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Let G be an algebraic group over a field F . As defined by Serre, a cohomological
invariant of G of degree n with values in Q/Z( j) is a functorial-in-K collection of
maps of sets TorsG(K )→ H n(K ,Q/Z( j)) for all field extensions K/F , where
TorsG(K ) is the set of isomorphism classes of G-torsors over Spec K . We study
the group of degree 3 invariants of an algebraic torus with values in Q/Z(2). In
particular, we compute the group H 3

nr(F(S),Q/Z(2)) of unramified cohomology
of an algebraic torus S.

1. Introduction

Let G be a linear algebraic group over a field F (of arbitrary characteristic). The
notion of an invariant of G was defined in [Garibaldi et al. 2003] as follows.
Consider the category FieldsF of field extensions of F and the functor

TorsG : FieldsF → Sets

taking a field K to the set TorsG(K ) of isomorphism classes of (right) G-torsors
over Spec K . Let

H : FieldsF → Abelian Groups

be another functor. An H-invariant of G is then a morphism of functors

i : TorsG→ H,

viewing H with values in Sets , that is, a functorial in K collection of maps of
sets TorsG(K )→ H(K ) for all field extensions K/F . We denote the group of
H -invariants of G by Inv(G, H).

An invariant i ∈ Inv(G, H) is called normalized if i(I )= 0 for the trivial G-torsor
I . The normalized invariants form a subgroup Inv(G, H)norm of Inv(G, H) and
there is a natural isomorphism
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Inv(G, H)' H(F)⊕ Inv(G, H)norm,

so it is sufficient to study normalized invariants.
Typically, H is a cohomological functor given by Galois cohomology groups

with values in a fixed Galois module. Of particular interest to us is the functor H
which takes a field K/F to the Galois cohomology group H n(K ,Q/Z( j)), where
the coefficients Q/Z( j) are defined as follows. For a prime integer p different from
the characteristic of F , the p-component Qp/Zp( j) of Q/Z( j) is the colimit over
n of the étale sheaves µ⊗ j

pn , where µm is the sheaf of m-th roots of unity. In the case
p= char(F) > 0, Qp/Zp( j) is defined via logarithmic de Rham–Witt differentials;
see Section 3b.

We write Invn(G,Q/Z( j)) for the group of cohomological invariants of G of
degree n with values in Q/Z( j).

The second cohomology group H 2(K ,Q/Z(1)) is canonically isomorphic to the
Brauer group Br(K ) of the field K . In Section 2c we prove (Theorem 2.4) that if
G is a connected group (reductive if F is not perfect), then

Inv(G,Br)norm ' Pic(G).

The group Inv3(G,Q/Z(2))norm for a semisimple simply connected group G has
been studied by Rost; see [Garibaldi et al. 2003].

An essential object in the study of cohomological invariants is the notion of a
classifying torsor: a G-torsor E → X for a smooth variety X over F such that
every G-torsor over an infinite field K/F is isomorphic to the pull-back of E→ X
along a K -point of X . If V is a generically free linear representation of G with a
nonempty open subset U ⊂ V such that there is a G-torsor π :U → X , then π is
classifying. Such representations exist (see Section 2b).

The generic fiber of π is the generic torsor over Spec F(X) attached to π .
Evaluation at the generic torsor yields a homomorphism

Invn(G,Q/Z( j))→ H n(F(X),Q/Z( j)), (1-1)

and in Section 3 we show that the image of this map is contained in the subgroup
H 0

Zar(X,Hn(Q/Z( j))) of H n(F(X),Q/Z( j)), where Hn(Q/Z( j)) is the Zariski
sheaf associated to the presheaf W 7→ H n(W,Q/Z( j)) of the étale cohomology
groups. In fact, the image is contained in the subgroup H 0

Zar(X,Hn(Q/Z( j)))bal of
balanced elements, that is, elements that have the same images under the pull-back
homomorphisms with respect to the two projections (U ×U )/G→ X . Moreover,
the balanced elements precisely describe the image and we prove (Theorem 3.4):

Theorem A. Let G be a smooth linear algebraic group over a field F. We assume
that G is connected if F is a finite field. Let E→ X be a classifying G-torsor with
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E a G-rational variety such that E(F) 6= ∅. Then (1-1) yields an isomorphism
Invn(G,Q/Z( j))' H 0

Zar(X,Hn(Q/Z( j)))bal.

At this point it is convenient to make use of a construction due to Totaro [1999]:
because the Chow groups are homotopy invariant, the groups CHn(X) do not
depend on the choice of the representation V and the open set U ⊂ V provided the
codimension of V \U in V is large enough. This leads to the notation CHn(BG),
the Chow groups of the so-called classifying space BG, although BG itself is not
defined in this paper.

Unfortunately, the étale cohomology groups with values in Qp/Zp( j), where
p = char(F) > 0, are not homotopy invariant. In particular, we cannot use the
theory of cycle modules of Rost [1996].

The main result of this paper is the exact sequence in Theorem 4.3 describing
degree 3 cohomological invariants of an algebraic torus T . Writing T̂sep for the
character lattice of T over a separable closure of F and T ◦ for the dual torus, we
prove our main result:

Theorem B. Let T be an algebraic torus over a field F. Then there is an exact
sequence

0→ CH2(BT )tors→ H 1(F, T 0)
α
−→ Inv3(T,Q/Z(2))norm

→ H 0(F,S2(T̂sep))/Dec→ H 2(F, T 0).

The homomorphism α is given by α(a)(b)= aK ∪ b for every a ∈ H 1(F, T 0) and
b ∈ H 1(K , T ) and every field extension K/F , where the cup-product is defined in
(4-5), and Dec is the subgroup of decomposable elements in the symmetric square
S2(T̂sep) defined in Section A-II.

In the proof of the theorem we compute the group of balanced elements in the
motivic cohomology group H 4(BT,Z(2)) and relate it, using an exact sequence of
B. Kahn and Theorem A, with the group of invariants Inv3(T,Q/Z(2))norm.

We also prove that the torsion group CH2(BT )tors is finite of exponent 2 (Theorem
4.7) and the last homomorphism in the sequence is also of exponent 2 (see the
discussion before Theorem 4.13).

Moreover, if p is an odd prime, the group Inv3(T,Qp/Zp(2))norm, which is the
p-primary component of Inv3(T,Q/Z(2))norm, splits canonically into the direct
sum of linear invariants (those that induce group homomorphisms from TorsT

to H 3) and quadratic invariants, that is, the invariants i such that the function
h(a, b) := i(a + b)− i(a)− i(b) is bilinear and h(a, a) = 2i(a) for all a and b.
Furthermore, the groups of linear and quadratic invariants with values in Qp/Zp(2)
are canonically isomorphic to H 1(F, T ◦){p} and (H 0(F,S2(T̂sep))/Dec){p}, re-
spectively.
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We also prove (Theorem 4.10) that the degree 3 invariants have control over the
structure of all invariants. Precisely, the group Inv3(TK ,Q/Z(2))norm is trivial for
all K/F if and only if T is special, that is, T has no nontrivial torsors over any
field K/F , which in particular means T has no nonconstant H -invariants for every
functor H .

Our motivation for considering invariants of tori comes from their connection
with unramified cohomology (defined in Section 5). Specifically, this work began as
an investigation of a problem posed by Colliot-Thélène [1995, p. 39]: for n prime to
char(F) and i≥0, determine the unramified cohomology group H i

nr(F(S), µ
⊗(i−1)
n ),

where F(S) is the function field of a torus S over F . The connection is provided
by Theorem 5.7 where we show that the unramified cohomology of a torus S is
calculated by the invariants of an auxiliary torus:

Theorem C. Let S be a torus over F and let 1→ T → P→ S→ 1 be a flasque
resolution of S, that is, T is flasque and P is quasisplit. Then there is a natural
isomorphism

H n
nr(F(S),Q/Z( j))' Invn(T,Q/Z( j)).

By Theorem B and Theorem C, we have an exact sequence

0→ CH2(BT )tors→ H 1(F, T 0)
α
−→ H 3

nr(F(S),Q/Z(2))

→ H 0(F,S2(T̂sep))/Dec→ H 2(F, T 0)

describing the reduced third cohomology group

H 3
nr(F(S),Q/Z(2))) := H 3

nr(F(S),Q/Z(2))/H 3(F,Q/Z(2)).

Moreover, for an odd prime p, we have a canonical direct sum decomposition of
the p-primary components:

H 3
nr(F(S),Qp/Zp(2))= H 1(F, T 0){p}⊕ (H 0(F,S2(T̂sep))/Dec){p}.

Note that the torus S determines T up to multiplication by a quasisplit torus. If X
is a smooth compactification of S, one can take the torus T with T̂sep = Pic(Xsep);
see [Colliot-Thélène and Sansuc 1977, §2].

In the present paper, F denotes a field of arbitrary characteristic, Fsep a separable
closure of F , and 0 the absolute Galois group Gal(Fsep/F) of F .

The word “scheme” over a field F means a separated scheme over F and,
following [Fulton 1984], a “variety” over F is an integral scheme of finite type
over F . If X is a scheme over F and L/F is a field extension then we write X L for
X ×F Spec L . When L = Fsep we write simply Xsep.

A “linear algebraic group over F” is an affine group scheme of finite type over
F , not necessarily smooth.
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2. Invariants of algebraic groups

2a. Definitions and basic properties. Let G be a linear algebraic group over a
field F . Consider the functor

TorsG : FieldsF → Sets

from the category of field extensions of F to the category of sets taking a field K
to the set TorsG(K ) of isomorphism classes of (right) G-torsors over Spec K . Note
that if G is a smooth group, then there is a natural bijection

TorsG(K )' H 1(K ,G) := H 1(Gal(Ksep/K ),G(Ksep)).

Let H : FieldsF → Abelian Groups be a functor. We also view H as a functor
with values in Sets . Following [Garibaldi et al. 2003], we define an H-invariant of
G as a morphism of functors TorsG→ H from the category FieldsF to Sets . All
the H -invariants of G form the abelian group of invariants Inv(G, H).

An invariant i ∈ Inv(G, H) is called constant if there is an element h ∈ H(F)
such that i(I ) = hK for every G-torsor I → Spec K , where hK is the image of
h under natural map H(F)→ H(K ). The constant invariants form a subgroup
Inv(G, H)const of Inv(G, H) isomorphic to H(F). An invariant i ∈ Inv(G, H) is
called normalized if i(I )= 0 for the trivial G-torsor I . The normalized invariants
form a subgroup Inv(G, H)norm of Inv(G, H) and we have the decomposition

Inv(G, H)= Inv(G, H)const⊕ Inv(G, H)norm ' H(F)⊕ Inv(G, H)norm,

so it suffices to determine the normalized invariants.

2b. Classifying torsors. Let G be a linear algebraic group over a field F . A G-
torsor E → X over a smooth variety X over F is called classifying if for every
field extension K/F , with K infinite, and for every G-torsor I → Spec K , there
is a point x : Spec K → X such that the torsor I is isomorphic to the fiber E(x)
of E→ X over x , that is, I ' E(x) := x∗(E)= Spec(K )×X E . The generic fiber
Egen→ Spec F(X) of a classifying torsor is called a generic G-torsor; see [ibid.,
Part 1, §5.3].

If V is a generically free linear representation of G with a nonempty open subset
U ⊂ V such that there is a G-torsor π :U → X , then π is classifying; see [ibid.,
Part 1, §5.4]. We will write U/G for X and call π a standard classifying G-torsor.
Standard classifying G-torsors exist: we can embed G into U :=GLn,F for some
n as a closed subgroup. Then U is an open subset in the affine space Mn(F) on
which G acts linearly and the canonical morphism U → X :=U/G is a G-torsor.
Note that U (F) 6=∅.

We say that a G-variety Y is G-rational if there is an affine space V with a
linear G-action such that Y and V have G-isomorphic nonempty open G-invariant
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subvarieties. Note that if U →U/G is a standard classifying G-torsor, then U is a
G-rational variety.

Let E→ X be a classifying G-torsor and let H : FieldsF → Abelian Groups be
a functor. Define the map

θG : Inv(G, H)→ H(F(X)), i 7→ i(Egen), (2-1)

by sending an invariant to its value at the generic torsor Egen.
Consider the following property of the functor H :

Property 2.1. The map H(K )→H(K ((t))) is injective for any field extension K/F .

The following theorem, due to M. Rost, was proved in [Garibaldi et al. 2003,
Part II, Theorem 3.3]. For completeness, we give a slightly modified proof in
Section A-I.

Theorem 2.2. Let G be a smooth linear algebraic group over F. If a functor
H : FieldsF → Abelian Groups has Property 2.1, then the map θG is injective, that
is, every H-invariant of G is determined by its value at the generic G-torsor.

Let G ′ be a (closed) subgroup of G over F . The map of sets

H 1(K ,G ′)→ H 1(K ,G)

for every field extension K/F yields the restriction map

res : Inv(G, H)→ Inv(G ′, H).

Choose standard torsors π : U → U/G and π ′ : U → U/G ′ (for example, with
U = GLn,F as above). The pull-back of π with respect to the natural morphism
α :U/G ′→U/G is the push-forward of π ′ via the inclusion G ′ ↪→ G. It follows
that the diagram

Inv(G, H)

θG

��

res // Inv(G ′, H)

θG′

��
H(F(U/G)) α∗ // H(F(U/G ′))

is commutative.

2c. The Brauer group invariants. Let G be a smooth connected linear algebraic
group over F . Every cohomological invariant of G of degree 1 is constant by [Knus
et al. 1998, Proposition 31.15]. In this section we study (degree 2) Br-invariants for
the Brauer group functor K 7→Br(K ). We assume that G is reductive if char(F)>0.

Lemma 2.3. For any field extension K/F such that F is algebraically closed in K ,
the natural map Pic(G)→ Pic(G K ) is an isomorphism.
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Proof. We may assume that G is reductive by factoring out the unipotent radical in
the case that F is perfect. There is an exact sequence (see [Colliot-Thélène 2004,
Theorem 1.2])

1→ C→ G ′→ G→ 1

with C a torus and G ′ a reductive group with Pic(G ′L)= 0 for any field extension
L/F . Let T be the factor group of G ′ by the semisimple part. The result follows
from the exact sequence [Sansuc 1981, Proposition 6.10] (note that G is reductive
if L is not perfect)

T̂ (L)→ Ĉ(L)→ Pic(GL)→ Pic(G ′L)= 0

with L = F and K since the groups T̂ (F) and Ĉ(F) don’t change when F is
replaced by K . �

Since for any G K -torsor E → Spec(K ) over a field extension K/F one has
[Sansuc 1981, Proposition 6.10] the exact sequence

Pic(E)→ Pic(G K )
δ
−→ Br(K )

ε
−→ Br(E), (2-2)

we obtain the homomorphism

ν : Pic(G)→ Inv(G,Br),

which takes an element α ∈ Pic(G) to the invariant that sends a G-torsor E over a
field extension K/F to δ(αK ). If E is a trivial torsor, that is, E(K ) 6=∅, then ε is
injective and hence δ = 0. It follows that the invariant ν(α) is normalized.

Theorem 2.4. Let G be a smooth connected linear algebraic group over F. Assume
that G is reductive if char(F) > 0. Then the map ν : Pic(G)→ Inv(G,Br)norm is
an isomorphism.

Proof. Choose a standard classifying G-torsor U → U/G. Write K for the
function field F(U/G) and let Ugen be the generic G-torsor over K . Consider the
commutative diagram

Pic(G)

j
��

ν // Inv(G,Br)norm

θG

��
Pic(Ugen) // Pic(G K )

δ // Br(K ) i // Br(K (Ugen)),

where the bottom sequence is (2-2) for the G-torsor Ugen → Spec(K ) followed
by the injection Br(Ugen)→ Br(K (Ugen)) (see [Milne 1980, Chapter IV, Corol-
lary 2.6]), and the map θG is evaluation at the generic torsor Ugen given in (2-1)
and is injective by Theorem 2.2. Since the generic torsor is split over K (Ugen),
Im(θG)⊂Ker(i)= Im(δ). By Lemma 2.3, j is an isomorphism, hence ν is surjective.
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Note that Ugen is a localization of U , hence Pic(Ugen) = 0 as Pic(U ) = 0. It
follows that ν is injective. �

An algebraic group G over a field F is called special if H 1(K ,G)={1} for every
field extension K/F , that is, all G-torsors over any field extension of F are trivial.

Corollary 2.5. If the group G is special, then Pic(G)= 0.

3. Invariants with values in Q/Z( j)

In this section we find a description for the group of cohomological invariants with
values in Q/Z( j) by identifying the image of the embedding θG in (2-1).

Let G be a linear algebraic group over a field F , let H ⊂ G be a subgroup and
let E → X be a G-torsor. Suppose that G/H is affine. Consider a G-action on
E × (G/H) by (e, g′H)g = (eg, g−1g′H). By [Milne 1980, Theorem I.2.23], the
affine G-equivariant projection E × (G/H)→ E descends to an affine morphism
Y→ X . The (trivial right) H -torsor E×G→ E× (G/H) descends to an H -torsor
E→ Y . We will write E/H for Y .

Example 3.1. Let G be a linear algebraic group over a field F and let E→ X be a
G-torsor. Then for every n > 0, En

:= E×F · · ·×F E (n times) is a Gn-torsor over
Xn . Viewing G as the diagonal subgroup of Gn , we have the G-torsor En

→ En/G.

3a. Balanced elements. Let G be a linear algebraic group over a field F . We
assume that G is connected if F is finite. Let E → X be a G-torsor such that
E(F) 6=∅. We write p1 and p2 for the two projections E2/G = (E×F E)/G→ X
(see Example 3.1).

Lemma 3.2. Let K/F be a field extension and x1, x2 ∈ X (K ). Then the G-torsors
E(x1) and E(x2) over K are isomorphic if and only if there is a point y∈(E2/G)(K )
such that p1(y)= x1 and p2(y)= x2.

Proof. “⇒”: By construction, we have G-equivariant morphisms fi : E(xi )→ E
for i = 1, 2. Choose an isomorphism h : E(x1) −→

∼ E(x2) of G-torsors over
K . The morphism ( f1, f2h) : E(x1)→ E2 yields the required point Spec K =
E(x1)/G→ E2/G.

“⇐”: The pull-back of E → X with respect to any projection E2/G → X
coincides with the G-torsor E2

→ E2/G, hence

E(x1)= x∗1 (E)= y∗ p∗1(E)' y∗(E2)' y∗ p∗2(E)= x∗2 (E)= E(x2). �

Let H be a (contravariant) functor from the category of schemes over F to the
category of abelian groups. We have the two maps p∗i : H(X)→ H(E2/G), i = 1, 2.
An element h∈H(X) is called balanced if p∗1(h)= p∗2(h). We write H(X)bal for the
subgroup of balanced elements in H(X). In other words, H(X)bal= h0(H(E•/G))
in the notation of Section A-IV.
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We can view H as a (covariant) functor FieldsF → Sets taking a field K
to H(K ) := H(Spec K ).

Lemma 3.3. Let h ∈ H(X)bal be a balanced element, K/F a field extension and I
a G-torsor over Spec(K ). Let x ∈ X (K ) be a point such that E(x)' I . Then the
element x∗(h) in H(K ) does not depend on the choice of x.

Proof. Let x1, x2 ∈ X (K ) be two points such that E(x1)' E(x2). By Lemma 3.2,
there is a point y ∈ (E2/G)(K ) such that p1(y)= x1 and p2(y)= x2. Therefore

x∗1 (h)= y∗(p∗1(h))= y∗(p∗2(h))= x∗2 (h). �

It follows from Lemma 3.3 that if the torsor E→ X is classifying with E(F) 6=∅,
then every element h ∈ H(X)bal determines an H -invariant ih of G as follows. Let
I be a G-torsor over a field extension K/F . We claim that there is a point x ∈ X (K )
such that E(x)' I . If K is infinite, this follows from the definition of the classifying
G-torsor. If K is finite then all G-torsors over K are trivial by [Lang 1956], as G
is connected. Since E(K ) 6=∅, we can take for x the image in X (K ) of any point
in E(K ). Defining ih(E)= x∗(h) ∈ H(K ), we have a group homomorphism

H(X)bal→ Inv(G, H), h 7→ ih .

3b. Cohomology with values in Q/Z( j). For every integer j ≥ 0, the coefficients
Q/Z( j) are defined as the direct sum over all prime integers p of the objects
Qp/Zp( j) in the derived category of sheaves of abelian groups on the big étale site
of Spec F , where

Qp/Zp( j)= colim
n

µ
⊗ j
pn

if p 6= char F , with µpn the sheaf of (pn)-th roots of unity, and

Qp/Zp( j)= colim
n

Wn�
j
log[− j]

if p= char F > 0, with Wn�
j
log the sheaf of logarithmic de Rham–Witt differentials;

see [Illusie 1979, I.5.7; Kahn 1996].
We write H m(X,Q/Z( j)) for the étale cohomology of a scheme X with values

in Q/Z( j). Then

H m(X,Q/Z( j)){p} = colim
n

H m(X, µ⊗ j
pn )

if p 6= char F and

H m(X,Q/Z( j)){p} = colim
n

H m− j (X,Wn�
j
log)

if p = char F > 0. In the latter case, the group Wn�
j
log(F) is canonically iso-

morphic to K M
j (F)/pn K M

j (F), where K M
j (F) is Milnor’s K -group of F (see



1652 Sam Blinstein and Alexander Merkurjev

[Bloch and Kato 1986, Corollary 2.8]), hence by [Izhboldin 1991; Garibaldi et al.
2003, Part II, Appendix A], H s(F,Wn�

j
log) is isomorphic to

H s(F, K M
j (Fsep)/pn K M

j (Fsep))=


K M

j (F)/pn K M
j (F) if s = 0,

H 2(F, K M
j (Fsep))pn if s = 1,

0 otherwise.

It follows that in the case p = char F > 0, we have

H m(F,Q/Z( j)){p} =


K M

j (F)⊗ (Qp/Zp) if m = j ,
H 2(F, K M

j (Fsep)){p} if m = j + 1,
0 otherwise.

The motivic complexes Z( j), for j = 0, 1, 2, of étale sheaves on a smooth scheme
X were defined by S. Lichtenbaum [1987; 1990]. We write H∗(X,Z( j)) for the
étale (hyper)cohomology groups of X with values in Z( j).

The complex Z(0) is equal to the constant sheaf Z and Z(1) = Gm ,X [−1],
thus H n(X,Z(1)) = H n−1(X,Gm ,X ). In particular, H 3(X,Z(1)) = Br(X), the
cohomological Brauer group of X . The complex Z(2) is concentrated in degrees 1
and 2 and there is a product map Z(1)⊗L Z(1)→ Z(2); see [Lichtenbaum 1987,
Proposition 2.5].

The exact triangle in the derived category of étale sheaves

Z( j)→Q⊗Z( j)→Q/Z( j)→ Z( j)[1]

yields the connecting homomorphism

H i (X,Q/Z( j))→ H i+1(X,Z( j)),

which is an isomorphism if X = Spec(F) for a field F and i > j [Kahn 1993,
Lemme 1.1].

Write Hn(Q/Z( j)) for the Zariski sheaf on a smooth scheme X associated to
the presheaf U 7→ H n(U,Q/Z( j)) of étale cohomology groups.

Let G be a linear algebraic group over F . We assume that G is connected if F is
a finite field and write Invn(G,Q/Z( j)) for the group of degree n invariants of G
for the functor K 7→ H n(K ,Q/Z( j)). Note that Property 2.1 holds for this functor
by [Garibaldi et al. 2003, Part 2, Proposition A.9].

Choose a classifying G-torsor E → X with E a G-rational variety such that
E(F) 6= ∅. Applying the construction given in Section 3a to the functor U 7→
H 0

Zar(U,Hn(Q/Z( j))), we get a homomorphism

ϕ : H 0
Zar(X,Hn(Q/Z( j)))bal→ Invn(G,Q/Z( j)).

Theorem 3.4. Let G be a smooth linear algebraic group over a field F. We assume
that G is connected if F is a finite field. Let E → X be a classifying G-torsor
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with E a G-rational variety such that E(F) 6=∅. Then the homomorphism ϕ is an
isomorphism.

Proof. Let Egen→ F(X) be the generic fiber of the classifying G-torsor E→ X .
Note that since the pull-back of E → X with respect to any of the two pro-
jections E2/G → X coincides with the G-torsor E2

→ E2/G, the pull-backs
of the generic G-torsor Egen → Spec F(X) with respect to the two morphisms
Spec F(E2/G)→Spec F(X) induced by the projections are isomorphic. It follows
that for every invariant i ∈ Inv(G, H∗(Q/Z( j))) we have

p∗1(i(Egen))= i(p∗1(Egen))= i(p∗2(Egen))= p∗2(i(Egen))

in H∗(F(E2/G),Q/Z( j)), that is, i(Egen) ∈ H∗(F(X),Q/Z( j))bal. By Proposi-
tion A.9, ∂x(h)= 0 for every point x ∈ X of codimension 1, hence

θG(i)= i(Egen) ∈ H 0
Zar(X,Hn(Q/Z( j)))bal

by Proposition A.10. By Theorem 2.2, θG is injective and by construction, the
composition θG ◦ϕ is the identity. It follows that ϕ is an isomorphism. �

Write H 0
Zar(X,Hn(Q/Z( j))) for the factor group of H 0

Zar(X,Hn(Q/Z( j))) by
the natural image of H n(F,Q/Z( j)).

Corollary 3.5. The isomorphism ϕ yields an isomorphism

H 0
Zar(X,Hn(Q/Z( j)))bal −→

∼ Invn(G,Q/Z( j))norm.

4. Degree 3 invariants of algebraic tori

In this section we prove the main theorem that describes degree 3 invariants of an
algebraic torus with values in Q/Z(2).

4a. Algebraic tori. Let F be a field and 0 = Gal(Fsep/F) the absolute Galois
group of F . An algebraic torus of dimension n over F is an algebraic group T such
that Tsep is isomorphic to the product of n copies of the multiplicative group Gm ;
see [Colliot-Thélène and Sansuc 1977; Voskresenskiı̆ 1998]. For an algebraic torus
T over a field F , we write T̂sep for the 0-module of characters Hom(Tsep,Gm). The
group T̂sep is a 0-lattice, that is, a free abelian group of finite rank with a continuous
0-action. The contravariant functor T 7→ T̂sep is an antiequivalence between the
category of algebraic tori and the category of 0-lattices: the torus T and the group
T (F) can be reconstructed from the lattice T̂sep by the formulas

T = Spec(Fsep[T̂sep]
0),

T (F)= Hom0(T̂sep, F×sep)= (T̂
◦

sep⊗ F×sep)
0,

where T̂ ◦sep = Hom(T̂sep,Z).
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We write T̂ for the character group HomF (T,Gm)= (T̂sep)
0 and T ◦ for the dual

torus having character lattice T̂ ◦sep.
A torus T is called quasisplit if T is isomorphic to the group of invertible

elements of an étale F-algebra, or equivalently, the 0-lattice T̂sep is permutation,
that is, T̂sep has a 0-invariant Z-basis. An invertible torus is a direct factor of a
quasisplit torus.

A torus T is called flasque or coflasque if H 1(L , T̂ ◦sep)= 0 or H 1(L , T̂sep)= 0,
respectively, for every finite field extension L/F . A flasque resolution of a torus S
is an exact sequence of tori 1→ T → P→ S→ 1 with T flasque and P quasisplit.
By [Colliot-Thélène and Sansuc 1977, §4; Voskresenskiı̆ 1998, §4.7], the torus T in
the flasque resolution is invertible if and only if S is a direct factor of a rational torus.

4b. Products. Let T be a torus over F and let T̂ (i) denote the complex T̂sep⊗Z(i)
of étale sheaves over F for i = 0, 1, 2. Thus, T̂ (0)= T̂sep and

T̂ (1)= (T̂sep⊗ F×sep)[−1] = T ◦(Fsep)[−1].

Let S and T be algebraic tori over F and let i and j be nonnegative integers
with i + j ≤ 2. For any smooth variety X over F , we have the product map

(Ŝsep⊗ T̂sep)
0
⊗ H p(X, Ŝ◦(i))⊗ Hq(X, T̂ ◦( j))→ H p+q(X,Z(i + j)) (4-1)

taking a⊗ b⊗ c to a ∪ b∪ c, via the canonical pairings between Ŝsep and Ŝ◦sep, T̂sep

and T̂ ◦sep, and the product map Z(i)⊗L Z( j)→ Z(i + j).
Recall that there is an isomorphism H n(F,Z(k))' H n−1(F,Q/Z(k)) for n > k.

In particular, we have the cup-product map

(Ŝsep⊗ T̂sep)
0
⊗ H p(F, S)⊗ Hq(F, T )→ H 3(F,Q/Z(2)) (4-2)

if p+ q = 2.
If S=T ◦ is the dual torus, then (Ŝsep⊗T̂sep)

0
=End0(T̂sep) contains the canonical

element 1T . We then have the product map

H p(X, T̂ (i))⊗ Hq(X, T̂ ◦( j))→ H p+q(X,Z(i + j)) (4-3)

and in particular, the product maps

H 1(F, T̂sep)⊗ H 1(F, T )→ H 2(F,Q/Z(1))= Br(F), (4-4)

H 1(F, T ◦)⊗ H 1(F, T )→ H 3(F,Q/Z(2)), (4-5)

H 2(F, T ◦)⊗ H 0(F, T )→ H 3(F,Q/Z(2)), (4-6)

taking a⊗ b to 1T ∪ a ∪ b and applying (4-2).
As T is a commutative group, the set H 1(K , T ) is an abelian group. An invariant

i ∈ Inv(T, H) for a functor H is called linear if iK : H 1(K , T )→ H(K ) is a group
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homomorphism for every K/F . In the next section we will see that a normalized
degree 3 invariant of a torus need not be linear.

4c. Main theorem. Let T be a torus over F and choose a standard classifying
T -torsor U →U/T such that the codimension of V \U in V is at least 3. Such a
torsor exists by [Edidin and Graham 1998, Lemma 9].

By [Sansuc 1981, Proposition 6.10], there is an exact sequence

Fsep[U ]×/F×sep→ T̂sep→ Pic((U/T )sep)→ Pic(Usep).

The codimension assumption implies that the side terms are trivial, hence the map
T̂sep→ Pic((U/T )sep) is an isomorphism. It follows that the classifying T -torsor
U →U/T is universal in the sense of [Colliot-Thélène and Sansuc 1987a].

Write K∗(F) for the (Quillen) K -groups of F and K∗ for the Zariski sheaf
associated to the presheaf U 7→ K∗(U ). Then the groups H n

Zar(U/T,K2) are
independent of the choice of the classifying torsor; see [Edidin and Graham 1998].
So we write H n

Zar(BT,K2) for this group (see Section A-IV). As Tsep is a split torus,
by the Künneth formula (see Example A.5),

H n
Zar(BTsep,K2)=


K2(Fsep) if n = 0,
Pic((U/T )sep)⊗ F×sep = T̂sep⊗ F×sep = T ◦(Fsep) if n = 1,
CH2((U/T )sep)= S2(T̂sep) if n = 2.

Applying the calculation of the K-cohomology groups to the standard classifying
T -torsor U i

→ U i/T for every i > 0 instead of U → U/T , by Proposition B.3,
we have the exact sequence

0→ H 1(F, T ◦)
α
−→ H 4(U i/T,Z(2))

→ H 4((U i/T )sep,Z(2))0→ H 2(F, T ◦), (4-7)

where H 4(U i/T,Z(2)) is the factor group of H 4(U i/T,Z(2)) by H 4(F,Z(2)),
the map α is given by α(a)= q∗(a)∪ [U i

] with q :U i/T → Spec F the structure
morphism, [U i

] the class of the T -torsor U i
→ U i/T in H 1(U i/T, T ), and the

cup-product is taken for the pairing (B-6).
Taking the sequences (4-7) for all i (see Section A-IV), we get the exact sequence

of cosimplicial groups

0→ H 1(F, T ◦)
α
−→ H 4(U •/T,Z(2))→ H 4((U •/T )sep,Z(2))0→ H 2(F, T ◦).

The first and the last cosimplicial groups in the sequence are constant, hence by
Lemma A.2, the sequence

0→ H 1(F, T ◦)
α
−→ H 4(U/T,Z(2))bal

→ H 4((U/T )sep,Z(2))0bal→ H 2(F, T ◦) (4-8)
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is exact as h0(H 4(U •/T,Z(2)))= H 4(U/T,Z(2))bal.
The following theorem was proved by B. Kahn [1996, Theorem 1.1]:

Theorem 4.1. Let X be a smooth variety over F. Then there is an exact sequence

0→ CH2(X)→ H 4(X,Z(2))→ H 0
Zar(X,H3(Q/Z(2)))→ 0.

By Theorem 4.1, there is an exact sequence of cosimplicial groups

0→ CH2(U •/T )→ H 4(U •/T,Z(2))→ H 0
Zar(U

•/T,H3(Q/Z(2)))→ 0.

As the functor CH2 is homotopy invariant, by Lemma A.4, the first group in the
sequence is constant. In view of Lemma A.2, and following the notation for the
K-cohomology, the sequence

0→ CH2(BT )→ H 4(U/T,Z(2))bal→ H 0
Zar(U/T,H3(Q/Z(2)))bal→ 0 (4-9)

is exact. By Corollary 3.5, the last group in the sequence is canonically isomorphic
to Inv(T, H 3(Q/Z(2)))norm.

As the torus Tsep is split, all the invariants of Tsep are trivial hence the sequence
(4-9) over Fsep yields an isomorphism

H 4((U/T )sep,Z(2))bal ' CH2(BTsep)' S2(T̂sep). (4-10)

Combining (4-8), (4-9) and (4-10), we get the following diagram with an exact
row and column:

0

��
H 1(F, T 0)

α
�� **

0 // CH2(BT ) //

((

H 4(U/T,Z(2))bal //

��

Inv3(T,Q/Z(2))norm // 0.

S2(T̂sep)
0

��
H 2(F, T 0)

Write Dec=Dec(T̂sep) for the subgroup of decomposable elements in S2(T̂sep)
0

(see Section A-II).

Lemma 4.2. The image of the homomorphism

CH2(BT )→ CH2(BTsep)
0
= S2(T̂sep)

0

in the diagram coincides with Dec.
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Proof. Consider the Grothendieck ring K0(BT ) of the category of T -equivariant vec-
tor bundles over Spec(F), or equivalently, of the category of finite dimensional linear
representations of T . If T is split, every linear representation of T is a direct sum of
one-dimensional representations. Therefore, there is an isomorphism between the
group ring Z[T̂ ] of all formal finite sums

∑
x∈T̂ ax ex and K0(BT ), taking ex with

x ∈ T̂ to the class of the 1-dimensional representation given by x . In general, for
every torus T , we have K0(BTsep)=Z[T̂sep] and K0(BT )=Z[T̂sep]

0
=K0(BTsep)

0;
see [Merkurjev and Panin 1997, page 136]. The group Z[T̂sep]

0 is generated by the
sums

∑n
i=1 eγi x , where γ1, γ2, . . . , γn are representatives of the left cosets of an

arbitrary open subgroup 0′ in 0 and x ∈ (T̂sep)
0′ .

The equivariant Chern classes were defined in [Edidin and Graham 1998, §2.4].
The first Chern class c1 : K0(BTsep) → CH1(BTsep) = T̂sep takes ex to x . In
the diagram

Z[T̂sep]
0

��

K0(BT )

��

c2 // CH2(BT )

��
Z[T̂sep] K0(BTsep)

c2 // CH2(BTsep) S2(T̂sep)

the second Chern class maps c2 are surjective by [Esnault et al. 1998, Lemma C.3]. It
follows from the formula c2(a+b)= c2(a)+c1(a)c1(b)+c2(b) that the composition

Z[T̂sep]
0
= K0(BT )→ K0(BTsep)

c2
−→ CH2(BTsep)= S2(T̂sep)→ S2(T̂sep)/(T̂ )2

is a homomorphism and its image is generated by the elements (see Section A-II)

c2

( n∑
i=1

eγi x
)
=

∑
i< j

(γi x)(γ j x)= Qtr(x). �

By the restriction-corestriction argument, the kernel of the homomorphism

CH2(BT )→ CH2(BTsep)
0
= S2(T̂sep)

0

coincides with the torsion subgroup CH2(BT )tors in CH2(BT ).
The following theorem describes degree 3 invariants of an algebraic torus with

values in Q/Z(2):

Theorem 4.3. Let T be an algebraic torus a field F. Then there is an exact sequence

0→ CH2(BT )tors→ H 1(F, T 0)
α
−→ Inv3(T,Q/Z(2))norm

→ S2(T̂sep)
0/Dec→ H 2(F, T 0).

The homomorphism α is given by α(a)(b)= aK ∪ b for every a ∈ H 1(F, T 0) and
b ∈ H 1(K , T ) and every field extension K/F , where the cup-product is defined
in (4-5).
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Proof. The exactness of the sequence follows from the diagram before Lemma 4.2. It
remains to describe the map α. Take an a ∈ H 1(F, T 0) and consider the invariant i
defined by i(b) = aK ∪ b, where the cup-product is given by (4-5). We need
to prove that i = α(a). Choose a standard classifying T -torsor U → U/T and
set K = F(U/T ). Let Ugen be the generic fiber of the classifying torsor. By
Theorem 2.2, it suffices to show that i(Ugen) = α(a)(Ugen) over K . This follows
from the description of the map α in the exact sequence (4-7). �

Remark 4.4. In a similar (and much simpler) fashion one can describe degree 2
invariants of an algebraic torus T with values in Q/Z(1), that is, invariants with
values in the Brauer group by computing the étale motivic cohomology group
H 3(U/T,Z(1))= H 2(U/T,Gm)= Br(U/T ) for a standard classifying T -torsor
U →U/T . One establishes canonical isomorphisms

H 1(F, T̂sep)' H 3(U/T,Z(1))bal ' Inv2(T,Q/Z(1))norm = Inv(T,Br)norm.

The composition takes an element a ∈ H 1(F, T̂sep) to the invariant b 7→ aK ∪ b
for b ∈ H 1(K , T ) and a field extension K/F . This description shows that every
normalized Br-invariant of T is linear.

4d. Torsion in CH2(BT ). We investigate the group CH2(BT )tors, the first term
of the exact sequence in Theorem 4.3.

Let S be an algebraic torus over F . Using the Gersten resolution, [Quillen 1973,
Proposition 5.8] we identify the group H 0(Ssep,K2)with a subgroup in K2(Fsep(S)).
Set H 0(Ssep,K2) :=H 0(Ssep,K2)/K2(Fsep). By [Garibaldi et al. 2003, Part 2, §5.7],
we have an exact sequence

0→ Ŝsep⊗ F×sep→ H 0(Ssep,K2)
λ
−→

∧2 Ŝsep→ 0 (4-11)

of 0-modules, where λ({ex , ey
})= x ∧ y for x, y ∈ Ŝsep.

Consider the 0-homomorphism

γ :
∧2 Ŝsep→ H 0(Ssep,K2)

x ∧ y 7→ {ex , ey
}− {ey, ex

}.

We have λ ◦ γ = 2 · Id, hence the connecting homomorphism

∂ : H i (F,
∧2 Ŝsep)→ H i+1(F, Ŝsep⊗ F×sep) (4-12)

satisfies 2∂ = 0.

Lemma 4.5. If S is an invertible torus, then the sequence of 0-modules (4-11)
is split.
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Proof. Suppose first that S is quasisplit. Let {x1, x2, . . . , xm} be a permutation basis
for Ŝsep. Then the elements xi ∧ x j for i < j form a Z-basis for

∧2 Ŝsep. The map∧2 Ŝsep→ H 0(Ssep,K2), taking xi ∧ x j to {exi , ex j } is a splitting for γ .
In general, find a torus S′ such that S× S′ is quasisplit. The desired splitting is

the composition∧2 Ŝsep→
∧2 ̂Ssep× S′sep

α
−→ H 0(Ssep× S′sep,K2)

β
−→ H 0(Ssep,K2),

where α is a splitting for the torus S×S′ and β is the pull-back map for the canonical
inclusion S ↪→ S× S′. �

Let
1→ T → P→ Q→ 1

be a coflasque resolution of T , that is, P is a quasisplit torus and Q is a coflasque
torus; see [Colliot-Thélène and Sansuc 1977]. The torus P is an open set in the
affine space of a separable F-algebra on which T acts linearly. Hence P→ Q is a
standard classifying T -torsor. By Theorem 2.2, the natural map

θT : Inv3(T,Q/Z(2))→ H 3(F(Q),Q/Z(2))

is injective.
Consider the spectral sequence (B-10) for the variety X = Q. By [Garibaldi et al.

2003, Part 2, Corollary 5.6], we have H 1(Qsep,K2)= 0. In view of Proposition B.4,
we have an injective homomorphism

β : H 2(F, H 0(Qsep,K2))→ H 4(Q,Z(2)) (4-13)

such that the composition of β with the homomorphism

H 2(F, Q◦)→ H 2(F, H 0(Qsep,K2))

is given by the cup-product with the class of the identity in H 0(Q, Q).

Lemma 4.6. For a coflasque torus Q, the group CH2(Q) is trivial.

Proof. By [Merkurjev and Panin 1997, Theorem 9.1], for every torus Q, the
Grothendieck group K0(Q) is generated by the classes of the sheaves i∗(P), where
P is an invertible sheaf on QL , L/F a finite separable field extension and i :QL→Q
is the natural morphism. By definition of a coflasque torus,

Pic(QL)= H 1(L , Q̂sep)= 0.

It follows that every invertible sheaf on QL is trivial, hence K0(Q)= Z · 1. Since
the group CH2(Q) is generated by the second Chern classes of vector bundles on
Q [Esnault et al. 1998, Lemma C.3], we have CH2(Q)= 0. �
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It follows from Proposition A.10, Theorem 4.1, and Lemma 4.6 that the homo-
morphism

κ : H 4(Q,Z(2))→ H 4(F(Q),Z(2))= H 3(F(Q),Q/Z(2)) (4-14)

is injective.
Consider the diagram

0 // Q◦(Fsep) // H 0(Qsep,K2)

s
��

//
∧2 Q̂sep

t
��

// 0

0 // Q◦(Fsep) // P◦(Fsep) // T ◦(Fsep) // 0

where s is the composition of the natural map H 0(Qsep,K2)→ H 0(Psep,K2) and
a splitting of P◦(Fsep)→ H 0(Psep,K2) (see Lemma 4.5).

We have the following diagram

H 1(F, T ◦)� _

∂1
��

α // Inv3(T,Q/Z(2))norm� _

θT
��

H 1(F, H 0(Qsep,K2))
ϕ // H 1(F,

∧2 Q̂sep)
∂ //

t∗
88

H 2(F, Q◦) σ // H 3(F(Q),Q/Z(2))

with the bottom sequence a complex, where σ is the composition of the maps in
(4-13) and (4-14):

H 2(F, Q0)
ψ
−→ H 2(F, H 0(Qsep,K2))

β
−→ H 4(Q,Z(2))
κ
−→ H 4(F(Q),Z(2))= H 3(F(Q),Q/Z(2)),

with ϕ and ψ given by Galois cohomology applied to the exact sequence (4-11) for
the torus Q. Note that the connecting map ∂1 is injective as H 1(F, P◦)= 0 since
P◦ is a quasisplit torus. As 2∂ = 0 in (4-12), we have 2t∗ = 0.

The commutativity of the triangle follows from the definition of t∗. We claim
that the square in the diagram is anticommutative. Note that ∂2(ξ)= [Pgen], where
∂2 : H 0(F, Q)→ H 1(F, T ) is the connecting homomorphism, Pgen is the generic
fiber of the morphism P→ Q, and ξ ∈ H 0(K , Q) is the generic point of Q with
K = F(Q). It follows from the description of the maps α and β in (4-7) and (4-13),
respectively, and Lemma A.1 that

σ(∂1(a))= ∂1(a)K ∪ ξ = (−aK )∪ ∂2(ξ)= (−aK )∪ [Pgen] = −θT (α(a))

for every a ∈ H 1(F, T ◦).
The maps β and κ are injective, hence the bottom sequence in the diagram is
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exact. Thus, we have an exact sequence

H 1(F, H 0(Qsep,K2))→ H 1(F,
∧2 Q̂sep)→ Ker(α)→ 0

and 2·Ker(α)=2·Im(t∗)=0. Furthermore, Ker(α)'CH2(BT )tors by Theorem 4.3
and the group H 1(F,

∧2 Q̂sep) is finite as
∧2 Q̂sep is a lattice.

We have proved:

Theorem 4.7. Let 1→ T → P→ Q→ 1 be a coflasque resolution of a torus T .
Then there is an exact sequence

H 1(F, H 0(Qsep,K2))→ H 1(F,
∧2 Q̂sep)→ CH2(BT )tors→ 0.

Moreover, CH2(BT )tors is a finite group satisfying 2 ·CH2(BT )tors = 0.

Corollary 4.8. If T ◦ is a birational direct factor of a rational torus, or if T is
split over a cyclic field extension, then CH2(BT )tors = 0, that is, the map α in
Theorem 4.3 is injective.

Proof. The exact sequence 1 → Q◦ → P◦ → T ◦ → 1 is a flasque resolution
of T ◦. If T ◦ is a birational direct factor of a rational torus, or if T is split over a
cyclic field extension, the torus Q◦, and hence Q, is invertible; see Section 4a and
[Voskresenskiı̆ 1998, §4, Theorem 3]. By Lemma 4.5, the sequence (4-11) for the
torus Q is split, hence the first map in Theorem 4.7 is surjective. �

Question 4.9. Is CH2(BT )tors trivial for every torus T ?

4e. Special tori. Let T be an algebraic torus over a field F . The tautological
invariant of the torus T ◦× T is the normalized invariant taking a pair

(a, b) ∈ H 1(K , T ◦)× H 1(K , T )

to the cup-product a ∪ b ∈ H 3(K ,Q/Z(2)) defined in (4-5).
The following theorem shows that if a torus T has only trivial degree 3 normalized

invariants with values in Q/Z(2) universally, that is, over all field extensions of
F , then T has no nonconstant invariants at all by the simple reason: every T -
torsor over a field is trivial. Note that it follows from Theorem 2.4 that T has no
degree 2 normalized invariants with values in Q/Z(1) universally if and only if T
is coflasque.

Theorem 4.10. Let T be an algebraic torus over a field F. Then the following are
equivalent:

(1) Inv3(TK ,Q/Z(2))norm = 0 for every field extension K of F.

(2) The tautological invariant of the torus T ◦× T is trivial.

(3) The torus T is invertible.

(4) The torus T is special.
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Proof. (1)⇒ (2): Let K/F be a field extension and a ∈ H 1(K , T ◦). By assumption,
the degree 3 normalized invariant i = α(a) with values in Q/Z(2), defined by
i(b) = a ∪ b for every b ∈ H 1(K , T ), is trivial. In other words, the tautological
invariant of the torus T ◦× T is trivial.
(2)⇒ (3): The image of the tautological invariant in the group

S2(T̂ ◦sep⊕ T̂sep)
0/Dec

is represented by the identity 1T̂ in the direct factor (T̂ ◦sep⊗ T̂sep)
0
= End0(T̂sep) of

S2(T̂ ◦sep⊕ T̂sep)
0 (see Section A-II). The projection of Dec on the direct summand

(T̂ ◦sep⊗ T̂sep)
0 is generated by the traces Tr(a⊗ b) for all open subgroups 0′ ⊂ 0

and all a ∈ (T̂ ◦sep)
0′ and b ∈ (T̂sep)

0′ . Hence 1T̂ =
∑

i Tr(ai ⊗ bi ) for some open
subgroups 0i ⊂ 0, ai ∈ (T̂ ◦)0i and bi ∈ (T̂ )0i . If Pi = Z[0/0i ], then ai can be
viewed as a 0-homomorphism T̂→ Pi and bi can be viewed as a 0-homomorphism
Pi → T̂ such that the composition

T̂
(bi )
−−→ P

(ai )
−−→ T̂ ,

where P =
∐

Pi , is the identity. It follows that T̂ is a direct summand of a
permutation 0-module P and hence T is invertible.
(3)⇒ (4): Obvious as every invertible torus is special.
(4)⇒ (1): Obvious. �

Remark 4.11. The equivalence (3) ⇔ (4) was essentially proved in [Colliot-
Thélène and Sansuc 1987b, Proposition 7.4].

4f. Linear and quadratic invariants. Let T be a torus over F . By Theorem 4.3,
we have a natural homomorphism to the group of linear invariants:

α : H 1(F, T ◦)→ Inv3(T,Q/Z(2))lin.

Let S and T be algebraic tori over F . For every field extension K/F , the
cup-product (4-2) yields a homomorphism

ε : (T̂⊗2
sep )

0
→ Inv3(T,Q/Z(2))

defined by ε(a)(b)= aK ∪ b∪ b for a ∈ (T̂⊗2
sep )

0 and b ∈ H 1(K , T ).
We say that an invariant i ∈ Inv3(T,Q/Z(2)) is quadratic if the function

h(a, b) := i(a+ b)− i(a)− i(b)

is bilinear and h(a, a)=2i(a) for all a and b. For example, the tautological invariant
of the torus T ◦× T in Section 4e is quadratic. We write Inv3(T,Q/Z(2))quad for
the subgroup of all quadratic invariants in Inv3(T,Q/Z(2)). The image of ε is
contained in Inv3(T,Q/Z(2))quad.
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Lemma 4.12. The composition of ε with the map

Inv3(T,Q/Z(2))→ S2(T̂sep)
0/Dec

in Theorem 4.3 is induced by the natural homomorphism T̂⊗2
sep → S2(T̂sep).

Proof. Let U → U/T =: X be a standard classifying T -torsor as in Section 4c.
Consider the commutative diagram

(T̂⊗2
sep )

0
⊗ H 1(X, T )⊗2

��

prod // H 4(X,Z(2))bal

��

// Inv3(T,Q/Z(2))norm

T̂⊗2
sep ⊗ H 1(Xsep, T )⊗2 prod //

η o

��

H 4(Xsep,Z(2))bal

o

��
T̂⊗2

sep ⊗ (T̂
◦

sep)
⊗2
⊗ T̂⊗2

sep
κ // S2(T̂sep)

0/Dec

where the product maps are given by (4-1), η identifies

H 1(Xsep, T )= T̂ ◦sep⊗Pic(Xsep)

with T̂ ◦sep⊗ T̂sep and κ is given by the pairing between the first and second factors.
Write [U ] for the class of the classifying torsor in H 1(X, T ). The image of [U ] in

H 1(Xsep, Tsep)= T̂ ◦sep⊗ T̂sep = End(T̂sep)

is the identity 1T̂sep
. Hence for every a ∈ (T̂⊗2

sep )
0, the image of a ⊗ [U ] ⊗ [U ]

under the diagonal map in the diagram coincides with the canonical image of a
in S2(T̂sep)

0/Dec. �

The composition of the map S2(T̂sep)
0
→ (T̂⊗2

sep )
0 given by a · b 7→ a ⊗ b+

b⊗ a with the natural map (T̂⊗2
sep )

0
→ S2(T̂sep)

0 is multiplication by 2. Then by
Lemma 4.12, 2 ·S2(T̂sep)

0/Dec is contained in the image of the map

Inv3(T,Q/Z(2))→ S2(T̂sep)
0/Dec .

Theorem 4.3 then yields:

Theorem 4.13. Let T be an algebraic torus over F. Then 2 times the homo-
morphism S2(T̂sep)

0/Dec→ H 2(F, T 0) from Theorem 4.3 is trivial. If p is an
odd prime,

Inv3(T,Qp/Zp(2))norm = Inv3(T,Qp/Zp(2))lin⊕ Inv3(T,Qp/Zp(2))quad

and there are natural isomorphisms Inv3(T,Qp/Zp(2))lin ' H 1(F, T ◦){p} and

Inv3(T,Qp/Zp(2))quad ' (S
2(T̂sep)

0/Dec){p}.
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Example 4.14. Let X = {x1, x2, . . . , xn} be a set of n elements with the natural
action of the symmetric group Sn . A continuous surjective group homomorphism
0→ Sn yields a separable field extension L/F of degree n. Consider the torus
T = RL/F (Gm ,L)/Gm , where RL/F is the Weil restriction; see [Voskresenskiı̆ 1998,
Chapter 1, §3.12]. Note that the generic maximal torus of the group PGLn is of this
form (see Section 5b). The character lattice T̂sep is the kernel of the augmentation
homomorphism Z[X ] → Z.

The dual torus T ◦ is the norm one torus R(1)L/F (Gm ,L). For every field extension
K/F , we have:

H 1(K , T )= Br(K L/K ), H 1(K , T ◦)= K×/N (K L)×,

where K L := K ⊗ L , N is the norm map for the extension K L/K and

Br(K L/K )= Ker(Br(K )→ Br(K L)).

The pairing

K×/N (K L)×⊗Br(K L/K )→ H 3(F,Q/Z(2))

defines linear degree 3 invariants of both T and T ◦.
We claim that S2(T̂sep)

0/Dec = 0 and S2(T̂ ◦sep)
0/Dec = 0, that is, T and T ◦

have no nontrivial quadratic degree 3 invariants. We have T̂ ◦sep=Z[X ]/ZNX , where
NX =

∑
xi . The group S2(T̂ ◦sep)

0 is generated by S :=
∑

i< j xi · x j . As S ∈ Dec,
we have S2(T̂ ◦sep)

0/Dec= 0.
Let D =

∑
x2

i and E := Qtr(x1 − x2) = 2S − (n − 1)D, where the quadratic
map Qtr is defined in Section A-II. The group S2(T̂sep)

0 is generated by E if n is
even and by E/2 if n is odd. A computation shows that nE/2 = Qtr(nx1− NX ).
It follows that the generator of S2(T̂sep)

0 belongs to Dec, hence S2(T̂sep)
0/Dec

is trivial.
Note that as the torus T is rational, it follows from Theorem 4.3 and Corollary 4.8

that Inv3(T ◦,Q/Z(2))norm ' Br(L/F).

5. Unramified invariants

Let K/F be a field extension and v a discrete valuation of K over F with valuation
ring Ov . We say that an element a ∈ H n(K ,Q/Z( j)) is unramified with respect to
v if a belongs to the image of the map H n(Ov,Q/Z( j))→ H n(K ,Q/Z( j)); see
[Colliot-Thélène and Ojanguren 1989]. We write H n

nr(K ,Q/Z( j)) for the subgroup
of the elements in H n(K ,Q/Z( j)) that are unramified with respect to all discrete
valuations of K over F . We have a natural homomorphism

H n(F,Q/Z( j))→ H n
nr(K ,Q/Z( j)). (5-1)
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A dominant morphism of varieties Y → X yields a homomorphism

H n
nr(F(X),Q/Z( j))→ H n

nr(F(Y ),Q/Z( j)). (5-2)

Proposition 5.1. Let K/F be a purely transcendental field extension. Then the
homomorphism (5-1) is an isomorphism.

Proof. The statement is well known for the p-components if p 6= char F ; see,
for example, [Colliot-Thélène and Ojanguren 1989, Proposition 1.2]. It suffices
to consider the case K = F(t) and prove the surjectivity of (5-1). The coniveau
spectral sequence for the projective line P1 (see (A-1) in the Appendix) yields an
exact sequence

H n(P1,Q/Z( j))→ H n(K ,Q/Z( j))→
∐

x∈P1

H n+1
x (P1,Q/Z( j))

and, therefore, a surjective homomorphism H n(P1,Q/Z( j))→ H n
nr(K ,Q/Z( j)).

By the projective bundle theorem (classical if p 6=char(F) and [Gros 1985, Theorem
2.1.11] if p = char(F) > 0), we have

H n(P1,Q/Z( j))= H n(F,Q/Z( j))⊕ H n−2(F,Q/Z( j − 1))t,

where t is a generator of H 2(P1,Z(1)) = Pic(P1) = Z. As t vanishes over the
generic point of P1, the result follows. �

Let G be a linear algebraic group over F . Choose a standard classifying G-torsor
U→U/G. An invariant i ∈ Invn(G,Q/Z( j)) is called unramified if the image of i
under θG : Invn(G,Q/Z( j))→ H n(F(U/G),Q/Z( j)) is unramified. This is inde-
pendent of the choice of standard classifying torsor. Indeed, if U ′→U ′/G is another
standard classifying G-torsor, then (U×V ′)/G→U/G and (V ×U ′)/G→U ′/G
are vector bundles. Hence the field F((U ×U ′)/G) is a purely transcendental
extension of F(U/G) and F(U ′/G) and by Proposition 5.1,

H n
nr(F(U/G),Q/Z( j))' H n

nr(F((U ×U ′)/G),Q/Z( j))

' H n
nr(F(U

′/G),Q/Z( j)).

We write H n
nr(F(BG),Q/Z( j)) for this common value and Invn

nr(G,Q/Z( j)) for
the subgroup of unramified invariants. Similarly, we write Brnr(F(BG)) for the
unramified Brauer group H 2

nr(F(BG),Q/Z(1)).

Proposition 5.2. If G ′ be a subgroup of G and i ∈ Invn
nr(G,Q/Z( j)), then

res(i) ∈ Invn
nr(G

′,Q/Z( j)).
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Proof. It is shown in Section 2b that there is a surjective morphism X ′→ X of
the respective classifying varieties of G ′ and G, such that θG(i)F(X ′) = θG ′(res(i)).
Applying the homomorphism (5-2) we see that res(i) is unramified. �

Proposition 5.3. Let G be a smooth linear algebraic group over a field F. The map
Invn

nr(G,Q/Z( j))→ H n
nr(F(BG),Q/Z( j)) induced by θG is an isomorphism.

Proof. By Theorem 3.4, it suffices to show that

H n
nr(F(U/G),Q/Z( j))⊂ H n(F(U/G),Q/Z( j))bal.

We follow Totaro’s approach; see [Garibaldi et al. 2003, p. 99]. Consider the open
subscheme W of (U 2/G)×A1 of all triples (u, u′, t) such that (2−t)u+(t−1)u′∈U .
We have the projection q :W →U 2/G, the morphisms f :W →U/G defined by
f (u, u′, t)= (2−t)u+(t−1)u′, and hi :U 2/G→W defined by hi (u, u′)= (u, u′, i)
for i = 1 and 2. The composition f ◦ hi is the projection pi :U 2/G→U/G and
q ◦ hi is the identity of U 2/G.

Let wi be the generic point of the preimage of i with respect to the projection
W → A1 and write Oi for the local ring of W at wi . The morphisms q, f ,
and hi yield F-algebra homomorphisms F(U 2/G)→ Oi , F(U/G)→ Oi and
Oi → F(U/G). Note that by Proposition A.11, we have

H n
nr(F(W ),Q/Z( j))⊂ H n(Oi ,Q/Z( j)).

In the commutative diagram

H n
nr(F(U/G),Q/Z( j))

� _

��

f ∗ // H n
nr(F(W ),Q/Z( j))

� _

��

H n
nr(F(U

2/G),Q/Z( j))
� _

��

∼

q∗oo

H n(F(U/G),Q/Z( j))

p∗i ))

f ∗ // H n(Oi ,Q/Z( j))

h∗i
��

H n(F(U 2/G),Q/Z( j))
q∗oo

H n(F(U 2/G),Q/Z( j))

the top right map q∗ is an isomorphism by Proposition 5.1 since the field extension
F(W )/F(U 2/G) is purely transcendental. It follows that the restriction of p∗i
on H n

nr(F(U/G),Q/Z( j)) coincides with (q∗)−1
◦ f ∗ and hence is independent

of i . �

5a. Unramified invariants of tori.

Proposition 5.4. If T is a flasque torus, then every invariant in Invn(T,Q/Z( j))
is unramified.
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Proof. Consider an exact sequence of tori 1→ T → P→ Q→ 1 with P quasisplit.
Choose a smooth projective compactification X of Q; see [Colliot-Thélène et al.
2005]. As T is flasque, by [Colliot-Thélène and Sansuc 1977, Proposition 9], there
is a T -torsor E→ X extending the T -torsor P→ Q. The torsor E is classifying
and T -rational. Choose an invariant in Invn(G,Q/Z( j)) and consider its image a
in H n(F(X),Q/Z( j))bal (see Theorem 3.4). We show that a is unramified with
respect to every discrete valuation v on F(X) over F ; see [Colliot-Thélène 1995,
Proposition 2.1.8]. By Proposition A.9, a is unramified with respect to the discrete
valuation associated to every point x ∈ X of codimension 1, that is, ∂x(a)= 0.

As X is projective, the valuation ring Ov of the valuation v dominates a point
x ∈ X . It follows from Proposition A.11 that a belongs to the image of

H n(OX,x ,Q/Z( j))→ H n(F(X),Q/Z( j)).

As the local ring OX,x is a subring of Ov, a belongs to the image of

H n(Ov,Q/Z( j))→ H n(F(X),Q/Z( j))

and hence a is unramified with respect to v. �

Let T be a torus over F . By [Colliot-Thélène and Sansuc 1987b, Lemma 0.6],
there is an exact sequence of tori 1→ T → T ′→ P→ 1 with T ′ flasque and P
quasisplit. The following theorem computes the unramified invariants of T in terms
of the invariants of T ′.

Theorem 5.5. There is a natural isomorphism

Invn
nr(T,Q/Z( j))' Invn(T ′,Q/Z( j)).

Proof. Choose an exact sequence 1→ T ′→ P ′→ S→ 1 with P ′ a quasisplit
torus. Let S′ be the cokernel of the composition T → T ′→ P ′. We have an exact
sequence 1→ P → S′→ S→ 1. As P is quasisplit, the latter exact sequence
splits at the generic point of S and therefore, F(S′) is a purely transcendental field
extension of F(S). It follows from Propositions 5.1, 5.3, and 5.4 that

Invn
nr(T,Q/Z( j))' H n

nr(F(S
′),Q/Z( j))' H n

nr(F(S),Q/Z( j))

' Invn
nr(T

′,Q/Z( j))= Invn(T ′,Q/Z( j)). �

The following corollary is essentially equivalent to [Colliot-Thélène and Sansuc
1987b, Proposition 9.5] in the case when F is of zero characteristic.

Corollary 5.6. With notation as above, the isomorphism

Inv(T,Br)−→∼ Pic(T )= H 1(F, T̂ )
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identifies Invnr(T,Br) with the subgroup H 1(F, T̂ ′) of H 1(F, T̂ ) of all elements
that are trivial when restricted to all cyclic subgroups of the decomposition group
of T .

Proof. The description of H 1(F, T̂ ′) as a subgroup of H 1(F, T̂ ) is given in [Colliot-
Thélène and Sansuc 1987b, Proposition 9.5], and this part of the proof is character-
istic free. �

In view of Propositions 5.1 and 5.3 we can calculate the group of unramified
cohomology for the function field of an arbitrary torus in terms of the invariants of
a flasque torus:

Theorem 5.7. Let S be a torus over F and let 1 → T → P → S → 1 be a
flasque resolution of S, that is, T is flasque and P is quasisplit. Then there is a
natural isomorphism

H n
nr(F(S),Q/Z( j))' Invn(T,Q/Z( j)).

Note that the torus S determines T up to multiplication by a quasisplit torus. If X
is a smooth compactification of S, then one can take a torus T with T̂sep'Pic(Xsep);
see [Colliot-Thélène and Sansuc 1977, Proposition 6; Voskresenskiı̆ 1998, §4.6].

Corollary 5.8. A torus S has no nonconstant unramified degree 3 cohomology with
values in Q/Z(2) universally, that is, H 3

nr(K (S),Q/Z(2)) = H 3(K ,Q/Z(2)) for
any field extension K/F , if and only if S is a direct factor of a rational torus.

Proof. If S is a direct factor of a rational torus, then S has no nonconstant unramified
cohomology by Proposition 5.1.

Conversely, let 1 → T → P → S → 1 be a flasque resolution of S. By
Theorem 5.7, Inv3(TK ,Q/Z(2))norm = 0 for every K/F . It follows from Theorem
4.10 that T is invertible and hence S is a factor of a rational torus (see Section 4a).

�

Theorems 4.3, 5.7 and [Colliot-Thélène and Sansuc 1977, §2] yield the following
proposition.

Proposition 5.9. Let S be a torus over F and let 1→ T → P → S → 1 be a
flasque resolution of S. Then we have an exact sequence

0→ CH2(BT )tors→ H 1(F, T 0)→ H 3
nr(F(S),Q/Z(2))

→ H 0(F,S2(T̂sep))/Dec→ H 2(F, T 0).

For an odd prime p, there is a canonical direct sum decomposition

H 3
nr(F(S),Qp/Zp(2))= H 1(F, T 0){p}⊕ (H 0(F,S2(T̂sep))/Dec){p}.

If X is a smooth compactification of S, one can take the torus T with T̂sep=Pic(Xsep).
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5b. The Brauer invariant for semisimple groups. The following theorem was
proved by Bogomolov [1987, Lemma 5.7] in characteristic zero:

Theorem 5.10. Let G be a (connected) semisimple group over a field F. Then
Invnr(G,Br)= Inv(G,Br)const = Br(F) and Brnr(F(BG))= Br(F).

Proof. Let G ′→ G be a simply connected cover of G and C the kernel of G ′→ G.
By Theorem 2.4 and [Sansuc 1981, Lemme 6.9(iii)], we have

Inv(G,Br)norm = Pic(G)= Ĉ(F).

As the map Ĉ(F)→ Ĉ(Fsep) is injective, we can replace F by Fsep and assume
that the group G is split.

Consider the variety T of maximal tori in G and the closed subscheme X⊂G×T

of all pairs (g, T ) with g ∈ T . The generic fiber of the projection X→ T is the
generic torus Tgen of G. Then Tgen is a maximal torus of G K , where K := F(T).

Every maximal torus in G is the factor torus of a maximal torus in G ′ by C .
It follows that the variety T′ of maximal tori in G ′ is naturally isomorphic to T.
Moreover, as the generic torus T ′gen of G ′ is a maximal torus of G ′K , we have
Tgen ' T ′gen/CK and, therefore, an exact sequence of character groups

0→ T̂gen→ T̂ ′gen→ ĈK → 0.

By Theorem 2.4, the composition of the natural homomorphism

Inv(G,Br)norm→ Inv(G K ,Br)norm

with the restriction Inv(G K ,Br)norm→ Inv(Tgen,Br)norm can be identified with the
natural composition Pic(G)→Pic(G K )→Pic(Tgen) and hence with the connecting
homomorphism Ĉ(F)= Ĉ(K )→ H 1(K , T̂gen). Note that as F = Fsep, the decom-
position group of Tgen coincides with the Weyl group W of G by [Voskresenskiı̆
1988, Theorem 1], hence H 1(K , T̂gen)' H 1(W, T̂gen).

Let w be a Coxeter element in W .1 It is the product of reflections with respect to
all simple roots (in some order). By [Humphreys 1990, Lemma, p. 76], 1 is not an
eigenvalue of w on the space of weights T̂ ′gen⊗R. Let W0 be the cyclic subgroup
in W generated by w. It follows that the first term in the exact sequence

(T̂ ′gen)
W0 → Ĉ(K )→ H 1(W0, T̂gen)

is trivial, that is, the second map is injective. Hence every nonzero character χ in
Ĉ(K ) restricts to a nonzero element in H 1(W0, T̂gen). It follows that the image of
χ in H 1(W, T̂gen) is ramified by Corollary 5.6, hence so is χ by Proposition 5.2. �

1We owe the idea to use the Coxeter element and the reference below to S. Garibaldi.
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Appendix A: Generalities

A-I: Proof of Theorem 2.2. Suppose that i(Egen)= 0 for an H -invariant i of G.
Let K/F be a field extension and I → Spec K a G-torsor. We need to show that
i(I )= 0 in H(K ).

Suppose first that K is infinite. Find a point x ∈ X (K ) such that I is isomorphic
to the pull-back of the classifying torsor with respect to x . Let x ′ be a rational
point of X K above x and write O for the local ring OX K ,x ′ . The K -algebra O is a
regular local ring with residue field K . Therefore, the completion Ô is isomorphic
to K [[t1, t2, . . . , tn]] over K . Let L be the quotient field of Ô , a field extension of
K (X). We have the following diagram of morphisms with a commutative square
and three triangles:

Spec K

��

x

!!
Spec L

99

//

��

Spec Ô //

OO

��

X

Spec K (X) // Spec O

==

The pull-back of the classifying torsor E→ X via Spec K (X)→ X is (Egen)K (X).
The G-torsor I is the pull-back of E→ X with respect to x . Let Ê be the pull-back
of E → X via Spec Ô → X . Therefore, I is the pull-back of Ê . Since G is
smooth, by a theorem of Grothendieck [Demazure and Grothendieck 1970, XXIV,
Proposition 8.1], Ê is the pull-back of I with respect to Spec Ô → Spec(K ). It
follows that IL ' (Egen)L as torsors over L . Hence the images of i(I ) and i(Egen)

in H(L) are equal and therefore, i(I )L = 0. By Property 2.1, we have i(I )= 0.
If K is finite, we replace F by F((t)) and K by K ((t)). By the first part of the

proof, i(I ) belongs to the kernel of H(K )→ H(K ((t))) and hence is trivial by
Property 2.1 again.

A-II: Decomposable elements. Let 0 be a profinite group and A a 0-lattice. Write
A0 for the subgroup of 0-invariant elements in A. Let 0′ ⊂ 0 be an open subgroup
and choose representatives γ1, γ2, . . . , γn for the left cosets of 0′ in 0. We have
the trace map Tr : A0

′

→ A0 defined by Tr(a)=
∑n

i=1 γi a.
Let S2(A) be the symmetric square of A. Consider the quadratic trace map

Qtr : A0
′

→ S2(A)0 defined by Qtr(a)=
∑

i< j (γi a)(γ j a). Write Dec(A) for the
subgroup of decomposable elements in S2(A)0 generated by the square (A0)2 of
A0 and the elements Qtr(a) for all open subgroups 0′ ⊂ 0 and all a ∈ A0

′

.
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Let B be another 0-lattice. We write Dec(A, B) for the subgroup of (A⊗ B)0

generated by elements of the form Tr(a⊗ b) for all open subgroups 0′ ⊂ 0 and all
a ∈ A0

′

, b ∈ B0
′

.
There is a natural isomorphism S2(A⊕B)'S2(A)⊕(A⊗B)⊕S2(B). Moreover,

the equality Qtr(a+b)=Qtr(a)+ (Tr(a)⊗Tr(b)−Tr(a⊗b))+Qtr(b) yields the
decomposition

Dec(A⊕ B)' Dec(A)⊕Dec(A, B)⊕Dec(B).

A-III: Cup-products. Let 1→ T → P → Q→ 1 be an exact sequence of tori.
We consider the connecting maps

∂1 : H p(F, T̂ (i))→ H p+1(F, Q̂(i))

for the exact sequence 0→ Q̂sep→ P̂sep→ T̂sep→ 0 of character 0-lattices and

∂2 : Hq(F, Q̂◦( j))→ Hq+1(F, T̂ ◦( j))

for the dual sequence of lattices (see notation in Section 4b).

Lemma A.1. Let a ∈ H p(F, T̂ (i)) and b ∈ Hq(F, Q̂◦( j)) with i + j ≤ 2. Then
∂1(a)∪ b = (−1)p+1a ∪ ∂2(b) in Hp+q+1(F,Z(i + j)), where the cup-product is
defined in (4-3).

Proof. By [Cartan and Eilenberg 1999, Chapter V, Proposition 4.1], the elements
∂1(1T ) and ∂2(1Q) in

H 1(F, T̂ ◦sep⊗ Q̂sep)= Ext10(T̂sep, Q̂sep)

differ by a sign. Write τ for the isomorphism induced by permutation of the factors.
By the standard properties of the cup-product, we have

∂1(a)∪ b = 1T ∪ ∂1(a)∪ b = ∂1(1T )∪ a ∪ b = (−1)pqτ(∂1(1T )∪ b∪ a)

= (−1)pq+1τ(∂2(1Q)∪ b∪ a)= (−1)pq+1τ(1Q ∪ ∂2(b)∪ a)

= (−1)p+11Q ∪ a ∪ ∂2(b)= (−1)p+1a ∪ ∂2(b). �

A-IV: Cosimplicial abelian groups. Let A• be a cosimplicial abelian group

A0
d0
//

d1
// A1 ////// A2

//////// · · ·

and write h∗(A•) for the homology groups of the associated complex of abelian
groups. In particular,

h0(A•)= Ker
[
(d0
− d1) : A0

→ A1].
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We say that the cosimplicial abelian group A• is constant if for every i , all the
coface maps d j : Ai−1

→ Ai , j = 0, 1, . . . , i , are isomorphisms. In this case all the
d j are equal as d j = s−1

j = d j+1, where the s j are the codegeneracy maps. For a
constant cosimplicial abelian group A•, we have h0(A•)= A0 and hi (A•)= 0 for
all i > 0. We will need the following straightforward statement.

Lemma A.2. Let 0→ A•→ B•→C•→ D• be an exact sequence of cosimplicial
abelian groups with A• a constant cosimplicial group. Then the sequence of groups
0→ A0

→ h0(B•)→ h0(C•)→ h0(D•) is exact.

Let H be a contravariant functor from the category of schemes over F to the
category of abelian groups. We say that H is homotopy invariant if for every vector
bundle E→ X over F , the induced map H(X)→ H(E) is an isomorphism.

For an integer d > 0 consider the following property of the functor H :

Property A.3. For every closed subscheme Z of a scheme X with codimX (Z)≥ d ,
the natural homomorphism H(X)→ H(X \ Z) is an isomorphism.

Let G be a linear algebraic group over a field F and choose a standard classifying
G-torsor U → U/G. Let U i denote the product of i copies of U . We have the
G-torsors U i

→U i/G.
Consider the cosimplicial abelian group A•= H(U •/G) with Ai

= H(U i+1/G)
and coface maps Ai−1

→ Ai induced by the projections U i+1/G→U i/G.

Lemma A.4. Let H be a homotopy invariant functor satisfying Property A.3 for
some d. Let U →U/G be a standard classifying G-torsor and U ′ an open subset
of a G-representation V ′.

1. If codimV ′(V ′ \U ′)≥ d , then the natural homomorphism

H(U/G)→ H((U ×U ′)/G)

is an isomorphism.

2. If codimV (V \U )≥ d , then the cosimplicial group H(U •/G) is constant.

Proof. 1. The scheme (U×U ′)/G is an open subset of the vector bundle (U×V ′)/G
over U/G with complement of codimension at least d. The map in question
is the composition H(U/G)→ H((U × V ′)/G)→ H((U ×U ′)/G) and both
maps in the composition are isomorphisms since H is homotopy invariant and
satisfies Property A.3.

2. By the first part of the lemma applied to the G-torsor U i
→U i/G and U ′=U ,

the map H(U i/G)→ H(U i+1/G) induced by a projection U i+1/G→U i/G is
an isomorphism. �

By Lemma A.4, if H is a homotopy invariant functor satisfying Property A.3 for
some d , then the group H(U/G) does not depend on the choice of the representation
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V and the open set U ⊂ V provided codimV (V \U )≥ d . Following [Totaro 1999],
we denote this group by H(BG).

Example A.5. The split torus T = (Gm)
n over F acts freely on the product U of

n copies of Ar+1
\ {0} with U/T ' (Pr )n , that is, BT is “approximated” by the

varieties (Pr )n if “r >> 0.” We then have CH∗(BT )= S∗(T̂ ), where S∗ represents
the symmetric algebra and T̂ is the character group of T ; see [Edidin and Graham
1998, p. 607]. In particular, Pic(BT ) = CH1(BT ) = T̂ . More generally, by the
Künneth formula [Esnault et al. 1998, Proposition 3.7],

H∗Zar(BT,K∗)' CH∗(BT )⊗ K∗(F)' S∗(T̂ )⊗ K∗(F),

where Kn(F) is the Quillen K -group of F and Kn is the Zariski sheaf associated
to the presheaf U 7→ Kn(U ).

A-V: Étale cohomology. For a scheme X and a closed subscheme Z ⊂ X we write
H∗Z (X,Q/Z( j)) for the étale cohomology group of X with support in Z and values
in Q/Z( j) [Milne 1980, Chapter III, §1]. Write X (i) for the set of points in X of
codimension i . For a point x ∈ X (1) set

H∗x (X,Q/Z( j))= colim
x∈U

H∗
{x}∩U (U,Q/Z( j)),

where the colimit is taken over all open subsets U ⊂ X containing x . If X is a
variety, write

∂x : H∗(F(X),Q/Z( j))→ H∗+1
x (X,Q/Z( j))

for the residue homomorphisms arising from the coniveau spectral sequence [Colliot-
Thélène et al. 1997, 1.2]

E p,q
1 =

∐
x∈X (p)

H p+q
x (X,Q/Z( j))⇒ H p+q(X,Q/Z( j)). (A-1)

Let f : Y → X be a dominant morphism of varieties over F , y ∈ Y (1), and
x = f (y). If x ∈ X (1), there is a natural homomorphism

f ∗y : H
∗

x (X,Q/Z( j))→ H∗y (Y,Q/Z( j)).

The following lemma is straightforward.

Lemma A.6. Let f : Y → X be a dominant morphism of varieties over F , y ∈ Y (1)

and x = f (y).

(1) If x is the generic point of X , then the composition

H∗(F(X),Q/Z( j))
f ∗
−→ H∗(F(Y ),Q/Z( j))

∂y
−→ H∗+1

y (Y,Q/Z( j))

is trivial.
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(2) If x ∈ X (1), the diagram

H∗(F(X),Q/Z( j))

f ∗

��

∂x // H∗+1
x (X,Q/Z( j))

f ∗y
��

H∗(F(Y ),Q/Z( j))
∂y // H∗+1

y (Y,Q/Z( j)).

is commutative.

Lemma A.7. Let X be a geometrically irreducible variety, Z ⊂ X a closed sub-
variety of codimension 1, and x the generic point of Z. Let P be a variety over
F such that P(K ) is dense in P for every field extension K/F with K infinite,
and let y be the generic point of Z × P in Y := X × P. Then the homomorphism
f ∗y : H∗x (X,Q/Z( j))→ H∗y (Y,Q/Z( j)) induced by the projection f : Y → X
is injective.

Proof. Assume first that the field F is infinite. An element α ∈ H∗x (X,Q/Z( j)) is
represented by an element h ∈ H∗Z∩U (U,Q/Z( j)) for a nonempty open set U ⊂ X
containing x . If α belongs to the kernel of

f ∗y : H
∗

x (X,Q/Z( j))→ H∗y (Y,Q/Z( j)),

then there is an open subset W ⊂U × P containing y such that h belongs to the
kernel of the composition

g : H∗Z∩U (U,Q/Z( j))→ H∗(Z∩U )×P(U × P,Q/Z( j))→ H∗(Z×P)∩W (W,Q/Z( j)).

As F is infinite, by the assumption on P , there is a rational point t ∈ P in the
image of the dominant composition (Z × P) ∩ W ↪→ Z × P → P . We have
(U×t)∩W =U ′×t for an open subset U ′⊂U such that x ∈U ′. Composing g with
the homomorphism H∗(Z×P)∩W (W,Q/Z( j))→ H∗Z∩U ′(U

′,Q/Z( j)) induced by the
morphism (U ′, Z∩U ′)→ (W, (Z×P)∩W ), u 7→ (u, t), we see that h belongs to the
kernel of the restriction homomorphism H∗Z∩U (U,Q/Z( j))→H∗Z∩U ′(U

′,Q/Z( j)),
hence the image of α in H∗x (X,Q/Z( j)) is trivial.

Suppose now that F is a finite field. Choose a prime integer p and an infinite
algebraic pro-p-extension L/F . By the first part of the proof, the statement holds
for the variety X L over L . By the restriction-corestriction argument, Ker( f ∗y ) is a
p-primary torsion group. Since this holds for every prime p, we have Ker( f ∗y )= 0.

�

Corollary A.8. Let G be a linear algebraic group over F , let E → X be a G-
torsor over a geometrically irreducible variety X with E a G-rational variety and
consider the first projection p : E2/G→ X. Let x ∈ X and y ∈ E2/G be points of
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codimension 1 such that p(y)= x. Then the homomorphism

p∗y : H
∗

x (X,Q/Z( j))→ H∗y (E
2/G,Q/Z( j))

is injective.

Proof. Choose a linear G-space V and a nonempty G-variety U that is G-isomorphic
to open subschemes of E and V . We can replace the variety E2/G by (E ×U )/G,
an open subscheme in the vector bundle (E×V )/G over X . Shrinking X around x ,
we may assume that the vector bundle is trivial, that is, (E ×U )/G is isomorphic
to an open subscheme in X × V . The statement then follows from Lemma A.7. �

Proposition A.9. In the conditions of Corollary A.8, let h ∈ H∗(F(X),Q/Z( j))bal.
Then ∂x(h)= 0 for every point x ∈ X of codimension 1.

Proof. Let y ∈ E2/G be the point of codimension 1 such that p1(y) = x . As
p2(y) is the generic point of X , by Lemma A.6(1), ∂y(h′)= 0, where h′ = p∗1(h)=
p∗2(h) in H∗(F(E2/G),Q/Z( j)). It follows from Lemma A.6(2) that ∂x(h) is in
the kernel of (p1)

∗
y : H

∗
x (X,Q/Z( j))→ H∗y (E

2/G,Q/Z( j)) and hence is trivial
by Corollary A.8. �

The sheaf H∗(Q/Z( j)) defined in Section 3 has a flasque resolution related to
the Cousin complex by [Colliot-Thélène et al. 1997, §2] (for the p-components
with p 6= char F) and [Gros and Suwa 1988, Theorem 1.4] (for the p-component
with p = char F > 0):

0→Hn(Q/Z( j))→
∐

x∈X (0)

ix∗H n
x (X,Q/Z( j))→

∐
x∈X (1)

ix∗H n+1
x (X,Q/Z( j))→· · · ,

where ix : Spec F(x)→ X are the canonical morphisms. In particular, we have:

Proposition A.10. Let X be a smooth variety over F. The sequence

0→ H 0
Zar(X,H∗(Q/Z( j)))→ H∗(F(X),Q/Z( j))

∂
−→

∐
x∈X (1)

H∗+1
x (X,Q/Z( j)),

where ∂ =
∐
∂x , is exact.

Proposition A.11. Let X be a smooth variety over F and x ∈ X. The sequence

0→ H∗(OX,x ,Q/Z( j)))→ H∗(F(X),Q/Z( j))
∂
−→

∐
x ′∈X (1)
x ′∈{x}

H∗+1
x ′ (X,Q/Z( j))

is exact.
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Appendix B: Spectral sequences

B-I: Hochschild–Serre spectral sequence. Let

A
W
−→B

V
−→ C

be additive left exact functors between abelian categories with enough injective
objects. If W takes injective objects to V -acyclic ones, there is a spectral sequence

E p,q
2 = R pV (Rq W (A))⇒ R p+q(V W )(A)

for every complex A in A bounded from below.
We have exact triangles in the derived category of B:

τ≤n RW (A)→ RW (A)→ τ≥n+1 RW (A)→ τ≤n RW (A)[1], (B-1)

τ≤n−1 RW (A)→ τ≤n RW (A)→ RnW (A)[−n] → τ≤n−1 RW (A)[1]. (B-2)

The filtration on Rn(V W )(A) is defined by

F j Rn(V W )(A)= Im(RnV (τ≤(n− j)RW (A))→ RnV (RW (A))= Rn(V W )(A)).

As τ≥n+1 RW (A) is acyclic in degrees less than or equal to n, the morphism

RnV (τ≤n RW (A))→ RnV (RW (A))= Rn(V W )(A)

is an isomorphism, in particular, F0 Rn(V W )(A)= Rn(V W )(A).
The edge homomorphism is defined as the composition

Rn(V W )(A)−→∼ RnV (τ≤n RW (A))→ RnV (RnW (A)[−n])= V (RnW (A)).

Moreover, the kernel F1 Rn(V W )(A) of the edge homomorphism is isomorphic to
RnV (τ≤n−1 RW (A)). We define the morphism dn as the composition

dn : F1 Rn(V W )(A)→ RnV (Rn−1W (A)[−n+1])= R1V (Rn−1W (A))= E1,n−1
2 .

B-II: First spectral sequence. Let X be a smooth variety over a field F . We have
the functors

Sheavesét(X)
q∗
−→ Sheavesét(F)

V
−→ Ab,

where q∗ is the push-forward map for the structure morphism q : X → Spec(F)
and V (M)= H 0(F,M).

Consider the Hochschild–Serre spectral sequence

E p,q
2 = H p(F, Hq(Xsep,Z(2))⇒ H p+q(X,Z(2)). (B-3)

Set 1(i) := Rq∗(Z(i)) for i = 1 or 2. Then 1(i) is the complex of étale sheaves
on F concentrated in degrees ≥ 1. The j-th term F j H n(X,Z(i)) of the filtration
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on H n(X,Z(i)) coincides with the image of the canonical homomorphism

H n(F, τ≤(n− j)1(i))→ H n(F,1(i))= H n(X,Z(i)).

Let M be a 0-lattice viewed as an étale sheaf over F . Note that there are
canonical isomorphisms

H∗(F,M◦⊗1(i))= Ext∗F (M,1(i))= Ext∗X (q
∗M,Z(i)), (B-4)

where M◦ := Hom(M,Z) is the dual lattice.
Consider also the following product map:

Z(1)⊗L 1(1)→ Rq∗(q∗Z(1)⊗L Z(1))→ Rq∗(Z(1)⊗L Z(1))→ Rq∗(Z(2)).

The complex Z(1)⊗L τ≤21(1) is trivial in degrees greater than 3, hence we have a
commutative diagram

Z(1)⊗L τ≤21(1)

��

prod // τ≤3 Rq∗(Z(2))

��

= τ≤31(2)

Z(1)⊗L 1(1)
prod // Rq∗(Z(2)) = 1(2).

There are canonical morphisms from (B-2):

h2 : τ≤21(1)[2] → H 2(Xsep,Z(1)) and h3 : τ≤31(2)[3] → H 3(Xsep,Z(2)).

Consider an element

δ ∈ H 1(F,M ⊗ F×sep)= Ext1F (M
◦,Gm ,F )= Ext2F (M

◦,Z(1)),

and view δ as a morphism δ : M◦→ Z(1)[2] in D+(Sheavesét(F)).
The following diagram

M◦⊗1(1)[2]
δ⊗1 // Z(1)⊗L 1(1)[4]

prod // 1(2)[4]

M◦⊗ τ≤21(1)[2]

1⊗h2
��

(1⊗i2)[2]

OO

δ⊗1 // Z(1)⊗L τ≤21(1)[4]

1⊗h2
��

(1⊗i2)[4]

OO

prod // τ≤31(2)[4]

h3
��

(i3)[4]

OO

M◦⊗ H 2(Xsep,Z(1))
δ⊗1 // Z(1)⊗L H 2(Xsep,Z(1))[2]

prod // H 3(Xsep,Z(2))[1]

where i2 : τ≤21(1) → 1(1) and i3 : τ≤31(2) → 1(2) are natural morphisms,
is commutative.

By (B-4), we have

H 0(F,M◦⊗1(1)[2])= Ext2F (M,1(1))= Ext2X (q
∗M,Z(1)).
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Furthermore, the diagram above yields a commutative square

Ext2X (q
∗M,Z(1))

d2
��

q∗(δ) ∪ − // F1 H 4(X,Z(2))

d4

��
Hom0(M, H 2(Xsep,Z(1))

j // H 1(F, H 3(Xsep,Z(2))),

where d2 is the edge map coming from the spectral sequence

Extp
F (M, Hq(Xsep,Z(1)))⇒ Extp+q

X (q∗M,Z(1)) (B-5)

and j coincides with the composition

Hom0(M, H 2(Xsep,Z(1))= H 0(F,M◦⊗ H 2(Xsep,Z(1)))
δ ∪ −
−−−→ H 1(F, F×sep⊗ H 2(Xsep,Z(1)))

ρ
−→ H 1(F, H 3(Xsep,Z(2))),

with ρ given by the product map.
Now suppose the group H 2(Xsep,Z(1)), which is canonically isomorphic to

Pic(Xsep), is a lattice. Let M = Pic(Xsep) and consider the torus T over F with
T̂sep = M . It follows that

δ ∈ H 1(F, T ◦)= H 1(F, T̂sep⊗ F×sep)= H 2(F, T̂sep⊗Z(1)),

where T ◦ is the dual torus. Note that δ ∪ 1M = δ, where

1M ∈ H 0(F,M◦⊗ H 2(Xsep,Z(1)))= End0(M)

is the identity.
The top map in the last diagram is given by the pairing

H 1(X, T 0)⊗ H 1(X, T )→ F1 H 4(X,Z(2)),

a⊗ b 7→ a ∪ b,
(B-6)

defined as the cup-product in (4-3),

H 2(X, T̂ (1))⊗ H 2(X, T̂ ◦(1))→ F1 H 4(X,Z(2)),

if we identify Ext2X (q
∗M,Z(1)) with H 2(X, T̂ ◦(1))= H 1(X, T ).

In this case, the homomorphism

ρ : H 1(F, T ◦)→ H 1(F, H 3(Xsep,Z(2))) (B-7)

is given by the product homomorphism

T ◦(Fsep)= F×sep⊗ T̂sep = F×sep⊗Pic(Xsep)→ H 3(Xsep,Z(2)).
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A T -torsor E→ X is called universal if the class of E in

H 1(X, T )= Ext2X (q
∗M,Z(1))

satisfies d2([E])= 1M ; see [Colliot-Thélène and Sansuc 1987a].
Commutativity of the previous diagram gives:

Proposition B.1. Let X be a smooth variety over F such that Pic(Xsep) is a lattice.
Let T be the torus over F satisfying T̂sep = Pic(Xsep) and let E be a universal
T -torsor over X with the class [E] ∈ H 1(X, T ). Then for every δ ∈ H 1(F, T ◦),
we have

d4(q∗(δ)∪ [E])= ρ(δ),

where d4 : F1 H 4(X,Z(2))→ H 1(F, H 3(Xsep,Z(2))) is the map induced by the
Hochschild–Serre spectral sequence (B-3) and the cup-product is taken for the
pairing (B-6).

B-III: Second spectral sequence. We assume that H 3(Xsep,Z(2))= 0, hence in
particular E0,3

2 = 0 in the spectral sequence (B-3) and so E2,2
∞
⊂ E2,2

2 . Therefore,
we have a canonical map

e4 : F2 H 4(X,Z(2))→ E2,2
∞
↪→ E2,2

2 = H 2(F, H 2(Xsep,Z(2)).

Let N be a 0-lattice. Consider an element

γ ∈ H 2(F, N ⊗ F×sep)= Ext2F (N
◦,Gm ,F )= Ext3F (N

◦,Z(1)),

and view γ as a morphism γ : N ◦→ Z(1)[3] in D+(Sheavesét(F)).
As above, the commutative diagram

N ◦⊗1(1)[1]
γ⊗1 // Z(1)⊗L 1(1)[4]

prod // 1(2)[4]

N ◦⊗ τ≤11(1)[1]

1⊗h1
��

(1⊗i1)[1]

OO

γ⊗1 // Z(1)⊗L τ≤11(1)[4]

1⊗h1
��

(1⊗i1)[4]

OO

prod // τ≤21(2)[4]

h2
��

(i2)[4]

OO

N ◦⊗ H 1(Xsep,Z(1))
γ⊗1 // Z(1)⊗L H 1(Xsep,Z(1))[3]

prod // H 2(Xsep,Z(2))[2]

where i1, i2, h1 and h2 are defined in a similar fashion as in Section B-II, yields a
commutative square

Ext1X (q
∗N ,Z(1))

d1
��

q∗(γ ) ∪ − // F2 H 4(X,Z(2))

e4

��
Hom0(N , H 1(Xsep,Z(1)) k // H 2(F, H 2(Xsep,Z(2)))
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where d1 is the edge map coming from the spectral sequence

Extp
F (N , Hq(Xsep,Z(1)))⇒ Extp+q

X (q∗N ,Z(1))

and k coincides with the composition

Hom0(N , H 1(Xsep,Z(1))= H 0(F, N ◦⊗ H 1(Xsep,Z(1)))
γ ∪ −
−−−→ H 2(F, F×sep⊗ H 1(Xsep,Z(1)))→ H 2(F, H 2(Xsep,Z(2)))

with the last homomorphism given by the product map.
Suppose N is a 0-lattice in Fsep[X ]× such that the composition

N ↪→ Fsep[X ]×→ Fsep[X ]×/F×sep

is an isomorphism. Consider the torus Q with Q̂sep = N , so that γ ∈ H 2(F, Q◦).
Note that γ ∪ iN = γ , where

iN ∈ H 0(F, N ◦⊗ H 1(Xsep,Z(1)))= Hom0(N , Fsep[X ]×)

is the embedding.
The top map in the previous diagram is given by the pairing

H 2(X, Q0)⊗ H 0(X, Q)→ F2 H 4(X,Z(2)),

a⊗ b 7→ a ∪ b,
(B-8)

defined as the cup-product in (4-3),

H 3(X, Q̂(1))⊗ H 1(X, Q̂◦(1)))→ H 4(X,Z(2)),

if we identify Ext1X (q
∗N ,Z(1)) with H 1(X, Q̂◦(1))= H 0(X, Q).

The inclusion of Q̂sep into Fsep[X ]× yields a morphism ε : X→ Q that can be
viewed as an element of H 0(X, Q). Consider the map

µ : H 2(F, Q◦)→ H 2(F, H 2(Xsep,Z(2))) (B-9)

given by composition with the product homomorphism

Q◦(Fsep)= F×sep⊗ Q̂sep→ F×sep⊗ H 1(Xsep,Z(1))→ H 2(Xsep,Z(2)).

We have proved:

Proposition B.2. Let X be a smooth variety over F such that H 3(Xsep,Z(2))= 0.
Let N be a 0-lattice in Fsep[X ]× such that the composition

N ↪→ Fsep[X ]×→ Fsep[X ]×/F×sep
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is an isomorphism. Let Q be the torus over F satisfying Q̂sep = N. Then for every
γ ∈ H 2(F, Q◦), we have

e4(q∗(γ )∪ ε)= µ(γ ),

where e4 : F2 H 4(X,Z(2))→ H 2(F, H 2(Xsep,Z(2))) is the map induced by the
Hochschild–Serre spectral sequence (B-3) and the cup-product is taken for the
pairing (B-8).

B-IV: Relative étale cohomology. Let X be a smooth variety over F . Following
B. Kahn [1996, §3], we define the relative étale cohomology groups as follows.
Recall that 1(i) = Rq∗(Z(i)) for i = 1 and 2, where q : X → Spec(F) is the
structure morphism, and let 1′(i) be the cone of the natural morphism Z(i)→1(i)
in D+(Sheavesét(F)). Define

H∗(X/F,Z(2)) := H∗(F,1′(2)).

(Note that our indexing is different from that in [Kahn 1996, §3].)
There is an infinite exact sequence

· · · → H i (F,Z(2))→ H i (X,Z(2))→ H i (X/F,Z(2))→ H i+1(F,Z(2))→ · · ·

If X has a rational point, we have

H i (X/F,Z(2))= H i (X,Z(2)) := H i (X,Z(2))/H i (F,Z(2)).

There is a Hochschild–Serre type spectral sequence [Kahn 1996, §3]

E p,q
2 = H p(F, Hq(Xsep/Fsep,Z(2)))⇒ H p+q(X/F,Z(2)), (B-10)

and we have by [Kahn 1996, Lemma 3.1] that

Hq(Xsep/Fsep,Z(2))=


0 if q ≤ 0,
uniquely divisible group if q = 1,
H 0

Zar(Xsep,K2) if q = 2,
H 1

Zar(Xsep,K2) if q = 3.

It follows that E p,q
2 = 0 if q ≤ 1 and p > 0. Comparing the spectral sequences

(B-3) and (B-10), by Proposition B.1 we have:

Proposition B.3. Let X be a smooth variety over F such that X (F) 6= ∅. If
H 0

Zar(Xsep,K2) = K2(Fsep), then the spectral sequence (B-10) yields an exact
sequence

0→ H 1(F, H 1
Zar(Xsep,K2))

α
−→ H 4(X,Z(2))

→ H 4(Xsep,Z(2))0→ H 2(F, H 1
Zar(Xsep,K2)).
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If , moreover, the group Pic(Xsep) is a lattice and T is the torus over F such that
T̂sep = Pic(Xsep), then α(ρ(δ))= q∗(δ)∪ [E] for every δ ∈ H 1(F, T ◦), where ρ is
defined in (B-7) and E is a universal T -torsor over X.

Comparing the spectral sequences (B-3) and (B-10), by Proposition B.2 we have:

Proposition B.4. Let X be a smooth variety over F such that X (F) 6= ∅. If
H 1

Zar(Xsep,K2)= 0, then the spectral sequence (B-10) yields an exact sequence

0→ H 2(F, H 0
Zar(Xsep,K2))

β
−→ H 4(X,Z(2))

→ H 4(Xsep,Z(2))0→ H 3(F, H 0
Zar(Xsep,K2)).

If N is a 0-lattice in Fsep[X ]× such that the composition

N ↪→ Fsep[X ]×→ Fsep[X ]×/F×sep

is an isomorphism and Q is the torus over F satisfying Q̂sep = N , then β(µ(γ ))=
q∗(γ )∪ ε for every γ ∈ H 2(F, Q◦), where µ is defined in (B-9) and ε ∈ H 0(X, Q)
is given by the inclusion of Q̂sep into Fsep[X ]×.
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