 1=
 � 1.

For the range a � log.q/˛ � n� log.q/, the result follows from the second point,
so we consider the range log.q/� n� b � log.q/ˇ . We have n� b � log.q/2
=.3�2
/;
that is, n3=2�
 � b3=2�
 � log.q/
 . With other words: n3=2 � b3=2�
 � .n � log.q//
 .

As an application of Theorem 2 we now consider the discrete logarithm prob-
lem in the groups of rational points of elliptic curves over finite fields of a fixed
characteristic p. We first remark that Theorem 2 does not give a nontrivial result if
q is set to p and n is set to the absolute extension degree of the ground field. We
therefore consider a factorization of the absolute extension degree in the form mn;
that is, we write the cardinality of the ground field in the form pmn. We can then
regard both m and n as the extension degree. One sees that it is advantageous to
regard n as the extension degree provided that n�m and m as the extension degree
otherwise. In this way one obtains:

Theorem 3. Let p be a fixed prime number. Then the discrete logarithm problem in
the groups of rational points of elliptic curves over finite fields Fpmn can be solved
in an expected time of

eO.max.m;n;min.m �n1=2;n �m1=2///:
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Here we have

max.m; n;min.m � n1=2; n �m1=2//D

8̂̂̂<̂
ˆ̂:

m for n�m1=2;

n �m1=2 for m1=2 � n�m;

m � n1=2 for n1=2 �m� n;

n for m� n1=2:

For any fixed prime number p, Theorem 3 gives the following results:

(iv) Let .mi/i2N and .ni/i2N with mi , ni !1 for i !1. Then the discrete
logarithm problem in the groups of rational points of elliptic curves over the finite
fields Fpmi ni can be solved in an expected time of

.pmi ni /o.1/:

(v) Let ˛ � 3 and a, b > 0. Then the discrete logarithm problem in the groups of
rational points of elliptic curves over finite fields Fpmn with

m� a � n˛ and n� b �m˛

can be solved in an expected time of

eO.log.pmn/1�1=.1C˛//:

Just as statement (i) above, statement (iv) is again immediate.
So we consider the last statement. Let ˛ � 3. Note first that 1� 1

1C˛
D

˛
1C˛
D

1
1C1=˛

. We have m1C1=˛ � a1=˛ �mn, so m� a1=.1C˛/ � .mn/˛=.1C˛/. Similarly,
n�a1=.1C˛/ �.mn/˛=.1C˛/. Moreover, 1� 1

1C˛
�

3
4

. Thus, if n�m, then n�m1=2�

.mn/3=4 � .mn/˛=.1C˛/. Analogously, if m� n, then m � n1=2 � .mn/˛=.1C˛/.

Some more information on the results. We give here some more information on
the precise meaning of the statements above and similar statements throughout this
article.

First, we choose some concrete representation of the “abstract input instances”
(elliptic curves E over finite fields K and elements a, b 2E.K/ with a 2 hbi) by
bit-strings. Every “abstract instance” is then given by at least one and finitely many
bit-strings. Concretely, we represent elliptic curves by Weierstraß equations, as
usual. We also choose some (uniform) randomized model of computation with an
appropriate complexity measure, for example, a usual randomized RAM model
with logarithmic cost function or a randomized Turing model.

For a function f from some infinite countable set S to R>0, we define the sets
O.f /, QO, o.f / and Poly.f / as usual (for the latter see also [Diem 2011b]). We
note here that it makes no difference if S is a subset of N or not.

The assertion in Theorem 1 is then as follows: there exists a machine in the given
model and a constant C > 0 such that, if the machine is applied to an instance of
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the elliptic curve discrete logarithm problem over a field Fqn , the expected running
time is bounded by eC �max.log.q/;n2/. The assertions in Theorem 2 and Theorem 3
are analogous. We stress that the expected value concerns only the internal choices
of the computation; there is no averaging over input classes.

Statement (i) means the following: Let .qi/i2N and .ni/i2N be given as indicated.
Then there exists a randomized machine and a sequence .�i/i2N with �i ! 0 for
i!1 such that the expected running time of the machine if applied to an instance
over Fq

ni
i

is bounded by .qni

i /
�i . Statement (iv) is again analogous.

As usual, throughout this article we use the word “algorithm” instead of “ma-
chine”. Also as usual, we use the word “algorithm” in an informal way when we
outline a computation.

Outline. Just as the algorithm in [Diem 2011b], the algorithm for Theorem 2 is
based on the usual index calculus or relation generation and linear method. Again
we use multivariate polynomial systems over Fq to obtain relations. The main
conceptual difference between the new algorithm and the previous algorithm is
that we enlarge the factor base. This enlargement causes some difficulties in the
analysis of the algorithm, and in order to complete the analysis we further modify the
definition of the factor base. We also employ a new algorithm to find decompositions.
Otherwise the index calculus algorithm in [ibid.] is not changed.

Below we outline a preliminary algorithm, and, on the basis of this algorithm,
we discuss under various heuristic assumptions why one should be able to obtain
an expected running time of eO.max.log.q/;n � log.q/1=2//. In the course of this work,
we will change the algorithm in various ways. Unfortunately, even with a modified
algorithm we cannot prove that one can obtain the expected running time one
might expect by heuristic considerations. Indeed, in odd characteristic we can
only complete the analysis under the condition that cn � q for a suitable constant
c > 0. In even characteristic the situation is more fortunate and we can complete
the analysis if nc � q for a suitable constant c > 0. This does however not
lead to an improvement over the result in Theorem 3 applied to fields of even
characteristic.

The index calculus algorithm we employ has the same overall structure as the
one in [ibid.] (see Subsection 2.3 of that work). The changes we perform concern
the definition of the factor base (Steps 4 and 5 of that algorithm) and the relation
generation (Step 6), where a new decomposition algorithm is employed. Because
the overall structure of the algorithm stays the same, we will focus on the parts of
the index algorithm which need to be changed.

In the next section, we give the new algorithm for the constructions leading
to the definition of the factor base. In Section 3 we formulate a decomposition
problem adapted to the new situation and give an algorithm to solve the problem.
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In the fourth and last section, we prove that under suitable conditions on n and q

the probability that a uniformly randomly distributed point P 2E.Fqn/ leads to a
relation between P and factor base elements is large enough. In the last part of this
section, we indicate how Theorem 2 can be obtained. Additionally, in an appendix
we correct two misprints in our previous work [ibid.].

Throughout the article we use the same notation as in our previous work, with
the exception that we now denote an affine defining polynomial for the elliptic
curve by f .x;y/.

The application of the scalar restriction functor, that is, the formation of Weil
restrictions, is crucial in this work. Furthermore, many arguments here are based
on the consideration of tangent spaces. Background information on these topics is
given at the end of this section. The reader should also be familiar with the first two
sections of [ibid.]. Additionally, we assume some familiarity with toric geometry
and its application to solving polynomial systems as given in [Fulton 1993], [Cox
et al. 2005] and in particular in [Rojas 1999].

A preliminary algorithm. The algorithm follows the usual “index calculus” strat-
egy: after some preliminary computations to determine the group structure, we fix
a so-called factor base, generate relations and finally solve the discrete logarithm
problem via linear algebra.

Just as in [Diem 2011b], the factor base is defined in an algebraic way, and the rela-
tions are obtained by solving systems of multivariate polynomial equations over Fq .

Let some instance of the problem with a prime power q, a natural number n� 2

and an elliptic curve E=Fqn be given, where E is (as usual) given by an affine
Weierstraß equation in x and y with neutral element the point at infinity.

The definition of the factor base and the relation generation are as follows:
Let m be some natural number not exceeding n, which will be optimized later,

and let d WD dn=me and ı WD dm� n.
We choose some d-dimensional vector subspace U of the Fq-vector space Fqn

and define the factor base by

F WD fP 2E.Fqn/ j x.P / 2 U g:

Furthermore, if n is not divisible by m (that is, ı ¤ 0), we choose a .d � 1/-
dimensional vector subspace U 0 of U and set

F0 WD fP 2E.Fqn/ j x.P / 2 U 0g:

Given some element P 2E.Fqn/, we want to find a relation

P1C � � �CPm D P
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with Pi 2 F0 for i D 1; : : : ; ı and Pi 2 F for i D ıC 1; : : : ;m. The key idea is
again to find such relations by solving systems of polynomial equations over Fq .
One possibility to obtain such a system is via summation polynomials.

Recall that the .mC 1/-th summation polynomial with respect to the cover-
ing xjE W E ! P1

Fqn
is an irreducible multihomogeneous polynomial SmC1 2

Fqn ŒX1;Y1; : : : ;XmC1;YmC1� such that, for P1; : : : ;PmC1 2 E.Fq/, P1C � � � C

PmC1D 0 if and only if smC1.xjE.P1/; : : : ;xjE.PmC1//D 0; see Proposition 2.1
and Section 3 of [ibid.]. The .mC 1/-th affine summation polynomial with respect
to xjE is the dehomogenization of this polynomial with respect to Y1; : : : ;Ym. This
is a polynomial smC1.x1; : : : ;xmC1/ 2 Fqn Œx1; : : : ;xmC1�.

We choose a basis of Fqn jFq . We expand the variables (or coordinates) x1; : : : ;xm

over Fq with respect to the basis. Then for i D 1; : : : ; ı and i D ıC 1; : : : ;m we
restrict the resulting systems of coordinates to U 0 and U , respectively. In this way
the polynomial smC1.x1; : : : ;xm;x.P // gives rise to a system of n polynomials
in n variables. The polynomial smC1.x1; : : : ;xm;x.P // has degree 2m�1 in each
variable and therefore total degree at most m � 2m�1. Therefore each polynomial in
the system has degree at most m � 2m�1. It follows that “with multiplicities” the
system has at most .m � 2m�1/n Dmn � 2.m�1/ �n isolated solutions over Fq . Here
by an isolated solution we mean an isolated point of the scheme defined by the
system. (This can be seen by intersection theory in Pn

Fq
, similarly to statement a)

in Proposition 2.5 of [ibid.].)
Now, with an algorithm by M. Rojas [1999], one can compute a list of solutions

of the system over Fq containing all isolated solutions over Fq in an expected time
of Poly.mn � 2n � .m�1/ � log.q//D Poly.emn � log.q//.

Let us assume that, for varying P , most solutions over Fq of these systems are
indeed isolated. It is reasonable to estimate the size of F as roughly qd and the size
of F0 as roughly qd�1. This indicates that the expected value of relations obtained
per try is in O.1=m!/.

Disregarding the possibility that some of the relations generated might be linearly
dependent, we need roughly qd relations. This indicates an expected running time of

Poly
�
m! � enmClog.q/ �d�

D Poly
�
enmClog.q/ �n=m

�
for the relation generation part.

The expected running time for the linear algebra part is merely Poly.elog.q/ �d /.
Now, for m WD min.d

p
log.q/e; n/, we obtain, again on the basis of the above

heuristic arguments, a total expected running time of

Poly
�
emax.log.q/;n �

p
log.q//�:

We stress again that we have used various heuristic assumptions. The goal of the
rest of this work is to modify the algorithm in such a way that we can indeed prove
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the claimed expected running time for large input classes. As already stated, we are
however not able to establish the desired expected running time for all instances of
the problem.

Weil restrictions and the scalar restriction functor. Let us recall the definition of
the scalar restriction functor with respect to a finite field extension.

Let Kjk be a finite field extension. Now let X be a quasiprojective K-scheme
of finite type. Then a representing object of the contravariant functor Z 7!

HomK .Z�k K;X / from the category of k-schemes to the category of sets is called
the Weil restriction of X with respect to Kjk. We denote the representing k-scheme
by Resk

k
.X /; as usual we also fix a corresponding natural transformation. A refor-

mulation of the definition is: The Weil restriction of X with respect to Kjk is a k-
scheme ResK

k
.X / together with a morphism u WResK

k
.X /K DResK

k
.X /�k K!X

satisfying the following universal property: For any k-scheme and any K-morphism
˛ W ZK D Z �k K ! X there exists a unique k-morphism ˇ W Z ! ResK

k
.X /

with ˛ D u ıˇK . We denote ˇ by ˛}. Now, the formation of the Weil restriction
defines a functor from the category of quasiprojective K-schemes to the category
of quasiprojective k-schemes; this functor is called the scalar restriction functor.
Furthermore, if X is a group scheme, so is the Weil restriction in an obvious way.

In this work, we often use Weil restrictions of the affine line A1
K
D Spec.KŒx�/.

Note here that ResK
k
.A1

K
/.k/' A1.K/DK. One sees easily the following: Let

b1; : : : ; bn be a k-basis of K. Then An
k
D Spec.kŒx1; : : : ;xn�/ together with the

universal morphism An
K
! A1

K
, given on Z-valued points for any K-scheme Z by

P 7! x1.P /b1C� � �Cxn.P /bn, is a Weil restriction of A1
k

with respect to Kjk (as
a group variety). The choice of a k-basis of K of course corresponds to choosing a
k-homomorphism K � kn.

We would like to have an explicit and canonical description of the Weil restriction
of A1

k
which does not depend on the choice of a basis. For this, let us define for any

finite-dimensional k-vector space V the polynomial algebra kŒV � in the usual way:

kŒV � WD

1M
iD0

V

N
sym

i

:

For some finite-dimensional k-vector space V , let

Ak ŒV � WD Spec.kŒV _�/;

where V _ is the dual space of V . Now, for any k-algebra A, we have Ak ŒV �.A/'

Homk.V
_;A/ ' A˝k V in a natural way. Now, A˝k V is a k-vector space

and therefore in particular an abelian group. We obtain in this way a commutative
group structure on Ak ŒV �. Clearly, Ak ŒV �.k/ is isomorphic to .V;C/ itself. The
association V 7! Ak ŒV � gives rise to a covariant functor from the category of
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finite-dimensional vector spaces over k to the category of affine group varieties
over k. Here, an injective homomorphism U ! V gives a closed embedding
Ak ŒU �! Ak ŒV �, and in particular, for a vector subspace U of V , Ak ŒU � is a group
subvariety of Ak ŒV �.

As a special case of the preceding we have natural isomorphisms Ak ŒK�.A/'

A˝k K for any k-algebra A. Therefore Ak ŒK� is in a natural way a Weil re-
striction of A1

K
with respect to Kjk. We remark that the universal morphism

u W Ak ŒK� �k K ! A1
K

is given as follows: Ak ŒK� �k K is the affine scheme
defined by the K-algebra kŒK_�˝k K'

L1
iD0.K

_/˝symi˝k K, and the universal
morphism corresponds to a homogeneous element of degree 1 in the algebra,
that is, to an element of K_˝k K. This vector space is naturally isomorphic to
the vector space of endomorphisms of K as a vector space over k. The univer-
sal morphism is the element of K_ ˝k K corresponding to the identity in this
space.

We also use Weil restrictions with respect to flat coverings, that is, finite and flat
morphisms. For this and also for other aspects of the scalar restriction functor we
refer to Subsection 4.1 of [Diem 2011b].

Tangent spaces and ramification. We make frequent use of homomorphisms be-
tween tangent spaces to address whether morphisms of schemes over fields are
unramified at rational points. For the convenience of the reader and because we
could not find a suitable reference, we make some general remarks here.

Let k be a field.
Let X be a k-scheme of finite type and P a k-rational point of X . Denoting by

�.P / the residue field at P , we have a canonical isomorphism k ' �.P /. We use
the latter notation if we regard k as an OX ;P -algebra.

The k-vector spaces �X ;P ˝OX;P
�.P / and mP=m

2
P

are canonically isomor-
phic; see [Hartshorne 1977, Chapter II, Proposition 8.7]. Either one of these
spaces is called the cotangent space at P . The Zariski tangent space or simply
tangent space of P in X is TP .X / WD Homk.mP=m

2
P
; k/. The formation of

the tangent spaces behaves well under base change via a field extension over
k. Let us note here that it is important that P is a k-rational point. A special
case which is of importance in this work is: for any finite-dimensional k-vector
space V we have a canonical isomorphism T0.Ak ŒV �/ ' V ; we identify these
spaces.

Let now X be a smooth k-scheme. Then the tangent sheaf of X is TX WD�
_
X
D

HomOX
.�X ;OX /. The canonical homomorphism

TX ;P ' HomOX;P
.�X ;P ;OX ;P /! HomOX;P

.�X ;P ; �.P //

' Homk.�X ;P ˝OX;P
�.P /; k/' TP .X /



1290 Claus Diem

induces a homomorphism of k-vector spaces

TX ;P ˝OX;P
�.P /! TP .X /:

As �X ;P is (by assumption) a free OX ;P -module, this homomorphism is an isomor-
phism. We denote the image of t 2 TX ;P in TP .X / by t.P /.

Now let X and Y be arbitrary k-schemes of finite type, let f W X ! Y be a
morphism of k-schemes and let P 2X . Then the local ring of P in its fiber over
f .P / is OX ;P=f

#.mY;f .P//OX ;P , and f is said to be unramified at P if this local
ring is a finite and separable �.f .P //-algebra. If f is unramified at P then it is in
particular quasifinite at P ; that is, P is isolated in its fiber.

Let now P be a k-rational point of X . Then f is unramified at P if and only if
f #.mY;f .P// generates the maximal ideal of OX ;P . By Nakayama’s lemma, this
is the case if and only if the induced homomorphism between cotangent spaces
f � Wmf .P/=m

2
f .P/
!mP=m

2
P

is surjective. Therefore, f is unramified at P if and
only if the induced homomorphism between tangent spaces f� WTP .X /!Tf .P/.Y /

is injective.

2. The factor base

2A. Some general thoughts. In [Diem 2011b] we first described the algorithm,
which is rather elementary, and later presented the geometric background, involving
in particular the role of the Weil restriction of the elliptic curve with respect to
Fqn jFq .

This approach would also be possible here. However, we now present the
geometric background together with the description of the algorithm. The main
reason for this is that the conditions required for the definition of the factor base
are quite involved but closely related to geometric considerations.

We first make some remarks on the definition of the factor base in [ibid.].
Let an instance with a nontrivial extension of finite fields Fqn jFq and an elliptic

curve E over Fqn be given, where an affine part of E is given by a Weierstraß
equation in x and y with degree 2 in x. Let k WD Fq and K WD Fqn .

Then, in [ibid.], the factor base is defined as follows:
We fix a covering ' WE!P1

K
of degree 2 with ' ı Œ�1�D ' satisfying a certain

condition (Condition 2.7 in [Diem 2011b]). Then the factor base F is the set

fP 2E.K/ j '.P / 2 P1.k/g: (2)

Now there exists a unique automorphism ˛ of P1
k

with ' D ˛ ı xjE . The factor
base is then equal to

fP 2E.K/ j xjE.P / 2 ˛
�1.P1.k//g: (3)
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A geometric description of the definition of the factor base in (2) is as follows: Let
�D id} W P

1
k
! ResK

k
.P1

k
/ be the morphism corresponding to the identity on P1

K

under the universal property of the Weil restriction. This morphism is a closed
immersion; it might be called the canonical immersion.

We define V by the diagram

V
� � //

��

ResK
k
.E/

ResK
k
.'/

��

P1
k
� � � // ResK

k
.P1

k
/

(4)

being Cartesian; cf. [ibid., Subsection 4.3]. Then, under the canonical isomor-
phism E.K/' ResK

k
.E/.k/, the factor base F corresponds to V .k/. Recall here

that as the morphism ' W E ! P1
K

is a flat covering of degree 2, the morphism
ResK

k
.'/ W ResK

k
.E/! ResK

k
.P1

K
/ and the induced morphism V ! P1

k
are flat

coverings of degree 2n.
From a geometric point of view, the equivalence of the two descriptions of the

factor base via (2) and (3) follows from the commutativity of the diagram

V
� � //

��

ResK
k
.E/

ResK
k
.xjE/

��
ResK

k
.'/

uu

P1
k
� � .˛
�1/} //� s

�
&&

ResK
k
.P1

K
/

ResK
k
.˛/

��

ResK
k
.P1

K
/:

Note here that, by the universal property of the Weil restriction of P1
K

with respect
to Kjk, the immersions P1

k
,!ResK

k
.P1

K
/ correspond exactly to the automorphisms

of P1
K

(via ˛ 7! ˛}). Thus, instead of varying the covering ' W E! P1
K

in the
construction of the factor base, we could also have varied the immersion of P1

k
into

ResK
k
.P1

K
/.

2B. The preliminary definition of the factor base. We now give some geomet-
ric background on the definition of the factor base in the preliminary algorithm
outlined in the introduction. We conclude this subsection with a wish list on the
geometric objects related to the definition of the factor base. This then leads to a
modification of the construction of the factor base which is described in the next
subsection.
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Let Ea be the “affine part” of E; that is, Ea WD x�1
jE
.A1

K
/. Furthermore, as

already mentioned above, let m be some natural number not exceeding n and let
d WD dn=me and ı WD dm� n.

In the preliminary algorithm in the introduction we defined the factor base as
follows: we fix a d -dimensional k-vector subspace U of K, and we set

F WD fP 2Ea.K/ j x.P / 2 U g:

We now give a geometric description. As mentioned in the introduction, the
inclusion U ,! K gives rise to a closed immersion Ak ŒU � ! Ak ŒK�, and thus
Ak ŒU � is a group subvariety of Ak ŒK�D ResK

k
.A1

K
/. Defining Va � ResK

k
.E/ by

the diagram

Va
� � //

��

ResK
k
.Ea/

��
ResK

k
.xjEa /

��
Ak ŒU �

� � // Ak ŒK�

(5)

being Cartesian, the factor base corresponds to Va.k/.
In the preliminary algorithm, we also have a .d � 1/-dimensional k-vector

subspace U 0 of U , defining a subset F0 of F. We define V 0a analogously to Va

with Ak ŒU � being substituted by Ak ŒU
0�. Then F0 corresponds to V 0a.k/. As the

maps Va!A and V 0a!A0 are finite flat, every irreducible component of Va has
dimension m and every irreducible component of V 0a has dimension m� 1; see
[Hartshorne 1977, Chapter III, Corollary 9.6].

Now, we would like that the following conditions on Va and V 0a are satisfied:

(1) The addition morphism .ResK
k
.E//m! ResK

k
.E/ induces a dominant mor-

phism from every irreducible component of .V 0a/
ı �V m�ı

a to ResK
k
.E/.

(2) There exists an (absolute) constant c > 0 such that Va.k/ contains at least
c � qd points and V 0a.k/ contains at least c � qd�1 points.

Note that dim..V 0a/
ı � V m�ı

a / D n and therefore the statement in the first item
implies that the morphism .V 0a/

ı �V m�ı
a ! ResK

k
.E/ is generically finite.

With a randomized algorithm it is straightforward to construct in an efficient
way U and U 0 such that the second item is satisfied.

For dD1, the morphism .V 0a/
ı�V m�ı

a !ResK
k
.E/ is surjective and therefore, if

V 0a and Va are irreducible, the first item is satisfied; see [Diem 2011b, Remark 4.21].
However, for d > 1, we cannot even give an example for which we can prove that
the first condition holds. For this reason, we modify the definition of the factor base.

2C. The essential modification. We now discuss the modification of the construc-
tion of the factor base.

We impose the following condition.
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Condition 2.1. The point 0 2 P1
K

is not a branch point of xjE WE! P1
K

and its
preimage in E consists of two K-rational points.

Note that, for qn � 16, there exist at least 5 K-rational points on E, so there
exists a point in E.K/ which is not a ramification point. In the algorithm for the
definition of the factor base, we first pass to a projectively equivalent elliptic curve,
also given in Weierstraß form with the point at infinity being the neutral element,
such that the condition is satisfied. We then fix k-vector subspaces Ui of K of
dimension d � 1 for i D 1; : : : ; ı and of dimension d for i D ıC 1; : : : ;m such
that we have a decomposition

K D

mM
iD1

Ui (6)

and such that some further conditions are satisfied; see Section 2E below. With

Fi WD fP 2Ea.K/ j x.P / 2 Ui �f0gg; (7)

we define the factor base as

F WD

m[
iD1

Fi : (8)

Later, for P 2E.K/, we search for a relation of the form

P1C � � �CPm D P

with Pi 2 Fi .

We now apply the geometric considerations of the previous subsection here.
Decomposition (6) gives rise to a decomposition

Ak ŒK�D

mM
iD1

Ak ŒUi � (9)

in the category of commutative k-group varieties. Decomposition (6) is then
obtained from (9) by taking k-valued points.

Similarly to above, we define Vi � ResK
k
.Ea/ via the diagram

Vi
� � //

��

ResK
k
.Ea/

��
Ak ŒUi �

� � // Ak ŒK�

being Cartesian. Note that the morphism ResK
k
.Ea/! Ak ŒK� is a flat covering of

degree 2n which is unramified at 0 2 Ak ŒK�. As flatness and unramifiedness are
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stable under base change, the morphism Vi!Ak ŒUi � is a flat covering of degree 2n

which is unramified at 0 2 Ak ŒUi � too. In particular, Vi has the same dimension as
the vector space Ui .

Let

am W ResK
k .E/

m
! ResK

k .E/ (10)

be the m-fold addition morphism and

a0m W V1 � � � � �Vm! ResK
k .E/ (11)

be the restriction of am to V1� � � � �Vm. Let P0 be one of the two points of E.K/

which are mapped to 0 by xjE .
Note that ResK

k
..P0/}/D 0. In particular, .P0/} is a k-rational point of all Vi .

Proposition 2.2. The morphism a0m is unramified at ..P0/}; : : : ; .P0/}/.

Remark 2.3. As unramifiedness is an open property, we obtain: a0m is unramified
in an open neighborhood of ..P0/}; : : : ; .P0/}/. Every irreducible component of
V1 � � � � �Vm has dimension n (because we have a flat covering of V1 � � � � �Vm

to Ak ŒK�). Thus the morphism a0m is dominant. If furthermore V1; : : : ;Vm are
irreducible, a0m is generically unramified.

Proof of Proposition 2.2. We wish to show that

.a0m/� W T..P0/}; :::; .P0/}/.V1 � � � � �Vm/! Tm � .P0/}

�
ResK

k .E/
�

is an isomorphism.

As the morphism ResK
k
.xjE/ is unramified at .P0/}, it induces an isomorphism

of tangent spaces

T.P0/}

�
ResK

k .Ea/
�
��! T0.Ak ŒK�/: (12)

Decomposition (9) induces a decomposition of tangent spaces T0.Ak ŒK�/ DLm
iD1 T0.Ak ŒUi �/ which is nothing but the original decomposition of vector spaces

K D
Lm

iD1 Ui . Under isomorphism (12), T.P0/}.Vi/ corresponds to T0.Ak ŒUi �/.
Therefore, we have the decomposition

T.P0/}

�
ResK

k .Ea/
�
D

mM
iD1

T.P0/}.Vi/: (13)

By the next lemma, we have the following commutative diagram whose vertical
maps are isomorphisms:
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T..P0/}; :::; .P0/}/
�
ResK

k
.E/m

�
..p1/�; :::; .pm/�/

��

.am/� // Tm.P0/}

�
ResK

k
.E/

�
�
T.P0/}

�
ResK

k
.E/

��m P
// T.P0/}

�
ResK

k
.E/

�.�.m�1/ � .P0/} /�

OO

Here pi W ResK
k
.E/m! ResK

k
.E/ is the projection to the i-th coordinate and the

map
P
W T.P0/}.ResK

k
.E//! T.P0/}.ResK

k
.E// is the addition of the k-vector

space T.P0/}.ResK
k
.E//.

By restriction of the horizontal maps we obtain the commutative diagram

T..P0/}; :::; .P0/}/.V1 � � � � �Vm/
.am/� //

��

Tm.P0/}

�
ResK

k
.E/

�

T.P0/}.V1/� � � � �T.P0/}.Vm/

P
// T.P0/}

�
ResK

k
.E/

�.�.m�1/ � .P0/} /�

OO

Because of decomposition (13), the addition maps T.P0/}.V1/�� � ��T.P0/}.Vm/

bijectively to T.P0/}.ResK
k
.E//. This gives the desired statement. �

In the following lemma, we use this notation: Let U , V , W be k-vector spaces.
If then ' WU !W and  W V !W are k-linear maps, we denote the induced map
U � V !W by .'  /. If ' WW ! U and  WW ! V are k-linear maps, we
denote the induced map W ! U �V by

�
'

 

�
.

Lemma 2.4. Let k be a field.

(a) Let X1, X2 be two k-schemes, and let P1 2X1.k/, P2 2X2.k/. Let us assume
that X1 is smooth at P1 and X2 is smooth at P2. The points Pi give rise to
closed immersions �i WXi!X1�X2. Let pi WX1�X2!Xi be the canonical
projections. Then the maps

..�1/� .�2/�/ W TP1
.X1/�TP2

.X2/! T.P1;P2/.X1 �X2/

and �
.p1/�
.p2/�

�
W T.P1;P2/.X1 �X2/! TP1

.X1/�TP2
.X2/

are isomorphisms of k-vector spaces which are inverse with respect to each
other.

(b) Let A be an abelian variety over k with addition morphism a WA�A!A and
neutral element O . Let �i WA!A�A be the two canonical immersions. Then
the map a� ı ..�1/� .�2/�/ W TO.A/�TO.A/! TO.A/ is the addition on the
k-vector space TO.A/.
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(c) Let A be an abelian variety over k and P 2A.k/. Then we have a commutative
diagram

TP .A�A/
a� //

 
.p1/�
.p2/�

!
��

T2P .A/

TP .A/�TP .A/

P
// TP .A/;

.�P /�

OO

where the lower map
P
W TP .A/�TP .A/! TP .A/ is the addition morphism

on the k-vector space TP .A/.

Proof. (a) The k-linear map

TP1
.X1/�TP2

.X2/

�
.�1/� .�2/�

�
//T.P1;P2/

.X1 �X2/

 
.p1/�
.p2/�

!
//TP1

.X1/�TP2
.X2/

is obviously the identity. As the dimensions of these k-vector spaces are the same,
the two maps in (a) are both isomorphisms.

(b) We only have to check that the k-linear map a� ı ..�1/� .�2/�/ W TO.A/ �

TO.A/ ! TO.A/ agrees with the addition (which is also k-linear) on the first
and second factor. But restricted to factor i , a� ı ..�1/� .�2/�/ becomes a� ı .�i/�,
which is the identity, just as is the addition when restricted to one of the factors.

(c) Let us consider A as an abelian variety with P as neutral element, and let aP

be the addition law. Then aP D ��P ı a. The commutativity of the diagram then
follows from (b). �

2D. Irreducibility. If the characteristic is odd, in order to complete the analysis
of the relation generation procedure, we need that the Vi are irreducible. In this
subsection, we give some theoretical background for the algorithmic construction
of the Vi such that they are indeed irreducible.

All the statements in this subsection are valid except in the case that the char-
acteristic is 2 and the j -invariant of E is 0, or, in other words, except if E is a
supersingular elliptic curve in characteristic 2. So let us assume that it does not
hold that the characteristic is 2 and j D 0.

Lemma 2.5. Let U be a vector subspace of K, and let Va be defined as in (5).
If Ak ŒU � contains an irreducible scheme containing 0 whose preimage in Va is
irreducible, then Va is irreducible. Likewise, if Ak ŒU � contains a geometrically
irreducible scheme containing 0 whose preimage in Va is geometrically irreducible,
then Va is geometrically irreducible.

Proof. Assume that Va is not irreducible, and let V
.1/

a and V
.2/

a be two irreducible
components of Va. Let A�Ak ŒU � be the étale locus of the flat covering Va!Ak ŒU �



On the discrete logarithm problem in elliptic curves II 1297

and Va its preimage on Va. By Condition 2.1 the covering Ea!A1
K

is unramified
at 0. Thus so is the covering ResK

k
.Ea/ ! Ak ŒK� and the induced covering

Va! Ak ŒU �. Thus 0 is contained in A. In particular, A is nonempty and thus a
nonempty open part of Ak ŒU �.

For i D 1; 2, the map V
.i/

a ! Ak ŒU � is surjective. (As the map V
.i/

a ! Ak ŒU � is
flat and finite, by [Hartshorne 1977, Chapter III, Corollary 9.6], V

.i/
a has the same

dimension as Ak ŒU �. The dimension of V
.i/

a is equal to the dimension of its image.
Thus the dimension of the image is equal to Ak ŒU �. Therefore the map is dominant.
As the map is finite, it is in particular closed, and therefore the image is equal to
Ak ŒU �.) Therefore V

.i/
a contains a preimage of 0. Let V

.i/
a be the preimage of A in

V
.i/

a . Then V
.i/
a is a nonempty open part of V

.i/
a which contains a preimage of 0.

As Ak ŒU � is smooth, so is A, and, as furthermore V! A is étale, V is also
smooth. It follows that V

.1/
a and V

.2/
a are disjoint.

Let now S be an irreducible subscheme of Ak ŒU � as in the first claim of the
lemma. As Va! Ak ŒU � is unramified at 0 and 0 2 S by assumption, S \A is a
nonempty open part of S . It follows that the preimage of S \A is a nonempty
open part of the preimage of S and thus also irreducible. Therefore it is contained
in either V

.1/
a or V

.2/
a . On the other hand, as it contains all preimages of 0, it has

nontrivial intersection with both V
.1/
a and V

.2/
a , a contradiction.

The second claim follows via base change to k. �
In the algorithm, we first search for 1-dimensional k-vector subspaces Ti of

K such that the preimages of Ak ŒTi � in ResK
k
.Ea/ with respect to ResK

k
.xjEa

/

are geometrically irreducible. Then we search for suitable k-vector subspaces
Ui of K containing Ti . The preimages Vi of the corresponding group subvari-
eties Ak ŒUi � of Ak ŒK� then contain Ak ŒTi � and are therefore geometrically irre-
ducible.

To choose the spaces Ti we employ ideas from the first subsection of this section
and of our previous work.

Let � 2 K�, and let us consider the vector subspace ��1 � k of K and the
associated group subvariety AŒ��1 � k� of Ak ŒK�. Furthermore, let Wa be the
preimage of AŒ��1 � k� in ResK

k
.Ea/.

Clearly, the group subvariety AŒ��1 �k� is the image under the closed immersion
A1

k
! Ak ŒK� induced by the injective homomorphism of vector spaces k ! K,

a 7! ��1a. This morphism can also be given as follows: Let ˛a WD �x W A1
k
! A1

k
.

Then the morphism A1
k
! Ak ŒK� is equal to .˛�1

a /}.
We now essentially apply the considerations of Section 2A here, restricting

ourselves to the “affine parts”. We set 'a WD ˛a ıxjEa
. Now Wa is the preimage

of �.A1
k
/ in ResK

k
.Ea/ with respect to the covering ResK

k
.'a/. This is very closely

related to the situation studied in [Diem 2011b, Section 2.2] — the only difference is
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that here we use automorphisms of the group variety A1
K

instead of automorphisms
of P1

K
and we restrict ourselves to the “affine parts”.

Lemma 2.6. There are more than qn� 3.n� 1/ � qn=2 elements � 2K� such that,
with Wa as defined as above, Wa is geometrically irreducible.

Proof. By assumption on k and E, the covering xjE W Ek
! P1

k
has two or four

branch points, one of which is at infinity. Thus there are exactly one or three branch
points not equal to infinity.

Let �1;:::;�s2Fq6n�f0g, with s2f1;3g, be the branch points of xjEa
W.Ea/k!A1

k
.

Let �2K� and let ˛ WD �x. Then the branch points of ˛ ıxjEa
W .Ea/k ! A1

k
are

��1; : : : ; ��s . Therefore Condition 2.7 from [ibid.] is equivalent to the following
condition.

Condition 2.7. There exists an i D 1; : : : ; s such that, for j D 1; : : : ; n � 1,
.��i/

qj … f��1; : : : ; ��sg.

As shown in [ibid., Proposition 4.9], if this condition is satisfied, Wa is geomet-
rically irreducible.

We are interested in the probability that, for j D 1; : : : ; n � 1, .��1/
qj …

f��1; : : : ; ��sg.
For j D 1; : : : ; n�1 and `D 1; : : : ; s, the condition .��1/

qj D��` is equivalent
to �qj�1 D �`=�

qj

1
. As the cardinality of the kernel of the map K� ! k�,

a 7! aqj�1 is qgcd.j ;n/ � 1 (see next lemma), there are either no or exactly
qgcd.j ;n/� 1 such elements �.

The situation is now very similar to the situation in [ibid., Lemma 2.10]: in total
there are at most s �

Pn�1
jD1.q

gcd.j ;n/� 1/ elements � for which the condition in the
lemma is not satisfied.

Now a crude estimate is that s �
Pn�1

jD1 qgcd.j ;n/�1 < s � .n� 1/ � qn=2. �
Lemma 2.8. Let q be a prime power and m, n 2 N. Then qm � 1 j qn � 1 if and
only if m j n. Moreover gcd.qm� 1; qn� 1/D qgcd.m;n/� 1.

Proof. If m j n then clearly qm � 1 j qn � 1. So assume that qm � 1 j qn � 1. For
a 2 F�qm we have aqm�1 D 1 and by assumption also aqn�1 D 1. But this means
that a 2 F�qn . Thus Fqm is a subfield of Fqn and thus m j n.

For the second statement, consider the set G WD fa 2 Fqn j aqm�1

D 1g. On the
one hand, as G is a subgroup of the cyclic group F�qm , it has gcd.qm� 1; qn� 1/

elements. On the other hand, G[f0g is a subfield of Fqn , and therefore there exists
some a j n with #G D qa� 1. The result now follows with the first statement. �

2E. The algorithm for the factor base. Let a field extension Kjk as above, an
elliptic curve E=K, two points A, B 2E.K/ with B 2 hAi as well as m 2N with
2�m� n be given, where #K � 16. As always, let d WD dn=me and ı WD dm�n.
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We first choose — with a randomized algorithm — some point P0 2 Ea.K/

which is not a ramification point of xjE and pass from E to its image under the
automorphism of P2

K
given by PD .X.P / WY .P / WZ.P // 7! .X.P /�x.P0/Z.P / W

Y .P / WZ.P //. Let QE be the resulting curve. This is again a curve in Weierstraß
form, x

j QE
is unramified above 0 and the preimage of 0 consists of two K-rational

points. Clearly, this computation can be performed in an expected time which is
polynomially bounded in log.qn/.

So let us now assume that there exists a K-rational point of E which is unramified
under xjE and mapped to 0.

Given an instance as described, we would like to compute a decomposition

K D

mM
iD1

Ui

with dim.Ui/D d �1 for i D 1; : : : ; ı and dim.Ui/D d for i D ıC1; : : : ;m such
that

� #fP 2Ea.K/ j x.P / 2 Ui �f0gg �
1
4
qdim.Ui /;

� if char.k/ is odd: V1; : : : ;Vm are irreducible.

The factor base is then defined as described in (7) and (8) above.

We now give an algorithm for the task just mentioned under the condition that
m� n=2 and q � 4. This is sufficient for the algorithm for Theorem 2.

Algorithm to compute a suitable decomposition of K

Input: A field extension Fqn jFq with q � 4, an elliptic curve E=Fqn in
Weierstraß form with respect to x and y such that there is a K-rational point
of E which is unramified under xjE and mapped to 0, two points
A;B 2E.Fqn/ with B 2 hAi and a natural number m with 2�m� n=2.

Output: A decomposition Fqn D
Lm

iD1 Ui with dim.Ui/D d �1 for i D 1; : : : ; ı

and dim.Ui/D d for i D ıC1; : : : ;m such that the conditions mentioned above
are satisfied.

(1) If q is not a power of 2
For i D 1; : : : ;m do

Repeat
Choose �i 2 F�qn uniformly at random.

Until �i is not contained in hT1; : : : ;Ti�1i and �i satisfies
Condition 2.7.
Let Ti ��1

i � Fq < Fqn .
If q is a power of 2, let Ti f0g for i D 1; : : : ;m.
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(2) Let d  dn=me and ı dm� n.
For i D 1; : : : ;m do

If i � ı, let e d � 1, otherwise let e d .
Repeat

Compute an Fq-vector subspace Ui of Fqn which is uniformly
randomly chosen from the set of e-dimensional Fq-vector subspaces
of Fqn containing Ti with intersection f0g with
U1C � � �CUi�1CTiC1C � � �CTm.

Until fEa.Fqn/ j x.P / 2 Ui �f0gg contains at least 1
4
� qe elements.

(3) Output U1; : : : ;Um.

Remark 2.9. We represent Fq-vector subspaces of Fqn by bases over Fq . Therefore
the definition of Ti is computationally void; we inserted it only to be able to reason
about Ti later.

Note here that, at the end of each iteration of the for-loop in Step 2, we have
a direct sum U1˚ � � �˚Ui ˚TiC1˚ � � �˚Tm inside K, where, for j D 1; : : : ; i ,
Uj contains Tj , dim.Uj / D d � 1 if j � ı and dim.Uj / D d if j > ı. The
vector space Ti corresponds to a 1-dimensional group subscheme of Ak ŒK� whose
preimage in ResK

k
.E/ is geometrically irreducible by the arguments in Lemma 2.6.

By Lemma 2.5, Vi is then also geometrically irreducible. Therefore an output of
the algorithm defines a decomposition KD

Lm
iD1 Ui which satisfies the conditions

given above.
We remark here that the algorithm itself is much more elementary than the

geometric arguments.
The main result of this section is the following proposition.

Proposition 2.10. For 2�m� n=2 and q � 4, following the above algorithm, one
can compute a decomposition of K with the desired properties in an expected time
of Poly.n � qd /D Poly.n � qn=m/.

Proof. We only have to consider the expected running time. For this, we discuss
the steps of the algorithm.

Step 1. Let q be odd. We consider, for a particular iteration of the for-loop, the
expected value of iterations of the repeat-loop.

As i �m, the space hT1; : : : ;Ti�1i contains at most qm�1 � qn=2 elements. By
Lemma 2.6, there are at least qn� 3.n� 1/ � qn=2� qn=2 � qn� 3n � qn=2 elements
� 2K� which do not lie in hT1; : : : ;Ti�1i and which satisfy Condition 2.7. The
probability that this is satisfied is therefore at least 1� 3n=qn=2. For n � 4 and
q � 4, which is the case by assumption, this is at least 1� 3n=2n � 1� 12

16
D

1
4

.
The expected value of iterations of the repeat-loop is therefore at most 4. We can
obtain an expected running time which is polynomially bounded in n � log.q/.
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Step 2. We always have e � 2. In the repeat-loop, the space Ui can be computed in
an expected time which is polynomially bounded in n � log.q/ by the next lemma.
The counting of the set fEa.Fqn/ j x.P / 2 Ui � f0gg can be performed in a time
which is polynomially bounded in qd . The expected number of repetitions of the
loop is at most 14 by Lemma 2.12 below. The expected running time of Step 2 is
then polynomially bounded in qd . �
Lemma 2.11. Let S and T be two Fq-vector subspaces of Fn

q with S \ T D f0g

and S CT ¨ Fn
q , and let e 2 N with dim.T /� e � n� dim.S/ be given. Then in

an expected time which is polynomially bounded in n � log.q/ one can compute an
Fq-vector subspace U of Fn

q which is uniformly randomly chosen from the set of
e-dimensional Fq-vector subspaces U of Fq with T � U and S \U D f0g.

Proof. Consider the following algorithm:

Input: Two Fq-vector subspaces S and T of Fn
q with S \T D f0g, and e 2 N

with dim.T /� e � n� dim.S/.

Output: An Fq-vector subspace U satisfying the conditions in the lemma.

Let v1; : : : ; vdim.T / be the basis of T given with the input.

For i D dim.T /C 1; : : : ; e do
Repeat

Choose vi 2 Fn
q uniformly at random.

Until vi … hv1; : : : ; vi�1iCS .
Output hv1; : : : ; vei.

Obviously the space hv1; : : : ; vei is uniformly randomly distributed in the set
of e-dimensional subspaces U of Fn

q with T � U and S \U D f0g. The claimed
expected running time follows from the fact that the probability that vi is in the
.i � 1C dim.S//-dimensional vector subspace is q.i�1/Cdim.S/�n � 1=q. �
Lemma 2.12. For q � 4 and n � 4, elliptic curves E=Fqn in Weierstraß form,
proper Fq-vector subspaces S and T of Fqn with dim.S/� n�2, S\T D f0g and
S CT ¨ Fn

q and a natural number e with dim.T / < e � n� dim.S/, the following
holds:

Let U be a uniformly randomly distributed vector subspace of Fn
q of dimen-

sion e with T � U and S \ U D f0g. Then, with a probability of at least 1
14

,
#fP 2Ea.Fqn/ j x.P / 2 U �f0gg � 1

4
� qe.

Proof. Let first U be a uniformly randomly distributed e-dimensional Fq-vector
subspace of Fqn . Then, as each point of Fqn � f0g has the same probability of
appearing in U , each point of Fqn �f0g has a probability of

qe � 1

qn� 1
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to appear in U .
Likewise, if S , T and e are as in the lemma and U is a uniformly randomly

distributed e-dimensional vector subspace of Fqn with T � U and U \S D f0g,
each point of Fqn � .S \T / has a probability of

qe � qdim.T /

qn� qdim.S/
�

1

2
� qe�n

to appear in U .
Let

S WD fP 2Ea.Fqn/ j x.P / 2 Sg; T WD fP 2Ea.Fqn/ j x.P / 2 T �f0gg;

N WD #fP 2Ea.Fqn/ j x.P / 2 U �f0gg:

The expected value of N , EŒN �, can be expressed as follows:

EŒN �D #.Ea.Fqn/� .S[T// �
qe � qdim.T /

qn� qdim.S/
C #T

� .#Ea.Fqn/� #S/ �
qe � qdim.T /

qn� qdim.S/
� .qn

� 2 � qn=2
� 2 � qdim.S// � 1

2
� qe�n;

the last inequality by the Hasse–Weil bound.
As q � 4 and n � 4, 2 � qn=2 �

1
8
� qn. As q � 4 and dim.S/ � n � 2,

2 � qdim.S/ � 2 � qn�2 �
1
8
� qn. We obtain

EŒN �� 3
8
� qe:

On the other hand, N � 2 �qe . The claimed bound on the probability that N � 1
4
�qe

now follows by the following elementary probability theoretic argument. We have

3
8
� qe
� EŒN �� P

�
N < 1

4
� qe

�
�

1
4
� qe
CP

�
N � 1

4
� qe

�
� 2 � qe

and thus

3
8
�
�
1�P

�
N � 1

4
� qe

��
�

1
4
CP

�
N � 1

4
� qe

�
� 2D 1

4
C

7
4
�P
�
N � 1

4
� qe

�
:

In other words,
P
�
N � 1

4
� qe

�
�

1
14
: �

After suitable k-vector subspaces Ui of K have been computed, the sets Fi WD

fP 2Ea.Fqn/ j x.P / 2Ui �f0gg are enumerated and sorted for the elements in Fi

(such that given an element of Fi one can easily find its number). The factor base
is then F WD

Sm
iD1 Fi .

The total expected running time for all these computations is polynomially
bounded in n � qd .
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3. The new decomposition algorithm

Just as in the predecessor [Diem 2011b] to this work, the relation generation
relies on an algorithm to compute “decompositions”, and this algorithm is again
based on solving systems of multivariate polynomials over Fq . The definition of a
“decomposition” is however different in this work from the previous one. Moreover,
we do not use summation polynomials anymore, and, more generally, we do not use
the projection to a product of projective lines. The reason for this is that, by avoiding
the projection to projective lines, we can significantly improve the lower bound on
the success probability of the relation generation algorithm. This improvement is
crucial for the derivation of Theorem 2.

We start with some definitions.
As in the previous section, let q be a prime power, n a natural number at least

2, and let us set k WD Fq and K WD Fqn . Let E be an elliptic curve in Weierstraß
form in x and y over K (with zero point at infinity), and let f .x;y/ 2 KŒx;y�

be the defining polynomial of the affine part Ea. (The notation for the defining
polynomial is different from the one in [ibid.].) Let us fix a direct sum decomposition
KD

Lm
iD1 Ui with m�2 into k-vector subspaces. (In this whole section, we do not

impose any conditions on xjE or the direct sum decomposition of K, except that the
decomposition be nontrivial.) Let Fi be defined as above. Finally, let P 2E.K/.

Definition 3.1. A tuple .P1; : : : ;Pm/ 2F1� � � ��Fm with P1C� � �CPm D P is
called a decomposition of P with respect to the direct sum decomposition of K.

Let now Vi be defined as in the previous section. Then, under the isomorphism
E.K/ ' ResK

k
.E/.k/, the set of decompositions of P corresponds to the set of

tuples .P1; : : : ;Pm/2V1.k/�� � ��Vm.k/with
P

i PiDP} and ResK
k
.x/.Pi/¤0.

This is nothing but the set of k-rational points .P1; : : : ;Pm/ of the fiber at P} of
the morphism

V1 � � � � �Vm! ResK
k .E/

induced by the addition morphism on ResK
k
.E/ with ResK

k
.x/.Pi/¤ 0 for all i .

This leads to the next definition.

Definition 3.2. A decomposition .P1; : : : ;Pm/ of P is called isolated if it corre-
sponds to an isolated (k-rational) point of the fiber .V1�� � ��Vm/P} just considered.

The “new decomposition problem” is now the computational problem with the
following specification: The input consists of a prime power q, a natural number n,
an elliptic curve E � P2

Fqn
in Weierstraß form with respect to x and y and point

at infinity as zero point, a direct sum decomposition Fqn D
Lm

iD1 Ui of Fqn into
Fq-vector subspaces with m� 2 and a point P 2E.Fqn/. The output consists of a
list of decompositions of P with respect to the direct sum decomposition of Fqn ,
containing all isolated decompositions.
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For the relation generation, the first crucial result is the following proposition.
Furthermore, we need a nontrivial lower bound on the probability that a uniformly
randomly distributed point in E.Fqn/ has an isolated decomposition with respect
to the chosen decomposition of K, given that certain conditions are satisfied. Such
bounds are established in the next section.

Proposition 3.3. (a) There exists an absolute constant C > 0 such that the number
of isolated decompositions of some point P 2E.Fqn/ is at most eC �mn.

(b) The “new decomposition problem” can be solved in an expected running time
which is polynomially bounded in emn � log.q/.

The rest of this section is devoted to the proof of this proposition.
We now give some background information on the idea of the algorithm and

address claim (a). Computational aspects will be discussed later.
Let us fix an instance as specified in (b), and, as above, let Kjk be the extension

of finite fields under consideration.
We first make the following assumption:

x.P / …

m[
iD1

Ui :

At the end of the section we will discuss an easy modification of the following
arguments and the algorithm for the case that x.P / 2

Sm
iD1 Ui .

The main idea is to use the isomorphism E.K/ ' Cl0.E/. Let us use the
following notation (cf. [Silverman 1986]): For P 2E.K/, the prime divisor defined
by P is denoted by .P /.

For points P1; : : : ;Pm 2E.K/, we have
P

i Pi D P if and only if there exists
a function g 2 K.E/� with .g/ D .P1/C � � � C .Pm/C .�P / � .mC 1/ � .O/.
Moreover, g is uniquely determined “up to a constant” by the points.

Let us assume that P ¤ O . (For the case P D O , the following consid-
erations can easily be modified.) Let p1 WD 1, p2i D xi , p2iC1 WD xi�1y

for i 2 N. Note that, for ` 2 N, .p1/jE ; : : : ; .p`/jE is a basis of L.`O/. Let
L` WD hp1; : : : ;p`i \ ff 2 kŒx;y� j f .�P / D 0g, and let g1; : : : ;gm be a basis
of LmC1 such that g1; : : :gm�1 is a basis of Lm. Then .g1/jE ; : : : ; .gm/jE is a ba-
sis of L..mC1/�.O/�.�P // and .gm/jE …L.m�O�.�P //. Now .P1; : : : ;Pm/ is
a decomposition of P if and only if there exists a tuple .˛1; : : : ; ˛m�1/2Km�1 with

.gmC˛m�1gm�1C� � �C˛1g1/D .P1/C� � �C.Pm/C.�P /�.mC1/�.O/: (14)

Furthermore, there exists at most one such tuple .˛1; : : : ; ˛m�1/ in km�1. The
set of decompositions of P is thus in canonical bijection to the set of tuples
.˛1; : : : ; ˛m�1;P1; : : : ;Pm/2Km�1�Em

a .K/with x.Pi/2Ui�f0g such that (14)
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holds. Note that in any such tuple the points P1; : : : ;Pm;P are distinct. (Recall
that x.P / …

Sm
iD1 Ui by assumption).

Let us recall that the defining polynomial of Ea is denoted by f . Let now

f.i/ WD f .xi ;yi/ 2KŒx1;y1; : : : ;xm;ym�

for all i D 1; : : : ;m; the scheme V .f.1/; : : : ; f.m// is therefore equal to Em
a in

Spec.KŒx1;y1; : : : ;xm;ym�/.
Let

h WD gmC am�1gm�1C � � � a1g1 2KŒx;y; a1; : : : ; am�1�

and let

h.i/ WD gm.xi ;yi/C am�1gm�1.xi ;yi/C � � �C a1g1.xi ;yi/

2KŒa1; : : : ; am�1;x1;y1 : : : ;xm;ym�

for all i D 1; : : : ;m.
The set of decompositions of P is then in canonical bijection to the set of

K-rational points .˛1; : : : ; ˛m�1;P1; : : : ;Pm/ of the scheme V .f.1/; : : : ; f.m/;

h.1/; : : : ;h.m// in Spec.KŒa1; : : : ;am�1;x1;y1; : : : ;xm;ym�/with x.Pi/2Ui�f0g

for all i . Note that we have the canonical projection

V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//! V .f.1/; : : : ; f.m//DEm
a ;

given on Z-valued points for any k-scheme Z by

.˛1; : : : ; ˛m�1;P1; : : : ;Pm/ 7! .P1; : : : ;Pm/:

It is natural to pass to the Weil restriction of V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//

here. Let us first fix some notations: Let W be defined by the diagram

W
� � //

��

ResK
k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m///

��

V1 � � � � �Vm
//� � //

��

.ResK
k
.Ea//

m

��
Ak ŒU1�� � � � �Ak ŒUm�

� � // Ak ŒK�

being Cartesian. Now the k-rational points of W correspond exactly to the K-
rational points .˛1; : : : ; ˛m�1;P1; : : : ;Pm/ of V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//

with Pi 2 Ui .
We now give an explicit description of W via a polynomial system. This

description will serve as a basis for the algorithm.
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Let b1; : : : ; bn be a k-basis of K. (In the algorithm, such a basis is given
with the input.) With this basis, we now identify K with kn and also Ak ŒK�

with An
k

. Moreover, for i D 1; : : : ;m, let bi;1; : : : ; bi; dim.Ui / be a basis of Ui . The
scheme W � ResK

k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m/// can be described explicitly

as follows: Let the polynomials h.i/;j and f.i/;j for i D 1; : : : ;m, j D 1; : : : ; n

in kŒ.a`;j 0/`D1;:::;m�1;j 0D1;:::;n;..xi0;j 0/j 0D1;:::;dim.Ui /;.yi0;j 0/j 0D1;:::;n/i0D1;:::;m�

be defined by

h.i/

��
nP

j 0D1

a`;j 0bj 0

�
`D1; :::;m�1

;
dim.Ui /P
j 0D1

xi;j 0bj 0 ;
nP

j 0D1

yi;j 0bj 0

�
D

nP
jD1

h.i/;j bj ;

f.i/

� dim.Ui /P
j 0D1

xi;j 0bi;j 0 ;
nP

j 0D1

yi;j 0bj 0

�
D

nP
j 0D1

f.i/;j bj :

We have isomorphisms

Vi ' V ..f.i/;j /jD1; :::;n/� Spec.kŒxi;1; : : : ;xi; dim.Ui /;yi;1; : : : ;yi;n�/

and

W ' V
�
.f.i/;j /iD1; :::;m; jD1; :::;n; .h.i/;j /iD1; :::;m; jD1; :::;n

�
(which are canonical for the chosen basis).

The k-rational points of V ..f.i/;j /iD1; :::;m; jD1; :::;n; .h.i/;j /iD1; :::;m; jD1; :::;n/

correspond in an obvious way to the K-rational points .a1; : : : ; am�1;P1; : : : ;Pm/

of V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m// with x.Pi/ 2 Ui . Such points with x.Pi/ 2

Ui �f0g then correspond to the decompositions of P .
We have a polynomial system in 2mn variables and 2mn equations.
We want to obtain a suitable polytope which contains the exponents in the support

of the system.
Let us first consider the total degrees of h.i/;j and f.i/;j with respect to the three

systems of variables .a`;j 0/`;j 0 , .xi0;j 0/i0;j 0 and .yi;j 0/i;j 0 . Concerning the h.i/;j
we have: the total degree with respect to the a`;j 0 is at most 1; the total degree with
respect to the xi0;j 0 is at most bm=2c; the total degree with respect to the yi0;j 0 is
at most 1. Concerning the f.i/;j we have: the total degree with respect to the xi0;j 0

is at most 3; the total degree with respect to the yi0;j 0 is at most 2.
We now consider the a`;j 0 and the yi0;j 0 as one system of variables and the xi0;j 0

as another system of variables. So we have 2 �.m�1/ �n variables in the first system
and the total degrees of all polynomials under consideration with respect to this
system are at most 2. Furthermore, we have n variables in the second system and
the total degrees with respect to this system are at mostmax.3; bm=2c/.
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Let �` WD fx 2 R`
�0
j
P

i xi � 1g. With a suitable numeration, the exponents
are contained in the polytope

P WD 2 ��.2m�1/ �n �max
�

3;

�
m

2

��
��n:

The toric variety T.P / defined by this polytope is P
.2m�1/ �n

k
�Pn

k
. The volume

of the polytope is 2.2m�1/ �n=..2m� 1/ � n/! � max.3; bm=2c/n=n!. The system of
equations defines a system of sections of a line bundle on T.P /, and the degree of
the 0-cycle in the Chow ring of T.P / defined by this system is .2mn/! times the
volume of the polytope; that is,

2.2m�1/ �n
�max

�
3;

�
m

2

��n

�

�
2mn

n

�
< 2.2m�1/ �n

�max
�

3;

�
m

2

��n

� 22mn < 24mn
�max

�
3;

m

2

�n

:

Therefore the scheme defined by the sections on T.P / associated to the equations
has at most 24mn �max.3;m=2/n isolated k-rational points. We have a natural em-
bedding of A2mn

k
into T.P /, and the sections restrict to the equations under this em-

bedding. Thus the scheme V ..f.i/;j /iD1; :::;m; jD1; :::;n; .h.i/;j /iD1; :::;m; jD1; :::;n/

has at most 24mn �max.3;m=2/n 2 eO.mn/ isolated k-rational points.

Let us now turn to algorithmic aspects: It is straightforward to compute a system
.f.i/;j /iD1; :::;m; jD1; :::;n, .h.i/;j /iD1; :::;m; jD1; :::;n as above. We then use Rojas’
algorithm [1999] for sparse polynomial systems to determine all isolated k-rational
solutions. The input and output structure as well as the running time of the algorithm
are given in [ibid., Main Theorem 2.1]; all the following statements on the algorithm
refer to this theorem.

We apply the algorithm with the system of equations and the polytope P de-
fined above. The output of the algorithm is a system of univariate polynomials
h; h1; : : : ; h2mn, the degrees of which are all bounded by the degree of the 0-cycle
defined by the given system of sections in the Chow ring of T.P / and thus by
24mn �max.3;m=2/n. By factoring h and applying the system h1; : : : ; h2mn to the
rational roots, we obtain a list of points in k2mn. This list consists of solutions to
the system and contains all isolated k-rational solutions of the system on A2mn

k
.

The running time of Rojas’ algorithm is polynomially bounded in em �n � log.q/,
and in an expected time which is also polynomially bounded in em �n � log.q/ we
can factor the univariate polynomial h. Explicitly, the running time of Rojas’
algorithm depends on mixed volumes of various systems of polytopes, all of which
are contained in the polytope P . Therefore these mixed volumes are also bounded
by 24mn �max.3;m=2/n.

We obtain the following intermediate result:
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Lemma 3.4.

(a) A system .f.i/;j /iD1; :::;m; jD1; :::;n, .h.i/;j /iD1; :::;m; jD1; :::;n as above has
eO.mn/ isolated k-rational solutions.

(b) Given an instance of the “new decomposition problem”, one can compute
a system .f.i/;j /iD1; :::;m; jD1; :::;n, .h.i/;j /iD1; :::;m; jD1; :::;n as above and a
list of k-rational solutions, containing all isolated k-rational solutions, in an
expected time which is polynomially bounded in emn � log.q/.

This is however not yet the statement we want to prove. Indeed, we still have to
show that in this way we can obtain a list of decompositions of P which contains
all isolated decompositions.

Let P 2Ea.K/.
We first study the geometric fibers of the morphism

V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//! V .f.1/; : : : ; f.m//DEm
a :

Let .P1; : : : ;Pm/ 2Em
a .k/ such that the points P1; : : : ;Pm;P} are distinct. Then

there is at most one tuple .˛1; : : : ; ˛m�1/ 2 km such that (14) holds, depending on
whether

P
i Pi D P} or not.

Let now D be the closed subscheme of Em
a given on Z-valued points for any

k-scheme Z by

D.Z/D f.P1; : : : ;Pm/ 2Em
a .Z/ j 9i ¤ i 0 W Pi D Pi0 or 9i W Pi D Pg:

Let T WDEm
a �D and let S be the preimage of T in V .f.1/; : : : ; f.m/;h.1/; : : : ;h.m//.

Now the morphism S! T induces an injection on the sets of geometric points and
its image consists of those points .P1; : : : ;Pm/ 2Em

a .k/ with
P

i Pi D P}.
We consider the restriction of the m-fold addition morphism Em ! E to T .

Following the usual notation, let TP be the fiber of this morphism at P . This is an
open subscheme of a scheme isomorphic to Em�1.

The morphism S ! T induces a bijection S.k/! TP .k/. As TP is reduced,
we have an induced morphism S ! TP .

We now pass to Weil restrictions. Note first that we again have the addition
ResK

k
.E/m! ResK

k
.E/ and the fiber .ResK

k
.E/m/P} .

We have a canonical open embedding

ResK
k .T /� ResK

k .E
m
a /'

�
ResK

k .Ea/
�m
:

Note that, under the canonical isomorphism ResK
k
.Ea/

m.k/'Em
a .K/, the points

of ResK
k
.T /.k/ correspond to the points .P1; : : : ;Pm/ 2 Em.K/ which are con-

tained in T .K/, that is, to points .P1; : : : ;Pm/ 2 Em.K/ such that the points
P1; : : : ;Pm;P are distinct.
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Let

V � WD .V1 � � � � �Vm/\ResK
k .T /�

�
ResK

k .Ea/
�m

and let V �
P}

be the fiber of P} under the restriction of the addition morphism
ResK

k
.E/m! ResK

k
.E/ to V �. We have

V �P}
D V �\

�
ResK

k .Ea/
m
�
P}
D V �\Res.T /P} : (15)

Let now P …
Sm

iD1 Ui . The set of k-rational points of V � contains all k-rational
points of ResK

k
.Ea/

m corresponding to decompositions of P . (There might be
more points in V �.k/ because there might be k-rational points .P1; : : : ;Pm/ of V �

with xi.P /D 0 for some i 2 f1; : : : ;mg.) As ResK
k
.T / is open in ResK

k
.Ea/

m, a
k-rational point of V �

1
� � � � �V �m is open in V �

1
� � � � �V �m if and only if it is open

in V1 � � � � �Vm. Therefore, the set of isolated k-rational points of V � contains all
k-rational points of ResK

k
.Ea/

m corresponding to isolated decompositions of P .
Let W � be the preimage of V � in ResK

k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m///. Our

goal is to show that the preimages of the isolated k-rational points of V � are isolated
k-rational points of W �.

We have the Cartesian diagram

ResK
k
.S/

��

� � // ResK
k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m///

��

ResK
k
.T /
� � // ResK

k
.Em

a /' ResK
k
.Ea/

m:

Moreover, as the morphism S! T factors through the fiber TP , by functoriality,
the morphism ResK

k
.S/! Resk

k
.T / factors through the fiber ResK

k
.T /P} . We

claim that we have an induced bijection between ResK
k
.S/.k/ and ResK

k
.T /P}.k/.

For this, we can (obviously) apply the base change to kjk. But over k, the two
Weil restrictions become products of Galois twists of S and T , respectively, and
we have already shown the claim for the factors of the product. The claim thus
follows. By considering the Galois operation, we obtain that, for every algebraic
field extension �jk, we have a bijection between ResK

k
.S/.�/ and .Resk

k
.T //P}.�/.

We are going to use this for �D k.
As V � is contained in ResK

k
.T /, W � is contained in ResK

k
.S/, and we have a

Cartesian diagram

W �

��

� � // ResK
k
.S/

��

V �
� � // ResK

k
.T /:
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The composition W �! ResK
k
.T / (obviously) factors through V � and — as we

have just seen — it factors through .ResK
k
.T //P} . By (15) it factors through V �

P}
.

The morphism
W �! V �P}

again induces a bijection
W �.k/! V �P}

.k/:

Let now .P1; : : : ;Pm/ be an isolated k-rational point of V �. This is a k-rational
point of V � which is open in V �. Then the fiber over .P1; : : : ;Pm/ in W � is open
in W �, and it is a k-rational point. Therefore it is an isolated k-rational point
of W � and also of W .

We note again that for any isolated decomposition of P the corresponding point
in .V1 � � � � � Vm/.k/ lies in V �.k/ and is isolated. Therefore every isolated
decomposition of P defines an isolated k-rational point of W .

This finishes the proof of Proposition 3.3 under the assumption x.P /…
Sm

iD1 Ui .

Modification for x.P / 2
Sm

iD1 Ui . We now discuss the modification for the case
that x.P / 2

Sm
iD1 Ui . Except for finitely many instances, there exists a point

R 2Ea.K/ with x.R/ …
Sm

iD1 Ui and x.P �R/ …
Sm

iD1 Ui .
Let us fix such a point R and let S WD P � R. Let QL` WD hp1; : : : ;p`i \

ff 2 kŒx;y� j f .�R/D 0; f .�S/D 0g. Let Qg1; : : : ; Qgm be a basis of QLmC2 such
that Qg1; : : : ; Qgm�1 is a basis of LmC1. Now a tuple .P1; : : : ;Pm/2F1�� � ��Fm is
a decomposition of P if and only if there exists a tuple .˛1; : : : ; ˛m�1/2Km�1 with

. QgmC˛m�1 Qgm�1C� � �C˛1 Qg1/D .P1/C� � �C.Pm/C.�R/C.�S/�.mC1/�.O/:

Moreover, if such a tuple exists, it is unique. With this modifications, we obtain
again the desired bound on the number of isolated decompositions. Moreover, by
choosing a point R 2Ea.K/ uniformly randomly, we also obtain the algorithmic
result. Note here that, if P is in the factor base, we immediately have a relation, so
we do not need to apply the decomposition algorithm. The bound on the number of
isolated decompositions will however be used later.

4. Analysis and the final result

Let Kjk and E=K be as above and m 2 N with 2 � m � n=2. We assume that
Condition 2.1 is satisfied. Furthermore, let a decomposition KD

Lm
iD1 Ui be given

which satisfies the conditions in Section 2E. Moreover, let Fi and Vi be as above.
As in Section 2C, let P0 2E.K/ be one of the two points in E.K/ lying over 0.
We want to obtain a lower bound on the number of points P 2 E.K/ which

have isolated decompositions. For this goal, we first want to derive an upper bound
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on the number of tuples .P1; : : : ;Pm/ 2 F1 � � � � �Fm which define nonisolated
decompositions.

Let am W ResK
k
.A/ ! ResK

k
.E/ be the m-fold addition morphism and a0m W

V1 � � � � �Vm! ResK
k
.E/ the restriction of am to V1 � � � � �Vm.

We now consider a point .P1; : : : ;Pm/ 2 Em.K/ with x.Pi/ 2 Ui and let
P WD

Pm
iD1 Pi .

The morphism a0m WV1�� � ��Vm!ResK
k
.E/ is unramified at ..P1/}; : : : ;.Pm/}/

if and only if ..P1/}; : : : ; .Pm/}/ is an isolated reduced point of the fiber at P}.
We ask ourselves for which tuples .P1; : : : ;Pm/ as above the morphism is ramified
at ..P1/}; : : : ; .Pm/}/. As already pointed out in the proof of Proposition 2.2 the
morphism a0m W V1� � � � �Vm! ResK

k
.E/ is unramified at ..P1/}; : : : ; .Pm/}/ if

and only if the induced map on tangent spaces

.a0m/� W T..P1/}; :::; .Pm/}/.V1 � � � � �Vm/! TP}.V1 � � � � �Vm/

is injective.

We now consider points .P1; : : : ;Pm/2E.K/m with x.Pi/2Ui for all i which
satisfy the following condition.

Condition 4.1. The flat covering xjE is unramified at P1; : : : ;Pm.

This condition is equivalent to the condition that, for every i , the flat covering
ResK

k
.Ea/! ResK

k
.A1

k
/ is unramified at .Pi/}. By base change, this implies that,

for every i , Vi ! Ak ŒUi � is unramified (and thus étale) at .Pi/}. Therefore, Vi

is smooth at .Pi/} and we have an isomorphism of tangent spaces T.Pi /}.Vi/!

T.x.Pi //}.Ak ŒUi �/.

Let such a point .P1; : : : ;Pm/ be given and let again P WD
Pm

iD1 Pi . By
Lemma 2.4 we have a commutative diagram

T..P1/}; :::; .Pm/}/.V1 � � � � �Vm/
.a0m/� //

.�.P0�P1/}; :::; .P0�Pm/} /�

��

TP}

�
ResK

k
.E/

�
.�m � .P0�P/} /�
��

T..P0/}; :::; .P0/}/.V1 � � � � �Vm/
.a0m/� //

��

Tm.P0/}

�
Resk

k
.E/

�

T.P0/}.V1/� � � � �T.P0/}.Vm/ // T.P0/}

�
Resk

k
.E/

�.�.m�1/ � .P0/} /�

OO

where the lower map is the addition on tangent spaces. Moreover, by the proof of
Proposition 2.2, the two lower vertical homomorphisms are isomorphisms. Under
the isomorphism T.P1/}.V1/�� � ��T.Pm/}.Vm/'T..P1/}; :::; .Pm/}/.V1�� � ��Vm/,
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the horizontal map on the left-hand side is

.�.P0�P1/}/� � � � � � .�.P0�Pm/}/� W

T.P1/}.V1/� � � � �T.Pm/}.Vm/! T.P0/}.V1/� � � � �T.P0/}.Vm/:

So the morphism .a0m/� is unramified at ..P1/}; : : : ; .Pm/}/ if and only if we
have a direct sum decomposition

T.P0/}

�
ResK

k .E/
�
D

mM
iD1

.�.P0�Pi /}/�.T.Pi /}.Vi//: (16)

We want to derive a condition under which we do have such a decomposition.
For this, we distinguish between three cases: q odd; q even and j ¤ 0; and q even
and j D 0.

The case that q is odd. We need some facts on tangent vectors of the projective
line and the elliptic curve E. Here and in the following we assume that the defining
polynomial f of Ea is of the form y2� v.x/ (with v monic of degree 3).

Following our usual notation, let P1
K
WD Proj.KŒX;Y �/. We set xP1 WDX=Y 2

K.P1/ (such that K.P1/DK.xP1/).
On P1

K
, we have the meromorphic cotangent vector field dxP1 with divisor

�21. Under duality, this corresponds to a tangent vector field which we denote by
tP1 2 �.P1

k
;T

P1
k
/ and which has divisor 21.

Let R be the ramification divisor of the covering xjE . Then the meromorphic
cotangent vector field dxjE has divisor �4.O/CR, and we have the holomorphic
cotangent vector field dxjE=yjE . This field is invariant under translation; that is,
for every translation � of E we have ��.dxjE=yjE/D dxjE=yjE .

Again under duality, dxjE corresponds to a meromorphic tangent vector field;
we denote this by tE . It has divisor 4.O/�R. So we have the holomorphic tangent
vector field yE tE , which corresponds to dxjE=yjE under duality. Moreover, the
field yE tE is also invariant under translation; that is, for every translation � of E,
��.yjE tE/D yjE tE .

Following the notation fixed in the introduction, for some point P 2E.K/, we
denote the tangent vector in TP .E/ induced by tE by tE.P /.

Let two K-rational points P0 and P1 of E which are not ramification points
under xjE be given and let us consider the homomorphism .�P0�P1

/� W TP1
.E/!

TP0
.E/. This homomorphism is given by y.P1/tE.P1/ 7!y.P0/tE.P0/; that is,

tE.P1/ 7!
y.P0/

y.P1/
tE.P0/: (17)

As in the previous section, Let us fix a basis .bj /j of K over k and bases .bi;j /j
of the Ui . Let us denote the corresponding dual bases by .xj /j and .xi;j /j . The
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bases .bj /j and .bi;j /j define bases of the spaces �.Ak ŒK�;T/ and �.Ak ŒUi �;T/.
We denote these bases by .tj /jD1; :::;n for Ak ŒK� and .ti;j /jD1; :::; dim.Ui / for Ak ŒUi �.

Let P 2E.K/ such that xjE is unramified at P . Then ResK
k
.xjEa

/ defines an iso-
morphism of tangent spaces .ResK

k
.xjEa

//� WTP}.ResK
k
.xjEa

//!Tx.P/}.AŒK�/.
Now, for t 2�.AŒK�;T/, we define t.P}/ WD..ResK

k
.xjEa

//�/
�1.t.x.P /}//. The

isomorphism of tangent vector spaces restricts to an isomorphism of tangent vec-
tor spaces TP}.Vi/! Tx.P/}.AŒUi �/. Thus t.P}/ is in TP}.Vi/ if and only if
t.x.P /}/ is in Tx.P/}.AŒUi �/.

Just as the bases .tj .x.P /}//j and .d.xj /.x.P /}//j are dual to each other, so
are the bases .tj .P}//j and .d.xj /jResK

k
.Ea/

.P}//j .
Let Ai be the coordinate matrix of .bi;j /j with respect to .bj /j . Then this is

also the coordinate matrix of .ti;j /j with respect to .tj /j , and, for any P 2E.K/

as above, it is also the coordinate matrix of .ti;j .P}//j with respect to .tj .P}//j .
For the following, it is important that the matrix does not depend on P .

Let now .P1; : : : ;Pm/ 2Em.K/ with x.Pi/ 2Ui for all i satisfy Condition 4.1.
Then, for each i D 1; : : : ;m, the system .ti;j ..Pi/}//j is a basis of the k-vector
space T.Pi /}.Vi/. We have a direct sum decomposition of T.P0/}.ResK

k
.E// as

in (16) if and only if the elements .t.P0�Pi /}/�.ti;j ..Pi/}// for i D 1; : : : ;m,
j D 1; : : : ; dim.Ui/ form a k-basis of TP}.ResK

k
.E//.

Let, for j D 0; : : : ; n � 1, fj 2 kŒx1; : : : ;xn;y1; : : : ;yn� be defined by f DPn
jD1 bj � fj . Let u W .ResK

k
.Ea//K ! Ea be the universal morphism. We have

the isomorphism

.u; �.u/; : : : ; �n�1.u// W
�
ResK

k .Ea/
�
K
��!

n�1Y
sD0

� s
K jk.Ea/ (18)

corresponding to the isomorphism of K-algebras

n�1O
sD0

KŒx.s/;y.s/�=
�
� s

K jk.f /.x
.s/;y.s//

�
��!KŒx1; : : : ;xn;y1; : : : ;yn�=.f1; : : : ;fn/;

x.s/ 7!

nX
jD1

� s
K jk.bj / �xj ; y.s/ 7!

nX
jD1

� s
K jk.bj / �yj :

Note that, for P 2E.K/, under isomorphism (18) the point P} 2 Resk
k
.E/.k/�

ResK
k
.E/.K/ corresponds to the point .� s.P //sD0; :::;n�1 2

Qn�1
sD0 �

s
K jk

.Ea/.K/.
We have an induced isomorphism �.ResK

k
.Ea/K ; �/'

Ln�1
sD0 �.�

s.Ea/;�/

under which d.x.s//j�s.Ea/ corresponds to
Pn

jD1 �
s
K jk

.bj / � d.xj /jResK
k
.Ea/

. This
isomorphism induces an isomorphism between the cotangent spaces at P} and
.� s.P //sD0; :::;n�1. Let again xjE be unramified at P . If we then apply the
duality between cotangent and tangent spaces, we obtain that tj .P}/ corresponds to
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� s

K jk
.bj / � t�s.Ea/.�

s.P //
�
sD0; :::;n�1

under the induced isomorphism of tangent
spaces at P} and .� s.P //sD0; :::;n�1.

On each of the factors of the product
Qn�1

sD0 �
s
K jk

.Ea/, we can apply the consid-
erations above. We obtain that .�.P0�Pi /}/�.tj ..Pi/}// corresponds to

�
.�.�.P0/��.Pi ///�.�

s
K jk.bj / � t�s.Ea/.�

s.P0///
�
sD0; :::;n�1

D

�
� s

K jk.bj / �
y.s/.�.P0//

y.s/.�.Pi//
� t�s.Ea/.�

s.P0//

�
sD0; :::;n�1

D

�
� s

K jk.bj / �

Pn
`D1 �

s
K jk

.b`/ �y`..P0/}/Pn
`D1 �

s
K jk

.b`/ �y`..Pi/}/
� t�s.Ea/.�

s.P0//

�
sD0; :::;n�1

:

This vector is of course invariant under the Galois operation of Kjk. Let C be
the inverse of the matrix ..� s.bj ///sD0; :::;n�1; jD1; :::;n; this is a matrix of the form
..� s.cu///uD1; :::;n; sD0; :::;n�1. Going back, we have

.�.P0�Pi /}/�.tj ..Pi/}//

D

n�1P
sD0

� s
K jk.bj / �

Pn
`D1 �

s
K jk

.b`/ �y`..P0/}/Ps
`D1 �

s
K jk

.b`/ �y`..Pi/}/
�

�
nP

uD1

� s.cu/.tu..P0/}//

�

D

nP
uD1

n�1P
sD0

� s
K jk

�
bj �

Pn
`D1 b` �y`..P0/}/Ps
`D1 b` �y`..Pi/}/

� cu

�
� .tu.P0/}/:

Let cj ;u WD bj cu �
�Pn

`D1 b` �y`.P0/}
�
2K. (These constants are independent

of P1; : : : ;Pm.) Then

.�.P0�Pi /}/�.tj ..Pi/}//D
nP

uD1

n�1P
sD0

� s
K jk

�
cj ;uPn

`D1 b` �y`..Pi/}/

�
� tu..P0/}/:

Let �i W Vi ,! ResK
k
.E/ be the immersions. It follows that there are constants

ci;j ;u 2K (again independent of P1; : : : ;Pm) with

�
.�.P0�Pi /}/� ı .�i/�

�
ti;j ..Pi/}/

D

nP
uD1

n�1P
sD0

� s
K jk

�
ci;j ;uPn

`D1 b` �yi; `..Pi/}/

�
� tu..P0/}/

D

nP
uD1

n�1P
sD0

�
� s

K jk
.ci;j ;u/Pn

`D1 �
s
K jk

.b`/ �yi; `..Pi/}/

�
� tu..P0/}/:
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Let

M0 WD

��
n�1P
sD0

� s
K jk

.ci;j ;u/Pn
`D1 �

s
K jk

.b`/ �yi; `

��
uD1; :::;n; .iD1; :::;m; jD1; :::; dim.Ui //

2 k..yi0;j 0/i0D1; :::;m; j 0D1; :::;n/
f1; :::;ng�

Sm
iD1

Sdim.Ui /

jD1
f.i;j/g:

Note here that as indicated M0 is a matrix over k..yi0;j 0/i0D1; :::;m; j 0D1; :::;n be-
cause the entries are invariant under the Galois operation. The matrix has the size
n� n. It is however more convenient to use the indicated indices for the columns.
Note further that, for no .P1; : : : ;Pm/2Em.K/ with x.Pi/2Ui for all i satisfying
Condition 4.1 and for no i; s,

Pn
`D1 �

s.b`/ �yi; ` vanishes at ..P1/}; : : : ; .Pn/}/.
We have a direct sum decomposition of T0.ResK

k
.E// as in (16) if and only if

the matrix M0..P1/}; : : : ; .Pn/}/ is nonsingular.
By Proposition 2.2 we know that this matrix is nonsingular for .P1; : : : ;Pn/D

.P0; : : : ;P0/. In particular, the matrix M0 itself is nonsingular.
We now multiply the columns of M by polynomials such that the entries of the

resulting matrix are polynomials. Concretely, we multiply all columns with column
index .i; j /with the polynomial

Qn�1
tD0

�Pn
`D1 �

t
K jk

.b`/�yi; `

�
. The resulting matrix

is

M D

��
n�1P
sD0

� s
K jk.ci;j ;u/ �

n�1Q
tD0
t¤s

�
nP̀
D1

� t
K jk.b`/ �yi; `

���
uD1; :::;n;
.iD1; :::;m; jD1; :::; dim.Ui //

2 kŒ.yi0;j 0/i0D1; :::;m; j 0D1; :::;n�
f1;:::;ng�

Sm
iD1

Sdim.Ui /

jD1
f.i;j/g:

Let d WD det.M /2 kŒ.yi0;j 0/i0;j 0 �. Again for .P1; : : : ;Pm/ as above, d vanishes
at ..P1/}; : : : ; .Pm/}/ if and only if the homomorphism a0m is unramified at
..P1/}; : : : ; .Pm/}/. Furthermore d does not vanish identically on V1 � � � � �Vm

because it does not vanish at ..P0/}; : : : ; .P0/}/.
We want to study the vanishing locus of d on V1� � � � �Vm and derive an upper

bound on the number of k-rational points in the locus.
An entry of M with column index .i; j / is a homogeneous polynomial in the vari-

ables yi;1; : : : ;yi;n of degree n�1. Therefore d is multihomogeneous with respect
to the sets of variables .yi;1; : : : ;yi;n/iD1; :::;m of multidegree .dim.U1/ � .n� 1/;

: : : ; dim.Um/ � .n� 1//. The total degree is therefore n2� n. We want to prove:

Proposition 4.2. The number of k-rational points in the locus of d on V1�� � ��Vm

is at most n5 � 4n � qn�1.

Proof. Let us first mention the following general fact.

Lemma 4.3. Let f be a nontrivial polynomial in Fq Œx1; : : : ;xn� of total degree d .
Then V .f / contains at most d � qn�1 Fq-rational points.
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Proof. As Fq Œx1; : : : ;xn� is factorial, we are immediately reduced to the case that f
is irreducible. If now f D xn�a for some a 2 Fq , we are done. Let us assume that
this is not the case and let a 2 Fq . Now f is not divisible by xn� a. This means
that not every coefficient of f as a polynomial in Fq Œxn�Œx1; : : : ;xn�1� is divisible
by xn � a; in other words, the polynomial f .x1; : : : ;xn�1; a/ is nontrivial. The
result now follows by induction on n. �

We will use resultants to eliminate the “y-variables”. Let us consider the poly-
nomials f , fj and f.i/;j as polynomials in the “y-variables”. Now let

F WDZ2
�f

�
x;

Y

Z

�
2KŒx�ŒY;Z�;

Fj WDZ2
�fj

�
x1; : : : ;xn;

Y1

Z
; : : : ;

Yn

Z

�
2 kŒx1; : : : ;xn�ŒY1; : : : ;Yn;Z�;

F.i/;j WDZ2
�f.i/;j

�
xi;1; : : : ;xi; dim.Ui /;

Yi;1

Z
; : : : ;

Yi;n

Z

�
2 kŒxi;1; : : : ;xi; dim.Ui /�ŒYi;1; : : : ;Yi;n;Z�

be the homogeneous polynomials of degree 2 obtained by “homogenizing with
respect to the y-variables to a homogeneous degree-2 polynomial”. Let us consider
kŒx�ŒY;Z�, kŒx1; : : :xn�ŒY1; : : : ;Yn;Z�, kŒxi;1; : : : ;xi;dim.Ui /�ŒYi;1; : : : ;Yi;n;Z� as
graded rings in the second set of variables. Let V i be the scheme defined by
.F.i/;j /jD1; :::;n in Proj.kŒxi;1; : : : ;xi; dim.Ui /�ŒYi;1; : : : ;Yi;n;Z�/'A

dim.Ui /

k
�Pn

k
.

We have a commutative diagram of canonical embeddings

Vi
� � //
� _

��

V i� _

��
ResK

k
.E/D V .f1; : : : ; fn/

� � // V .F1; : : : ;Fn/:

Lemma 4.4. For each i , the embedding Vi ,! V i is an isomorphism.

Proof. We have to show that V i has no points “at infinity”; that is, the in-
tersection V .Z/ \ V i is trivial. We show in fact the stronger statement that
V .Z/\V .F1; : : : ;Fn/ is trivial.

Let f .s/ WD� s
K jk

.f /.x.s/;y.s// and F .s/ WDF.x.s/;Y .s/;Z/ for sD0; : : : ; n�1.
Let us consider the isomorphism of graded K-algebras

KŒx1; : : : ;xn�ŒY1; : : : ;Yn;Z�!KŒx.1/; : : : ;x.n/�ŒY .1/; : : : ;Y .n/;Z�;

x.s/ 7!

nX
jD1

� s
K jk.bj / �xj ; Y .s/ 7!

nX
jD1

� s
K jk.bj / �Yj ; Z 7!Z:
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We have the following commutative diagram over K:

Spec.KŒx1; : : : ;xn�/

�

Spec.KŒy1; : : : ;yn�/

//
Spec.KŒx.1/; : : : ;x.n/�/

�

Spec.KŒy.1/; : : : ;y.n/�/

ResK
k
.E/D V .f1; : : : ; fn/K

?�

OO

//
� _

��

V .f .1/; : : : ; f .n//D
Qn�1

sD0 �
s
K jk

.Ea/
?�

OO

� _

��

V .F1; : : : ;Fn/K //
� _

��

V .F .1/; : : : ;F .n//� _

��

Spec.KŒx1; : : : ;xn�/

�

Proj.KŒY1; : : : ;Yn;Z�/

//
Spec.KŒx.1/; : : : ;x.n/�/

�

Proj.KŒY .1/; : : : ;Y .n/;Z�/

Here the horizontal maps are induced by the isomorphism mentioned above.
They are clearly isomorphisms. One can easily see that the middle morphism on
the right is an isomorphism: we have F.x.s/;Y .s/; 0/D .Y .s//2, and the scheme
V ..Y .1//2; : : : ; .Y .n//2;Z/ is trivial. Therefore the middle morphism on the left
is an isomorphism too. �

We fix the following notation: for b2N0, .P0/
b
}

is the point ..P0/}; : : : ; .P0/}/

with b entries. Let now for ` D 0; : : : ;m the k-scheme V` be the following
subscheme of V1 � � � � �Vm:

V` WD V1 � � � � �V` � .P0/
m�`
} :

Furthermore, let d` 2 kŒ.yi0;j 0/i0D1; :::; `; j 0D1; :::;n� be the polynomial obtained
from d by evaluating yi0;j 0 for i 0D `C1; : : : ;m and j 0D 1; : : : ; n at .P0/}. Note
that d` does not vanish identically on V` because it does not vanish at .P0/

`
}

.
We want to show by induction on `:

#.V` \V .d//.k/� ` � n4
� 2n
� .2q/.

P`
iD1 dim.Ui //�1:

Recall here that dim.Ui/D dim.Vi/.
The induction base is `D 0. As d does not vanish at .P0/

`
}

, the set V0\V .d/

is empty. Therefore the claim holds.
So let `�m be given and let us assume that the claim holds for `� 1.
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The set .V` \ V .d//.k/ can be divided into two disjoint parts: The first part
consists of the points .P1; : : : ;P`/ with d`�1.P1; : : : ;P`�1/D 0. The second part
consists of the points .P1; : : : ;P`/ with d`�1.P1; : : : ;P`�1/¤ 0.

We first consider points in the first part. As over each point of A1.K/ there
lie at most 2 points of Ea.K/, over each point An.k/ lie at most two points of
ResK

k
.Ea/.k/. In particular, over each point of Ak ŒU`�.k/ lie at most 2 points

of V`.k/. Because of this and because of the induction hypothesis, there are at most

.2q/dim.U`/�.`�1/�n4
�2n
�.2q/.

P`�1
iD1 dim.Ui //�1

D .`�1/�n4
�2n
�.2q/.

P`
iD1 dim.Ui //�1

points in the first part.

We now consider points in the second part.
Let .P1; : : : ;P`�1/2 V1.k/�� � ��V`�1.k/ with d`�1.P1; : : : ;P`�1/¤ 0; that

is, d`.P1; : : : ;P`�1; .P0/}/¤ 0.
The polynomial

d`.P1; : : : ;P`�1/ 2 kŒy`;1; : : : ;y`;n�� kŒx`;1; : : : ;x`; dim.U`/;y`;1; : : : ;y`;n�

is now nontrivial on V`. Since — by the conditions we have imposed — V` is
irreducible, V`\V .d`.P1; : : : ;P`�1// is of codimension 1 in V` by Krull’s Haupt-
idealsatz; with other words, it is of dimension dim.U`/� 1.

The polynomial d`.P1; : : : ;P`�1/ is already homogeneous with respect to
y`;1; : : : ;y`;n; let d 2 kŒY`;1; : : : ;Y`;n;Z�� kŒx`;1; : : : ;x`;dim.U`/�ŒY`;1; : : : ;Y`;n;Z�

be the polynomial obtained by substituting Y`;n for y`;n. This is a homogeneous
polynomial of degree dim.U`/ � .n � 1/ with respect to Y`;1; : : : ;Y`;n;Z. As
V` D V` (Lemma 4.4), we have

V`\V .d`.P1;:::;P`�1//DV `\V .d/DV .F.`/;1;:::;F.`/;n;d/

�Spec.kŒx`;1;:::;x`;dim.U`/�/�Proj.kŒY`;1;:::;Y`;n;Z�/:

Let ResDRes.G1;:::;GnC1/ be the dense multivariate resultant for nC1 homoge-
neous variables and polynomials of (homogeneous) degrees 2; : : : ;2;dim.Ui/�.n�1/.
Here, the G1; : : : ;GnC1 are independent generic polynomials, that is, polynomials
with algebraically independent coefficients. (As in [Diem 2011b], the similarity
between the notation for the Weil restriction and the resultant is accidental.)

Taking the resultant of F.`/;1; : : : ;F.`/;n;d with respect to Y`;1; : : : ;Y`;n;Z, we
obtain Res.F.`/;1; : : : ;F.`/;n;d/, a nontrivial polynomial in kŒx`;1; : : : ;x`; dim.U`/�.
For some point Q 2 An.k/, the resultant Res.F.`/;1; : : : ;F.`/;n;d/ vanishes at Q

if and only if there is a k-rational point in V`\V .d/D V`\V .d`.P1; : : : ;P`�1//

over Q.
We want to determine the multidegree of this polynomial. First we consider

the degrees of Res as a polynomial on the coefficients of the Gj . By [Gelfand
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et al. 1994, Subsection 3.3A] we have: for j D 1; : : : ; n, Res is a homogeneous
polynomial of degree dim.Uj / �.n�1/ �2n�1<n2 �2n�2 in the coefficients of the Gj .
The inequality is obtained as follows: As m � 2, dim.Uj / � dn=2e � .nC 1/=2.
Furthermore, Res is a homogeneous polynomial of degree 2n in the coefficients
of GnC1. Moreover, F.`/;j has degree at most 3 in the x`;j 0 (j 0 D 1; : : : ; dim.Ui/)
and d obviously has degree 0 in the x`;j 0 .

Therefore, Res.F`;1; : : : ;F`;n;d/ has degree at most n � 3 � n2 � 2n�2 in each of
the variables x`;j 0 . Its total degree is thus at most 3n4 � 2n�2. By Lemma 4.3, the
locus the resultant contains at most 3n4 �2n�2 �qdim.U`/�1 k-rational points. As over
each of these points lie at most two k-rational points of V` \V .d.P1; : : : ;P`�1//,
this set contains at most 6n4 � 2n�2 � qdim.U`/�1 points. We now let P1; : : : ;P`�1

vary, and we obtain that there are at most

6n4
� 2n�2

� qdim.U`/�1
� .2q/

P`�1
iD1 dim.Ui /

D 6n4
� 2n�1

� 2
P`�1

iD1 dim.Ui /�1
� q
P`

iD1 dim.Ui /�1 < n4
� 2n
� .2q/.

P`
iD1 dim.Ui //�1

points in the second part of the set .Va\V .d//.k/. (We use that dim.U`/� 2 as
m� n=2.)

Altogether, there are < ` �n4 �2n � .2q/.
P`

iD1 dim.Ui //�1 points in .V`\V .d//.k/.
This concludes the proof of Proposition 4.2. �
There are at most 3 K-rational ramification points in Ea under xjEa

. Therefore,
there are at most 3 � 2m�1 � qn�1 < 2n � qn�1 tuples in F1 � � � � �Fm which do not
satisfy Condition 4.1. Proposition 4.2 gives therefore:

Proposition 4.5. The number of tuples in F1�� � ��Fm which do not define isolated
decompositions is at most .n5 � 4nC 2n/ � qn�1.

The case that q is even and j ¤ 0. Let a 2 K be the ramification point of Ea

over A1
K

. Then dxjE=.xjE � a/ is a holomorphic differential on E.
As above, we obtain a nontrivial polynomial d 2kŒ.xi;j /iD1; :::;m; jD1; :::; dim.Ui /�

of total degree n2�n such that, for points .P1; : : : ;Pm/2E.K/m with x.Pi/2Ui

satisfying Condition 4.1, ..P1/}; : : : ; .Pm/}/ is an isolated reduced point in its
fiber if and only if d..P1/}; : : : ; .Pm/}/D 0.

There are at most .n2 � n/ � qn�1 points in the locus of d on An
k

. Moreover,
over each point of A1.K/ are at most two points of E.K/. The number of points
.P1; : : : ;Pm/2V1.k/�� � ��Vm.k/ satisfying Condition 4.1 which are not isolated
reduced points in their fiber is thus at most 2m � .n2� n/ � qn�1. Therefore:

Proposition 4.6. The number of tuples in F1�� � ��Fm which do not define isolated
decompositions is at most 2m � n2 � qn�1.

The case that q is even and j D 0. In this case, dxjE itself is a holomorphic
differential on E. It follows that .�.P0�Pi /}/�.ti;j ..Pi/}// D .ti;j ..P0/}// for
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any P 2 Ea.K/. Therefore, the morphism a0m W V1 � � � � � Vm ! ResK
k
.E/ is

unramified everywhere and we obtain:

Proposition 4.7. Every decomposition is isolated.

The final result of the analysis. All in all, we have:

Proposition 4.8. For

� 25n � q, or

� q even, n3 � q and m� d
p

log2.q/e,

the following holds: The probability that a uniformly randomly distributed point of
E.K/ has an isolated decomposition is in

1

eO.mn/
D

�
1

emn

��.1/
:

We remark here that the condition m � d
p

log2.q/e is satisfied for m in the
preliminary algorithm presented in the introduction.

Proof. Let first q be odd and the first condition satisfied. By the conditions in
Section 2E, we have #Fi �

1
4
� qdim.Ui / for all i and therefore #.F1 � � � � �Fm/�

.1=4m/ �qn � .1=4n/ �qn. By Proposition 4.5, at most .n5 �4nC2n/ �qn�1 of these
tuples do not define isolated decompositions. So if n5 � 4nC 2n �

1
2
� .1=4n/ � q, we

have at least 1
2
� .1=4n/ � qn tuples which do define isolated decompositions. This

is for example the case if 25n � q and n is large enough, and for every fixed n it
holds if q is large enough. By Proposition 3.3(a) the image of the set of tuples in
F1�� � ��Fm which define isolated decompositions has a size of .1=eO.mn//�qn. The
probability that a uniformly randomly distributed point in E.Fqn/ has an isolated
decomposition is therefore in 1=eO.mn/.

We now consider the case that q is even. The proof is similar to the previous
one, only that we now apply Propositions 4.6 and 4.7. We now want that the
condition 2m � n2 �

1
2
� .1=4m/ � q is satisfied; that is, 2 � 23m � n2 � q. This is

always satisfied under the first condition; that is, 25n � q. Furthermore, under the
condition that m � d

p
log2.q/e the desired condition is in particular satisfied if

2n2 � 2log2.q/�3d
p

log2.q/e. This condition is for example satisfied if n3 � q and n

is large enough, and it holds for every fixed n if q is large enough. �

Derivation of Theorem 2. Finally, we show how Theorem 2 follows. In addition we
show that in characteristic 2 one can obtain a result which on first sight seems to be
an improvement over Theorem 2 but is in fact further improved upon by Theorem 3
which relies solely on Theorem 2.

As already mentioned in the outline in the introduction, the basic structure of
the index calculus algorithm is the same as that in [Diem 2011b]. So we only
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discuss the constructions surrounding the definition of the factor base and briefly
the relation generation and the linear algebra part, using the results proved above.
For an overview over the complete algorithm, we refer to Subsection 2.3 of our
previous work.

The input to the index calculus algorithm consists of a field extension Fqn jFq , an
elliptic curve E=Fqn and points A, B 2E.Fqn/ with B 2 hAi such that 25n� q or q

is even and n3 � q. The following considerations hold for q and n large enough.
An algorithm for all instances under consideration running in the claimed expected
time can be obtained by running the index calculus algorithm “in parallel” with a
brute force computation.

Similarly to the “preliminary algorithm”, we set m WDminfd
p

log2.q/e; bn=2cg.
(We need m� n=2 in order to be able to apply the algorithm for the construction of
a decomposition of K in Section 2E.) So d D dn=me �max.n=

p
log2.q/C 1; 3/

and thus Poly.qd /� eO.max.log.q/;n �
p

log.q///.
The expected running time of the construction of the decomposition of K and

the definition of the factor base is in Poly.n � qd / � eO.max.log.q/;n �
p

log.q/// (see
Proposition 2.10). We have an algorithm for the “new decomposition problem”
with an expected running time of Poly.emn � log.q//� eO.n �

p
log.q// and a success

probability of 1=eO.mn/ (see Propositions 3.3 and 4.8). Therefore the expected
running time of the relation generation part is in Poly.en �

p
log.q/ � m � qd / �

eO.max.log.q/;n �
p

log.q///. The linear algebra part has an expected running time of
Poly.m � qd /� eO.max.log.q/;n �

p
log.q///.

In total, we obtain an expected running time of

eO.max.log.q/;n �
p

log.q///:

We recall again that we have only considered instances with 25n � q or q even
and n3 � q so far. The derivation of Theorem 2 is now analogous to the derivation
of Theorem 1 from [ibid., Proposition 2.11].

We make the following case distinction: If 25n � q, we apply the index calculus
algorithm directly. If 25n > q, we set a WD d5n=log2.q/e and apply the index
calculus algorithm to the curve EFqan , the field extension Fqan jFqa and A, B. Now
25n�qa; thus we can conclude that the index calculus algorithm runs in an expected
running time of eO.max.log.qa/;n �

p
log.qa/// D eO.n3=2/.

This gives Theorem 2 except that in the theorem the field extension Fqn jFq is not
given with the input data. As already pointed out in [ibid.], one can apply the above
algorithm with all possible field extensions “in parallel” to obtain the desired result.

In addition to the derivation of Theorem 2 we now consider only instances in char-
acteristic 2. Under this condition, we can proceed as follows: For n3 � q we apply
the index calculus algorithm directly. For n3 > q, we set a WD d3 log2.n/=log2.q/e
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and proceed as above. We obtain an expected running time of eO.n �
p

log.n//. In
total, we obtain an expected running time of

eO.max.log.q/;n � log.q/1=2;n � log.n/1=2//
I (19)

with q D 2m this is
eO.max.m;n �m1=2;n � log.n/1=2//: (20)

We note however that for the derivation of Theorem 3 we only apply Theorem 2
under the condition that n�m. Under this condition, we do not have an improvement
upon the expected time given in Theorem 2, and in fact Theorem 3 improves upon
the expected time given by (20) if m 2 o.n/.
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Appendix: Misprints in the previous work

I would like to take the opportunity to correct two misprints in [Diem 2011b].

� In Subsection 4.2 the following situation is considered: Let k be a field, let n1>n2,
and let p W .P1

k
/n1 D

Qn1

iD1
Proj.kŒXi ;Yi �/! .P1

k
/n2 D

Qn2

iD1
Proj.kŒXi ;Yi �/ be

the projection to the first n2 factors. Let hi be the class of V .Xi/ in any of the
two Chow rings. Lemma 4.6 is on the push-forward map p� W CH..P1

k
/n1/!

CH..P1
k
/n2/, which is a group homomorphism. There is a misprint in the lemma.

The correct statement is:

Let e 2 f0; 1gn1 . Then p�.h
e1

1
� � � h

e1
n1
/D h

e1

1
� � � h

e2
n2

(rather than being 1)
if en2C1 D � � � D en1

D 1 and p�.h
e1

1
� � � h

e1
n1
/D 0 otherwise.

Computations with the push-forward map are used only once in the analysis
of the algorithm, namely in equalities (6) in Subsection 4.5. Here, the correct
statement is applied.

� In Proposition 4.28 a subset M of f.P1; : : : ;Pn/ 2 E.K/n j 8i D 1; : : : ; n W

'.Pi/ 2P1.k/g is fixed and a lower bound on the number of elements P 2E.K/

such that there exists a '-isolated decomposition .P1; : : : ;Pn/ of P or �P with
P1; : : : ;Pn 2M is given. This lower bound is a difference, and in the subtrahend
a factor of n! is missing. The correct lower bound is

#M � n3 � n! � 22n2�n � .qC 1/n�1

n! � 2n2
:
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In a similar way, the next lower bound is also incorrect. All following bounds
are correct again and no further changes have to be performed for the proof of
Proposition 4.29. Proposition 4.28 is also cited for Proposition 5.9 in [Diem
2011a], which is concerned with an application for fixed n. This proposition is
not at all affected by the cited misprint.
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