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Hopf monoids from class functions
on unitriangular matrices

Marcelo Aguiar, Nantel Bergeron and Nathaniel Thiem

We build, from the collection of all groups of unitriangular matrices, Hopf
monoids in Joyal’s category of species. Such structure is carried by the collection
of class function spaces on those groups and also by the collection of superclass
function spaces in the sense of Diaconis and Isaacs. Superclasses of unitriangular
matrices admit a simple description from which we deduce a combinatorial model
for the Hopf monoid of superclass functions in terms of the Hadamard product
of the Hopf monoids of linear orders and of set partitions. This implies a recent
result relating the Hopf algebra of superclass functions on unitriangular matrices
to symmetric functions in noncommuting variables. We determine the algebraic
structure of the Hopf monoid: it is a free monoid in species with the canonical
Hopf structure. As an application, we derive certain estimates on the number of
conjugacy classes of unitriangular matrices.

Introduction

A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to
that of a Hopf algebra. Combinatorial structures that compose and decompose give
rise to Hopf monoids. These objects are the subject of [Aguiar and Mahajan 2010,
Part IT]. The few basic notions and examples needed for our purposes are reviewed
in Section 1, including the Hopf monoids of linear orders, set partitions, and simple
graphs and the Hadamard product of Hopf monoids.

The main goal of this paper is to construct a Hopf monoid out of the groups of
unitriangular matrices with entries in a finite field and to do this in a transparent
manner. The structure exists on the collection of function spaces on these groups
and also on the collections of class function and superclass function spaces. It is
induced by two simple operations on this collection of groups: the passage from a
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matrix to its principal minors gives rise to the product, and direct sum of matrices
gives rise to the coproduct.

Class functions are defined for arbitrary groups. An abstract notion and theory
of superclass functions (and supercharacters) for arbitrary groups exists [Diaconis
and Isaacs 2008]. While a given group may admit several such theories, there is
a canonical choice of superclasses for a special class of groups known as algebra
groups. These notions are briefly discussed in Section 4.1. Unitriangular groups
are the prototype of such groups, and we employ the corresponding notion of super-
classes in Section 4.2. The study of unitriangular superclasses and supercharacters
was initiated in [André 1995a; 1995b], making use of the method of Kirillov [1995],
and by more elementary means in [Yan 2001].

Preliminaries on unitriangular matrices are discussed in Section 2. The Hopf
monoids f(U) of functions and cf(U) of class functions are constructed in Section 3.
The nature of the construction is fairly general; in particular, the same procedure
yields the Hopf monoid scf(U) of superclass functions in Section 4.2.

Unitriangular matrices over [, may be identified with simple graphs, and direct
sums and the passage to principal minors correspond to simple operations on graphs.
This yields a combinatorial model for f(U) in terms of the Hadamard product
of the Hopf monoids of linear orders and of graphs, as discussed in Section 3.6.
The conjugacy classes on the unitriangular groups exhibit great complexity and
considerable attention has been devoted to their study [Goodwin 2006; Higman 1960;
Kirillov 1995; Vera-Lopez et al. 2008]. We do not attempt an explicit combinatorial
description of the Hopf monoid cf(U). On the other hand, superclasses are well-
understood (Section 4.3), and such a combinatorial description exists for scf(U). In
Section 4.5, we obtain a combinatorial model in terms of the Hadamard product of
the Hopf monoids of linear orders and of set partitions. This has as a consequence
the main result of [Aguiar et al. 2012], as we explain in Section 6.2.

Employing the combinatorial models, we derive structure theorems for the Hopf
monoids f(U) and scf(U) in Section 5. Our main results state that both are free
monoids with the canonical Hopf structure (in which the generators are primitive).

Applications are presented in Section 6. With the aid of Lagrange’s theorem
for Hopf monoids, one may derive estimates on the number of conjugacy classes
of unitriangular matrices in the form of certain recursive inequalities. We obtain
this application in Section 6.1, where we also formulate a refinement of Higman’s
conjecture on the polynomiality of these numbers. Other applications involving the
Hopf algebra of superclass functions of [Aguiar et al. 2012] are given in Section 6.2.

We employ two fields: the base field k and the field of matrix entries F. We
consider algebras and groups of matrices with entries in F; all other vector spaces
are over K. The field of matrix entries is often assumed to be finite and sometimes
to be [F».
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1. Hopf monoids

We review the basics on Hopf monoids and recall three examples built from lin-
ear orders, set partitions, and simple graphs, respectively. We also consider the
Hadamard product of Hopf monoids. In later sections, Hopf monoids are built from
functions on unitriangular matrices. The constructions of this section will allow us
to provide combinatorial models for them.

1.1. Species and Hopf monoids. For the precise definitions of vector species and
Hopf monoid, we refer to [Aguiar and Mahajan 2010, Chapter 8]. The main
ingredients are reviewed below.

A vector species p is a collection of vector spaces p[/], one for each finite set /,
equivariant with respect to bijections I = J. A morphism of species f : p — q is a
collection of linear maps f; : p[I] — ¢q[I] that commute with bijections.

A decomposition of a finite set [ is a finite sequence (S1, ..., Sx) of disjoint
subsets of / whose union is /. In this situation, we write

I=8u---us8;.

A Hopf monoid consists of a vector species k equipped with two collections @
and A of linear maps

As,.s,

RIS @hIS:] —25 h[I] and  h[I] —-2> h[S1] @ h[S;].

There is one map in each collection for each finite set / and each decomposition
I = S U S,. This data is subject to a number of axioms, of which the main ones
follow.

Associativity. For each decomposition I = S| U S, LI S3, the diagrams

id®/L52‘S3
h[S1]® h[S3] ® h[S3] h[S1]® h[S; U S5]
,usl.s2®idL Lus].szu% (1)
HS1 U 2] ® BS3] ———— hll]
As us,,
Kl R h[S) U S>]1 ® h[S5]

Asy.55u8; l jAsl,sz®id 2)
h($11® h[S, U S3] h($11® h[S2]® h[S3]

id®As, s,

commute.
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Compatibility. Fix decompositions S; LIS, = I = T1UT5,, and consider the resulting
pairwise intersections

A=85NT, B=5SNT C:=5NT), and D:=S5NT,,

as illustrated below:

3)
For any such pair of decompositions, the diagram
h[A]® h[B]® h[C]® h[D] - h[A]® h[C]® h[B] ® h[D]
AA,B®AC,DT lﬂA,C@MB,D 4
RIS @ hIS;] — o Bl ——— h[T @ (T3]

must commute. The top arrow stands for the map that interchanges the middle
factors.

In addition, the Hopf monoid & is connected if h[@] = K and the maps

h[[]@h[@]%h[[] and h[@]@h[l]%h[l]
Az Ag.r

are the canonical identifications.

The collection u is the product, and the collection A is the coproduct of the
Hopf monoid A.

A Hopf monoid is (co)commutative if the left (right) diagram below commutes
for all decompositions I = S7 LI Sy:

h[S{1®h[S:] —~ h[S:1®h[Si] RIS @h[S:] — h[S:]1® h[S]

\ / \ / (5)
) IS,,51 As, s, Ag, .5

h[I]

The top arrows stand for the map that interchanges the factors.
A morphism of Hopf monoids f : h — k is a morphism of species that commutes
with © and A.
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1.2. The Hopf monoid of linear orders. For any finite set I, L[/] is the set of all
linear orders on /. For instance, if I = {a, b, c},

L[I]={abc, bac, acb, bca, cab, cba}.

Let L[/] denote the vector space with basis L[/]. The collection L is a vector
species.

Let I = S;uS;. Given linear orders £; on S;, i = 1, 2, their concatenation £ - £»
is a linear order on /. This is the list consisting of the elements of S; as ordered
by ¢; followed by those of S, as ordered by £,. Given a linear order £ on I and
S C I, the restriction £|s (the list consisting of the elements of § written in the order
in which they appear in £) is a linear order on S. These operations give rise to maps

L[Si] x L[S2] — L[I], L[I]— L[Si] x L[S2],
and 6)
(L1, £2) = £y - L2 L= (Ls,, Ls,).

Extending by linearity, we obtain linear maps
wsy,s, - LISIT® L[S2] — L[I] and  Ag, s, : L[1] = L[S1]® L[S$]

that turn L into a Hopf monoid. For instance, given linear orders £; on S;, i =1, 2,
the commutativity of (4) boils down to the fact that the concatenation of ¢;|4 and
£>|c agrees with the restriction to 77 of £;-£,. The Hopf monoid L is cocommutative
but not commutative. For more details, see [Aguiar and Mahajan 2010, Section 8.5].

1.3. The Hopf monoid of set partitions. A partition of a finite set [ is a collection
X of disjoint nonempty subsets whose union is /. The subsets are the blocks of X.

Given a partition X of / and S C [, the restriction X | is the partition of S whose
blocks are the nonempty intersections of the blocks of X with S. Let I = §; U S5.
Given partitions X; of S;, i = 1, 2, their union is the partition X U X, of / whose
blocks are the blocks of X and the blocks of X;. A quasishuffle of X; and X; is
any partition of I whose restriction to S; is X;,i =1, 2.

Let I1[/] denote the set of partitions of / and II[/] the vector space with basis
[1[7]. A Hopf monoid structure on II is defined and studied in [Aguiar and
Mahajan 2010, Section 12.6]. Among its various linear bases, we are interested in
the basis {mx} on which the operations are as follows. The product

wsy,s, P M[S11®@ H[S2] — II[]]

is given by

wmsy,s,(myx, @my,) = Z my. @)
. Xls =Xy
X: Xls, =X
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The coproduct
Agys, T — T[S ] @ I[S,]

is given by

myx|s @myg, if Sy is the union of some blocks of X,

Ag, s, (mx) = {O (8)

otherwise.
Note that the following conditions are equivalent for a partition X of I:

e S is the union of some blocks of X.
¢ S5 is the union of some blocks of X.
. X:X|Sl I_IX|SZ.

These operations turn the species IT into a Hopf monoid that is both commutative
and cocommutative.

1.4. The Hopf monoid of simple graphs. A (simple) graph g on a finite set [ is a
relation on / that is symmetric and irreflexive. The elements of I are the vertices
of g There is an edge between two vertices when they are related by g.

Given a graph g on [ and S C [, the restriction g|s is the graph on S whose
edges are the edges of g between elements of S. Let / = S U S>. Given graphs g;
of S;, i =1, 2, their union is the graph g, U g, of I whose edges are those of g;
and those of g,. A quasishuffle of g; and g; is any graph on I whose restriction
to S;is g, i=1,2.

Let G[/] denote the set of graphs on I and G[I] the vector space with basis G[/].
A Hopf monoid structure on G is defined and studied in [Aguiar and Mahajan 2010,
Section 13.2]. We are interested in the basis {m,} on which the operations are as
follows. The product

wsy.s, : G[S11® G[S2] — G[I]

is given by

1, 5, (mg, ®mg,) = Y my. ©)

. 8ls; =81
’ g|52:g2

The coproduct
Agys, t GII]1— G[S1]1® G[S]

is given by

Mo, @m if no edge of g connects S; to S»,
As,.5(mg) = { s S =08 (10)

0 otherwise.

Note that no edge of g connects S; to $; if and only if g = gls, L gls,.
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These operations turn the species G into a Hopf monoid that is both commutative
and cocommutative.

Remark 1. The dual of a species p is the collection p* of dual vector spaces:
p*[I]1 = plI]*. A species p is said to be finite-dimensional if each space p[[] is
finite-dimensional. Dualizing the operations of a finite-dimensional Hopf monoid &,
one obtains a Hopf monoid #*. The Hopf monoid 4 is called self-dual if h = h*.
In general, such isomorphism is not unique.

Over a field of characteristic 0, a Hopf monoid that is connected, commutative,
and cocommutative is always self-dual. This is a consequence of the Cartier—Milnor—
Moore theorem. (The isomorphism with the dual is not canonical.)

In particular, the Hopf monoids IT and G are self-dual. In [Aguiar and Mahajan
2010], the preceding descriptions of these Hopf monoids are stated in terms of their
duals IT* and G*. A different description of II is given in [Aguiar and Mahajan
2010, Section 12.6.2]. To reconcile the two, one should use the explicit isomorphism
IT = II* given in [Aguiar and Mahajan 2010, Proposition 12.48].

1.5. The Hadamard product. Given species p and ¢, their Hadamard product is
the species p x g defined by

(px U= plI1®q[I].

If h and k are Hopf monoids, then so is & x k with the following operations. Let
I = S U S,. The product is

xS xB)[SH]------—————————— - = (h x k)[1]

h[SI1QK[S|1Qh[S:] Qk[S h($1]1® h[S>] h
[S1]1®@Kk[S|]® h[S2] ® k[S2] - ®k1[51]®k%52] PPy

and the coproduct is defined dually. If & and k are (co)commutative, then so is
h x k. For more details, see [Aguiar and Mahajan 2010, Section 8.13].

2. Unitriangular matrices

This section sets up the basic notation pertaining to unitriangular matrices and
discusses two simple but important constructions: direct sum of matrices and the
passage from a matrix to its principal minors. The Hopf monoid constructions of
later sections are based on them. The key results are Lemmas 2 and 3. The former
is the reason why we must use unitriangular matrices: for arbitrary matrices, the
passage to principal minors is not multiplicative. The latter will be responsible (in
later sections) for the necessary compatibility between the product and coproduct
of the Hopf monoids.
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Let F be a field, I a finite set, and ¢ a linear order on /. Let M(/) denote the
algebra of matrices

A= (aij)i,jel, aij € [F for all i,j el.

The general linear group GL (/) consists of the invertible matrices in M(/), and the
subgroup U(/, £) consists of the upper £-unitriangular matrices

U = (ujj)i jer, uj;=1foralli el and u;; =0 wheneveri >, j.

If £’ is another linear order on I, then U(/, £) and U(/, £) are conjugate subgroups
of GL(I). However, we want to keep track of all groups in this collection and of
the manner in which they interact.

2.1. Direct sum of matrices. Suppose I = S; U S, is a decomposition. Given
A = (a;j) € M(S81) and B = (b;j) € M(S>), their direct sum is

A® B =(c;j) e M(I),

the matrix with entries

a;j ifbothi, j €Sy,
Cij = b[j if both i, j € S5,
0 otherwise.

Let £ € L[I]. The direct sum of an £|s, -unitriangular and an £|g,-unitriangular
matrix is £-unitriangular. The morphism of algebras

M(S)) x M(82) > M), (A,B)—~> ADB
thus restricts to a morphism of groups
05,5, - UGS, £ls,) x U(S2, £]s,) = U, £). (11)

(The dependence of o, 5, on £ is left implicit.)
Direct sum of matrices is associative; thus, for any decomposition / = S1.S,L1S3,
the diagram

g, .S xid
U(S1, £]s,) x U(Sa, £]s,) x U(S3, £]s,) —= US1USa, Elsyus,) x U(S3, s,)
idxas, s, l laslusz,% (12)
UGS1, £]5,) x U(S2 1S3, Cs,s,) U, o)

051.,5,uS3
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commutes. Note also that, with these definitions, A @ B and B @ A are the same
matrix. Thus, the following diagram commutes:

~

U(S1, £ls) x U(S2, £s,) U(S2, £ls,) x U(S1, £sy)

051,85 055,51

U(S1u$2, £)

2.2. Principal minors. Given A = (a;;) € M(I), the principal minor indexed by
S C I is the matrix

As = (aij)i jes-

In general, Ay is not invertible even if A is. In addition, the assignment A — Ag
does not preserve multiplications. On the other hand, if U is £-unitriangular, then Ug
is £|s-unitriangular. In regard to multiplicativity, we have the following basic fact.
We say that S is an ¢-segment if i, k € S and i <; j <, k imply that also j € S.
Let E;; € M(I) denote the elementary matrix in which the (i, j) entry is 1 and
all other entries are 0.

Lemma 2. Let £ € L[I] and S C 1. The map
U(I,E)—)U(S,mg), Ul—)US
is a morphism of groups if and only if S is an £-segment.

Proof. Suppose the map is a morphism of groups. Leti, j, k € I be such thati, k € S
and i < j <¢ k. The matrices

Id-f—El'j and Id+ Ejk
are in U(/, £), and
(Id+E;j)-(Id+ Ejp) =1d+ E;j + Eji + Ejg.

If j ¢ S, then the two matrices are in the kernel of the map while their product is
mapped to Id + E;; # Id. Thus, j € § and S is an £-segment.
The converse implication follows from the fact that if U and V are £-unitriangular,
then the (i, k) entry of UV is
Z u; j v jk- O

i<ej=<ek
Let I = S| US> be a decomposition with £; € L[S;], i =1, 2. We define a map
7.5, - U, £y - £2) = U(Sy, £1) x U(S2, £2) (14)

by
U (USI, USz)'
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Note that S is an initial segment for £; - £, and S, is a final segment for £; - 5.
Thus, s, s, is a morphism of groups by Lemma 2.

If RC S C1,then (As)g = Ag. This implies the following commutativity for
any decomposition I = S, US, U S; and ¢; € L[S;],i =1, 2, 3:

TS U8y, 53

U, 41 -£2-£3) U(S1 U Sy, €1 -£2) x U(S3, £3)

7TS1,SZIJS3j 7TS14S2Xid (15)
U(S1, €1) x U(S21 83, £ - £3)

idxs, 5, U(S1, €1) x U(S2, £2) x U(S3, £3)
2.3. Direct sums and principal minors. The following key result relates the col-
lection of morphisms o to the collection 7:

Lemma 3. Fix two decompositions I = S;US, =T, U Ty, and let A, B, C, and D
be the resulting intersections, as in (3). Let {; be a linear order on S;, i = 1,2, and
£ =14y -€,. Then the following diagram commutes:

TA.CXTB,
U(T1, £l7,) x U(Ta, £]7,) ——> Eg}f‘(;lmﬁﬁgzﬁt)

OT|. T

U(l, ¢)

I

(16)

5,8,

U(A, €1|a) x U(B, £1|B)

RO ) e XU, Ble) x U(D. o)

Proof. First note that since £|7, = (£1]4) - (€2]c), ma,c does map as stated in the
diagram and similarly for w5 p. The commutativity of the diagram boils down to
the simple fact that

UV)s;=Us®Vp

(and a similar statement for S, C, and D). This holds for any U € M(T}) and
V e M(T»). O

3. A Hopf monoid of (class) functions

We employ the operations of Section 2 (direct sum of matrices and the passage from
a matrix to its principal minors) to build a Hopf monoid structure on the collection
of function spaces on unitriangular matrices. The collection of class function spaces
gives rise to a Hopf submonoid. With matrix entries in [,, the Hopf monoid of
functions may be identified with the Hadamard product of the Hopf monoids of
linear orders and of simple graphs.
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3.1. Functions. Given a set X, let f(X) denote the vector space of functions on X
with values on the base field k. The functor

f: {sets} — {vector spaces}

is contravariant. If at least one of two sets X and X5 is finite, then there is a
canonical isomorphism

f(X1 x X2) = (X)) @ f(X»). (17)

A function f € f(X x X,) corresponds to >, f'® f? € f(X 1) ®f(X>) if and only if

flx1, x) = Z fi1 (xl)fiz(xz) for all x; € X; and x; € X».

1

Given an element x € X, let «, : X — K denote its characteristic function:

1 ify=x,

18
0 if not. (18)

kx(y) = {

Suppose now that X is finite. As x runs over the elements of X, the functions «, form
a linear basis of f(X). If ¢ : X — X’ is a function and x’ is an element of X’, then

Keop= > ki (19)
p(x)=x'
Under (17),
K(xy,x0) <> Ky @ Ky, (20)

3.2. Class functions on groups. Given a group G, let cf(G) denote the vector
space of class functions on G. These are the functions f : G — K that are constant
on conjugacy classes of G. If ¢ : G — G’ is a morphism of groups and f is a class
function on G’, then f o ¢ is a class function on G. In this manner,

cf : {groups} — {vector spaces}

is a contravariant functor. If at least one of two groups G| and G is finite, then
there is a canonical isomorphism

cf(G) x Gy) = cf(G1) R cf(Gy) 21

obtained by restriction from the isomorphism (17).
Given a conjugacy class C of G, let k¢ : G — K denote its characteristic function:

| ifxeC
- : 2
e (x) {0 if not. 2)



1754 Marcelo Aguiar, Nantel Bergeron and Nathaniel Thiem

Suppose G has finitely many conjugacy classes. As C runs over the conjugacy
classes of G, the functions k¢ form a linear basis of cf(G). If C’ is a conjugacy
class of G/, then

Kcrop = Z Kc. (23)

pO)cC

The conjugacy classes of G| x G, are of the form C; x C,, where C; is a conjugacy
class of G;, i =1, 2. Under (21),

KCyxC, <> K, ®Ke,. 24)

3.3. Functions on unitriangular matrices. We assume for the rest of this section
that the field F of matrix entries is finite. Thus, all groups U(/, £) of unitriangular
matrices are finite.

We define a vector species f(U) as follows. On a finite set 7,

fon= @ fud, o).

Lel[l]

In other words, f(U)[/] is the direct sum of the spaces of functions on all unitriangu-
lar groups on /. A bijection o : I = J induces an isomorphism U(/, £) =U(J, 0 -£)
and therefore an isomorphism f(U)[/] = f(U)[J]. Thus, f(U) is a species.

Let I = S;u S, and ¢; € L[S;],i =1, 2. Applying the functor f to the morphism
7s,.s, in (14) and composing with the isomorphism in (17), we obtain a linear map

fUS1, €)) @ F(U(S2, £2)) — F(U, £y - £2)).
Adding over all £; € L[S;] and £, € L[S;], we obtain a linear map
wsy.s, - FUS11 @ FU)[S2] — FU)[/]. (25)
Explicitly, given functions f : U(S}, £;) — K and g : U(S$,, £3) — K,
wsis,(f ®8) U, £y -£r) > K

is the function given by
U f(Us)g(Us,). (26)

Similarly, from the map o, s, in (11), we obtain the components
f(U, £)) — f(U(S1, £]5,)) @ F(U(S2, £ls,))
(one for each £ € L[/]) of a linear map

As,s, FU)I] = FU)[S1 1@ FU)[S2]. (27)



Hopf monoids from class functions on unitriangular matrices 1755

Explicitly, given a function f : U(I, £) — Kk, we have Ag, 5, (f) =D, fil ® fl-z,
where

£US els) — k and  f7:U(S,, £]s,) — k

are functions such that

fWieU) =" £ U)W
i for all Uy € U(S), £]s,) and Up € U(Sy, £]s,).  (28)

Proposition 4. With the operations (25) and (27), the species f(U) is a connected
Hopf monoid. It is cocommutative.

Proof. Axioms (1), (2), and (4) follow from (12), (15), and (16) by functoriality. In
the same manner, cocommutativity (5) follows from (13). [l

We describe the operations on the basis of characteristic functions (18). Let
U, eU(S;, £;),i=1, 2. Itfollows from (19) and (20), or from (26), that the product is

usy,s, (Ku, @ ky,) = E Ky = E Ky - (29)
75,8, (U)=(U1,U2) Us,=U;
Us,=U>

Similarly, the coproduct is

KUs, ®KU52 it U =Us, @ Us,,

) (30)
0 otherwise.

Agy, s (ky) = Z Ky, @ kv, = {

05,5, (U1,U2)=U

3.4. Constant functions. Let 1, denote the constant function on U(/, £) with
value 1. Let I = S U S,. It follows from (26) that

wsy,s, (Lo, @ 1g,) =1g,.4,
for any £; € L[S;] and ¢, € L[S;]. Similarly, we see from (28) that
Asys,(1e) = g5, @ 1y,
for any £ € L[/]. We thus have:
Corollary 5. The collection of maps
L[I1— f(U)[I], ¢—1,

is an injective morphism of Hopf monoids.
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3.5. Class functions on unitriangular matrices. Let cf(U)[I] be the direct sum
of the spaces of class functions on all unitriangular groups on /:

cf(U)[I] = @ cf(U(I, 0)).

LeL[l]

This defines a subspecies cf(U) of f(U).
Proceeding in the same manner as in Section 3.3, we obtain linear maps

KS1.Sy

cf(U)[S1]1 @ cf(U)[S2] cf(U)[1]

As.s,

by applying the functor cf to the morphisms g, 5, and o, s,. This is meaningful
since the latter are morphisms of groups (in the case of g, 5,, by Lemma 2).

Proposition 6. With these operations, the species cf(U) is a connected cocommuta-
tive Hopf monoid. It is a Hopf submonoid of f(U).

Proof. As in the proof of Proposition 4, the first statement follows by functoriality.
The second follows from the naturality of the inclusion of class functions and its
compatibility with the isomorphisms in (17) and (21). O

We describe the operations on the basis of characteristic functions (22). Let C;
be a conjugacy class of U(S;, ¢;), i = 1, 2. It follows from (23) and (24) that the
product is

us,.s,(kc, ®kc,) = > K, 31)

751,85, (C)SC1xCo

where the sum is over conjugacy classes C in U(/, £;-£;). Similarly, the coproduct is

Asy,s5,(kc) = > ke, @Ke,- (32)
05,5, (C1xC2)CC

Here C is a conjugacy class of U(/, £), and the sum is over pairs of conjugacy
classes C; of U(S;, £]s;).

Remark 7. Let

% : {groups} — {vector spaces}

be a functor that is contravariant and bilax monoidal in the sense of [Aguiar and
Mahajan 2010, Section 3.1]. The construction of the Hopf monoids f(U) and
cf(U) can be carried out for any such functor % in place of cf in exactly the same
manner. It can also be carried out for a covariant bilax monoidal functor ¥ in
a similar manner.
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3.6. A combinatorial model. To a unitriangular matrix U € U(/, £), we associate
a graph g(U) on [ as follows: there is an edge between i and j if i < j in £ and
u;j # 0. For example, given nonzero entries a, b, ¢ € I,

100a %
c—nijk, v=| 10¢

= g(U)= e . ° e . (33)
10 h i j k
1

Recall the Hopf monoids L and G and the notion of Hadamard product from
Section 1. Let

¢:LxG— f(U)
be the map with components
(L xG)[I]1— fU)[I]
given as follows. On a basis element £ ® mg € L[1]® G[I] = (L x G)[I], we set
pl@mg)= Y ky€fUU, 0) U] (34)
UeU(l,6)
gWU)=¢

and extend by linearity. The map relates the m-basis of G to the basis of character-
istic functions (18) of f(U).

Proposition 8. Let | be an arbitrary finite field. The map ¢ : L x G — f(U) is an
injective morphism of Hopf monoids.

Proof. From the definition of the Hopf monoid operations on a Hadamard product
and formulas (6) and (9), it follows that

1,5 ®mg) ® (2 ®@mg)) = > £l @my.

8ls; =81
gls,=g2

Comparing with (29), we see that products are preserved since given U € U(/, £),
we have

The verification for coproducts is similar, employing (6), (10), and (30) and the fact
that given I = §1 U .S, and U; € U(S;, £]s;), we have

gU1 ® U2) = g(U) ug(ly).
Consider the map ¢ : f(U) — L x G given by

lﬁ(KU) =€®mg(U) (35)
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for any U € U(U, £). Then
YU ®@my) = (g — )L @my,

where ¢ is the cardinality of F and e(g) is the number of edges in g. Thus, ¢ is
injective. ]
We mention that the map i in (35) is a morphism of comonoids but not of
monoids in general.
Assume now that the matrix entries are from [,, the field with two elements.
In this case, the matrix U is uniquely determined by the linear order ¢ and the
graph g(U). Therefore, the map ¢ is invertible with inverse .

Corollary 9. There is an isomorphism of Hopf monoids
fO=ZELxG

between the Hopf monoid of functions on unitriangular matrices with entries in Fy
and the Hadamard product of the Hopf monoids of linear orders and simple graphs.

On an arbitrary function f : U(/, £) — K, the isomorphism is given by

V(H=E® Y [Wmgu).

UeU(l,t)

The coefficients of the m-basis elements are the values of f.

4. A Hopf monoid of superclass functions

An abstract notion of superclass (and supercharacter) has been introduced by
Diaconis and Isaacs [2008]. We only need a minimal amount of related concepts
that we review in Sections 4.1 and 4.2. For this purpose, we first place ourselves in
the setting of algebra groups. In Section 4.2, we construct a Hopf monoid structure
on the collection of spaces of superclass functions on the unitriangular groups by
the same procedure as that in Section 3. The combinatorics of these superclasses
is understood from the thesis of Yan [2001] (reviewed in slightly different terms
in Section 4.3), and this allows us to obtain an explicit description for the Hopf
monoid operations in Section 4.4. This leads to a theorem in Section 4.5 identifying
the Hopf monoid of superclass functions with matrix entries in [, to the Hadamard
product of the Hopf monoids of linear orders and set partitions. The combinatorial
models for functions and for superclass functions are related in Section 4.6.

4.1. Superclass functions on algebra groups. Let n be a nilpotent algebra: an
associative, nonunital algebra in which every element is nilpotent. Letn =F&n
denote the result of adjoining a unit to n. The set

Gm)={l4+n|nen}
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is a subgroup of the group of invertible elements of n. A group of this form is called
an algebra group. (This is the terminology employed in [Diaconis and Isaacs 2008]
and, in a slightly different context, [André 1999; Isaacs 1995].)

A morphism of nilpotent algebras ¢ : m — n has a unique unital extension m — n,
and this sends G(m) to G(n). A morphism of algebra groups is a map of this form.

Warning. When we refer to the algebra group G(n), it is implicitly assumed that
the algebra n is given as well.

Following Yan [2001], we define an equivalence relation on G(n) as follows.
Given x, y € G(n), we write x ~ y if there exist g, h € G(n) such that

y—1=g(x—Dh. (36)

Following now Diaconis and Isaacs [2008], we refer to the equivalence classes
of this relation as superclasses and to the functions G (n) — K constant on these
classes as superclass functions. The set of such functions is denoted scf(G (n)).

Since

1 1

gxg —1=glx—-Dg ",

we have that x ~ gxg~! for any x, g € G(n). Thus, each superclass is a union of
conjugacy classes, and hence, every superclass function is a class function:

scf(G(n)) C cf(G(n)). (37)

A morphism ¢ : G(m) — G(n) of algebra groups preserves the relation ~.
Therefore, if f : G(n) — K is a superclass function on G(n), then f o ¢ is a
superclass function on G (m). In this manner,

scf : {algebra groups} — {vector spaces}

is a contravariant functor. In addition, the inclusion (37) is natural with respect to
morphisms of algebra groups.
The direct product of two algebra groups is another algebra group. Indeed,

G(n) xG(np) =G(ny ©n2)
and n; @ ny is nilpotent. Moreover,
(x1,x2) ~ (¥1, y2) <= (x1 ~ y1 and x3 ~ y2).

Therefore, a superclass of the product is a pair of superclasses from the factors, and
if at least one of the two groups is finite, there is a canonical isomorphism

scf(G(ny) x G(np)) = scf(G(n))) ® scf(G(ny)).
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4.2. Superclass functions on unitriangular matrices. Given a finite set / and a
linear order £ on [, let n(/, £) denote the subalgebra of M(/) consisting of strictly
upper-triangular matrices

N = (n;j)i jer, nij =0 wheneveri > j.

Then n(/, £) is nilpotent and G (n(Z, £)) = U(/, £). Thus, the unitriangular groups
are algebra groups.

We assume from now on that the field F is finite.

We define, for each finite set 7,

scf(U)[1] = @ scf(U(1, £)).

Lel[l]

This defines a species scf(U). Proceeding in the same manner as in Sections 3.3
and 3.5, we obtain linear maps

HSy.8,

scf(U)[S1] @ scf(U)[S] scf(U)[/]

Ag sy

by applying the functor scf to the morphisms 7s, 5, and o, s,. This is meaningful
since the latter are morphisms of algebra groups: it was noted in Section 2.1 that
0s,.s, is the restriction of a morphism defined on the full matrix algebras while
the considerations of Lemma 2 show that 7, s, is the restriction of a morphism
defined on the algebra of upper-triangular matrices.

Proposition 10. With these operations, the species scf(U) is a connected cocom-
mutative Hopf monoid. It is a Hopf submonoid of cf(U).

Proof. As in the proof of Proposition 4, the first statement follows by functoriality.
The second follows from the naturality of the inclusion (37). ([l

(31) and (32) continue to hold for the (co)product of superclass functions.
The constant function 1, is a superclass function. Thus, the morphism of Hopf
monoids of Corollary 5 factors through scf(U) and cf(U):

L — scf(U) — cf(U) — f(U).

4.3. Combinatorics of the superclasses. Yan [2001] showed superclasses are para-
metrized by certain combinatorial data essentially along the lines presented below.

According to (36), two unitriangular matrices U; and U, are in the same super-
class if and only if U, —1d is obtained from U; —Id by a sequence of elementary row
and column operations. The available operations are from the unitriangular group
itself, so the pivot entries cannot be normalized. Thus, each superclass contains
a unique matrix U such that U — Id has at most one nonzero entry in each row
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and each column. We refer to this matrix U as the canonical representative of the
superclass.

We proceed to encode such representatives in terms of combinatorial data.

We first discuss the combinatorial data. Let £ be a linear order on a finite set /
and X a partition of /. Let us say that i, j € I bound an arc if

e | precedes j in ¢,
e i and j are in the same block of X, say S, and
» no other element of § lies between i and j in the order £.

The set of arcs is
A(X, 0):={(, j)|i and j bound an arc}.

Consider also a function
a:AX, ) — F*

from the set of arcs to the nonzero elements of . We say that the pair (X, «) is an
arc diagram on the linearly ordered set (/, £). We may visualize an arc diagram:

a c
T T
o [ ] o ./\. [ ]
f g h i Jj k

Here the combinatorial data is

t=fghijk, X={{f1i j}{g}h{h.k}}, a(f.i)=a, al, j)=0b, alh, k)=c.

Fix the linear order €. To an arc diagram (X, o) on (/, £), we associate a matrix
Ux  with entries
a(, j) if @, j) e A(X, 1),
Ujj = 1 ifi = j,
0 otherwise.
Clearly, the matrix Uy o is £-unitriangular and Uy , — Id has at most one nonzero
entry in each row and each column. In the above example,

100a 00
10000

100 ¢

Uxa = 1do0
10
1

Conversely, any canonical representative matrix U € U(/, £) is of the form Uy ,
for a unique arc diagram (X, «) on (I, £): the location of the nonzero entries
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determines the set of arcs, and the values of the entries determine the function «.
The smallest equivalence relation on / containing the set of arcs determines the
partition X.

In conclusion, the canonical representatives, and hence the superclasses, are in
bijection with the set of arc diagrams. We let Cx , denote the superclass of U(/, £)
containing Uy o, and we write kx  for the characteristic function of this class. As
(X, o) runs over all arc diagrams on (/, £), these functions form a basis of the space
scf(U(1, £)).

We describe principal minors and direct sums of the canonical representatives. To
this end, fix £ € L[/] and recall the notions of union and restriction of set partitions
discussed in Section 1.3.

Let S C I be an arbitrary subset. Given a partition X of 1, let A(X, £)|s denote the
subset of A(X, £) consisting of those arcs (i, j) where both i and j belong to S. We
let a|s denote the restriction of o to A(X, £)|s. We have A(X, £)|s C A(X|s, £|s),
and if S is an £-segment, then

AX, O|s = A(X]s, L]s). (38)
In this case, we obtain an arc diagram (X|s, ¢|s) on (S, £|s), and we have
(Ux,a)s = Ux|s,als- (39)

Suppose now that / = S1US, and (X;, «;) is an arc diagram on (S;, £|s,), i =1, 2.
Then

AX1U X3, 6) = A(Xy, £]s) UA(X2, £]s,). (40)

Let o1 Ly denote the common extension of o and «» to this set. Then the pair
(X1 U X>, 0] Uap) is then an arc diagram on (/, £) and

UX1,O(| @ UXz,Olz - UXII_IX2,O(1I_|012' (41)

4.4. Combinatorics of the (co)product. We now describe the product and coprod-
uct of the Hopf monoid scf(U) on the basis {«xx o} of Section 4.3. We employ (31)
and (32), which, as discussed in Section 4.2, hold for superclass functions.

Let I =S, U8 and ¢; e L[S;], i =1, 2, and consider the product

scf(U(S1, €1)) x scf(U(Ss, £2)) — scf(U(I, £; - £2)).

Let (X;, «;) be an arc diagram on (/, ¢;), i =1, 2. According to (31), we have

wsy, s, (Kx, 0 @ Kxya0) = E KX.as

751,85, (Cx,0) ECx 1,0y XCxyp 0y



Hopf monoids from class functions on unitriangular matrices 1763

a sum over arc diagrams (X, @) on (I, €1 - £3). Since mg r preserves superclasses,

75,5 (Cx.a) € Cxj 0 X Cxy00 = 75,,5,(Uxa) € Cxy 0y X Cxy
— (UX,O()S,‘ € CX;,aig i = 1, 2.

In view of (39), this is in turn equivalent to
X|Si:Xi and Ol|Si,=Oll', i=1,2.

In conclusion,

I’LS]ySZ(KXl,Ul] ®KX2,012) = Z KX,a- 42)
Xls; =X
als;=a;

The sum is over all arc diagrams (X, «) on (Z, £; - £;) whose restriction to §; is

(X,', Ol,') fori = 1, 2.
Take now ¢ € L[I], I = S; U S,, and consider the coproduct

scf(U(1, £)) — scf(U(S1, £]s,)) x scf(U(S2, £]s,)).

Let (X, o) be an arc diagram on (/, £). According to (32), we have

AS[,Sz(KX,oc) = E KX,ar @ KXs,0r5

051,95 (Cx 1,01 XCx5,0) ) ECx

a sum over arc diagrams (X;, ;) on (S;, £|s;). The superclass Cx, o, X Cx,.0»
contains (Ux, «,, Ux,.«,), and hence, its image under oy, s, contains

UX1,D[1 ® UXz,az = UX]LIXQ,O[]I_IO[Z
by (41). Therefore,
05.5Cx,.0, XCxy.00) €CCxo <= X1UXp;=X and ajUar=0c.

Note that X; U X, = X if and only if S; (or equivalently, S>) is a union of blocks
of X. In this case, X; = X|s, and o; = «|s,. In conclusion,

Kxls, als, ® KX]s,,als, 1f S11s the union of some blocks of X,

A K =
$1.8, (KX o) {0 otherwise.

(43)

4.5. Decomposition as a Hadamard product. The apparent similarity between the
combinatorial description of the Hopf monoid operations of scf(U) in Section 4.4
and those of the Hopf monoids L and IT in Sections 1.2 and 1.3 can be formalized.
Recall the Hadamard product of Hopf monoids from Section 1.5.
Let
¢ : L x I — scf(U)
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be the map with components
(L x ID[I]— scf(U)[1]
given as follows. On a basis element £ @ myx € L[I]Q II[I] = (L x II)[1], we set

pUl@myx) = Z Kkx.« €scf(U(I, £)) C scf(U)[1] (44)
a:A(X, 0)—>F*

and extend by linearity. The morphism ¢ adds labels to the arcs in all possible ways.

Proposition 11. Let F be an arbitrary finite field. The map ¢ : L x II — scf(U) is
an injective morphism of Hopf monoids.

Proof. This follows by comparing definitions, as in the proof of Proposition 8. The
relevant equations are (6), (7), and (8) for the operations of L x IT and (42) and (43)
for the operations of scf(U). O

When the field of matrix entries is [, the arc labels are uniquely determined.
The map ¢ is then invertible with inverse i given by

Vkx,a) =L ®mx
for any arc diagram (X, ) on a linearly ordered set (/, £). We thus have:
Corollary 12. There is an isomorphism of Hopf monoids
scf(U)= L x1I

between the Hopf monoid of superclass functions on unitriangular matrices with
entries in F, and the Hadamard product of the Hopf monoids of linear orders and
set partitions.

4.6. Relating the combinatorial models. The results of Section 4.5 provide a com-
binatorial model for the Hopf monoid scf(U). They parallel those of Section 3.6 that
do the same for f(U). We now interpret the inclusion scf(U) < f(U) in these terms.

Let X be a partition on a linearly ordered set (/, £). We may regard the set of
arcs A(X, £) as a simple graph on /. Let G(X, £) denote the set of simple graphs g
on [ such that

o g contains the graph A(X, ¢£) and

e ifi < jin £ and g \ A(X, £) contains an edge between 