Commuting involutions of Lie algebras, commuting varieties, and simple Jordan algebras

Dmitri I. Panyushev
Commuting involutions of Lie algebras, commuting varieties, and simple Jordan algebras

Dmitri I. Panyushev

Let σ_1 and σ_2 be commuting involutions of a connected reductive algebraic group G with $\mathfrak{g} = \text{Lie}(G)$. Let

$$\mathfrak{g} = \bigoplus_{i,j=0,1} \mathfrak{g}_{ij}$$

be the corresponding $\mathbb{Z}_2 \times \mathbb{Z}_2$-grading. If $\{\alpha, \beta, \gamma\} = \{01, 10, 11\}$, then $[\ , \]$ maps $\mathfrak{g}_\alpha \times \mathfrak{g}_\beta$ into \mathfrak{g}_γ, and the zero fiber of this bracket is called a $\vec{\sigma}$-commuting variety. The commuting variety of \mathfrak{g} and commuting varieties related to one involution are particular cases of this construction. We develop a general theory of such varieties and point out some cases, when they have especially good properties. If G/G^{σ_1} is a Hermitian symmetric space of tube type, then one can find three conjugate pairwise commuting involutions σ_1, σ_2, and $\sigma_3 = \sigma_1 \sigma_2$. In this case, any $\vec{\sigma}$-commuting variety is isomorphic to the commuting variety of the simple Jordan algebra associated with σ_1. As an application, we show that if \mathcal{J} is the Jordan algebra of symmetric matrices, then the product map $\mathcal{J} \times \mathcal{J} \to \mathcal{J}$ is equidimensional, while for all other simple Jordan algebras equidimensionality fails.

Introduction 1506
1. Preliminaries on involutions and commuting varieties 1509
2. Commuting involutions and quaternionic decompositions 1511
3. Commuting varieties and homogeneous Cartan subspaces 1512
4. Dyads of maximal rank and commuting varieties 1517
5. Commuting varieties and restricted root systems 1522
6. Triads of Hermitian involutions and simple Jordan algebras 1525
Appendix: Computations in classical Lie algebras 1530
Acknowledgements 1532
References 1533

MSC2010: primary 14L30; secondary 17B08, 17B40, 17C20, 22E46.
Keywords: semisimple Lie algebra, commuting variety, Cartan subspace, quaternionic decomposition, nilpotent orbit, Jordan algebra.
Introduction

The ground field \mathbb{k} is algebraically closed and $\text{char } \mathbb{k} = 0$. Let G be a connected reductive algebraic group with $\text{Lie}(G) = \mathfrak{g}$. Richardson [1979] proved that any pair of commuting elements of \mathfrak{g} can be approximated by pairs of commuting semisimple elements. More precisely, if $t \subset \mathfrak{g}$ is a Cartan subalgebra (CSA), then

$$\{(x, y) \in \mathfrak{g} \times \mathfrak{g} \mid [x, y] = 0\} = \overline{G \cdot (t \times t)},$$

where a bar indicates the Zariski closure. The left-hand side is called the commuting variety of \mathfrak{g}, denoted $E(\mathfrak{g})$. That is, $E(\mathfrak{g})$ is the zero fiber of the multiplication map $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$.

It follows from (0-1) that $E(\mathfrak{g})$ is irreducible and $\dim E(\mathfrak{g}) = \dim \mathfrak{g} + \text{rk } \mathfrak{g}$. For arbitrary Lie algebras, for example, for Borel subalgebras of \mathfrak{g}, the commuting variety can be reducible [Vasconcelos 1994, p. 237].

There are several directions to take in generalizing Richardson’s work.

First, for given subvarieties $U, V \subset \mathfrak{g}$, one can consider the restriction of $[\cdot, \cdot]$ to $U \times V$ and study properties of $E(\mathfrak{g}) \cap (U \times V)$. For instance:

- Let σ be an involution of \mathfrak{g} with the corresponding \mathbb{Z}_2-grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Taking $U = V = \mathfrak{g}_1$ yields the commuting variety $E(\mathfrak{g}_1) := E(\mathfrak{g}) \cap (\mathfrak{g}_1 \times \mathfrak{g}_1)$, which was considered first in [Panyushev 1994b]. Here the structure of $E(\mathfrak{g}_1)$ heavily depends on σ. If \mathfrak{g}_1 contains a CSA of \mathfrak{g}, then $E(\mathfrak{g}_1)$ is an irreducible normal complete intersection [Panyushev 1994b]. At the other extreme, if the symmetric space G/G_0 is of rank 1, then $E(\mathfrak{g}_1)$ is often reducible. In [Panyushev and Yakimova 2007], the question of irreducibility of $E(\mathfrak{g}_1)$ is resolved for all but three involutions of simple Lie algebras, and the remaining cases are settled in [Bulois 2011]. It seems, however, that there is no simple rule to distinguish the involutions for which $E(\mathfrak{g}_1)$ is irreducible.

- Another natural possibility is to take $U = V = \mathcal{N}$, where \mathcal{N} is the set of nilpotent elements of \mathfrak{g}. This leads to the nilpotent commuting variety of \mathfrak{g}, $E(\mathcal{N})$, which is often reducible. However, $E(\mathcal{N})$ is equidimensional, $\dim E(\mathcal{N}) = \dim \mathfrak{g}$, and the structure of irreducible components is well understood [Premet 2003].

- An interesting situation with $U \neq V$ occurs if $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ is \mathbb{Z}-graded, $U = \mathfrak{g}(i)$, and $V = \mathfrak{g}(-i)$, see [Panyushev 1999, §3].

Second, one may look at commuting varieties related to other types of algebras. If \mathcal{A} is any algebra, then $E(\mathcal{A})$ is defined to be the zero fiber of the multiplication map $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$. It is a natural task to study the commuting variety of a simple Jordan algebra. As far as I know, this problem has not been addressed before.
In this article, we elaborate on both directions outlined above. We study certain “commuting varieties” associated with \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-gradings of \(\mathfrak{g}\) (the first direction). It turns out that, for some gradings, these new commuting varieties are isomorphic to the commuting variety of simple Jordan algebras (the second direction). To describe our results more precisely, we need some notation. Let \(\sigma_1\) and \(\sigma_2\) be different commuting involutions of a connected reductive algebraic group \(G\). This yields a \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-grading of \(\mathfrak{g}\):

\[
\mathfrak{g} = \bigoplus_{i,j=0,1} \mathfrak{g}_{ij}, \quad \text{where} \quad \mathfrak{g}_{ij} = \{ x \in \mathfrak{g} \mid \sigma_1(x) = (-1)^i x \text{ and } \sigma_2(x) = (-1)^j x \}. \quad (0-2)
\]

Then \(\sigma_1\), \(\sigma_2\), and \(\sigma_3 = \sigma_1 \sigma_2\) are pairwise commuting involutions, and following [Vergne 1995] we say that \((0 -2)\) is a quaternionic decomposition of \(\mathfrak{g}\). For, if \((\alpha, \beta, \gamma)\) is any permutation of the set of indices \(\{01, 10, 11\}\), then \([\mathfrak{g}_{00}, \mathfrak{g}_{\alpha}] \subset \mathfrak{g}_\alpha\) and \([\mathfrak{g}_\alpha, \mathfrak{g}_\beta] \subset \mathfrak{g}_\gamma\). The conjugacy classes of pairs of commuting involutions are classified, see [Kollross 2009] and references therein. Therefore, it is not difficult to write down explicitly all the quaternionic decompositions of simple Lie algebras. This article is a continuation of [Panyushev 2013], where we developed some theory on Cartan subspaces related to \((0 -2)\) and studied invariants of degenerations of isotropy representations involved.

Set \(\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)\), and let \(G_{00}\) denote the connected subgroup of \(G\) with Lie algebra \(\mathfrak{g}_{00}\). A \(\vec{\sigma}\)-commuting variety is the zero fiber of the bracket \([\ , \] : \mathfrak{g}_\alpha \times \mathfrak{g}_\beta \to \mathfrak{g}_\gamma\). Associated with \((0-2)\), one has three essentially different such varieties that are parameterized by the choice of \(\gamma \in \{01, 10, 11\}\). All these mappings are \(G_{00}\)-equivariant, and all \(\vec{\sigma}\)-commuting varieties are \(G_{00}\)-varieties. The above-mentioned varieties \(\mathcal{E}(\mathfrak{g}_1)\) can be obtained as a special case of this construction, see Example 3.1. We usually stick to one particular choice of the commutator, \(\varphi : \mathfrak{g}_{10} \times \mathfrak{g}_{11} \to \mathfrak{g}_{01}\), and try to realize what assumptions on \(\vec{\sigma}\) imply good properties of \(\mathcal{E} := \varphi^{-1}(0)\) and other fibers of \(\varphi\). Clearly, \(\varphi\) can be regarded as a quadratic map from \(\mathfrak{g}_{1*} := \mathfrak{g}_{10} \oplus \mathfrak{g}_{11}\) to \(\mathfrak{g}_{01}\). Let \(\mathfrak{c}_{1*}\) be a Cartan subspace (CSS) in \(\mathfrak{g}_{1*}\). Say that \(\mathfrak{c}_{1*}\) is homogeneous if it is \(\sigma_2\)-stable (or, equivalently, \(\sigma_3\)-stable), that is, if \(\mathfrak{c}_{1*} = a_{10} \oplus a_{11}\) with \(a_{1j} \subset \mathfrak{g}_{1j}\). We prove:

- If \(\mathfrak{c}_{1*}\) is a homogeneous CSS, then the closure of \(G_{00} \cdot \mathfrak{c}_{1*}\) is an irreducible component of \(\mathcal{E}\) (Theorem 3.4). (Such irreducible components are said to be standard). However, there can be several standard components, of different dimensions, and there can also exist some “nonstandard” irreducible components.

- All homogeneous CSS in \(\mathfrak{g}_{1*}\) are \(G_{00}\)-conjugate (that is, \(\mathcal{E}\) has only one standard component) if and only if \(\dim \mathfrak{c}_{1*} = \dim \mathfrak{c}_{10} + \dim \mathfrak{c}_{11}\), where \(\mathfrak{c}_{1j}\) are CSS in \(\mathfrak{g}_{1j}\) (Theorem 3.7).
The commutator map φ is dominant if and only if there exist $x \in g_{10}$ and $y \in g_{11}$ such that $z_g(x)_{01} \cap z_g(y)_{01} = \{0\}$.

However, one cannot expect really good properties for φ and E without extra assumptions. One natural assumption is that some of involutions in $\vec{\sigma}$ are conjugate. Another possibility is that some of the σ_i possess prescribed properties. Our more specific results are:

1. If σ_1 and σ_2 are conjugate, then φ is surjective and $\dim \varphi^{-1}(\xi) \geq \dim g_{11}$ for all $\xi \in g_{01}$ (Proposition 3.8). We also provide a method for detecting subvarieties of E whose dimension is larger than $\dim g_{11}$. This exploits certain restricted root systems related to decomposition (0-2), see Section 5.

2. If σ_1 and σ_2 are involutions of maximal rank (hence they are conjugate), then φ is surjective and equidimensional, each irreducible component of E is standard, and the scheme $\varphi^{-1}(0)$ is a reduced complete intersection (Theorem 4.1).

3. Let g be simple and σ a Hermitian involution (that is, g^σ is not semisimple). If the Hermitian symmetric space G/G^σ is of tube type, then there exists a commuting triple $\vec{\sigma}$ such that each σ_i is conjugate to σ, and in this case E is isomorphic to the commuting variety of the corresponding simple Jordan algebra, see Section 6.

4. The relationship with $\vec{\sigma}$-commuting varieties implies that the multiplication map $J \times J \to J$ is equidimensional if and only if J is the Jordan algebra of symmetric matrices. The commuting variety of a simple Jordan algebra J is reducible, since $J \times \{0\}$ and $\{0\} \times J$ are always irreducible components, and there are certainly some other components.

5. The results stated in (2) rely on an interesting property of \mathbb{Z}_2-gradings. For any $e \in g_0$, its centralizer in g is also \mathbb{Z}_2-graded: $g^e = g_0^e \oplus g_1^e$. Then we prove that

$$\dim g_0^e + \rk g \geq \dim g_1^e$$

and the equality occurs only if $e = 0$ and σ is of maximal rank. However, the proof of this inequality (Theorem 4.4) is not quite uniform, and a better proof is welcome! The required case-by-case calculations are lengthy and tedious, so not all of them are actually presented, and a part is placed in the Appendix. We hope that an a priori proof of this inequality might be related to a geometric property of centralizers of nilpotent elements in g_0, see Conjecture 4.6.

– Throughout, G is a connected reductive algebraic group and $g = \text{Lie}(G)$. Then $z_g(\alpha)$ is the centralizer of a subspace $\alpha \subset g$, and the centralizer of $x \in g$ is denoted by $z_g(x)$ or g^x.

– $R(\lambda)$ is a simple finite-dimensional G-module with highest weight λ.

– Algebraic groups are denoted by capital Roman letters and their Lie algebras are denoted by the corresponding lower-case Gothic letters.
1. Preliminaries on involutions and commuting varieties

The set of all involutions of \mathfrak{g} is denoted by $\text{Inv}(\mathfrak{g})$. The group of inner automorphisms $\text{Int}(G) \cong G/Z(G)$ acts on $\text{Inv}(\mathfrak{g})$ by conjugation. Two involutions are said to be conjugate if they lie in the same $\text{Int}(G)$-orbit. If $\sigma \in \text{Inv}(\mathfrak{g})$, then $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ is the corresponding \mathbb{Z}_2-grading of \mathfrak{g}, where $\mathfrak{g}_i = \{ x \in \mathfrak{g} \mid \sigma(x) = (-1)^i x \}$. We also say that $(\mathfrak{g}, \mathfrak{g}_0)$ is a symmetric pair. Whenever we wish to stress that \mathfrak{g}_0 and \mathfrak{g}_1 are determined by σ, we write \mathfrak{g}_σ and $\mathfrak{g}_1(\sigma)$ for them. We assume that σ is induced by an involution of G, which is denoted by the same letter. The connected subgroup of G with Lie algebra \mathfrak{g}_0 is denoted by G_0. Hence G_0 is the identity component of $G_\sigma = \{ g \in G \mid \sigma(g) = g \}$. The representation of G_0 in \mathfrak{g}_1 is the isotropy representation of the symmetric space G/G_0.

We freely use the invariant-theoretic results on the G_0-action on \mathfrak{g}_1 obtained in [Kostant and Rallis 1971]. A Cartan subspace (CSS) is a maximal subspace of \mathfrak{g}_1 consisting of pairwise commuting semisimple elements. The Cartan subspaces are characterized by the following property:

Suppose that a subspace $\mathfrak{a} \subset \mathfrak{g}_1$ consists of pairwise commuting semisimple elements. Then \mathfrak{a} is a CSS if and only if $\mathfrak{z}_\mathfrak{g}(\mathfrak{a}) \cap \mathfrak{g}_1 = \mathfrak{a}$ [Kostant and Rallis 1971, Chapter I]. (1-1)

An element $x \in \mathfrak{g}_1$ is called G_0-regular if the orbit $G_0 \cdot x$ is of maximal dimension. Let \mathfrak{c} be a CSS of \mathfrak{g}_1. Below, we summarize some basic properties of the Cartan subspaces and isotropy representations:

- All CSS of \mathfrak{g}_1 are G_0-conjugate and $G_0 \cdot \mathfrak{c}$ is dense in \mathfrak{g}_1.
- Every semisimple element of \mathfrak{g}_1 is G_0-conjugate to an element of \mathfrak{c}.
- A semisimple element $x \in \mathfrak{g}_1$ is G_0-regular $\iff \mathfrak{z}_\mathfrak{g}(x) \cap \mathfrak{g}_1$ is a CSS.
- The orbit $G_0 \cdot x$ is closed if and only if x is semisimple.
- The closure of $G_0 \cdot x$ contains the origin if and only if x is nilpotent.
- The number of nilpotent G_0-orbits in \mathfrak{g}_1 is finite.

We say that $\sigma \in \text{Inv}(\mathfrak{g})$ is of maximal rank if \mathfrak{g}_1 contains a Cartan subalgebra of \mathfrak{g}. The following facts are well known:

1. $\dim \mathfrak{g}_1 - \dim \mathfrak{g}_0 \leq \text{rk } \mathfrak{g}$ for any σ, and the equality holds if and only if σ is of maximal rank.
2. All involutions of maximal rank are conjugate.
3. The involutions of maximal rank are inner if and only if all exponents of \mathfrak{g} are odd.
Lemma 1.1 [Kostant and Rallis 1971, Proposition 5]. For any \(x \in g_1 \), one has \(\dim g_0 - \dim g_0^x = \dim g_1 - \dim g_1^x \). Equivalently, \(\dim G \cdot x = 2 \dim G_0 \cdot x \) for all \(x \in g_1 \).

Consequently, if \(\sigma \) is of maximal rank, then
\[
\dim g_1^x = \dim g_0^x + \text{rk} g.
\] (1-2)

The property of having maximal rank is inheritable in the following sense.

Lemma 1.2. Let \(\sigma \) be of maximal rank and \(x \in g_1 \) semisimple. Then the restriction of \(\sigma \) to \(g_1 \) and \([g_1, g_1]\) is also of maximal rank.

The commuting variety associated with \(\sigma \) is
\[
\mathcal{E}(g_1) = \{ (x, y) \in g_1 \times g_1 \mid [x, y] = 0 \}.
\] (1-3)

That is, \(\mathcal{E}(g_1) \) is the zero fiber of the commutator map \([\ , \]_1 : g_1 \times g_1 \to g_0 \). The following is known:

- \(G_0 \cdot (c \times c) \) is always an irreducible component of \(\mathcal{E}(g_1) \) [Panyushev 1994b, Proposition 3.7].
- If \(\sigma \) is of maximal rank, then \(G_0 \cdot (c \times c) = \mathcal{E}(g_1) \) and \(g_1 \times g_1 \to g_0 \) is equidimensional [Panyushev 1994b, Theorem 3.2]; moreover, all the fibers of \([\ , \]_1 \) are irreducible and normal [Panyushev 1994b, Corollary 4.4].
- \(\mathcal{E}(g_1) \) can be reducible [Panyushev 1994b, Example 3.5].

Example 1.3. Suppose that \(\tilde{g} = g \oplus g \) and \(\sigma(x, y) = (y, x) \). Then \(\tilde{g}_0 = \Delta(g) \) and \(\tilde{g}_1 = \{ (x, -x) \mid x \in g \} \). Here the commutator \(\tilde{g}_1 \times \tilde{g}_1 \to \tilde{g}_0 \) coincides with the usual commutator \(g \times g \to g \) and \(\mathcal{E}(\tilde{g}_1) \) is isomorphic to the usual commuting variety of a semisimple Lie algebra \(g \). By a result of Richardson [1979], \(\mathcal{E}(g) \) is irreducible and \(\dim \mathcal{E}(g) = \dim g + \text{rk} g \).

A torus \(S \) of \(G \) is called \(\sigma \)-anisotropic if \(\sigma(s) = s^{-1} \) for all \(s \in S \). All maximal \(\sigma \)-anisotropic tori are \(G_0 \)-conjugate, and if \(C \subset G \) is a maximal \(\sigma \)-anisotropic torus, then \(\text{Lie}(C) \) is a CSS in \(g_1 \). Recall that a restricted root of \(C \) is any nontrivial weight in the decomposition of \(g \) into the sum of weight spaces of \(C \). Write \(\Psi^C(G/G_0) \) or just \(\Psi(G/G_0) \) for the set of all restricted roots. Then
\[
g = g^C \oplus \bigoplus_{\gamma \in \Psi(G/G_0)} g_{\gamma}.
\] (1-4)

We use additive notation for the operation in \(\mathcal{X}(C) \), the character group of \(C \), and regard \(\Psi(G/G_0) \) as a subset of the vector space \(\mathcal{X}(C) \otimes \mathbb{Z} \mathbb{R} \). The set \(\Psi(G/G_0) \) satisfies the usual axioms of finite root systems [Helgason 1978]. The notable difference from the structure theory of split semisimple Lie algebras is that the
Commuting involutions, commuting varieties, and simple Jordan algebras

Let \(\sigma_1 \) and \(\sigma_2 \) be different commuting involutions of \(\mathfrak{g} \). Then the corresponding \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)-grading of \(\mathfrak{g} \) is

\[
\mathfrak{g} = \bigoplus_{i,j=0,1} \mathfrak{g}_{ij}, \quad \text{where } \mathfrak{g}_{ij} = \{ x \in \mathfrak{g} \mid \sigma_1(x) = (-1)^i x \text{ and } \sigma_2(x) = (-1)^j x \}. \tag{2-1}
\]

We also say that it is a quaternionic decomposition of \(\mathfrak{g} \) (determined by \(\sigma_1 \) and \(\sigma_2 \)). Let \(\sigma_3 := \sigma_1 \sigma_2 \) and \(\tilde{\sigma} = (\sigma_1, \sigma_2, \sigma_3) \). The pairwise commuting involutions \(\sigma_1, \sigma_2, \) and \(\sigma_3 \) are said to be big. The induced involutions on the fixed-point subalgebras \(\mathfrak{g}^{\sigma_1}, \mathfrak{g}^{\sigma_2}, \) and \(\mathfrak{g}^{\sigma_3} \) are said to be little. The same terminology applies to the corresponding \(\mathbb{Z}_2 \)-gradings, isotropy representations, and CSS. Thus, associated with (2-1), one has three big and three little \(\mathbb{Z}_2 \)-gradings. It is convenient for us to organize the summands of (2-1) in a 2 \(\times \) 2 “matrix”:

\[
\mathfrak{g} = \begin{pmatrix}
\mathfrak{g}_{00} & \mathfrak{g}_{01} \\
\mathfrak{g}_{10} & \mathfrak{g}_{11}
\end{pmatrix}
\]

\(\sigma_1, \sigma_2 \)

(2-2)

Here the horizontal (resp. vertical) dotted line separates the eigenspaces of \(\sigma_1 \) (resp. \(\sigma_2 \)), whereas two diagonals of this matrix represent the eigenspaces of \(\sigma_3 \). Hence the first row, first column, and main diagonal represent the three little \(\mathbb{Z}_2 \)-gradings (of \(\mathfrak{g}^{\sigma_1}, \mathfrak{g}^{\sigma_2}, \) and \(\mathfrak{g}^{\sigma_3} \), respectively).

We repeatedly use the following notation for the eigenspaces of \(\sigma_1 \) and \(\sigma_2 \):

\[
\mathfrak{g}^{\sigma_1} = \mathfrak{g}_{0*} := \mathfrak{g}_{00} \oplus \mathfrak{g}_{01}, \quad \mathfrak{g}_{1*} := \mathfrak{g}_{10} \oplus \mathfrak{g}_{11}, \quad \mathfrak{g}^{\sigma_2} = \mathfrak{g}_{*0} := \mathfrak{g}_{00} \oplus \mathfrak{g}_{10}, \quad \mathfrak{g}_{*1} := \mathfrak{g}_{01} \oplus \mathfrak{g}_{11}.
\]

Likewise, \(G_{0*} \) (resp. \(G_{*0} \)) is the connected subgroup of \(G \) corresponding to \(\mathfrak{g}_{0*} \) (resp. \(\mathfrak{g}_{*0} \)). \(G_{00} \) is the connected subgroup of \(G \) corresponding to \(\mathfrak{g}_{00} \), etc. If \(\mathfrak{q} \) is a \(\tilde{\sigma} \)-stable subalgebra of \(\mathfrak{g} \), then \(\mathfrak{q} = \bigoplus_{i,j} \mathfrak{q}_{ij} \) is the induced quaternionic decomposition of \(\mathfrak{q} \), and \(\mathfrak{Q} \) and \(\mathfrak{Q}_{00} \) are the corresponding connected subgroups.

Following [Vinberg 2005, 0.3], we say that a triple \(\{ \sigma_1, \sigma_2, \sigma_3 \} \subset \text{Inn}(\mathfrak{g}) \) is a triad if all three involutions are conjugate and \(\sigma_1 \sigma_2 = \sigma_3 \). A complete classification of triads is obtained in [Vinberg 2005, §3]. The triads lead to the “most symmetric” quaternionic decompositions. In [Panyushev 2013], we considered less restrictive conditions on the \(\sigma_i \). We say that \(\{ \sigma_1, \sigma_2 \} \subset \text{Inn}(\mathfrak{g}) \) is a dyad if \(\sigma_1 \) and \(\sigma_2 \) are conjugate and \(\sigma_1 \sigma_2 = \sigma_2 \sigma_1 \) (no conditions on \(\sigma_3 \)!).
The product of two conjugate involutions (not necessarily commuting) is always an inner automorphism of \(g \). For, if \(\sigma_2 = \text{Int}(g) \cdot \sigma_1 \cdot \text{Int}(g^{-1}) \), then \(\sigma_1 \sigma_2 = \text{Int}(\sigma_1(g)g^{-1}) \). Therefore, any triad consists of inner involutions. (But not every inner involution gives rise to a triad!) Any involution can be a member of a dyad [Panyushev 2013, Proposition 2.4]. But the third involution, \(\sigma_3 \), is then necessarily inner.

Proposition 2.1 (see [Panyushev 2013, Proposition 2.2(1)]). Suppose that \(\mu \in \text{Inv}(g) \) is inner. Then there are commuting involutions of maximal rank, \(\sigma_1 \) and \(\sigma_2 \), such that \(\mu = \sigma_1 \sigma_2 \). Moreover, \(\sigma_1 \) and \(\sigma_2 \) induce an involution of maximal rank of \(g^\mu \).

For \((ij) \neq (00)\), let \(c_{ij} \) be a CSS of \(g_{ij} \); that is, a little CSS related to the little \(\mathbb{Z}_2 \)-grading \(g_{00} \oplus g_{ij} \). There are also big CSS in the \((-1)\)-eigenspaces of three big involutions:

\[
c_{1*} \subset g_{1*}, \quad c_{*1} \subset g_{*1}, \quad c_{*,1^{-1}} \subset g_{*,1^{-1}} := g_{01} \oplus g_{10}.
\]

Each little CSS can be included in two big CSS. For example, because \(g_{10} \subset g_{1*} \) and \(g_{10} \subset g_{*,1^{-1}} \), one can choose Cartan subspaces \(c_{1*} \) and \(c_{*,1^{-1}} \) such that \(c_{10} \subset c_{1*} \) and \(c_{10} \subset c_{*,1^{-1}} \). If at least one equality occurs among all such inclusions, then this will be referred to as a coincidence of CSS (for a given quaternionic decomposition).

In [Panyushev 2013], we obtained two sufficient conditions for a coincidence of CSS:

Theorem 2.2 (see [Panyushev 2013, Theorems 3.3 and 3.7]).

1. Suppose that \(\sigma_1 \) is of maximal rank. Then

 - any little CSS \(c_{11} \subset g_{11} \) is also a CSS in \(g_{*1} \), that is, for \(\sigma_2 \), and
 - any little CSS \(c_{10} \subset g_{10} \) is also a CSS in \(g_{10} \oplus g_{01} \), that is, for \(\sigma_3 \).

2. Suppose that \(\{\sigma_1, \sigma_2\} \) is a dyad. Then any little CSS \(c_{11} \subset g_{11} \) is also a CSS in \(g_{1*} \) or \(g_{*1} \), that is, for \(\sigma_1 \) or \(\sigma_2 \).

The coincidences of CSS in Theorem 2.2(2) can formally be expressed as \(c_{11} = c_{1*} \) or \(c_{11} = c_{*1} \), and likewise in all other possible cases. In view of (1-1), any coincidence of CSS can be restated as certain property of the little CSS in question. For instance, the first coincidence in Theorem 2.2(1) means that if \(x \in g_{11} \) is a generic semisimple element (that is, \(x \) belong to a unique little CSS), then \(z_g(x)_{*1} = z_g(x)_{11} = c_{11} \), and hence \(z_g(x)_{01} = 0 \).

3. Commuting varieties and homogeneous Cartan subspaces

Consider a quaternionic decomposition (2-2). For any permutation \((\alpha, \beta, \gamma)\) of the set \{01, 10, 11\}, there is the commutator mapping \(\varphi_{\alpha, \beta}^\gamma : g_{\alpha} \times g_{\beta} \rightarrow g_{\gamma} \). Clearly,
\(\varphi_{\alpha, \beta}^{\gamma} \) is \(G_{00} \)-equivariant. As our main interest is in fibers of this mapping, we do not distinguish \(\varphi_{\alpha, \beta}^{\gamma} \) and \(\varphi_{\beta, \alpha}^{\gamma} \). We concentrate on the following problems:

- When is \(\varphi_{\alpha, \beta}^{\gamma} \) dominant?
- What is the dimension of \((\varphi_{\alpha, \beta}^{\gamma})^{-1}(0)\)?
- How to describe the irreducible components of \((\varphi_{\alpha, \beta}^{\gamma})^{-1}(0)\)?
- When is \(\varphi_{\alpha, \beta}^{\gamma} \) equidimensional?

The variety \(\mathcal{E}_{\alpha, \beta}^{\gamma} = (\varphi_{\alpha, \beta}^{\gamma})^{-1}(0) \) is said to be a \(\sigma \)-commuting variety. For general quaternionic decompositions, one has three such varieties, and their properties can be rather different. We mainly restrict ourselves to considering the test case:

\[
\varphi = \varphi_{10, 11}^{01} : \mathfrak{g}_{10} \times \mathfrak{g}_{11} \to \mathfrak{g}_{01},
\]

and also write \(\mathcal{E} \) in place of \(\mathcal{E}_{10, 11}^{01} \). Note that we can regard \(\varphi \) as a quadratic map from \(\mathfrak{g}_{1*} \) to \(\mathfrak{g}_{01} \), and \(\mathcal{E} \) as subvariety of \(\mathfrak{g}_{1*} \). The following example shows that the commuting variety in (1-3) is a particular case of this construction.

Example 3.1. Let \(\mathfrak{g} \) be a reductive Lie algebra and \(\sigma \) an involution of \(\mathfrak{g} \) with the corresponding \(\mathbb{Z}_2 \)-grading \(\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \). Set \(\tilde{\mathfrak{g}} = \mathfrak{g} \oplus \mathfrak{g} \) and define three involutions of \(\tilde{\mathfrak{g}} \) as follows:

\[
\sigma_1(x_1, x_2) = (\sigma(x_1), \sigma(x_2)), \quad \sigma_2(x_1, x_2) = (x_2, x_1), \quad \sigma_3 = \sigma_1 \sigma_2.
\]

Then \(\tilde{\mathfrak{g}}^{\sigma_1} = \mathfrak{g}_0 \oplus \mathfrak{g}_0; \tilde{\mathfrak{g}}^{\sigma_2} = \Delta(\mathfrak{g}); \) the diagonal in \(\mathfrak{g} \oplus \mathfrak{g} \); and \(\tilde{\mathfrak{g}}^{\sigma_3} = \{(x, \sigma(x)) \mid x \in \mathfrak{g}\} \). Set \(\Delta_-(M) := \{(m, -m) \mid m \in M\} \) for any subspace \(M \subset \mathfrak{g} \). Then the corresponding quaternionic decomposition is

\[
\tilde{\mathfrak{g}} = \begin{array}{c}
\Delta(\mathfrak{g}_0) \\
\Delta(\mathfrak{g}_1)
\end{array} \oplus \begin{array}{c}
\Delta_-(\mathfrak{g}_0) \\
\Delta_-(\mathfrak{g}_1)
\end{array} \sigma_1.
\]

Upon the obvious identifications \(\Delta(\mathfrak{g}_1) \simeq \Delta_-(\mathfrak{g}_1) \simeq \mathfrak{g}_1 \), etc., our test commutator map \(\tilde{\mathfrak{g}}_{10} \times \tilde{\mathfrak{g}}_{11} \to \tilde{\mathfrak{g}}_{01} \) becomes the commutator \(\mathfrak{g}_1 \times \mathfrak{g}_1 \to \mathfrak{g}_0 \) associated with \(\sigma \in \text{Inv}(\mathfrak{g}) \); whereas two other commutator maps are identified with the bracket \(\mathfrak{g}_0 \times \mathfrak{g}_1 \to \mathfrak{g}_1 \). Therefore, the concept of a \(\tilde{\sigma} \)-commuting variety provides a uniform setting for studying the fibers of both \(\mathfrak{g}_1 \times \mathfrak{g}_1 \to \mathfrak{g}_0 \) and \(\mathfrak{g}_0 \times \mathfrak{g}_1 \to \mathfrak{g}_1 \).

Lemma 3.2. The commutator map (3-1) is dominant if and only if there exist \(x \in \mathfrak{g}_{10} \) and \(y \in \mathfrak{g}_{11} \) such that \(\mathfrak{g}_0(x)_{01} \cap \mathfrak{g}_0(y)_{01} = \{0\} \).

Proof. A morphism of irreducible varieties is dominant if and only if its differential at some point is onto. As \(\varphi \) is bilinear, an easy computation shows that \(d\varphi_{(x, y)}(\xi, \eta) = [x, \eta] + [\xi, y], \xi \in \mathfrak{g}_{10}, \eta \in \mathfrak{g}_{11} \). Hence \(\text{Im} \ d\varphi_{(x, y)} = [\mathfrak{g}_{11}, x] + [\mathfrak{g}_{10}, y] \), and taking
the orthogonal complement with respect to the restriction of the Killing form to \(g_{01} \) yields \((\text{Im } d\varphi_{(x,y)}))^\perp = \tilde{z}_g(x)_{01} \cap \tilde{z}_g(y)_{01} \).

As we see below, certain CSS in \(g_{1*} \) play an important role in describing irreducible components of \(\mathcal{E} \).

Definition 1. A big CSS \(c_{1*} \subset g_{1*} \) is said to be **homogeneous** if it is \(\sigma_2 \)-stable (or, equivalently, \(\sigma_3 \)-stable). In other words, if one has \(c_{1*} = a_{10} \oplus a_{11} \) with \(a_{1j} \subset g_{1j} \).

Remark. A coincidence of CSS means that there is a homogeneous CSS of special form. For instance, if \(c_{11} = c_{1*} \), then \(c_{11} \) is a homogeneous CSS in \(g_{1*} \), with trivial \(g_{10} \)-component.

Lemma 3.3. (1) Homogeneous CSS always exist.

(2) Moreover, if \(x \in g_{10} \) and \(y \in g_{11} \) are commuting semisimple elements, then there exists a homogeneous CSS in \(g_{1*} \) containing both of them.

Proof. (1) Take a little CSS \(c_{10} \) and consider the \(\tilde{\sigma} \)-stable reductive subalgebra \(\tilde{z}_g(c_{10}) \). If \(\tilde{a}_{11} \) is a little CSS in \(\tilde{z}_g(c_{10})_{11} \), then \(c_{10} \oplus \tilde{a}_{11} \) is a homogeneous CSS in \(g_{1*} \).

(2) Consider the \(\tilde{\sigma} \)-stable reductive subalgebra \(l = \tilde{z}_g(x) \cap \tilde{z}_g(y) \). By the previous part, there exists a homogeneous CSS in \(l_{1*} \), say \(\tilde{c}_{1*} \). Since \(x \) and \(y \) are central in \(l \), we have \(x, y \in \tilde{c}_{1*} \). It is also clear that \(\tilde{c}_{1*} \) is a CSS in \(g_{1*} \).

If \(c_{1*} = a_{10} \oplus a_{11} \) is a homogeneous CSS, then \([a_{01}, a_{11}] = 0\) and hence \(\overline{G_{00} \cdot c_{1*}} \subset \mathcal{E} \). However, a stronger result is true.

Theorem 3.4. (i) Let \(c_{1*} \) be a homogeneous CSS in \(g_{1*} \). Then \(\overline{G_{00} \cdot c_{1*}} \subset \mathcal{E} \) is an irreducible component of \(\mathcal{E} \).

(ii) If two homogeneous CSS in \(g_{1*} \) are not \(G_{00} \)-conjugate, then the corresponding irreducible components are different.

Proof. (i) The centralizer of \(c_{1*} \) is \(\tilde{\sigma} \)-stable. Hence \(\tilde{z}_g(c_{1*}) = \bigoplus_{i, j=0,1} a_{ij} \), and here \(c_{1*} = a_{10} \oplus a_{11} \). Recall that \(\overline{G_{00} \cdot c_{1*}} = g_{1*} \). Therefore, \(\dim c_{1*} + \dim G_{0*} - \dim a_{00} - \dim a_{01} = \dim g_{1*}. \) It follows that

\[
\dim \overline{G_{00} \cdot c_{1*}} = \dim c_{1*} + \dim G_{00} - \dim a_{00} = \dim g_{1*} - \dim g_{01} + \dim a_{01}. \tag{3-2}
\]

On the other hand, let \(x + y \in c_{1*} \) \((x \in g_{10}, y \in g_{11})\). The proof of Lemma 3.2 shows that \(\dim(\text{Im } d\varphi_{(x,y)}) = \dim g_{01} - \dim(\tilde{z}_g(x)_{01} \cap \tilde{z}_g(y)_{01}) \). Now, if \(x + y \in c_{1*} \) is generic, then \(\tilde{z}_g(x) \cap \tilde{z}_g(y) = \tilde{z}_g(x + y) = \tilde{z}_g(c_{1*}) \). Hence \(\dim(\text{Im } d\varphi_{(x,y)}) = \dim g_{01} - \dim a_{01} \). This means that any irreducible component of \(\mathcal{E} \) containing \((x, y) \) has dimension at most

\[
\dim g_{1*} - \dim(\text{Im } d\varphi_{(x,y)}) = \dim g_{1*} - \dim g_{01} + \dim a_{01}.
\]
Comparing with (3-2) shows that $\overline{G_{00} \cdot c_1}$ is an irreducible component of \mathcal{E} containing (x, y), and (x, y) is a smooth point of $\overline{G_{00} \cdot c_1}$.

(ii) As we have just shown, if $x + y \in c_1$ is generic, then it belongs to a unique irreducible component of \mathcal{E} (and to a unique CSS in \mathfrak{g}_{1*}). □

Claim 3.5. The number of G_{00}-orbits of homogeneous CSS in \mathfrak{g}_{1*} is finite.

First proof. Since the number of irreducible components is finite, this readily follows from Theorem 3.4. However, it can also be proved in a different way. As the second proof has its own merits, we provide it below.

Second proof. Recall that $G_{00} \subset G_{0*}$ are connected reductive groups and all big CSS in \mathfrak{g}_{1*} form a single G_{0*}-orbit. Let c_1 be a homogeneous CSS. Set

$$
N = \{ g \in G_{0*} \mid g \cdot c_1 = c_1 \}, \quad M = \{ g \in G_{0*} \mid g \cdot c_1 \text{ is homogeneous} \}.
$$

Note that N is reductive, but not connected, since N is mapped onto the (finite) little Weyl group associated with c_1. If $g \in M$, $s \in G_{00}$, and $z \in N$, then $sgz \in M$. Therefore, M is a union of (G_{00}, N)-cosets, and our task is to prove that $G_{00}\backslash M/N$ is finite.

If $g \in M$, then $g \cdot c_1 = \sigma_2(g)c_1$. Hence $g^{-1}\sigma_2(g) \in N$. Since $G_{00} \subset G^{\sigma_2}$, the map

$$
\psi_M : G_{00}\backslash M \rightarrow N, \quad G_{00}g \mapsto g^{-1}\sigma_2(g),
$$

is well defined. Note that N is σ_2-stable and the range of ψ_M belongs to the closed subset

$$
Q = Q(N) = \{ g \in N \mid \sigma_2(g) = g^{-1} \}.
$$

The twisted N-action on N is defined by $z \star x = z x \sigma_2(z)^{-1}$. Obviously, Q is stable under the twisted action of N. Moreover, $\psi_M(gz) = z^{-1}\psi_M(g)\sigma_2(z)$. Hence $\text{Im}(\varphi_M) \subset Q$ is the union of twisted N-orbits, and each twisted N-orbit gives rise to a G_{00}-orbit of homogeneous CSS. It follows from [Richardson 1982, §9] that Q is a finite union of twisted N-orbits, which is sufficient for our purpose. (See also the remark below.) □

Remark 3.6. Richardson’s results on twisted orbits [Richardson 1982, §9], specifically Proposition 9.1, are stated for a connected reductive group G, whereas we apply them to the reductive nonconnected group N (in place of G). But his argument can easily be adjusted to cover the case of nonconnected reductive groups. That is, one can give a version of Richardson’s Proposition 9.1 for nonconnected groups G.

Definition 2. For a homogeneous CSS $c_1 \subset \mathfrak{g}_{1*}$, the irreducible component $\overline{G_{00} \cdot c_1}$ of \mathcal{E} is said to be *standard*.
Since all big CSS in \mathfrak{g}_1 are G_{0*}-conjugate, their centralizers in \mathfrak{g}_{0*} are essentially “the same”. The centralizer in \mathfrak{g}_{0*} of a homogeneous CSS splits, and these splittings can be quite different. That is, $\dim \mathfrak{z}_0(c_1)_0$ can be different for different homogeneous CSS, and this leads to a new phenomenon that standard irreducible components of \mathfrak{E} may have different dimensions, see (3-2). Moreover, there can also be some “nonstandard” irreducible components of \mathfrak{E} that contain no semisimple elements at all.

By Theorem 3.4, a necessary condition for \mathfrak{E} to be irreducible is that all homogeneous CSS in \mathfrak{g}_1 are G_{00}-conjugate, that is, there is only one standard component. If $c_1 = \alpha_{10} \oplus \alpha_{11}$ is a homogeneous CSS with $\dim \alpha_{1i} = d_i$, then (d_0, d_1) is called the dimension vector. Obviously, two homogeneous CSS with different dimension vectors are not G_{00}-conjugate.

Theorem 3.7. (1) If $c_1 = \alpha_{10} \oplus \alpha_{11}$ is a homogeneous CSS with dimension vector (d_0, d_1), then $d_0 \leq \dim c_{10}$ and $d_1 \leq \dim c_{11}$; hence $\dim c_1 \leq \dim c_{10} + \dim c_{11}$.

(2) All homogeneous CSS in \mathfrak{g}_1 are G_{00}-conjugate if and only if $\dim c_1 = \dim c_{10} + \dim c_{11}$.

Proof. (1) Being a toral subalgebra of \mathfrak{g}_{1j}, α_{1j} is contained in a little CSS in \mathfrak{g}_{1j}.

(2) “If” part. Let c_1 and $\tilde{c}_1 = \tilde{\alpha}_{10} \oplus \tilde{\alpha}_{11}$ be two homogeneous CSS. By part (1), $\dim \alpha_{0j} = \dim \tilde{\alpha}_{0j} = \dim c_{10}$. Therefore, both α_{0j} and $\tilde{\alpha}_{0j}$ are little CSS, they are both G_{00}-conjugate, and we may assume that $\alpha_{0j} = \tilde{\alpha}_{0j}$. Consider then the σ-stable reductive algebra $\mathfrak{z}_0(\alpha_{10})$. As α_{10} is a central toral subalgebra, $\mathfrak{z}_0(\alpha_{10}) = \alpha_{10} \oplus \mathfrak{s}$, where \mathfrak{s} is reductive and σ-stable. By construction, $\mathfrak{s}_{10} = \{0\}$ and $\alpha_{11}, \tilde{\alpha}_{11} \subset \mathfrak{s}_{11}$. Moreover, these are little CSS in \mathfrak{s}_{11} (otherwise, c_1 or \tilde{c}_1 wouldn’t be maximal). Therefore, α_{0j} and $\tilde{\alpha}_{0j}$ are S_{00}-conjugate, which implies that c_1 and \tilde{c}_1 are G_{00}-conjugate.

“Only if” part. Assuming that $\dim c_1 < \dim c_{10} + \dim c_{11}$, we construct two homogeneous CSS with different dimension vectors. First, let us take a little CSS c_{10} and choose a little CSS in $\mathfrak{z}_0(c_{10})_{11}$, say $\tilde{\alpha}_{11}$. This yields a homogeneous CSS with dimension vector $(\dim c_{10}, \dim c_{11}, \dim c_{10})$. On the other hand, one can start with a little CSS c_{11}, etc., which yields a homogeneous CSS with dimension vector $(\dim c_{11}, \dim c_{10})$. □

Note that $\dim c_{ij} > 0$ whenever $\mathfrak{g}_{ij} \neq \{0\}$. Therefore, a coincidence of CSS of the form $c_{11} = c_1$ or $c_{10} = c_1$ certainly excludes the possibility of having a unique standard component of \mathfrak{E}. For our test commutator (3-1), one may envisage several examples of good behavior (not necessarily all together):

(1) All irreducible components of \mathfrak{E} are standard (possibly of different dimension).

(2) φ is surjective and equidimensional, and hence flat.

(3) \mathfrak{E} has a unique standard component, but there may be other components too.
Property (3) always holds in the setting of Example 3.1, with any \(\sigma \); and for \(\sigma \) of maximal rank, one gets a rare situation, where all three properties are satisfied. All quaternionic decompositions of simple Lie algebras can be written out explicitly, and then the presence of (3) amounts to a routine verification of the equality in Theorem 3.7(2).

Proposition 3.8. Let \(\{\sigma_1, \sigma_2\} \) be a dyad. Then \(\dim g_{10} = \dim g_{01} \) and \(\varphi : g_{10} \times g_{11} \rightarrow g_{01} \) is onto. (Therefore, \(\dim \varphi^{-1}(\xi) \geq \dim g_{11} \) for all \(\xi \in g_{01} \).) Moreover, \(\{0\} \times g_{11} \) is a standard irreducible component of \(E \) of minimal dimension.

Proof. Since \(\dim g^{\sigma_1} = \dim g^{\sigma_2} \), we have \(\dim g_{10} = \dim g_{01} \). By Theorem 2.2(2), any little CSS \(c_{11} \subset g_{11} \) is also a big CSS in \(g_{1*} \). Therefore, \(c_{11} \) is a homogeneous CSS and \(G_{00} \cdot c_{11} = g_{11} \) is an irreducible component of \(G \). Furthermore, if \(x \in c_{11} \) is generic, then \(z_{g}(x) \cap g_{1*} = c_{11} \), that is, \(z_{g}(x) \cap g_{10} = \{0\} \). Therefore, \(\dim[g_{10}, x] = \dim g_{10} \), that is, \([g_{10}, x] = g_{01} \). \(\square \)

4. Dyads of maximal rank and commuting varieties

Let \(\{\sigma_1, \sigma_2\} \) be a dyad of maximal rank, that is, both \(\sigma_1 \) and \(\sigma_2 \) are of maximal rank. Recall that this implies that \(\sigma_3 = \sigma_1 \sigma_2 \) is inner, \(\dim g_{01} = \dim g_{10} \), and, by Proposition 2.1, \(g^{\sigma_1} = g_{00} \oplus g_{11} \) is a \(\mathbb{Z}_2 \)-grading of maximal rank. In particular, \(g_{11} \) contains a CSA of \(g \) and any CSS in \(g_{1*} \) or \(g_{*1} \) is a CSA. The main result of this section is the following.

Theorem 4.1. Let \(\{\sigma_1, \sigma_2\} \) be a dyad of maximal rank. Then

(i) the commutator mapping \(\varphi : g_{10} \times g_{11} \rightarrow g_{01} \) is surjective and equidimensional,

(ii) each irreducible component of \(E = \varphi^{-1}(0) \) is standard, that is, is the closure of the \(G_{00} \)-saturation of a homogeneous CSS in \(g_{1*} \), and

(iii) the ideal of \(E \) is generated by quadrics \(\varphi^{\#}(g_{01}) \), where \(\varphi^{\#} : \mathbb{k}[g_{01}] \rightarrow \mathbb{k}[g_{10}] \otimes \mathbb{k}[g_{11}] \) is the comorphism (that is, the scheme \(\varphi^{-1}(0) \) is a reduced complete intersection).

Proof. If \(q \) is a \(\bar{\sigma} \)-stable reductive subalgebra of \(g \), then \(E_q \) stands for the zero fiber of the commutator \(q_{10} \times q_{11} \rightarrow q_{01} \). Clearly, \(E_q \subset E = E_0 \). Since \(\sigma_1 \) and \(\sigma_2 \) are of maximal rank, the center of \(g \), \(Z(g) \), is contained in \(g_{11} \). Consequently, \(E_0 \sim E_q \times Z(g) \) and without loss of generality, we may assume that \(g \) is semisimple.

By Proposition 3.8, \(\varphi \) is onto and \(\dim E \geq \dim g_{11} \). In this situation, \(\varphi \) is equidimensional if and only if \(\dim E = \dim g_{11} \). If \(c_{1*} \) is a homogeneous CSS, then it is necessarily a CSA of \(g \). That is, \(\varphi(g_{1*})_{01} = 0 \) for all homogeneous CSS and \(\dim G_{00} \cdot c_{1*} = \dim g_{11} \). Hence all the standard components of \(E \) have the same (expected) dimension, and for (i) and (ii) it suffices to prove that there are no other irreducible components.

To this end, we argue by induction on \(rk g = \dim c_{11} \).
– If \(\dim \mathfrak{c}_{11} = 1 \), then \(\mathfrak{g} = \mathfrak{sl}_2 \) and the assertion is true.

– Suppose that \(\text{rk} \mathfrak{g} > 1 \) and the assertion holds for all dyads of maximal rank for semisimple algebras of rank smaller than \(\text{rk} \mathfrak{g} \).

(1) Take \((x, y) \in \mathcal{E}\) and \(y \in \mathfrak{g}_{11}\), and let \(y = y_s + y_n\) be the Jordan decomposition. Then \([x, y_s] = 0\). If \(y_s \neq 0\), then \(y_n \in \mathfrak{s} := \{\mathfrak{z}_0(y_s), \mathfrak{z}_1(y_s)\}\) and \(\text{rk} \mathfrak{s} < \text{rk} \mathfrak{g} \). By Lemma 1.2, \(\sigma_i|_{\mathfrak{s}}, i = 1, 2\), are again involutions of maximal rank. Let \(\mathfrak{z}\) denote the center of \(\mathfrak{z}_0(y_s)\), so that \(\mathfrak{z}_0(y_s) = \mathfrak{z} \oplus \mathfrak{s}\) and \(y_s \in \mathfrak{z}\). Since both \(\sigma_1\) and \(\sigma_2\) are of maximal rank, \(\mathfrak{z} \subset \mathfrak{g}_{11}\) and hence \(x \in \mathfrak{s}\). By the induction assumption, \((x, y_n) \in \mathfrak{s}_{10} \oplus \mathfrak{s}_{11}\) lies in a standard irreducible component of \(\mathcal{E}_{\mathfrak{s}}\). Obviously, adding a central summand does not affect this property, hence \((x, y)\) lies in a standard component of \(\mathcal{E}_{\mathfrak{z}_0(y_s)}\). As \(\text{rk} \mathfrak{z}_0(y_s) = \text{rk} \mathfrak{g}\), this also means that \((x, y)\) lies in a standard component of \(\mathcal{E}\).

(2) Hence it suffices to consider the case in which \(y = y_n\). Write \(\mathcal{N}_{11}\) for the closed set of all nilpotent elements in \(\mathfrak{g}_{11}\). Let \(\mathcal{K}\) be an irreducible component of \(\mathcal{E}\), hence \(\dim \mathcal{K} \geq \dim \mathfrak{g}_{11}\). Then \(\mathcal{K}_1 := \mathcal{K} \cap (\mathfrak{g}_{10} \times \mathcal{N}_{11})\) is a closed subvariety of \(\mathcal{K}\). If \(\mathcal{K}_1 \neq \mathcal{K}\), then, by part (1), all the points in \(\mathcal{K} \setminus \mathcal{K}_1\) belong to standard irreducible components. Consequently, \(\mathcal{K}\) must be one of the standard components.

(3) The next possibility is that \(\mathcal{K} = \mathcal{K}_1\). Let \(p : \mathfrak{g}_{10} \times \mathfrak{g}_{11} \to \mathfrak{g}_{11}\) be the projection. Then \(p(\mathcal{K}) \subset \mathcal{N}_{11}\), and therefore \(p(\mathcal{K}) = \mathcal{G}_{00} \cdot y\) is the closure of a nilpotent \(\mathcal{G}_{00}\)-orbit.

If \(y = 0\), then \(\mathcal{K} = \mathfrak{g}_{10} \times \{0\}\). Let \(\mathfrak{c}_{10}\) be a little CSS. The fact that \(\mathcal{G}_{00} \cdot (\mathfrak{c}_{10} \times \{0\}) = \mathfrak{g}_{10} \times \{0\}\) is an irreducible component of \(\mathcal{E}\) implies that \(\mathfrak{z}_0(\mathfrak{c}_{10})_{11} = \{0\}\), whence \(\mathfrak{c}_{10}\) is also a CSS in \(\mathfrak{g}_{11}\). That is, \(\mathfrak{c}_{10}\) is a CSA of \(\mathfrak{g}\). (Incidentally, this means that the \((-1)\)-eigenspace of \(\sigma_3\) contains a CSA, that is, \(\{\sigma_1, \sigma_2, \sigma_3\}\) is actually a triad.) Anyway, we see that if \(y = 0\), then such \(\mathcal{K}\) appears to be a standard component.

(4) Finally, we prove that the case in which \(\mathcal{K} = \mathcal{K}_1\) and \(y \neq 0\) is impossible. Assuming the contrary, we would have

\[
\dim \mathfrak{g}_{11} \leq \dim \mathcal{K} \leq \dim \mathcal{G}_{00} \cdot y + \dim p^{-1}(y) = \dim \mathfrak{g}_{00} - \dim \mathfrak{z}_0(y)_{00} + \dim \mathfrak{z}_0(y)_{10} = \dim \mathfrak{g}_{11} - \dim \mathfrak{z}_0(y)_{11} + \dim \mathfrak{z}_0(y)_{10}.
\]

The last equality uses Lemma 1.1. Hence, the existence of such a component \(\mathcal{K}\) would imply that \(\dim \mathfrak{z}_0(y)_{11} \leq \dim \mathfrak{z}_0(y)_{10}\) for some nonzero \(y \in \mathcal{N}_{11} \subset \mathfrak{g}_{11}\). One can rewrite the last condition so that it will only depend on the (inner) involution \(\sigma_3\). Since \(\{\sigma_1, \sigma_2\}\) is a dyad, we have \(\dim \mathfrak{z}_0(y)_{10} = \dim \mathfrak{z}_0(y)_{01}\); and since \(\sigma_3\) is inner and \(\mathfrak{g}^{\sigma_3} = \mathfrak{g}_{00} \oplus \mathfrak{g}_{11}\) is a \(\mathbb{Z}_2\)-grading of maximal rank, we have \(\dim \mathfrak{z}_0(y)_{11} = \dim \mathfrak{z}_0(y)_{00} + \text{rank} \mathfrak{g}^{\sigma_3} = \dim \mathfrak{z}_0(y)_{00} + \text{rank} \mathfrak{g}\), see (1-2). Then

\[
\dim \mathfrak{z}_0(y)_{11} + \dim \mathfrak{z}_0(y)_{00} + \text{rank} \mathfrak{g} = 2 \dim \mathfrak{z}_0(y)_{11} \leq 2 \dim \mathfrak{z}_0(y)_{10} = \dim \mathfrak{z}_0(y)_{10} + \dim \mathfrak{z}_0(y)_{01}.
\]
In other words, if the assumption were true, we would have

$$\dim(\mathfrak{z}_g(y) \cap \mathfrak{g}^{\sigma_3}) + \text{rk } \mathfrak{g} \leq \dim(\mathfrak{z}_g(y) \cap \mathfrak{g}_1^{(\sigma_3)})$$

(4-1)

for some nonzero nilpotent $y \in \mathfrak{g}_{11}$. (Note that since $\mathfrak{g}^{\sigma_3} = \mathfrak{g}_{00} \oplus \mathfrak{g}_{11}$ is a \mathbb{Z}_2-grading of maximal rank, \mathfrak{g}_{11} meets all nilpotent orbits in \mathfrak{g}^{σ_3} [Antonyan 1982]. Therefore, a priori, y can be any nonzero nilpotent element of \mathfrak{g}^{σ_3}.) However, Theorem 4.4 shows that (4-1) is never satisfied if $y \neq 0$. This completes the proof of parts (i) and (ii).

For (iii), it suffices to prove that each irreducible component of \mathcal{E} contains a point (x, y) such that $d\varphi_{(x,y)}$ is onto, that is, $\text{Im } d\varphi_{(x,y)} = \mathfrak{g}_{01}$, see [Richardson 1981, Lemma 2.3]. Since each irreducible component of \mathcal{E} is the closure of the G_{00}-saturation of a homogeneous CSA, it contains a point (x, y) such that $\mathfrak{z}_g(x)_{01} \cap \mathfrak{z}_g(y)_{01} = \{0\}$ and then $d\varphi_{(x,y)}$ is onto, as shown in the proof of Lemma 3.2. □

Remark 4.2. (1) For any inner $\sigma \in \text{Inv}(\mathfrak{g})$, there exist commuting involutions of maximal rank σ_1 and σ_2 such that $\sigma = \sigma_1 \sigma_2$, see Proposition 2.1. Therefore, there are sufficiently many quaternionic decompositions, where Theorem 4.1 applies.

(2) For an arbitrary dyad $\{\sigma_1, \sigma_2\}$, it can happen that all irreducible components of \mathcal{E} are standard, but they have different dimensions. That is, $\varphi : \mathfrak{g}_{10} \times \mathfrak{g}_{11} \rightarrow \mathfrak{g}_{01}$ is not equidimensional, but still any pair of commuting elements in $\mathfrak{g}_{10} \times \mathfrak{g}_{11}$ can be approximated by a pair of commuting *semisimple* elements.

Example 4.3. Let σ_1 be an involution of $\mathfrak{g} = \mathfrak{so}_n$ such that $\mathfrak{g}^{\sigma_1} = \mathfrak{so}_{n-1}$. This can be included in a dyad $\{\sigma_1, \sigma_2\}$ such that $\mathfrak{g}^{\sigma_3} = \mathfrak{so}_{n-2} \times \mathfrak{so}_2$. The quaternionic decomposition is

$$\mathfrak{g} = \left\{(\mathfrak{so}_{n-2}, \mathfrak{so}_2) \right\} \oplus (\mathbb{R}(\sigma_1), \mathbb{R}(\sigma_1), \mathbb{R}(0))$$

where the trivial \mathfrak{so}_{n-2}-module $\mathbb{R}(0)$ is just the central torus \mathfrak{so}_2 in \mathfrak{g}^{σ_3}. Here $\dim \mathfrak{c}_{10} = \dim \mathfrak{c}_{11} = 1$ and the zero fiber of multiplication $\mathfrak{g}_{10} \times \mathfrak{g}_{11} \rightarrow \mathfrak{g}_{01}$ consists of two irreducible components, $\mathfrak{g}_{10} \times \{0\} \simeq \mathbb{k}^{n-2}$ and $\{0\} \times \mathfrak{g}_{11} \simeq \mathbb{k}$. Both components are standard.

The following auxiliary result does not refer to quaternionic decompositions; it concerns the case of a sole involution.

Theorem 4.4. Let σ be an arbitrary involution of \mathfrak{g} and $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ the corresponding \mathbb{Z}_2-grading. For any nonzero $x \in \mathfrak{g}_0$, we have

$$\dim \mathfrak{g}_0^x + \text{rk } \mathfrak{g} - \dim \mathfrak{g}_1^x > 0.$$
More precisely, one always has $\dim g_0^x + \operatorname{rk} g - \dim g_1^x \geq 0$ and the equality only occurs if $x = 0$ and σ is of maximal rank.

Remark 4.5. For application to Theorem 4.1, we only need the case when x is nilpotent and σ is inner. But, surprisingly, the assertion appears to be absolutely general. Unfortunately, our proof is not conceptual, after all. Having successfully reduced the problem to noneven nilpotent elements of g_0, we then resort to case-by-case considerations. Certainly, there must be a better proof!

Proof. Note that $\dim G \cdot x$ is even and, therefore, the left-hand side in (4-2) is always even; hence the more accurate assertion is that $\dim g_0^x + \operatorname{rk} g - \dim g_1^x \geq 2$ for all nonzero $x \in g_0$.

(1) If $x = 0$, then we have $\dim g_0 + \operatorname{rk} g - \dim g_1 \geq 0$, and the equality holds if and only if σ is of maximal rank.

(2) If x is nonzero semisimple, then g^x is a σ-stable reductive subalgebra and x is a central element of g^x that belongs to g_0^x. Write $g^x = z \oplus s$, where $s = [g^x, g^x]$ and z is the center. Then $\dim z_0 > 0$ and

$$\dim g_0^x + \operatorname{rk} g - \dim g_1^x = (\dim s_0 + \operatorname{rk} s - \dim s_1) + 2 \dim z_0 \geq 2.$$

(3) If x is nonnilpotent, then using the Jordan decomposition $x = x_s + x_n$, we reduce the problem to the same property for the nilpotent element x_n in the σ-stable reductive subalgebra $z_0(x_s)$.

(4) From now on, we assume that $x = e \in g_0$ is nonzero and nilpotent. Choose an \mathfrak{sl}_2-triple $\{e, h, f\} \subset g_0$. Suppose that e is even in g, that is, the eigenvalues of $\operatorname{ad} h$ in g are even. Then $\dim g^h = \dim g^e$ and $\dim g_0^h = \dim g_0^e$. Thus, the assertion is reduced to the same assertion for $h \in g_0$ and we are again in the setting of part (2).

(5) Suppose that e is even in g_0, but not in g. That is, the eigenvalues of $\operatorname{ad} h$ in g_0 are even, but $\operatorname{ad} h$ has also some odd eigenvalues in g_1. Decomposing g into the sum of σ-stable ideals, we may assume that either g is simple or $g = s \oplus s$, where s is simple and σ is the permutation involution. In the second case, if e is even in $g_0 = \Delta(s)$, then e is also even in g. Therefore, without loss of generality, we may assume that g is simple.

Let us decompose g_1 according to the parity of $\operatorname{ad} h$-eigenvalues: $g_1 = g_1^{\text{odd}} \oplus g_1^{\text{even}}$. By assumption, $g_1^{\text{odd}} \neq 0$. Then $\widetilde{g} := [g_1^{\text{odd}}, g_1^{\text{odd}}] \oplus g_1^{\text{odd}}$ is an ideal of g that does not meet g_1^{even}. Therefore, $\widetilde{g} = g$ and $g_1^{\text{even}} = 0$. Hence $g_0^e = (g^e)^{\text{even}}$ and $g_1^e = (g^e)^{\text{odd}}$. Consider the \mathbb{Z}-grading of g determined by the eigenvalues of h, $g = \bigoplus_{i \in \mathbb{Z}} g(i)$. The \mathfrak{sl}_2-theory shows that $\dim (g^e)^{\text{even}} = \dim g(0)$ and $\dim (g^e)^{\text{odd}} = \dim g(1)$. Hence $\dim g_0^e = \dim g(0)$ and $\dim g_1^e = \dim g(1)$. Finally, it follows from Vinberg’s lemma [Vinberg 1976, §2.3] that the group $G(0)$ has finitely many orbits in $g(1)$, whence
\[
\dim g(1) \leq \dim g(0). \text{ Thus, in this case the stronger inequality } \dim g^e_0 \geq \dim g^e_1 \text{ holds.}
\]

(6) Thus, it remains to handle the case in which a nilpotent element \(e \in g_0 \) is not even. Here we do not know an a priori argument and resort to the case-by-case considerations.

(7) If \(g \) is a classical Lie algebra, then the nilpotent orbits in \(g \) and \(g_0 \) are parameterised by partitions, and we use the explicit formulae for \(\dim g^e \) and \(\dim g^e_0 \) in terms of partitions. Some of these calculations are presented in the Appendix.

(8) If \(g \) is an exceptional simple Lie algebra, then, for any noneven nilpotent element \(e \in g_0 \), we determine the corresponding nilpotent orbit in \(g \) and then compare the dimensions of \(g^e_0 \) and \(\dim g^e \). While rather boring, the verification is, however, not very difficult.

For \(\sigma \text{ inner} \), we use the seminal work [Dynkin 1952, Tables 16–20], in which Dynkin computed, for all simple three-dimensional subalgebras in exceptional Lie algebras, the “minimal including regular semisimple subalgebras” and the corresponding weighted Dynkin diagrams. See also comments on this article in [Dynkin 2000, pp. 309–312], where a few errors occurring in [Dynkin 1952] are corrected.

To convey the idea, consider some examples related to an (inner) involution of \(g = E_8 \) with \(g_0 = D_8 = so_{16} \). There are 33 noneven nilpotent orbits in \(g_0 \). (Recall that \(e \in so_{16} \) is noneven if and only if the partition of \(e \) contains both odd and even parts.)

(a) Let \(e \in so_{16} \) be a nilpotent element corresponding to the partition \((11, 2, 2, 1)\). Using [Hesselink 1976, Corollary 3.8(a)] or [Kraft and Procesi 1982, Proposition 2.4], we obtain \(\dim g^e_0 = 16 \). This partition also shows that a minimal including regular semisimple subalgebra of \(D_8 \) containing \(e \) is of type \(D_6 + A_1 \). (Here \((11, 1)\) is the partition of the regular nilpotent element of \(D_6 \) and any pair of equal parts \((n, n)\) gives rise to the simple summand \(A_{n-1} \).) Then using [Dynkin 1952, Table 20], we detect the simple three-dimensional subalgebra in \(E_8 \) with minimal including regular semisimple subalgebra of type \(D_6 + A_1 \). The corresponding nilpotent orbit has the modern label \(E_7(a_3) \) and here \(\dim g^e = 28 \). Hence \(\dim g^e_1 = 12 \) and \((4-2)\) holds.

(b) Let \(e \in so_{16} \) correspond to the partition \((7, 5, 2, 2)\). By [Hesselink 1976, Corollary 3.8(a)], \(\dim g^e_0 = 22 \). Here a minimal including regular semisimple subalgebra is of type \(D_6(a_2) + A_1 \), because the partition \((7, 5)\) determines the distinguished nilpotent orbit in \(D_6 \), which is denoted by \(D_6(a_2) \). Using [Dynkin 1952, Table 20], we detect the corresponding nilpotent orbit in \(g \). This orbit is denoted nowadays by \(E_7(a_5) \) and here \(\dim g^e = 42 \).
(c) Let $e \in \mathfrak{s}l_{16}$ correspond to the partition $(7, 4, 4, 1)$. By [Hesselink 1976, Corollary 3.8(a)], $\dim \mathfrak{g}_e' = 22$. Here a minimal including regular semisimple subalgebra is of type $\mathbf{D}_4 + \mathbf{A}_3$. Using [Dynkin 1952, Table 20], we detect the corresponding nilpotent orbit in \mathfrak{g}. This orbit is denoted nowadays by $\mathbf{D}_6(a_2)$ and here $\dim \mathfrak{g}_e' = 44$.

If σ is outer, then \mathfrak{g} is of type \mathbf{E}_6. In the respective two cases, we use the information on $e \in \mathfrak{g}_0$ for decomposing \mathfrak{g}_1 as a (e, h, f)-module, which allows us to compute $\dim \mathfrak{g}_1^e$.

A case-free proof of Theorem 4.4 might be derived from the following conjectural invariant-theoretic property of centralizers. Recall that $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ and $e \in \mathfrak{g}_0$. Let G_0^e be the connected subgroup of G_0 with Lie algebra \mathfrak{g}_0^e. Then G_0^e acts on $(\mathfrak{g}_1^e)^*$ and we write $\mathcal{K}((\mathfrak{g}_1^e)^*)^{G_0^e}$ for the field of G_0^e-invariant rational functions on $(\mathfrak{g}_1^e)^*$.

Conjecture 4.6. For any $e \in \mathfrak{g}_0 \cap \mathcal{N}$, we have $\text{trdeg} \mathcal{K}((\mathfrak{g}_1^e)^*)^{G_0^e} \leq \text{rk} \mathfrak{g}$.

By Rosenlicht’s theorem [Brion 2000, Chapter I.6],

$$\text{trdeg} \mathcal{K}((\mathfrak{g}_1^e)^*)^{G_0^e} = \dim \mathfrak{g}_1^e - \max_{\xi \in (\mathfrak{g}_1^e)^*} \dim G_0^e \cdot \xi.$$

If $e \neq 0$, then the one-dimensional unipotent group $\text{exp}(te)$, $t \in \mathbb{k}$, acts trivially on \mathfrak{g}_1^e and hence $\max_{\xi \in (\mathfrak{g}_1^e)^*} \dim G_0^e \cdot \xi \leq \dim \mathfrak{g}_0^e - 1$. Therefore, if the conjecture were true, we would obtain $\dim \mathfrak{g}_1^e - \dim \mathfrak{g}_0^e + 1 \leq \text{rk} \mathfrak{g}$, as required. Perhaps, this can be related to the Elashvili conjecture, which asserts that $\text{trdeg} \mathcal{K}((\mathfrak{g}_1^e)^*)^{G_0^e} = \text{rk} \mathfrak{g}$ for all $e \in \mathcal{N}$.

Remark 4.7. Inequality (4-2) can be written as $\dim \mathfrak{g}_0^x > \dim B_x$, where B_x is the variety of Borel subalgebras of \mathfrak{g} containing x (the Springer fiber of x). (Recall that $\dim B_x = (\dim \mathfrak{g}^x - \text{rk} \mathfrak{g})/2$.)

5. **Commuting varieties and restricted root systems**

Here we assume that $\{\sigma_1, \sigma_2\}$ is a dyad. As above, we consider the commutator map $\varphi : \mathfrak{g}_{10} \times \mathfrak{g}_{11} \to \mathfrak{g}_{01}$ and the σ-commuting variety $\mathfrak{E} = \varphi^{-1}(0)$. Then $\dim \mathfrak{E} \geq \dim \mathfrak{g}_{11}$ and \mathfrak{E} has a standard irreducible component of expected dimension $\dim \mathfrak{g}_{11}$; namely, $\{0\} \times \mathfrak{g}_{11}$, see Proposition 3.8.

In this section, we describe a method for detecting subvarieties of \mathfrak{E} of large dimension. This method is based on comparing restricted root systems for little and big symmetric spaces related to the quaternionic decomposition in question.

Take a little CSS $\mathfrak{c}_{11} \subset \mathfrak{g}_{11}$. Then, by Theorem 2.2(2), \mathfrak{c}_{11} is also a CSS in \mathfrak{g}_{1*} and \mathfrak{g}_{1*1}, which is equivalent to that $\mathfrak{z}_\mathfrak{g}(\mathfrak{c}_{11})_{10} = \mathfrak{z}_\mathfrak{g}(\mathfrak{c}_{11})_{01} = \{0\}$ and $\mathfrak{z}_\mathfrak{g}(\mathfrak{c}_{11})_{11} = \mathfrak{c}_{11}$. Our idea is to replace \mathfrak{c}_{11} with a proper subspace $\tilde{\mathfrak{c}}$ such that $\tilde{\mathfrak{c}}$ still contains G_{00}-regular elements. (5-1)
Then we consider $\hat{c} := \hat{g}(\hat{c})_{10} \times \hat{c} \subset \hat{\mathfrak{c}}$ and compute the dimension of $G_{00} \cdot \hat{c}$. Since $G_{00} \cdot \epsilon_{11} = \mathfrak{g}_{11}$, we have

$$\dim G_{00} + \dim \epsilon_{11} - \dim \hat{g}(\epsilon_{11})_{00} = \dim \mathfrak{g}_{11}.$$

Set $\mathcal{T}_{00}(\hat{c}) = \{g \in G_{00} \mid g \cdot y \in \hat{c} \text{ for generic } y \in \hat{c}\}$, and likewise for ϵ_{11}. In view of (5-1), we have $\dim \mathcal{T}_{00}(\hat{c}) = \dim \mathcal{T}_{00}(\epsilon_{11}) = \dim \hat{g}(\epsilon_{11})_{00}$. Then

$$\dim G_{00} \cdot \hat{c} = \dim G_{00} + \dim \hat{c} - \dim \mathcal{T}_{00}(\hat{c})$$

$$= (\dim G_{00} + \dim \epsilon_{11} - \dim \hat{g}(\epsilon_{11})_{00}) + (\dim \hat{g}(\epsilon_{11})_{10} - \dim \epsilon_{11} + \dim \hat{c})$$

$$= \dim \mathfrak{g}_{11} + (\dim \hat{c} - \dim \epsilon_{11}).$$

(5-2)

Thus, we obtain a subvariety of larger dimension, if $\dim \hat{g}(\epsilon_{11})_{10} + \dim \hat{c} > \dim \epsilon_{11}$.

Of course, it is not always possible to construct such a \hat{c}. Our sufficient condition exploits restricted root systems. Set $\mathfrak{h} = \mathfrak{g}^{\rho_3}$, and let H denote the corresponding connected (reductive) subgroup of G. Write $\hat{\sigma}$ for the restriction to H of σ_1 or σ_2.

Let $C_{11} = \exp(\epsilon_{11}) \subset H \subset G$ be the corresponding torus. The coincidence of CSS means that C_{11} is a maximal σ_1-anisotropic torus in G and a maximal $\hat{\sigma}$-anisotropic torus in H. Accordingly, one obtains the inclusion of two restricted root systems relative to C_{11}:

$$\Psi(H/G_{00}) \subset \Psi(G/G_{0*}).$$

Identifying restricted roots and their differentials, one may consider restricted roots as linear forms on ϵ_{11}. Then the set of G_{00}-regular elements of ϵ_{11} is

$$\{x \in \epsilon_{11} \mid \mu(x) \neq 0 \text{ for all } \mu \in \Psi(H/G_{00})\}$$

and the set of G_{0*}-regular elements is $\{x \in \epsilon_{11} \mid \mu(x) \neq 0 \text{ for all } \mu \in \Psi(G/G_{0*})\}$.

Proposition 5.1. Assume that $\mu \in \Psi(G/G_{0*})$ and $r \mu \notin \Psi(H/G_{00})$ for any $r \in \mathbb{Q}$. If $m_\mu > 1$, then $\dim \mathfrak{c} \geq \dim \mathfrak{g}_{11} + m_\mu - 1 > \dim \mathfrak{g}_{11}$.

Proof. Under this assumption, $\hat{c} := \text{Ker}(\mu) \subset \epsilon_{11}$ still contains G_{00}-regular elements, and $\dim \hat{c} = \dim \epsilon_{11} - 1$. Furthermore, $\hat{g}(\hat{c})$ is $\hat{\sigma}$-stable and $\hat{g}(\hat{c}) = \hat{g}(\epsilon_{11}) \oplus g_\mu \oplus g_{-\mu}$. Recall that $\hat{g}(\epsilon_{11})$ is contained in $\mathfrak{g}_{00} \oplus \mathfrak{g}_{11}$. Clearly, $g_\mu \oplus g_{-\mu}$ is also $\hat{\sigma}$-stable and is contained in $\mathfrak{g}_{01} \oplus \mathfrak{g}_{10}$.

Since $\{\sigma_1, \sigma_2\}$ is a dyad, $\dim(g_\mu \oplus g_{-\mu}) \cap \mathfrak{g}_{10} = \dim(g_\mu \oplus g_{-\mu}) \cap \mathfrak{g}_{01} = m_\mu$. Hence $\dim \hat{g}(\hat{c})_{10} = m_\mu$, and the assertion follows from (5-2). \(\square \)

Remark 5.2. (1) Such a construction gives nothing, if all root multiplicities in $\Psi(G/G_{0*})$ are equal to 1. For instance, if σ_1 is of maximal rank.

(2) The procedure described in the previous proof admits obvious modifications. Roughly speaking, if there are linearly independent roots μ_1, μ_2, \ldots, in $\Psi(G/G_{0*})$, with large multiplicities, such that $\mathbb{Q} - \text{span}\{\mu_1, \mu_2, \ldots\} \cap \Psi(H/G_{00}) = \emptyset$, then one can take $\hat{c} = \text{Ker}(\mu_1, \mu_2, \ldots)$, see Proposition 6.5.
Although it is convenient to stick to one specific $\tilde{\sigma}$-commuting variety in theoretical considerations, it may happen that in concrete examples different $\tilde{\sigma}$-commuting varieties exhibit different good (or bad) properties.

Example 5.3. Let σ_1 be an outer involution of $g = \mathfrak{sl}_{2n}$ with $g^{\sigma_1} = \mathfrak{sp}_{2n}$. In [Panyushev 2013, §2], we gave a method for describing all the dyads including σ_1, which exploits the restricted root system $\Psi(G/G^{\sigma_1})$. This implies that one can find σ_2 conjugated σ_1 such that the inner involution $\sigma_3 = \sigma_1\sigma_2$ has the fixed-point subalgebra $\mathfrak{h} = \mathfrak{sl}_{2m} \oplus \mathfrak{sl}_{2n-2m} \oplus \mathfrak{t}_1$. The corresponding quaternionic decomposition is

$$
\mathfrak{sl}_{2n} = \mathfrak{sp}_{2m} \oplus \mathfrak{sp}_{2n-2m} \oplus R(\sigma_1)R(\sigma_1') \oplus R(\sigma_2) + R(\sigma_2') + R(0)
$$

where σ_i (resp. σ_i') are fundamental weights of \mathfrak{sp}_{2m} (resp. \mathfrak{sp}_{2n-2m}), and $R(\lambda)$ is a simple module of the respective simple Lie algebra with highest weight λ.

- Here $G = \text{SL}_{2n}$, $G_{0*} = \mathfrak{Sp}_{2n}$, $H = \text{SL}_{2m} \times \text{SL}_{2(n-m)} \times T_1$, and $G_{00} = \mathfrak{Sp}_{2m} \times \mathfrak{Sp}_{2(n-m)}$. According to [Helgason 1978, Chapter X, Table VI], we have $\Psi(G/G_{0*}) = A_{n-1}$, $\Psi(H/G_{00}) = A_{m-1} + A_{n-m-1}$, and all root multiplicities in $\Psi(G/G_{0*})$ equal 4. Since $\Psi(H/G_{00})$ has fewer roots, Proposition 5.1 implies that \mathfrak{E} has an irreducible component of dimension greater than $\dim g_{11} + (4 - 1)$ and our test map $\varphi : g_{10} \times g_{11} \to g_{01}$ is not equidimensional.

- Here $\dim \mathfrak{c}_{01} = \dim \mathfrak{c}_{10} = \min\{m, n - m\}$ and any big CSS in $g_{10} \oplus g_{01}$ is of dimension $2 \min\{m, n - m\}$. By Theorem 3.7(2), this means that all homogeneous CSS in $g_{10} \oplus g_{01}$ are G_{00}-conjugate, and therefore the $\tilde{\sigma}$-commuting variety related to the commutator $g_{10} \oplus g_{01} \to g_{11}$ has a unique standard component.

Example 5.4. Let σ be an involution of $g = E_7$ with $g^{\sigma} = D_6 \times A_1$. It can be included in two nonconjugate triads [Kollross 2009]. One of them has $g_{00} = D_4 \times A_1^3$, with quaternionic decomposition

$$
E_7 = D_4 \times A_1^3 \oplus R(\sigma_3)R(\sigma)R(\sigma'') \oplus R(\sigma_4)R(\sigma)R(\sigma''') \oplus R(\sigma_1)R(\sigma')R(\sigma'') \oplus R(\sigma_2)R(\sigma')R(\sigma'')
$$

where σ, σ', and σ'' are the fundamental weights of the simple factors of A_1^3, and σ_i are fundamental weights of D_4. Here $\dim g_{1j} = 32$ for $(ij) \neq (00)$ and our test commutator map is

$$
\varphi : R(\sigma_3)R(\sigma)R(\sigma') \times R(\sigma_4)R(\sigma')R(\sigma'') \to R(\sigma_4)R(\sigma)R(\sigma'').
$$
Using [Helgason 1978, Chapter X, Table VI], we find that \(\text{rk}(E_7/D_6 \times A_1) = 4 \) and the restricted root system \(\Psi(E_7/D_6 \times A_1/D_4 \times A_3^3) = \text{rk}(D_6/D_4 \times A_1^2) = 4 \) and the corresponding root system is of type \(B_4 \). The long (resp. short) roots of \(B_4 \) are also long (resp. short) roots of \(F_4 \), and the multiplicities are \(m_{\text{long}} = 1 \) and \(m_{\text{short}} = 4 \). However, the root system \(B_4 \) has fewer short roots than \(F_4 \). Therefore, Proposition 5.1 applies here, and \(E \) has an irreducible component of dimension at least \(m_{\text{short}} - 1 + \dim g_{11} = 35 \).

Example 5.5. Let \(\sigma \) be an involution of \(g = F_4 \) with \(g^\sigma = B_4 = \mathfrak{so}_9 \). Up to conjugacy, this involution can be included in a unique triad [Kollross 2009], with quaternionic decomposition

\[
F_4 = \cdots \oplus R(\varpi_4) \oplus R(\varpi_3) \oplus R(\varpi_1) \sigma_1, \quad \sigma_2
\]

where \(\dim R(\varpi_i) = 8 \) and the main diagonal represents the little involution of \(g^{\sigma_3} = B_4 = \mathfrak{so}_9 \). Our test commutator is the bilinear \(D_4 \)-equivariant mapping \(R(\varpi_3) \times R(\varpi_1) \to R(\varpi_4) \). Here \(\text{rk}(F_4/B_4) = 1 \) and the restricted root system \(\Psi(F_4/B_4) \) is of type \(BC_1 \). The restricted root system \(\Psi(B_4/D_4) \) is of type \(C_1 \). Since all little and big CSS are one-dimensional, Proposition 5.1 does not help here. Actually, the only standard components of \(E \) are \(g_{10} \times \{0\} \) and \(\{0\} \times g_{11} \), both of dimension eight. Below, we describe an “intermediate” nonstandard irreducible component of dimension eleven.

Let \(x \in g_{11} \simeq R(\varpi_1) \) be a nonzero nilpotent element. All such elements form a sole seven-dimensional \(SO_8 \)-orbit. By Lemma 1.1, \(\dim SO_9 \cdot x = 7 \cdot 7 = 49 \) and hence \(\dim(\mathfrak{so}_9)^x = 22 \). The only nilpotent \(SO_9 \)-orbit of dimension fourteen in \(\mathfrak{so}_9 \) is the orbit of short root vectors. The short roots of \(g^{\sigma_3} = B_4 \) are also short roots of \(g = F_4 \). Therefore, a minimal including regular semisimple subalgebra is \(\tilde{A}_1 \) in Dynkin’s notation. This implies that \(\dim z_g(x) = 30 \) and completely determines the dimension matrix of the spaces \(z_g(x)_{ij} \):

\[
\begin{array}{c|cc}
21 & 4 \\
4 & 1 \\
\end{array}
\]

Here the one-dimensional space \(g_{11} \) is just the line \(kx \). Then \(\dim G_{00} \cdot (z_g(x)_{10} \oplus kx) = 4 + 7 = 11 \). Using the projection \(E \to g_{11} \), one can prove that \(G_{00} \cdot (z_g(x)_{10} \oplus kx) \) is the only new irreducible component of \(E \). It is contained in \(N_{10} \times N_{11} \). Thus, \(E \) has three irreducible components.

6. Triads of Hermitian involutions and simple Jordan algebras

In this section, \(g \) is assumed to be simple. We say that \(\sigma \in \text{Inv}(g) \) is *Hermitian* if \(g_0 \) is not semisimple. All these involutions are associated with \(\mathbb{Z} \)-gradings of \(g \) with
only three nonzero terms (short gradings), that is, with parabolic subalgebras with abelian nilpotent radical. Let \(g = g(-1) \oplus g(0) \oplus g(1) \) be a short grading. Then \(p = g(0) \oplus g(1) \) is a (maximal) parabolic subalgebra with abelian nilpotent radical, and one defines a Hermitian involution \(\sigma \) by letting \(g^\sigma = g(0) \) and \(g^{(\sigma)}_1 = g(-1) \oplus g(1) \).

Since \(g \) is simple, the center of \(g(0) \) is one-dimensional and there is a unique \(h \in g(0) \) such that \(g(i) = \{ x \in g \mid [h, x] = 2ix \} \). By [Vinberg 1976, §2.3], the reductive group \(G(0) \) has finitely many orbits in \(g(1) \). Let \(O \) be the dense \(G(0) \)-orbit in \(g(1) \) and \(e \in O \). Set \(g(i) = g(i) \cap g^e \).

For future reference, we provide a proof of the following well-known assertion.

Lemma 6.1. \(h \in [g, e] \iff g(0)^e \) is reductive.

Proof. (1) If \(h \in [g, e] \), then \(h = [e, f] \) for some \(f \in g(-1) \) and therefore, \(\{e, h, f\} \) is an \(sl_2 \)-triple. Then \(g(0)^e = \mathfrak{g}(e, h, f) \), which is reductive.

(2) For \(e \in O \), we have \(\dim g(0)^e = \dim g(0) - \dim g(1) \). Using the Kirillov–Kostant form associated with \(e \), we see that \(\dim g(-1) - \dim g(1)^e = \dim g(0) - \dim g(0)^e \). Hence \(g(-1)^e = 0 \) and \(g^e = g(0)^e \oplus g(1) \). Set \(\mathfrak{g} = g(0)^e \), and let \((\cdot)^\perp \) denote the orthocomplement with respect to the Killing form. Then \([g, e] = (g^e)^\perp = g(1) \oplus (\mathfrak{t}^\perp \cap g(0)) \). Now, if \(\mathfrak{g} \) is reductive, then the restriction of the Killing form to \(\mathfrak{g} \) is nondegenerate and \(m := \mathfrak{t}^\perp \cap g(0) \) is a \(\mathfrak{t} \)-stable complement to \(\mathfrak{t} \) in \(g(0) \). Since \(\dim g(-1), e \) is reductive, \(g(1) = \dim g(0) - \dim \mathfrak{t} \), we conclude that \(m = [g(-1), e] \). Thus, \(e \) acts on \(g \) as follows:

\[
\begin{align*}
g(-1) &\twoheadrightarrow m \\ &\sim \mathfrak{m} \twoheadrightarrow g(1) \\ &\to 0.
\end{align*}
\]

Let \(\{e, h, f\} \) be an \(sl_2 \)-triple with \(\tilde{h} \in g(0) \) and \(f \in g(-1) \). Such a triple always exists, see [Vinberg 1979, §2]. Then (6-1) shows that \(g \) is a sum of three-dimensional and one-dimensional \(sl_2 \)-modules, and that \(g^\tilde{h} = \mathfrak{t} \oplus m \). Since \(g(0) \) has a one-dimensional center, one must have \(\tilde{h} = h \). Thus, \(h \in [g, e] \).

Theorem 6.2. Suppose that a Hermitian involution \(\sigma = \sigma_1 \) has the property that \(g(0)^e \) is reductive. Then \(\sigma_1 \) can be included in a triad.

Proof. Using the notation of the previous proof, we set \(\mathfrak{t} = g(0)^e \) and take (the unique) \(f \in g(-1) \) such that \(h = [e, f] \). Then \(\{e, h, f\} \) is an \(sl_2 \)-triple, \([e, g(-1)] = m \) is a complementary \(\mathfrak{t} \)-submodule to \(\mathfrak{t} \) in \(g(0) \), and \([e, [e, g(-1)]] = g(1) \). This also shows that \(g(-1), m, \) and \(g(1) \) are isomorphic \(\mathfrak{t} \)-modules.

In this case, \(\mathfrak{t} \) is the fixed-point subalgebra of an involution of \(g(0) \) and for this involution the \((-1)\)-eigenspace is \(m \) (see [Panyushev 1994a, proof of Proposition 3.3]). Let \(\sigma_2 \) denote this involution of \(g(0) \). Then \(\sigma_2(h) = -h \). We extend \(\sigma_2 \) to the whole of \(g \) by letting \(\sigma_2(e) = f \). Then \(\sigma_2([x, e]) = [-x, f] \) for all \(x \in m \), which defines \(\sigma_2 \) on \(g(1) \) and shows that \(\sigma_2(g(1)) \subset g(-1) \). Clearly, \(\sigma_1 \) and \(\sigma_2 \) commute. Furthermore, \(\sigma_1 \) and \(\sigma_2 \) are different involutions of the three-dimensional simple
subalgebra $\langle e, h, f \rangle$. This implies that σ_1, σ_2, and $\sigma_3 = \sigma_1 \sigma_2$ are already conjugate with respect to $\text{PSL}_2 = \text{Aut}(e, h, f)$. In particular, $\{\sigma_1, \sigma_2, \sigma_3\}$ is a triad. □

This theorem can be derived from the classification of triads, but our direct construction allows us to visualize the resulting quaternionic decomposition rather explicitly. We have

$$
\mathfrak{g} = \begin{array}{c}
\mathfrak{k} \\
\mathfrak{m} \\
\mathfrak{m} - f \\
\mathfrak{m} + f
\end{array}
\quad \sigma_1.
$$

(6-2)

Here $h \in \mathfrak{m} = \mathfrak{g}_{01}$, $e + f \in [\mathfrak{m}, e - f] = \mathfrak{g}_{10}$, and $e - f \in [\mathfrak{m}, e + f] = \mathfrak{g}_{11}$. Note also that $\mathfrak{k} \oplus \mathfrak{m} = \mathfrak{g}(0)$ and $[\mathfrak{m}, e - f] \oplus [\mathfrak{m}, e + f] = \mathfrak{g}(1) \oplus \mathfrak{g}(-1)$.

Remark. If $\mathfrak{g}(0)^e$ is not reductive, then such a triad may not exist. For instance, if $\mathfrak{g} = \mathfrak{sl}_{2n}$ and $\mathfrak{g}_0 = \mathfrak{sl}_m \times \mathfrak{sl}_{2n-m} \times \mathfrak{t}_1$ with $n \neq m$ and m odd, then there is no respective triad, see [Vinberg 2005, 3.2].

As is well known, if $\mathfrak{g}(0)^e$ is reductive, then $\mathfrak{g}(-1)$ has a structure of a simple Jordan algebra. Namely, for $x, y \in \mathfrak{g}(-1)$, we set

$$
x \circ y = [x, [e, y]] \in \mathfrak{g}(-1).
$$

Then $\{\mathfrak{g}(-1), \circ\}$ is a simple Jordan algebra [Tits 1962; Kantor 1964]. (See also [Kac 1980, §4] for possible generalizations). Here $\mathfrak{k} = \mathfrak{g}_{00}$ is the Lie algebra of derivations of $\{\mathfrak{g}(-1), \circ\}$. The triad constructed in Theorem 6.2 is called a Jordan triad.

Definition 3. The commuting variety of a Jordan algebra $\{\mathcal{J}, \circ\}$ is

$$
\mathcal{E}(\mathcal{J}) = \{ (x, y) \mid x \circ y = 0 \} \subset \mathcal{J} \times \mathcal{J}.
$$

The Jordan triad (6-2) provides a link between the commutator mapping $\varphi : \mathfrak{g}_{10} \times \mathfrak{g}_{11} \rightarrow \mathfrak{g}_{01}$ and the commuting variety of the simple Jordan algebra $\mathfrak{g}(-1)$.

Theorem 6.3. The commuting variety of the Jordan algebra $\{\mathfrak{g}(-1), \circ\}$ is isomorphic to the zero fiber of the commutator mapping $\varphi : \mathfrak{g}_{10} \times \mathfrak{g}_{11} = [\mathfrak{m}, e - f] \times [\mathfrak{m}, e + f] \rightarrow \mathfrak{m} = \mathfrak{g}_{01}$.

Proof. Any element of \mathfrak{m} can uniquely be written as $[x, e]$ with $x \in \mathfrak{g}(-1)$. So, if $[x, e], [y, e] \in \mathfrak{m}$ are arbitrary, then $[[x, e], e - f] \in \mathfrak{g}_{10}$ and $[[y, e], e + f] \in \mathfrak{g}_{11}$ are arbitrary and φ takes the corresponding pair to $[[[x, e], e - f], [[y, e], e + f]] \in \mathfrak{m} = \mathfrak{g}_{01}$. It is a good exercise in the Jacobi identity to check that

$$
[[[x, e], e - f], [[y, e], e + f]] = 2[[[x, e], y], e].
$$
One should use the fact that \(h = [e, f] \) is the defining element of the short grading. Hence \([x, e], f] = 2x, \text{ etc.}\) Since \(a = [x, e], y] \in g(-1) \) and \(g^e \cap g(-1) = 0 \), we have \([a, e] = 0 \) if and only if \(a = 0 \). Therefore,

\[
([x, e], e - f], [y, e], e + f] \in \varphi^{-1}(0) \iff [x, e], y] = 0 \iff (x, y) \in \mathcal{E}(g(-1)).
\]

If \(J \) is a simple Jordan algebra, then the operator \(L_x : J \rightarrow J, L_x(y) = x \circ y \), is invertible for almost all \(x \). Therefore, \(J \times \{0\} \text{ and } \{0\} \times J \) are two irreducible components of \(\mathcal{E}(J) \). Clearly, there are some other irreducible components. It is an interesting problem to determine all the components of \(\mathcal{E}(J) \) and their dimensions.

The list of Hermitian involutions leading to Jordan triads and simple Jordan algebras is given in Table 1. We point out the semisimple subalgebra \(s = [g(0), g(0)] \) and the structure of \(g(1) \) as a \(s \)-module. Here the \(\varpi_i \) are the fundamental weights of \(s \).

Remark. The Jordan multiplication in the space \(\text{Skew}_{2n} \) of usual skew-symmetric matrices is defined as follows. If \(A, B, J \in \text{Skew}_{2n} \) and \(J \) is nondegenerate, then \(A \circ B = \frac{1}{2}(AJB + BJ A) \).

There are some coincidences for small \(n \). Namely,

Item 1 \((n = 1) \simeq \) Item 2 \((n = 1) \), Item 1 \((n = 2) \simeq \) Item 4 \((n = 3) \).

Furthermore, if \(n = 1 \) in Item 3, then \(g \) is not simple. This explains the conditions on \(n \) given in the last column. For Item 2, the Hermitian involution (of \(sp_{2n} \)) is of maximal rank and the respective Jordan algebra is the algebra \(\text{Sym}_n \) of symmetric \(n \times n \) matrices. Therefore, by Theorems 4.1 and 6.3, the multiplication morphism \(\circ : \text{Sym}_n \times \text{Sym}_n \rightarrow \text{Sym}_n \) is equidimensional, that is, \(\dim \mathcal{E}(\text{Sym}_n) = \dim \text{Sym}_n = (n^2 + n)/2 \).

In all other cases, the multiplication morphism \(J \times J \rightarrow J \) is not equidimensional, see Proposition 6.5. Before checking this, we give an “elementary” explanation for the Jordan algebra of all matrices (Item 1).

<table>
<thead>
<tr>
<th>(g)</th>
<th>(s)</th>
<th>(g(1))</th>
<th>(\xi)</th>
<th>(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(sl_{2n})</td>
<td>(sl_n \oplus sl_n)</td>
<td>(R(\varpi_1) \otimes R(\varpi'_1))</td>
<td>(sl_n)</td>
</tr>
<tr>
<td>(2)</td>
<td>(sp_{2n})</td>
<td>(sl_n)</td>
<td>(R(2\varpi_1))</td>
<td>(so_n)</td>
</tr>
<tr>
<td>(3)</td>
<td>(so_{4n})</td>
<td>(sl_{2n})</td>
<td>(R(\varpi_2))</td>
<td>(sp_{2n})</td>
</tr>
<tr>
<td>(4)</td>
<td>(so_{n+2})</td>
<td>(so_n)</td>
<td>(R(\varpi_1))</td>
<td>(so_{n-1})</td>
</tr>
<tr>
<td>(5)</td>
<td>(E_7)</td>
<td>(E_6)</td>
<td>(R(\varpi_1))</td>
<td>(F_4)</td>
</tr>
</tbody>
</table>

Table 1. List of Hermitian involutions leading to Jordan triads and simple Jordan algebras.
Example 6.4. Let M be the associative (and also Lie and Jordan) algebra of all $n \times n$ matrices. That is, we exploit the usual matrix product, the Lie bracket $[A, B] = AB - BA$, and the Jordan product $A \circ B = (AB + BA)/2$. Let $\chi(B) = \det(\lambda I - B) = \sum_i \chi_{n-i}(B)\lambda^i$ be the characteristic polynomial of a matrix B. Let $\mathfrak{z}^J(B)$ and $\mathfrak{z}^{\text{Lie}}(B)$ denote the Jordan and Lie centralizers of B, respectively. Consider the subvariety

$$M^{(2)} = \{B \in M \mid \chi_{2i+1}(B) = 0 \text{ for all } i\}.$$

It is an irreducible complete intersection and codim $M^{(2)} = [n + 1/2]$ (see [Richardson 1987, Lemma 5.3]). We also need the dense open subset M^{reg} of regular elements (in the Lie algebra sense) and the subvariety

$$M^{\text{ev}} = \{B \in M \mid B \text{ is conjugate to } -B\}.$$

If $B \in M^{\text{ev}}$ and $ABA^{-1} = -B$, then $A \in \mathfrak{z}^J(B)$ and the mapping $C \in \mathfrak{z}^{\text{Lie}}(B) \mapsto AC \in \mathfrak{z}^J(B)$ is a linear isomorphism. In particular, $\dim \mathfrak{z}^J(B) = \dim \mathfrak{z}^{\text{Lie}}(B)$. The following is clear:

- $M^{(2)} \cap M^{\text{reg}} \neq \emptyset$ (it contains a regular nilpotent element).
- $M^{\text{ev}} \subset M^{(2)}$ and $M^{\text{ev}} \cap M^{\text{reg}} \neq \emptyset$.

Claim. We have $M^{(2)} \cap M^{\text{reg}} \subset M^{\text{ev}}$. In particular, $\dim \mathfrak{z}^J(B) = n$ for almost all $B \in M^{(2)}$.

Proof. If $B \in M^{(2)} \cap M^{\text{reg}}$, then B and $-B$ are both regular and have the same Jordan blocks and the same eigenvalues. Hence B and $-B$ are conjugate.

Let $\mathcal{E}^J(M)$ denote the Jordan commuting variety and $p : \mathcal{E}^J(M) \to M$ the projection to the first factor. The previous analysis implies that

$$\dim p^{-1}(M^{(2)} \cap M^{\text{reg}}) = \dim M^{(2)} + n = n^2 + [n/2].$$

Thus, $\dim \mathcal{E}^J(M) \geq n^2 + [n/2] > \dim M$. One can prove that this yields an irreducible component of maximal dimension; that is, $\dim \mathcal{E}^J(M) = n^2 + [n/2]$.

Table 2 contains information on the restricted root systems associated with Jordan triads. For a Hermitian involution σ, we point out Lie algebras \mathfrak{g}, $\mathfrak{h} = \mathfrak{g}^\sigma$, $\mathfrak{g}_{00} = \mathfrak{k}$, the restricted root systems $\Psi(G/H)$ and $\Psi(H/G_{00})$, and the multiplicity of the short roots in $\Psi(G/H)$, denoted m_{short}. For all items in Table 2, the multiplicity of long roots in $\Psi(G/H)$ equals 1 and $\Psi(H/G_{00})$ is embedded in $\Psi(G/H)$ as a subset of short roots.

The root system of type C_n has some short roots that are not roots of A_{n-1}. Therefore, Proposition 5.1 guarantees the existence of a subvariety in $\mathcal{E}(\mathfrak{g})$ of dimension $\dim \mathfrak{g} + m_{\text{short}} - 1$, which is larger than the dimension of a generic fiber if $m_{\text{short}} > 1$. However, a clever choice of $\mathfrak{c} \subset \mathfrak{c}_{11}$ (see Remark 5.2(2)) allows us to get a better lower bound on $\dim \mathcal{E}(\mathfrak{g})$:

...
Then \(\dim \mathfrak{g}(\mathcal{J}) \geq \dim \mathcal{J} + (m_{\text{short}} - 1)[r/2] \),
where \(r \) is the rank of \(\Psi(G/H) \).

Proof. Using Theorem 6.3, we identify \(\mathfrak{g}(\mathcal{J}) \) with the zero fiber of the quadratic covariant \(\mathfrak{g}_{10} \times \mathfrak{g}_{11} \rightarrow \mathfrak{g}_{10} \) and work in the setting of Section 5. Let \(\varepsilon_1, \ldots, \varepsilon_r \) be the usual basis of \(X(C_{11}) \otimes \mathbb{Q} \) such that the roots of \(\Psi(G/H) \) are \(\pm \varepsilon_i \pm \varepsilon_j \) \((i \neq j) \) and \(\pm 2\varepsilon_i \). The roots in \(\Psi(H/G_{00}) \) are \(\pm (\varepsilon_i - \varepsilon_j) \). Therefore, \(\mathfrak{g}_{10} \oplus \mathfrak{g}_{01} \) is the sum of root spaces corresponding to \(\pm (\varepsilon_i + \varepsilon_j) \) and \(\pm 2\varepsilon_i \). Set

\[
\tilde{c} = \left\{ x \in c_{11} \mid (\varepsilon_i + \varepsilon_{r+1-i})(x) = 0 \text{ for } i = 1, 2, \ldots, \left\lceil \frac{r+1}{2} \right\rceil \right\}.
\]

Then \(\dim \tilde{c} = [r/2] \), and we have \(2[r/2] \) short roots of \(\mathfrak{g}_{10} \oplus \mathfrak{g}_{01} \) vanishing on \(\tilde{c} \). Moreover, if \(r \) is odd, then the long roots \(\pm 2\varepsilon_{\lceil r+1/2 \rceil} \) also vanish on \(\tilde{c} \). Therefore,

\[
\dim \mathfrak{g}(\tilde{c})_{10} = \frac{1}{2} \dim (\mathfrak{g}(\tilde{c}) \cap (\mathfrak{g}_{10} \oplus \mathfrak{g}_{01})) = \begin{cases} m_{\text{short}} \cdot r/2 & \text{if } r \text{ is even}, \\ m_{\text{short}} \cdot [r/2] + 1 & \text{if } r \text{ is odd}. \end{cases}
\]

In both cases, this yields \(\dim G_{00} \cdot (\mathfrak{g}(\tilde{c})_{10} \oplus \tilde{c}) = \dim \mathfrak{g}_{11} + (m_{\text{short}} - 1)[r/2] \). \(\square \)

For the Jordan algebra of all matrices (related to a Hermitian involution of \(\mathfrak{sl}_{2n} \)), the above construction of \(\tilde{c} \) gives exactly the subvariety of Example 6.4. It is plausible that the lower bound of Proposition 6.5 provides the exact value of \(\dim \mathfrak{g}(\mathcal{J}) \).

Remark 6.6. It is curious that, for all Hermitian involutions leading to Jordan triads, the restricted root system is of type \(C_n \); whereas, for all other Hermitian involutions, the restricted root system \(\Psi \) is of type \(BC_n \). Namely, the symmetric pairs \(\mathfrak{gl}_{n+m} \supset \mathfrak{gl}_n \times \mathfrak{gl}_m \times t_1 \) \((n < m) \) and \(\mathfrak{so}_{4n+2} \supset \mathfrak{gl}_{2n+1} \) lead to \(\Psi \cong BC_n \); \(\mathfrak{E}_7 \supset \mathfrak{D}_5 \times t_1 \) leads to \(\Psi \cong BC_2 \).

Appendix: Computations in classical Lie algebras

Here we provide some computations related to the proof of Theorem 4.4 for nilpotent elements in classical Lie algebras.
Let $\lambda = (\lambda_1, \ldots, \lambda_s)$ be a partition and $e \in \mathfrak{gl}_n$ a nilpotent element corresponding to λ, also denoted by $e \sim \lambda$. Then $\sum \lambda_i = n$ and
\[
\dim(\mathfrak{gl}_n)^e = n + 2 \sum_{i < j} \min\{\lambda_i, \lambda_j\}, \quad \dim(\mathfrak{sl}_n)^e = \dim(\mathfrak{gl}_n)^e - 1. \tag{A.1}
\]

If e is a nilpotent element in \mathfrak{so}_n or \mathfrak{sp}_{2n}, with respective parity conditions on λ, then
\[
\dim(\mathfrak{sp}_{2n})^e = \frac{\dim(\mathfrak{gl}_{2n})^e + \#\{i \mid \lambda_i \text{ is odd}\}}{2}, \tag{A.2}
\]
\[
\dim(\mathfrak{so}_n)^e = \frac{\dim(\mathfrak{gl}_n)^e - \#\{i \mid \lambda_i \text{ is odd}\}}{2}. \tag{A.3}
\]

See [Hesselink 1976, (3.8); Kraft and Procesi 1982, 2.4]. Below, we consider several symmetric pairs with classical \mathfrak{g} and check that (4-2) is satisfied for all nonzero nilpotent elements of \mathfrak{g}_0. There is no need to consider only noneven nilpotent elements in \mathfrak{g}_0, since the computations go through without this assumption.

A.1 $(\mathfrak{g}, \mathfrak{g}_0) = (\mathfrak{sl}_n, \mathfrak{so}_n)$. If $e \in \mathfrak{so}_n$ and $e \sim \lambda$, then using (A.1) and (A.3) yields
\[
\dim \mathfrak{g}_0^e = \frac{\dim(\mathfrak{gl}_n)^e - \#\{i \mid \lambda_i \text{ is odd}\}}{2}, \quad \dim \mathfrak{g}_1^e = \frac{\dim(\mathfrak{gl}_n)^e + \#\{i \mid \lambda_i \text{ is odd}\}}{2} - 1.
\]

Therefore, $\dim \mathfrak{g}_0^e - \dim \mathfrak{g}_1^e + (n - 1) = n - \#\{i \mid \lambda_i \text{ is odd}\}$. Here the parity condition means that each even part of λ occurs an even number of times. Since $e \neq 0$, that is, $\lambda \neq (1, \ldots, 1)$, the minimal value is 2, and it is attained for $\lambda = (3, 1^{n-3})$.

A.2 $(\mathfrak{g}, \mathfrak{g}_0) = (\mathfrak{sp}_{2n}, \mathfrak{gl}_n)$. If $e \in \mathfrak{gl}_n$ and $e \sim \lambda$, then the partition of e as an element of \mathfrak{sp}_{2n} is obtained by doubling λ, that is, each part λ_i is replaced with (λ_i, λ_i). Then $\dim \mathfrak{g}_0^e = \dim(\mathfrak{gl}_n)^e$ is given by (A.1), and using (A.2) yields
\[
\dim \mathfrak{g}_1^e = 2 \sum_i \left[\frac{\lambda_i + 1}{2} \right] + 2 \sum_{i < j} \min\{\lambda_i, \lambda_j\}.
\]

Hence
\[
\dim \mathfrak{g}_0^e - \dim \mathfrak{g}_1^e + n = 2n - 2 \sum_i \left[\frac{\lambda_i + 1}{2} \right] = n - \#\{i \mid \lambda_i \text{ is odd}\}.
\]

For $e \neq 0$, the minimal value 2 is attained for $\lambda = (2, 1^{n-2})$ or $(3, 1^{n-3})$.

A.3 $(\mathfrak{g}, \mathfrak{g}_0) = (\mathfrak{so}_{2n}, \mathfrak{gl}_n)$. If $e \in \mathfrak{gl}_n$ and $e \sim \lambda$, then $\dim \mathfrak{g}_0^e = \dim(\mathfrak{gl}_n)^e$ is again given by (A.1), using this time (A.3), and we obtain
\[
\dim \mathfrak{g}_1^e = 2 \sum_i \left[\frac{\lambda_i}{2} \right] + 2 \sum_{i < j} \min\{\lambda_i, \lambda_j\}.
\]
Hence the result is even better than in the previous case. Indeed, we have here
\[\dim g_0^e - \dim g_1^e \geq 0. \]

A.4 \((g, g_0) = (sl_{n+m}, sl_n \times sl_m \times t_1)\). Here \(n, m \geq 1\). A nilpotent element \(e \in g_0\) is determined by two partitions, \(e \sim (\lambda; \mu) = ((\lambda_1, \ldots, \lambda_k); (\mu_1, \ldots, \mu_s)).\) Using (A.1), we obtain

\[
\dim g_0^e = n + m - 1 + 2 \sum_{i < j} \min \{\lambda_i, \lambda_j\} + 2 \sum_{i < j} \min \{\mu_i, \mu_j\},
\]

\[
\dim g_1^e = 2 \sum_{i,j} \min \{\lambda_i, \mu_j\}.
\]

Therefore,

\[
\dim g_0^e - \dim g_1^e + (n + m - 1) = 2 \left(n + m - 1 + \sum_{i < j} \min \{\lambda_i, \lambda_j\} + \sum_{i < j} \min \{\mu_i, \mu_j\} - \sum_{i,j} \min \{\lambda_i, \mu_j\} \right).
\]

Since \(n = \sum_j \lambda_i, m = \sum_j \mu_j\), and \(\sum_{i < j} \min \{\lambda_i, \lambda_j\} = \sum_{i \geq 2} (i - 1)\lambda_i\), half of the right-hand side equals

\[
\mathcal{F}(\lambda; \mu) := \sum_{i=1}^k i\lambda_i + \sum_{j=1}^s j\mu_j - 1 - \sum_{i=1}^k \sum_{j=1}^s \min \{\lambda_i, \mu_j\}.
\]

Arguing by induction, we prove that \(\mathcal{F}(\lambda; \mu) \geq 0\) for all \(\lambda\) and \(\mu\), and if \(n + m \geq 3\), then \(\mathcal{F}(\lambda; \mu) > 0\).

1. First, \(\mathcal{F}(1^n; 1^m) = (n-m)^2/2+(n+m)/2-1\), which is positive if \((n, m) \neq (1, 1)\).
2. The inequality is easily verified, if \(\lambda\) or \(\mu\) consists of only one part.
3. Suppose that \(k \geq 2\) and \(s \geq 2\). Write \(\lambda = (\lambda_1, \lambda')\) and \(\mu = (\mu_1, \mu')\). Then

\[
\mathcal{F}(\lambda; \mu) = \mathcal{F}(\lambda'; \mu') + \max \{\lambda_1, \mu_1\} + \sum_{i \geq 2} (\lambda_i - \min \{\lambda_i, \mu_1\}) + \sum_{j \geq 2} (\mu_j - \min \{\lambda_1, \mu_j\})
\]

\[
\geq \mathcal{F}(\lambda'; \mu') + \max \{\lambda_1, \mu_1\} \geq \max \{\lambda_1, \mu_1\}.
\]

Here \(\max \{\lambda_1, \mu_1\}\) arises as \(\lambda_1 + \mu_1 - \min \{\lambda_1, \mu_1\}\).

We omit the computations related to the remaining classical symmetric pairs
\((sl_{2n}, sp_{2n}), (sp_{2n+2m}, sp_{2n} \times sp_{2m}), \) and \((so_{n+m}, so_n \times so_m)\).

Acknowledgements

Part of this work was done while I was visiting the Max-Planck-Institut für Mathematik (Bonn).
References

MR 2004k:20090 Zbl 1068.17006

MR 80c:17009 Zbl 0409.17006

MR 83j:20047 Zbl 0457.14022

MR 83i:14041 Zbl 0467.14008

MR 90d:14052 Zbl 0632.14011

MR 26 #3753 Zbl 0014.26002

MR 95g:13005 Zbl 0813.13008

MR 96c:22026 Zbl 0833.22010

MR 55 #3175 Zbl 0363.20035

MR 80k:17006 Zbl 0431.17006

MR 2006d:17008 Zbl 1081.17009

Communicated by J. Toby Stafford
Received 2012-09-19 Accepted 2013-01-24

panyushev@iitp.ru

Dobrushin Mathematics Laboratory, Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, 127994, Russia
On the discrete logarithm problem in elliptic curves II
Claus Diem

Identifying Frobenius elements in Galois groups
Tim Dokchitser and Vladimir Dokchitser

Weak approximation for cubic hypersurfaces of large dimension
Mike Swarbrick Jones

The Picard crossed module of a braided tensor category
Alexei Davydov and Dmitri Nikshych

A Gross–Zagier formula for quaternion algebras over totally real fields
Eyal Z. Goren and Kristin E. Lauter

Counting rational points over number fields on a singular cubic surface
Christopher Frei

On the ample cone of a rational surface with an anticanonical cycle
Robert Friedman

Commuting involutions of Lie algebras, commuting varieties, and simple Jordan algebras
Dmitri I. Panyushev