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The geometry and combinatorics of
cographic toric face rings

Sebastian Casalaina-Martin, Jesse Leo Kass and Filippo Viviani

In this paper, we define and study a ring associated to a graph that we call the
cographic toric face ring or simply the cographic ring. The cographic ring is the
toric face ring defined by the following equivalent combinatorial structures of a
graph: the cographic arrangement of hyperplanes, the Voronoi polytope, and the
poset of totally cyclic orientations. We describe the properties of the cographic
ring and, in particular, relate the invariants of the ring to the invariants of the
corresponding graph.

Our study of the cographic ring fits into a body of work on describing rings
constructed from graphs. Among the rings that can be constructed from a graph,
cographic rings are particularly interesting because they appear in the study of
compactified Jacobians of nodal curves.

Introduction

In this paper, we define and study a ring R(I") associated to a graph I" that we call
the cographic toric face ring or simply the cographic ring. The cographic ring R(I")
is the toric face ring defined by the following equivalent combinatorial structures
of I': the cographic arrangement of hyperplanes %#, the Voronoi polytope Vorr,
and the poset of totally cyclic orientations 0%. We describe the properties of the
cographic ring and, in particular, relate the invariants of the ring to the invariants of
the corresponding graph.

Our study of the cographic ring fits into a body of work on describing rings
constructed from graphs. Among the rings that can be constructed from a graph,
cographic rings are particularly interesting because they appear in the study of
compactified Jacobians.

The authors establish the connection between R(I') and the local geometry
of compactified Jacobians in [Casalaina-Martin et al. 2011]. The compactified
Jacobian J ‘)1( of a nodal curve X is the coarse moduli space parametrizing sheaves

MSC2010: primary 14H40; secondary 13F55, 05E40, 14K30, 05B35, 52C40.
Keywords: toric face rings, graphs, totally cyclic orientations, Voronoi polytopes, cographic
arrangement of hyperplanes, cographic fans, compactified Jacobians, nodal curves.
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on X that are rank-1, semistable, and of fixed degree d. These moduli spaces have
been constructed by Oda and Seshadri [1979], Caporaso [1994], Simpson [1994],
and Pandharipande [1996], and the different constructions are reviewed in Section 2
of [Casalaina-Martin et al. 2011]. In Theorem A of the same work, it is proved that
the completed local ring of J ‘)1( at a point is isomorphic to a power series ring over
the completion of R(I") for a graph I" constructed from the dual graph of X.

Also in [Casalaina-Martin et al. 2011], we studied the local structure of the
universal compactified Jacobian, which is a family of varieties over the moduli
space of stable curves whose fibers are closely related to the compactified Jacobians
just discussed. (See Section 2 of [loc. cit.] for a discussion of the relation between the
compactified Jacobians from the previous paragraph and the fibers of the universal
Jacobian). Caporaso [1994] first constructed the universal compactified Jacobian,
and Pandharipande [1996] gave an alternative construction. In [Casalaina-Martin
et al. 2011, Theorem A] we gave a presentation of the completed local ring of the
universal compactified Jacobian at a point, and we will explore the relation between
that ring and the affine semigroup ring defined in Section 5A in the upcoming paper
[Casalaina-Martin et al. 2012].

Cographic toric face rings are examples of toric face rings. Recall that a toric
face ring is constructed from the same combinatorial data that is used to construct
a toric variety: a fan. Let Hz be a free, finite-rank Z-module and & be a fan
that decomposes Hg = Hz ®z R into (strongly convex rational polyhedral) cones.
Consider the free k-vector space with basis given by monomials X¢ indexed by
elements ¢ € Hy. If we define a multiplication law on this vector space by setting

/ .
Xcte  ife, ¢’ € o for some o € F,

X¢. X< =
0 otherwise

and extending by linearity, then the resulting ring R (%) is the toric face ring (over k)
that is associated to F.

We define the cographic toric face ring R(I") of a graph I' to be toric face
ring associated to the fan that is defined by the cographic arrangement %# The
cographic arrangement is an arrangement of hyperplanes in the real vector space Hr
associated to the homology group Hz := H{(I", Z) of the graph. Every edge of I
naturally induces a functional on Hg, and the zero locus of this functional is a
hyperplane in Hg, provided the functional is nonzero. The cographic arrangement
is defined to be the collection of all hyperplanes constructed in this manner. The
intersections of these hyperplanes define a fan 9?1% the cographic fan. The toric
face ring associated to this fan is R(I").

We study the fan 9?# in Section 3. The main result of that section is Corollary 3.9,
which provides two alternative descriptions of 9# First, using a theorem of Amini,
we prove that @% is equal to the normal fan of the Voronoi polytope Vorr. As a
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consequence, we can conclude that @#, considered as a poset, is isomorphic to the
poset of faces of Vorr ordered by reverse inclusion. Using work of Greene and
Zaslavsky, we show that this common poset is also isomorphic to the poset 0% of
totally cyclic orientations.

The combinatorial definition of R(I") does not appear in [Casalaina-Martin et al.
2011]. Rather, the rings in that paper appear as invariants under a torus action.
The following theorem, proven in Section 6 (Theorem 6.1), shows that the rings in
[Casalaina-Martin et al. 2011] are (completed) cographic rings:

Theorem A. Let ' be a finite graph with vertices V (I'), oriented edges E (I'), and
source and target maps s, t : E(I') — V(I'). Let
klUs;, Uz :e € E(I')]

(Us;Uz e E(I))

Tt := 1_[ G, and AM):=
veV(T)

If we make Tt act on A(T") by

XUz = ki@ Ush, 3y,

then the invariant subring A(T')TT is isomorphic to the cographic ring R(T').

The cographic ring R(I") has reasonable geometric properties. Specifically, in
Theorem 5.7, we prove that R(I") is

e of pure dimension b (I") = dimg H(T", R),

o Gorenstein,

e seminormal, and

» semi log canonical.

We also compute invariants of R(I") in terms of the combinatorics of I". The
invariants we compute are

 a description of R(I") in terms of oriented subgraphs (Section 5B),
« the number of minimal primes in terms of orientations (Theorem 5.7(i)),
o the embedded dimension of R(I") in terms of circuits (Theorem 5.7(vi)), and

o the multiplicity of R(I") (Theorem 5.7(vii)).

Finally, it is natural to ask what information is lost in passing from I" to R(I"). An
answer to this question is given by Theorem 7.1, which states that R(I") determines I
up to three-edge connectivization.

Combinatorially defined rings, such as the cographic toric face ring, have long
been used in the study of compactified Jacobians and, more generally, degenerate
abelian varieties (see, e.g., [Mumford 1972; Oda and Seshadri 1979; Faltings
and Chai 1990; Namikawa 1980; Alexeev and Nakamura 1999; Alexeev 2004]).
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In particular, the ring R(I") we study here is a special case of the rings Ro(c)
studied by Alexeev and Nakamura [1999, Theorem 3.17]. There the rings appear
naturally as a by-product of Mumford’s technique for degenerating an abelian
variety. Alexeev and Nakamura [1999, Lemma 4.1] proved that Ry(c) satisfies the
Gorenstein condition, and the seminormality was established by Alexeev [2002].
In personal correspondence, Alexeev informed the authors that the techniques of
those papers can also be used to establish other results in this paper such as the fact
that R(I") is semi log canonical.

In a different direction, the cographic ring is defined by the cographic fan @#,
which is the normal fan to the Voronoi polytope Vorr. There is a body of work study-
ing similar polytopes and the algebra-geometric objects defined by these polytopes.
Altmann and Hille [1999] define the polytope of flows associated to an oriented graph
(or quiver). Associated to this polytope is a toric variety that they relate to a moduli
space. There are also a number of recent papers that study the modular/integral flow
polytope in H{(I", R). This study is motivated by the work of Beck and Zaslavsky
[2006] on interpreting graph polynomials in terms of lattice points. Some recent
papers on this topic are [Beck and Zaslavsky 2006; Breuer and Dall 2010; Breuer and
Sanyal 2012; Chen 2010]. The paper [Breuer and Dall 2010], in particular, studies
graph polynomials using tools from commutative algebra. The Voronoi polytope
does not equal the modular/integral flow polytope or the polytope of flows of an ori-
ented graph. It would, however, be interesting to further explore the relation between
these polytopes. (We thank the anonymous referee for pointing out this literature.)

This paper suggests several other questions for further study. First, in Section 5A,
we exhibit a collection of generators V,,, indexed by oriented circuits y, for
R(I'\ T, ¢). What is an explicit set of generators for the ideal of relations between
the variables V,,? This problem is posed as Problem 5.5. Second, in Theorem 5.7,
we give a formula for the multiplicity of R(I") in terms of the subdiagram volume
of certain semigroups associated to I". Problem 5.8 is to find an expression for this
multiplicity in terms of well-known graph theory invariants. Third, we also prove in
Theorem 5.7 that Spec(R(I")) is semi log canonical. In Problem 5.9, we ask: which
graphs I' have the stronger property that R(I") is semi divisorial log canonical?

1. Preliminaries

In this section, we review the definitions of the graph-theoretic objects considered
in this paper. This will provide the reader with enough background to follow the
main ideas of the proof of Theorem A (proven in Section 6) as well as the proofs
of many of the geometric properties of cographic rings (proven in Section 4).

1A. Notatton Followmg notatlon of Serre [1980 §2.1], a graph T" will consist
of the data (E “=V,E-> E) where V and E are sets, ¢ is a fixed- -point free
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involution, and s and ¢ are maps satisfying s(2) = ¢ (:(¢)) for all & € E. The maps
s and ¢ are called the source and target maps, respectively. We call V =: V(I")
the set of vertices. We call E =: E (I") the set of oriented edges. We define the set
of (unoriented) edges to be E(I') = E := E/L. An orientation of an edge e € E
is a representative for e in E; we use the notation & and ¢ for the two possible
orientations of e. An orientation of a graph T is a section ¢ : E — E of the quotient
map. An oriented graph consists of a pair (I', ¢) where I" is a graph and ¢ is an
orientation. Given an oriented graph, we say that ¢ (e) is the positive orientation of
the edge e. Given a subset S C E, we define S - E to be the set of all orientations
of the edges in S.

1B. Homology of a graph. Given aring A, let Co(T", A) = EO(F, A) be the free
A-module with basis V (I") and C 1(I'; A) be the A-module generated by E (I') with
the relations e = —eé for every e € E(I"). If we fix an orientation, then a basis for
C 1(I', A) is given by the positively oriented edges; this induces an isomorphism
with the usual group of 1-chains of the simplicial complex associated to I". These
modules may be put into a chain complex. Define a boundary map 9 by

3:C1(T, A) — Co(T, A) = Co(T', A), &> t(&) —s(@).

We will denote by H,(I", A) the groups obtained from the homology of 5‘.(F, A).
The homology groups H,(I", A) coincide with the homology groups of the topolog-
ical space associated to I'.

1C. The bilinear form. The vector space él(F, R) is endowed with a positive
definite bilinear form

(-,):C(IRY®Cy (T, R) > R

that is uniquely determined by (¢, ) = 1, (2, &) = —1, and (¢, f) =01if f #2, .
As above, fixing an orientation induces a basis for 51 (I, R), and in terms of such a
basis, this is the standard inner product. By restriction, we get a positive definite
bilinear form on H;(I", R) C C 1(I', R). The pairing (-, -) allows us to form the
product (¢, v) of an oriented edge ¢ with a vector v € C 1(I', R) but not the product
(e, v) of v with an unoriented vector. However, we will write (e, v) = 0 to mean
(¢, v) = 0 for one (equivalently all) orientations of e.

1D. Cographic arrangement. We review the definition of the cographic arrange-
ment %# of I' [Greene and Zaslavsky 1983, §8; Novik et al. 2002, §5]." To begin,

The name “cographic arrangement” suggests the fact that %% depends on the cographic matroid
associated to I". The notation %% is used in [Novik et al. 2002] while in [Greene and Zaslavsky
1983] the cographic arrangement is denoted by 9¢-[I"]. There is a dual notion, namely that of the
graphic arrangement, which depends only on the graphic matroid associated to I" and is denoted by
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let € be the coordinate hyperplane arrangement in C 1(I', R). More precisely,

# =) weli(.R): (v,e) =0}
ecE
The restriction of this hyperplane arrangement to H;(I", R) is called the cographic
arrangement C@# More precisely,

¢ = |J eCi.R): (@, e)=0}
H, (F,Re)gierb ,e)

The cographic arrangement partitions H; (I", R) into a finite collection of strongly
convex rational polyhedral cones. These cones, together with their faces, form a
(complete) fan that is defined to be the cographic fan and is denoted 9«*#.2 We give
a more detailed enumeration of the cones of this fan in Section 3, where we discuss
the poset of totally cyclic orientations.

Remark 1.1. The following observation used in the proof of Theorem A is proven
in Corollary 3.4. We emphasize it here so that the reader may follow the proof of
Theorem A having read just Section 1. Letc =, pacé andc' =Y, p a.é be
cycles in Hi(T', Z). Then ¢ and ¢’ lie in a common cone ofg?# if and only if, for all
e € E, a.a, > 0. In words, two cycles lie in a common cone if and only if every
common edge is oriented in the same direction.

1E. Toric face rings. We recall the definition of a toric face ring associated to
a fan. In [Ichim and Romer 2007, §2; Bruns et al. 2008, §2], the authors define
more generally the toric face ring associated to a monoidal complex. The following
definition is a special case:

Definition 1.2. Let H7 be a free Z-module of finite rank, and let % be a fan of
(strongly convex rational polyhedral) cones in Hgr = Hz ®z R with support Supp F.
The toric face ring Ry (%) is the k-algebra whose underlying k-vector space has
basis {X¢ : ¢ € Hz N Supp ¥} and whose multiplication is defined by

Yo . x¢ — Xt ife, ¢’ € o for some o € F, (1-1)
0 otherwise.

We will write R(%) if we do not need to specify the base field k.

Remark 1.3. It follows from the definition that R(%) is a reduced ring finitely
generated over k. See also Section 5, especially (5-4), for more on generators and
relations.

%r in [Novik et al. 2002] and #[I'] in [Greene and Zaslavsky 1983, §7]. The graphic arrangement of
hyperplanes is also studied in [Orlik and Terao 1992, §2.4], where it is denoted by s4(I").

ZWe use the notation OJ# and the name “cographic fan” in order to be consistent with the nota-
tion CGIJ: used in [Novik et al. 2002] for the cographic arrangement of hyperplanes.
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A cographic toric face ring is the toric face ring associated to a cographic fan.

Definition 1.4. Let I be a finite graph. The cographic toric face ring Ry (") is the
toric face k-ring R(@%) associated to the cographic fan 9?% We will write R(I") if
we do not need to specify the base field k.

1F. The Voronoi polytope. Following [Bacher et al. 1997], we define the Voronoi
polytope of T" by

Vorr :={ve Hi(I', R): (v,v) < (wv—A,v—2A) forall A € H|(T', Z)}.

The reader familiar with the Voronoi decomposition of R" will recognize this
polytope as the unique cell containing the origin in the Voronoi decomposition
associated with the lattice H;(I", Z) endowed with the scalar product defined in
Section 1C (see [Erdahl 1999; Alexeev 2004, §2.5] for more details).

To the Voronoi polytope, we can associate its normal fan N(Vorr), which is
defined as follows. Given a face § of Vorr, we define the (strongly convex rational
polyhedral) cone Cs by

Cs={ae H((I,R): (a,r) > (a, ") for all r € § and r’ € Vorr}.
The normal fan N'(Vorr) of Vorr is the fan whose cones are the cones Cj.

Remark 1.5. In Proposition 3.8, we will prove that the cographic fan @# is equal
to the normal fan of the Voronoi polytope N (Vorr).

2. Totally cyclic orientations

Here we define and study totally cyclic orientations of a graph. We also define
an oriented circuit on a graph and describe the relation between these circuits and
totally cyclic orientations.

2A. Subgraphs. In this subsection, we introduce some special subgraphs that will
play an important role throughout the paper.

Given a graph I' and a collection S C E(I') of edges, we define I'" \ S to be
the graph, called a spanning subgraph (see, e.g., [Oda and Seshadri 1979, §4]),
obtained from I' by removing the edges in S and leaving the vertices unmodified.
In other words, I" \ S consists of the data

(EM\S =3 V. E()\8 > E(D)\ 5.

Of particular significance is the special case where S = {e} consists of a single
edge. If I" \ {e} has more connected components than I', then we say that e is a
separating edge. The set of all separating edges is written E(I")sep.
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Givena chainc € C 1(I', R), we would like to refer to the underlying graph having
only those edges in the support of c. More precisely, given ¢ € C 1 (I, R), let Supp(c)
denote the set of all edges e with the property that (e, ¢) # 0. We define I", to be the
subgraph of I" with V(I';) := V(I') and E(I";) := Supp(c). There is a distinguished
orientation ¢, of I'. given by setting ¢..(e) equal to ¢ if (¢, ¢) > 0 and to e otherwise.
Using this subgraph, we can write ¢ as

c= Y me(e)pele) 2-1)

eeSupp(c)

with all m.(e) > 0. Indeed, we have m.(e) = (¢.(e), ¢).

2B. Totally cyclic orientations and oriented circuits. Totally cyclic orientations
will play a dominant role in what follows. We are going to review their definition
and their basic properties.

Definition 2.1. If I" is connected, then we say that an orientation ¢ of I' is fotally
cyclic if there does not exist a nonempty proper subset W C V (I') such that every
edge e between a vertex in W and a vertex in the complement V (I") \ W is oriented
from W to V \ W (i.e., the source of ¢(e) lies in W and the target of ¢ (e) lies
in V(I')\ W). If T is disconnected, then we say that an orientation of I" is totally
cyclic if the orientation induced on each connected component of I is totally cyclic.

Observe that if I" is a graph with no edges, then the empty orientation of I"
is a totally cyclic orientation. Totally cyclic orientations are closely related to
oriented circuits. Recall that a graph A is called cyclic if it is connected, free from
separating edges, and satisfies b1 (A) = 1. A cyclic graph together with a totally
cyclic orientation is called an oriented circuit. A cyclic graph admits exactly two
totally cyclic orientations.

Let Cir(I") denote the set of all oriented circuits on I'; that is, ¥y = (A, ¢a)
is an element of Cir(I") if A is a cyclic subgraph of I and ¢ g a totally cyclic
orientation of A. We call E(A) the support of y = (A, ¢pa) € Cir(I"). There is a
natural map

Cir(") — Hy(T', A),

y=(A,9a) > [yl= )Y éale).
ecE(A)
—
With respect to the orientation ¢ of I', we can consider Cirg (I') C Cir(I'), the
subset that consists of oriented circuits on I" of the form (A, ¢|a) (i.e., oriented
circuits whose orientation is compatible with ¢).

Remark 2.2. The oriented circuits on I', i.e., the elements of (i}(r), are the
(signed) cocircuits of the cographic oriented matroid M*(I") of I or, equivalently,
the (signed) circuits of the oriented graphic matroid M (I") of I' [Bjorner et al. 1999,
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§1.1]. Many of the combinatorial results that follow can be naturally stated using
this language. We will limit ourselves to pointing out the connection with the theory
when relevant.

The next lemma clarifies the relationship between totally cyclic orientations
and compatibly oriented circuits. Recall that an oriented path from w € V(I') to
v e V(I') is a collection of oriented edges {ey, ..., ¢} C E(T) such that s(¢;) = w,
t(¢;)=s(eijyy) foranyi=1,...,r —1,and t(¢,) = v. If ¢ is an orientation of T,
a path compatibly oriented with respect to ¢ is an oriented path as before of the

form {¢(e1), ..., P(er)}.
Lemma 2.3. Let I" be a graph.
(1) The graph I" admits a totally cyclic orientation if and only if E(I")sep = <.

(2) Fix an orientation ¢ on I'. The following conditions are equivalent:

(a) The orientation is totally cyclic.

(b) For any distinct v, w € V(I') belonging to the same connected component
of T, there exists a path compatibly oriented with respect to ¢ from w to v.

(¢) The cycles [y] associated to the y € Ciry(I') generate H\(I', Z), and
E([)sep = 2.

(d) Every edge e € E is contained in the support of a compatibly oriented
circuit y € Cirg(I).

Proof. For part (1), see, e.g., [Caporaso and Viviani 2010, Lemma 2.4.3(1)] and
the references therein. Part (2) is a reformulation of [Caporaso and Viviani 2010,
Lemma 2.4.3(2)]. The only difference is that part (2) is proved in [loc. cit.] under the
additional hypothesis that E(I")sep = @. Note, however, that each of the conditions
(a), (b), and (d) imply that E(I")sep = ; hence, we deduce part (2) as stated above.

O

The following well-known lemma can be thought of as a modification of (c) above.
We no longer require that the oriented circuits on I' be oriented compatibly. The
statement is essentially that any cycle ¢ in H|(I", Z) is a positive linear combination
of cycles associated to circuits supported on c.

Lemma 2.4. Let I" be a graph, and let c € 6‘1 (I, Z). Then c € H((I', Z) if and only
if ¢ can be expressed as

c= ) nlyl 2-2)

y€Cirg, (T
for some natural numbers n.(y) € N.

Proof. A direct proof follows from the definitions and is left to the reader. Alterna-
tively, one can use the fact that a covector of an oriented matroid can be written as
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a composition of cocircuits conformal to it [Bjorner et al. 1999, Proposition 3.7.2]
together with Remark 2.2. U

The oriented circuits can be used to define a simplicial complex that will be used
in Section 5B.

Definition 2.5. Two oriented circuits y = (A, ¢) and ' = (A’, ¢’) are said to be
concordant, written y < y/', if for any e € E(A) N E(A’) we have ¢ (e) = ¢'(e).
We write y %y’ if y and y’ are not concordant.

ﬁ
Definition 2.6. The simplicial complex of concordant circuits A(Cir(I")) is dif)ined
to be the (abstract) simplicial complex whose elements are collections o € Cir(I")
of oriented circuits on I with the property that any two circuits are concordant (i.e.,

if y1, 2 € o, then y; < ).

2C. The poset OPr of totally cyclic orientations. Totally cyclic orientations natu-
rally form a poset. We recall the definition for the sake of completeness.

Definition 2.7 [Caporaso and Viviani 2010, Definition 5.2.1]. The poset 0P of
totally cyclic orientations of T' is the set of pairs (T, ¢) where T C E(I') and
¢ E(U\T)— E (I"'\ T) is a totally cyclic orientation of I" \ T, endowed with
the partial order

(T',¢") <(T,¢) < T\T'CT\T and ¢ = d|er\1).
We call T the support of the pair (T, ¢).
Using Lemma 2.3(2)(d), we get that

(T',¢") <(T,¢) < Cirg(T'\T') C Ciry(I'\T). (2-3)

The set Ciry (I"\T') is a collection of concordant cycles. Another connection between
orientations and totally cyclic orientations is given by the following definition:

—
Definition 2.8. Let o0 € A(Cir(I")) be a collection of concordant circuits. To o we
associate the pair (7, ¢,) € 0P, which is defined as follows. Set T,, equal to the
set of all edges that are not contained in a circuit y € o. The orientation ¢, of
'\ 7, is defined by setting

if (¢,[y]) >0forall y €0,

e
¢o(€) == {E if (¢, [y]) >0forall y €o.

Observe that the orientation ¢, on I' \ 7, is a totally cyclic orientation by
Lemma 2.3(2)(d) and that o < Cirg (I" \ 7). The following lemma, whose proof
is left to the reader, will be useful in the sequel:

3The choice of orientation on the complement of T, rather than on T itself, has to do with the
importance of the notion of spanning subgraphs of I', all of which are of this form. In graph theory, it
is customary to denote spanning subgraphs in this way, so we follow that convention.
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Lemma 2.9. The maximal elements of the poset OPr are given by (E(I")sep, ¢)
as ¢ varies among the totally cyclic orientations of I' \ E(I")gep. [l

Remark 2.10. The poset OPr of totally cyclic orientations is isomorphic to the
poset of covectors of the cographic oriented matroid M*(I") of I [Bjorner et al.
1999, §3.7]. Equivalently, the poset obtained from O% by adding an element 1 and
declaring that 1 > (T, ¢) for any (T, ¢) € OPr is isomorphic to the big face lattice
Fpig(M* (")) of the cographic oriented matroid M*(I") [Bjorner et al. 1999, §4.1].

3. Comparing posets: the cographic arrangement, the Voronoi polytope, and
totally cyclic orientations

In this section, we prove that the poset 0% of totally cyclic orientations of I' is
isomorphic to the poset of cones (ordered by inclusion) of the cographic fan @#,
which we also show is the normal fan of the Voronoi polytope Vorr of I'.

3A. Cographic arrangement. Let us start by describing the cographic arrangement
Célé associated to I' in the language of totally cyclic orientations.
For every edge e € E(I"), we can consider the linear subspace of H; (", R)

{(-,e)=0}:={ve HHI',R) : (v, e) =0}.

This subspace is a proper subspace (i.e., a hyperplane) precisely when e is not a
separating edge, and the collection of all such hyperplanes is defined to be the
cographic arrangement. Similarly, for any oriented edge ¢ € E(I"), we set

{(-,&)>0}:={ve Hi(T,R): (v,e) > 0}.

As mentioned, the elements of the cographic arrangement partition H (', R)
into a finite collection of rational polyhedral cones. These cones, together with their
faces, form the cographic fan @%. We can enumerate these cones and make their
relation to totally cyclic orientations more explicit by introducing some notation.

Given a collection T of edges and an orientation ¢ of I' \ 7" (not necessarily
totally cyclic), we define (possibly empty) cones o (T, ¢) and o°(T, ¢) by

o (T, ¢) == (-, d() = 01N ({(-,e) =0}, (3-1)
e¢T eeT

o(T, ¢) := [ {(-, () > 0} N [ ){(-,e)=0}. (3-2)
e¢T eeT

The cone o°(T, ¢) is a subcone of o (T, ¢), and it is the relative interior of
o (T, ¢) provided o°(T, ¢) is nonempty. The cone o (T, ¢) is an element of the
cographic fan, and every cone in the fan can be written in this form. While every
element of 97# can be written as o (T, ¢), the pair (T, ¢) is not uniquely determined
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by the cone. The pair (7', ¢) is, however, uniquely determined if we further require
that (7', ¢) € O0Pr. This fact is proven in the following proposition, which is
essentially a restatement of some results of Greene and Zaslavsky [1983, §8]:

Proposition 3.1. (i) Every cone o € @IJ: can be written as o = o (T, ¢) for a
unique element (T, ¢) € OPr.

(ii) For any (T, ¢) € OPr, the linear span of o (T, P) is equal to

(o (T, ¢)) = {(-,e) =0} = H("'\T,R)

ecT
and has dimension by (' \ T).

(iii) For any (T, ¢) € OPr, the extremal rays of o (T, @) are the rays generated by
the elements [y ] for y € Cirg(I'\ T).

Proof. Part (i) follows from [Greene and Zaslavsky 1983, Lemma 8.2]. Note that
in [ibid.] the authors assume that E(I")s, = &. However, it is easily checked that
the inclusion map I" \ E(I")sep € I' induces natural isomorphisms 9?#\ E()sep = @%
and OPr\g(r),,, = OPr. Therefore, the general case follows from the special case
treated in [ibid.].

Let us now prove part (ii). The linear subspace [),.,{(-,e) =0} € H(T', R) is
generated by all the cycles of I" that do not contain edges e € T in their support and
is therefore equal to H;(I" \ 7', R), which has dimension equal to b;(I" \ 7'). Now,
to complete the proof, let us establish that (o (T, ¢)) =), {(-, e) = 0}. First, if
o(T,¢) =02,ie.,if o(T, ¢) ={0}, then b1(I'\ T) = 0 by Lemma 2.3(2)(d). But
then (,c7{(-,e) =0} = H;(I'\T, R) =0, and we are done. On the other hand,
if o (T, ¢)° # &, then 0°(T, ¢) is the relative interior of o (T, ¢), and hence, the
linear span of o (T, ¢) is equal to (), {(-, e) =0}.

Finally, let us prove part (iii). From [Greene and Zaslavsky 1983, Lemma 8.5],
it follows that the extremal rays of o (T, ¢) are among the rays generated by
the elements [y] for y € Cirg(I' \ T). We conclude by showing that for any
y € Cirg (I'\ T'), the ray generated by [y ] is extremal for o (T, ¢). By contradiction,
suppose that we can write

yi= DY myly] (3-3)
y'€Cirg (T\T)
v'#y
for some m, € Rx¢. Consider a cycle yg € Cirg(I'\ T) \ {y'} such that m,; >0
(which clearly exists since [y] % 0). Since y and yy are concordant and distinct,
there should exist an edge e € E(yp) \ E(y). Now returning to the expression (3-3),
on the left-hand side, neither the oriented edge € nor e can appear. On the other hand,
on the right-hand side, the oriented edge ¢ (e) appears with positive multiplicity
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because it appears with multiplicity m,,, > 0 in m,,[y] and all the oriented circuits
appearing in the summation are concordant. This is a contradiction. U

Corollary 3.2. The association

(T, ¢) > o(T,$)

defines an isomorphism between the poset of 0Pr and the poset of cones of @IJ:
ordered by inclusion.* In particular, the number of connected components of the
complement of (6% in H{ (', R) is equal to the number of totally cyclic orientations
on "\ E(I')gep.

Proof. According to Proposition 3.1(i), the map in the statement is bijective. We
have to show that

o(T,$) So(T'.¢) < (T.¢) =T, 9.

The implication <= is clear by the definition (3-1) of o (T, ¢).

Conversely, assume that o (T, ¢) C o(T’, ¢'). There is nothing to show if
o (T, ¢) = {0} is the origin. Otherwise, by Proposition 3.1(ii), the relative interior
o°(T, ¢) of o (T, ¢) is nonempty, so pick ¢ € 6°(T, ¢). By formula (3-2), for every
e ¢ T, we have that (c, ¢ (e)) > 0. Since c € o (T’, ¢'), by definition (3-1), we must
have e ¢ T’ and ¢’(e) = ¢(e). This shows that T D T’ and that ¢l/“\T = ¢ or in
other words that (T, ¢) < (T’, ¢').

The last assertion follows from the first one using the fact that the connected
components of the complement of %# in Hy (', R) are the maximal cones in %#
and Lemma 2.9. [l

Remark 3.3. The last assertion of Corollary 3.2 is due to Green and Zaslavsky
[1983, Lemma 8.1]. Moreover, Greene and Zaslavsky [1983, Theorem 8.1] give a
formula for the number of totally cyclic orientations of a graph free from separating
edges.

The following well-known result plays a crucial role in the proof of Theorem 6.1:

Corollary 3.4. Let
c= Zaeg and ¢ = Zaég

eckE ecE
be cycles in H\(I', Z). Then there is a cone of 9?# containing ¢ and ¢' if and only if
foralle € E, apa,, > 0.
Proof. From Proposition 3.1(i), it follows that ¢ and ¢’ belong to the same cone
of 9?% if and only if there exists (T, ¢) € 0% such that ¢, ¢’ € o (T, ¢). We conclude
by looking at the explicit description (3-1). ([

“4Note that the poset of cones of %IJ: is anti-isomorphic to the face poset £ (%f:) of the arrangement
‘61{‘ [Orlik and Terao 1992, Definition 2.18].
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Remark 3.5. Corollary 3.2 together with Remark 2.10 imply that the cographic ori-
ented matroid M*(I") is represented by the cographic hyperplane arrangement %# in
the sense of [Bjorner et al. 1999, §1.2(c)]. Using this, Corollary 3.4 is a restatement
of the fact that two elements of H;(I', Z) belong to the same cone of @% if and
only if their associated covectors are conformal [Bjorner et al. 1999, §3.7].

3B. Voronoi polytope. The following description of the faces of Vorr is a restate-
ment, in our notation, of a result of Omid Amini [Amini 2010], which gives a
positive answer to a conjecture of Caporaso and Viviani [2010, Conjecture 5.2.8(1)]:

Proposition 3.6 (Amini). (i) Every face of the Voronoi polytope Vorr is of the form

F(T,$):={v e Vorr: (v, [y]) = 5(y]. [y]) forany y € Cirg(T\ T)} ~ (3-4)
for some uniquely determined element (T, ¢) € OPr.
(ii) For any (T, ¢) € OPr, the dimension of the affine span of F (T, @) is equal to
bi(I(T)) =bi(T') = b1 (I'\T).
(iii) Forany (T, ¢) € OPr, the codimension-1 faces of Vorr containing F (T, ¢) are
exactly those of the form F (S, V), where (S, ¥) < (T, ¢) and b1(I' \ S) = 1.
Proof. Part (i) follows by combining [Amini 2010, Theorem 1, Lemma 7]. Part (ii)

follows from the remark after [Amini 2010, Lemma 10]. Part (iii) follows from
[Amini 2010, Lemma 7]. O

Corollary 3.7 (Amini). The association

(T, ¢)— F(T, )

defines an isomorphism of posets between the poset OPr and the poset of faces
of Vorr ordered by reverse inclusion. In particular, the number of vertices of Vorp
is equal to the number of totally cyclic orientations on I' \ E(I")sep.

Proof. The first statement is a reformulation of [Amini 2010, Theorem 1]. The last
assertion follows from the first one together with Lemma 2.9. (]

We now show that the cographic fan ?ﬁ# is the normal fan N'(Vorr) of the Voronoi
polytope Vorr. The cones of the normal fan, ordered by inclusion, form a poset that
is clearly isomorphic to the poset of faces of Vorr, ordered by reverse inclusion.

Proposition 3.8. The cographic fan @# is equal to N (Vorr), the normal fan of the
Voronoi polytope Vorr.

Proof. By Propositions 3.1 and 3.6, it is enough to show that, for any (7, ¢) € O%Pr.,
the normal cone in N'(Vorr) to the face F(T, ¢) C Vorr is equal to o (T, ¢). Fix
a face F (T, ¢) of Vorr for some (T, ¢) € OPr. If (T, ¢) is equal to the minimal
element 0 = (E(I")sep, @) of the poset O%r, then F(0) = Vorr and its normal cone
is equal to the origin in H (", R), which is equal to o (0).
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Suppose now that b1 (I'\ T)) > 1. Denote by {(S;, ¥;)} all the elements of 0P
such that (S;, ¥;) < (T, ¢) and b (I' \ ;) = 1. Let y; be the unique oriented
circuit of I' such that Ciry, (I' \ S;) = {y;}. According to Proposition 3.6(iii),
the codimension-1 faces of Vorp containing F(7T, ¢) are exactly those of the
form F (S;, ;). Therefore, the normal cone of F (T, ¢) is the cone whose extremal
rays are the normal cones to the faces F(S;, ¥;), which, using (3-4), are equal
to o (Si, ¥i) = R>o - [yi]. By Proposition 3.1(iii), the cone whose extremal rays are
given by R>g - [;] is equal to o (T, ¢), which completes the proof. O

Combining Corollaries 3.2 and 3.7 and Proposition 3.8, we get the following
incarnations of the poset 0% of totally cyclic orientations:

Corollary 3.9. The following posets are isomorphic:

(1) the poset OPr of totally cyclic orientations,
(2) the poset of faces of the Voronoi polytope Norr, ordered by reverse inclusion,
(3) the poset of cones in the normal fan N (Vorr), ordered by inclusion, and

(4) the poset of cones in the cographic fan %%, ordered by inclusion.

Remark 3.10. Corollary 3.9 together with Remark 2.10 imply that the cographic
oriented matroid M*(T") is represented by the Voronoi polytope Vorr (which is a
zonotope; see, e.g., [Erdahl 1999]) in the sense of [Bjorner et al. 1999, §2.2].

4. Geometry of toric face rings

Let Hz be a free Z-module of finite rank b, and let & be a fan of (strongly convex
rational polyhedral) cones in Hg = Hz ®z R. The aim of this section is to study
the toric face ring R(%) = Ry (%) associated to F as in Definition 1.2. We will pay
special attention to fans & that are complete, i.e., such that every x € Hp is contained
in some cone o € %, or polytopal, i.e., the normal fans of rational polytopes in Hy.
Note that a polytopal fan is complete, but the converse is false if » > 3 (see [Oda 1988,
p. 84] for an example). In the subsequent sections, we will apply the results of this
section to the cographic fan %# of a graph I', which is polytopal by Proposition 3.8.

Note that the fan & is naturally a poset: given o, 0’ € &, we say that o > o’ if
o 2 o’. The poset (¥, >) has some nice properties, which we now describe. Recall
the following standard concepts from poset theory. A (finite) poset (P, <) is called
a meet-semilattice if every two elements x, y € P have a meet (i.e., an element,
denoted by x A y, that is uniquely characterized by conditions x A y < x, y and,
if z € P is such that z < x, y, then z < x A y). In a meet-semilattice, every finite
subset of elements {xy, ..., x,} C P admits a meet, denoted by x; A--- Ax,. A
meet-semilattice is called bounded (from below) if it has a minimum element 0. A
bounded meet-semilattice is called graded if, for every element x € P, all maximal
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chains from 0 to x have the same length. If this is the case, we define a function,
called the rank function, p : P — N by setting p(x) equal to the length of any
maximal chain from 0 to x. A graded meet-semilattice is said to be pure if all the
maximal elements have the same rank, and this maximal rank is called the rank of
the poset and is denoted by rk P. A graded meet-semilattice is said to be generated
in maximal rank if every element of P can be obtained as the meet of a subset
consisting of maximal elements.

Having made these preliminary remarks, we now collect some of the properties
of the poset (%, >) that we will need later.

Lemma 4.1. The poset (¥, >) has the following properties:
(1) (¥, >) is a meet-semilattice, where the meet of two cones is equal to their
intersection.
(ii) (F, =) is bounded with minimum element O given by the zero cone {0}.
(iii) (%, >) is a graded semilattice with rank function given by p(c) :=dimo.
(v) If F is complete, then (¥, >) is pure of rank tk F = b.
) If F is complete, then (¥, >) is generated in maximal rank. O

We will denote by .« the subset of % consisting of the maximal cones of F.

4A. Descriptions of R(%) as an inverse limit and as a quotient. In this subsection,
we give two descriptions of the toric face ring R(%F).

The first description of R(%) is as an inverse limit of affine semigroup rings. For
any cone o € %, consider the semigroup

C(o): =0 NHz C Hy, 4-1)

which, according to Gordan’s lemma (e.g., [Bruns and Herzog 1993, Proposition
6.1.2]), is a positive normal affine semigroup, i.e., a finitely generated semigroup iso-
morphic to a subsemigroup of Z¢ for some d € N such that 0 is the unique invertible
element and such that if m - z € C (o) for some m € N and z € Z¢ then z € C(0).

Definition 4.2. We define R, (o) := k[C(o)] to be the affine semigroup ring asso-
ciated to C (o) (in the sense of [Bruns and Herzog 1993, §6.1]), i.e., the k-algebra
whose underlying vector space has basis {X“ : ¢ € C(0)} and whose multiplication
is defined by X¢ - X := X<, We will write R(0) if we do not need to specify
the base field k. If &, is the fan induced by o (consisting of the cones in % that
are faces of o), then clearly R(o) = R(%F,).

The following properties are well-known.

Lemma 4.3. R(o) is a normal, Cohen—Macaulay domain of dimension equal to
dimo.
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Proof. By definition, we have R(0) C k[Hz] = k[x{", ..., x;"']; hence, R(o)
is a domain. R(o) is normal by [Bruns and Herzog 1993, Theorem 6.1.4] and
Cohen—-Macaulay by a theorem of Hochster [loc. cit., Theorem 6.3.5(a)]. Finally, it
follows easily from [loc. cit., Proposition 6.1.1] that the (Krull) dimension of R(o)
is equal to dimo. U

Given two elements o, o’ € F such that o > ¢’, or equivalently such that o 2 o”,
there exists a natural projection map between the corresponding affine semigroup
rings of Definition 4.2
X¢ ifceoc’ Co,

0 ifceo\o’.

With respect to these maps, the set {R(c0) : 0 € &} forms an inverse system of rings.
From [Bruns et al. 2008, Proposition 2.2], we deduce the following description of
R(%):

ojo' i R(0) - R(0"), X°— {

Proposition 4.4. Let & be a fan. We have an isomorphism
R(%) = 1(&1 R(o).
oeF

We denote by r, : R(¥) — R(o) the natural projection maps.

The second description of R(%) is as a quotient of a polynomial ring. For any
cone o € ¥, the semigroup C (o) = o N Hz has a unique minimal generating set,
called the Hilbert basis of C (o) and denoted by ¥, [Miller and Sturmfels 2005,
Proposition 7.15]. Therefore, we have a surjection

Ty k[Vy:a €Hy]— R(o), Vyr— X% 4-2)
In the terminology of [Sturmfels 1996, Chapter 4], the kernel of m,, which we
denote by I, is the foric ideal associated to the subset ¥, . In the terminology of
[Miller and Sturmfels 2005, Chapter I1.7], I, is the lattice ideal associated with the
kernel of the group homomorphism
Po :Z%G — Hz, u= {”a}ae%a = Z Up.
acH,

From [Sturmfels 1996, Lemma 4.1] (see also [Miller and Sturmfels 2005, Theorem
7.3]), we get that I, is a binomial ideal with the explicit presentation
I, = (V" = V¥ u, v e N C 7% with p,(u) = p,(v)), (4-3)

where, for any u = (ug)yes, € N"7, we set V¥ := ]_[ae%ﬁ Vie € k[Vy : o € Ho ]
If we set #g := |, .5 #o, then, from Definition 1.2, it follows that we have a
surjection
w5 k[Vy:a € Hg] — R(F), Vi, X*. 4-4)

We denote by I the kernel of 7. In order to describe the ideal I, we introduce the
abstract simplicial complex Ag on the vertex set #g whose faces are the collections
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of elements of ¥4 that belong to the same cone of &. The minimal nonfaces of Ag
are formed by pairs {«, &’} of elements of ¥ such that « and &’ do not belong to
the same cone of F; hence, Ag is a flag complex [Stanley 1996, Chapter III, §4].
Consider the Stanley—Reisner ring (or face ring)
k[Vy:a € #Hg]
(Va Vo {O[, Ot/} ¢ A%)
associated to the flag complex A (see [Stanley 1996, Chapter II] for an introduction
to Stanley—Reisner rings). Observe that if {, a'} ¢ Ag, then X1 Xl =0 by
Definition 1.2. This implies that the surjection 7 factors as
w5 klVe o€ U] Ve XEHF] R
(Va Vo {05’ O[/} ¢ Ag;)

or in other words that (V,Vy : {a, @'} ¢ Ag) C I5.

Moreover, observe also that the surjection wg of (4-4) is compatible with the
surjections 7, of (4-2) for every o € ¥ in the sense that we have a commutative di-
agram

k[Ag;] =

K[V, :a € #5] —— R(F)

eD s l (4-5)

K[V, :a €H,] —2 R(o)

where 6 is the surjective ring homomorphism given by sending V, +— V, if
o€ Hy CHg and Vy — 0 if @ € 5 \ #,. Both the vertical surjections have
natural sections: the left map has a section s obtained by sending V,, — V|, for
any a € #, C #g, and the left map has a section obtained by sending X¢ into
X¢ for any c € C(0) = o N Hz C Hz. Therefore, we can regard I, as an ideal of
k[Vy : @ € H5] by extensions of scalars and, by the above commutative diagram,
we have that I, C Ig.

From [Bruns et al. 2008, Propositions 2.3 and 2.6], we get the following descrip-
tion of the ideal Is:

Proposition 4.5. Let & be a fan. The kernel Ig of the map 7w of (4-4) is given by
Iy = VoV {, Y ¢ Ag)+ Y Mo = (Vo Vi {e, &V gAY+ D Lo,
oEF 0 €Fmax

where, as usual, Fnax denotes the subset of & consisting of the maximal cones.

4B. Prime ideals of R(%). We now want to describe the prime ideals of the ring
R(%). Observe that, from the Definition 1.2, it follows that R(%) has a natural
7" = Hz-grading.

Recall the following notions for a Z"-graded ring R (see, e.g., [Uliczka 2009]). A
graded ideal is an ideal I of R with the property that for any x € I all homogenous
components of x belong to I as well; this is equivalent to I being generated by
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homogenous elements. For any ideal I of R, the graded core I* of I is defined as
the ideal generated by all homogenous elements of /. It is the largest graded ideal
contained in /. If p is a prime ideal of R, then p* is a prime ideal [Uliczka 2009,
Lemma 1.1(i1)].
For any o € &, the kernel of the natural projection map r, : R(%) — R(o), which
is explicitly equal to
po = ({X:c¢ o)), (4-6)

is graded since it is generated by homogeneous elements and is prime by Lemma 4.3.
From [Ichim and Rémer 2007, Lemma 2.1], we deduce the following description
of the graded ideals of R(%):

Proposition 4.6. The assignment o +— p, gives an isomorphism between the poset
(%, >) and the poset of graded prime ideals of R(F) ordered by reverse inclusion.
In particular, m = pjoy is the unique graded maximal ideal of R(F), which is also a
maximal ideal in the usual sense.

From Proposition 4.6, we can deduce a description of the minimal primes of R(%F).

Corollary 4.7. The minimal primes of R(%F) are the primes p, as o varies among
all the maximal cones of %. In particular, if F is complete, then R(%F) is of pure
dimension b.

Proof. Observe that if p is a minimal ideal of R(%), then p* = p by the minimality
of p; hence, p is graded. Conversely, if p is a graded ideal of R(%) that is minimal
among the graded ideals of R(%), then p is also a minimal ideal of R(%): indeed,
if ¢ C p, then q* = p by the minimality properties of p; hence, q = p.

It is now clear that the first assertion follows from Proposition 4.6. The last
assertion follows from the first one together with Lemmas 4.1(iv) and 4.3. O

Definition 4.8. The poset of strata of R(%), denoted by Str(R (%)), is the set of all
the ideals of R(%) that are sums of minimal primes with the order relation given
by reverse inclusion.

Geometrically, the poset Str(R (%)) is the collection of all scheme-theoretic
intersections of irreducible components of Spec R(%) ordered by inclusion.

Corollary 4.9. If % is complete, then the assignment o — Y, gives an isomorphism
between (¥, >) and Str(R(%F)).

Proof. The statement will follow from Proposition 4.6 if we show that the ideals
that are sums of minimal primes of R(%) are exactly those of the form p, for some
o € #. Indeed, given minimal primes p,, fori =1, ..., n (see Corollary 4.7), we
have that ﬂl": 1 0i = o for some o € F and, from (4-6), it follows that

> o, = (X" c¢ ﬂai) =Po. (4-7)
i=1 i=1
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Conversely, every cone o € % is the intersection of the maximal dimensional cones o;
containing it by Lemma 4.1(v). Therefore, (4-7) shows that p, € Str(R(%F)). U

4C. Gorenstein singularities. The aim of this subsection is to prove the following:

Theorem 4.10. If F is a polytopal fan, then R(%¥) is a Gorenstein ring and its
canonical module wgg) is isomorphic to R(¥) as a graded module.

Proof. This is a consequence of two results from [Ichim and Romer 2007]. The first
is Theorem 1.1, stating that a toric face ring R(%) is Cohen—Macaulay provided
that the fan & is shellable (see p. 252 of that paper for the definition). The second
is Theorem 1.4, stating that R(%) is Gorenstein and its canonical module wg ) is
isomorphic to R(%) as a graded module provided that R(%) is Cohen—Macaulay
and & is Eulerian (see Definition 6.4 in the same paper).

Now it is enough to recall that a polytopal fan is Eulerian (see, e.g., [Stanley
1994, p. 302]) and shellable by the Bruggesser—Manni theorem [Bruns and Herzog
1993, Theorem 5.2.14]. O

4D. The normalization. In this subsection, we prove that the toric face ring of any
fan is seminormal and we describe its normalization.

Recall that, given a reduced ring R with total quotient ring Q(R), the normaliza-
tion of R, denoted by R, is the integral closure of R inside Q(R). R is said to be
normal if R = R (see [Huneke and Swanson 2006, Definition 1.5.1], for example).
Moreover, we need the following:

Definition 4.11. Let R be a Mori ring, i.e., a reduced ring such that R is finite
over R. The seminormalization of R, denoted by * R, is the biggest subring of R
such that the induced pull-back map Spec(TR) — Spec R is bijective with trivial
residue field extension. We say that R is seminormal if TR = R.

For the basic properties of seminormal rings, we refer to [Greco and Traverso
1980; Swan 1980]. Observe that R(%) is a Mori ring since it is reduced and finitely
generated over a field k (see Remark 1.3).

Theorem 4.12. Let & be any fan.

(1) The normalization of R(%F) is equal to

RF) =[] R,

0 €Fmax

=

where Fnax is the subset of F consisting of all the maximal cones of F.

(1) R(%) is a seminormal ring.
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Proof. Let us first prove part (i). By [Huneke and Swanson 2006, Corollary 2.1.13]
and Corollary 4.7, we get that the normalization of R(%) is equal to

R& = ] RO.

0 €Fmax

We conclude by Lemma 4.3, which says that each domain R(o’) is normal.

Let us now prove part (ii). According to Proposition 4.4 and Lemma 4.3, the
ring R(%) is an inverse limit of normal domains. Then the seminormality of R (%)
follows from [Swan 1980, Corollary 3.3]. U

4E. Semi log canonical singularities. In this subsection, we prove that Spec R (%)
has semi log canonical singularities provided that % is a polytopal fan.

We first recall the definitions of log canonical and semi log canonical pairs (see
[Kolldr and Mori 1998] for log canonical pairs and [Abramovich et al. 1992; Fujino
2000] for semi log canonical pairs). For the relevance of slc singularities in the
theory of compactifications of moduli spaces, see [Kollar 2010].

Definition 4.13. Let X be an §, variety (i.e., such that the local ring Oy , of X at any
(schematic) point x € X has depth at least min{2, dim Oy ,}) of pure dimension n
over a field k and A be an effective Q-Weil divisor on X such that Ky + A is
Q-Cartier.

(i) We say that the pair (X, A) is log canonical (or Ic for short) if

e X is smooth in codimension 1 (or equivalently X is normal) and
« there exists a log resolution f : Y — X of (X, A) such that

Ky=f"(Kx+M)+ Y ak;,
where E; are divisors on Y and a; > —1 for every i.
We say that X is Ic if the pair (X, 0) is Ic, where O is the zero divisor.
(i) We say that the pair (X, A) is semi log canonical (or sic for short) if

e X is nodal in codimension 1 (or equivalently, X is seminormal and Goren-
stein in codimension 1) and
o if u: X* — X is the normalization of X and ® is the Q-Weil divisor on X
given by
Kxu+0 =u"(Kx+A), (4-8)

then the pair (X*, ) is Ic.
We say that X is slc if the pair (X, 0) is slc, where O is the zero divisor.

Theorem 4.14. If F is a polytopal fan, then the variety Spec R(%) is slc.
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Proof. Observe that Spec R(%) is Gorenstein by Theorem 4.10 and seminormal
by Theorem 4.12(ii); hence, in particular, it is S> and nodal in codimension 1
[Greco and Traverso 1980, §8]. Moreover, Spec R(%) is of pure dimension rk & by
Corollary 4.7. Consider now the normalization morphism (see Theorem 4.12(i))

W : Spec R(F) = ]_[ Spec R(o) — Spec R(F).

0 €Fmax

If we apply the formula (4-8) to the above morphism @ and we use the fact
that A = 0 (by hypothesis) and Kx = 0 by Theorem 4.10, then we get that the
divisor ® restricted to each connected component Spec R (o) of the normalization
Spec IT%) is equal t0 —Kspec R(0)- Therefore, from Definition 4.13(ii), we get that
Spec R(%) is slc if and only if the pair (Spec R(0), —Kspec r(0)) 18 Ic for every
0 € Fmax- Therefore, we conclude using the fact that for any toric variety Z the
pair (Z, —Kz) is Ic [Fujino and Sato 2004, Proposition 2.10; Cox et al. 2011,
Corollary 11.4.25]. ([

4F. Embedded dimension. In this subsection, we compute the embedded dimen-
sion of R(%) at its unique graded maximal ideal m. In doing this, we also compute
the embedded dimension of the affine semigroup ring R (o) of Definition 4.2 at the
maximal ideal (X :c € C(o0) \ {0}), which, by a slight abuse of notation, we also
denote by m.

Recall that given a maximal ideal m of a ring R with residue field k := R/m,
the embedded dimension of R at m is the dimension of the k-vector space m/m?>.
Geometrically, the embedded dimension of R at m is the dimension of the Zariski
tangent space of Spec(R) at the point m € Spec(R).

Theorem 4.15. Let F be a fan.

(1) The embedded dimension of R(o) at m is equal to the cardinality of the Hilbert
basis ¥, (see Section 4A).

(i) The embedded dimension of R(¥F) at m is equal to the cardinality of ¥
(: UGE% %U )

Proof. Consider the presentation (4-2) of the ring R(o'). Since the elements of the
Hilbert basis #, cannot be written in a nontrivial way as N-linear combinations of
elements in the semigroup C (o) [Miller and Sturmfels 2005, proof of Proposition
7.15], we get that the ideal I, = ker 7, satisfies

I, Cn?, (4-9)

where n:=(V,:a € #,) Ck[V, :a € #,]. Part (i) now follows from (4-2) and (4-9).
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In order to prove part (ii), consider the presentation (4-4) of the ring R(%F). It is
enough to prove that the ideal /5 = ker 5 satisfies

I5 C 02, (4-10)

where 0 := (Vy : o € H5) C k[Vy : o € H5]. Consider the generators of I given in
Proposition 4.5. Clearly the generators of the form V,, V, (for {«, o’} ¢ Ag) belong
to 02. In order to deal with the other generators of I, consider the diagram (4-5).
As in the discussion that precedes Proposition 4.5, we view I; as included in I
via the section s. By applying the section s to the inclusion (4-9) and using the
obvious inclusion s(n?) C 0%, we get the desired inclusion (4-10). ([l

4G. Multiplicity. In this subsection, we study the multiplicity ey (R(%F)) of R(%F)
at its unique graded maximal ideal m.

Recall (see, e.g., [Serre 1965, Chapter IIB, Theorem 3]) that the Hilbert—Samuel
function

n+— dim; R(F)/m"

is given, for large values of n € N, by a polynomial (called the Hilbert—Samuel
polynomial) that is denoted by P, (R(%); n). The degree of Py (R(%F); n) is equal
to dim R(%F) [Serre 1965, Chapter 11IB, Theorem 1]. We can therefore write

dim R(%) i R —1
a5\ . _ a im R(F)—
Pon(R(F); n) = em(R(JP))—dimR(Q?)! +O(n ),
where O (n') denotes a polynomial of degree less than or equal to 7 and e, (R(F))
is, by definition, the multiplicity of R(%F) at m [Serre 1965, Chapter VA]. The
following result is a special case of [Matsumura 1989, Theorem 14.7]:

Theorem 4.16. If F is a fan of dimension d (i.e., such that the maximum of the
dimension of the cones in F is d) in RP, then R(F) has dimension d and its
multiplicity is equal to

en(RF) = > em(R(0)).
dimo=d
where m is the unique graded maximal ideal of the rings in question.
Proof. The theorem is the special case of [Matsumura 1989, Theorem 14.7], where

A = R(%) and q = m. Indeed, the rings R(o) are the localizations of R(%) at
minimal primes q satisfying dim R(%)/q = d by Corollary 4.7. (]

The above result reduces the computation of the multiplicity of R(%) at m (for a
complete fan &) to that of the affine semigroup rings R(c) at m for o a cone of &
of maximal dimension. These latter multiplicities can be computed geometrically
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V1

%)
U3

Figure 1. A two-dimensional cone o whose associated semigroup
C (o) has Hilbert basis #, = {v1, vz, v3}. The shaded region is the
subdiagram part K_(C (o)) of C(0).

from the affine semigroup C (o) as we now explain following Gel'fand, Kapranov,
and Zelevinsky [Gel'fand et al. 1994].

To that aim, we need to recall some definitions. Given a cone o € %, set
C(0)z := (o) N Hz and C(o)r := (o) N Hg. We denote by volc () the unique
translation-invariant measure on C (o) such that the volume of a standard unimod-
ular simplex A (i.e., A is the convex hull of a basis of Hz together with 0) is 1.
Following [Gel'fand et al. 1994, p. 184], denote by K (C (o)) the convex hull of
the set C(0) \ {0} and K_(C(0)) the closure of 0 \ K4+ (C(0)). The set K_(C(0))
is a bounded (possibly not convex) lattice polyhedron in C (o )R that is called the
subdiagram part of C (o).

Definition 4.17 [Gel'fand et al. 1994, Chapter 5, Definition 3.8]. The subdiagram
volume of C (o) is the natural number

u(C(0)) 1= vole (), (K- (C(0))).

The multiplicity of R(o) at m can be computed in terms of the subdiagram
volume of C (o) as asserted by the following result, whose proof can be found in
[Gel'fand et al. 1994, Chapter 5, Theorem 3.14]:

Theorem 4.18. The multiplicity of R(o) at m is equal to
em(R(0)) =u(C(0)).

5. Geometry of cographic rings

The aim of this section is to describe the properties of the cographic ring R(I")
associated to a graph I'. The main results are Theorem 5.7 and the descriptions of
the cographic ring in Section 5B. Recall from Definition 1.4 that R(I") is the toric
face ring associated to the cographic fan %# in H{(I', R), which is a polytopal fan
by Proposition 3.8.
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According to Proposition 3.1(i), every cone of @% is of the form

o(T,¢):=[ (-, ¢(€) =0} N[ {(-,e)=0}
e¢T eeT
for some uniquely determined element (7', ¢) € O%Pr, i.e., a totally cyclic orientation

¢ on I' \ T. We will denote the positive normal affine semigroup associated to
o(T, ¢) as in (4-1) by

C(C\T,¢):=C(o(T,¢9))=0Y, ) NH (T, 2)
and its associated affine semigroup ring (as in Definition 4.2)
R('\T, ¢) :=k[C('\T, ¢)].

5A. Affine semigroup rings R(I' \ T, ¢). Let us look more closely at the affine
semigroup rings R(I'\ T, ¢) for a fixed (T, ¢) € OPr.

The ring R(I" \ T, ¢) is a normal, Cohen—-Macaulay domain of dimension equal
to dimo (T, ¢) = b1 (I' \ T) as follows from Lemma 4.3 and Proposition 3.1(ii).
However, the ring R(I" \ T, ¢) need not be Gorenstein and indeed not even Q-
Gorenstein as the following example shows:

Example 5.1. Consider the totally cyclic oriented graph (I", ¢) depicted in Figure 2.
Consider the pointed rational polyhedral cone o (&, ¢) C H (I", R) and its dual
cone o (2, ¢)Y C H(I", R)Y defined by

o(2,¢) :={c H(,R) : £(v) >0 forevery v € 0 (2, ¢)}.

Since for any edge e € E(I"), the graph I" \ {e} with the orientation induced by ¢ is
totally cyclic, we get that the cone o (&, ¢) has five codimension-1 faces defined by
the equations {(-, ¢(e;)) =0} fori =1, ..., 5 (see Corollary 3.2). This implies that
the extremal rays of o (&, ¢)" are the rays generated by (-, ¢(e;)) fori =1, ..., 5.

It follows from [Dais 2002, proof of Theorem 3.12] that R(T", ¢) is Q-Gorenstein
if and only if there exists an element m € H; (I, Q) such that (m, ¢ (e;)) = 1 for every

€]

€2

Figure 2. A totally cyclic oriented graph (", ¢) with R(T", ¢) not
Q-Gorenstein.
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i =1,...,5. However, these conditions force m to be equal to m = ZiS:l o (ei),
which is a contradiction since 8(2?:1 ¢(e,-)) =v; —vy #0.

Denote by #r\1,¢) the Hilbert basis (i.e., the minimal generating set) of the
positive affine normal semigroup C(I"' \ 7, ¢). From Lemma 2.4, we get the
following explicit description of ¥\ 7,¢):

Proposition 5.2. The Hilbert basis of C(I' \ T, ¢) is equal to
Har,g) :=1{lyl:y eCirg(T\T)} C Hi(I'\ T, Z) € H (I, 2).
The Hilbert basis #\7,¢) of C(I' \ T, ¢) enjoys the following remarkable
properties:
Lemma 5.3. Let (T, ¢) € OPr.

(1) The group 7 - ¥ 1,9y € Hi(I'\ T, Z) generated by ¥ \r,4) coincides with
H((T\T,?2).

(ii) The ray Rx¢ - [y] is extremal for the cone o (T, ¢) = Rxq - H(r\r1,¢) for each
[v]e€ Hr\7).

Proof. Part (i) follows from Lemma 2.3(2)(c). Part (ii) follows from Proposition

3.1(iii). ([

We warn the reader that the Hilbert basis %\ 7,4) need not be unimodular as we
show in Example 5.4 below. Recall that a subset ¢ C Z¢ is said to be unimodular
if 54 spans R? and, moreover, if we represent the elements of s{ as column vectors
of a matrix A with respect to a basis of Z¢, then all the nonzero d x d minors of A
have the same absolute value [Sturmfels 1996, p. 70].

Example 5.4. Consider the totally cyclic oriented graph (I", ¢) depicted in Figure 3.
One can check that by (I') = 4 and that 7 4) consists of the eight elements

[ije] = d(e}) + d(€)) + p(e])

1 2
e o e
1 2
€ €
° ; .
W

3
€

Figure 3. A totally cyclic oriented graph (I', ¢) with ¥ 4) not
totally unimodular.
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for i, j, k € {0, 1}. The elements B := {[yo00l, [¥100], [Vo10], [Y001]} form a basis
of Hi(I', Z). If we order the elements of ¥ 4) as

{[yo00l, [Y1001, Y0101, [Y0011, [Y110]s [V101], [Y011], [V111}s

then the elements of % 4y, with respect to the basis %, are the column vectors of
the matrix

1000 —1—1—1-2
4 ]oroo 11 01
0010 1 0 1 1
0001 0 1 1 1

The minor Aj;34 (i.e., the minor corresponding to the first four columns) is equal
to 1 while the minor Aj34g is equal to 2; hence, #r ¢) is not unimodular.

According to (4-2) and (4-3), the affine semigroup ring R(I' \ 7', ¢) admits the
presentation
[V, 1y €Cirg(I'\ T)]

k
R(\T, ¢):= 7
(N\T.9)

(5-1)

where I(r\7,¢) := Is(7,4) 1s a binomial ideal, called the toric ideal associated to
#(r\1,¢) in the terminology of [Sturmfels 1996, Chapter 4]. The following problem
seems interesting:

Problem 5.5. Find generators for the binomial toric ideal Iir\7,¢).

We warn the reader that the toric ideal /(r\7 4) need not to be homogeneous as
shown by the following example:

Example 5.6. Consider the totally cyclicly oriented graph (I', ¢) depicted in

Figure 4.
ey ® €6
'\e_f_/-

es

Figure 4. A totally cyclic oriented graph (I", ¢) with I(r 4) not homogeneous.
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It is easy to see that by (I"') = 4 and that ¥ 4) consists of the five elements

(V1]:=(er) + @ (es),
[v2]:= ¢ (e2) + ¢ (es),
[y3]:=d(e3) + @ (es),
[val :==¢(e1) + P (e2) + ¢ (e3),
[ys]:= ¢ (es) + @ (es) + P (e).

The binomial ideal I ¢ is generated by V,, V,,V,, — V,,V,.; hence, it is not
homogeneous.

5B. Descriptions of R(I') as an inverse limit and as a quotient. Using the general
results of Section 4A, the ring R(I") admits two explicit descriptions.
The first description of R(I") is as an inverse limit of affine semigroup rings (see
Proposition 4.4):
R(I) = 1(31 R(C\T, ¢). (5-2)
(T, ¢)e0Pr

The second description is a presentation of R(I") as a quotient of a polynomial
ring. In order to make this explicit for R(I"), observe first that the union of all the
Hilbert bases of the cones o (T, ¢), as (T, ¢) varies in O%r, is equal to the set of
all oriented circuits of T, i.e.,

pre
%% = Cir(I'). (5-3)
Moreover, Corollary 3.4 implies that the simplicial complex Ag. introduced in

Section 4A coincides with the simplicial complex A(Cir(I")) of concordant circuits
as in Definition 2.5, or in symbols,

=7
AgL = A(Cir(I")).
From (4-4), Proposition 4.5, and Lemma 2.9, we get the presentation of R(I")
K[V, :y € Cir(D)]

R(D) = i

5 (5_4)
where It := I@# is explicitly given by
Ir=WVyiy 4V)+ D Ire =V iy £y

(T, ¢)e0Pr
+ Z I\E@)p.p)- (5-5)
(E(F)sepyq))e@@I‘
From Proposition 4.6, we get that the graded prime ideals of R(I") are given by
parg = {X 1 cga(T, )} (5-6)
as (T, ¢) varies in OPr-.
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5C. Singularities of R(T'). In this subsection, we analyze the singularities of the
ring R(I").

Theorem 5.7. Let I" be a graph and R(T") its associated cographic ring. Then we
have the following:

(1) R(T") is a reduced finitely generated k-algebra of pure dimension equal to
bi(T"). The minimal prime ideals of R(I") are given by p(g(r).,.¢) as ¢ varies
among all the totally cyclic orientations of I' \ E(I")sep.

(i) R(T") is Gorenstein, and its canonical module wpr(r) is isomorphic to R(I") as
a graded module.

(iii)) R(T") is a seminormal ring.

(iv) The normalization of R(T") is equal to

R =[] RT\ EM)sep, p),
¢

where the product is over all the totally cyclic orientations ¢ of E(I') \ E(I")sep.
(v) The variety Spec R(T") is slc.

—
(vi) The embedded dimension of R(I') at m is equal to the cardinality of Cir(I"),
the set of oriented circuits on I.

(vil) The multiplicity of R(I") at m is equal to

en(R(I) =Y em(RI\ E(Mep, ¢)) = Y u(C T\ E(T)sep, $)),
¢ ¢

where the sum is over all the totally cyclic orientations ¢ of I' \ E(I")sep and
m is the unique graded maximal ideal of the rings in question.

Proof. Part (i) follows from Remark 1.3, Corollary 4.7, and Lemma 2.9. Part (ii)
follows Theorem 4.10 using that @f: is a polytopal fan by Proposition 3.8. Part
(i11) follows from Theorem 4.12(ii). Part (iv) follows from Theorem 4.12(i) and
Lemma 2.9. Part (v) follows from Theorem 4.14 using that 97# is polytopal. Part (vi)
follows from Theorem 4.15(ii) and (5-3). Part (vii) follows from Theorem 4.16,
Theorem 4.18, and Lemma 2.9. O

Problem 5.8. Express the multiplicity of R(I') at mv in terms of well-known graph
invariants.

Problem 5.9. Characterize the graphs I that have the property that Spec(R(I")) is
semi divisorial log terminal. (See [Fujino 2000, Definition 1.1] for the definition of
semi divisorial log terminal.)
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Problem 5.9 is motivated by moduli theory. The singularities of R(I") are the
singularities that appear on compactified Jacobians, and compactified Jacobians
arise as limits of abelian varieties. Fujino [2011] shows that, in a suitable sense, it
is possible to degenerate an abelian variety to a semi divisorial log terminal variety.
If R(T") is semi divisorial log terminal, then compactified Jacobians are examples
of Fujino’s degenerations. For a general discussion of singularities and their role in
moduli theory, we direct the reader to [Kollar 2010].

Following the proof of Theorem 4.14, Problem 5.9 is equivalent to the following
one: characterize the totally cyclic orientations ¢ of a graph I" that have the property
that the pair (Spec R(T", ¢), —KR(r,¢)) is divisorial log terminal (in the sense of
[Kolldr and Mori 1998]). Note that the pair (Spec R(I", ¢), —Kg(r,¢)) does not
satisfy the stronger condition of being Kawamata log terminal (and so Spec R(I")
is not semi Kawamata log terminal) because —Kg(r,¢) is effective and nonzero.

6. The cographic ring R(T') as a ring of invariants

In [Casalaina-Martin et al. 2011], the completion of the ring R(I") with respect to
the maximal ideal m = p( appears naturally as a ring of invariants. In this section,
we explain this connection. Consider the multiplicative group

T]" = l_[ Glm

veV ()

The elements of T1(S) for a k-scheme § can be written as A = (A,)yev ) With
Ay € G (S) =05%.
Consider the ring
klU;,U;z e € E(I')]

A) = .
(Uz;Uz e € E(IN))

If we make the group Tt act on A(I") via
Uz = hs@ Ush, s

then the invariant subring is described by the following theorem:

Theorem 6.1. The invariant subring A(T')T is isomorphic to the cographic toric
ring R(T").

Proof. We prove the theorem by exhibiting a k-basis for the invariant subring that
is indexed by H,(I", Z) in such a way that multiplication satisfies Equation (1-1).
We argue as follows. Grade A(I") by the 6‘1 (I, Z)-grading induced by the obvious
grading of k[U;, U; : e € E(I')] (so the weight of Uj is e).

This grading is preserved by the action of 71 on A(I"), so the invariant subring is
generated by invariant homogeneous elements. Furthermore, given a homogeneous
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element M“ =[] Ug(g) of weight ¢ = Y a(é)e, an element A € Tr acts as

b M =[Trs@Ushg = (ﬂ kﬁ“”)Mc,
é

v

where b(v) is defined by 3(c) = ) _ b(v)v. In particular, we see that M€ is invariant
if and only if d(c) = 0, or in other words, ¢ € H|([", Z).

We can conclude that the invariant subring is generated by the homogeneous
elements M€ whose weight c lies in H;(I", Z). In fact, these elements freely generate
the invariant subring because distinct elements have distinct weights.

To complete the proof, observe that multiplication satisfies

0 if (¢, €) > 0 and (¢, é) < 0 for some ¢,

/ 6-1
M<te  otherwise. ©-1)

M- M€ = {
The condition that there exists an oriented edge ¢ with (c, €) > 0 and (¢, €) < 0 is
equivalent to the condition that ¢ and ¢’ do not lie in a common cone by Corollary 3.4.
We can conclude that the rule X¢ +—> M€ defines an isomorphism between the
cographic ring R(I") and the invariant subring of A(T"). O

7. A Torelli-type result for R(T')

In this section, we investigate when two graphs give rise to the same cographic
toric face ring. Before stating the result, we need to briefly recall some operations
in graph theory introduced in [Caporaso and Viviani 2010, §2]. Two graphs I
and I'" are said to be cyclic equivalent (or 2-isomorphic) if there exists a bijection
€ : E(I') - E(I") inducing a bijection on the circuits. The cyclic equivalence
class of I' is denoted by [I"]¢yc. Given a graph I', a 3-edge connectivization of T is
a graph that is obtained from I" by contracting all the separating edges of I" and
by contracting, for every separating pair of edges, one of the two edges. While a
3-edge connectivization of I" is not unique (because of the freedom that we have in
performing the second operation), its cyclic equivalence class is well-defined; it is
called the 3-edge connected class of I' and denoted by P

cyc*
Theorem 7.1. Let I and I’ be two graphs. Then R(I') = R(I"') if and only if
TRy = [Ty

Proof. Assume first that [T, = [I'T¢,.. From [Caporaso and Viviani 2010,
proof of Proposition 3.2.3], it follows that %% = C@#,, i.e., that there exists an R-
linear isomorphism ¢ : Hy(I', R) — H;(I"’, R) that sends H;(I", Z) isomorphically
onto H;(I"’, Z) and such that ¢ sends the hyperplanes of 56% bijectively onto the
hyperplanes of <6f:,. Since @% is the fan induced by the arrangement of hyper-
planes 6, the above map ¢ will send the cones of %% bijectively onto the cones
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of %#. Therefore, the map
R() — RI), X x?%©

is an isomorphism of rings.

Conversely, if R(I') = R(I"), then clearly Str(R(I")) = Str(R(I'")) (see Defi-
nition 4.8). By Corollary 4.9, we deduce that 0P = 0%, which implies that
[I‘]éyc = [F’]éyC by [Caporaso and Viviani 2010, Theorem 5.3.2]. O
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Essential p-dimension of algebraic groups
whose connected component is a torus

Roland Loétscher, Mark MacDonald, Aurel Meyer and Zinovy Reichstein

Following up on our earlier work and the work of N. Karpenko and A. Merkurjev,
we study the essential p-dimension of linear algebraic groups G whose connected
component G is a torus.

1. Introduction

Let p be a prime integer and k a base field of characteristic not equal to p. In this
paper, we will study the essential p-dimension of linear algebraic k-groups G whose
connected component G is an algebraic torus. This is a natural class of groups; for
example, normalizers of maximal tori in reductive linear algebraic groups are of
this form. This paper is a sequel to [Lotscher et al. 2013], where G was assumed to
be of multiplicative type. For background material and further references on the
notion of essential dimension, see [Reichstein 2011].

For the purpose of computing ed(G; p), we may replace the base field k by any
field extension whose degree is finite and prime to p. (We will sometimes refer
to such field extensions as prime-to-p extensions.) In particular, after passing to a
suitable prime-to-p extension of k, we may assume that k contains a primitive p-th
root of unity ¢, and that there is a field extension // k whose degree is a power of p
such that (i) the torus 7 := G° becomes split and (ii) the étale group G/ G becomes
constant over /. In this situation, the finite group G/G° has a Sylow p-subgroup F
defined over k; see [Lotscher et al. 2013, Remark 7.2]. Since G is smooth, we may
replace G by the preimage of F' without changing its essential p-dimension; see
[Meyer and Reichstein 2009, Lemma 4.1]. It is thus natural to restrict our attention
to the case where F := G/G" is a finite p-group. In view of this, we will make the
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following assumptions on k and G for the remainder of this section and throughout
much of the rest of the paper:

Notational conventions 1.1. Unless otherwise specified, k will denote a field of
characteristic not equal to p containing a primitive p-th root of unity ¢,, and G
will denote an algebraic k-group that fits into an exact sequence

1T >G5 F—1 (1-1)

of k-groups, where T := G is a torus and F := G/G" is a finite p-group. More-
over, we will assume that there is a field extension of k of p-power degree over
which T becomes split and F' becomes constant. Note that F' may be twisted (i.e.,
nonconstant) and 7" may be nonsplit over k. The extension (1-1) is not assumed to
be split (not even over the algebraic closure of k).

To state our main result, we recall that a linear representation p : G — GL(V) is
called generically free if there exists a G-invariant dense open subset U € V such
that the scheme-theoretic stabilizer of every point of U is trivial. We will say that p
is p-faithful if ker p is finite of order prime to p. We will say that p is p-generically
free if it is p-faithful and gives rise to a generically free representation of G/ ker p.

A generically free representation is faithful, but a faithful representation may
not be generically free. This phenomenon is not well understood; there is no
classification of such representations, and we do not even know for which groups G
they occur.! It is, however, the source of many of the subtleties we will encounter.

Theorem 1.2. Let G be an algebraic k-group satisfying Conventions 1.1. Then
mindim p —dim G < ed(G; p) < mindim u — dim G,

where the minima are taken respectively over all p-faithful representations p of G
and p-generically free representations u of G.

As a simple example, let k =C, p =2 and G =0, >~ SO, x Z /27 be the group of
2 x 2 orthogonal matrices, where G° = SO, ~ G,, is a one-dimensional torus. The
natural representation i : G < GL, is faithful but not generically free: if a®+b> #0,
then the stabilizer of v = (a, b) € C? is the subgroup of G = O, of order 2 generated
by the reflection in the line spanned by v. It is easy to see that no two-dimensional
representation of O, is 2-generically free, but the three-dimensional representation
i @ det is generically free. (Here det : Oy — GL; is the determinant.) Theorem 1.2
thus yields 1 < ed(O; 2) < 2. The true value of ed(O;; 2) is 2; see [Reichstein
2000, Theorem 10.3].

In general, let us denote the difference between the upper and lower bounds of
Theorem 1.2 by gap(G; p). If G = G° is a torus or G = F is a finite p-group, then

IFaithful representations that are not generically free are better understood for connected semisim-
ple groups; see [Vinberg and Popov 1994, Section 7].
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gap(G; p) = 0 (see [Lotscher et al. 2013, Lemma 2.5; Meyer and Reichstein 2009,
Remark 2.1]), and Theorem 1.2 reduces to [Lotscher et al. 2013, Theorems 1.1
and 7.1], respectively. (The case where G = F is a constant finite p-group is
due to Karpenko and Merkurjev [2008], whose work was the starting point for
both [Lotscher et al. 2013] and the present paper.) We will show that the upper and
lower bounds of Theorem 1.2 coincide for a larger class of groups, which we call
tame; see Definition 7.3 and Corollary 7.4. More generally, we will show:

Theorem 1.3. Let G be an algebraic k-group satisfying Conventions 1.1. Then
gap(G; p) <dim T — dim 7¢),

Here C(F) is the central p-subgroup of F defined in Section 4, the F-action
on T is induced by conjugation in G, and T€¥) C T denotes the subgroup of
elements fixed by C(F).

Our second main result about gap(G; p) is the following “additivity theorem”:

Theorem 1.4. Let G| and G, be algebraic k-groups satisfying Conventions 1.1. If
gap(G1; p) = gap(Ga; p) =0, then gap(G x Ga; p) =0, and ed(G x G2; p) =
ed(G1; p) +ed(Go; p).

The rest of this paper is structured as follows. In Section 2, we discuss the notion
of p-special closure kP) of a field k and show that passing from k to k?) does not
change the essential p-dimension of any k-group. In Section 3, we show that if
A — B is an isogeny of degree prime to p, then A and B have the same essential
p-dimension. Sections 4, 5 and 6 are devoted to the proof of our main Theorem 1.2.
In Section 7, we introduce the class of tame groups and show that for these groups
the upper and the lower bounds of Theorem 1.2 coincide. In Section 8, we prove
Theorem 1.3, and in Section 9, we prove Theorem 1.4. In Section 10, we classify
central extensions (1-1) with G of small essential p-dimension.

2. The p-special closure of a field

Let K be an arbitrary field and p be a prime integer. We will denote the algebraic
and separable closures of K by K, and Kep, respectively. Recall that K is called
p-special if the degree of every finite extension of K is a power of p.

Lemma 2.1. A field K is p-special if and only if it has no nontrivial prime-to-p
extensions.

Proof. We need to show that if K has no nontrivial prime-to-p extensions, then the
degree of every finite extension L/K is a power of p. After passing to the normal
closure, we may assume that L is normal over K. Now L/K is generated by a
separable extension Ly/K and a purely inseparable extension L;/K; see [Lang
1965, Proposition VII.7.12]. Hence, it suffices to show that [L : K] is a power of p
if i) L/K is separable or (ii) L/K is purely inseparable.
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(i) As above, we may assume that L/K is normal, i.e., Galois. Let I', be a p-
Sylow subgroup of I' = Gal(L/K). Then L'7 /K is a prime-to-p extension. Hence,
L'r =K,ie, = ['p,and [L: K] = |I'| is a power of p.

(>i1) If char(K) # p, a purely inseparable extension L/K is prime-to-p and hence
trivial. If char(K) = p, then [L : K] is a power of p. O

By [Elman et al. 2008, Proposition 101.16] for every field K, there exists an
algebraic field extension L /K such that L is p-special and every finite subextension
of L/K has degree prime to p. Such a field L is called a p-special closure of K
and will be denoted by K (7).

The following properties of p-special closures will be important for us in the
sequel:

Lemma 2.2. Let K be a field and K, an algebraic closure of K containing K P,
(@) KP is a direct limit of prime-to-p extensions K; /K.
(b) The field KP) is perfect if char K # p.
(c) Suppose char K # p. For any prime q # p, the cohomological q-dimension of
U = Gal(K,e/KP) is cd, (¥) =0

Proof. (a) The finite subextensions K'/K of KP)/K form a direct system with
limit K ?). (b) Every finite extension of K ?) has p-power degree and is therefore
separable. (c) By construction, W is a profinite p-group. The result follows from
[Serre 2002, Corollary 2, 1.3]. O

Let / be a base field, Fields /! be the category of field extensions of / and Sets be
the category of sets. We call a covariant functor % : Fields /[ — Sets limit-preserving
if, for any directed system of fields {K;}, JP(hm K;) = hm F(K;). For example,
if A is an algebraic group, the functor #(K) = H (K, A) is limit-preserving; see
[Margaux 2007, 2.1].

Lemma 2.3. Let F be limit-preserving and o € F(K) an object. Denote the image
of a in F(KP) by agq. Then:
(a) edg(a; p) =edg(agm; p) =edg(agm).
(b) ed(F; p)=ed(F,»; p), where F ) :Fields/1P) — Sets denotes the restriction
of F to Fields /1P,
Proof. (a) It is clear that edg (or; p) > edg(agpm; p) =edg(ag ) for any functor F.
It remains to prove eds («; p) <eds(agw). If L/K is finite of degree prime to p,

edg(a; p) =edg(ar; p); (2-1)

cf. [Merkurjev 2009, Proposition 1.5] and its proof. For the p-special closure K (P,
this is similar and uses (2-1) repeatedly.
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Suppose there is a subfield Ko € K ” and at g ») comes from an element 8 € F(K)
so that By = agn. Write KP) = lim &, where & is a direct system of finite
prime-to- p extensions of K. Then Ky = li_n)LSBo with $o={LN Ky | L € ¥}, and
by assumption on %, we have F(Ky) = I'EQL,&% F(L).

Thus, there is a field L'= LN Ko (L € £) and y € F(L') such that yx, = 8. Since
ay, and y; become equal over K (P, after possibly passing to a finite extension, we
may assume they are equal over L, which is finite of degree prime to p over K.

Combining these constructions with (2-1), we see that
edg(a; p) =edg(ar; p) =edg(yL; p) <edz(yL) < trdeg, Ko.

This proves eds(a; p) < edsx(agw) since Ko was an arbitrary field of definition
for K® -

(b) This follows directly from (a) by taking @ of maximal essential p-dimension. [l
Proposition 2.4. Let [ be an arbitrary field,
%, % : Fields /I — Sets

be limit-preserving functors and ¥ — 4 be a natural transformation. If the map
F(K) — 9Y(K) is bijective or surjective for any p-special field containing [, then,
respectively,

ed(F; p) =ed(%; p) or ed(F; p)=>ed(; p).

Proof. Assume the maps are surjective. By Lemma 2.2(a), the natural transformation
is p-surjective in the terminology of [Merkurjev 2009], so we can apply [Merkurjev
2009, Proposition 1.5] to conclude ed(%F; p) > ed(%9; p).

Now assume the maps are bijective. Let « be in F(K) for some K /[ and S its
image in %(K). We claim that ed(«; p) = ed(B; p). First by Lemma 2.3, we may
assume that K is p-special. In this situation, it is enough to prove that ed(«) <ed(B)
(the opposite inequality is by functoriality).

Assume that 8 comes from By € 4(K) for some field I € Ky € K. Let K|
denote the algebraic closure of K in K. Any finite prime-to-p extension of K|} is
isomorphic (over K(’)) to a subfield of K (cf. [Merkurjev 2009, Lemma 6.1]) and
hence coincides with K. Thus, K has no nontrivial prime-to-p extensions. By
Lemma 2.1, it follows that K| is p-special. Since K| is an algebraic extension of
Ky, we may replace K¢ by K|} and thus assume that K is p-special. By assumption,
F(Ko) = 9(Ko) and F(K) — 9(K) are bijective; therefore, the unique element
g € F(Kp) that maps to By must map to o under the natural restriction map. The
claim follows.

We obtain ed(F; p) = ed(x; p) =ed(B; p) <ed(¥; p) by taking o of maximal
essential p-dimension. ([l
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3. Isogenies

An isogeny of algebraic groups is a surjective morphism A — B with finite kernel.
The degree of an isogeny is the order of its kernel.

Proposition 3.1. Suppose A — B is an isogeny of degree prime to p of smooth
algebraic groups over a field | of characteristic not equal to p. Then

(a) forany p-special field K containing k, the natural map H'(K, A)— H' (K, B)
is bijective and

(b) ed(A; p) =ed(B: p).
Example 3.2. Let E¢° and E3° be simply connected simple groups of type Eg

and E7, respectively. In [Gille and Reichstein 2009, 9.4 and 9.6], it is shown that if k
is an algebraically closed field of characteristic not equal to 2 and 3, respectively, then

ed(Eg;2) =3 and ed(ES;3) =3.
For the adjoint groups Egd = E¢ /3 and E ad — E3¢ /112, we therefore have
ed(E¥;2)=3 and ed(E¥;3)=3.
For the proof of Proposition 3.1, we will need a lemma.

Lemma 3.3. Let N be a finite algebraic group over a field | of characteristic not
equal to p. The following are equivalent:

(a) p does not divide the order of N.
(b) p does not divide the order of N (lyg).

Proof. Let N be the connected component of N and N = N/N° the étale
quotient. Recall that the order of a finite algebraic group N over [ is defined as
IN| =dim; I[N] and |N| = |[N°||N%|; see, e.g., [Tate 1997]. If char! =0, N° is
trivial; if char [ = ¢ # p is positive, | N°| is a power of q. Hence, N is of order prime
to p if and only if the étale algebraic group N® is. Since N? is connected and finite,
NO(lalg) = {1}, so N(layg) is of order prime to p if and only if the group Nét(lalg)
is. Then [N®| = dim; [[N¥] = |[N®(lq)|; cf. [Bourbaki 1990, V.29 Corollary]. [J

Proof of Proposition 3.1. (a) Let N be the kernel of the isogeny A — B and K be
a p-special field over [. Since K., = Kz (see Lemma 2.2(b)), the sequence of
Kep-points 1 — N (Kep) — A(Kgep) — B(Kep) — 1 is exact. By Lemma 3.3,
the order of N(Ksep) is not divisible by p and therefore coprime to the order of
any finite quotient of ¥ = Gal(K,/K). By [Serre 2002, 1.5, Exercise 2], this
implies that H' (K, N) = {1}. Similarly, if .N is the group N twisted by a cocycle
c: WV — A, then (N(Kyep) = N(Kjep) is of order prime to p, and HY(K,.N)={1}.
It follows that H'(K, A) — H'(K, B) is injective; cf. [Serre 2002, 1.5.5].



Essential p-dimension of algebraic groups 1823

Surjectivity is a consequence of [Serre 2002, I, Proposition 46] and the fact
that the g-cohomological dimension of W is O for any divisor g of [N (Kep)]
(Lemma 2.2(c)).

(b) This part follows from (a) and Proposition 2.4. O

4. Proof of the main theorem: an overview

We now assume that Conventions 1.1 are valid. The upper bound in Theorem 1.2
is an easy consequence of Proposition 3.1. Indeed, suppose u : G — GL(V) is a
p-generically free representation. That is, ker u is a finite group of order prime
to p, and u descends to a generically free representation of G’ := G/ker u. By
Proposition 3.1, ed(G; p) = ed(G’; p). On the other hand,

ed(G'; p) <ed(G') <dimu —dim G’ = dim u — dim G;

see [Berhuy and Favi 2003, Lemma 4.11; Merkurjev 2009, Corollary 4.2]. This
completes the proof of the upper bound in Theorem 1.2.

The rest of this section will be devoted to outlining a proof of the lower bound of
Theorem 1.2. The details (namely, the proofs of Propositions 4.2 and 4.3) will be
supplied in the next two sections. The starting point of our argument is [Lotscher
et al. 2013, Theorem 3.1], which we reproduce below for the reader’s convenience:

Theorem 4.1. Consider an exact sequence of algebraic groups over a field
l1-C—-H—->Q0—1

such that C is central in H and is isomorphic to p), for some r = 0. Given a
character x : C — |, denote by Rep* the class of irreducible representations
¢ : H— GL(V) such that ¢ (c) = x(c) Id for every c € C.

Assume further that

gcd{dim ¢ | ¢ € Rep’} = min{dim ¢ | ¢ € Rep*} 4-1)
for every character x : C — p. Then
ed(H; p) > mindim ¢ —dim H,

where the minimum is taken over all finite-dimensional representations ¥ of H such

that | ¢ is faithful.

To prove the lower bound of Theorem 1.2, we will apply Theorem 4.1 to the
exact sequence
1-CG)—-G— Q0—1, 4-2)

where C(G) is a central subgroup of G defined as follows. Recall from [Lotscher
et al. 2013, Section 2] that if A is a k-group of multiplicative type, Split; (A) is
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defined as the maximal split k-subgroup of A. That is, if X (A) is the character
Gal(ksep/ k)-module of A, then the character module of Split, (A) is defined as the
largest quotient of X (A) with trivial Gal(ksep/ k)-action.

We denote by Z(G)[p] the p-torsion subgroup of the center Z(G). Note that
Z(G) is a commutative group, which is an extension of a p-group by a group of
multiplicative type. Since char k # p, it follows that Z(G) is of multiplicative type.
We now define C(G) := Split, (Z(G)[ p]).

In order to show that Theorem 4.1 can be applied to the sequence (4-2), we need
to check that condition (4-1) is satisfied. This is a consequence of the following
proposition, which will be proved in the next section:

Proposition 4.2. The dimension of every irreducible representation of G over k is
a power of p.

Applying Theorem 4.1 to the exact sequence (4-2) now yields
ed(G; p) > mindim p —dim G,

where the minimum is taken over all representations p : G — GL(V) such that
plc(c) is faithful. This resembles the lower bound of Theorem 1.2; the only
difference is that in the statement of Theorem 1.2 we take the minimum over
p-faithful representations p and here we only ask that p |c(g) should be faithful.
The following proposition shows that the two bounds are, in fact, the same, thus
completing the proof of Theorem 1.2:

Proposition 4.3. A finite-dimensional representation p of G is p-faithful if and
only if p|c(c) is faithful.
We will prove Proposition 4.3 in Section 6.

Remark 4.4. The inequality mindim p —dim G <ed(G; p) of Theorem 1.2, where
p ranges over all p-faithful representations of G, fails if we take the minimum
over just the faithful (rather than p-faithful) representations, even in the case where
G =T is a torus.

Indeed, choose T so that the Gal(kep/ k)-character lattice X (T') of T is a direct
summand of a permutation lattice, but X (7') itself is not permutation (see [Colliot-
Thélene and Sansuc 1977, 8 A] for an example of such a lattice).

In other words, there exists a k-torus 7" such that 7 x T’ is quasisplit (but T
is not). This implies that HY(K,T xT')={1} and thus H' (K, T) = {1} for any
field extension K /k. Consequently, ed(7T'; p) = 0 for every prime p.

On the other hand, we claim that the dimension of the minimal faithful represen-
tation of T is strictly bigger than dim 7. Assume the contrary. Then there exists
a surjective homomorphism f : P — X(T') of Gal(ksp/k)-lattices, where P is
permutation and rank P = dim T'; see, e.g., [Lotscher et al. 2013, Lemma 2.6]. This
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implies that f has finite kernel and hence is injective. We conclude that f is an
isomorphism, so X (T) is a permutation Gal(kgep/ k)-lattice, a contradiction. [

5. Dimensions of irreducible representations

The purpose of this section is to prove Proposition 4.2.

Lemma 5.1. Let H be a finite p-subgroup of G defined over k. Then H becomes
constant after some field extension of k whose degree is a power of p.

Recall that here G and k are subject to Conventions 1.1.

Proof. After passing to a suitable p-power field extension of k, the torus 7" becomes
split, and F' becomes constant. In other words, we may assume that 7 N H is split
and the image w(H) of H in F is constant. Moreover, after adjoining a primitive
root of unity of order p™ := |T N H|, we may assume that 7 N H is constant (note
that [k(¢,m) : k] is a power of p since k is assumed to contain ¢,,). Thus, H is an
extension of a constant p-group 7 (H) by a constant p-group 7 N H. The group H
becomes constant after a p-power field extension if and only if the image of I in
Aut(H (ksep)) 18 a p-group. Thus, it suffices to establish the following claim:

Claim. Let B be a p-group, S a finite subgroup of Aut(B)and1 - A— B — C — 1
an S-equivariant exact sequence with § acting trivially on A and C. Then S is a
p-group.

To prove the claim, assume the contrary. Then S contains a subgroup of prime
order g # p. After replacing S by that subgroup, we may assume without loss
of generality that |S| = ¢q. Let b € B. Then the image of b in C is fixed under S.
Hence, the fiber Ab over this element is S-stable. Since the cardinality of Ab is a
power of p and thus is not divisible by ¢, S has to fix some elements of Ab. Denote
one of these elements by by. Then b € Aby, and since the elements of A are fixed
by §, this implies that b is fixed by S as well. This shows that S acts trivially on B,
a contradiction. (]

The special case of Proposition 4.2, where T = {1}, i.e., G = F is a finite p-group
that becomes constant after a p-power field extension, is established in the course
of the proof of [Lotscher et al. 2013, Theorem 7.1]. Our proof of Proposition 4.2
below is based on leveraging this case as follows.

Lemma 5.2. Let H be a smooth algebraic group defined over a field | and
HCHC---CH

be an ascending sequence of smooth l-subgroups whose union Unzl H, is Zariski
dense in H. If p : H — GL(V) is an irreducible representation of H, then p |p, is
irreducible for sufficiently large integers i.
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Proof. Foreachd =1, ...,dimV — 1, consider the H-action on the Grassman-
nian Gr(d, V) of d-dimensional subspaces of V. Let X @ = Gr(d, V)" and
X ;d) = Gr(d, V)i be the subvarieties of d-dimensional H- and H;-invariant sub-
spaces of V, respectively. Then X gd) D Xéd) D .-, and since the union of the
groups H; is dense in H,

XD = x.

i>0

By the Noetherian property of Gr(d, V), we have X¥ = X ,(,f? for some m, > 0.
Since V does not have any H-invariant d-dimensional /-subspaces, we know
that X (/) = @. Thus, X\!)(I) = @, i.e., V does not have any H,, -invariant
d-dimensional /-subspaces. Setting m := max{mi, ..., Mgimv—1}, We see that p|g,
is irreducible for any i > m. ([

We now proceed with the proof of Proposition 4.2. By Lemmas 5.1 and 5.2, it
suffices to construct a sequence of finite p-subgroups

FICFHC---CG

defined over k whose union (., F, is Zariski dense in G. In fact, it suffices to
construct one p-subgroup F’' C G defined over k such that F’ surjects onto F'. Once
F’ is constructed, we can define F; C G as the subgroup generated by F’ and T[p']
for every i > 0. Here T'[m] denotes the m-torsion subgroup of 7. Since | J,.; F
contains both F’ and T[pi ] for every i > 0, it is Zariski dense in G, as desired.

The following lemma, which establishes the existence of F’, is thus the final
step in our proof of Proposition 4.2:

Lemma 5.3. Let 1 - T — G = F — 1 be an extension of a p-group F by a
torus T over an arbitrary field k. Then G has a p-subgroup F' with w(F') = F

Here G and k are not subject to Conventions 1.1. In the case where F is split
and k is algebraically closed, the above lemma is proved in [Chernousov et al. 2006,
page 564]; cf. also the proof of [Borel and Serre 1964, Lemme 5.11].

Proof. Denote by Ex! (F, T) the group of equivalence classes of extensions of F
by T'. We claim that Ex! (F, T)istorsion. Let Ex' (F, T) C Ex! (F, T) be the classes
of extensions that have a scheme-theoretic section (i.e., G(K) — F(K) is surjective
for all K/k). There is a natural isomorphism Ex'(F,T) ~ H*(F, T), where
H? denotes Hochschild cohomology; see [Demazure and Gabriel 1970, I11.6.2,
Proposition]. By [Schneider 1981], the usual restriction-corestriction arguments
can be applied in Hochschild cohomology, and in partlcular m - H*(F, T) =0,
where m is the order of F. Now recall that M — Ex/ (F, M) and M — Ex'(F, M)
are both derived functors of the crossed homomorphisms M +— Ex’(F, M), where
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in the first case M is in the category of F-module sheaves and in the second F'-
module functors, cf. [Demazure and Gabriel 1970, II1.6.2]. Since F is finite and
T an affine scheme, by [Schneider 1980b, Sitze 1.2 and 3.3] there is an exact
sequence of F-module schemes 1 - T'— M| — M, — 1 and an exact sequence
Ex’(F, M,) — ExX*(F, M)) — g(l(F, T) — H*(F, M,) ~ Ex'(F, M;). The F-
module sequence also induces a long exact sequence on Ex(F, =), and we have

Ex!(F, T)
/ \

Ex*(F, M) —— Ex"(F, M») Ex!(F, M)).

~ /

Ex'(F, T)

An element in Ex! (F, T) can thus be killed first in Ex! (F, M), so it comes from
Ex(F, M,). Then kill its image in Ex'(F,T) ~ H?(F, T), so it comes from
Ex’(F, M) and hence is zero in Ex! (F, T). In particular, multiplying twice by the
order m of F, we see that m? .Ex! (F, T)=0. This proves the claim.

Now let us consider the exact sequence 1 - N — T xm 1, where N is
the kernel of multiplication by m?. Clearly N is finite, and we have an induced
exact sequence

Ex!(F, N) = Ex'(F, T) X" Ex\(F, T),

which shows that the given extension G comes from an extension F’ of F by N.
Then G is the pushout of F’ by N — T, and we can identify F’ with a subgroup
of G. U

6. Proof of Proposition 4.3

We will prove Proposition 6.1 below; Proposition 4.3 is an immediate consequence
with N = ker p. Once again, please note that Conventions 1.1 are in force.

Proposition 6.1. Let N be a normal k-subgroup of G. The following conditions
are equivalent:

(a) N is finite of order prime to p.
(b) NNC(G) ={1}.
(©) NNZ(G)[pl={1}
In particular, taking N = G, we see that C(G) # {1} if G # {1}.
Proof. (a) = (b) This is obvious since C(G) is a p-group.

(b) = (c) Assume the contrary: A:=NNZ(G)[p]#{1}. By Lemma 5.1, Z(G)[p]
becomes constant over a field extension k’/ k of p-power degree. Since k contains £,
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the group Z(G)[p] splits over k" as a group of multiplicative type. It is shown
in [Lotscher et al. 2013, Section 2] that C(A) # {1}. Thus,

{1} #C(A) S NN C(G),

contradicting (b).

(c) = (a) Our proof of this implication will rely on the following assertion:

Claim. Let M be a nontrivial normal finite p-subgroup of G such that the commu-
tator (7', M) is trivial. Then M N Z(G)[p] # {1}.

To prove the claim, note that M (ksp) is nontrivial and the conjugation action of
G (ksep) on M (kgep) factors through an action of the p-group F(kgp). Thus, each
orbit has p" elements for some n > 0; consequently, the number of fixed points is
divisible by p. The intersection (M N Z(G)) (ksep) is precisely the fixed point set
for this action; hence, M N Z(G)[p] # {1}. This proves the claim.

We now continue with the proof of the implication (¢) = (a). Assume that
N <G and N N Z(G)[p] = {1}. Applying the claim to the normal subgroup
M :=(NNT)[p] of G, we see that (NN T)[p] ={1},i.e., NNT is a finite group
of order prime to p. The exact sequence

1-NNT—>N-—>N-—1, (6-1)

where N is the image of N in F := G/T, shows that N is finite. Now observe
that for every r > 1, the commutator (N, T[p"]) is a p-subgroup of N N T. Thus,
(N, T[p"]) = {1} for every r > 1. We claim that this implies (N, T) = {1}. If N is
smooth, this is straightforward; see [Borel 1969, Proposition 2.4, page 59]. If N
is not smooth, note that the map ¢ : N x T — G sending (n, t) to the commutator
ntn~'t~! descends to ¢ : N x T — G (indeed, N N T clearly commutes with T).
Since |N| is a power of p and char(k) # p, N is smooth over k, and we can pass
to the separable closure kg, and apply the usual Zariski density argument to show
that the image of ¢ is trivial.

We thus conclude that N N T is central in N. Since ged(|[N N T|, N) = 1, by
[Schneider 1980a, Corollary 5.4] the extension (6-1) splits, i.e., N >~ (NNT) x N.
This turns N into a finite p-subgroup of G with (T, N) = {1}. The claim implies
that N is trivial. Hence, N = NN T is a finite group of order prime to p, as claimed.

This completes the proof of Proposition 6.1 and thus of Theorem 1.2. (]

7. Tame groups

As we have seen in Section 1, some groups G satisfying Conventions 1.1 have
faithful linear representations that are not generically free. In this section, we take
a closer look at this phenomenon.
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If F’ is a subgroup of F, then we will use the notation G - to denote the subgroup
7~ (F") of G. Here 7 is the natural projection G — G/T = F as in (1-1).

Lemma 7.1. Suppose T is central in G. Then

(a) G has only finitely many k-subgroups S such that SNT = {1}, and

(b) every faithful action of G on a geometrically irreducible variety X is generi-
cally free.

Proof. After replacing k by its algebraic closure k,,, we may assume without loss
of generality that k is algebraically closed.

(a) Since F has finitely many subgroups, it suffices to show that for every subgroup
Fy C F, there are only finitely many S € G such that 7(S) = Fp and SNT = {1}.

After replacing G by Gf,, we may assume that Fp = F. In other words, we
will show that = has at most finitely many sections s : F — G. Fix one such
section, 5o : F — G. Denote the exponent of F by e. Suppose s : F — G is
another section. Then for every f € F(k), we can write s(f) = so(f)t for some
t € T (k). Since T is central in G, ¢ and so( f) commute. Since s(f)° =so(f)* =1,
we see that 1 = 1. In other words, ¢ € T (k) is an e-torsion element, and there
are only finitely many e-torsion elements in 7 (k). We conclude that there are
only finitely many choices of s(f) for each f € F(k). Hence, there are only
finitely many sections F — G, as claimed.

(b) The restriction of the G-action on X to T is faithful and hence generically free;
cf., e.g., [Lotscher 2010, Proposition 3.7(A)]. Hence, there exists a dense open
T -invariant subset U C X such that Staby (1) = {1} for all # € U. In other words, if
S = Stabg (1), then SNT = {1}. By (a), G has finitely many nontrivial subgroups S
with this property. Denote them by Si, ..., S,. Since G acts faithfully, X5 is a
proper closed subvariety of X foranyi =1, ..., n. Since X is irreducible,

U=U\X5U---UX%)

is a dense open T -invariant subset of X, and the stabilizer Stabg () is trivial for
every u € U’. Replacing U’ by the intersection of its (finitely many) G (kaig)-
translates, we may assume that U’ is G-invariant. This shows that the G-action on
X is generically free. O

Proposition 7.2. (a) A faithful action of G on a geometrically irreducible variety
X is generically free if and only if the action of the subgroup Gc(ry € G on X
is generically free.

(b) A p-faithful action of G on a geometrically irreducible variety X is p-generi-
cally free if and only if the action of the subgroup Gc(ry € G on X is p-
generically free.
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Proof. (a) The (faithful) T-action on X is necessarily generically free; cf. [Lotscher
2010, Proposition 3.7(A)]. Thus, by [Gabriel 2011, Exposé V, Théoreme 10.3.1] or
[Berhuy and Favi 2003, Theorem 4.7], X has a dense open T -invariant subvariety U
defined over k, which is the total space of a T-torsor, U — Y :=U/T, where Y is
also smooth and geometrically irreducible. Since G/ T is finite, after replacing U
by the intersection of its (finitely many) G (kae)-translates, we may assume that U
is G-invariant.

The G-action on U gives rise to an F-action on Y (by descent). Now it is easy
to see (cf. [Lorenz and Reichstein 2000, Lemma 2.1]) that the following conditions
are equivalent:

(i) The G-action on X is generically free.
(i) The F-action on Y is generically free.
Since F is finite, (ii) is equivalent to
(iii) F acts faithfully on Y.

Proposition 6.1 tells us that the kernel of the F-action on Y is trivial if and only if
the kernel of the C(F)-action on Y is trivial. In other words, (iii) is equivalent to

(iv) C(F) acts faithfully (or equivalently, generically freely) on Y
and consequently to
(v) the G¢(ry-action on U (or, equivalently, on X) is generically free.

Note that (iv) and (v) are the same as (ii) and (i), respectively, except that F is
replaced by C(F) and G by G¢(r). Thus, the equivalence of (iv) and (v) follows like
the equivalence of (i) and (ii). We conclude that (i) and (v) are equivalent, as desired.

(b) Let K be the kernel of the G-action on X, which is contained in 7" by assump-
tion. Note that (G/K)/(T/K) =G/T = F, so (a) says the G/K-action on X is
generically free if and only if the G¢(r)/K -action on X is generically free, and (b)
follows. (]

The following definition is natural in view of Proposition 7.2:

Definition 7.3. Consider the action of F on T induced by conjugation in G. We
say that G is tame if C(F) lies in the kernel of this action. Equivalently, G is tame
if T is central in G¢(r).

Recall in Section 1 we defined gap(G; p) as the difference between the minimal
dimension of a p-generically free representation and the minimal dimension of a
p-faithful representation of G (all representations are assumed to be defined over k).

Corollary 7.4. Let G be a tame k-group and X be a geometrically irreducible
k-variety X.
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(a) Every faithful G-action on X is generically free.
(b) Every p-faithful G-action on X is p-generically free.
(c) We have gap(G; p) = 0. In other words,

ed(G; p) = mindim p —dim G,
where the minimum is taken over all p-faithful k-representations of G.

Proof. (a) Since G is tame, T is central in G¢(r). Hence, the G¢(F)-action on X
is generically free by Lemma 7.1(b). By Proposition 7.2(a), the G-action on X is
generically free.

(b) Let K be the kernel of the action. Note that G/K is also tame. Now apply
(a) to G/K.

(c) This follows immediately from (b) and Theorem 1.2. U

8. Proof of Theorem 1.3
In this section, we will prove the following proposition, which implies Theorem 1.3:
Proposition 8.1. Let p : G — GL(V) be a linear representation of G.

(a) If p is faithful, then G has a generically free representation of dimension at
most dim p 4+ dim T — dim 7€),

(b) If p is p-faithful, then G has a p-generically free representation of dimension
at most dim p 4+ dim T — dim 7€ 0,

Proof. (a) The subgroup T¢F) is preserved by the conjugation action of G, so the
adjoint representation of G decomposes as Lie(T) = Lie(T¢)) @ W for some
G-representation W. Since the G-action on Lie(T") factors through F, the existence
of W follows from Maschke’s theorem. Let i be the G-representation on V @ W.
Since dim Lie(7€¢®)) > dim T, we have dim i < dim p +dim 7 — dim 7€),
It thus remains to show that p is a generically free representation of G.

Let K be the kernel of the G¢(r)-action on Lie(7). We claim T is central in K.
The finite p-group K /T acts on T (by conjugation), and it fixes the identity. By
construction, K /T acts trivially on the tangent space at the identity, which implies
K /T acts trivially on T since the characteristic is not equal to p; cf. [Gille and
Reichstein 2009, Proof of Lemma 4.1]. This proves the claim.

By Lemma 7.1, the K -action on V is generically free. Now G ¢ (r) acts trivially on
Lie(T¢), s0 Ge(ry/K acts faithfully on W. Since G¢(r)/K is finite, this action
is also generically free. Therefore, G¢(r) acts generically freely on V & W [Meyer
and Reichstein 2009, Lemma 3.2]. Finally, by Proposition 7.2(a), G acts generically
freely on V @ W, as desired.
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(b) By our assumption, kerp € T. Set T := T/kerp. It is easy to see that
dim 7€) < dim T¢"). Hence, by (a) there exists a generically free representation
of G/ ker p of dimension at most

dim7T —dimT¢®) <dim T —dim 7€),

We may now view this representation as a p-generically free representation of G.
This completes the proof of Theorem 1.3. ([

Remark 8.2. A similar argument shows that for any tame normal subgroup H € G
over k, gap(G; p) <ed(G/H; p).

9. Additivity

Our proof of the additivity Theorem 1.4 relies on the following lemma. Let G be
an algebraic group defined over a field k and C be a k-subgroup of G. Denote the
minimal dimension of a representation p of G such that p |¢ is faithful by f(G, C).

Lemma 9.1. Let k be an arbitrary field. Fori =1, 2, let G; be an arbitrary (linear)
algebraic group defined over k, and let C; be a central k-subgroup of G;. Assume
that C; is isomorphic to ,u:;' over k for some ry, ry > 0. Then

f(G1 x G Cy x C) = f(Gy; Cy) + f(Go; Ca).

Our argument below is a variant of the proof of [Karpenko and Merkurjev 2008,
Theorem 5.1], where G is assumed to be a (constant) finite p-group and C = C(G)
(recall that C(G) is defined at the beginning of Section 4).

Proof. Fori =1,2, let m; : G| Xx Gy — G, be the natural projection, and let
¢ . G; = G x G, be the natural inclusion.

If p; is a d;-dimensional representation of G; whose restriction to C; is faithful,
then clearly p; o] @ pp o7y is a (d) + dp)-dimensional representation of G| x G
whose restriction to C; x C; is faithful. This shows that

f(G1 xGa;Cy x C2) < f(Gr; C) + f(Ga; C).

To prove the opposite inequality, let p : G; x G, — GL(V) be a representation
such that p|c, xc, is faithful and of minimal dimension

d= f(G1 xGy; C; x ()

with this property. Let p1, p2, ..., p, denote the irreducible decomposition factors
in a Jordan—Holder series for p. (Note that since G| and G, are arbitrary linear
algebraic groups, p may not be completely reducible.) Since C; x C; is central
in G| x G», each p; restricts to a multiplicative character of C; x C,, which we
will denote by y;. Moreover, since C; x Cr =~ ,u;; *72 ig linearly reductive, p lcyxc,
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is a direct sum Xledl DD xn d”, where d; = dim p;. It is easy to see that the
following conditions are equivalent:

(1) plc,xc, 1s faithful.

(i1) xi1,..., xn generate (C; x Cp)* as an abelian group.

In particular, we may replace p by the direct sum p; & --- @ p,. Since C; is
isomorphic to ), we will think of (C; x C»)* as an F,-vector space of dimension
r1 + rp. Since (i) <= (ii) above, we know that x, ..., x, span (C; x C»)*. In
fact, they form a basis of (C| x C»)*, i.e., n = r| +r,. Indeed, if they were not
linearly independent, we would be able to drop some of the terms in the irreducible
decomposition p; @ - - - @ p, so that the restriction of the resulting representation
to C| x C, would still be faithful, contradicting the minimality of dim p.

We claim that it is always possible to replace each p; by ,03., where ,0} is either
pj o€ oy Or pj o€y omy such that the restriction of the resulting representation
P =p;® - ®p, to Cy x C, remains faithful. Since dim p; = dim p], we see that
dim p’ = dim p. Moreover, p’ will then be of the form a o 1 ® oy o 7>, where «;
is a representation of G; whose restriction to C; is faithful. Thus, if we can prove
the above claim, we will have

f(G1 x Gy; C1 x Cr) =dim p =dim p’ = dima; +dimay
> f(G1, C) + f(G2, Cy),

as desired.

To prove the claim, we will define ,0} recursively for j = 1,...,n. Suppose
pi, e ,0}7l have already be defined so that the restriction of

P1® - ®p;_ ®p DD pa
to Cy x C; is faithful. For notational simplicity, we assume py =p{, ..., pj—1 = ,0}_1.
Note that
xj=(xjo€1om)®(xjo€e0m).

Since xi, ..., x, form a basis of (C; x C2)* as an [F,-vector space, we see that
(a) xjoejomy or (b) xjoeyoms does not lie in Span[Fp(xl, e Xj=1s Xjgls ey Xn)-
Set

, pjoe€jom in case (a),
pj = .
pjoeyomy otherwise.

Using the equivalence of (i) and (ii) above, we see that the restriction of

PO Q- 1®P; P 1D ps

to C is faithful. This completes the proof of the claim and thus of Lemma 9.1. [J
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Proof of Theorem 1.4. The groups G and G in the statement of Theorem 1.4 are
assumed to satisfy Conventions 1.1 and hence so does G := G| x G».

Recall also that C(G) is defined as the maximal split p-torsion subgroup of the
center of G; see Section 4. It follows from this definition that

C(G) =C(G1) x C(Gy).

By Lemma 9.1 and Proposition 4.3, the minimal dimension of a p-faithful repre-
sentation is

f(G,C(G)) = f(G1, C(G1)) + f(G2, C(G2)),

which is the sum of the minimal dimensions of p-faithful representations of G
and G,. For i € {1, 2} since gap(G;; p) = 0, there exists a p-generically free
representation p; of G; of dimension f(G;, C(G;)). The direct sum p; & py is a
p-generically free representation of G, and its dimension is f (G, C(G)). It follows
that gap(G; p) = 0. By Theorem 1.2,

ed(G; p) = f(G, C(G)) —dim G
and similarly for G| and G»; cf. Proposition 4.3. Hence, as desired, we have
ed(G; p) =ed(Gy; p) +ed(Ga; p). U

Example 9.2. Let T be a torus over a field £ of characteristic not equal to 2.
Suppose there exists an element 7 in the absolute Galois group Gal(ksep/ k) that acts
on the character lattice X (7') via multiplication by —1. Then ed(7; 2) > dim T.

Proof. Let n := dimT. Over the fixed field K := (kgp)®, the torus T becomes
isomorphic to a direct product of n copies of a nonsplit one-dimensional torus 77.
Using [Lotscher et al. 2013, Theorem 1.1], it is easy to see that ed(77; 2) = 1. By
Theorem 1.4, we conclude that

ed(T;2) > ed(Tk;2) =ed((T)";2) =ned(T1;2) =dimT. O
We end this section with an example that shows that the property gap(G; p) =0
is not preserved under base field extensions.

Example 9.3. Let k& be as in Conventions 1.1, T be an algebraic k-torus that splits
over a field extension of k of p-power degree and F' be a nontrivial p-subgroup of
the constant group S,. Form the wreath product

T:F:=T"xF,
where F acts on 7" by permutations.
Then gap(T : F; p) =0 if and only if ed(T"; p) > 0. Moreover,

{ed(T”; p)=ned(T; p) ifed(T; p) >0,

ed(T: F; = .
( 2 ed(F; p) otherwise.
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Proof. Let W be a p-faithful T -representation of minimal dimension. By [Lotscher
et al. 2013, Theorem 1.1], ed(T; p) =dim W —dim T.

Then W®" is naturally a p-faithful (T : F)-representation. Lemma 9.1 and
Proposition 4.3 applied to 7" tell us that W®" has minimal dimension among all
p-faithful representations of T F.

Suppose ed(T'; p) > 0, i.e., dim W > dim T. The group F acts faithfully on the
rational quotient W®" /T" = (W /T)" since dim W/T =dim W —dim T > 0. It is
easy to see that the (T : F)-action on W®" is p-generically free; cf., e.g, [Meyer
and Reichstein 2009, Lemma 3.3]. In particular, gap(7 : F'; p) =0 and

ed(TF; p)=dim W®" —dim(T:F) =n(dim W—dim T) =ned(T; p) =ed(T"; p),

where the last equality follows from the additivity Theorem 1.4.

Now assume that ed(7'; p) =0, i.e., dim W =dim 7. The group 7 : F cannot
have a p-generically free representation V of dimension dim W®" =dim T F since
T" would then have a dense orbit in V. It follows that gap(T: F'; p) > 0. In order to
compute its essential p-dimension of 72 F', we use the fact that the natural projection
T F — F has a section. Hence, the map H' (%, T:F) — H!(%, F) also has a sec-
tion and is consequently a surjection. This implies ed(7: F'; p) > ed(F; p). Let W’
be a faithful F-representation of dimension ed(F'; p). The direct sum W®" @ W’ con-
sidered as a T F representation is p-generically free, so ed(T:F; p) =ed(F; p). U

10. Groups of low essential p-dimension

In [Lotscher et al. 2013], we have identified tori of essential dimension O as those tori
whose character lattice is invertible, i.e., a direct summand of a permutation module;
see [Lotscher et al. 2013, Example 5.4]. The following lemma (with H = G) shows
that among the algebraic groups G studied in this paper, i.e., extensions of p-groups
by tori, there are no other examples of groups of ed(G; p) = 0:

Lemma 10.1. Let H be an algebraic group over a field | such that H/H® is a
p-group. If ed(H; p) =0, then H is connected.

Proof. Assume the contrary: F := H/H® # {1}. Let X be an irreducible H-
torsor over some field K//. For example, we can construct X as follows. Start
with a faithful linear representation H — GL,, for some n > 0. The natural
projection GL,, — GL, /H is an H-torsor. Pulling back to the generic point
Spec(K) — GL, /H, we obtain an irreducible H-torsor over K.

Now X/H® — Spec(K) is an irreducible F-torsor. Since F # {1} is not con-
nected, this torsor is nonsplit. As F is a p-group, X/H" remains nonsplit over
every prime-to- p extension L /K. It follows that the degree of every closed point of
X is divisible by p; hence, p is a torsion prime of H. Therefore, ed(H; p) > 0 by
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[Merkurjev 2009, Proposition 4.4]. This contradicts the assumption ed(H; p) =0,
so F must be trivial. U

Proposition 10.2. Let G be a central extension of a p-group F by a torus T over a
field k of characteristic not p. If ed(G; p) < p — 2, then G is of multiplicative type.

Proof. Without loss of generality, assume k = k,jo. By Theorem 1.2, there is a
p-faithful representation V of G withdimV <dim 7T + p — 2.

First consider the case where V is faithful. By the theorem of Nagata [1961],
G is linearly reductive; hence, we can write V = @le V; for some nontrivial
irreducible G-representations V;. Since T is central and diagonalizable, it acts by a
fixed character on V; for every i. Hence, r > dim T by faithfulness of V. It follows
that 1 <dimV; < p — 1 for each i. But every irreducible G-representation has
dimension a power of p (Proposition 4.2), so each V; is one-dimensional. In other
words, G is of multiplicative type.

Now consider the general case, where V is only p-faithful, and let K € G be the
kernel of that representation. Then G /K is of multiplicative type, so it embeds into
a torus 7). Since T is central in G, a subgroup F’ as in Lemma 5.3 is normal, so
let T, = G/ F’, which is also a torus. The kernel of the natural map G — T; x T»
is contained in K N F’. On the other hand, K N F’ = {1} because p does not divide
the order of K. This shows that G embeds into the torus 7; x T, and hence is of
multiplicative type. U

Example 10.3. Proposition 10.2 does not generalize to tame groups. For a coun-
terexample, assume that the field k contains a primitive root of unity of order p2, and
consider the group G = G”, xZ/p*Z, where a generator in Z/ p*>Z acts by cyclically
permuting the p copies of G,,. The group G is tame since C(Z/p?*Z) =7/pZ = u »
acts trivially on G2. On the other hand, G is not abelian and hence is not of
multiplicative type.

We claim that ed(G; p) = 1 and hence ed(G; p) < p — 2 for every odd prime p.
There is a natural p-dimensional faithful representation p of G; p embeds G, into
GL, diagonally in the standard basis ey, ..., e,, and Z/ p*Z cyclically permutes
el, ..., ep. Taking the direct sum of p with the one-dimensional representation
x:G—>7/p°7= Mp2 = Gm = GL1, we obtain a faithful (p + 1)-dimensional rep-
resentation p @ x, which is therefore generically free by Corollary 7.4 (this can also
be verified directly). Hence, ed(G; p) < (p + 1) —dim(G) = 1. On the other hand,
by Lemma 10.1, we see that ed(G; p) > 1 and thus ed(G; p) =1, as claimed. [l

Let I', be a finite p-group, and let ¢ : P — X be a map of Z[I",]-modules. As
in [Lotscher et al. 2013], we will call ¢ a p-presentation if P is permutation and
the cokernel is finite of order prime to p. We will denote by / the augmentation
ideal of Z[I",] and by X := X/(pX +1X) the largest p-torsion quotient with trivial
I",-action. The induced map on quotient modules will be denoted by $:P—>X.



Essential p-dimension of algebraic groups 1837

Lemma 10.4. Let ¢ : P — X be a map of Z|I" ,]-modules. Then the cokernel of ¢
is finite of order prime to p if and only if ¢ is surjective.

Proof. This is shown in [Merkurjev 2010, Proof of Theorem 4.3] and from a
different perspective in [Lotscher et al. 2013, Lemma 2.2]. (]

In the sequel, for G a group of multiplicative type over k, the group I';, in
the definition of “p-presentation” is understood to be a Sylow p-subgroup of
I' = Gal(£/ k), where £/ k is a Galois splitting field of G.

Proposition 10.5. Let G be a central extension of a p-group F by a torus T, and
let 0 <r < p —2. The following statements are equivalent:

(a) ed(G; p) <r.

(b) G is of multiplicative type, and there is a p-presentation P — X (G) whose
kernel is isomorphic to the trivial Z[T",]-module 7".

Proof. (a) = (b) Assuming (a) by Proposition 10.2, G is of multiplicative type. By
[Lotscher et al. 2013, Corollary 5.1], we know there is a p-presentation P — X (G)
whose kernel L is free of rank ed(G; p) < p —2. By [Abold and Plesken 1978,
Satz], I', must act trivially on L.

(b) = (a) This direction follows from [Lotscher et al. 2013, Corollary 5.1]. [

Proposition 10.6. Assume that G is of multiplicative type with a p-presentation
¢ : P — X (G) whose kernel is isomorphic to the trivial Z|I" ,]-module 7" for some
r > 0. Then ed(G; p) <r, and the following conditions are equivalent:

(a) ed(G; p) =r.
(b) ker ¢ is contained in pP + I P.
(c) ker ¢ is contained in

{ZaMeP

reEA

a, =0 (mod p), Vi € AF/’}.

Here I denotes the augmentation ideal in Z|I" ], and A is a I" ,-invariant basis of P.
Proof. (a) <= (b) We have a commutative diagram

1 i P—2 xG)

N

(Z)pZ) —— P —— X(G)

with exact rows. By Lemma 10.4, q_b is a surjection. Therefore, ker¢p € pP 4 I P if
and only if ¢ is an isomorphism.
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Write P as a direct sum P ~ @;": | P; of transitive permutation Z[I",]-modules
Py, ..., Py Then P/(pP+1P)~ @;'LIPJ-/(ij TIPJ') ~ (Z]pZ)". If ¢ is not
an isomorphism, we can replace P by the direct sum P of only m—1 P;s without los-
ing surjectivity of ¢. The composition P <> P — X(G)is thenstill a p-presentation
of X(G) by Lemma 10.4, so ed(G; p) <rank P —dimG <rank P —dimG =r.

Conversely, assume that ¢ is an isomorphism. Let ¢ : P’ — X(G) be a p-
presentation such that ed(G; p) = rankker ¢. Let d be the index [X(G) : ¢ (P)],
which is finite and prime to p. Since the map X (G) — d - X(G), x — dx is an
isomorphism, we may assume that the image of ¥ is contained in ¢ (P). We have an
exact sequence Homgz(r,;(P’, P) — Homgz(r,1(P’, ¢ (P)) — Extlz[rp](P’, Z"), and
the last group is zero by [Lorenz 2005, Lemma 2.5.1]. Therefore, ¥ = ¢ o ¢’ for
some map ¥ : P’ — P of Z[I",]-modules. Since ¢ is an isomorphism and 1 is a
p-presentation, it follows from Lemma 10.4 that ¢’ is a p-presentation as well and
in particular that rank P’ > rank P. Thus, ed(G; p) = rank ker ¢ > rankker¢ =r.

(b) <= (c). It suffices to show that P'» N (pP + I P) consists precisely of the
elements of P'» of the form Y sen @A witha, =0 (mod p) forall A € A7 for any
permutation Z[I",]-module P. One easily reduces to the case where P is a transitive
permutation module. Then P'» consists precisely of the Z-multiples of Dosents
and pP + I P are the elements ) , _, axA with) , _,a, =0 (mod p). Thus, for
n €7, the element n) , _, A liesin pP + I P if and only if n - |[A| =0 (mod p)
if and only if n =0 (mod p) or |[A| =0 (mod p). Since |A| is a power of p, the
claim follows. [l

Example 10.7. Let E be an étale algebra over k. We can write £ = €] X --- X £,
with some separable field extensions ¢; /k. The kernel of the norm map

n: RE/k(Gm) —> Gm
is denoted by Rg;k(Gm). Let G = n_l(,upr) for some r > 0. It is a group of

multiplicative type fitting into an exact sequence
1
1> Ry (Gp) > G — py — L.

Let £ be a finite Galois extension of k containing ¢y, ..., £, (so £ splits G), let
I' = Gal(¢/k) and 'y, = Gal(£/¢;), and let I, be a p-Sylow subgroup of I'. The
character module of G has a p-presentation

P:=@zIr/Ty]1— X(G)
i=1
with kernel generated by the element (p”, ..., p") € P. This element is fixed by I',,
so ed(G; p) < 1. It satisfies condition (c) of Proposition 10.6 if and only if » > 0
or every I' ,-set I'/ Iy, is fixed-point free. Note that I'/ I'y, has I',-fixed points if
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and only if [¢; : k] =|I"/ T'y,| is prime to p. We thus have

0 ifr=0and [¢; : k] is prime to p for some i,

ed(G; p) = ]
(G p) {1 otherwise.
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Differential characterization
of Wilson primes for Fg[t]

Dinesh S. Thakur

Dedicated to Barry Mazur on his 75th birthday

We consider an analog, when Z is replaced by [, [¢], of Wilson primes, namely the
primes satisfying Wilson’s congruence (p — 1)! = —1 to modulus p? rather than
the usual prime modulus p. We fully characterize these primes by connecting
these or higher power congruences to other fundamental quantities such as higher
derivatives and higher difference quotients as well as higher Fermat quotients.
For example, in characteristic p > 2, we show that a prime g of [F,[#] is a Wilson
prime if and only if its second derivative with respect to ¢ is 0 and in this case,
further, that the congruence holds automatically modulo g?~!. For p = 2, the
power p —1 is replaced by 4 — 1 = 3. For every ¢, we show that there are infinitely
many such primes.

1. Introduction

For a prime p, the well-known Wilson congruence says that (p — 1)! = —1 mod p.
A prime p is called a Wilson prime if the congruence above holds modulo p2. Only
three such primes are known, and we refer to [Ribenboim 1996, pp. 346 and 350]
for history and [Sauerberg et al. 2013] for more references.

Many strong analogies [Goss 1996; Rosen 2002; Thakur 2004] between number
fields and function fields over finite fields have been used to benefit the study of
both. These analogies are even stronger in the base case Q, Z <> F(t), F[t], where
F is a finite field. We will study the concept of Wilson prime in this function field
context and find interesting differential characterizations for them with the usual
and arithmetic derivatives. In [Sauerberg et al. 2013], we exhibited infinitely many
of them, at least for many F. Our characterization gives easier alternate proof
generalizing to all F.

The author is supported in part by NSA grant H98230-10-1-0200.
MSC2010: primary 11T5S5; secondary 11A41, 11NOS, 11N69, 11A07.
Keywords: Wilson prime, arithmetic derivative, Fermat quotient.
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2. Wilson primes

Let us fix some basic notation. We use the standard conventions that empty sums
are zero and empty products are one. Further,

q 1is a power of a prime p,

A =Flr,
Ay = {elements of A of degree d},
[n] =19" —1,

D, =[TZ (" —14) =T]ln - 17,

L, =TT, ¢" —0) =TI,

F; is the product of all (nonzero) elements of A of degree less than i,
Na = qd fora € Ay, i.e., the norm of ¢ and

g 1s a monic irreducible polynomial in A of degree d.

If we interpret the factorial of n — 1 as the product of nonzero “remainders”
when we divide by n, we get F; as a naive analog of factorial of a € A;. Note
that it just depends on the degree of a. By the usual group theory argument with
pairing of elements with their inverses, we get an analog of Wilson’s theorem that
F;=—1 mod g for o a prime of degree d. Though not strictly necessary for this
paper, we now introduce a more refined notion of factorial due to Carlitz. For n € Z
and n > 0, we define its factorial by

n!:=l_[D;’ieA forn=2niqi,05ni<q.

See [Thakur 2004, 4.5-4.8, 4.12 and 4.13; 2012] for its properties such as prime
factorization, divisibilities, functional equations, interpolations and arithmetic of
special values and congruences, which are analogous to those of the classical
factorial. See also [Bhargava 2000], which gives many interesting divisibility
properties in great generality.

Carlitz proved D, is the product of monics of degree n. This gives the connection
between the two notions above, that for a € A;, (Na — 1)! = (—1)' F;. (See [Thakur
2012, Theorem 4.1, Section 6] for more on these analogies and some refinements
of analogs of Wilson’s theorem.) This also implies

d—1

Fy= (D[ ]td~j1”"~" = (1) Dy/La. (1)
j=1

So let us restate the above well-known analog of Wilson’s theorem.

Theorem 2.1. If p is a prime of A of degree d, then

(=D¥Np —1!'=F;=—1 mod p.
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This naturally leads to:
Definition 2.2. A prime g € A, is a Wilson prime if F; = —1 mod p?.
Remarks 2.3. If d =1, then F; = —1. So the primes of degree 1 are Wilson primes.

If o (¢) is Wilson prime, then so are g (f +60) and g (ut) for 6 € F, and u € [F; as
follows immediately from the formula for Fj.

We introduce some differential, difference and arithmetic differential operators.
Definition 2.4. (1) For g as above and a € A, let Qp(a) (a‘fd —a)/g be the
Fermat quotient. We denote its i-th iteration by Q o -
(2) Fora =a(t) € A, we denote by D@ (a) = a'? its i-th derivative with respect
to . We also use the usual short forms ¢’ = aV and a” = a®.

(3) We define the higher difference quotients AD(a) =all of a € A (with respect
to ¢ and 6 to be fixed later) by

ad%y=a@) and ") = @) - a1 ®))/( —0).
Theorem 2.5. Letd :=degp. If d = 1, then Fy = —1 and the valuation of Q,(t)
at g is q —2.
Letd > 1 andk <gq. Then F; = —1 mod p* if and only zfQ(z)(t) =0 mod p*!
if and only if Q% (t) = 0 mod g for2 <r <k.
Proof. The d = 1 case follows immediately from the definitions. Let d > 1. We

recall (see, e.g., [Thakur 2004, pp. 7 and 103; 2012, proof of Theorem 7.2]) some
facts, which we use below.

(i) The product of elements of (A/pX)* is —1 unless g =2,d =1, and k =2 or 3,
as seen by pairing elements with their inverses and counting order-2 elements.

(i) The product of all monic elements prime to g and of degree i is D; /(" Di—4),
where r is uniquely determined by the condition that the quantity is prime to .

(iii) Since the valuation of [m] at p is 1 or 0 according to whether d divides m,
we have [i + kd] =[i] mod goq and thus [kd]/g = [d]/g mod goq '~ forka
positive integer. In particular, these congruences hold modulo 9.

Hence, by (1), we have modulo p* (with s appropriate to make the second

quantity below a unit at g)
DyaLg—

1= (1)l kd L (k—1)d

LkaDk-1ya

= ((=1)Tkd = 197"+ [k = Dd + 117" ) [k — Dar"~!
x ([(k = )d — 19" . )k — 2d 1y

= Fd([d]/p)(q"—l)-i-(qzd—qd)-i-m(Dg_l)qd—l (DZ‘:] )qd_l e

= Fa(ld)/p)*" "7,
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where we used that, for a prime to g, we have ad'-1 =1 mod g and thus
a9~ = 1 mod [0k

Hence, if Qggz) (¢) is 0 modulo p*~!, then ([d]/ggo)‘/d_1 = 1 mod e, and thus,
F;=—1 mod gok. Conversely, writing ([d]/ga)‘ld_1 =14 agp for some a € A, we
see that if F; = —1 mod p*, then modulo p*, we have

1 _ (1 +a6/))1+qd+“.+q(1€72)d _ 1 +a6/3

so that ag = 0 as desired. The other implications are immediate. ]

This generalizes the k = 2 case [Sauerberg et al. 2013, Theorem 2.6] with a
different manipulation of the quantities even in that case.

Next, we use this to give another criterion for Wilson prime now using the
derivative of the Fermat quotient instead of iterated Fermat quotient! For a general
study of differential operators in the arithmetic context, their classification and
applications, we refer to [Buium 2005] and references there. See also [lhara 1992].

Theorem 2.6. Assume q > 2 ord > 1. The prime g is a Wilson prime if and only
if g divides the derivative of [d]/g with respect to t.

Proof. Leta=[d]/p =) _a; t'. Then by the binomial theorem, modulo [d 12, we have

a —a=Y ar (@ 141~ 1) = Zaiti<i>([d]/t)l =d'[d].

(In words, the Frobenius difference quotient (aqd —a) /(tqd —1) of a = Q(¢) with
respect to ¢ is congruent to the derivative of a with respect to t modulo any prime
of degree dividing the degree of g¢.) Now since a is square-free and, in particular,
not a p-th power, a’ is nonzero, and since the valuation of [d] at g is 1, the claim
follows from Theorem 2.5. O

This reduces computations from dg“-degree polynomials occurring in F,; to just
g“-degree or from iterates of Fermat quotients to the first one. Also, the derivative
kills 1/ p of the coefficients on average. In fact, we will improve further.

Now we consider g-adic expansion of ¢ using Teichmiiller representatives. Let
A, be the completion of A at g, and let [, be its residue field. Let 6 € [, be the
Teichmiiller representative of t modulo .

Lemma 2.7. Lett =60 + Y ;' be the p-adic expansion of t with Teichmiiller
representatives (; € F,. Then
PO oM ©) pt0)3

More generally, if (t —0)" divides 50[2], then w; = p[i](G) =0for2<i<r,and
for2 <i <r,we have

n

R
p[l](g)i+l'

i =
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Proof. For d =1, we have t = 6 + g, whereas for d > 1 the expansion is an infinite
sum. Noting that o = [](r — «9"i), where i runs from 0 to d — 1, the claim follows
inductively on i by starting with the unknown g-adic expansion and by dividing by
t — 6 and then putting ¢t = 0 in each step. '

In more detail, in the first step, we have 1= [],_;-o( —69) plus terms
divisible by t — 6 so that u; = 1/]](@ —69) =1/ (). In the next step, we
have —p?!/ (1 0) (p")?) = o + 3t — ) ! + - - -, proving the claim for 5.
Under the hypothesis of divisibility, the claims are clear inductively on i. (]

Remarks 2.8. We record in passing that without any hypothesis as in the second
part of Lemma 2.7, a similar manipulation leads to

O R Ok
Pl “plll©)>
Note that the second term vanishes if 2 (0) = 0 (or if p = 2).

13 =

We now use Theorem 2.5 and Lemma 2.7 to get our main theorem, a criterion for
Wilson prime in terms of vanishing at 6 of the second difference quotient value as
well as in terms of the total vanishing of the second derivative of g with respect to ¢:

Theorem 2.9. (i) A prime g is a Wilson prime if and only if p!?1(9) = 0.

(i) When p > 2, o is a Wilson prime if and only if " = d*p/dt> is identically
zero. In other words, the Wilson primes are exactly the primes of the form
3" pit® with p; nonzero implying i =0, 1 mod p.

(iii)) When p > 2, if © is a Wilson prime, then the Wilson congruence holds modulo
P~ 1. Also, pl1(0) =0 for 1 <i < p.

(iv) When p =2, the Wilson primes are exactly the primes of the form Y p;t with
pi nonzero implying i =0, 1 mod 4. For such g, the Wilson congruence holds
modulo 3, and (@) =0 for 1 <i < 4.

2

Proof. We have Qo () = — ) — oo — -+ - — qu_lpqd— mod '~ and

Qp(0p() = o+ 39+ + pga_ 1%

Hence, (i) follows by Lemma 2.7.

Let o :=pM(©@) and f(t) = p (t) —a(t —0). Then p?1(9) =0 is equivalent to
(t —6)? dividing f(¢). This condition implies f”(8) = " (6) = 0, but g being an
irreducible polynomial with 6 as a root, this implies that the lower degree second
derivative is identically zero. Conversely, f () = f'(6) = O implies, if d > 1,
f(t) = (t —0)*h(1r), and () = 0 then implies that 24(9) = 0 so that if p > 2,
h is divisible by ¢ — 6, implying (ii).

Once the second derivative is identically zero, the higher derivatives are also
zero. (Note the (d 4 1)-th derivative or p-th derivative is identically zero anyway

3 2

mod gﬂd’ .
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for any g.) The vanishing of first i derivatives implies at least i + 1 multiplicity
for i < p, which implies vanishing of higher difference quotients (which decrease
in degree by 1 in each step). This implies (iii) by Lemma 2.7 and Theorem 2.5.
Here is an another way to see the last part. If we write o (t) = Y p;t’, then
P(+0)=> ot witha; =Y pi (,’;)«9"*" . Our condition translates to 13 dividing
f(t+6) so that s = 0. By Lucas’ theorem or directly, if p =2, (5) = 0 implies
(;) = 0 so that a3 = 0. Similarly, for general p, (’2) = 0 implies (;) = 0 for
2 <r < p—1, implying o, = O for those r. This also proves (iv). (]

Theorem 2.10. There are infinitely many Wilson primes for F,[t].

Proof. First let g be odd. It is enough to produce infinitely many irreducible
elements in A that have powers of ¢ occurring only with exponents that are 0 or 1
modulo p. Let n be a positive integer. Then by consideration of factorization of
the cyclotomic polynomial, we see that there are ¢(¢" — 1)/n primitive monic
polynomials of degree n, where (as usual) we mean by a primitive polynomial
of degree n a minimal polynomial over [, of a generator of ;.. For each such
irreducible polynomial P(t) = p;t', the polynomial Y p;#@ ~D/@=1 ig of the
form we want and is irreducible by a theorem of Ore [1934, Chapter 3, Theorem 1].

The same method works for ¢ = 2° with s > 1 since the exponents are then 0, 1
mod 4 as we require. The remaining case ¢ = 2 can not be handled by this method.
In this case, applying Serret’s theorem [Lidl and Niederreiter 1996, Theorem 3.3.5]
(or the special case recalled in [Sauerberg et al. 2013, Theorem 2.8]) to the (Wilson)
prime f(t) =t*41+1 and s = 5", we get infinitely many primes f(#>"), which
are Wilson primes by Theorem 2.9(iv). ([

Remarks 2.11 (Heuristic counts and exact multiplicity). In the Z case, the number
of Wilson primes less than x grows like ) p<x 1/ P ~loglog(x) under the naive
heuristics of ((p — 1)!+1)/p being randomly distributed modulo p, and we expect
at most finitely many primes giving the congruence to power p3. In [Sauerberg et al.
2013] for some g, we produced families of Wilson primes for A with loglog(x)
growth of the size, but now with Theorem 2.9(ii), we can show that there are many
more. In fact, if we let w; and w, denote the number of primes and Wilson primes,
respectively, of A of degree d, then under the naive heuristics of randomness of p; in
Theorem 2.9(ii) for primes, we see that as d tends to infinity and (log wy)/(log 7r4)
approaches 2/p if p is odd and 1/2 if p = 2. It should be possible to prove these
asymptotics using Theorem 2.9(ii). In our case, the congruence holds to power g7~
for the Wilson primes (to power g3 if p = 2). It is unclear whether this power can
be increased for some primes. Though the correspondence of Theorem 2.5 goes
up to power 7!, the small amount of numerical data calculated by the author’s
masters student George Todd (for which the author thanks him) showed exactness
of the power p”~! even for g not prime.
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Remarks 2.12. We finish by giving quick sketches of alternate and simplified
proofs of earlier results.

(1) We know that for a € [, p =1P —t —a is a prime of A if and only if trace of a
to [, is nonzero. Assume g is a prime and ¢ = p™. Then
19 =" " a T = =P o ot

so that Q, (1) = (14" — 1)/ = P 14+ 4+ P L+ 1. If Q% (1) denotes the
r-th iteration of Q,, we see immediately by induction that for p > r > 1, the
valuation at g of Qg) (t) is p — r. Similarly, it is easy to check that ¢ = 2
and p = t* 41 + 1 satisfies the Wilson congruence modulo g3 but not p*, and
similarly, a calculation as above shows that in this case QS)(I) vanishes modulo g
but not QS)(t).

This gives another proof of [Thakur 2012, Theorem 7.1], which says that such
g’s are Wilson primes (even to the exact (p — 1)-th power congruence) if p > 2.

(2) Theorem 2.6 allows us to give a simple alternate proof of [Sauerberg et al. 2013,
Theorem 2.9]. By the theorem above, g (¢)? divides 1+ (t‘fd — D' () /o () so
that modulo g (°)?,

0= 1+ (D =)' ")/ () = 1+ (17" = )i/ ()" [p (1),

exactly as in the middle part of the proof of [Sauerberg et al. 2013, Theorem 2.9].
This implies by Theorem 2.5 that g (¢#*) is Wilson prime as desired.

(3) Theorem 2.6 also provides another proof for the reciprocal prime theorem
[Sauerberg et al. 2013, Theorem 3.3] when p is odd. If f () = tdga(l/t) and g
is a Wilson prime, then g” =0 and d(d — 1) = 0 mod p so that taking derivatives
with the product and chain rules simplifies to f” = —2(d — 1)t?3/(1/t), which
is 0 if and only if d =1 mod p.

Using Theorem 2.9(ii) and (iv), instead of Theorem 2.6, gives even simpler
proofs of results in (2) and (3) (and also (1) except for the exactness of the exponent
p — 1 in the modulus). We leave it as a straightforward exercise.
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Principal W-algebras for GL(m|n)

Jonathan Brown, Jonathan Brundan and Simon M. Goodwin

We consider the (finite) W-algebra W,,), attached to the principal nilpotent orbit
in the general linear Lie superalgebra gl,,,,,(C). Our main result gives an explicit
description of W,,, as a certain truncation of a shifted version of the Yangian
Y (gly;1). We also show that W,,,, admits a triangular decomposition and construct
its irreducible representations.

1. Introduction

A (finite) W-algebra is a certain filtered deformation of the Slodowy slice to a
nilpotent orbit in a complex semisimple Lie algebra g. Although the terminology is
more recent, the construction has its origins in the classic work of Kostant [1978].
In particular, Kostant showed that the principal W-algebra—the one associated
to the principal nilpotent orbit in g—is isomorphic to the center of the universal
enveloping algebra U (g). In the last few years, there has been some substantial
progress in understanding W-algebras for other nilpotent orbits thanks to works
of Premet, Losev and others; see [Losev 2011] for a survey. The story is most
complete (also easiest) for sl,(C). In this case, the W-algebras are closely related
to shifted Yangians; see [Brundan and Kleshchev 2006].

Analogues of W-algebras have also been defined for Lie superalgebras; see, for
example, the work of De Sole and Kac [2006, §5.2] (where they are defined in terms
of BRST cohomology) or the more recent paper of Zhao [2012] (which focuses
mainly on the queer Lie superalgebra g, (C)). In this article, we consider the easiest
of all the “super” situations: the principal W-algebra W, for the general linear
Lie superalgebra gl,,,(C). Our main result gives an explicit isomorphism between
Wnn and a certain truncation of a shifted subalgebra of the Yangian Y (gl;,); see
Theorem 4.5. Its proof is very similar to the proof of the analogous result for
nilpotent matrices of Jordan type (m, n) in gl,, , ,(C) from [Brundan and Kleshchev
2006].

Brown and Goodwin are supported by EPSRC grant number EP/G020809/1. Brundan is supported by
NSF grant number DMS-1161094.

MSC2010: primary 17B10; secondary 17B37.
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The (super)algebra W,,|, turns out to be quite close to being supercommutative.
More precisely, we show that it admits a triangular decomposition

Wintn = W, Wi, Wit

min " min " min
in which W, and W;{ln are exterior algebras of dimension 2™""-") and ngln
is a symmetric algebra of rank m + n; see Theorem 6.1. This implies that all
the irreducible W,,,-modules are finite-dimensional; see Theorem 7.2. We show
further that they all arise as certain tensor products of irreducible gl;;;(C)- and
gl (C)-modules; see Theorem 8.4. In particular, all irreducible W,,|,-modules are
of dimension dividing 2™""-") A closely related assertion is that all irreducible
highest-weight representations of ¥ (gl; ;) are tensor products of evaluation modules;
this is similar to a well-known phenomenon for Y (gl,) going back to [Tarasov 1985].

Some related results about W,,,, have been obtained independently by Poletaeva
and Serganova [2013]. In fact, the connection between W, and the Yangian
Y (gl;j;) was foreseen long ago by Briot and Ragoucy [2003], who also looked at
certain nonprincipal nilpotent orbits, which they assert are connected to higher-rank
super Yangians although we do not understand their approach. It should be possible
to combine the methods of this article with those of [Brundan and Kleshchev 2006]
to establish such a connection for all nilpotent orbits in gl,,, (C). However, this
is not trivial and will require some new presentations for the higher-rank super
Yangians adapted to arbitrary parity sequences; the ones in [Gow 2007; Peng 2011]
are not sufficient as they only apply to the standard parity sequence.

By analogy with the results of Kostant [1978], our expectation is that W, will
play a distinguished role in the representation theory of gl,,,,(C). In a forthcoming
article [Brown et al.], we will investigate the Whittaker coinvariants functor Hy, a
certain exact functor from the analogue of category O for gl,,,(C) to the category of
finite-dimensional W,,,-modules. We view this as a replacement for the functor V
of Soergel [1990]; see also [Backelin 1997]. We will show that Hy sends irreducible
modules in O to irreducible W), ,-modules or 0 and that all irreducible W, ,-modules
occur in this way; this should be compared with the analogous result for parabolic
category O for gl,,,,(C) obtained in [Brundan and Kleshchev 2008, Theorem E].
We will also use properties of Hy to prove that the center of Wy, is isomorphic to
the center of the universal enveloping superalgebra of gl,,,,, (C).

Notation. We denote the parity of a homogeneous vector x in a Z/2-graded vector
space by |x| € {0, 1}. A superalgebra means a Z/2-graded algebra over C. For
homogeneous x and y in an associative superalgebra A = Ag ® Aj, their super-
commutator is [x, y] :=xy — (= 1)¥I¥lyx. We say that A is supercommutative if
[x, ¥y] = 0 for all homogeneous x, y € A. Also for homogeneous xi, ..., x, € A,
an ordered supermonomial in x, ..., X, means a monomial of the form xi‘ . -x,i,”
foriy,...,i, > Osuchthati; <1if x; is odd.
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2. Shifted Yangians

Recall that g, (C) is the Lie superalgebra of all (m +n) x (m + n) complex
matrices under the supercommutator with Z/2-grading defined so that the matrix
unite; jisevenif 1 <i,j<morm+1<i, j <m+n and e; ; is odd otherwise.
We denote its universal enveloping superalgebra U (gl,,,,); it has basis given by all
ordered supermonomials in the matrix units.

The Yangian Y (gl,,,) was introduced originally by Nazarov [1991]; see also
[Gow 2007]. We only need here the special case of ¥ = Y (gl;);). For its definition,
we fix a choice of parity sequence

(1,12 eZ/2x Z]2 (2-1)

with |1] # |2|. All subsequent notation in the remainder of the article depends implic-

itly on this choice. Then we define Y to be the associative superalgebra on generators

{tl.(’rj) |[1<i,j<2, r>0}, with t.(rj) of parity |i| 4 | j|, subject to the relations

L,

min(r,s)—1
M) )7 — (—1\lilljI+EN P+ (@) (rts—l=a) _ _ (r4+s—1-a) (a)
[ti,j’tp,q]_( D Z (tp,jti,q Ip. ti,q)’
a=0

adopting the convention that tl.((;) = §;,j (Kronecker delta).

Remark 2.1. In the literature, one typically only finds results about ¥ (gl;|;) proved
for the definition coming from the parity sequence (|1, |2|) = (0, 1). To aid in trans-
lating between this and the other possibility, we note that the map ti(’rj) — (— 1)’ti€rj)
defines an isomorphism between the realizations of Y (gl;;) arising from the two
choices of parity sequence.

As in [Nazarov 1991], we introduce the generating function
tij(u) = Zti(’rj)u_r eYlu .
r>0

Then Y is a Hopf superalgebra with comultiplication A and counit ¢ given in terms
of generating functions by

2
At @) =Y tin () @ty (), (2-2)
h=1
et j(u)) =4;;. (2-3)

There are also algebra homomorphisms

in:Ugly) =Y. e (DY, (2-4)

ev:Y = Ugly). 1) 808+ (=16, 1e ;. (2-5)
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The composite ev o in is the identity; hence, in is injective and ev is surjective. We
call ev the evaluation homomorphism.

We need another set of generators for Y called Drinfeld generators. To define
these, we consider the Gauss factorization 7' («) = F (1) D(u) E (u) of the matrix

T(u) = <l1,1(u) tl,z(u)) .

t1(u) to(u)

This defines power series d; (i), e(u), f(u) € Y[[u~'] such that

_(diw) O (1 e(w) _ 1 0
D(u)_< 0 dz(u))’ E(u)_<0 1), F(u)_(f(u) >

Thus, we have that

di(u) = 11,1(u), dy(u) = () — 1 (Wt 1 (w) o), (2-6)

ew) =111 2@,  f@)=n1@niw 27
Equivalently,

t11(u) =dy(u), tao(u) =do(u) + f(u)d(u)e(u), (2-8)

ho(w) =di(we),  n1(u)= fu)d (u). (2-9)

The Drinfeld generators are the elements di(r), e and f) of Y defined from the ex-

pansions d; () = Y, _od"u™", e() =Y, ePu~" and fu) =Y., fOu".
Also define d” € Y from the identity d; (u) = Y, d"u™" 1= d; (w)~".

Theorem 2.2 [Gow 2007, Theorem 3]. The superalgebra Y is generated by the
even elements {dl.(r) |i=1,2, r >0} and odd elements {¢, ) | r > 0} subject
only to the following relations:

r4+s—1
[di(r)’ dj(_S)] =0, [e(r), f(s)] — (_l)lll Z jfa)dér-‘rs—]—a)’
a=0
r—1
[, =0, [d7, = (=D Y a1,
a=0

r—I1

[f(r)’ f(s)] =0, [di(r)’ f(s)] — _(_1)\1| Z f(r+s—l—a)di(a).
a=0
0 _ () : ro gla) 4(r—a) _
Hered;” = 1and d;”’ is defined recursively from )| _,d;"’d; =40

Remark 2.3. By [Gow 2007, Theorem 4], the coefficients {c™ | r > 0} of the
power series

c(u) = Z cDu™" = dy(u)da(u) (2-10)

r>0
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generate the center of Y. Moreover, [e), f ®)] = (=M= 5o these super-
commutators are central.

Remark 2.4. Using the relations in Theorem 2.2, one can check that Y admits an
algebra automorphism

Y=Y, d”d, d"—d", eV —fO, fFO s —e® (2-11)
By [Gow 2007, Proposition 4.3], this satisfies
Aol =Po(f®C)oA, (2-12)
where P(x ® y) = (=D)FIVy @ x.
Proposition 2.5. The comultiplication A is given on Drinfeld generators by the
following:
A(d(u)) =di(u) @dy(u) +di(w)e(u) @ f(u)d(u),
A w) =Y (=DM euy"di(u) @ di (u) f (w)",

n>0

Aldy(u)) =Y (=" dywye(u)" @ f(u)"dy(u),

n>0
A(dy () = dy (1) ® da(u) — e(u)dar (u) ® dr (u) f (),
Ale@) =1®ew) — Y (=DM )" @ di(w) f )" dy(w),

n>1

A(f@) = fa)@1=> (=DM dy(w)e@)" dy () ® f w)".

n>1

Proof. Check the formulae for d;(u), d; (1) and e(u) directly using (2-2), (2-6)
and (2-7). The other formulae then follow using (2-12). ([l

Here is the PBW theorem for Y.

Theorem 2.6 [Gow 2007, Theorem 1]. Order the set {t") | 1 <i,j <2, r > 0} in
some way. The ordered supermonomials in these generators give a basis for Y.

There are two important filtrations on Y. First we have the Kazhdan filtration,
which is defined by declaring that the generator ti(’rj) is in degree r, i.e., the filtered
degree-r part F,.Y of Y with respect to the Kazhdan filtration is the span of all
monomials of the form ti(lﬁlj?l . 'tiirjl;n such that r{ 4 --- +r, < r. The defining
relations imply that the associated graded superalgebra grY is supercommuta-
tive. Let gl});[x] denote the current Lie superalgebra gl;|; (C) ®c C[x] with basis
{eijx" |1 <i, j <2, r >0}. Then Theorem 2.6 implies that gr ¥ can be identified
with the symmetric superalgebra S(gl;j;[x]) of the vector superspace gl;;;[x] so

that gr, 117} = (—1)Vle; a7~
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The other filtration on Y, which we call the Lie filtration, is defined similarly
by declaring that tl.(”j) is in degree r — 1. In this case, we denote the filtered
degree-r part of Y by F/Y and the associated graded superalgebra by gr' Y. By
Theorem 2.6 and the defining relations once again, gr' Y can be identified with the
universal enveloping superalgebra U (gl;j;[x]) so that gr/_, tl.(,rj) = (—1)lle; jx" 1.
The Drinfeld generators dl.(r), e’ and f) all lie in F/_,Y, and we have that

o d” =gr_, ti(,ri)’ g eV =g f1(,r;7 gy [ =er_ ’érf
(The situation for the Kazhdan filtration is more complicated: although dl.('), e™
and £ do all lie in F, Y, their images in gr, ¥ are not in general equal to the images
of tl.(’rl.), tl(r% or tz(.rf, but they can expressed in terms of them via (2-6) and (2-7).)

Combining the preceding discussion of the Lie filtration with Theorem 2.6, we
obtain the following basis for Y in terms of Drinfeld generators. (One can also

deduce this by working with the Kazhdan filtration and using (2-6)—(2-9).)

Corollary 2.7. Order the set {d" |i =1,2, r > 0}Uf{e®, f© | r > 0} in some
way. The ordered supermonomials in these generators give a basis for Y.

Now we are ready to introduce the shifted Yangians for gl,,; (C). This parallels
the definition of shifted Yangians in the purely even case from [Brundan and
Kleshchev 2006, §2]. Let o = (si,j)1<i,j<2 be a 2 x 2 matrix of nonnegative
integers with 51,1 = 52,2 = 0. We refer to such a matrix as a shift matrix. Let Y, be
the superalgebra with even generators {dl.(r) |i=1,2, r >0} and odd generators
{e® | r > s12}U {f(’) | r > 52,1} subject to all of the relations from Theorem 2.2
that make sense, bearing in mind that we no longer have available the generators e
for 0 <r <sy, or ) for 0 < r < s, 1. Clearly there is a homomorphism Y, — Y
that sends the generators of Y, to the generators with the same name in Y.

Theorem 2.8. Order the set
d”1i=1,2, r>00U{e” |r>s5120U{fO | r > 51}

in some way. The ordered supermonomials in these generators give a basis for Y.
In particular, the homomorphism Y, — Y is injective.

Proof. 1t is easy to see from the defining relations that the monomials span, and
their images in Y are linearly independent by Corollary 2.7. (]

From now on, we will identify Y, with a subalgebra of Y via the injective
homomorphism Y, < Y. The Kazhdan and Lie filtrations on Y induce filtrations
on Y, such that gr¥, C grY and gr' ¥, C gr' Y. Let gl{};[x] be the Lie subalgebra
of gl;j;[x] spanned by the vectors e; jx" for 1 <i, j <2 and r >s; ;. Then we have
that gr Y, = S(gl);[x]) and g Y, = U (gI§}, [x]).
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Remark 2.9. For another shift matrix o’ = (slf’j)ls,-,jfg with sil + Si,z =521 +51.2,
there is an isomorphism

LYy S Y, di(r) s di(r)’ PINEN e(siwz—a‘l_z#-r)’ f(r) — f(“'ﬁ,l_sll"'r), (2-13)

This follows from the defining relations. Thus, up to isomorphism, Y, depends only
on the integer 57 1 + 51,2 > 0, not on o itself. Beware though that the isomorphism ¢
does not respect the Kazhdan or Lie filtrations.

For o # 0, Y, is not a Hopf subalgebra of Y. However, there are some useful
comultiplication-like homomorphisms between different shifted Yangians. To start
with, let 0" and o' be the upper and lower triangular shift matrices obtained
from o by setting s, 1 and s 2, respectively, equal to 0. Then, by Proposition 2.5,
the restriction of the comultiplication A on Y gives a homomorphism

A Ya — Yoln X Yaup. (2-14)

The remaining comultiplication-like homomorphisms involve the universal envelop-
ing algebra U (gl;) = Cle;,1]. Assuming that s; 2 > 0, let o4 be the shift matrix
obtained from o by subtracting 1 from the entry 51 ». Then the relations imply that
there is a well-defined algebra homomorphism

Ay Yy = Y, ®U@gL), (2-15)
d" - d" @1, A dP @14+ (=) TV ®e,
e s M1+ (_1)|2|e(r—1) e, f(r) — f(r) ®1.

Finally, assuming that s ; > 0, let o_ be the shift matrix obtained from o by
subtracting 1 from s ;. Then there is an algebra homomorphism

A Y, > U@)®Y, , (2-16)
4" > 10d)", dy’ > 1@dy) +(—)Per @ay ™,
f(r) —1® f(r) + (—1)|2|€1,1 ® f(r—l)’ e s 1™,

If 512 > 0, we denote (6"P); = (o+)"P by O‘_T_p. If 55,1 >0, we denote (¢°) _ = (o_)1°
by o' If both s12 > 0and 55,1 > 0, we denote (o)_ = (0_)+ by o4.

Lemma 2.10. Assuming that s| 2 > 0 in the first diagram, s, 1 > 0 in the second
diagram and both s1 2 > 0 and 521 > 0 in the final diagram, the following commute:

Ay
Y, Yo, @ U(gly)

Al lA@id (2-17)
id®A,
Yoo @Yorp ———— = Y0 @ Ygip ® U (gly)
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Y, 2 Y0 ® You

Al lA_®id (2-18)
id®A
U@l)®Y, —————— U(gl) ® Y 0 ® You

Y(T Ya+®U(g[1)

Al lmm (2-19)

1d®A+
U(Q[I) ® Y(r_ — U(9[1) Y Y(ri ® U(g[l)

Proof. Check on Drinfeld generators using (2-15) and (2-16) and Proposition 2.5. [

Remark 2.11. Writing ¢ : U(gl;) — C for the counit, the maps (id ®¢) o A and
(¢ ®id) o A_ are the natural inclusions Y, — Y, . and Y, — Y, _, respectively.
Hence, the maps A and A_ are injective.

3. Truncation

Let o = (s;,j)1<i, j<2 be a shift matrix. Suppose also that we are given an integer
I > 57,14 51,2, and set

k 2=l—5271 — 51,2 > 0.

In view of Lemma 2.10, we can iterate A a total of s 5 times, A_ a total of s5 1
times and A a total of k — 1 times in any order that makes sense (when k = 0,
this means we apply the counit ¢ once at the very end) to obtain a well-defined
homomorphism

ALY, > U@)®> @Y @ U(gl)®"2.

(02
—\10)

A} = (id®e ®id®id) o (A_ ®id®id) o (A, ®id)o AL,

A} = (1[d®A, ®id)o (A_Qid)o Ay = ([dRA, ®id)o (d®A )0 A_,

A =(A_®idRid®id) o ((d®A | ®id)o ((d®A,)o A
=({d®A®id®id) o (A_®id®id)o (d®AL) 0 A.

For example, if

then

Let
UL = U(gl)®* @ U (gl )™ @ U(gl)®"2, (3-1)
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viewed as a superalgebra using the usual sign convention. Recalling (2-5), we
obtain a homomorphism

evl = (id®?1 @ ev® ®id® 1) 0 AL ¥, — UL, (3-2)

Let
v =ev (v,) C UL (3-3)

This is the shifted Yangian of level [.

In the special case that ¢ = 0, we denote eV , Y ! and U, ! simply by ev!, Y!
and U, respectively, so that Y/ =ev/(Y) C U'. We call Y/ the Yangian of level .
Writing e[ = (=DIN®CD Q¢ ; @199, we have simply that

W= Y Y A, 69

l<ci<i<er <l 1<hy, . hp1<2

forany 1 <i,j <2 and r > 0. In particular, ev (t( )) =0 for r > 1. Gow
[2007, proof of Theorem 1] shows that the kernel of ev/ : ¥ — Y' is generated
by {t(r) | 1 <i,j <2, r > 1} and, moreover, the images of the ordered supermono-
mials in the remaining elements {t(r) |1<i,j<2, 0<r <I} give a basis for Y’.
(Actually, she proves this for all Y (g[m|n) and not just Y (gly;;).) The goal in this
section is to prove analogues of these statements for Y, with o # 0.

Let If, be the two-sided ideal of Y, generated by the elements dl(r) for r > k.

Lemma 3.1. I Ckerev! .

Proof. We need to show that evé (dfr) ) =0 for all r > k. We calculate this by first
applying all the maps A and A_ to deduce that

evh (@) = 1921 @ evk(d\") @ 19912,
Since dfr) = tl(rl) , it is then clear from (3-4) that ev¥ (dl(r)) =0 for r > k. O

Proposition 3.2. The ideal I. contains all of the following elements:

> a e forr > sia+k, 3-5)

S1,2<a=<r

Yo fPar? forr > sy1 +k, (3-6)

s2.1<b<r

dg) + Z f(b)dl(r_a_b)e(a) forr >1. (3-7)

s12<a

52,1<b

a+b<r
Proof. Consider the algebra Y, [~ '1[u] of formal Laurent series in the variable u !
with coefficients in ¥,. For any such formal Laurent series p = ) . <N Dru’, we
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write [ p]>o for its polynomial part Ziv:o pru’”. Also write = for congruence modulo
Yo[ul+u! Iolr Tu=", so p = 0 means that the u"-coefficients of p lie in IfT for all
r < 0. Note that if p =0, g € Y,[u], then pg = 0. In this notation, we have by
definition of I(’, that u*d; (u) = 0. Introduce the power series

o)=Y ePu, fo):= D" fOu.
r>s$12 r>s2.1

The proposition is equivalent to the following assertions:

w2 d (u)ey (u) =0, (3-8)
w1 o u)dy (1) = 0, (3-9)
u' (dy(u) + fo (W)dy (u)eq (1)) = 0. (3-10)
For the first two, we use the identities
(=DMdy ), e®21 V] = u2dy (u)eq (1), (3-11)
(=DM gy )] = u! £, (w)dy (w). (3-12)

These are easily checked by considering the ™" -coefficients on each side and using
the relations in Theorem 2.2. Assertions (3-8) and (3-9) follow from (3-11) and
(3-12) on multiplying by uk as u*d; (u) = 0. For the final assertion (3-10), recall

the elements ¢ from (2-10). Let ¢, (u) :== Y.  c%~". Another routine check
using the relations shows that r>52145812
(=DM ey )] = ut e, (u). (3-13)

Using (3-8), (3-12) and (3-13), we deduce that
0= (=DMt 2D dy e, ()]
="y () (=DM oo )]+t DI, dy()]eq ()
= u'dy (u)co () + u' fo (u)dy (u)eq (u).
To complete the proof of (3-10), it remains to observe that
w2, (u) = w2y u)da () — [T 2d) ()da ()]0
hence, u'd; (u)cy (1) = u'dy (u). O
For the rest of the section, we fix some total ordering on the set
Q:={d" 10<r<kyufd’ 10<r<1)
U{e® |51 <r <sio+k}U{f s <r <so1+k}. (3-14)

Lemma 3.3. The quotient algebra Y, /1 f, is spanned by the images of the ordered
supermonomials in the elements of S2.
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Proof. The Kazhdan filtration on Y, induces a filtration on Y,/ I(lT with respect to
which gr(Y, /I.) is a graded quotient of gr Y,,. We already know that gr Y, is super-
commutative, so gr(Y,/I.) is too. Let gil@ = gr,(dl.(r) +1b), e i=gr (e +1!)
and f© = gr, (f©) +10).

To prove the lemma, it is enough to show that gr(Y, /I.) is generated by

@dV10<r<kyu(@y 10<r <1y
Ule" |s1o<r <sia+kULf" 50 <r <so1+k}).

This follows because c_iY) = 0 for r > k, and each of the elements c_z’g) for r > [,
e forr > 515 +k and f) for r > s5 1 + k can be expressed as polynomials in
generators of strictly smaller degrees by Proposition 3.2. (|

Lemma 3.4. The image under evé of the ordered supermonomials in the elements
of 2 are linearly independent in Y, é

Proof. Consider the standard filtration on U’ generated by declaring that all the
elements of the form 1 ®- - @ 1®x®1®---®1 for x € gl; or g, are in degree 1.
It induces a filtration on Yé so that gr ¥! is a graded subalgebra of gr U(l,. Note that
grU! is supercommutative, so the subalgebra gr Y! is too. Each of the elements
evfT (d .(r)), evir (e™) and evfy( £ are in filtered degree r by the definition of evé.
Letd!” = gr.(ev, (d")), e := gr.(ev}, (¢")) and £ := gr,(ev}, (f ).

Let M be the set of ordered supermonomials in -

@ 10<r<kjuldy’ 10<r =<1}
U{e” |s12 <r <s12+k}U{f7 |52 <r <so1+k}

To prove the lemma, it suffices to show that M is linearly independent in gr Y. For
this, we proceed by induction on 53 1 + 51 2.

To establish the base case 55,1 +s512=0,ie.,0=0,Y, =Y and Y =Y/, let gl(’l)
denote gr, (ev, (ti(”j))). Fix a total order on {gl(r]) |1<i,j<2, 0<r<I}, and let
M’ be the resulting set of ordered supermonomials. Exploiting the explicit formula
(3-4), Gow [2007, proof of Theorem 1] shows that M’ is linearly independent. By
(2-6)—(2-9), any element of M is a linear combination of elements of M’ of the
same degree and vice versa. So we deduce that M is linearly independent too.

For the induction step, suppose that s 1 41,2 > 0. Then we either have s, 1 > 0
or 512 > 0. We just explain the argument for the latter case; the proof in the former
case is entirely similar replacing A with A_. Recall that o, denotes the shift
matrix obtained from o by subtracting 1 from s7 7. So U(’, = Uf,:l ® U (gly). By its
definition, we have that ev! = (evf;] ®id) o A, ; hence, Y! C Yé:l ®U(gly). Let
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x:=grye; €grU(gly). Then
d(r) d(r) 1, 43) _ d;r) Q1+ (—l)lzlc_'ig_l) ® x,
fO = f<r> ®1, e =M @1+ (=P g x.

The notation is potentially confusing here, so we have decorated elements of
grY, f,:l Cagr Uf,:l with a dot. It remains to observe from the induction hypothesis
applied to grY, é;l that ordered supermonomials in

d’e110<r<kyuial ™"

Ut V@x|sia<r <sia+k}U{f

Rx|0<r<l}

D110 <r <s12+k}

are linearly independent. ([

Theorem 3.5. The kernel of eV’ : Y, — Y. is equal to the two-sided ideal I gen-
erated by the elements {d l(r) | r > k}. Hence, evé induces an algebra isomorphism
between Y, /1. and Y.

Proof. By Lemma 3.1, evf, induces a surjection Y, / Ié —» Yé. It maps the spanning
set from Lemma 3.3 onto the linearly independent set from Lemma 3.4. Hence, it
is an isomorphism and both sets are actually bases. (|

Henceforth, we will identify Y, I with the quotient Y,/ I , and we will abuse
notation by denoting the canonical images in Yl of the elements d ") ,e, . of Y,
by the same symbols d; (") ™ ... This will not cause any confusion as we will
not work with Y, again.

Here is the PBW theorem for Yé, which was noted already in the proof of
Theorem 3.5.

Corollary 3.6. Order the set
[@d”10<r<k)u{d)’10<r<I

Ule® 512 <r <sia+K U 521 <r <s21+k)
in some way. The ordered supermonomials in these elements give a basis for Y, f,

Remark 3.7. In the arguments in this section, we have defined two filtrations on Y. :
one in the proof of Lemma 3.3 induced by the Kazhdan filtration on Y, and the
other in the proof of Lemma 3.4 induced by the standard filtration on U(l,. Using
Corollary 3.6, one can check that these two filtrations coincide.

Remark 3.8. Theorem 3.5 shows that ¥! has generators
{dl.(r) [i=1,2, r > O}U{e(’) | r > sl,z}U{f(’) |r > 521}

subject only to the relations from Theorem 2.2 and the additional truncation relations
dl(r) =0 for r > k. Corollary 3.6 shows that all but finitely many of the generators
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are redundant. In special cases, it is possible to optimize the relations too. For
example, if [l =551 + 512+ 1 and we set d := dl(]), e:=eW2tD and f = fl2it+D,
then Y G’T is generated by its even central elements ¢ e® from (2-10), the even
element d and the odd elements e and f subject only to the relations

[d,el=(De,  [d, fl=—DE e, f1= (DD,
[, D=1, d]1=[c", el = [, fl=1e,el=[f, f1=0,

forr,s =1, ...,1. To see this, observe that these elements generate Yé and they
satisfy the given relations; then apply Corollary 3.6.

4. Principal W-algebras

We turn to the W-algebra side of the story. Let r be a (two-rowed) pyramid, that is, a
collection of boxes in the plane arranged in two connected rows such that each box in
the first (top) row lies directly above a box in the second (bottom) row. For example,
here are all the pyramids with two boxes in the first row and five in the second:

L L L] L LI

Let k£ and / denote the number of boxes in the first and second rows of 7, respectively,
so that k <[. The parity sequence fixed in (2-1) allows us to talk about the parities
of the rows of m: the i-th row is of parity |i|. Let m be the number of boxes in the
even row, i.e., the row with parity 0, and n be the number of boxes in the odd row,

i.e., the row with parity 1. Then label the boxes in the even and odd rows from left
to right by the numbers 1, ..., m and m+ 1, ..., m + n, respectively. For example,
here is one of the above pyramids with boxes labeled in this way assuming that
(111, 12) = (1, 0), i.e., the bottom row is even and the top row is odd:

6|7
[12]3]4]5) -1
Numbering the columns of 7 1, ...,/ in order from left to right, we write row(i)

and col(i) for the row and column numbers of the i-th box in this labeling.
Now let g :=gl,, ,, (C) for m and n coming from the pyramid 7 and the fixed parity
sequence as in the previous paragraph. Let t be the Cartan subalgebra consisting of
all diagonal matrices and &1, . . ., &4, € t* the basis such that ¢; (e; ;) =§; ; for each
j=1,...,m+n. The supertrace form (-|-) on g is the nondegenerate invariant
supersymmetric bilinear form defined by (x|y) = str(xy), where the supertrace str A
of matrix A = (ai,j)lfi,jfm-i-n means a1+ - +amm —Am+1,m+1 =" —Am+n,m+n-
It induces a bilinear form (- |-) on t* such that (g;|¢;) = (—1)|r°“’(")‘5,-,.,-.
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We have the explicit principal nilpotent element
e .= Zei,]‘ €0y (4-2)
i,J

summing over all adjacent pairs of boxes in the pyramid 7. In the example
above, we have thate = e 2 +e3+e34+es45+es7. Let x € g* be defined by
x (x) := (x|e). If we set

gi.j = (=D)Wlg; (4-3)

then we have that

_ 1 if is an adjacent pair of boxes in 7,
x(eij) = : (4-4)
0 otherwise.
Introduce a Z-grading g = €P, ., g(r) by declaring that ¢; ; is of degree
deg(e;, ;) :=col(j) — col(@). (4-5)

This is a good grading for e, which means that e € g(1) and the centralizer g¢ of e
in g is contained in ), ., g(r); see [Hoyt 2012] for more about good gradings on
Lie superalgebras (one should double the degrees of our grading to agree with the
terminology there). Set

p=ar), =90, m:=Pa0.

>0 r<0

Note that x restricts to a character of m. Let m, := {x — x(x) | x € m}, which is
a shifted copy of m inside U (m). Then the principal W-algebra associated to the
pyramid  is

Wr i={u e U(p) [um, Cm,U(g)}. (4-6)

It is straightforward to check that W, is a subalgebra of U (p).

The first important result about W, is its PBW theorem. This is noted already in
[Zhao 2012, Remark 3.10], where it is described for arbitrary basic classical Lie
superalgebras modulo a mild assumption on e (which is trivially satisfied here). To
formulate the result precisely, embed e into an sl-triple (e, &, f) in g such that
h € g(0) and f € g(—1). It follows from sl, representation theory that

p=g®p", f], (4-7)

where pt = @, g(r) denotes the nilradical of p. Also introduce the Kazhdan
filtration on U (p), which is generated by declaring for each r > 0 that x € g(r) is
of Kazhdan degree r + 1. The associated graded superalgebra gr U (p) is supercom-
mutative and is naturally identified with the symmetric superalgebra S(p) viewed
as a positively graded algebra via the analogously defined Kazhdan grading. The
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Kazhdan filtration on U (p) induces a Kazhdan filtration on W, C U (p) so that
grWx CgrU(p) =S(p).

Theorem 4.1. Let p: S(p) — S(g°) be the homomorphism induced by the projection
of p onto g° along (4-7). The restriction of p defines an isomorphism of Kazhdan-
graded superalgebras gr W, = S(g°).

Proof. Superize the arguments in [Gan and Ginzburg 2002] as suggested in [Zhao
2012, Remark 3.10]. U

In order to apply Theorem 4.1, it is helpful to have available an explicit basis for
the centralizer g¢. We say that a shift matrix o = (s; j)1<;, j<2 1S compatible with
if either k > 0 and 7 has s, ; columns of height 1 on its left side and 1 » columns of
height 1 on its right side or if k = 0 and / = s | + s1,2. These conditions determine
a unique shift matrix ¢ when k > 0, but there is some minor ambiguity if k =0
(which should never cause any concern). For example, if 7 is as in (4-1), then

o 02
“\10
is the only compatible shift matrix.
Lemma4.2. Let o =(s; j)1<i, j<2 be a shift matrix compatible with 7. Forr >0, let
x) = > epq €0(r—1).
1<p,g<m+n

row(p)=i, row(q)=j
ng(ep,q)Z’—l

Then the elements
110 <r <k Ufxd) 10 <r <1}

U{x) 512 <r <sio+k U] [so1 <r <so1+k)
give a homogeneous basis for g°.

Proof. As e is even, the centralizer of e in g is just the same as a vector space as the
centralizer of e viewed as an element of gl,,,, (C), so this follows as a special case
of [Brundan and Kleshchev 2006, Lemma 7.3] (which is [Springer and Steinberg
1970, IV.1.6]). O

We come to the key ingredient in our approach: the explicit definition of special
elements of U (), some of which turn out to generate W,,. Define another ordering <
ontheset {1, ..., m+n} by declaring thati < j if col(i) < col(j) orif col(i) =col(j)
and row(i) <row(j). Let p € t* be the weight with

(Plej) =#{i |i < j and [row(i)| = 1} —#{i | i < j and [row(i)| =0}.  (4-8)
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For example, if 7 is as in (4-1), then p = —e4 — 2¢5. The weight p extends to a
character of p, so there are automorphisms

Si5:Up) — U(p), e jr>eij 8 jplei). 4-9)

Finally, given 1 <i, j <2,0<¢ <2andr > 1, we define

.
() = S;)(Z(—l)” > (—pfteste s1'r°w(j")5§}éi1,jl"'éi_r,js)» (4-10)
s=1 i i

jls---ajx
where the sum is over all 1 <iy,..., i, ji, ..., js < m 4+ n such that
e row(i;) =i and row(j,) = J,

e col(iy) <col(j,) (a=1,...,s),

o oW (ig4+1) =1ToW(jy) (@a=1,...,5 = 1),
e if row(j,) > ¢, then col(i,+1) > col(j,) (a=1,...,s—1),
o if row(j,) < ¢, then col(iz41) <col(j,) @=1,...,s—1)and

e deg(e;,,j,) +---+degle;,j)=r—s.

It is convenient to collect these elements together into the generating function

figic ) =Y 1) ™ e U] (4-11)
r>0
setting fg(,(;); . :=8i,j. The following two propositions should already convince the

reader of the remarkable nature of these elements:

Proposition 4.3. The following identities hold in U (p)[u~']:

t11 ) = 1,150 7" (4-12)
1,22() = 22,1 ) ", (4-13)
t1,2:0(u) = t1,1:0(U) 11 2:1 (1), (4-14)
. 1,0(w) = 12,11 () 1:0(u), (4-15)
t22:0(u) = t2.2:1(u) + 12,11 (W), 1;0 ()11 201 (). (4-16)

Proof. This is proved in [Brundan and Kleshchev 2006, Lemma 9.2]; the argument
there is entirely formal and does not depend on the underlying associative algebra
in which the calculations are performed. (]
Proposition 4.4. Let o be a shift matrix compatible with 7. The following elements
of U(p) belong to W all tl(’r};o, tl(’rle, tz(,r%;l and tég;zfor r>0,all tl(f%;lfor rF> S0
and all tz(fl);l forr > s71.

Proof. This is postponed to Section 5. (]
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Now we can deduce our main result. For any shift matrix o compatible with 7,
we identify U (h) with the algebra U f, from (3-1) so that

. 1®=D @ erow(i),row(j) & 180=9 4f qc =2,
CIE 19D ey, @ 19070 if g. =1

for any 1 <i, j <m +n with ¢ := col(i) = col(j), where g, denotes the number
of boxes in this column of 7. Define the Miura transform

w:Wy — Uh)=U" (4-17)
to be the restriction to W, of the shift automorphism S_; composed with the natural
homomorphism pr : U (p) — U (h) induced by the projection p — b.

Theorem 4.5. Let o be a shift matrix compatible with w. The Miura transform
is injective, and its image is the algebra Yé C U(l, from (3-3). Hence, it defines a
superalgebra isomorphism

w: Wy, > vl (4-18)

between W, and the shifted Yangian of level . Moreover, u maps the invariants
from Proposition 4.4 to the Drinfeld generators of Y é as follows:

wi ) =d” >0,  wep=d" >0, (4-19)
n@hp=d" >0,  pe)y)=d" >0, (4-20)
M(tl(’r;;l) =" (r> 51,2), '“(tz(,rl)u) =f" > 52,1)- (4-21)

Proof. We first establish the identities (4-19)—(4-21). Note that the identities
involving c?i(r) are consequences of the ones involving di(r) thanks to (4-12) and
(4-13) recalling also that dNi w) =diw)~". To prove all the other identities, we
proceed by induction on 53 | + 512 =1 —k.

First consider the base case / = k. For 1 <i, j <2 and r > 0, we know in this
situation that tifr].); o € Wx since, using (4-14)—(4-16), it can be expanded in terms of
elements all of which are known to lie in W, by Proposition 4.4; see also Lemma 5.1.
Moreover, we have directly from (4-10) and (3-4) that /L(ti(”;.); 0) = ti(yrj) € Yé. Hence,
wu(ti j.0(u)) =t j(u). The result follows from this, (2-6), (2-7) and the analogous
expressions for #1,1.0(#), t2,2.1(u), t1,2:1(u) and 5 1.1 (u) derived from (4-14)-(4-16).

Now consider the induction step, so s2 1 +s51,2 > 0. There are two cases according
to whether 55,1 > 0 or 572 > 0. We just explain the argument for the latter situation
since the former is entirely similar. Let 77 be the pyramid obtained from 7 by
removing the rightmost column, and let W;; be the corresponding finite W -algebra.
We denote its Miura transform by 1 : Wy — U, f,;l and similarly decorate all other
notation related to 7z with a dot to avoid confusion. Now we proceed to show that

/,L(t](r%,]) = e for each r > s1,. By induction, we know that /l(il(rz).l) = ¢ for
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each r > 51 7. But then it follows from the explicit form of (4-10), together with
(2-15) and the definition of the evaluation homomorphism (3-2), that

n ) =@ )@ 1+ (=Dl ) e,

=M1+ (_1)\2|é(r—1) Qe = e
providing r > 51 3. The other cases are similar.
Now we deduce the rest of the theorem from (4-19)—(4-21). Order the elements of

Qi={1") 10 <r<kjU{)) 10 <r=<1)

U{tl(rél IS1z<r<slz+k}U{t2(rfIISzl <r <s1+k}

) Q belongs to W,. Moreover, from

in some way. By Proposition 4.4, each ¢ iic

the definition (4-10), it is in filtered degree r and gr, ¢ l( j) c is equal up to a sign
to the element x( J) from Lemma 4.2 plus a linear combination of monomials in
elements of strlctly smaller Kazhdan degree. Using Theorem 4.1, we deduce that
the set of all ordered supermonomials in the set 2 gives a linear basis for W. By
(4-19)—(4-21) and Corollary 3.6, u maps this basis onto a basis for Y, (l, cu f, Hence,

W is an isomorphism. ([

Remark 4.6. The grading p = P, ., g(r) induces a grading on the superalgebra
U (p). However, W, is not a grade& subalgebra. Instead, we get induced another
filtration on W, with respect to which the associated graded superalgebra gr’ W,
is identiﬁed with a graded subalgebra of U (p). From Proposition 4.4, each of the
invariants tl J c belongs to filtered degree r — 1 and has image (—1)"~'x (r) in the
associated graded algebra. Combined with Lemma 4.2 and the usual PBW theorem
for g¢, it follows that gr’ W, = U (g°). Moreover, this filtration on W, corresponds

under the isomorphism x to the filtration on ¥ induced by the Lie filtration on Y.

Remark 4.7. In this section, we have worked with the “right-handed” definition
(4-6) of the finite W-algebra. One can also consider the “left-handed” version

Wi ={ueUp) | myu CU(g)my}.
There is an analogue of Theorem 4.5 for W, via which one sees that W, = W;'.

More precisely, we define the “left-handed” Miura transform ' : W;I — U(h) as
above but twisting with the shift automorphism S_: rather than S_;, where

(Bflej) =#{i |i <" j and [row(i)| = 1} —#{i | i <" j and |[row(i)| =0} (4-22)
and i <" j means either col(i) > col(j), or col(i) = col(j) and row(i) < row(}j).
The analogue of Theorem 4.5 asserts that ' is injective with the same image as .
Hence, ' o', i.e., the restriction of the shift S;_5 : U(p) — U(p), gives an
isomorphism between W) and W,,. Noting that

p=pl= Y, (SDINORINDIE ), (4-23)

1<i,j<m+n
col(i)<col(j)
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there is a more conceptual explanation for this isomorphism along the lines of the
proof given in the nonsuper case in [Brundan et al. 2008, Corollary 2.9].

Remark 4.8. Another consequence of Theorem 4.5 together with Remarks 2.9
and 2.1 is that up to isomorphism the algebra W, depends only on the set {m, n},
i.e., on the isomorphism type of g and not on the particular choice of the pyramid
or the parity sequence. As observed in [Zhao 2012, Remark 3.10], this can also be
proved by mimicking [Brundan and Goodwin 2007, Theorem 2].

5. Proof of invariance

In this section, we prove Proposition 4.4. We keep all notation as in the statement
of the proposition. Showing that u € U (p) lies in the algebra W, is equivalent
to showing that [x, u] € m,U(g) for all x € m or even just for all x in a set of
generators for m. Let

Q= {1117 >00U{ts, |7 >s12) U], |7 >s21} 065, |7 >0} (5-1)

Our goal is to show that [x, u] € m, U(g) for x running over a set of generators
of m and u € Q. Proposition 4.4 follows from this since all the other elements
listed in the statement of the proposition can be expressed in terms of elements
of 2 thanks to Proposition 4.3. Also observe for the present purposes that there is
some freedom in the choice of the weight p: it can be adjusted by adding on any
multiple of “supertrace” ey + -+ &y, — €1 — + - — Em+n. This just twists the
elements ti(’rj); c by an automorphism of U (g) so does not have any effect on whether
they belong to W;. So sometimes in this section we will allow ourselves to change
the choice of p.

Lemma 5.1. Assuming k = [, we have that |x, tl.(’rj);o] em,U(g) forall x € m and

r > 0.

Proof. Note when k =1 that g =g +- - -+&n—Ems1—- - - —Eman if (|1], 12]) = (1, 0)
and p = 0if (|1], |2]) = (0, 1). As noted above, it does no harm to change the
choice of p to assume in fact that p = 0 in both cases. Now we proceed to mimic
the argument in [Brundan and Kleshchev 2006, §12].

Consider the tensor algebra T (M;) in the (purely even) vector space M; of [ x [
matrices over C. For 1 <1, j < 2, define a linear map ¢, ; : T(M;) — U(g) by
setting

tij (1) :==6; ;, ti j(ap) = (—=DVeiq jsh,

i@ ®x) = Y bin (X0 (X2) < I,y ()
1<hy,...,h,_1<2
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forl <a,b<l,r>1andxy,...,x, € M;, where i *xa denotesaif|i|=(_)and
[ +a if |i| = 1. It is straightforward to check for x, yi, ..., y, € M; that

[t (x), tp g ® - Ryl
— (—1)lliHlpH 1P Z(tp,j(yl © - ® Yy iy g (XY ® - ® )
s=1

— i N ® @y ig (V541 @+ ®Yp)), (5-2)

where the products xy, and y,x on the right are ordinary matrix products in M;. We
extend 7; ; to a C[u]-module homomorphism T (M;)[u] — U (g)[u] in the obvious
way. Introduce the following matrix with entries in the algebra T (M;)[u]:

u+eyr e er3 e,
1 u-+te
A(u) = 0 T e,

: 1 ute—_11-1 e—14
0 0 1 u+ter

The point is that #; j.o(u) = u*lti, j(cdet A(u)), where the column determinant of
an [ x | matrix A = (a; ;) with entries in a noncommutative ring means the Laplace
expansion keeping all the monomials in column order, i.e.,

cdet A := Z sgn(w)aw(l),l cec Ayl
wEeES;
We also write A, 4(u) for the submatrix of A(u) consisting only of rows and columns
numbered c, ..., d.
Since m is generated by elements of the form #; j(ecy1,c), it suffices now to
show that [#; j(ecy1.c), tp,q(cdet A(u))] € m, U(g) forevery 1 <i, j, p,q <2 and
c=1,...,1—1. To do this, we compute using the identity (5-2):

[ti,j (ec+1.c), Ipg (cdet A(u))]

€ct+l,c  C€ctl,c+l R T
— 1, j(cdet Ay (u))tig | cdet boutectten o erd
0 1 u+tey
u+tey o0 el €lc
—t,.; | cdet ! h : ti.g(cdet Ae i (u)).
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In order to simplify the second term on the right-hand side, we observe crucially
for h =1,2 that #; ;((u +ec c)ecy1,c) =ty j(u+ec ) (modm, U(g)). Hence, we
get that

[ti,j (ect1,¢)s Ipg (cdet A(u))]

I ecrter1 - ecqly
L utectiet1 -+ ecti
=1y, j(cdet Ay o1 (u))t; 4 | cdet
0 [N 1 u -+ e
u+eyr -+ ele el
1 :
—1p,j | cdet , tiq(cdet Acyo (1))
: U+tece ecc
0 1 1

modulo m, U (g). Making the obvious row and column operations gives that

1 ectiet1r - et
L utecricrr o0 ety
cdet | . ) . =ucdet Acyo (1),
0 oo 1 u+te
u+tey -0 e €l
| B :
cdet =ucdet Ay c—1(u).
: U+ece €cc
0 e 1 1
It remains to substitute these into the preceding formula. ([

Proof of Proposition 4.4. Our argument goes by induction on s 1 412 =1 —k. For
the base case kK = [, we use Proposition 4.3 to rewrite the elements of €2 in terms of
the elements ti(,rj); o- The latter lie in W, by Lemma 5.1. Hence, so do the former.

Now assume that s» 1 + 512 > 0. There are two cases according to whether
§1,2 > §2.1 Or 52,1 > §12. Suppose first that s 2 > 52,1 and hence that s 2, > 0. We
may as well assume in addition that [ > 2: the result is trivial for / < 1 as m = {0}.
Let 7t be the pyramid obtained from 7 by removing the rightmost column. We will
decorate all notation related to 7= with a dot to avoid any confusion. In particular,
W is a subalgebra of U (p) C U (). Let

6:U(g) — Ulg)

be the embedding sending e; ; € g to e; j € g if the i-th and j-th boxes of 7
correspond to the i’-th and j’-th boxes of 7, respectively. Let b be the label of
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the box at the end of the second row of =, i.e., the box that gets removed when
passing from 7 to 7. Also in the case that s;, = 1, let ¢ be the label of the
box at the end of the first row of 7.

Lemma 5.2. In the above notation, the following hold:
(i) 11"} =0Gi".0) forall r > 0,
(i1) t(r) 1= 9(t2(rf Dforallr > sy,
i) 15, = 0G\2.) + 0G5 )S5@p.0) =[0G 5. ev—1.51 for all r > 512 and
(iv) 15 =00y ) + 00y 51)S5@p0) — [0S 5 ), ev—1.6] forall r > 0.

Proof. This follows directly from the definition of these elements using also that
6 0S;=S;00 on elements of Up). O

Observe next that m is generated by 6 (m) U J, where

_ {{eb,c, epp—1) ifsio=1, (5-3)
{ep,p—1) ifsjo>1.

We know by induction that the following elements of U(p) belong to W, : all tl(rl) 0

and t2 21 for r >0, all t1 2 | for r > 515 and all t2 101 for r > s7.1. Also note that the
elements of 6(m) commute with e;_; ; and S;(ep;,). Combined with Lemma 5.2,
we deduce that [0(x), u] € 6(m,)U(g) € m,U(g) for any x e m and u € Q. It
remains to show that [x, u] € m, U(g) for each x € J and u € Q. This is done in
Lemmas 5.3, 5.4 and 5.6 below.

Lemma 5.3. For x € J and u € {tl(rf,o | r >0} U {tz(rl),1 | r > s2.1}, we have that

[x,u]l em,U(g).

Proof. Take ej, 4 € J. Consider a monomial S;(e;, j, - - - €;,,j,) in the expansion of u
from (4-10). The only way it could fail to supercommute with ey, 4 is if it involves
some e;, j, with j, =b or i, =d. Since row(j;) =1 and col(i;41) > col(j,) when
row(j,) = 2, this situation arises only if s12 = 1, iy =d and j; = c. Then the
supercommutator [ep, 4, €;, j,] equals tep, .. It remains to repeat this argument to
see that we can move the resulting e, . € m, to the beginning. (]

It is harder to deal with the remaining elements tl(r%,l and tz(r;,l of Q2. We follow

different approaches according to whether 512 > 1 ors; 2 =1.

Lemma 5.4. Assume that s1» > 1. We have that [ep 1, u] € m, U(g) for all

ue {tl(fz);l [r>s12}U {fz(,r%;l |r >0}

Proof. We just explain in detail for u = tl( % 1> the other case follows the same pattern.

Let 7 be the pyramid obtained from 7 by removing its rightmost two columns. We
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decorate all notation associated to W; with a double dot, so Wi C U (p) C U (g)
and so on. Let

¢:U@G) — U(g)
be the embedding sending e; ; € g to e; j» € g, where the i-th and j-th boxes of 7

are labeled by i and j in 7, respectively. For r > 512, we have by analogy with
Lemma 5.2(ii1) that

0G5 =@ ) + b 5 )S5@p-15-1) — [$( 5. ep-2.-1]-

We combine this with Lemma 5.2(iii) to deduce for r > s > that

o (r—1 _ o —
11 =) + G5 S5@p-16-0) — [0 G5, ep—2.b-1]
+ 5085 @o) + S5 D) S5 @0—1.0-1) S5 (@b.1)
2)

oo(r—2 _ oo(F—2)« — ooy —
— [P 5. ep—2.6-1185@b) — D0y 5 Vep-1.6 + S 5. ep—2.0]-

We deduce that
r) 4 r=2) — S~(2 3 S (2 N2z
len,p—1, 1) 5.1 1 =P (t1 5.7) €pp—155(epp) — epp—1S5(ep—1,b—1) + (—1)“epp—1)

2) (r—2

o _ Y, _ e —
+ o517 eb-2b-11ebp-1— ¢(t1(,r2;1))(€b,b —ep—1,p-1) —[¢ (ll’rz;l)), ep—2,h—11]-

Working modulo m, U(g), we can replace all e; ,_; by 1. Then we are reduced
just to checking that

S5(@b.p) — Sp(@p—15-1) + (=D =2y p —ep_1 1.
This follows because (5|ep) — (lep—1) + (—1)?l = 0 by the definition (4-8). O

Lemma 5.5. Assume that sy, = 1. Forr > 2, we have that

) _ 11,2 (r=1) 1 =1

= DM 00 T =1 ot 0 s -4
r

(r) 11,2 (r=1) (a)  (r—a)

=DM S ]_Ztl,l;ltz,z;l - (-5
a=0

Proof. We prove (5-4). The induction hypothesis means that we can appeal to
Theorem 4.5 for the algebra W;;. Hence, using the relations from Theorem 2.2, we
know that the following holds in the algebra W;; for all r > 2:

:(r) ;2 =1 (1) :(r—1)
I = -1 ‘[’1,1;0”1,2;1 I=1 1.0t 00 -
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Using Lemma 5.2, we deduce for r > 2 that
. (r—1 _ (r—1
1) = 0G") )+ 0G5 S5 @) — 0G5 1), ep1s]
2 “(r—1 1 ((r—1
= DM 0, 0G5 = 111,005 ))

2 «(r—2 - 1 c(r—2 -
+ (=DM 0, 0G5 185 @o0) — 1] 1.0 (151 ) S5(@b.0)
2 <(r—2 1 -(r—2
- (—1)‘”[[1‘1(’1);0, Q(t](rg;l))], eb—l,b] + [tl(,l);Oe(tl(,rZ;l))’ eb—l,b]

= DM 0G50 + 0G5 T)S5@) =[0G 5. e5-1,61]

1 s(r—1 ((r—2 - ((r—2
— 10O ) + 0G5 ) S5@p0) — 0G5 D). ev—1.6))

_ 17,2 (r—1) n =D
= (=D s o 1= 1 1000 -

The other equation (5-5) follows by a similar trick. (|

Lemma 5.6. Assume that 51> = 1. We have that [x, u] € m, U(g) for all x € J and

welt!), |r>s120{y, |r >0}

Proof. Proceed by induction on r. The base cases when r < 2 are small enough that
they can be checked directly from the definitions. Then for r > 2, use Lemma 5.5,
noting by the induction hypothesis and Lemma 5.3 that all the terms on the right-
hand side of (5-4) and (5-5) are already known to lie in m, U (g). O

We have now verified the induction step in the case that 512 > 52 1. It remains to
establish the induction step when s, 1 > s12. The strategy for this is sufficiently
similar to the case just done (based on removing columns from the left of the
pyramid 7r) that we leave the details to the reader. We just note one minor difference:
in the proof of the analogue of Lemma 5.2, it is no longer the case that oS5 = S5 00,
but this can be fixed by allowing the choice of p to change by a multiple of
E1 4+ Em—Emil—— Eman-

This completes the proof of Proposition 4.4. (]

6. Triangular decomposition
Let Wy be the principal W-algebra in g = gl,,,(C) associated to pyramid 7. We
adopt all the notation from §4. So

e (1], 12]) is a parity sequence chosen so that (|11, |2|) = 0,1) if m <n and
(11, 12)) = (1, 0) if m > n,

e 7w has k = min(m, n) boxes in its first row and / = max(m, n) boxes in its
second row and

e 0 = (8i,j)1<i,j<2 1s a shift matrix compatible with 7.

We identify W, with Y!, the shifted Yangian of level /, via the isomorphism p
from (4-18). Thus, we have available a set of Drinfeld generators for W, satisfying
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the relations from Theorem 2.2 plus the additional truncation relations dfr) =0
for r > k. In view of (4-19)—(4-21) and (4-10), we even have available explicit
formulae for these generators as elements of U (p) although we seldom need to use
these (but see the proof of Lemma 8.3 below).

By the relations, W, admits a Z-grading

Wo =P Wi,
geZ
such that the generators dl.(r) are of degree 0, the generators e are of degree 1 and
the generators f) are of degree —1. Moreover, the PBW theorem (Corollary 3.6)
implies that W., =0 for |g| > k.

More surprisingly, the algebra W, admits a triangular decomposition. To in-
troduce this, let W2, W and W be the subalgebras of W, generated by the
elements 0 := {d”,d\" |0 <r <k, 0<s<I}, Q4 := (") | 512 <r <s12+k}
and Q_ = {f(’) | s2.1 < r < sp1 + k}, respectively. Let Wﬁ and Wﬁ be the
subalgebras of W, generated by ¢ U Q. and Q_ U Q, respectively. We warn
the reader that the elements e (r > s 1.2 + k) do not necessarily lie in Wj (but
they do lie in Wﬁ by (3-5)). Similarly, the elements ) for r > 5,1 + k do not
necessarily lie in W~ (but they do lie in W,ﬁ), and the elements dér) forr > [ do
not necessarily lie in any of W,?, W,g or W,E.

Theorem 6.1. The algebras W;(T) , W and W are free supercommutative superal-
gebras on generators 2, Q4 and Q2_, respectively. Multiplication defines vector
space isomorphisms

W @Wl@W, 3 W,, Wl W3 Wi, W @W?3 W,
Moreover, there are unique surjective homomorphisms
Wi — w2, wo — w?
sending e + 0 for allr > 515 or )+ 0 for all r > s.1, respectively, such that
the restriction of these maps to the subalgebra W,? is the identity.

Proof. Throughout the proof, we repeatedly apply the PBW theorem (Corollary 3.6),
choosing the order of generators so that Q2_ < Q¢ < Q4.

To start with, note by the left-hand relations in Theorem 2.2 that each of Wfr),
W, and W is supercommutative. Combined with the PBW theorem, we deduce
that they are free supercommutative on the given generators. Moreover, the PBW
theorem implies that the multiplication map W, ® W0 ® W+ — W, is a vector
space isomorphism.

Next we observe that W2 contains all the elements ¢ for r > sy ». This follows
from (3-5) by induction on r. Moreover, it is spanned as a vector space by the
ordered supermonomials in the generators €29 U €. This follows from (3-5), the
relation for [di(r), ¢®] in Theorem 2.2 and induction on Kazhdan degree. Hence,
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the multiplication map WfT) QW — Wﬁ is surjective. It is injective by the PBW

theorem, so it is an isomorphism. Similarly, W ® W2 — W, is an isomorphism.
Finally, let J 1 be the two-sided ideal of W,E that is the sum of all of the graded

components Wi; ¢ = W,E N Wy, for g > 0. By the PBW theorem, The natural quo-

tient map W0 — W /J*¥ is an isomorphism. Hence, there is a surjection Wi — w?

as in the statement of the theorem. A similar argument yields the desired surjection
b 0

Wy — W O

7. Irreducible representations

Continue with the notation of Section 6. Using the triangular decomposition, we
can classify irreducible W, -modules by highest weight theory. Define a 7 -tableau
to be a filling of the boxes of the pyramid 7 by arbitrary complex numbers. Let
Tab,, denote the set of all such r-tableaux. We represent the -tableau with entries
ai, ..., a along its first row and by, ..., b; along its second row simply by the
array 3. . We say that A, B € Tab, are row equivalent, denoted A ~ B, if B can
be obtained from A by permuting entries within each row.
Recall from Theorem 6.1 that W7? is the polynomial algebra on

{d”,d10<r<k, 0<s<I}.

For A =% € Taby, let C4 be the one-dimensional W?-module on basis 14 such
that

ukdy ) lg = (+ar) - w+a)la, (7-1)
Wda()lg=Ww+by) - (u+b)ly. (7-2)
Thus, a’fr)lA =e (aj,...,a;r)l, and dé’)lA =e,(b1,...,b;)1,, where e, denotes

the r-th elementary symmetric polynomial. Every irreducible W2-module is iso-
morphic to C4 for some A € Tab,, and C4 = Cp if and only if A ~ B.

Given A € Tab,;, we view C4 as a W;E -module via the surjection W,E —» W}? from
Theorem 6.1, i.e., ¢ 14 =0 for all r > s1,2. Then we induce to form the Verma
module

M(A) := Wy ®: Cy. (7-3)

Sometimes we need to view this as a supermodule, which we do by declaring
that its cyclic generator 1 ® 1,4 is even. By Theorem 6.1, W, is a free right
W,E—module with basis given by the ordered supermonomials in the odd elements
{f®) | s2.1 <r <sy1+k}. Hence, M(A) has basis given by the vectors x ® 14 as
x runs over this set of supermonomials. In particular, dim M (A) = 2*.

The following lemma shows that M (A) has a unique irreducible quotient, which
we denote by L(A); we write vy for the image of 1® 14 € M(A) in L(A).



Principal W-algebras for GL(m|n) 1875

Lemma 7.1. For A = ‘é'] a" € Taby, the Verma module M(A) has a unique ir-
reducible quotient L(A). The image vy of 1 ® 14 is the unique (up to scalars)
nonzero vector in L(A) such that e(’)v+ =0 forall r > s12. Moreover, we have
that d](r)v+ =ey(ay,...,ar)vy and dér)er =er(b1,...,b)vy forallr > 0.

Proof. Let A := (—=D!'l(a; +--- + ). For any u € C, let M(A), be the u-
eigenspace of the endomorphism of M (A) defined by d := (—1)|1|d1(1) € W;. Note
by (7-1) and the relations that d14 = A1, and [d, f*] = — ) for each r > s, 1.
Using the PBW basis for M (A), it follows that

k
MA) =P M(A),—i (7-4)

i=0

and dim M (A),_; = ( ) for each 0 <i <k. In particular, M (A); is one-dimensional,
and it generates M(A) as a W,, module. This is all that is needed to deduce that
M (A) has a unique irreducible quotient L(A) following the standard argument of
highest weight theory.

The vector v, is a nonzero vector annihilated by e for r > s; 5, and d (r)v+
and d, (r )v+ are as stated thanks to (7-1) and (7-2). It just remains to show that any
vector v € L(A) annihilated by all ¢ is a multiple of v... The decomposition (7-4)
induces an analogous decomposition

k
LA =P LA (7-5)
i=0
although for 0 < i < k the eigenspace L(A);_; may now be 0. Write v = Zf:o v
with v; € L(A);,—;. Then we need to show that v; = 0 for i > 0. We have that
ey = Zle e v; = 0; hence, e v; = 0 for each i. But this means for i > 0 that
the submodule W, v; = W,ﬁ v; has trivial intersection with L(A);, so it must be 0. [J

Here is the classification of irreducible W, -modules.

Theorem 7.2. Every irreducible W, -module is finite-dimensional and is isomorphic
to one of the modules L(A) from Lemma 7.1 for some A € Tab,. Moreover,
L(A) = L(B) ifand only if A ~ B. Hence, fixing a set Tab, /~ of representatives
for the ~-equivalence classes in Tab,, the modules

{L(A)| A € Tab, /)
give a complete set of pairwise inequivalent irreducible W -modules.

Proof. We note, to start with, for A, B € Tab,, that L(A) = L(B) if and only if
A ~ B. This is clear from Lemma 7.1.
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Now take an arbitrary (conceivably infinite-dimensional) irreducible W, -module
L. We want to show that L = L(A) for some A € Tab,. Fori > 0, let

Lli]:=={veL| Wy ,v={0}ifg>0o0rg=<—i}.

We claim initially that L[k + 1] # {0}. To see this, recall that Wy, = {0} for
g < —k —1, so by the PBW theorem, L[k + 1] is simply the set of all vectors v € L
such that e v = 0 for all s1,2 <r <12+ k. Now take any nonzero vector v € L
such that #{r =s12+1,...,512+k | v =0} is maximal. If e"v # 0 for some
s12 <r <s12+k, we can replace v by e v to get a nonzero vector annihilated
by more ¢’s. Hence, v € L[k + 1] by the maximality of the choice of v, and we
have shown that L[k + 1] # {0}.

Since L[k + 1] # {0}, it makes sense to define i > O to be minimal such that
L[i] # {0}. Since L[0] = {0}, we actually have that i > 0. Pick 0 # v € L[i], and let
L = Wﬁv. Actually, by the PBW theorem, we have that L" = W](T)v and L’ C L[i].
Suppose first that L’ is irreducible as a W](T)—module. Then L' = C4 for some
A € Tab,,. The inclusion L’ < L induces a nonzero W,-module homomorphism

M(A)EW; ®s L' — L,

which is surjective as L is irreducible. Hence, L = L(A).

It remains to rule out the possibility that L’ is reducible. Suppose for a contra-
diction that L’ possesses a nonzero proper W2-submodule L”. As L = W, L" and
WEL" = L", the PBW theorem implies that we can write

k
YL e,

h=1 $2,1<r1 <~~-<r;,§s2,1+k

for some vectors vy, ,,, w € L”. Then we have that

0#£v—welLlilN ( > W,,;gL[i]> CLli—1].
g=—1
This shows L[i — 1] # {0}, contradicting the minimality of the choice of . ([

The final theorem of the section gives an explicit monomial basis for L(A). We
only prove linear independence here; the spanning part of the argument will be
given in Section 8.

Theorem 7.3. Suppose A=1,"}\ € Tab,. Let h >0 be maximal such that there exist
distinct 1 <iy, ...,ip <kanddistinct 1 < jy, ..., jy<lwitha; =bj,, ..., a;,=bj,.

Then the irreducible module L(A) has basis given by the vectors xv,. as x runs over
all ordered supermonomials in the odd elements {f(’) | s2,1 <r <sp1+k—h}
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Proof. Letk:=k—h and [ :=[—h. Since L(A) only depends on the ~-equivalence
class of A, we can reindex to assume that agy = bi+1’ ap = b;+2, .., ar=Dby.
We proceed to show that the vectors xv, for all ordered supermonomials x in
{f") | 53,1 <7 <sp.1+k} are linearly independent in L(A). In fact, it is enough
for this to show just that

f(‘s2,1+1)f(sz,1+2) . f(SZ,I‘HE) vy #0. (7-6)

Indeed, assuming (7-6), we can prove the linear independence in general by taking
any nontrivial linear relation of the form

k
Z Z )‘r1 ..... raf(rl)"'f(ra)v+:0.

a=0 s2,1<r1<~~<ra§s2,1+l;

Let a be minimal such that A, # 0 for some rq, ..., r,. Apply f©V ... fGi-a),
where 551 <1 <--- <s$3_, < 52,1 +k are different from r; < --- < r,. All but one

.....

term of the summation becomes 0, and using (7-6), we can deduce that A, , =0,
a contradiction.
In this paragraph, we prove (7-6) by showing that
6(51.2+1)6(S1,2+2) . ,e(S1,2+1€)f(Sz,1+l)f(52,1+2) . f(S2,1+/€)v+ £0. (7-7)

The left-hand side of (7-7) equals

Z Sgn(w)[e(ﬂlﬂl,z—l)’ f(sz,1+w(1))] . [e(lE+1+s1,2—12), f(“'2*‘+w(];))]v+.

UJGS;

By Remark 2.3, up to a sign, this is det(c(i_i+j))15i,j51€')+~ It is easy to see from

Lemma 7.1 that c Vv = e, (by, ..., bj/ai, ..., ap)v;, where
er(br.....by/ar, ... ap) = Y (=D'es(br.....bphi(ar, ... ap)
s+t=r

is the r-th elementary supersymmetric function from [Macdonald 1995, Exercise
1.3.23]. Thus, we need to show that det(e;_iﬂ-(b], coobijar, . a,;))lsi’jg; #0.
But this determinant is the supersymmetric Schur function s, (b1, ..., bj/ai, . .., ag)
for the partition A = (ly) defined in [Macdonald 1995, Exercise 1.3.23]. Hence, by
the factorization property described there, it is equal to [, _; ;[ ]« j<k(bi —aj),
which is indeed nonzero.

We have now proved the linear independence of the vectors xvy as x runs over
all ordered supermonomials in { f )| §21<r <s31+ k}. It remains to show that
these vectors also span L(A). For this, it is enough to show that dim L(A) < 2*.
This will be established in the next section by means of an explicit construction of
a module of dimension 2¥ containing L(A) as a subquotient. (]
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8. Tensor products

In this section, we define some more general comultiplications between the algebras
W, allowing certain tensor products to be defined. We apply this to construct
so-called standard modules V (A) for each A € Tab,. Then we complete the proof
of Theorem 7.3 by showing that every irreducible W, -module is isomorphic to one
of the modules V (A) for suitable A.

Recall that the pyramid 7 has / boxes on its second row. Suppose we are given
li,...,lg=0suchthatl{+---+Il;=1. Foreachc=1,...,d, let . be the pyramid
consisting of columns /; +---+1l._;+1,...,l1+---+ 1. of 7. Thus, 7 is the
“concatenation” of the pyramids ny, ..., 4. Let Wy, be the principal W-algebra
defined from m.. Let oy, ..., 04 be the unique shift matrices such that each o,
is compatible with 7, and o, is lower or upper triangular if sp 1 > [1 +--- 4+,
or s 2 > 1I.+---+14, respectively. We denote the Miura transform for W, by
fhe s We, <> Uke.

Lemma 8.1. With the above notation, there is a unique injective algebra homomor-
phism
I W= Wr ®---Q Wy, (8-1)

such that (U1 @ -+ - @ a) o Ay,,.1, = L.

Proof. Let us add the suffix ¢ to all notation arising from the definition of Wy,
so that W is a subalgebra of U (p.), we have that g. =m. D h. & ]:ucL and so on.
We identify g; @ - - - @ gq with a subalgebra g’ of g so that ¢; ; € g. is identified
with e; j € g, where i’ and j' are the labels of the boxes of 7 corresponding to
the i-th and j-th boxes of 7., respectively. Similarly, we identify m; @ --- G my
withm/ Cm, p; d---Dpy withp' Cpand b &--- P bh, with ' = h. Also let
p = p1+---+ pa, a character of p’. In this way, W, ® - - - ® Wy, is identified
with W :={u e U(®p') | um;( C m;(U(g’)}, where m;( ={x—xx)|xem}.

Let q be the unique parabolic subalgebra of g with Levi factor g’ such that p C g.
Let ¥ : U(q) — U(g') be the homomorphism induced by the natural projection of
q — ¢'. The following diagram commutes:

S_sopoS;
Up) —U®)
pr OSﬁJ/ lpr’ oSy
U(h) =——=U®)

We claim that S_5 o ¢ o S5 maps Wy into W_. The claim implies the lemma, for
then it makes sense to define A, . ;, to be the restriction of this map to Wy, and
we are done by the commutativity of the above diagram and injectivity of the Miura
transform.

.....
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To prove the claim, observe that p — p’ extends to a character of ; hence, there
is a corresponding shift automorphism S;_5 : U(q) — U(q) that preserves W..
Moreover, S_z oY o S5 = S;_5 o Y. Therefore, it enough to check just that
¥ (Wz) € W.. To see this, take u € Wy so that um, € m, U(g). This implies that
um’, € m, U(g) NU(q); hence, applying ¥ we get that ¥ (u)m), € m’ U(g’). This
shows that (1) € W/, as required. O

Remark 8.2. Special cases of the maps (8-1) with d = 2 are related to the comulti-
plications A, Ay and A_ from (2-14)—(2-16). Indeed, if [ =1; +1, for [} > s, 1 and
Iy > 512, the shift matrices o7 and o, above are equal to ol° and o', respectively.
Both squares in the following diagram commute:

A
Yo ——mmY;QY,,

! ! I
ev, l levall ® evgz2

Ul —=UloU.

MT )‘\M@Mz
All,lz

Wy ——— Wy, @ Wy,

Indeed, the top square commutes by the definition of the evaluation homomorphisms
from (3-2) while the bottom square commutes by Lemma 8.1. Hence, under
our isomorphism between principal W-algebras and truncated shifted Yangians,
A1, 2 Wy — Wy, ® Wy, corresponds exactly to the map Y. — Yf,‘l ® Y(% induced
by the comultiplication A : Y, — Y5, ® Yy,

Instead, if [y =/ — 1, I, = 1 and the rightmost column of 7 consists of
a single box, the map A;_11 : Wy — Wy, ® U(gl;) corresponds exactly to
the map ¥} — Y/-'® U(gly) induced by A, : Y, — Y,, ® U(gly). Similarly,
if I =1, , =1 —1 and the leftmost column of 7 consists of a single box,
Arg—1: Wy — U(gly) ® Wy, corresponds exactly to the map Y! — U(gl)) ® Y ~!
inducedby A_:Y, > U(gl)) ®Y,_.

Using (8-1), we can make sense of tensor products: if we are given Wy, -modules
V. foreachc=1,...,d, then we obtain a well-defined W, -module

VI®---QVy:=Af Vi XV, (8-2)

.....

i.e., we take the pull-back of their outer tensor product (viewed as a module via the
usual sign convention).

Now specialize to the situation that d =/ and [y = --- = [; = 1. Then each
pyramid 7. is a single column of height 1 or 2. In the former case, W, = U (gl,),
and in the latter, Wy, = U (gl;);). So we have that Wp, @ --- ® W, = Uf,, and the
map Aj, .1 coincides with the Miura transform u.

.....
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Given A € Tab,, let A, € Tab,, be its c-th column and Z(AC) be the corresponding
irreducible W, -module. Let us decode this notation a little. If W, = U (gl,), then
A has just a single entry b and L(A,) is the one-dimensional module with an even
basis vector v, such that ej vy = (=1)bvy. If W, = U(glyj1), then A, has
two entries, a in the first row and b in the second row, and L(A,) is one- or two-
dimensional according to whether a = b; in both cases L(A,)is generated by an even
vector vy such that ey jvy = (—1)|”av+, €2V = (—1)‘2‘19114r and ej pv4 =0. Let

V(A):=L(A)®---® L(A)). (8-3)

Note that dim V (A) = 2K~", where h is the number of ¢ = 1, ..., [ such that A,
has two equal entries.

Lemma 8.3. For any A € Tab,, there is a nonzero homomorphism
M(A) — V(A)

sending the cyclic vector 1 @ 14 € M(A) to V4 Q- Quy € V(A). In particular,
V (A) contains a subquotient isomorphic to L(A).

ap- LlA

Proof. Suppose that A =7, ..}, . By the definition of M (A) as an induced module,
it suffices to show that v := v+ ®--- @ vy € V(A) is annihilated by all ™ for
r > s1 and that dfr)v =e (ay,..., ak)v and dér)v =e,(by,...,b)vforallr > 0.
For this, we calculate from the explicit formulae for the invariants dfr), dér) and e
given by (4-10) and (4-19)—(4-21), remembering that their action on v is defined
via the Miura transform p = Ay__1. It is convenient in this proof to set

(DD Qe ; @19079 if g =2,
él[c]] (—1)|2|1®(C_1)®el,] ®1®(1—c) ifgo=1landi=j=2,
0 otherwise

forany 1 <i, j <2 and 1 < ¢ <[, where ¢, is the number of boxes in the c-th
column of 7. First we have that

), _ =lc1] slez] —ler]
dj v= Z § : € mChyhy 1Y
1<ct,....c, <l 1=<hy,...;h, 152

summing only over terms with ¢; < --- < ¢,. The elements on the right commute
(up to sign) because the ¢; are all distinct, so any égc”i] produces O as ej vy = 0.
Thus, the summation reduces just to

Z _[1611]' e[lc’l]v—er(al,...,ak)v
1<ci<-<cer<l
as required. Next we have that

) _ #i=1,...,r—1|row(h;)= 1} [61]—[02] —ler]
d2 v= Z Z (_1) 2 1 /’11 hy " ehr 12v

1<ci,...c, <l 1<hy,...h,_1 =52
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summing only over terms with ¢; > ¢;41 if row(h;) =1 and ¢; < ¢; 4 if row(h;) =2.
Here, if any monomial EEC"Z] appears, the rightmost such can be commuted to
the end when it acts as 0. Thus, the summation reduces just to the terms with

hy=---=h,_1 =2, and again we get the required elementary symmetric function
e (b1, ..., by). Finally, we have that
r),, _ #{i=1,....,r—1|row(h;)=1}-lc1] s[c2] =lcr]
o=}, ) G P €1 Chihy " €y 2V

1<ci,..,er <l 1<hy,. b1 <2

summing only over terms with ¢; > ¢; 4 if row(h;) =1 and ¢; < ¢;4; if row(h;) =2.

As before, this is 0 because the rightmost é[lc"z] can be commuted to the end. ([

Theorem 8.4. Tuke any A = 3% € Taby, and let h > 0 be maximal such that
distinct 1 <iy,...,ip<kand1<ji,..., jy <lwitha; =bj, ..., a; =bj, exist.
Choose B ~ A so that B has h columns of height 2 containing equal entries. Then

L(A) = V(B). (8-4)

In particular, dim L(A) =2k,

Proof. By Lemma 8.3, V(B) has a subquotient isomorphic to L(B) = L(A),
which implies that dim L(A) <dim V(B) =2k", Also by the linear independence
established in the partial proof of Theorem 7.3 given in Section 7, we know that
dim L(A) > 2k, O

Theorem 8.4 also establishes the fact about dimension needed to complete the
proof of Theorem 7.3 in Section 7.
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Kernels for products of L-functions

Nikolaos Diamantis and Cormac O'Sullivan

The Rankin—Cohen bracket of two Eisenstein series provides a kernel yielding
products of the periods of Hecke eigenforms at critical values. Extending this
idea leads to a new type of Eisenstein series built with a double sum. We develop
the properties of these series and their nonholomorphic analogs and show their
connection to values of L-functions outside the critical strip.

1. Introduction

Rankin [1952] introduced the fruitful idea of expressing the product of two critical
values of the L-function of a weight-k Hecke eigenform f for I' = SL(2, Z) in
terms of the Petersson scalar product of f and a product of Eisenstein series:

(v By, f) = (=203 K12 e oy 6 k) (1-1)
Bk1 Bkz

for k = k1 + k>, the Bernoulli numbers B; and the completed, entire L-function of f,

r
L*(f.5) = (S)Zaf(m) f £y~ dy.

2m)s —
Zagier [1977, p. 149] extended (1-1) to get
k—2\ kik
([Ex,. Eiyln. f) = <—1>k1/2<2ni>"23"< ) 2 LA n+ DLE(f n+ka),
n Bk1 Bk2

(1-2)
where k = k| +ky+2n and [g1, g2], stands for the Rankin—Cohen bracket of index n
given by

- A ki+n—=1\k+n—1\ o) (-r
(81, g2l ==Y (=) ( o )( o )gi '™ )
r=0

The periods of f in the critical strip are the numbers

L*(f, 1), L*(f,2),..., L*(f,k—1). (1-4)

MSC2010: primary 11F67; secondary 11F03, 11F37.
Keywords: L-functions, noncritical values, Rankin—Cohen brackets, Eichler—Shimura—Manin theory.
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Zagier [1977, §5] and Kohnen and Zagier [1984] proved important results of the
Eichler—Shimura—Manin theory on the algebraicity of these critical values using
(1-2). We describe this in more depth in Sections 2C and 8A.

On the face of it, the techniques of [Zagier 1977], employing (1-2), apply only
to critical values; an extension to noncritical values, L*( f, j) for integers j < 0
or j > k, would seem to require Rankin—Cohen brackets of negative index n or
holomorphic Eisenstein series of negative weight, neither of which are defined.
Analyzing the structure of the Rankin—Cohen bracket of two Eisenstein series in
Section 6 reveals a natural construction, which we call a double Eisenstein series:!

Yo ) i a6 07, (1-5)
7.8€Too\T
78_| #loo

where, for y € I', we write
b .
y = (ay d”) and j(y,2):=c,z+d,.
Cy dy

By comparison, the usual holomorphic Eisenstein series is

E@):= ) jwa™" (1-6)
y€la\T
The double Eisenstein series (1-5) converges to a weight-(k; + k) cusp form when
[ < ki —2, ky —2. For negative integers [, it behaves as a Rankin—Cohen bracket of
negative index; see Proposition 2.4. This allows us to further generalize (1-1) and
(1-2), and in Section 8, we characterize the field containing an arbitrary value of an
L-function in terms of double Eisenstein series and their Fourier coefficients. In
the interesting paper [Cohen et al. 1997], Rankin—Cohen brackets are linked to op-
erations on automorphic pseudodifferential operators and may also be reinterpreted
in this framework allowing for more general indices.
An extension of Zagier’s kernel formula (1-2) in the nonholomorphic direction is
given in Section 9C. There we show that the holomorphic double Eisenstein series
have nonholomorphic counterparts:

37 leys |7 Im(y2)* Im(82)° . (1-7)
¥.8€Too\T
Y8 £

These weight-0 functions possess analytic continuations and functional equations
resembling those for the classical nonholomorphic Eisenstein series. As kernels,
they produce products of L-functions for Maass cusp forms; see Theorem 2.9. The
main motivation for this construction was its potential use in the rapidly developing

n the context of multiple zeta functions, the authors in [Gangl et al. 2006] give a different
definition of “double Eisenstein series”. See also [Deninger 1995], for example, for distinct “double
Eisenstein—Kronecker series”.
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study of periods of Maass forms [Bruggeman et al. 2013; Lewis and Zagier 2001;
Manin 2010; Miihlenbruch 2006]. In developing the properties of (1-7), we require
a certain kernel H(z; s, s) as defined in (9-1). It is interesting to note that Diaconu
and Goldfeld [2007] needed exactly the same series for their results on second
moments of L*(f, s); see Section 9A.

2. Statement of main results

2A. Preliminaries. Our notation is as in [Diamantis and O’Sullivan 2010]. In all
sections but two, I" is the modular group SL(2, Z) acting on the upper half-plane H.
The definitions we give for double Eisenstein series extend easily to more general
groups, so in Section 4, we prove their basic properties for I' an arbitrary Fuchsian
group of the first kind, and in Section 10, we see how some of our main results are
valid in this general context.

Let S¢(I') be the C-vector space of holomorphic, weight-k cusp forms for I and
M (") the space of modular forms. These spaces are acted on by the Hecke operators
T,; see (3-6). Let B, be the unique basis of S consisting of Hecke eigenforms
normalized to have first Fourier coefficient 1. We assume throughout this paper
that f € By. Since (T, f, f) = (f, Tin f), it follows that all the Fourier coefficients
of f are real, and hence, L*(f, s) = L*(f, 5). Also, recall the functional equation

L*(f,k—s) = (=D*"2L*(f, 5). @2-1)

We summarize some standard properties of the nonholomorphic Eisenstein series;
see for example [Iwaniec 2002, Chapters 3 and 6]. Throughout this paper, we use
the variables z = x +iyeHand s =0 + it € C.

Definition 2.1. For z € H and s € C with Re(s) > 1, the weight-0, nonholomorphic
Eisenstein series is

o s yS —2s
Es)= ), Im(ya)'== ) lez+d™. (2-2)
Y€l \I' c,deZ
(c,d)=1
Let 6(s) ;=7 ~*I'(s)¢(2s). Then E(z, s) has a Fourier expansion [Iwaniec 2002,
Theorem 3.4], which we may write in the form
01 —s)

E(z,s) =y + Wy” + ;wm, $)|m| "2 Wy (mz), (2-3)

where W, (mz) = 2(Im|y)'/?Ky_1 (27 |m|y)e* ™~ is the Whittaker function for
z € H and also 0(s)¢ (m, s) = oos_1(Im])|m|"/>75. As usual, o, (m) := Zdlm d’ is

the divisor function.
For the weight-k (k € 2Z) nonholomorphic Eisenstein series, generalizing (2-2),
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set

i \"
Ei(z,s) = Im(yz)s<.—> . (2-4)
y}“}\r (2]

Then (2-4) converges to an analytic function of s € C and a smooth function of
z € H for Re(s) > 1. Also y ¥/2E;(z, s) has weight k in z. Define the completed
nonholomorphic Eisenstein series as

E;(z,s) :=06k(s)Ex(z,s) for6k(s) :=m*T'(s+ |k|/2)¢(2s). (2-5)

With (2-3), we see that E(z, s) has a meromorphic continuation to all s € C. The

same is true of E(z, s); see [Diamantis and O’Sullivan 2010, §2.1] for example.
We have the functional equations

0(s/2) =0((1—1s)/2), (2-6)

Ei(z,5) = Ei(z, 1 —5). 2-7)

2B. Holomorphic double Eisenstein series. Define the subgroup

#={o)

Then I', the subgroup of I' = SL(2, Z) fixing oo, is BU—B. For y € ' \ T, the
quantities ¢, d,, and j(y, z) are only defined up to sign (though even powers are
well-defined). For y € B\T', there is no ambiguity in the signs of ¢,,, d,, and j (y, z).

ne Z} c SL(2, 2). (2-8)

Definition 2.2. Let z € H and w € C. For integers k1, k> > 3, we define the double
Eisenstein series

Epi(@w)i= Y ()" i, 76,270 (2-9)
¥,8€B\T
cya‘—l >0
This series is well-defined and converges to a holomorphic function of z that
is a weight-(k = k; + k») cusp form for Re(w) < k; — 1, k, — 1, as we see in
Proposition 4.2. It vanishes identically when k; and k;, have different parity.
Let k be even. To get the most general kernel, with s € C set

Ei—s(z,w):= Z (Cy(;—l)w_l <§(()(;’§))> j (8, 27k (2-10)
TN

In the usual convention, for p € C with p # 0, write
p=lple' ¥ for —m <arg(p) <7

and
P = |p|fe' P fors e C. (2-11)
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Note that
¢y dy Jj(y,2)

J (. 2)

and so (j(y, z)/j(8,z))~* in (2-10) is well-defined and a holomorphic function of

s € C and z € H. Proposition 4.2 shows that E ;_s(z, w) converges absolutely and

uniformly on compact sets for which2 <o <k —2and Re(w) <o —1,k—1—o0.
Define the completed double Eisenstein series as

Cps-1 = >0 = eH forzeH,

E;k,k—s(z’ w) (e-12)
[T (k — )Tk —w)e (1 — w49 (1 —w+k—s)
- 23-wgktl-w(k —1)

i|Es,ks (z, w).

Theorem 2.3. Let k > 6 be even. The series E;k —s (2, w) has an analytic continua-
tion to all s, w € C and as a function of 7 is always in Si(I"). For any f in By, we
have

(Ej (- w), f)=L*(f,)L*(f, w). (2-13)

It follows directly from (2-13) and (2-1) that E;" w—s (2, w) satisfies eight func-
tional equations generated by

sis@w)=E; ;_ (z,9), (2-14)

E} _ (z.w)=(—D"E;_ (z, w). (2-15)

The next result shows how E7;
bracket [Ey,, Ex, I

_, 1s a generalization of the Rankin—Cohen

Proposition 2.4. Forn € Z>) and even ki, ky > 4,

2(=D 27k (k — 1)
Qri) ¢ (k)¢ (k)T (k)T (k)T (k —n —1)

n![Ekla Ekz]n = Zl+n’k2+n(z,n—|—l).

Another way to understand these double Eisenstein series is through their con-
nections to nonholomorphic Eisenstein series. Any smooth function transforming
with weight k£ and with polynomial growth as y — oo may be projected into S; with
respect to the Petersson scalar product. See [Diamantis and O’Sullivan 2010, §3.2]
and the contained references. Denote this holomorphic projection by mp).

Proposition 2.5. Let k = ki +ky > 6 for even k1, ko > 0. Then for all s, w € C
E{s(@ow) = ma (=D EL (2.w) Ef (2, 0)/ @) ],

where

u=G+w—k+1/2 and v=(—s+w+1)/2. (2-16)
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2C. Values of L-functions. For f € By, let K be the field obtained by adjoining
to Q the Fourier coefficients of f. We will recall Zagier’s proof of the next result
in Section 8A.

Theorem 2.6 (Manin’s periods theorem). For each f € By, there exist real numbers
w4 (f), o—_(f) such that

L*(f,8)/wy(f), L*(f,w)/o_(f) € Ky
forall s and wwith 1 <s,w <k—1ands even and w odd.

Let m € Z satisfy m < 0 or m > k. Then for these values outside the critical
strip we have, according to [Kontsevich and Zagier 2001, §3.4] and the references
therein,

L*(f,m) € P[1/m],

where % is the ring of periods: complex numbers that may be expressed as an
integral of an algebraic function over an algebraic domain. In contrast to the
periods (1-4), we do not have much more precise information about the algebraic
properties of the values L*( f, m). A special case of a theorem by Koblic [1975]
shows, for example, that

L*(f,m)¢Z-L*(f,)+Z-L*(f,2)+---+2Z-L*(f, k—1).

Let K(E* s x—s(+» w)) be the field obtained by adjoining to Q the Fourier coef-
ficients of E;"k_s( -, w), and let wy (f) and w_(f) be as given in Theorem 2.6.
Then we have:

Theorem 2.7. Forall f € By and s € C,

L*(f,s)/o(f) € K(Eg,_ (-, k—1)Ky,
L*(f,8)/o-(f) € K(E;_,(-.5)K.

The above theorem gives the link between Fourier coefficients of double Eisen-
stein series and arbitrary values of L-functions. We hope that this interesting
connection will help shed light on L*(f, s) for s outside the set {1,2, ...,k — 1}.
See the further discussion in Section 8B for the case when s € Z.

In Section 8C, we also prove results analogous to Theorem 2.7 for the completed
L-function of f twisted by e** /4 for p/q € Q:

L*(f,s:p/q) =

I'(s) Z af(m)ez’”mp/q

(2m)* ms f fGy+p/e)y " dy. (2-17)
m=1



Kernels for products of L-functions 1889

2D. Nonholomorphic double Eisenstein series.

Definition 2.8. For z € H and w, s, s’ € C, we define the nonholomorphic double
Eisenstein series as

Z Im(yz)* Im(82)*

E(z,w;s,s):= T (2-18)
7,8€To\T" y8~
¥ #£ 0

A simple comparison with (2-2) shows it is absolutely and uniformly convergent
for Re(s), Re(s’) > 1 and Re(w) > 0. (This domain of convergence is improved in
Proposition 4.3.) The most symmetric form of (2-18) is when w = s + s’. Define

€ (z;5,8) =4 S T()T(s) e Bs +5) (s +35)E(z, s + 575 5, 8)
+20(s)0(s"E(z,s +s'). (2-19)

Theorem 2.9. The completed double Eisenstein series €*(z; s, s') has a meromor-
phic continuation to all s, s’ € C and satisfies the functional equations

€*(z;5,5) =€ (z; 5", 9),
€ (z;8,5)=€"(z;1—s5,1—5).
For any even Maass Hecke eigenform uj,

(€ (z; 8,5, uj)=L*uj,s+s —1/2)L*(u;,s' —s +1/2).

3. Further background results and notation
We need to introduce two more families of modular forms.

Definition 3.1. For z € H, k > 4 in 2Z and m € Z5, the holomorphic Poincaré

series 1S
Pi(z;m) := Z
y €T\

2mmyz 2mmyz

J ok 2 Z

y€B\I'

3-1
jy, ok G-

For m > 1, the series Py (z; m) span Sx(I"). The Eisenstein series Ey(z) = Pr(z; 0)
is not a cusp form but is in the space My (I"). The second family of modular forms
is based on a series due to Cohen [1981].

Definition 3.2. The generalized Cohen kernel is given by

€z s p/a) =3 D (vetp/a) vt (3-2)
yell

for p/q € Q@ and s € C with 1 < Re(s) <k — 1.
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In [Diamantis and O’Sullivan 2010, §5], we studied 6, (z, s; p/q) (the factor 1/2
is included to keep the notation consistent with that article, where I' = PSL(2, Z)).
We showed that, for each s € C with 1 < Re(s) <k —1, €x(z, s; p/q) converges to
an element of Sy (I") with a meromorphic continuation to all s € C. From Proposition
5.4 of the same work, we have

k-1
C(s)Ck—s)
which is a generalization of Cohen’s lemma in [Kohnen and Zagier 1984, §1.2].
For simplicity, we write €;(z, s) for €;(z, s; 0). The twisted L-functions satisfy

L*(f,s; p/q) =L*(f.5;,—p/q), (3-4)
G L*(f,s:p/q) = (=D**¢" = L*(f,k —s; —p'/q) (3-5)

for pp’ =1 mod ¢ as in [Kowalski et al. 2002, Appendix A.3].
Define M, := {(“}) | a.b,c.d € Z, ad —bc =n}. Thus, M; =T. Fork € Z
and g : H — C, set

(@r(-,s3p/q), ) =2"Fme™s1m/2 L*(f.k—s;p/q),  (3-3)

(8lk)(2) = det() g (y2)j (v. )
for all y € M,,. The weight-k Hecke operator 7, acts on g € My by
_ _ _ az+b
(T,)2) :=n*"1 3" (giy)@=n*""1 " d* 3 g( ) (3-6)

d
yel'\u, ad=n 0<b<d
a,d>0

4. Basic properties of double Eisenstein series

We work more generally in this section with I a Fuchsian group of the first kind
containing at least one cusp. Set

er = #{T N (=11} 4-1)

Label the finite number of inequivalent cusps a, b, etc., and let I'; be the subgroup
of I fixing a. There exists a corresponding scaling matrix o, € SL(2, R) such that
0,00 = a and

BU—-B if -l el (er=1),

—1
I =
a 1afa {B if —1 ¢T (sp =0).

Also set I'; := o.Bo, L.

We recall some facts about Ej 4(z, s), the nonholomorphic Eisenstein series
associated to the cusp a; see for example [Iwaniec 2002, Chapter 3; Diamantis and
O’Sullivan 2010, §2.1]. It is defined as

j(oa 'y, 2) )"‘

Eia(z,8) = Z Im(aalyZ)S(U(aa_l% 2)|

yela\I'
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and absolutely convergent for Re(s) > 1. Put Eff (z,5) := 6k(s) Ex.a(z, 5) as in
(2-5). Then we have the expansion

Ej (002, 8) = 8a60(8)y* +0(1 = 5)Yap (9)y' ™ + Y Yap(, )Wy (l2),  (4-2)
1£0

Ef (062, 8) = 8apbk ()Y + k(1 =) Yap()y' ™ + 0(e™)  (4-3)

and

as y — oo for all k € 2Z. Also, its functional equation is

Ef oz 1=8) =) You(1— ) Ef (2. 5). (4-4)
b

We gave the coefficients Yqp(s) and Yq5(/, s) explicitly in the case of I' = SL(2, Z)
following (2-3), and in general, they involve series containing Kloosterman sums;
see [Iwaniec 2002, (3.21) and (3.22)].

For the natural generalization of (2-10), we define the double Eisenstein series
associated to the cusp a as

. 1 —s
Ejs5q(z,w):= Z (Co —lys-lg )w—l M j(O’a_I(S, Z)_k
o y.8€l*\T ’ ’ j(0a718,2)
Cau—ly,g—‘;aa >0 (4'5)
so that
. —S
. — ’Z . —
Eyi 00t w) = j(00 0 Y (ey)" 1(’.” )> j6. 07 @6
y,8€B\I" Jj(8.2)
Ljy5*1>0

for I'" = 0, 'T'oy,, which is also a Fuchsian group of the first kind. To establish an
initial domain of absolute convergence for (4-6), we consider

2 <cya—1>w‘1(1.(y’2)) @27 (4-7)
y,8€B\I” G
cy5_1>0

Recalling (2-11), we see that
1p°] = |pl”e ™) &« |p|° fors =0 +iteC.

Therefore, with r = Re(w) and Im(yz) = y|j(y, 2)| 72, we deduce that (4-7) is
bounded by a constant depending on s times

y—k/2 Z |cy8*1|r_1 Im()/Z)U/z Im(8z)(k_a)/2, (4—8)
y,8€l\I"
y8 £l

Lemma 4.1. There exists a constant kr > 0 so that for all y, § € I with ¢,,5-1 >0

Kkr < €51 < Im(yz)~ /2 Im(8z)~ /2.
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Proof. The existence of «r is described in [Iwaniec 2002, §2.5 and §2.6; Shimura
1971, Lemma 1.25]. Set (y, 2) := j (v, 2)/1j (v, 2)| = ' @0 ") Tt is easy to
verify that, for all y,§ € I" and z € H,

Cps-t =€y j(8,2) —csj(y, 2)
. D — T D 5. —T6D
_ (/(y Z)ziy](y Z))J.((S’Z)_(J( 9 —J( z))}.(y’ 2

2iy
= (8,2 —e(y,2) iy, 2j6,2)/Qiy).

Therefore,

ey, 2) B £(8,2)
e(6,z) e&(y,2)

_ ‘Im(e(% Z))‘ Im(yz)~ "2 Im(s2)~"/2
e(4,2)

<Im(yz) Y2 Im(sz) "2 O

lcys1] = Im(yz) "2 Im(82) /22

It follows that for ' = max(r, 1) and y8~! ¢ 'y
leys1 I < Im(y2) "2 Im(82) 1~/ (4-9)

for an implied constant depending on I' and r. Combining (4-8) and (4-9) shows

E — ) ! !
s,k. s,a(UaZk w) < y—k/2 Z Im(yz)“*r +0)/2 Im(az)(H +k—0)/2 (4-10)
.] (Oa’ Z) y sel \F/

yail#roc

B 1—r'+0o l—r'+k—o k
e Y ) )]

on noting that Im(yz) = Im(éz) for y8~! € . Since Eq(z, s) is absolutely con-
vergent for o = Re(s) > 1, we have proved that the series E j_ q(042, w), defined
in (4-6), is absolutely convergent for 2 <o <k —2and Re(w) <o —1,k—1—o0.
This convergence is uniform for z in compact sets of H and for s and w in compact
sets in C satisfying the above constraints.

We next verify that E; x_; (z, w) has weight & in the z variable. We have

f(@) e Mi(T) < f(042)j (00, 2)* € Mi(0a"'T'00),
so with (4-6), we must prove that

= Y <cy5-.>w—1<j.((§—’3> 6.

y,8€ B\I"/
C,5-1 >0
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isin My(I'’). For all T € I/,

= X @™ l<](% Z)> j@ T ™

TNk
J(r.2) y,8€B\I"/ (6, 72)
"y6*1>0
Jrt.2) | _
Z (€oenD"" (517 ) F=g@)

SeB\I'! (8-[ 2)

12
Cyryen-1>0

as required.
We finally show that E; ;_; is a cusp form. By (4-10), replacing z by o4~ 'opz
and using (4-3), for any cusp b we obtain
E; k—s.a(00z, w)
J (06, 2)F

B 1—r' 40 1—r'4+k—o k
« M[E“(""Z’ T)E“(“"Z’ f) ‘E“<°"’Z’ 1‘”5)}

<<y1+a—k+yl—a+y1+r’—k+yr/—k

and approaches 0 as y — oo. Thus, by a standard argument (see for example
[Diamantis and O’Sullivan 2010, Proposition 5.3]), Es x—s.a(z, w) is a cusp form.
Assembling these results, we have shown the following:

Proposition 4.2. Let z € Hand k € Z, and let s, w € C satisfy 2 <o <k —2 and
Re(w) <o — 1,k —1—0. For " a Fuchsian group of the first kind with cusp a,
the series E s 1(z, w) is absolutely and uniformly convergent for s, w and z in
compact sets satisfying the above constraints. For each such s and w, we have
E;;_s.q(z, w) € Si(I') as a function of z.

The same techniques prove the next result for the nonholomorphic double Eisen-
stein series. Generalizing (2-18), we set

Im(yz)* Im(8z)*
Caloaz.wis,s)i= Y (y|c) 1|ug " (4-11)
yé~

y,Beroc\Ua_IFO‘a
¥ #T o

Proposition 4.3. Let z e Hand s, s’, w € C with o = Re(s) and o' = Re(s’). The
series €4(z, w; s, s") defined in (4-11) is absolutely and uniformly convergent for z,
w, s and s' in compact sets satisfying

0,0’ >1 and Re(w)>2-20,2—20".

Unlike E; ;—s.q(z, w), the series €4(z, w; s, s’) may have polynomial growth at
cusps.
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5. Further results on double Eisenstein series

5A. Analytic continuation: proof of Theorem 2.3. Our next task is to prove the
meromorphic continuation of E; ;_s(z, w) in s and w. For s and w in the initial
domain of convergence, we begin with

(A—w+s)t(1—w+k—s)Eg;_(z, w)

:Zuwlsw1k+s 3 (ad- b)w1<az+> (cztd)*

u,v=1 a,b,c,deZ
(a, b) (c,d)=1
ad—bc>0

o0 —s
= E E (au.dv_bu.cv)w_l (M) (CU’Z+dU)_k

cv- dv
u,v=1 a,b,c,deZ T+

(a,b)=(c,d)=1
ad—bc>0
= 3 (ad—be)"! AN (5-1)
a,b,c,deZ cz+ d
ad—bc>0

az+b\"* s
> (CHd) (cz+d)

n=1 (@ byeu,
o0
T,k (2, 5)
=2) S (5-2)
n=1

recalling (3-2). With Proposition 4.2, we know Ej ;_;(z, w) € Si(I") so that

(ES k—S( ) w)! f)
Es,kfs(z, w) = : fz) =

> 1 Yw}’l(6 ) ’
(A—w+)e(I—wHk—5)Egps(@w) =2 =0 ( 2‘; fj) I r o),
n=1 fe%k ’

Then
(T, €1 (2, 5), ) = (C(z,5), Tn f) = ay(n)(Cr(z,s), [),

and with (3-3), we obtain

(A= w491 —w+k—95)Eq (2, w)

:23—wnk+1—we—si7r/2 ['(k—1)
rs)rk—s)r'tk—w)

X Y L*(fok—s)L*(f.k—w)

fEBy

f@
(f. f)

(5-3)
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Define the completed double Eisenstein series E* with (2-12). Then (5-3) becomes

f@w = Y L L w) L (5-4)
= i f)

We also now see from (5-4) that E P (2, w) has an analytic continuation to all s
and w in C and satisfies (2-13) and the two functional equations (2-14) and (2-15).
The dihedral group Dg generated by (2-14) and (2-15) is described in [Diamantis
and O’Sullivan 2010, §4.4]. O

5B. Twisted double Eisenstein series. In this section, we define the twisted double
Eisenstein series by

(A —w+s)(l—w+k—s)Es i —s(z, w; p/q)

b —S
= > (ad—bo)"! (% + 3) (cz+d)7* (5-5)
a,b,c,deZ cz+ q
ad—bc>0

for p/q € Q with ¢ > 0 and establish its basic required properties. We remark that
the above definition of E; x_;(z, w; p/q) comes from generalizing (5-1), but it is
not clear how it can be extended to general Fuchsian groups.
Writing
az+b p\*
d—b w—1
(a c) < T d + >

=" g+ epd by apo ! (CELELRALA)

cz+d

we see that (5-5) equals

az+b\"
ql—w+s Z (a/d _ b/c)w—l ( ) (CZ +d)_k
cz+d
a'\b,c,deZ
a'd—b'c>0
with @’ = ¢p mod ¢ and b’ = dp mod q. Hence, E; ;_s(z, w; p/q) is a subseries
of E x_(z, w) and, in the same domain of initial convergence, is an element of Sj.
The analog of (5-2) is

(1= w4 )50 —w+ k= 5)Ex sz w; pla) = ZZW (5-6)

n=1

Hence, with (3-3),
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(d—w4+s)t(1—w+k—s5)E;;—(z, w; p/q)
k-1
') 'tk—s)I'tk—w)
x D L*(fik—=s; p/QL*(f,k—w)

feRB

— 23—wn,k+1—w —sim/2

f@
(fL f)

(5-7)

*
s,k—s

Define the completed double Eisenstein series E (z, w; p/q) with the same

factor as (2-12), and we obtain

<Es*,k—s(' , Wy P/Q)» f) - L*(ka_sa P/(J)L*(ka_ w) (5'8)

for any f in By. Then (5-7) implies E7, (z, w; p/q) has an analytic continuation
to all s and w in C. It satisfies the two functional equations

Fes@ k—wi p/q) = (=DEF _ (z,w; p/q),
I E}_ (z,w; p/q) = (—D"*¢*EZ,_ (z,wi—p'/q)

for pp’ =1 mod ¢ using (2-1) and (3-5), respectively.

6. Applying the Rankin—Cohen bracket to Poincaré series

The main objective of this section is to show how double Eisenstein series arise
naturally when the Rankin—Cohen bracket is applied to the usual Eisenstein series Ej.
Proposition 2.4 will be a consequence of this. In fact, since there is no difficulty in
extending these methods, we compute the Rankin—Cohen bracket of two arbitrary
Poincaré series

[Pr, (23 m1), Pr, (25 m2)]n

for my, my > 0. The result may be expressed in terms of the double Poincaré series
defined below. In this way, the action of the Rankin—Cohen brackets on spaces of
modular forms can be completely described. See also Corollary 6.5 at the end of
this section.

Definition 6.1. Let z € H, k1, k, > 3 in Z and m, my € Z>q. For w € C with
Re(w) < k1 — 1, kp — 1, we define the double Poincaré series

eZm’ (myyz+madz)

Jr, 2k j(8, )k

Py i, (2, w; my, mp) = Z (cys-1)""! (6-1)

y,0€ B\T"

Cp5-1 >0

The series (6-1) will vanish identically unless k; and k; have the same parity.

Clearly, we have E, t,(z, w) = Py, 1,(z, w; 0, 0). Since |eZF/(mya+mda)| < it is

a simple matter to verify that the work in Section 4 proves that Py, ,(z, w; my, m2)
converges absolutely and uniformly on compacta to a cusp form in S, 4, (I').
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For I € Z=, it is convenient to set

Py(z; m) if [ =0,

2wimyz 1
1 e (ey)
2 2yemr Joaer 2L

Ok(z,l;m) = (6-2)

As in the proof of Proposition 4.2, Qy is an absolutely convergent series for k
even and at least 4. The next result may be verified by induction.

Lemma 6.2. For every j € Z>(, we have the formulas

d’/ (k47— 1! N
d—ZjEk(Z) = (—1)"WQk(Zv 75 0),
J

d’ N It gl (k+j—1 _—
d—Zij(z,m)—;(—l) @rim)' (1 ) Qe j—Lim) form > 0.

Set
ki+n—D'(ky+n—1)!
Nu'n—1—u)! (ki +1 =Dk +u—1)

Proposition 6.3. Form|,my € 7>,

Ao, 1), =

[P (zim1), Py @zim)la =Y Ak (L ) (=2mimy)! 2imy)"

L,u>0
[+u<n

X Py intl—udoin—iva (@ n+1—1—u;my, my)/2
+ Pythoran @ mi4Am) Y Ay ko (1w (=2mimy) Qmimy)*.

Lu>0
l+u=n

Proof. With Lemma 6.2,
[Py, (z; m1), Pi,(z; m2)]n

:2”:2”:(27”’" Y (2wima)" (ki1 +n—D!(ka+n—1)!
1=0 u=0 1 2 Nul ey +1— 1D (ko +u—1)!

n—u

y Z(_l)wﬂ“ Ok+2(z, r =1;my) Qpyyou(z,n —r —u; mz)‘
r—D'n—r—u)!

(6-3)

r=I
The inner sum over r is
(-1 e2mi(miyz+m282)
dn—l-wl Jly, k+2lj (8, )kt

n—u n—l—u ¢y r—l< —cs )n—r—u ]
2(V0)Ges) Gas) e

r=I

8eB\T
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and, employing the binomial theorem, (6-4) reduces to

(_1)1 eZﬂi(lnlyz+m28z)

e : : cyj(8,2) —csjly, )"
4n—1— u)!y,anB\rJ(y’ Z)k1+l’l+l—uj (s, Z)kz—i-n—l—i—u ( V]( ) 5J(¥:2)

(6-5)
for/ +u < n and

(_1)1 eZni(m]yz+m28z)

D —— 6-6

dn—T-w)! SEXB;\F (. 2yl (5. gyl T (6-6)
for I +u = n. Noting that

. . ¢y d
cyJj(B,2)—csj(y,2) = C’; d’; =Cp5-1
means that (6-5) becomes
(=1)!
mpk1+n+l—u,kz+n—l+u (z,n+1—=1—u;my,my) (6-7)

and (6-6) equals

(-1 P vntvi—uwjoin—itu(@n+1—1—u;my, mo)
(n—1—u)! 2

+ Py ip42n (25 my + mz))- (6-8)

Putting (6-7) and (6-8) into (6-3) finishes the proof. U

In fact, Proposition 6.3 is also valid for m; or m; equaling O provided we agree
that (—2mim;)" = 1 in the ambiguous case where m; = [ = 0 and similarly that
(2mwimy)* =1 when my = u = 0. With this notational convention, the proof of the
last proposition gives:

Corollary 6.4. For m > 0, we have

[Ek, (2). Py (25 m)]n =) Ak, iy (0, ) (2 im)"
u=0

y Py tn—ujytntu(@,n+1—u;0,m)
2
[Ek, (2), Ey (210 = Ak k2 (0, 0)n Ety 40 kot (2, n+1) /24 Ef 44, (2) -8p,0. - (6-9)

Proposition 2.4 follows directly from (6-9). Combining Proposition 2.4 with
Theorem 2.3 gives a new proof of Zagier’s formula (1-2). His original proof in
[1977, Proposition 6] employed Poincaré series.

Proof of Proposition 2.5. Let Fy () = (=1)2/2y™ 2 E} (z, w)E} (z,v)/(27*/?)
withu =(s+w—k+1)/2 and v = (—s + w + 1)/2 as before in (2-16). Then

+ Prythy+2n (2 m) - A, 1, (0, 1), Qrim)",
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F; () has weight k and polynomial growth as y — oo. It is proved in [Diamantis
and O’Sullivan 2010, Proposition 2.1] that

(Fyw, f)=L"(f,)L*(f, w) (6-10)

for all f € By. Comparing (6-10) with (2-13) shows that

;k’k_s( ©, W) = Thol (Fs,w),

as required. U

A basic property of Rankin—Cohen brackets naturally emerges from Proposition
6.3 and Corollary 6.4.

Corollary 6.5. For g; € My, (I') and g> € My, (I'), we have [g1, 8211 € Sk, +k,+20(I")
forn > Q.

Proof. The space My, (I") is spanned by Ej, and the Poincaré series Py, (z; m)
for m € Z>1. So we may write g, and similarly g», as a linear combination of
Eisenstein and Poincaré series. Hence, [g1, g2], is a linear combination of the
Rankin—Cohen brackets appearing in Proposition 6.3 and Corollary 6.4. By these
results, [g1, g2], 1s a linear combination of double Poincaré and double Eisenstein
series, which are in Sk, 1,42, (I") as we have already shown. |

It would be interesting to know if Py, ,(z, w; m1, m2) has a meromorphic contin-
uation in w. As a corollary of work in the next section, we establish the continuation
of Py, r,(z, w;0,0) toall weC.

7. The Hecke action

The expression (5-2), giving E; y_, in terms of €; acted upon by the Hecke opera-
tors, can be studied further and yields an interesting relation between E; ;_s(z, w)
and the generalized Cohen kernel €, (z, s; p/q).-

We have

T8z, s: p/g) =n*"" D" oz, 5 p/q)-j(p, D)7
peril,

—S
_ P\ ", _
=11 (yz+—> v,k
= 1

To decompose J,, into left I'-cosets, set

«={(5 4)

a,b,deZzO,adzn,O<b<a}
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so that M, = J pT', a disjoint union. Hence,

pedt
A
T, 6i(z, 55 p/q) = 5n*" IZZ<WZ+ ) j. v iy, 7
peH yell
2 S

) (5) T et o) o

aln 0<b<a yell
:ns—lzak—Zs Z Cﬁk(z,s b+££) (7-1)

aln 0<b<a q

Combining (7-1) in the case p/q = 0, with (5-2) we find

{d—w+s)(d-—w+k—s)Esi—s(z, w)

2
s
_Zﬁ»wkleZsZ(@k(zs )
aln 0<b<a

_ iak—h i(av)s—l—w—k—l Z @ (z,s; Q)
a=1 v=1 0<b<a 4

_;‘(k+1—s—w)ZawS1 Z%k< )

0<b=<a

Consequently, for2 <o <k—2and Re(w) <o —1,k—1—-o0,

oo a—1
(0 —w+8)Esps(z,w) =2 a” ! Z%(z, 53 g) (7-2)

a=1 b=0
Upon taking the inner product of both sides with f € By, by using (2-13) and
(3-3) and then simplifying, we obtain

(27T)k w

T L LG

w—s—1 * b
_g'(k—i-l—s—w)Za ZL (f k — s a). (7-3)

a=1 b=0

Since the eigenforms f in %y span S, we may verify (7-2) by giving another proof
of (7-3). Note that the right side of (7-3) equals
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T(k . =\ ayp(m)
g“(k+1—s—w)(2 )k“‘; 1ZZafme

b=0 m=1

2rwimb/a

_ o Pk=s) g 4rm
=¢k+1—s w)(2 = mzlalzm e

=¢k+1—s5s—w)

I'(k—s) i af(m)oy_s(m)

(27{)]‘_5 — mk—s

The series
ag(m)oy_s(m)
mk—s

L(f®E(-,v),k—s)=)_

m=1

is a convolution L-series involving the Fourier coefficients of f(z) and E(z, v) for
2v=—s+w+1 (as in (2-16)) and, recalling [Zagier 1977, (72)] or [Diamantis
and O’Sullivan 2010, (2.11)],

Tk —s) Qm)k—v

s LUBEC ). k=)= Lo s LY (f k=)L (/. k(wi)
7-

Applying the functional equation (2-1) confirms that the right side of (7-4) equals
the left side of (7-3).

Looking to simplify (7-2) leads to the natural question, what are the relations
between the 6, (z, s; p/q) for rational p/q in the interval [0, 1)? For example, it is
a simple exercise with (3-3) and (3-5) to show that

q (2,53 p/g) = e T g Gz, k— 55 —p'/q)

Ck+1—s—w)

for pp’ =1 mod g. With s = k/2 at the center of the critical strip, we get an even
simpler relation:

Cr(z,k/2; p/q) = (=D (2, k/2; —p'/q). (7-5)

A more interesting, but speculative, possibility would be to argue in the reverse
direction in order to derive information about L-functions twisted by exponentials
with nonrational exponents. Specifically, if we established, by other means, relations
between the €, (z, s; x) for x ¢ Q, then (7-2) and other results proven here might lead
to relations for L-functions twisted by exponentials with nonrational exponents. That
would be important because such L-functions play a prominent role in Kaczorowski
and Perelli’s program of classifying the Selberg class (see, e.g., [Kaczorowski
and Perelli 1999]). Relations between these L-functions seem to be necessary for
the extension of Kaczorowski and Perelli’s classification to degree 2, to which
L-functions of GL(2) cusp forms belong.
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8. Periods of cusp forms

8A. Values of L-functions inside the critical strip. We first review Zagier’s proof
in [1977, §5] of Manin’s periods theorem. This exhibits a general principle of
proving algebraicity we will be using in the next sections.

For all s, w € C, it is convenient to define H; ,, € Sx by the conditions

(Hg o, f)=L*(f, s)L*(f,w) forall f € By.
We need the following result:

Lemma 8.1. For g € S; with Fourier coefficients in the field K, and f € By with
coefficients in K ¢,

(8. /N[ f) e KKy

Proof. See the general result of Shimura [1976, Lemma 4]. It is also a simple
extension of [Diamantis and O’Sullivan 2010, Lemma 4.3]. U

Let K ritical be the field obtained by adjoining to @ all the Fourier coefficients of
{Hs k-1, Hi—,w | 1 < s, w <k —1, s even, wodd}.
Thus, with f € ®B; and employing Lemma 8.1,
L*(fok = DL*(f, k —=2) = (H—1k-2, f) = ([, f) (&1

for ¢y € Keriical K ¢, and the left side of (8-1) is nonzero because the Euler product
for L*(f, s) converges for Re(s) > k/2 + 1/2. Set

SUS) ot oy )
L*(f,k—1) L*(f,k—2)

Then wy (fo—_(f) ={f, f), and we have:

w (f) = (8-2)

Lemma 8.2. For each f € By,

L*(f, s)/wy(f) and L*(f» w)/w-_(f) € Kcriticale
forall s and w with 1 <s,w <k —1, s even and w odd.

Proof. For such s and w,
L*(f.5) _ L*(f )L (fk=1) _ (Hur. f) _ U
1 (f) cr{f f) ) epth )

L*(fow) _ L*(fwL*(fk=2) _ (Hiow ) _ 5 S)
w_(f) crlfs f) ce(fs f) crlfs f)

€ Keritica K [

€ Keritica K r. U
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To deduce Manin’s theorem from Lemma 8.2, we use Zagier’s explicit expression
for Hy ,,. For n > 0, even k1, ko > 4 and k = k1 + kp + 2n, (1-2) implies

kika (k=2 [Ex,, Ex,]n
Dki/2p3-k H, =1 8-3
( ) Blek2 n n+1,n+ky (27‘[l)" ( )
The Fourier coefficients of Ey, and Ej, are rational, and hence, the right side of
(8-3) has rational coefficients. Then H, | ,+k, has Fourier coefficients in Q (and
also for k1, k; = 2 [Kohnen and Zagier 1984, p. 214]). It follows that K itica = Q
and Lemma 8.2 becomes Theorem 2.6, Manin’s periods theorem.

8B. Arbitrary L-values. With the results of the last section, we may now give the
proof of Theorem 2.7, restated here:

Theorem 8.3. For all f € By and s € C, with w,(f) and w_(f) as in Manin’s
theorem,

L*(f,8)/o+(f) € K(Eg,_ (-, k— 1)Ky,
L*(f.8)/o-(f) € K(E{_5,(-.5)Kp.

Proof. By Theorem 2.3, we have Hj w(z) = ;"k ;(z, w) for all s, w € C. Thus,
arguing as in Lemma 8.2 with ES ks k—1)=H ;1 and E}_ 2. 2 (-5 8)=Hy 2
yields the theorem. O

We indicate briefly how the double Eisenstein series Fourier coefficients re-
quired to define K(E;"k_s(- ,k—1)) and K(E,’;z’z( -, 8)) in Theorem 2.7 may
be calculated when s € Z, using a slight extension of the methods in [Diamantis
and O’Sullivan 2010, §3]. We wish to find the /-th Fourier coefficient, ay ,,(/), of
Hq ,(2) = Ej’kis(z, w) for s even and w odd (and we assume s, w > k/2 > 1).
With Proposition 2.5, this is (—1)*/2/(27*/?) times the [-th Fourier coefficient of

Thot[y 2 Ef (2. w)Ef (2, v) ]
foru=(s+w—-k+1)/2and v=(—s+w+1)/2 both in Z. Let

ekl (u)0k2(1 v) _k/zE
Or(s +1— k/Z)
O )b, (v)
Or(w+1—k/2)

F(2) =y *?E} (z,w)E}, (2, v) — (2 s+1—k/2)

Y HRE Nz w+1—k/2).

Then 7noi (y /2 Ef, (z, w) Ef, (2, v)) = 7hol (F (2)) because oy~ EK(z,5)) =
for every s. We have constructed F sothat F(z) Ky~ ®asy— oo, and we may
use [Diamantis and O’Sullivan 2010, Lemma 3.3] to obtain

(—1)k2/2(47'[l)k_1 00 3 B
/O Fi(y)e ™ y* 2 dy

ay,w(l) = (27-[k/2)(k - 2)'
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on writing F(z2) =) ;o7 e?mixy=k/2 F,(y). The functions F;(y) are sums involv-
ing the Fourier coefficients of E,fl (z,u) and E ,fz (z,v) with u, v € Z. As shown
in [Diamantis and O’Sullivan 2010, Theorem 3.1], these coefficients are simply
expressed in terms of divisor functions, Bernoulli numbers and a combinatorial part.
For s and w in the critical strip, this calculation yields an explicit finite formula
for as,,,(I) in [Diamantis and O’Sullivan 2010, Theorem 1.3] (and another proof
that Hy ,, in (8-3) has rational Fourier coefficients and that Kssica = Q). For s
and w outside the critical strip, we obtain infinite series representations for a; ,, (/)
but again involving nothing more complicated than divisor functions and Bernoulli
numbers. Further details of this computation will appear in [O’Sullivan 2013].

8C. Twisted periods. There is an analog of Manin’s periods theorem for twisted
L-functions. Let p/q € Q, and let u be an integer with 1 < u < k — 1. Manin shows
in [1973, (13)] (see also [Lang 1976, Chapter 5]) that i* ”/q fay)y“~ldyis an
integral linear combination of periods i” fooo fly)y ! dy forv=1,...,k—1.
With (2-17), this proves

g LN (fous p/q) €Z-iLN () HZ-PLYf2) -+ 2L (f k- D).
Therefore, Theorem 2.6 implies the next result.

Proposition 8.4. Forall f € By, p/q € Q and integers u with 1 <u <k —1,
L*(f.u; p/q) € Ky(Doi(f) + Ky()o-(f).

Employing (5-8), a similar proof to that of Theorem 2.7 in the last section shows
the following:
Proposition 8.5. Forall f € By, p/q € Q and s € C with w4 (f) and w_(f) as in
Manin’s theorem,
L*(f.s; p/@)/w(f) € K(E}_; (-, 1; p/q) Ky,
L*(f.s: p/@)/o-(f) € K(E;_ (-,2: p/q)K.

9. The nonholomorphic case

9A. Background results and notation. We will need a nonholomorphic analog of
the Cohen kernel € (z, s).

Definition 9.1. With z € H and s, s” € C, define the nonholomorphic kernel ¥ as

H—v
Wz 5,8 i= 5 Zlm(”z) . 9-1)

2s
yell )/Zl

Following directly from the results in [Diamantis and O’Sullivan 2010, §5.2], it
is absolutely convergent, uniformly on compacta, for z € H and Re(s), Re(s) > 1/2.
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The kernel #(z; s, s”) was introduced by Diaconu and Goldfeld [2007, (2.1)] (though
they describe it there as a Poincaré series and their kernel is a product of I" factors).
Starting with the identity [Diaconu and Goldfeld 2007, Proposition 3.5]

(f (38,50, 8)
D +s"+k=1) [ L*(fia+if)L*(g, —s+5'+k—a—ip)
S QsHsiHkd oo T +a+iB)I(—s+s' +k—a—iB)
for f and g in %y, they provide a new method to establish estimates for the second

moment of L*(f, s) along the critical line Re(s) = k/2. They give similar results
for L*(uj, s), the L-function associated to a Maass form u ; as defined below.

dp

The spectral decomposition of ¥(z; s, s’) and its meromorphic continuation in
the s and s’ variables is shown in [Diaconu and Goldfeld 2007, §5]. We do the same;
our treatment is slightly different, and we include it in Section 9B for completeness.

For I = SL(2, Z), the discrete spectrum of the Laplace operator A = —4y29.9:
is given by u¢, the constant eigenfunction, and u; for j € Z> an orthogonal system
of Maass cusp forms (see, e.g., [Iwaniec 2002, Chapters 4 and 7]) with Fourier
expansions

uj(z) =y In|"v;(m Wy, (n2),
n#0
where u ; has eigenvalue s;(1 —s;) and by Weyl’s law [Iwaniec 2002, (11.5)]

#{j | Im(s;)| < T} =T?/12+ O(T log T). (9-2)

We may assume the u; are Hecke eigenforms normalized to have v;(1) = 1. Neces-
sarily we have v (n) € R. Let ¢ be the antiholomorphic involution (tu;)(z) :=u j(—2).
We may also assume each u; is an eigenfunction of this operator, necessarily with
eigenvalues 1. If tu; = uj, then v;(n) = v;(—n) and u; is called even. If
wj=—uj,thenv;(n) = —v;(—n) and u; is odd.

The L-function associated to the Maass cusp form u; is

L(uj,s)=Y vi(m)/n',

n=1

convergent for Re(s) > 3/2 since v;(n) < n'/? by [Iwaniec 2002, (8.8)]. The
completed L-function for an even form u; is

S+Sj—1/2 r S—Sj+1/2
2 2

L*(uj,s) :=71_SF< )L(M‘/,S), (9-3)

and it satisfies
L*(uj, 1 —s)=L"(uj,s)=L*uj,5). (9-4)

See [Bump 1997, p. 107] for (9-3), (9-4) and the analogous odd case.
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To E(z, s) (recall (2-3)) we associate the L-function

L(E(-,s),w):= Z ¢(m,s)‘

m=1

w

The well-known identity Z;’le ox(m)/m"¥ = ¢(w)¢ (w — x) implies

27" f(w+s—1/2)¢(w—s+1/2)
- T(s) £(2s) '

9B. The nonholomorphic kernel 3. Throughout this section, we use s = o + it
and s’ = o’ +it’. Recall #(z; s, s’) defined in (9-1) for Re(s), Re(s’) > 1/2. Our
goal is to find the spectral decomposition of ¥ (z; s, s’) and prove its meromorphic
continuation in s and s’. See [Diaconu and Goldfeld 2007, §5] and also [Iwaniec
2002, §7.4] for a similar decomposition and continuation of the automorphic Green
function.

A routine verification (using [Jorgenson and O’Sullivan 2005, Lemma 9.2], for
example) yields

L(E(-,5),w) (9-5)

AH(z;s,8) = +s)V1 —s—s5)H(z;s,5) +dss'H(z; s +1,5+1).  (9-6)

Put

1
SZ(Z, S) = Z m
meZ
Then
Hzs,sh= Y Imy) ™ e(yz,s). 9-7)
Y€l \I’

Use the Poisson summation formula as in [Iwaniec 2002, §3.4] or [Goldfeld 2006,
Theorem 3.1.8] to see that

rlPT(s—1/2) |, 27

éjZ(Z, S) = Ty + myl/Z—S Z |m|x—1/2Ks_1/2(2n,|m|y)62ﬂimx
m#0 (9-8)
for Re(s) > 1/2. Set
E(zo9) = Y Iml T K @ lmy)eT 9-9)
m#0

Let B, :={z € C||z| < p}. Then with [Jorgenson and O’Sullivan 2008, Lemma 6.4],

VYKs_1pQmy) K e Y (yP 4y

for all s € B, and p, y > 0 with the implied constant depending only on p. Hence,

o0
Sé(z, 5) K Z e_znmy(mﬂ+0+2yp+5/2 + m—p+0'—4y—p_7/2).

m=1
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We also have [Jorgenson and O’Sullivan 2008, Lemma 6.2]

00
Z mpe—Zmny < e—271y(1 +y—,o—l)

m=1
for all y > 0 with the implied constant depending only on p > 0. Therefore,
57(2,8) ey 4 y om0, (9-10)
Consider the weight-0 series
Ho(zis.sh= Y Im(yz) e (yz.s). (9-11)
Y €T\
With (9-10), we have
Wozssh< Y Amy)” T 4Im(yg)” P He T MO (9-12)
Y €T\
so that %% (z; s, s") is absolutely convergent for Re(s’) > p + 5.

Proposition 9.2. Let p > 0 and s, s’ € C satisfy Re(s) > 1/2, Re(s") > p + 5 and
s € By. Then

a2 (s —1/2)

H(z;s,8) = o)

, 27 i ,
E(@,s'—s+1)+—% (s, ), (9-13)
I'(s)

and, for an implied constant depending only on s and s,
Ho(z;8,8") <Y PO asy - oo (9-14)

Proof. 1t is clear that (9-13) follows from (9-7), (9-8), (9-9) and (9-11) when s
and s’ are in the stated range. With (9-12) and employing (4-3), we deduce that as
y — 00,

Sj{n(z, s’ S/) << (y0/+p+3+y(7/—p—4)e—2ny
+ ) (my2)” T 4 Im(yz)”

y€loo\I’
Y #lo

L e ™ +y1—(0’+p—|-3) +y1—(a’—p—4)
& y5+p—o" O

Clearly, for Re(s’) > p + 5, (9-13) gives the meromorphic continuation of
H(z;s,s") toall s € B,. For these s and s’, it follows from (9-14) that HE, as a
function of z, is bounded. Also use (9-6) and (9-13) to show that

AKX (z: 5, 5) = (s + )1 —s —sNK (z; s, 8) +4ns'HP (z; s + 1,5 + 1),
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and hence, A%" is also bounded. Therefore, with [Iwaniec 2002, Theorems 4.7
and 7.3], 9* has the spectral decomposition

o0
Hi(-1s,8), u;
SJ{ﬁ(z;s,s/):Z( ( ) j>uj(z)
o, (wj,uj)
1
+— (H*(-55,8), EC,r)E(z, r)dr, (9-15)
47i (1/2)

where the integral is from 1/2 —ioco to 1/2 +ioco and the convergence of (9-15) is
pointwise absolute in z and uniform on compacta.

Lemma 9.3. Fors € B, and Re(s") > p + 5, we have

1/2—s

T s’ s+si—1 s'+s—s;
i:]ﬁ L. / X :—L* . /_ 12F J F J
(f( ,S,S),M]) 4F(S/) (MJ,S s+ / ) ( 2 ) ( 2

when uj is an even Maass cusp form. If u j is odd or constant, then the inner product
is zero.

Proof. Unfolding,
(55,8 uj)

- / I (z: 5, 8y @ dpn(2)
T\H

co pl
/ _ : ——dxd
:/ / <Zys+1/2|m|s I/ZKS1/2(27_[|m|y)62mmx>uj(z) 2)’
0 Jo \,% y
_ ® ¢ dy
=2 " vj(m)|m|*~'? / ¥ Kom1pQrelm]y) K122 lm]y) =7
0

m#0
Evaluating the integral [Iwaniec 2002, p. 205] yields

L(uj,s' —s+1/2) HF(S/:I:(S /)£ G — 1/2))
475'T(s7) 2 ‘

(K5 5,8, u)) =

Using (9-3) and that 5; = 1 —s; finishes the proof. U

In the same way, when Re(r) = 1/2,

(K55, 8), EC-, 1))

_L(E(-,r),s'—s+1/2) . s'E(s—1/2)£F—1/2)
N 45’ T(s7) l_[ ( 2 )

Further, E(z,r) = E(z,7) = E(z,1 — r), and with (9-5) we have shown the
following:
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Lemma 9.4. Fors € B, and Re(s') > p+5,

G5, B ) = s F<S/+S_r)
P B T = o r e (=) 2

o« T s'+s—14r 9 s'—s+r 0 s'—s+1—r .
2 2 2
Recall that 6(s) := 7 °T"(s)¢(2s) as in (2-5). Let
TPT (s —1/2)

Ki(z:s,8) := E(z,s — D,
1(z5 8, 5) r'e) (z,8"—s+1)
I y al/? i L s+ 12T s'+s+s;—1
i85, 8) = ————— s —s —_—
2l AOIE) = = 2
u] even
Xr(s/+s—sj) u;j(z) ’
2 (Mj,btj)

1/2 1 , B / L
Hi(z;s,5) ::n—/_./ F<S +s r>F<S +s +r)

" s —s+r p s'—s+1—r\ E(z,r) ir.
2 2 o1 —r)

Assembling Proposition 9.2, (9-15) and Lemmas 9.3 and 9.4, we have proven the
decomposition

H(zys,s)=Hi(zys, ") +Ha(zs s, 8) +Hs(z s, 5) (9-16)

for s € B, and Re(s") > p + 5. This agrees exactly with [Diaconu and Goldfeld
2007, (5.8)].

Clearly ¥ (z; s, s") is a meromorphic function of s and s’ in all of C. The same
is true for H,(z; s, ") since the factors L(uj,s" —s+1/2)u;(z)/(u;, u;) have at
most polynomial growth as Im(s;) — oo while the I" factors have exponential decay
by Stirling’s formula. See (9-2) and [Iwaniec 2002, §7 and §8] for the necessary
bounds. The next result was first established in [Diaconu and Goldfeld 2007, §5].

Theorem 9.5. The nonholomorphic kernel ¥.(z; s, s") has a meromorphic continu-
ationto all s, s’ € C.

Proof. As we have discussed, 31(z; s, s") and H>(z; s, s") are meromorphic func-
tions of s, s’ € C. The poles of I'(w) are at w =0, —1, —2, ..., and 6 (w) has poles
exactly at w =0, 1/2 (with residues —1/2 and 1/2, respectively). Therefore, the
integral in H3(z; s, s) is certainly an analytic function of s and s’ for 6’ > o +1/2
and o > 1/2 since the I' and 6 factors have exponential decay as |r| — co. Next,
consider s fixed (with o > 1/2) and s” varying. Consider a point ro with Re(rg) =1/2.
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Let B(rg) be a small disc centered at ro and B(1 — ry) an identical disc at 1 — ry.
By deforming the path of integration to a new path C to the left of B(rp) and to the
right of B(1 —rp), we may, by Cauchy’s theorem, analytically continue H3(z; s, s”)
to s’ with s' —s € B(rp). Let C; be a clockwise contour around the left side of
B(rg) and C, be a counterclockwise contour around the right side of B(1 — rg) so
that C = (1/2)+ C + C,. For s’ —s inside Cy (and 1 — (s’ —s) inside C5), we have

~1/2 / , 1 1 1 1
a TN Ha@ss) = [ x= [ b [ x| %,
47 C 47 1/2) 47 C 47 Cy

where *x denotes the integrand in the definition of J3. Then

1 —27i —s+1—
L .l ( Res 9<;>)
47 C 4mwi \r=s'—s 2

x T (s)['(s'— I/Z)ME(Z, s'—5)
0(1—s'+s5)
= %F(s)F(s/—l/Z)ME(z, s'—s)
0(1—s'+s5)

=10 (s’ ~1/2)E(z, s—s'+1).

We get the same result for (1/47mi) sz’ and for all s’ witho —1/2 <Re(s") <o +1/2,
it follows that the continuation of ¥3(z; s, s”) is given by

a0 () (s) - Ha(z; s, 5)

=F(s)F(s’—1/2)E(z,s—s’+1)—|—i_/ *. (9-17)
4mi (1/2)

Similarly, as s’ crosses the line with real part o — 1/2, the term
—T(s—1/2)T(sYE(z,s' —s+1)

must be added to the right side of (9-17). Thus, for all s’ with 1/2 <Re(s") <o —1/2,
the continuation of ¥(z; s, s’) is

nl2T(s' = 1/2)
I'(s’)
Clearly, with (9-17) and (9-18) we have demonstrated the meromorphic continuation
of H(z; s,s’) to all s,s" € C with Re(s), Re(s”) > 1/2. The continuation to all
s, 5" € C follows in the same way with further terms in the expression for ¥ (z; s, s’)
appearing from the residues of the poles of I'((s"+s —r)/2)['((s'+s—147r)/2)
as Re(s’ +5) — —o0. O

H(z;s,s) = E(z,s—s +1)+%(z; 5, 8)+H3(z; 5, 5"). (9-18)

Proposition 9.6. We have the functional equation

H(z;s,8) =H(z; s, 5). (9-19)



Kernels for products of L-functions 1911

Proof. We may verify (9-19) by comparing (9-16) with (9-18) and using that
Ha(z;s,8") =Ha(z; 8", s) by (9-4) and H3(z; s, ") = H3(z; 57, ) by (2-6). There
is a second, easier proof: with S = ((1) (}) replace y in (9-1) by Sy. (]
Proposition 9.7. For all s, s’ € C and any even Maass Hecke eigenform u j,
1/2 ’ 1
H (55, 8T) 1) = o i el P (i IVL* (), s —s+1).
2 (s)C(s") 2 2
Proof. Since each u; is orthogonal to Eisenstein series, we have by (9-16) (for
s € B, and Re(s") > p +5) that
(58,80, uy) = (W55, 87, uy).

The result follows, extending to all s, s” € C by analytic continuation. ([

9C. Nonholomorphic double Eisenstein series. A similar argument to the proof
of (5-2) shows that, for Re(s), Re(s’) > 1 and Re(w) > 0,

T,
C(w+25)(w+25)E(z, w; s, s) = 22% (9-20)

where, in this context [Goldfeld 2006, (3.12.3)], the appropriately normalized Hecke
operator acts as

1
T,%(z) = —7 > Ky

yel'\u,

For each Maass form, we have T,u; = v;(n)u;, and for the Eisenstein series,
[Goldfeld 2006, Proposition 3.14.2] implies T, E(z, s) = n*~?01_2,(n)E(z, 5).
Therefore, as in (9-5),

N TLE(z, )
Zﬁ— )Z 7o 2( )—E(Z,S)C(w—s)g(w—i-s—l).

n=1
Now choose any p > 0. For s € Bp, Re(s) > 1, Re(s’) > p + 5 and Re(w) > 0, we
may apply 7, to both sides of (9-16) and obtain

C(w+2s)(w+2s)€(z, w; s, ")

=172 )E 1
= TC( —s+w){(s—s'+w—1DE(z,s —s+1)

nl/? > s'+s+s—1 s'+s—s;
IO 2:: L*(uj, s’ s+1/2)F< > )r( > )

j even

<L w—1/2 249 7 L/ ki VY et
W (wj,uj) 20T 4 Jap2) 2 2

s’ +s—r s'+s—14r E(z,r)
xF( : )F( . ){(w—r){(w—l—i—r)e(l_r)dr. (9-21)
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Put

!/ . /! _1
Q(s,s’;r)::e(s +; r)@(s +s2 —i—r)

XQ(S/_S+r)9(S/_S+1_r>/9(1—7‘).
2 2

Define the completed double Eisenstein series as in (2-19) and write

o0

U(z;s,s') = Z L*(uj,s+s —1/2)L*(uj, s —s+1/2) u; (@) )
— (uj,uj)
u}']even

As in the last section, €2 and U have exponential decay as |r|, [Im(s;)| — oo.
Specializing (9-21) to w = s + s’, we have proved the next result.

Lemma 9.8. Fors € B,, Re(s) > 1 andRe(s') > p+5,
€ (z;5,8) =20(s)0(NE(z; s +5)+20(1 —5)0(sE(z,s' —s+1)

1
+U(z;s,s/)+—.f Qs,s'sr)E(z,r)dr. (9-22)
i Jay2)

From this, we show the following:

Theorem 9.9. The completed double Eisenstein series €*(z; s, s') has a meromor-
phic continuation to all s, s’ € C, and we have the functional equations

€*(z;5,5) =€ (z: 5", 5), (9-23)
€ (z;8,8) =€ (; 1 —s,1—5). (9-24)
Proof. First note that (9-22) gives the meromorphic continuation of €*(z; s, s’) to
all s and s’ with s € B, and Re(s’) > p + 5. As in the proof of Theorem 9.5, we
see that the further continuation in s’ is given by (9-22) along with residues that are

picked up as the line of integration is crossed; for s € B, fixed and Re(s") - —oo,
the continuation of €*(z; s, s’) is given by (9-22) plus each of the following:

20(s)0(1 —sYE(z,s —s'+1) when Re(s) <o +1/2,

—20(1—5)0(s"E(z,s'—s+1) whenRe(s') <o —1/2,
201 —5)0(1 —s")E(z,2—s—s") whenRe(s") < —o +1/2,
—20(s)0(s")E(z,s +s') whenRe(s') < —o —1/2.

We have therefore shown the meromorphic continuation of €*(z; s, s") to all s € B,
and s’ € C. Hence, for all s” with Re(s") < —p — 4, say, we have

€ (z;5,8)=20(1—5)0(1—=5)YE(z,2—5—5)+20()0(1 —s)E(z,s —s +1)

1
+U(Z;S,S’)+—./ Q(s,s'sr)E(z, r)dr. (9-25)
27Tl (1/2)
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The functional Equation (9-24) is a consequence of the easily checked symmetries
U(z; 1—s,1—-5Y=U(z;s,s)and Q(1—s, 1—5"; r) =Q(s, s’; r) and a comparison
of (9-22) and (9-25). The Equation (9-23) has a similar proof or more simply follows
from the definition (2-19). U

Proposition 9.10. For any even Maass Hecke eigenform u; (as in Section 9A) and
all s, s’ € C,
(€* (58,8, u;y=L*(uj,s+s —1/2)L*(uj,s' —s +1/2).
Proof. As in Proposition 9.7, only U(z; s, s") in (9-22) will contribute to the inner
product. (]
With Theorem 9.9 and Proposition 9.10, we have proved Theorem 2.9.

10. Double Eisenstein series for general groups

We proved in Section 5A that for I' = SL(2, Z) the holomorphic double Eisenstein
series E; x_;(z, w) may be continued to all s and w in C and satisfies a family of
functional equations. That proof does not extend to groups where Hecke operators
are not available. To show the continuation of E; x_s (z, w) for I" an arbitrary Fuch-
sian group of the first kind, we first demonstrate a generalization of Proposition 2.5.
Recall the definitions of # and v in (2-16) and er in (4-1).

Theorem 10.1. For s and w in the initial domain of convergence and even k1, kp >0
with k = k1 + kp, we have

E;k,k—s,u(z’ w)
=2 [ (= DRy THE], (1w o(- 1= 0)/@x*)]. (10-1)
Proof. Let g € Si(I'), and set I'" = 0o 'T'o,. Then

(Esk—s,a(-,w), g) = / Im(042)*§(002) Es k—s5,a(0az, w) dpiz (10-2)
/\[H]
8(0q2) . _ BYSI0RAN
=/ ) D [CI Bl I S S 1( 5 duz
l—V\H .](GCU Z) (SEB\F/ }/EB\F/ .]( ’ Z)
€51 >0
Since g(042)j (0, 2) 7% € Sk (I'), we have
k _ g(Ua.Z) _ Im((Sz)k Tg(aaaz) .
](Uas Z)k.] (87 Z)k ](Ua, Sz)k

Note also that j(y, z)/j(8,z) = j(y8~!, 8z). Hence, (10-2) equals

281"/; - yk g(0q2) |: Z (Cy)w_lj()/, Z)_Si| duz. (10-3)

7 k
.](O'Cla Z) )/GB\F/

cy>0
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Writing

Yo )" i o= Y ) Y izm)

yEB\I' yeB\I"/B meZ
cy>0 cy>0

and using the Fourier expansion of g at a, j (o, 2) *g(oaz) = Zzozl ag,a(n)ezm'”z,
we get that (10-3) equals

i e—27rinx—2nny
2°r g q(n) / / dxdy
: (cy+1—w V)
n=1 yeB\F /B )‘ ! (x tdyfey +iy)
cy>0 dind,
e ag, a(n) e v/Cy
=2 FI ( )Z Z (C )s+1—w
yeB\l"(;/B Y
Cy>
for —2mx -2y
I (s) := —dxdy.
Ko = / / aEny O

The inner integral over x may be evaluated with a formula of Laplace [Whittaker
and Watson 1927, p. 246]:

fcc e—2m’x Jr— e—Zny (27[)5
—oo (X Hiy)S [(s)esim/2

so that
rk-1 Q@n)*

(47‘[)]‘_1 F(S)esm/z'
With (4-2) and, for example, [Iwaniec 2002, Chapter 3], we recognize

Ii(s) =

Z e27[indy/cy Z eZn’indV /cy Yaa(n’ S)
2 25 s—1°
y€B\I"/B G2 Y€To\T"/ T ) £(2s)n
¢y >0 cy>

It follows that we have shown

e 102 =2u)T'(k —s)I'(k —w) You(n, 1 — v)aga(n)
2 (27.[)21( Ss—w Z

<E;kk sa( ’w)’g> nk S—v

n=1
Reasoning as in the proof of [Diamantis and O’Sullivan 2010, (2.10)], we also find,
for all even k;, ko > 0 with k; + k, =k,

(=DPP2y ™ 2E: (L 1=wEE (-, 1—v)/@2x"?), g)
Q=20 (k—s)I'(k—w) i Yoa(n, 1 —v)ag.q a(n)
n=1

(zn)Zk—s—w nk s—v

k
Since ES k—s.a

(z, w) € Sx(I') and g € Sx(I") is arbitrary, (10-1) follows. O
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Corollary 10.2. The double Eisenstein series E7,_ (z, w) has a meromorphic
continuation to all s, w € C and as a function of z is always in Sg(I'). It satisfies

the functional equation

E;ck—s,s,a(z’ w) = (_l)k/zE* (z, w). (10-4)

s,k—s,a

Proof. Since E,’:’a(z, s) has a well-known continuation to all s € C, due to Selberg,
the continuation of E;‘ k_s’u(z, w) follows from (10-1). The change of variables
(s, w) = (k—s, w) corresponds to (u, v) — (v, u), and so (10-4) is also a conse-
quence of (10-1). [l

If I has more than one cusp, then E7;  (z, w) does not appear to possess a

functional equation of the type (2-14) as (s, w) — (w, s). This corresponds on the
right of (10-1) to (u, v) — (u, 1 —v), and the functional equation for E,’;z,a( -, 1—v)
involves a sum over cusps as in (4-4).

We remark that the functional Equation (10-4) also follows directly from (4-6) if
—1 e T': replace y and § in the sum by —§ and y, respectively.

Finally, it would be interesting to find the continuation in s and s’ of the non-
holomorphic double Eisenstein series € (z; s, s") for general groups. We expect
that a similar decomposition to (9-22) should be true.
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Division algebras and quadratic forms
over fraction fields of two-dimensional
henselian domains

Yong Hu

Let K be the fraction field of a two-dimensional, henselian, excellent local domain
with finite residue field k. When the characteristic of k is not 2, we prove that
every quadratic form of rank > 9 is isotropic over K using methods of Parimala
and Suresh, and we obtain the local-global principle for isotropy of quadratic
forms of rank 5 with respect to discrete valuations of K. The latter result is proved
by making a careful study of ramification and cyclicity of division algebras over
the field K, following Saltman’s methods. A key step is the proof of the following
result, which answers a question of Colliot-Thélene, Ojanguren and Parimala: for
a Brauer class over K of prime order ¢ different from the characteristic of k, if it
is cyclic of degree g over the completed field K, for every discrete valuation v
of K, then the same holds over K. This local-global principle for cyclicity is also
established over function fields of p-adic curves with the same method.

1. Introduction

Division algebras and quadratic forms over a field have been objects of interest
in classical and modern theories of algebra and number theory. They may also be
naturally and closely related to the study of semisimple algebraic groups of classical
types. In recent years, there has been much interest in problems on division algebras
and quadratic forms over function fields of two-dimensional integral schemes (which
we call surfaces).

Mostly, surfaces that have been studied are those equipped with a dominant
quasiprojective morphism to the spectrum of a normal, henselian, excellent local
domain A. If A is of (Krull) dimension O, these are algebraic surfaces over a
field. Over function fields of these surfaces, de Jong [2004] and Lieblich [2011b]
have proven remarkable theorems concerning the period-index problem. If A is of
dimension 1, the surfaces of interest are called arithmetic surfaces by some authors.
Over function fields of arithmetic surfaces, several methods have been developed
to study division algebras and/or quadratic forms, for example in [Saltman 1997;

MSC2010: primary 11E04; secondary 16K99.
Keywords: quadratic forms, division algebras, local-global principle.
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2007; 2008; Lieblich 2011a; Harbater et al. 2009]. The methods pioneered in the
series of papers by Saltman have been important ingredients in several works by
others, including the proof of Parimala and Suresh [2010; 2012] of the fact that
over a nondyadic p-adic function field every quadratic form of dimension > 9 has a
nontrivial zero. In contrast with the arithmetic case, it seems that in the case where
A is two-dimensional, fewer results have been established in earlier work.

In this paper, we concentrate on the study of division algebras and quadratic
forms over the function field K of a surface that admits a proper birational morphism
to the spectrum of a two-dimensional, henselian, excellent local domain R. The
spectrum Spec R will sometimes be called a local henselian surface, and a regular
surface X equipped with a proper birational morphism X — Spec R will be referred
to as a regular proper model of Spec R. As typical examples, one may take R to be
the henselization at a closed point of an algebraic or an arithmetic surface or the
integral closure of the ring A[[¢]] of formal power series in a finite extension of its
fraction field Frac(A[[¢]]), where A is a complete discrete valuation ring. Note that
the ring R need not be regular in our context.

Let k denote the residue field of R. When £ is separably closed, many problems
over the function field K (e.g., period-index, cyclicity of division algebras, u-
invariant and local-global principle for quadratic forms of lower dimension) have
been solved by Colliot-Thélene, Ojanguren and Parimala [Colliot-Thélene et al.
2002]. In the case with & finite, only the local-global principle for quadratic forms
of rank 3 or 4 is proved in that paper. Harbater, Hartmann, and Krashen [Harbater
et al. 2011] obtained some results with less restrictive assumptions on the residue
field but more restrictions on the shape of the ring R.

While the proofs pass through many analyses on ramification of division algebras,
our primary goals are the following two theorems on quadratic forms:

Theorem 1.1. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k and fraction field K. Assume that 2 is invertible in k. Let Qg
be the set of discrete valuations of K that correspond to codimension-1 points of
regular proper models of Spec R.

Then quadratic forms of rank 5 over K satisfy the local-global principle with
respect to discrete valuations in Qg; namely, if a quadratic form ¢ of rank 5 over K
has a nontrivial zero over the completed field K, for every v € Qg, then ¢ has
nontrivial zero over K.

The next theorem amounts to saying that the field K has u-invariant (page 1945)
equal to 8:

Theorem 1.2. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k and fraction field K. Assume that 2 is invertible in k.
Then every quadratic form of rank > 9 has a nontrivial zero over K.
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Over the function field of an arithmetic surface over a complete discrete valuation
ring, the same local-global principle as in Theorem 1.1 is proved for all quadratic
forms of rank > 3 in [Colliot-Thélene et al. 2012, Theorem 3.1] by using the
patching method of [Harbater et al. 2009]. In the case that R = A[[¢] is a ring of
formal power series in one variable over a complete discrete valuation ring A, the
same type of local-global principle has been proven for quadratic forms of rank > 5
in [Hu 2012b] using the arithmetic case established by Colliot-Thélene, Parimala
and Suresh [Colliot-Thélene et al. 2012]. (See Remark 4.3 for more information.)
However, in the general local henselian case, the lack of an appropriate patching
method has been an obstacle to proving the parallel local-global result. So for a
field K as in Theorem 1.1, the local-global principle for quadratic forms of rank 6,
7 or 8 remains open.

In the case of a p-adic function field, it is known that at least three methods can
be used to determine the u-invariant: the cohomological method of [Parimala and
Suresh 2010], the patching method of [Harbater et al. 2009] and the method of
[Leep 2013], which is built on results from [Heath-Brown 2010]. But in the case of
the function field of a local henselian surface considered here, not all of them seem
to still work. For the fraction field of a power series ring R = A[[¢]] over a complete
discrete valuation ring with finite residue field, it is known that the u-invariant is at
most 8 [Harbater et al. 2009, Corollary 4.19]. Our proof of this result for general R
(with finite residue field) follows the method of Parimala and Suresh [2010; 2012].

Theorem 1.2 implies that the u-invariants u (K ) of the fraction field K and u (k) of
the residue field k satisfy the relation u (K) = 4u (k) when the residue field k is finite.
A question of Suresh asks if this relation still holds when k is an arbitrary field of
characteristic 2. The answer is known to be affirmative in some other special cases,
but the general case seems to remain open. (See Question 4.8 for more information.)

As a byproduct, we also obtain (under the assumption of Theorem 1.2) a local-
global principle for torsors of the special orthogonal group SO(¢) of a quadratic
form ¢ of rank > 2 over K (Theorem 4.9). In fact, Theorem 1.2 will also be useful
in the study of local-global principle for torsors under some simply connected
groups of classical types over K [Hu 2012a].

The main tools we will need to prove Theorem 1.1 come from technical analyses
of ramification behaviors of division algebras using methods developed by Saltman
[1997; 2007; 2008]. A key ingredient is the following result:

Theorem 1.3. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k, q a prime number unequal to the characteristic of k, K the
fraction field of R and a € Br(K) a Brauer class of order q. Let Qg be the set of
discrete valuations of K that correspond to codimension-1 points of regular proper
models of Spec R.
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If for every v € Qg, the Brauer class
@k K, € Br(K,)

is represented by a cyclic algebra of degree q over the completed field K, then o is
represented by a cyclic algebra of degree q over K.

Actually, as the same proof applies to the function field of a p-adic curve, a
similar result over p-adic function fields, which seems not to have been treated in
the literature, holds as well (Theorem 3.21). Note that a special case of Theorem 1.3
answers a question raised in [Colliot-Thélene et al. 2002, Remark 3.7].

Here is a brief description of the organization of the paper, together with some
auxiliary results obtained in the process of proving the above-mentioned theorems.

Section 2 is concerned with preliminary reviews on Brauer groups and Galois
symbols. The goal is to introduce some basic notions and recall standard results
that we will frequently use later. In Section 3, we recall some of the most useful
techniques and results from Saltman’s papers and we prove Theorem 1.3. We
also prove over the field K considered in Theorem 1.1 two local analogs of more
global results Saltman had shown: that the index of a Brauer class of period prime
to the residue characteristic divides the square of its period and that a class of
prime index ¢ that is different from the residue characteristic is represented by a
cyclic algebra of degree ¢g. This last statement is proved by generalizing a result of
Saltman on modified Picard groups. Finally, we will concentrate on results about
quadratic forms in Section 4. The proofs of Theorems 1.1 and 1.2 build upon the
work of Parimala and Suresh and on a result from Saito’s class field theory for
two-dimensional local rings [Saito 1987].

To ease the discussions, we fix some notations and terminological conventions
for all the rest of the paper.

o All schemes are assumed to be noetherian and separated. All rings under
consideration will be noetherian (commutative with 1).
o A curve or surface means an integral scheme of dimension 1 or 2, respectively.

» Given a scheme X, we denote by Br(X) its cohomological Brauer group, i.e.,
Br(X) := HZ(X,Gy). If X = Spec A is affine, we write Br(A) instead of
Br(Spec A).

o If X is a scheme and x € X, we write « (x) for the residue field of x, and if
Z C X is an irreducible closed subset with generic point 7, then we write
k(Z) :=k(n).

e The reduced closed subscheme of a scheme X will be written as X;eq.

o A discrete valuation will always be assumed normalized (nontrivial) and of
rank 1.
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e Given a field F and a scheme X together with a morphism Spec F — X,
Q(F/X) will denote the set of discrete valuations of F' that have a center
on X. If X = Spec A is affine, we write Q(F/A) instead of Q2(F/ Spec A).

e Given a scheme X and i € N, we denote by X @ the set of codimension-i
points of X, i.e., XD :={xeX| dimOy , =i}. If X is a normal integral
scheme with function field F, we will sometimes identify X! with the set of
discrete valuations of F corresponding to points in XV,

« For an abelian group A and a positive integer n, let A[n] denote the subgroup
consisting of n-torsion elements of A and let A/n = A/nA so that there is a
natural exact sequence

0> Aln]—>A>A— A/n— 0.

o Given a field F, let F; be a fixed separable closure of F and G g := Gal(F;/F)
the absolute Galois group. Galois cohomology H' (G, -) of the group G ¢
will be written H'(F, -) instead.

« R will always denote a two-dimensional, henselian, excellent local domain
with fraction field K and residue field k.

o By a regular proper model of Spec R, we mean a regular integral scheme ¥
equipped with a proper birational morphism ¥ — Spec R. A discrete valuation
of K that corresponds to a codimension-1 point of a regular proper model of
Spec R will be referred to as a divisorial valuation of K. We denote by Qg
the set of divisorial valuations of K.

2. Some preliminaries

Brauer groups of low-dimensional schemes. Since we will often use arguments
related to Brauer groups of curves or surfaces, let us briefly review some basic facts
in this respect.

Theorem 2.1 [Grothendieck 1968a; Colliot-Thélene et al. 2002]. Let X be a
(noetherian) scheme of dimension d.
(1) Ifd < 1, then the natural map Br(X) — Br(Xyeq) is an isomorphism.
(i) If X is regular and integral with function field F, then the natural map
Br(X) — Br(F) is injective.
(iii) If X is regular, integral with function field F and of dimension d < 2, then
Br(X) =(),cxm Br(Ox ) inside Br(F).

(iv) Let A be a henselian local ring, and let X — Spec A be a proper morphism
whose closed fiber X has dimension < 1. If X is regular and of dimension 2,
then the natural map Br(X) — Br(Xg) is an isomorphism.
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Proof. See [Colliot-Thélene et al. 2002, Lemma 1.6] for (i), [Grothendieck 1968a,
Corollary 1.8] for (ii), [Grothendieck 1968a, Corollary 2.2, Proposition 2.3] for (iii)
and [Colliot-Thélene et al. 2002, Theorem 1.8(c)] for (iv). ([l

The following property for fields, already considered in [Saltman 1997], will be
of interest to us:

Definition 2.2. We say a field k has property By or k is a B, field if, for every
proper regular integral (not necessarily geometrically integral) curve C over the
field k, one has Br(C) = 0.

Example 2.3. Here are some examples of B fields:
(1) A separably closed field k has property B; [Grothendieck 1968b, Corollary 5.8].

(2) A finite field k has property B;. This is classical by class field theory; see also
[Grothendieck 1968b, p. 97].

(3) If k has property Bj, then so does any algebraic field extension k’ of k.
Proposition 2.4. Let k be a B field.
(1) For any proper k-scheme X of dimension < 1, one has Br(X) = 0.

(ii) The cohomological dimension cd(k) of k is < 1; i.e., for every torsion G-
module A, H' (k, A) =0 forall i >2.

(iii) If the characteristic of k is not 2, then every quadratic form of rank > 3 has a
nontrivial zero over k.

Proof. (1) By Theorem 2.1(i), we may assume X is reduced.

For the zero-dimensional case, it suffices to prove that Br(L) = O for a finite
extension field L of k. Indeed, the B; property implies that Br([P’lL) = 0. The
existence of L-rational points on [P’}‘ shows that the natural map Br(L) — Br([P’}‘)
induced by the structural morphism [P’IL — Spec L is injective. Hence, Br(L) = 0.

Now assume that X is reduced of dimension 1. Let X" — X be the normalization
of X. By [Colliot-Thélene et al. 2002, Proposition 1.14], there is a zero-dimensional
closed subscheme D of X such that the natural map Br(X) — Br(X’) x Br(D) is
injective. Now X’ is a disjoint union of finitely many proper regular k-curves, so
Br(X’) = 0 by the B; property. We have Br(D) = 0 by the zero-dimensional case,
whence Br(X) = 0 as desired.

(i) As a special case of (i), we have Br(k") = 0 for every finite separable extension
field k" of k. This implies cd(k) < 1 by [Serre 1994, p. 88, Proposition 5].

(iii) By (ii), we have in particular Br(k)[2] = H?(k, j2) =0. Thus, every quaternion
algebra over k is split and the associated quadric has a k-rational point. Up to a
scalar multiple, every nonsingular three-dimensional quadratic form is associated
to a quaternion algebra and hence isotropic. (]
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The following corollary is essentially proven in [Colliot-Thélene et al. 2002,
Corollaries 1.10 and 1.11]:

Corollary 2.5. Let A be a (noetherian) henselian local ring, and let X — Spec A
be a proper morphism whose closed fiber X is of dimension < 1. Assume that the
residue field of A has property Bj.

If X is regular and of dimension 2, then Br(X) = 0.

Proof. Combine Theorem 2.1(iv) and Proposition 2.4(i). U

Symbols and unramified cohomology. This subsection is devoted to a quick re-
view of a few standard facts about Galois symbols and residue maps. For more
information, we refer the reader to [Colliot-Thélene 1995].

Let F be a field and v a discrete valuation of F with valuation ring O, and residue
field k (v). Let n > 0 be a positive integer unequal to the characteristic of « (v). Let
Wy be the Galois module on the group of n-th roots of unity. For an integer j > 1,
let ,uf?f denote the Galois module given by the tensor product of j copies of u,,
and define

u®:=7/n and u®" :=Homu®’,2/n),

where as usual Z/n is regarded as a trivial Galois module. Kummer theory gives
a canonical isomorphism HY(F, ) = F*/F*". For an element a € F*, we
denote by (a) its canonical image in H!(F, u,) = F*/F*. For o € H (F, u),
the cup product a U (a) € HITY(F, /,LS?OH)) will be simply written as (o, a). In
particular, ifay, ...,a; € F*, (a1, ...,a;) € Hi(F, /L,?i) will denote the cup product
(a)U---U(a;) € H' (F, M,?i). Such a cohomology class is called a symbol class.

By standard theories from Galois or étale cohomology, there are residue homo-
morphisms for alli > 1 and all j € Z

0,7 H'(F, i) — H'™ (e (v), u V1)
that fit into a long exact sequence

- — H.(0y, u®) — H'(F, n¥’)

i . , _
2y HY 1(K(U),ILS?(] 1))_> Hélil(@v,u/?]) .

An element o« € H (F, &) is called unramified at v if 857 (a) = 0.

Now consider the case of Brauer groups. By Theorem 2.1(ii), Br(0,) gets
identified with a subgroup of Br(F). An element o € Br(F) is called unramified
at v if it lies in the subgroup Br(0,) € Br(F). If n > 0 is a positive integer that is
invertible in « (v), then an element o € Br(F)[n] is unramified at v if and only if
9y (o) = 0, where 9, denotes the residue map

8, = 01 : Br(F)[n] = H*(F, u,) — H'(x(v), Z/n).
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As we will frequently speak of ramification of division algebras, the above residue
map 09, = 83’] will often be called the ramification map and denoted by ram,,.
Let X be a scheme equipped with a morphism Spec ' — X. The subgroup

Brur(F/X):= (7] Br(0,) € Br(F),
veQ(F/X)

where 2 (F/X) denotes the set of discrete valuations of K that have a center on X,
is referred to as the (relative) unramified Brauer group of F over X. A Brauer class
o € Br(F) is called unramified over X if it lies in the subgroup Bry,(F/ X). We say
a field extension M/ F splits all ramification of o € Br(F) over X if apy € Br(M)
is unramified over X. When X = Spec A is affine, we write Br,.(F/A) instead of
Bry (F/ Spec A).

If X is an integral scheme with function field F and if X — Y is a proper
morphism, then Q(F/X) = Q(F/Y) and hence Bry (F/X) = Brp(F/Y). If X
is a regular curve or surface with function field F, then Theorem 2.1 implies that
Bry(F/X) € Br(X).

Note that for any field «, the Galois cohomology group H'(k, @/Z) is identified
with the group of characters of the absolute Galois group G, i.e., the group
Hom (G, Q/Z) of continuous homomorphisms f : G, — Q/Z. Any character
f € Homg (G, Q/Z) must have image of the form Z/m C (0/Z for some positive
integer m, and its kernel is equal to G, for some cyclic Galois extension «’/x of
degree m. There is a generator o € Gal(x’/k) such that f (o) =1+mZ € Z/m. The
function f € Homy(G,, @/Z) is uniquely determined by the pair (x'/k, o). In
this paper, we will often write an element of H'(«x, Q/Z) in this way. In particular,
the ramification ram,(a) € H'(k(v), Z/n) of a Brauer class « € Br(F)[n] at a
discrete valuation v € Q2(F/ X) will be represented in this way.

Let x € H'(F,Q/7) = Homy (G, @/Z) be a character of G with image
Z/n € Q/7Z, represented by a pair (L/F,0); i.e., L/F is a finite cyclic Galois
extension of degree n such that

Gr=Ker(x:Gr— Q/27)

and o € Gal(L/F) is a generator such that x (o) = 1+ nZ € Z/n. Recall that
[Gille and Szamuely 2006, §2.5] the cyclic algebra (x, b) associated with x and
an element b € F* is the F-algebra generated by L and a word y subject to the
following multiplication relations:

y'=b and Ay=yo(A) forall AeL.

It is a standard fact that (x, b) is a central simple algebra of degree n over F. The
class of the cyclic algebra (x, b) in Br(F)[n]=H 2(F, w,) coincides with the cup
product of x € H'(F, Z/n) and (b) € H'(F, j1,,).
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If w, € F, then by Kummer theory L is of the form L = F(¥/a) for some a € F*.
There is a primitive n-th root of unity &, € F such that o (¥/a) = &, ¥/a. The cyclic
algebra (x, b) is isomorphic to the F-algebra (a, b)¢,, which by definition is the
F-algebra generated by two words x, y subject to the relations

x"=a, Y'=b and xy=E§&,yx.

Conversely, when F contains a primitive n-th root of unity &,, the algebra (a, b)g,
associated to elements a, b € F* is isomorphic to (x, b), where x € H YF,Q/7)
is the character represented by the cyclic extension L/F = F(%/a)/F and the
F-automorphism o € Gal(L/F) that sends ¥/a to &,%/a. The class of the algebra
(a, b)g, in Br(F) will be denoted by (a, b) when the degree n and the choice of
&, € F are clear from the context. This notation is compatible with the notion
of symbol classes via the isomorphism Br(F)[n] = H?(F, u,) = H*(F, u®?)
corresponding to the choice of &, € F.

3. Division algebras over local henselian surfaces

In this section, we first recall a number of techniques in Saltman’s method of
detecting ramification of division algebras [Saltman 1997; 2007] and then we will
prove Theorem 1.3.

Ramification of division algebras over surfaces. In this subsection, let X be a
regular excellent surface and let F' be the function field of X. By resolution of
embedded singularities [Shafarevich 1966, Theorem on p. 38 and Remark on p. 43;
Lipman 1975, p. 193], for any effective divisor D on X, there exists a regular surface
X' together with a proper birational morphism X’ — X, obtained by a sequence of
blow-ups, such that the total transform D’ of D in X’ is a simple normal crossing
(snc) divisor (i.e., the reduced subschemes on the irreducible components of D’
are regular curves and they meet transversally everywhere). We will use this result
without further reference.

Let n be a positive integer that is invertible on X, and let « € Br(F)[n] be a
Brauer class of order dividing n. For any discrete valuation v € Q(F/X), let ram,
denote the ramification map (or the residue map)

ram, = 8> : Br(F)[n] = H*(F, u,) — H'(x(v), Z/n).

If v = vc is the discrete valuation centered at the generic point of a curve C C X,
we write ramc = ram,.. The ramification locus of o € Br(F)[n] on X, de-
noted Ramy (&), is by definition the (finite) union of curves C C X such that
ramc(o) # 0 € H'(k(C), Z/n). The ramification divisor of a on X, denoted
again by Ramy (o) by abuse of notation, is the reduced divisor supported on the
ramification locus. After several blow-ups, we may assume Ramy («) is an snc
divisor on X.
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Definition 3.1 [Saltman 2007, §2]. Let X, F and « be as above. Assume that
Ramy (&) is an snc divisor on X. A closed point P € X is called

(1) a distant point for « if P ¢ Ramy (),

(2) a curve point for a if P lies on one and only one irreducible component of
Ramy (o) and

(3) a nodal point for « if P lies on two different irreducible components of
Ramy («).

Saltman essentially derived the following theorem from a local study of a Brauer
class at closed points in its ramification locus [Saltman 1997, Proposition 1.2]:

Theorem 3.2 [Saltman 1997, Theorem 2.1]. Let X be a regular excellent surface
that is quasiprojective over a ring, F the function field of X, n > 0 a positive integer
that is invertible on X and a € Br(F)[n]. Assume pu,, C F.

Then there exist f, g € F* such that the field extension M/ F := F(Y/f, ¥/g)/F
splits all ramification of o over X, i.e., apy € Brp,(M/ X).

(Although our setup here differs from that of Saltman’s Theorem 2.1, a careful
verification shows that his proof — with Gabber’s corrections given in [Saltman
1998] — still works. One can also find a proof of Theorem 3.2 in [Brussel 2010,
Lemma 7.8]. When # is prime, a stronger statement holds; see [Saltman 2008,
Theorem 7.13] and Proposition 3.11.)

Remark 3.3. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. By resolution of singularities for surfaces
(see [Lipman 1975; 1978]), there exists a regular proper model X — Spec R. The
structural morphism & — Spec R is actually projective by [Grothendieck 1967,
IV.21.9.13]. So Theorem 3.2 applies to such a regular proper model X — Spec R.

If the residue field k of R is finite, Theorem 3.2 has the following refined form
over the fraction field K:

Let n > 0 be a positive integer that is invertible in the finite residue field k.
Assume that u,, € R. Then for any finite collection of Brauer classes «; € Br(K)[n],
1 <i <m, there exist f, g € K* such that the field extension M/K :=K (¥/f, /g)/K
splitsall the ¢, i =1, ..., m.

In the literature, this result has been established in the case where K is a function
field of a p-adic curve and where n is a prime number, and the proof is essentially an
observation of Gabber and Colliot-Thélene [Colliot-Thélene 1998; Hoffmann and
Van Geel 1998, Theorem 2.5]. One may verify that essentially the same arguments
work in the local henselian case considered here.

We will need the following analog of [Saltman 1997, Theorem 3.4] in the sequel:
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Theorem 3.4. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. Let n > 0 be a positive integer that is invertible
in k. Assume that k is a B field.

Then any Brauer class o € Br(K) of order n has index dividing n>.

Proof. This follows on parallel lines along the proof of [Saltman 1997, Theorem 3.4]
with suitable substitutions of the ingredients used in the case of p-adic function
fields. For the sake of the reader’s convenience, we recall the argument.

We may assume n = ¢" is a power of a prime number g. Let ¥ — Spec R be
a regular proper model. For any finite field extension K’/K, the integral closure
R’ of R in K’ satisfies the same assumptions as R and K’ is the function field
of a regular proper model ¥’ of Spec R’. One has Q(K'/%¥') = Q(K'/¥) and
Bry (K’ /%) = Bry (K’ /%) = 0 by Theorem 2.1(iii) and Corollary 2.5. So it suffices
to find a finite separable field extension K’/K of degree g% m with g {m such that
K’/K splits all ramification of « over ¥.

Now we proceed by induction on r. First assume » = 1. Then the result is
immediate from Theorem 3.2 if 1, C F. The general case follows by passing to
the extension F (1 )/F, which has degree prime to g.

For general r, the inductive hypothesis applied to the Brauer class ga implies
that there is a separable field extension K’/ K splitting all ramification of go over ¥,
which has degree ¢* ~2m’, where g { m’. But gag' = 0 € Br(K') by Corollary 2.5.
By the case with » = 1, we can find a separable extension K”/K' of degree ¢*>m”
with g 1 m” that splits all ramification of ag’ over . Now K”/K is a separable
extension of degree [K” : K] = g* m with m = m’m" coprime to ¢ and K" /K
splits all ramification of o over &, as desired. (]

We will give an example of a Brauer class « € Br(K) of order # that is of index n?
in Example 3.18.

Classification of nodal points. To prove further results, we need more analysis on
ramification at nodal points, for which we briefly recall in this subsection some
basic notions and results due to Saltman. The reader is referred to [Saltman 2007,
§§2-3] or [Brussel 2010, §§7-8] for more details.

Let X be a regular excellent surface with function field F, and let g be a prime
number that is invertible on X. Let o € Br(F)[g]. Assume that Ramy («) is an
snc divisor on X. Let P € X be a nodal point for « (Definition 3.1), lying on
two distinct irreducible components C; and C, of Ramy («). Let x; = ramc, (o)
and x» = ramc, (o) be respectively the ramifications of « at C; and C3. Since the
natural sequence induced by residue maps

HF.pp)— @  H'«©.Z/q)—> Hk(P), ")
ve(Spec Oy p)D



1930 Yong Hu

is a complex (see [Kato 1986] or [Colliot-Thélene 2006, Proposition 2.3]), x; =
ramc, (@) € H'(k(C1),Z/q) is unramified at P if and only if x» = ramc, €
H'(k(C3), Z/q) is unramified at P.

Definition 3.5 [Saltman 2007, §§2-3]. Let X, F, g, « and so on be as above.
Assume that Ramy («) is an snc divisor on X. Let P € X be a nodal point for «,
lying on two distinct irreducible components C; and C; of Ramy («).

(1) P is called a cold point for « if x; =ramc, (@) € H'(x(C1), Z/q) (and hence
also xp =ramc,(a) € H'(k(C>),Z/q)) is ramified at P.

(2) Assume now x; and y» are unramified at P so that they lie respectively in
H'(O¢,.p,Z/q) and H'(Oc,.p.Z/q). Let x;(P) € H'(k(P), Z/q),i =1,2,
be their specializations and (x; (P)), i =1, 2, be the subgroups of H'(k(P),Z/q)
generated by yx; (P), respectively. Then P is called
(a) a cool point for a if (x1(P)) = (x2(P)) =0,

(b) a chilly point for « if (x1(P)) = (x2(P)) # 0 and
(c) a hot point for « if (x1(P)) # (x2(P)).

When P is a chilly point, there is a unique s = s(C»/C1) € (Z/q)* such that
x2(P)=s.x1(P) € H'(c(P), Z/q).
One says that s =s(C»/C)) is the coefficient of the chilly point P with respect to C.

Remark 3.6. One may verify without much pain that our classification of nodal
points, following [Brussel 2010, Definition 8.5], is equivalent to Saltman’s original
formulation, which goes as follows. First consider the case u, € F. Then

oa=w,n)+ (v,8)+r.(m,§) (mod Br(Ox, p))

by [Saltman 1997, Proposition 1.2]. Here u, v € @?(,P’ reZ/qandm,5€0xp
are local equations of the two components of Ramy («) passing through P. The
point P is a cold point if r #0 € Z/q. Assume nextr =0 € Z/q. Then P is
a cool point if u(P), v(P) € k(P)*, a chilly point if u(P), v(P) ¢ «(P)*? and
they generate the same subgroup of « (P)*/k (P)* or a hot point otherwise. In the
general case, let X" — X be the connected finite étale cover obtained by adjoining
all g-th roots of unity and let &’ be the canonical image of « in Br(F’), where F’
denotes the function field of X’. Then for any two points P, P; € X', both lying
over P € X, P| is a cold, cool, chilly or hot point for o’ if and only if P; is, and
in that case, one says that P is a cold, cool, chilly or hot point for «, respectively.
When P is chilly, the coefficient of P with respect to a component through it is
also well-defined, as the coefficient of any preimage P’ of P.

To get some compatibility for coefficients of chilly points, one has to eliminate
the so-called chilly loops, i.e., loops in the following graph. The set of vertices
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is the set of irreducible components of Ramy («), and the number r > 0 of edges
linking two vertices is equal to the number of chilly points in the intersection of the
two curves corresponding to the two vertices. (Two vertices may be joined by two
or more edges and thus contribute to some loops.)

Proposition 3.7 [Saltman 2007, Proposition 3.8]. Let X, F, q and o € Br(F)[q] be
as above. Assume that Ramy («) is an snc divisor on X. Then there exists a proper
birational morphism X' — X, obtained by a finite number of blow-ups, such that
has no cool points and no chilly loops on X'.

We also need the notion of residual class at a ramified place. Let C be an irre-
ducible component of Ramy (&), and let v = v¢ be the associated discrete valuation
of F. Choose any x € F* with g { v(x) so that the extension M/F := F(¥/x)/F is
totally ramified at v = v¢ and oy = o @ p M € Br(M) is unramified at the unique
discrete valuation w of M that lies over v. One has x(w) = k(v) = «(C) and
hence a well-defined Brauer class S¢ x € Br(x(C)) given by the specialization of
oy € Br(M) in Br(k (w)) = Br(x (C)). Let (L/x(C), o) = ram¢(«) be the ramifi-
cation of « at C. Whether f¢ , € Br(x(C)) is split by the field extension L/« (C)
does not depend on the choice of M = F({/x) [Saltman 2007, Corollary 0.7].
We say that the residual classes of a at C are split by the ramification if, for one
(and hence for all) choice of M = F(¥/x), the residual class B¢, € Br(k(C)) is
split by L/k(C) [Saltman 2007, p. 821 Remark]. When we are only interested
in this property, we will simply write B¢ for B¢, € Br(kx (C)) with respect to any
choice of x.

It is proved in [Saltman 2007, Propositions 0.5 and 3.10(d)] that if « has index ¢,
then all the residual classes B¢ of « at all components C of Ramy () are split by
the ramification and there are no hot points for « on X.

Splitting over a Kummer extension. Let X be a reduced scheme that is projective
over aring. Let 2 C X be a finite set of closed points of X. Denote by ¥ x the sheaf
of meromorphic functions on X, and set ?* := 4 K (P)*. Let ©>§(,@’ denote the
kernel of the natural surjection of sheaves 0% — %* so that there is a natural exact
sequence

1 - 0%y — 0y — P — 1.

Define subgroups K/, CHO(X H%) and HO(X Hy/0%) € HOX, 9t* %/0%) by
={f e H(X, % Y| feOxp forall Pe®},
H@(X Hy /0% ) _{DeHO(X H%/0%) | Supp(D) NP = &}.

Consider the natural map

¢ KL — HO(X, 9% /0%) (@K(P)*), £ (divx (. P £(P)).

Pe®»



1932 Yong Hu

Proposition 3.8 [Saltman 2007, Proposition 1.6]. With notation as above, there is
a natural isomorphism

H(X, 35 /0%) @ (D peg k (P))
¢ (K3)
The analog in the arithmetic case of the following proposition is [Saltman

2007, Proposition 1.7]. The following generalization to the case where A is two-
dimensional will be indispensable in the proofs of our results:

H' (X, 0% 4) =

Proposition 3.9. Let A be a (noetherian) normal, henselian local domain with
residue field k, X an integral scheme and X — Spec A a proper morphism whose
closed fiber X has dimension < 1 and whose generic fiber is geometrically integral.
Let m be a positive integer invertible in A. Let X = (X0)red be the reduced closed
subscheme on the closed fiber Xo. Suppose that X is geometrically reduced over k
(e.g., k is perfect). Then for any finite set P of closed points of X, the natural map

H'(X,0% ) > H'(X,0% )
is surjective and induces a canonical isomorphism
H' (X, 0% 4)/m=H'(X, 0% )/ m.
To prove the proposition, we need a well-known lemma.

Lemma 3.10. Ler A be a (noetherian) henselian local ring, X — Spec A a proper
morphism with closed fiber X of dimension < 1, m > 0 a positive integer that is
invertible in A and X = (X()ed the reduced closed subscheme on the closed fiber X.

Then the natural map Pic(X) — Pic(X) is surjective and induces an isomorphism

Pic(X)/m = Pic(X)/m.

Proof. The surjectivity of Pic(X) — Pic(X) follows from [Grothendieck 1967,
IV.21.9.12]. Then the commutative diagram with exact rows, which comes from
the Kummer sequence,

0 —— Pic(X)/m —— HZ(X, ptw) ——> Br(X)[m] —— 0

| l l

0 —— Pic(X)/m —— HZ(X, tw) ——> Br(X)[m] —— 0

yields the desired isomorphism Pic(X)/m = Pic(X)/m since the vertical map in the
middle is an isomorphism by proper base change [Milne 1980, p. 224, Corollary 2.7],
noticing also that any scheme Y has the same étale cohomology with value in a
commutative étale group scheme as its reduced closed subscheme Yi.q [SGA 4.2
1972, Exposé VIII, Corollary 1.2]. (]
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Proof of Proposition 3.9. Consider the commutative diagram with exact rows

HOX, 0 —2~ HOX,9") —— H\(X, 0% ) — Pic(X) —— 0

| Ji | |
HYX,0% —— HYX,%*) —— H'(X, 0% ) — Pic(X) — 0

from which the surjectivity of H'(X, O0xy) — H (X, @’; @) is immediate since
Pic(X) — Pic(X) is surjective by Lemma 3.10. Put M := J(p) € N :=J3(6).

We claim that 7 is surjective. Indeed, by Zariski’s connectedness theorem
[Grothendieck 1961, 111.4.3.12], the hypotheses that A is normal and the generic
fiber of X — Spec A is geometrically integral imply that the closed fiber X is
geometrically connected. The reduced closed fiber X = (X()req is geometrically
connected as well. Since X is assumed to be geometrically reduced, we have
H(X, 0%) = «*. Thus, the map 7 : HO(X,0%) > HO(X,0%) is clearly surjective
since A* € HO(X, 0%).

Now our claim shows that M = N, and then it follows that

Ker(H'(X, 0% 4) > H' (X, 0% »)) = B := Ker (Pic(X) — Pic(X)).
It’s sufficient to show B/m = 0. From the commutative diagram with exact rows
0 — H%X,0%/m —— H} (X, tw) —> Pic(X)[m] —— 0
5 | |
0 — HY%X,0%/m —— H)(X, tw) —> Pic(X)[m] —— 0

it follows that Pic(X)[m] = Pic(X)[m] since the vertical map in the middle is an
isomorphism by proper base change and the left vertical map is already shown to
be surjective. Now applying the snake lemma to the commutative diagram

0 B Pic(X) —— Pic(X) —— 0
0 B Pic(X) —— Pic(X) —— 0

and using Lemma 3.10, we easily find B/m = 0, which completes the proof. [

The following result is proved in [Saltman 2008, Theorem 7.13] in the case where
g € F without assuming the residue field « perfect. It says essentially that the
conclusion of Theorem 3.2 can be strengthened for Brauer classes of prime order.

Proposition 3.11. Let A be a (noetherian) henselian local domain with residue
field k, g a prime number unequal to the characteristic of k and X a regular
excellent surface equipped with a proper dominant morphism X — Spec A whose
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closed fiber is of dimension < 1. Let F be the function field of X and o € Br(F)|[q].
Assume that k is perfect and that o has index q.

Then there is some g € F* such that the field extension M/ F := F (¥/g)/F splits
all ramification of a over X, i.e., apy € Bry (M / X).

Proof. Replacing A by its normalization if necessary, we may assume that A is
normal. Let Ramy(«) = ) C; be the ramification divisor of & on X, and let
X = (X0)req be the reduced closed subscheme on the closed fiber X,. After a
finite number of blow-ups, we may assume that X is purely of dimension 1, that
B := (Ramy (&) U X)req is an snc divisor and that there are no cool points or chilly
loops for o on X (Proposition 3.7). Write

(Li/x(C), 07) =ramc, (@) € H' (x(C}), Z/q)

for the ramification of « at C;. By the assumption on the index, there are no hot
points for o on X and the residual classes of « at C; are split by the ramification
L;/k(C;) for every i [Saltman 2007, Propositions 0.5 and 3.10(d)]. Using [Saltman
2007, Theorem 4.6], we can find 7 € F* having the following properties:

(P1) The valuation v, () = s; is not divisible by ¢.

(P2) If P is a chilly point in the intersection of C; and C;, then the coefficient
s(C;/C;) of P with respect to C; (Definition 3.5) satisfies s(C;/C;)s; =
sjel/ql.

(P3) The divisor E :=divx () — Y_ s;C; does not contain any singular points of
B = (Ramy (o) U Xg)req Or any irreducible component of B in its support.

(P4) With respect to F' := F (w1/9), the residue Brauer classes Bc,. r = Bci.x €
Br(x (C;)) of « at all the C; are trivial.

(P5) For any closed point P in the intersection of E and some C;, the intersection
multiplicity (C; - E) p is a multiple of ¢ if the corresponding field extension
L;/k(C;) is nonsplit at P.

Let y € Pic(X) be the class of Ox(—E), and let y € Pic(X) be its canonical
image. By property (P3), E and X only intersect in nonsingular points of X. So
we can represent 7 as a Cartier divisor on X using the intersection of —E and X.
This divisor can be chosen in the form

Yogn;Qi+Y mQ, (3-1

where Q; and Q] are nonsingular points on X, and for each Qj, one has either
Q; ¢ Ramy () or Q; € C; for exactly one C; and the corresponding field extension
L;/k(C;) is split at Q) (by property (P5)).

By [Grothendieck 1967, IV.21.9.11 and IV.21.9.12], there exists a prime divisor
E] on X such that E||5 = Q) as Cartier divisors on X. Note that E; ¢ Ramy (a)
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because otherwise Q) € E; N X would be a singular point of E/UX € B =
(Ramy (@) U X)req. Set E' = —E — ) n E;. Let P be the set of all singular points
of B (in particular,  contains all nodal points for «).

Lety' € H' (X, 0% ) be the element represented by the pair

(E’, P 1) € Hp(X, %*/0") @ (EB K(P)*)
Pe®
via the isomorphism

HY (X, %*/0%) & (B peg k (P)*)
K3

H'(X, 0% 4) =

in Proposition 3.8. (Here E’ € Hgg (X, 3*/0*) since by the choice of 7, E does
not contain any singular points of B = (Ramy (&) U X)req.) The image ¥’ of ¥’ in
H' (X, @* ) lies in ¢.H' (X, @* ) by the expressmn (3-1).

From Proposmon 3.9, it follows that y’ € . H' (X, 0% ¥.9»)- Thus, by Proposition
3.8, there is a divisor E” € HO(X H* /0*), elements a(P) € k(P)* foreach P € %
and f € F* such that f is a unit at every P € P, divx(f) = E' + gE” and
f(P)=a(P)? for all P € %. We now compute

divy (fr) =divx(f) +divy(r) = (E'+qE") + (Y 5:Ci + E)
=—E—-Y mE +qE"+E+) sC
=Y5;Ci+ (qE" =Y nE))
=y 5:Ci+) n;Dj. (3-2)
For any D;, the following properties hold:

(P6) D; can only intersect B in nonsingular points of B.

(P7) If g {7, then D; € {E}} so that either D; NRamy («) = @ or D; NRamy («)
consists of a single point P that lies on one C; and the corresponding field
extension L;/k (C;) splits at P.

Now we claim that g = fr satisfies the required property. That is, putting
M = F((fm)"?), apr € Br(M) is unramified at every discrete valuation of M that
lies over a point or a curve on X.

Consider a discrete valuation of M lying over some v € Q(F/X).

If v is centered at some C;, then M/ F is totally ramified at v since the coefficient
s; of fmr at C; is prime to g (3-2); hence, in particular, M/ F splits the ramification
of o at v. As « is unramified at all other curves on X, we may restrict to the case
where v is centered at a closed point P of X. By [Saltman 2007, Theorem 3.4], we
can also ignore distant points and curve points P € C; where L;/k(C;) splits at P.
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Now assume that P is a curve point lying on some C; € {C;} where the corre-
sponding field extension L/« (Cy) is nonsplit at P. By property (P7), the only
curves other than C; in the support of divy(fm) that can pass through P have
coefficients a multiple of g. Therefore, in Rp = Oy p, we have fmr = unf 184 with
u € R}, w1 € Rp auniformizer of C; at P and § € Rp prime to ;. Using [Saltman
2007, Proposition 3.5], we then conclude that M/ F splits all ramification of « at v.

Recall that we have assumed there are no cool points or hot points for «. So in
the only remaining cases, P is either a cold point or a chilly point.

Assume first that P is a cold point for «. By property (P4) and [Saltman
2007, Corollary 0.7], the residual class B¢, » of o at any C; with respect to
M=F((fm)")is given by the class of a cyclic algebra (x;, £, where

xi = (Li/x(C}), 01) = ramc, (&) € H'(k(C1), Z/q),

t is an integer prime to ¢ and f denotes the canonical image of f in « (C;). Since
f is a g-th power in x (P) by the choice, it follows easily that B¢, s is unramified
at P. In the local ring Rp = Ox p, we have f = upm,'m,” for some up € R} by
(3-2) and property (P6). Hence, by [Saltman 2007, Proposition 3.10(c)], M splits
all ramification of « at v.

Finally, consider the case where P is a chilly point. Let Cy, C, € {C;} be the two
different irreducible components of Ramy (o) through P, and let, m, € Rp=0x p
be uniformizers of C; and C, at P. Again by (3-2) and property (P6), we have
fr =upm,'ny* for some up € Ry. Let s = 5(C2/C)) be the coefficient of P with
respect to C;. Using property (P2), we find that M = F((fm)'/?) may be written
in the form M = F((n{nj")l/q), where 7{ € Rp is a uniformizer of C; at P. Thus,
by [Saltman 2007, Proposition 3.9(a)], M/ F splits all ramification of « at v, which
completes the proof. O

Corollary 3.12. Let A be a (noetherian) henselian local domain with residue
field «, q a prime number unequal to the characteristic of k, and X a regular
excellent surface equipped with a proper dominant morphism X — Spec A whose
closed fiber is of dimension < 1. Let F be the function field of X and a € Br(F)|[q].
Assume that k is a By field and that o has index q.

If either ny, C F or k is perfect, then a is represented by a cyclic algebra of
degree q.

Proof. If n, € F, we may use [Saltman 2008, Theorem 7.13] to find a degree-g
Kummer extension M/F = F(4/g)/F that splits all ramification of a over X. If
k 1is perfect, such an extension exists by Proposition 3.11. As in the proof of
Theorem 3.4, we have Br, (M /X) = 0 by Corollary 2.5. Hence, oy =0 € Br(M).
Then by a theorem of Albert [Saltman 2007, Proposition 0.1], which is rather
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immediate when assuming the existence of a primitive g-th root of unity, « is
represented by a cyclic algebra of degree g. U

Recall that R always denotes a two-dimensional, henselian, excellent local
domain with fraction field K and residue field k. Applying Corollary 3.12 to a
regular proper model ¥ — Spec R yields the following:

Theorem 3.13. Assume that the residue field k of R has property By. Let q be a
prime number unequal to the characteristic of k.

If either g, € R or k is perfect, then any Brauer class o € Br(K)[q] of index g
is represented by a cyclic algebra of degree q.

Remark 3.14. (1) In Proposition 3.11 or Corollary 3.12, according to the above
proof, if we assume the morphism X — Spec A is chosen such that Ramy («) is an
snc divisor and that & has no cool points or chilly loops on X, then the hypothesis
that o has index ¢ may be replaced by the weaker condition that all the residual
classes B¢ of « at all components C of Ramy («) are split by the ramification.

(2) Similarly, let  — Spec R be a regular proper model such that Ramg («) is an
snc divisor and that o € Br(K)[¢g] has no cool points or chilly loops on ¥. Then
the conclusion in Theorem 3.13 remains valid if instead of assuming « has index ¢
we only require that all the residual classes of « at all components of Ramg («) are
split by the ramification.

(3) In the context of Theorem 3.13, if k is a separably closed field, [Colliot-Thélene
et al. 2002, Theorem 2.1] proved a stronger result: any Brauer class a € Br(K)
of order n that is invertible in R (but not necessarily a prime) is represented by a
cyclic algebra of index n.

Some corollaries. As applications of results obtained previously, we give a criterion
for @ € Br(K)[g] to have index g. Also, we will prove Theorem 1.3.
We begin with the following easy and standard fact:

Lemma 3.15. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. Let ¥ — Spec R be a regular proper model.
Then for any curve C C X, one has either

(i) C is a proper curve over k or

(i) C = Spec B, where B is a domain whose normalization B’ is a henselian
discrete valuation ring with residue field finite over k.

Proof. After replacing R by its normalization, we may assume R is normal.
Consider the scheme-theoretic image D of C C % by the structural morphism
& — Spec R. If D is the closed point of Spec R, then C is a proper curve over
the residue field k. Otherwise, D is the closed subscheme of Spec R defined by a
height-1 prime ideal p € R. Since R is two-dimensional and normal, the proper
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birational morphism % — Spec R is an isomorphism over codimension-1 points
[Liu 2002, p. 150, Corollary 4.4.3]. Thus, the induced morphism C — D is proper,
birational and quasifinite, and hence, by Chevalley’s theorem, it is finite. Write
A= R/psothat D=Spec A. Then C = Spec B for some domain B C x(C) =« (D)
that is finite over A. Since A is a henselian excellent local domain, the same is
true for B. The normalization B’ of B is finite over B and hence a henselian local
domain as well, and it coincides with the normalization of A in its fraction field
Frac(A) = k(C) = k(D). Then it is clear that B’ is a henselian discrete valuation
ring with residue field finite over k. This finishes the proof. (|

Recall that 2z denotes the set of discrete valuations of K that are centered at
codimension-1 points of regular proper models.

Corollary 3.16. For any v € Qp, the residue field k (v) is either the function field
of a curve over k or the fraction field of a henselian discrete valuation ring whose
residue field is finite over k.

Now we can prove the following variant of [Saltman 2007, Corollary 5.2]:

Corollary 3.17. Let g be a prime number unequal to the characteristic of the
residue field k and o € Br(K)|[q] a Brauer class of order q. Let ¥ — Spec R be
a regular proper model such that the ramification divisor Ramg(«) of o« on X has
only simple normal crossings and that o has no cool points or chilly loops on .
Write ramc, (o) = (L; /x (C;), 0;) for the ramification data and B; € Br(x (C;)) for
the residual classes.

Suppose that k is a finite field. Then the following conditions are equivalent:

(1) o has index q,
(11) B; € Br(«(Cy)) is split by L; /x (C;) for every i and
(iii) there are no hot points for a on .

Proof. Propositions 0.5 and 3.10(d) of [Saltman 2007] give (i) = (ii) = (iii).

To see (ii) = (i), note that by Proposition 3.11 and Remark 3.14 there is a
degree-g Kummer extension M /K = K (4/g)/K that splits all the ramification of o
over R. As the residue field is finite, we have Bry (M /X) = 0 and in particular
oy = 0. Hence, the index of o divides g, the degree of the extension M /K. Since
o has order g, it follows that the index of « is g.

To show (iii) = (ii), let C be a fixed irreducible component of the ramification
divisor Ramg(«r) with associated ramification data ram¢ () = (L/«x(C), o). By
[Saltman 2007, Lemma 4.1], there exists 7 € K* having the following properties:
(1) the valuation s; := vc, () with respect to every component C; of Ramy ()
is prime to ¢ and (2) whenever there is a chilly point P in the intersection of
two components C; and C;, the coefficient of P with respect to C; is equal to

sj/si = vc; () /vc,; () mod q.
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Put M := K (¥/7). Let B denote the residual class of o with respect to M, i.e.,
the specialization of «y; € Br(M) in Br(x (C)). We want to show that g is split by
L/k(C).

By Corollary 3.16, « (C) is either a function field in one variable over the finite
field k or the fraction field of a henselian discrete valuation ring with finite residue
field. The same is true for L. So in either case, 8 € Br(kx (C))[gq] is split by L /k(C)
if and only if L/« (C) splits all ramification of g at every closed point P of C.

Assume first that L/« (C) is split at P. Then P is either a chilly point or a curve
point (P is not cold because L/k(C) is unramified at P; see Definition 3.5). If P
is chilly, B is unramified at P by [Saltman 2007, Proposition 3.10(b)]. If P is a
curve point, then we conclude by [Saltman 2007, Proposition 3.11].

Next consider the case where L /k (C) is nonsplit at P. Then the P-adic valuation
vp of Kk (C) extends uniquely to a discrete valuation wp of L. If L/« (C) is ramified
at P, it is obvious that L/x(C) splits the ramification of 8 at P. If L/«x(C) is
unramified at P, then x(wp) is the unique degree-g extension of the finite field
k(vp) =k (P). Thus, the restriction map

Res: HI(K(P), 27/]q7) — HI(K(wp), Z/q7)

is the zero map, which implies that L/« (C) splits the ramification of 8 at P. The
corollary is thus proved. (]

Example 3.18. Here is a concrete example that shows the bound on the period-
index exponent in Theorem 3.4 is sharp. The criterion in the above corollary will
be used in the argument.

Let p be a prime number such that p =3 (mod 4). Let k = [, be the finite field
of cardinality p, and let R = k[[x, y]| be the ring of formal power series in two
variables x and y over k. Let ¥ — Spec R be the blow-up of Spec R at the closed
point, and let E C & be the exceptional divisor. We have

Proj(k[T, S1) = E =Proj(R[T, S1/(x, y)) €& =Proj(R[T, S1/(xS — yT)).

Let fi=y, fp=xand f3 =y +x, and let C; C & be the strict transform of the
curve defined by f; =0 in Spec R for each i = 1, 2, 3. Each intersection C; N E
consists of a single point P;.

Let o be the Brauer class of the biquaternion algebra (—1, y) ® (y + x, x) over
K = k((x, y)). The ramification divisor Ramg () is C| + C2 4+ C3 + E. The set of
nodal points for & on ¥ is { Py, P», P3}. Locally at P;, we may choose s and x as
local equations for Cy and E, respectively, where s = S/T = y/x € K. Thus, in
the Brauer group Br(K), we have

a=C-Ly+0+x,x)=CLxs)+xs+x,x)=(-1,5)+(+1,x).
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The function s vanishes at Py, and —1 % 1 € k (P)*/k (P1)*> = k*/k*?, so Py is a
hot point by definition (Remark 3.6). One may verify that P, and P;3 are cold points.

As for the residual classes, one may check that for each i the residual classes
of « at C; are split by the ramification. Let us now show that at E the residual
classes are not split by the ramification. Indeed, if vg denotes the discrete valuation
of K defined by E, we have vg(x) = vg(y) = vg(y + x) = 1. Then it is easy
to see that the ramification ramg (o) of o at E is represented by the quadratic
extension k(s)(v/s + 1) of k (E) = k(s). Putting M = K (/x), ay = (—1,y) =
(—1, s) € Br(M), and hence, the residue class of o at E with respect to M /K is
Be = (—1,5) € Br(k(E)) = Br(k(s)). Putting u = /s + 1, it is easy to see that the
quaternion algebra (—1,s) = (—1, u? —1) is not split over k(u) = k(s)(\/s +1)
(in fact, it ramifies at u = 1 since —1 is not a square in k = [ ).

By Theorem 3.4 and Corollary 3.17, we conclude that o € Br(K)[2] is of index 4.

We shall now prove Theorem 1.3 in a slightly generalized form.

Theorem 3.19. Let R be a two-dimensional, henselian, excellent local domain
whose residue field k has property By, K the fraction field of R, q a prime number
unequal to the characteristic of k and a € Br(K)[q]. Assume either 1, C R or k is
perfect.

If for every v in the set Qg of discrete valuations of K that correspond to codim-
ension-1 points of regular proper models, the Brauer class o, = @ Qg K, € Br(K,)
is represented by a cyclic algebra of degree q over K,, then o is represented by a
cyclic algebra of degree q over K.

Proof. Let ¥ — Spec R be a regular proper model such that Ramg () is an snc
divisor and that o has no cool points or chilly loops on ¥. By Theorem 3.13
and Remark 3.14(2), it suffices to prove that all the residual classes of « at all
components of Ramg (a) are split by the ramification.

Assume the contrary. Then there is an irreducible component C of Ramg («) such
that the residual classes of « at C are not split by the ramification. Now consider
the discrete valuation v = v¢ of K defined by C. By assumption, «,, € Br(K,)[q] is
cyclic of degree g so that o, = (xy, by) for some yx, € HY(K,, Z/q) and b, € K.
Without loss of generality, we may assume b, = wrn’, where w € K¥ is a uniformizer
for v, w € K is a unit for v and ¢ is an integer such that 0 <t < g — 1.

Let (L/K,, o,) be the pair representing the character x, € Hom.s(Gk,, Z/q). If
L /K, is unramified, then 7 7 0 because « is ramified at v = v¢. Then there exist inte-
gersr, s € Z suchthat 1=rg-+st. Putting 7’ =w*m, we have b, = wrn'’ = (w")?(x')".
Then

oy = (X, by) = (xo, (")) € Br(Ky)lq]

is clearly split by the totally ramified extension K| /K, := K,(¥/7n")/K,. In
particular, the residual class of o with respect to K| /K, is 0 and a fortiori the
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residual classes of « at C are split by the ramification. But this contradicts our
choice of C.

If L/K, is ramified, then it is totally and tamely ramified. So L = K, (¥/0) for
some 6 € K,,. The extension being Galois, it follows that 1, € L. Since the residue
fields of L and K, are the same, Hensel’s lemma implies that 1, C K,. We may
thus assume o, = (u®, by) = (un®, wrr') for some unit u € K’ and some integer s
such that 0 <s < g — 1. Since « is ramified at v = v¢, s and ¢ cannot both be 0.
Assume for instance s > 0. A similar argument as before shows that «,, is split by a
totally ramified extension K, (4/7)/K,, which leads to a contradiction again. This
proves the theorem. U

The following special case, which answers a question in [Colliot-Théleéne et al.
2002, Remark 3.7], will be used in Section 4:

Corollary 3.20. Let R be a two-dimensional, henselian, excellent local domain
with fraction field K and residue field k. Assume that k is a finite field of character-
istic # 2. Let D be a central simple algebra over K of period 2.

If for every v € Qr, D ®k K, is Brauer equivalent to a quaternion algebra
over K, then D is Brauer equivalent to a quaternion algebra over K.

The analog of Theorem 3.19 in the case of a p-adic function field does not seem
to have been noticed. Let us prove it in the following general form:

Theorem 3.21. Let A be a henselian, excellent discrete valuation ring whose
residue field k has property By. Let q be a prime number unequal to the charac-
teristic of k, F the function field of an algebraic curve over the fraction field of A
and a € Br(F)[q]. For every regular surface ¥ with function field F equipped
with a proper flat morphism M — Spec A, let Q(F /Y1) denote the set of discrete
valuations of F corresponding to codimension-1 points of M. Let Q4 r be the union
of all Q(F /YWY, where Y runs over regular surfaces as above.

Assume either g, C F or k is perfect. If, for every v € Q4 F,

o, = ®r F, € Br(F,)

is represented by a cyclic algebra of degree q over F,, then « is represented by a
cyclic algebra of degree q over F.

Proof. By resolution of singularities, there exists a regular surface X with function
field F, together with a proper flat morphism X — Spec A, such that the ramification
divisor Ramy () has only simple normal crossings and « has no cool points or
chilly loops on X. By Corollary 3.12 and Remark 3.14, it suffices to show that all
the residual classes of « are split by the ramification. This may be done as in the
proof of Theorem 3.19. ]
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4. Quadratic forms and the u-invariant

A local-global principle from class field theory. To prove our results on quadratic
forms, a result coming from Saito’s work on class field theory for two-dimensional
local rings will be used at a few crucial points.

As before, let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. The following proposition grows out of a
conversation with S. Saito:

Proposition 4.1. Assume R is normal and the residue field k is finite. Suppose
& — Spec R is a regular proper model such that the reduced divisor on the closed
fiber has only simple normal crossings. Let n > 0 be an integer that is invertible in k.
Then the natural map H3(K, uf}’z) =l H3(K,, Mff’z). is injective.
vex®

Proof. Let Y be the reduced subscheme on the closed fiber of ¥ — Spec R and
U=%\Y. Leti:Y — X and j : U — ¥ denote the natural inclusions, and
put ¥ :=i*Rj,u®?. Let P = (Spec R)(! be the set of codimension-1 points of
Spec R. We may identify P with the set of closed points of U via the struc-
tural map & — Spec R. From localization theories, we obtain exact sequences
[Saito 1987, pp. 358-360]

¢
H (U, u3*) > H (K, u$) = @D H* (Ky, 1), (4-1)
peP
H (Y, %) — @ Hm). 5> @ z/n, 4-2)
ney® xey®

where the map ¢ in (4-1) induced by the natural maps H 3(K, ,uffz) — H3(K P M,;@Z).
Foreachn e Y@ c ¥, let A, be the completion of the discrete valuation ring Oy ,,.
By the functoriality of the functor Rj,, we have the commutative diagram

H3 X, Rjup$?) —— H3(Oxp. Rjupd?) —— H3 (A, Rjp$?)
H3 U, u$? ——  H(K.udH —— H(K,)pu$)

where the vertical maps are canonical isomorphisms. On the other hand, we have a
commutative diagram

H3, Rjun®Y) —— H3(Ox,, Rjun®?) —— H3(Ay, Rjuuf?)

| l k-

HY.F) ——  Hwm. —— Hm).F)
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where the two vertical isomorphisms come from proper base change. Let

0: @ HK,. uP— P z/n

ney©® xey®

be the composition of the map 6’ in (4-2) with the canonical isomorphism

P H &y 1= P H ), D).

ney® ney©®

Putting all things together, we get a commutative diagram with exact rows

¢
H3U, u$?) ——  H3(K.u$?) —— @H (K, u$?)

. )

HNY,5) —— @ HK, 18 —1> P Z/n
ney©® xey®
where the map ¢ is induced by the restriction maps H>(K, u$%) — H3(K,, u®?).
By [Saito 1987, p. 361, Lemma 5.13], the induced map Ker ¢ — Ker t is an
isomorphism. Hence, ¢ induces an isomorphism Ker ¢ = Ker 6. In particular, an
element { € H 3(K, M,?Z) vanishes if and only if ¢(¢) = 0 = ¢(¢). The result then
follows immediately since ¥V = PUY©, U

An application of Proposition 4.1 that we will need is the following variant of
[Parimala and Suresh 2010, Theorem 3.5] (see also [Parimala and Suresh 2012,
Corollary 4.3]):

Theorem 4.2. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k and fraction field K. Let q be a prime number that is different
from the characteristic of k. If uy, C K, then every element in H3(K, ,uf]M) isa
symbol.

Proof. First note that as in [Parimala and Suresh 2010, Corollary 1.2], one can show

that for any v € Qg, the kernel HJ (K, ;Lff’3) of the residue map

HY Ky, 1 2 H2(c (), 1)
is trivial. Indeed, by Corollary 3.16, the residue field « (v) is either a function field
in one variable over k or the fraction field of a henselian discrete valuation ring B
whose residue field k’ is finite over k. In the former case, we have cd, (k (v)) <2
by [Serre 1994, p. 93, Proposition 11] and hence H3(k (v), ,u?3) = 0. In the latter
case, the exact sequence

HY (K, n&) = H(B, 1) — H(k(v), u*) - H* (K, u?)
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implies H(k (v), u&*) =0 since cd(k’) < 1.
Let & — Spec R be a regular proper model. Since H> (K, ufﬁ) = 0 for all
v € Qg, it follows that the kernel of the natural map

HY(K, 12 — [ H Ky 1)
vex®
coincides with

Hy (K /%0, u) = () Ker(dy: HY (K. ng™) — H2(c(v), 15™).
vex®
As gy € K, it follows from Proposition 4.1 that Hrfr(K JEaRH ,u(?3) =0. On the other
hand, Lemma 3.15 implies that & is a g-special surface in the sense of [Parimala and
Suresh 2012, §3]. So the result follows from [Parimala and Suresh 2012, Theorem
4.2]. O

Local-global principle for quadratic forms. Thanks to Corollary 3.20, we are now
in a position to prove the local-global principle for quadratic forms of rank 5
with respect to the set 2z of divisorial valuations as asserted in Theorem 1.1.
Standard notations from the algebraic theory of quadratic forms (as in [Lam 2005]
or [Scharlau 1985]) will be used as of now.

Proof of Theorem 1.1. We follow the ideas in the proof of [Colliot-Thélene et al.
2002, Theorem 3.6]. Let ¢ be a five-dimensional nonsingular quadratic form over K.
Assume that ¢, is isotropic over K, for every v € Q.

The six-dimensional form v := ¢ (— det(¢)) is similar to a so-called Albert
form (a, b, —ab, —c, —d, cd). By the general theory of Albert forms [Gille and Sza-
muely 2006, p. 14, Theorem 1.5.5], the form (a, b, —ab, —c, —d, cd) is isotropic if
and only if the biquaternion algebra D := (a, b) ® (c, d) is not a division algebra. By
assumption, for every v € Qg, ¥, is isotropic over K, so the biquaternion algebra
D, =(a, b)g,®(c, d)k, is not a division algebra. The index of D, must be smaller
than 4, which is the degree. Therefore, D, is Brauer equivalent to a quaternion
algebra over K,. By Corollary 3.20, D = (a, b) ® (¢, d) is Brauer equivalent to a
quaternion algebra over K. In particular, D is not a division algebra over K. Hence,
Y is isotropic over K. This implies that ¢ may be written in the form

¢ =det(¢).(1,a, b, c, abc)
over K. In particular, ¢ is similar to a subform of the threefold Pfister form
IO - «_av _ba _C» = (17 a) ® (17 b) ® <1’ c)-

By Merkurjev’s theorem [Arason 1984, p. 129, Proposition 2], the form p is isotropic
if and only if the symbol class (—a, —b, —c) vanishes. For each v € Q, as the
subform ¢, of p, is isotropic over K, we have (—a, —b, —c) =01in H3(K,,Z)2).
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Then it follows from Proposition 4.1 that (—a, —b, —c) =0in H 3K,Z/)2) (noticing
that we may assume R is normal). Thus, the Pfister form p is isotropic over K and
hence hyperbolic [Lam 2005, p. 319, Theorem 1.7]. The form p then contains a
four-dimensional totally isotropic subspace, which must intersect the underlying
space of the five-dimensional subform ¢ in a nontrivial subspace. Hence, ¢ is
isotropic over K. O

Remark 4.3. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. Assume the characteristic of k is not 2. We
record results and open questions on local-global principle for isotropy of quadratic
forms over K as far as we know.

(1) When the residue field & is finite, Theorem 1.1 establishes the local-global
principle with respect to discrete valuations in 2z only for rank-5 forms. If R is of
the form R = A[[t]], where A is a complete discrete valuation ring, then the same
local-global principle is proved for quadratic forms of any rank > 5 in [Hu 2012b,
Theorem 1.2]. There the residue field may be any C;-field.

(2) For general R with finite residue field, it remains an open question whether the
local-global principle holds for quadratic forms of rank 6, 7 or 8.

(3) Generalizing an earlier result of [Colliot-Thélene et al. 2002], [Hu 2012b,
Theorem 1.1] proves the local-global principle for forms of rank 3 or 4 when the
residue field k is arbitrary (not necessarily finite, C; or By).

(4) The above results do not extend to binary forms even if k is finite. For example,
Jaworski [2001, Theorem 1.5] shows that if K is the fraction field of the ring

R=k[x,y, 21/ — * =) (2 — %),
3

then y? — x3 is a square in K, for every discrete valuation v of K, but it is not a
square in K.

The u-invariant. Let F be a field of characteristic # 2. Let W (F) denote the Witt
ring of quadratic forms over F', and I (F') the fundamental ideal. Fora, ..., a, € F*,
let {ai, ..., a,)) denote the n-fold Pfister form (1, —a;) ® - - - ® (1, —a, ). The n-th
power I"(F) of the fundamental ideal I (F) is generated by the n-fold Pfister forms.
Recall that the u-invariant of F, denoted u(F), is defined as the supremum of
dimensions of anisotropic quadratic forms over F (so u(F) = oo if such dimensions
can be arbitrarily large).

Let R be a two-dimensional, henselian, excellent local domain with fraction
field K and residue field k. Assume that the residue field k£ of R is finite of
characteristic 2. Then the inequality u(K) > 8 may be easily seen as follows. Take
any discrete valuation v corresponding to a height-1 prime ideal of the normalization
of R. It follows from Corollary 3.16 and a theorem of Springer [Scharlau 1985,
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p. 209, Corollary 2.6] that u(x (v)) = 4. Take a four-dimensional diagonal form ¢
over K whose coefficients are units for v such that its residue form ¢ over x (v)
is anisotropic, and let m € K be a uniformizer for v. Then ¢_Lm.¢ is an eight-
dimensional form over K that is anisotropic over K.

The rest of this subsection is devoted to the proof of Theorem 1.2, which asserts
that if k£ is a finite field of characteristic # 2, then u(K) < 8 (or equivalently
u(K) = 8 according to the proceeding paragraph). Basically, we will follow the
method of [Parimala and Suresh 2010] (see also [2012, Appendix]).

Proposition 4.4 [Parimala and Suresh 2010, Proposition 4.3]. Let F be a field of
characteristic # 2. Assume the following properties hold:

() I*(F)=0.
(ii) Every element of I3(F) is represented by a threefold Pfister form.
(iii) Every element of H>(F, Z/2) is the sum of two symbols.

(v) If ¢ is a threefold Pfister form and ¢, is two-dimensional quadratic form
over F, then there exist f,a,b € F* such that f is a value of ¢» and ¢ =
(1, fY®(1,a) ®(1, b) in the Witt group W (F).

W Ifo =11, f)®(l,a) ® (1, b) is a threefold Pfister form and @3 is three-
dimensional quadratic form over F, then there exist g, h € F* such that g is a
value of o3 and ¢ = (1, ) ® (1, g) ® (1, h) in the Witt group W (F).

Then u(F) < 8.

Property (i) in the above proposition is verified for the field K by using the
following deep, well-known theorem:

Theorem 4.5 (Artin—Gabber). Let R be a two-dimensional, henselian, excellent
local domain with fraction field K and finite residue field k.

Then for every prime number p different from the characteristic of k, the p-
cohomological dimension cd,(K) of K is 3.

When K and k have the same characteristic, this follows from a theorem of
Artin [SGA 4.3 1973, Exposé XIX, Corollary 6.3]. When the characteristic of K
is different from that of k, Gabber proved the analog of Artin’s result. A different
proof due to Kato may be given along the lines of the case treated in [Saito 1986,

§5].
Corollary 4.6. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field of characteristic # 2. Let K be the fraction field of R.

Then I1*(K) = 0.
Proof. This follows by combining Theorem 4.5 and a result of Arason, Elman and
Jacob [Arason et al. 1986, Corollary 4]. O
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Lemma 4.7. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. Assume that k is a B, field of characteristic # 2.
Then every element in H*(K, 7Z/2) is the sum of two symbols.

Proof. By Theorem 3.4, every element in Br(K)[2] = H?*(K,Z/2) has index
dividing 4. A well-known theorem of Albert [1939, Chapter XI, §6, Theorem 9]
then implies that it is the class of a tensor product of two quaternion algebras. [J

Proof of Theorem 1.2. We have 13(K) = H3(K, Z/2) in view of Corollary 4.6
[Arason et al. 1986]. Thus, every element of 1 3(K) is represented by a threefold
Pfister form by Theorem 4.2. That the field K has property (iii) in Proposition 4.4 is
proved in Lemma 4.7. Finally, the same argument as in the proof of [Parimala and
Suresh 2012, Appendix, Proposition 3] proves that the field K has properties (iv)
and (v) in Proposition 4.4. The theorem is thus proved. (|

Question 4.8 (Suresh). Let R, K and k be as usual, and assume the residue field &
is an arbitrary (not necessarily finite) field of characteristic # 2. It is known that
u(K) = 4u(k) in each of the following special cases:

(1) k is finite (Theorem 1.2).

(2) k is hereditarily quadratically closed (i.e., every finite extension field of k is
quadratically closed). This basically follows from the proof of [Colliot-Thélene
et al. 2002, Theorem 3.6].

(3) Assume that u(L) < 2%u(k) for every finitely generated field extension L/k
of transcendence degree d < 1. Then Harbater, Hartmann and Krashen have
proved that u(K) = 4u(k) holds in the following cases:

(a) R = A[t], where A is a complete discrete valuation ring [Harbater et al.
2009, Corollary 4.19] and

(b) K is afinite separable extension of k((x, y)) [Harbater et al. 2011, Corollary
4.2].

Question: Is the relation u(K) = 4u(k) always true under the hypothesis of (3)?
Is it true when assuming moreover R is complete?

Torsors under special orthogonal groups.

Theorem 4.9. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. Assume k is a finite field of characteristic # 2.
Then for any nonsingular quadratic form ¢ of rank > 2 over K, the natural map

H'(K,S0(¢) - [] H' (K, SO(9))

v EQR
is injective.
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Proof. Let ¥ and ¢’ be nonsingular quadratic forms representing classes in
H'(K,SO(¢)). As they have the same dimension, the forms v and ¥’ are isometric
if and only if they represent the same class in the Witt group. Since v and ¥’
also have the same discriminant, it follows from [Scharlau 1985, p. 82, Chapter 2,
Lemma 12.10] that ¢ — " € I>(K). Now it suffices to apply Lemma 4.10 below. [J

Lemma 4.10. Let R, K and k be as in Theorem 4.9. The natural map
PK)— [ r’«w.

. .. . UEQR

is injective.

Proof. In the case where R is the henselization of an algebraic surface over a finite
field at a closed point, this is already established in [Colliot-Thélene et al. 2002,
Theorem 3.10]. Here the argument is essentially the same with Proposition 4.1 and
Corollary 4.6 substituting appropriate ingredients in that case. ([

Remark 4.11. In Theorem 4.9, if ¢ is of dimension 2 or 3, one need not assume
the residue field & finite.

Indeed, let ¢ and v/’ be nonsingular forms representing classes in H' (K, SO(¢)).
In the two-dimensional case, assume ' = (a, b) and ¥ = («, 8). Then ' = if
and only if the quaternion algebras (a, b) and (o, ) are isomorphic since the two
forms have the same discriminant [Scharlau 1985, Chapter 2, Corollary 11.11]. In
the three-dimensional case, assume ' = (a, b, ¢) and ¥ = (&, B, ¥). Then ' = ¢
if and only if the quaternion algebras (—ac, —bc) and (—ay, —fy) are isomorphic
[Scharlau 1985, Chapter 2, Theorem 11.12]. Since two quaternion algebras are
isomorphic if and only if their classes in the Brauer group coincide, the result then
follows from the injectivity of the natural map

Br(K) - [ ] Br(Ky).
UEQR
this last local-global statement being essentially established in [Colliot-Thélene
et al. 2002, §1] (see also the proof of [Hu 2012b, Theorem 1.1]).
Remark 4.12. Let F be a field of characteristic = 2 and 2 a set of discrete
valuations of F. For each integer r > 2, consider the following statements:

(LG,) For any two nonsingular quadratic forms of rank r that have the same
discriminant over F, if they are isometric over F, for every v € €2, then they must
already be isometric over F.

(LG,) If a nonsingular quadratic form of rank r over F is isotropic over F, for
every v € 2, then it is isotropic over F.

Theorem 4.9 amounts to saying that for every r > 2, (LG, ) is true for the field K
with respect to its divisorial valuations. Our proof of this theorem does not rely on
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the local-global principle for the isotropy of quadratic forms. Note however that over
an arbitrary field F (of characteristic # 2) one has (LG, ) + (LG/, 12) = (LGy41).

Indeed, let v, ¥ be nonsingular quadratic forms of rank r + 1 over F that have
the same discriminant. Assume ¥ = (a;) Ly with ¢y of rank r. If (V) p, = (V') F,
for every v € Q, then (' _L(—ay))r, is isotropic for every v € Q2. By the local-global
principle (LG, ,), ¥’ represents a; over F whence a decomposition ¢ = (a;) L.
It then suffices to apply (LG, ) to the forms v/ and /|, thanks to Witt’s cancellation
theorem.

Together with the argument in Remark 4.11, this shows that if the natural map
Br(F) — [[,cq Br(Fy) is injective and if the local-global principle with respect
to €2 holds for quadratic forms of rank > 5 over F, then (LG,) is true for all r > 2.
In particular, if F is the function field of an algebraic curve over the fraction field of
a complete discrete valuation ring with arbitrary residue field of characteristic # 2,
then the analog of Theorem 4.9 over F is true by [Colliot-Thélene et al. 2012,
Theorems 3.1 and 4.3]. Note also that in this situation (LGY}) is false in general.

Acknowledgements

I got interested in the problems considered in this paper when I was attending the
workshop “Deformation theory, patching, quadratic forms, and the Brauer group”
held at American Institute of Mathematics in Palo Alto, CA, in January 2011.
I thank AIM and the organizers of this workshop for their kind hospitality and
generous support. I'm grateful to my advisor, Professor Jean-Louis Colliot-Thélene,
for helpful discussions and comments. Thanks are also due to Professor Shuji
Saito, with whom a conversation has helped me find the answer to a question that is
needed in the paper. I also thank Professors Raman Parimala and Venapally Suresh
for sending me their new preprint on degree-3 cohomology. I'm indebted to the
referee for a long list of valuable comments.

References

[Albert 1939] A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ. 24, American
Mathematical Society, Providence, RI, 1939. Reprinted 1961. MR 1,99¢ Zbl 0023.19901

[Arason 1984] J. K. Arason, “A proof of Merkurjev’s theorem”, pp. 121-130 in Quadratic and
Hermitian forms (Hamilton, ON, 1983), CMS Conf. Proc. 4, American Mathematical Society,
Providence, RI, 1984. MR 86f:11029 Zbl 0556.10009

[Arason et al. 1986] J. K. Arason, R. Elman, and B. Jacob, “Fields of cohomological 2-dimension
three”, Math. Ann. 274:4 (1986), 649-657. MR 87m:12006 Zbl 0576.12025

[Brussel 2010] E. Brussel, “On Saltman’s p-adic curves papers”, pp. 13-39 in Quadratic forms,
linear algebraic groups, and cohomology, edited by J.-L. Colliot-Thélene et al., Dev. Math. 18,
Springer, New York, 2010. MR 2011k:16041 Zbl 1245.16014

[Colliot-Thélene 1995] J.-L. Colliot-Thélene, “Birational invariants, purity and the Gersten conjec-
ture”, pp. 1-64 in K -theory and algebraic geometry: connections with quadratic forms and division


http://msp.org/idx/mr/1,99c
http://msp.org/idx/zbl/0023.19901
http://msp.org/idx/mr/86f:11029
http://msp.org/idx/zbl/0556.10009
http://dx.doi.org/10.1007/BF01458600
http://dx.doi.org/10.1007/BF01458600
http://msp.org/idx/mr/87m:12006
http://msp.org/idx/zbl/0576.12025
http://dx.doi.org/10.1007/978-1-4419-6211-9_2
http://msp.org/idx/mr/2011k:16041
http://msp.org/idx/zbl/1245.16014

1950 Yong Hu

algebras (Santa Barbara, CA, 1992), edited by B. Jacob and A. Rosenberg, Proc. Sympos. Pure
Math. 58, American Mathematical Society, Providence, RI, 1995. MR 96¢:14016 Zbl 0834.14009

[Colliot-Thélene 1998] J.-L. Colliot-Thélene, “Zentralblatt MATH review of [Saltman 1997]”, 1998,
Available at http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0902.16021.

[Colliot-Thélene 2006] J.-L. Colliot-Thélene, “Algebres simples centrales sur les corps de fonctions
de deux variables (d’apres A. J. de Jong) (Exposé 949)”, pp. 379413 in Séminaire Bourbaki
2004/2005, Astérisque 307, Société Mathématique de France, Paris, 2006. MR 2008b:14078
Zbl 1123.14012

[Colliot-Thélene et al. 2002] J.-L. Colliot-Thélene, M. Ojanguren, and R. Parimala, “Quadratic forms
over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes”, pp.
185-217 in Algebra, arithmetic and geometry (Mumbai, 2000), vol. 1, edited by R. Parimala, Tata
Inst. Fund. Res. Stud. Math. 16, Narosa Publishing House, New Delhi, 2002. MR 2004c:14031
Zbl 1055.14019

[Colliot-Thélene et al. 2012] J.-L. Colliot-Thélene, R. Parimala, and V. Suresh, “Patching and local-
global principles for homogeneous spaces over function fields of p-adic curves”, Comment. Math.
Helv. 87:4 (2012), 1011-1033. MR 2984579 Zbl 06104833

[Gille and Szamuely 2006] P. Gille and T. Szamuely, Central simple algebras and Galois coho-
mology, Cambridge Studies in Advanced Mathematics 101, Cambridge University Press, 2006.
MR 2007k:16033 Zbl 1137.12001

[Grothendieck 1961] A. Grothendieck, “Eléments de géométrie algébrique, I1I: Etude cohomologique
des faisceaux cohérents,”, Inst. Hautes Etudes Sci. Publ. Math. 11 (1961), 5-167. MR 36 #177a
Zbl 0118.36206

[Grothendieck 1967] A. Grothendieck, “Eléments de géométrie algébrique, IV: Etude locale des
schémas et des morphismes de schémas, IV”, Inst. Hautes Etudes Sci. Publ. Math. 32 (1967), 5-361.
MR 39 #220 Zbl 0153.22301

[Grothendieck 1968a] A. Grothendieck, “Le groupe de Brauer, II: Théorie cohomologique”, pp.
67-87 in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968. MR 39
#5586b Zbl 0198.25803

[Grothendieck 1968b] A. Grothendieck, “Le groupe de Brauer, III: Exemples et compléments”, pp.
88-188 in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968. MR 39
#5586¢ Zbl 0198.25901

[Harbater et al. 2009] D. Harbater, J. Hartmann, and D. Krashen, “Applications of patching to
quadratic forms and central simple algebras”, Invent. Math. 178:2 (2009), 231-263. MR 2010j:11058
Zbl 05627032

[Harbater et al. 2011] D. Harbater, J. Hartmann, and D. Krashen, “Weierstrass preparation and
algebraic invariants”, preprint, 2011. arXiv 1109.6362

[Heath-Brown 2010] D. R. Heath-Brown, “Zeros of systems of p-adic quadratic forms”, Compos.
Math. 146:2 (2010), 271-287. MR 2011e:11066 Zbl 1194.11047

[Hoffmann and Van Geel 1998] D. W. Hoffmann and J. Van Geel, “Zeros and norm groups of
quadratic forms over function fields in one variable over a local non-dyadic field”, J. Ramanujan
Math. Soc. 13:2 (1998), 85-110. MR 2000c:11058 Zbl 0922.11032

[Hu 2012a] Y. Hu, “Hasse principle for simply connected groups over function fields of surfaces”,
preprint, 2012. arXiv 1203.1075

[Hu 2012b] Y. Hu, “Local-global principle for quadratic forms over fraction fields of two-dimensional
Henselian domains”, Ann. Inst. Fourier (Grenoble) 62:6 (2012), 2131-2143 (2013). MR 3060754
Zbl 06159908


http://msp.org/idx/mr/96c:14016
http://msp.org/idx/zbl/0834.14009
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0902.16021
http://msp.org/idx/mr/2008b:14078
http://msp.org/idx/zbl/1123.14012
http://msp.org/idx/mr/2004c:14031
http://msp.org/idx/zbl/1055.14019
http://dx.doi.org/10.4171/CMH/276
http://dx.doi.org/10.4171/CMH/276
http://msp.org/idx/mr/2984579
http://msp.org/idx/zbl/06104833
http://dx.doi.org/10.1017/CBO9780511607219
http://dx.doi.org/10.1017/CBO9780511607219
http://msp.org/idx/mr/2007k:16033
http://msp.org/idx/zbl/1137.12001
http://www.numdam.org/numdam-bin/item?id=PMIHES_1967__32__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1967__32__5_0
http://msp.org/idx/mr/36:177a
http://msp.org/idx/zbl/0118.36206
http://www.numdam.org/numdam-bin/item?id=PMIHES_1967__32__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1967__32__5_0
http://msp.org/idx/mr/39:220
http://msp.org/idx/zbl/0153.22301
http://msp.org/idx/mr/39:5586b
http://msp.org/idx/mr/39:5586b
http://msp.org/idx/zbl/0198.25803
http://msp.org/idx/mr/39:5586c
http://msp.org/idx/mr/39:5586c
http://msp.org/idx/zbl/0198.25901
http://dx.doi.org/10.1007/s00222-009-0195-5
http://dx.doi.org/10.1007/s00222-009-0195-5
http://msp.org/idx/mr/2010j:11058
http://msp.org/idx/zbl/05627032
http://msp.org/idx/arx/1109.6362
http://dx.doi.org/10.1112/S0010437X09004497
http://msp.org/idx/mr/2011e:11066
http://msp.org/idx/zbl/1194.11047
http://msp.org/idx/mr/2000c:11058
http://msp.org/idx/zbl/0922.11032
http://msp.org/idx/arx/1203.1075
http://dx.doi.org/10.5802/aif.2745
http://dx.doi.org/10.5802/aif.2745
http://msp.org/idx/mr/3060754
http://msp.org/idx/zbl/06159908

Division algebras and quadratic forms over fraction fields 1951

[Jaworski 2001] P. Jaworski, “On the strong Hasse principle for fields of quotients of power series
rings in two variables”, Math. Z. 236:3 (2001), 531-566. MR 2002h:11034 Zbl 1009.11027

[de Jong 2004] A. J. de Jong, “The period-index problem for the Brauer group of an algebraic
surface”, Duke Math. J. 123:1 (2004), 71-94. MR 2005e:14025 Zbl 1060.14025

[Kato 1986] K. Kato, “A Hasse principle for two-dimensional global fields”, J. Reine Angew. Math.
366 (1986), 142-183. MR 88b:11036 Zbl 0576.12012

[Lam 2005] T.Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics
67, American Mathematical Society, Providence, RI, 2005. MR 2005h:11075 Zbl 1068.11023

[Leep 2013] D. B. Leep, “The u-invariant of p-adic function fields”, preprint, 2013.

[Lieblich 2011a] M. Lieblich, “Period and index in the Brauer group of an arithmetic surface”, J.
Reine Angew. Math. 659 (2011), 1-41. MR 2837009 Zbl 1230.14021

[Lieblich 2011b] M. Lieblich, “The period-index problem for fields of transcendence degree 27,
preprint, 2011. arXiv 0909.4345v2

[Lipman 1975] J. Lipman, “Introduction to resolution of singularities”, pp. 187-230 in Algebraic
geometry (Arcata, CA, 1974), edited by R. Hartshorne, Proc. Sympos. Pure Math. 29, American
Mathematical Society, Providence, RI, 1975. MR 52 #10730 Zbl 0306.14007

[Lipman 1978] J. Lipman, “Desingularization of two-dimensional schemes”, Ann. Math. (2) 107:1
(1978), 151-207. MR 58 #10924 Zbl 0349.14004

[Liu 2002] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics
6, Oxford University Press, 2002. MR 2003g:14001 Zbl 0996.14005

[Milne 1980] J. S. Milne, Etale cohomology, Princeton Mathematical Series 33, Princeton University
Press, 1980. MR 81j:14002 Zbl 0433.14012

[Parimala and Suresh 2010] R. Parimala and V. Suresh, “The u-invariant of the function fields of
p-adic curves”, Ann. of Math. (2) 172:2 (2010), 1391-1405. MR 2011g:11074 Zbl 1208.11053

[Parimala and Suresh 2012] R. Parimala and V. Suresh, “Degree three cohomology of function fields
of surfaces”, preprint, 2012.

[Saito 1986] S. Saito, “Arithmetic on two-dimensional local rings”, Invent. Math. 85:2 (1986),
379-414. MR 87j:11060 Zbl 0609.13003

[Saito 1987] S. Saito, “Class field theory for two-dimensional local rings”, pp. 343-373 in Galois
representations and arithmetic algebraic geometry (Kyoto, 1985, Tokyo, 1986), edited by Y. Ihara,
Adyv. Stud. Pure Math. 12, North-Holland, Amsterdam, 1987. MR 90h:11053 Zbl 0672.12006

[Saltman 1997] D. J. Saltman, “Division algebras over p-adic curves”, J. Ramanujan Math. Soc. 12:1
(1997), 25-47. Correction in 13:2 (1998), 125-129. MR 98d:16032 Zbl 0902.16021

[Saltman 1998] D.J. Saltman, “Correction to ‘Division algebras over p-adic curves’ (J. Ramanujan
Math. Soc. 12:1 (1997), 25-47)”, J. Ramanujan Math. Soc. 13:2 (1998), 125-129. MR 99k:16036

[Saltman 2007] D. J. Saltman, “Cyclic algebras over p-adic curves”, J. Algebra 314:2 (2007), 817—
843. MR 2008i:16018 Zbl 1129.16014

[Saltman 2008] D.J. Saltman, “Division algebras over surfaces”, J. Algebra 320:4 (2008), 1543-1585.
MR 2009d:16028 Zbl 1171.16011

[Scharlau 1985] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss. 270,
Springer, Berlin, 1985. MR 86k:11022 Zbl 0584.10010

[Serre 1994] J.-P. Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics 5, Springer,
Berlin, 1994. MR 96b:12010 Zbl 0812.12002


http://dx.doi.org/10.1007/PL00004841
http://dx.doi.org/10.1007/PL00004841
http://msp.org/idx/mr/2002h:11034
http://msp.org/idx/zbl/1009.11027
http://dx.doi.org/10.1215/S0012-7094-04-12313-9
http://dx.doi.org/10.1215/S0012-7094-04-12313-9
http://msp.org/idx/mr/2005e:14025
http://msp.org/idx/zbl/1060.14025
http://dx.doi.org/10.1515/crll.1986.366.142
http://msp.org/idx/mr/88b:11036
http://msp.org/idx/zbl/0576.12012
http://msp.org/idx/mr/2005h:11075
http://msp.org/idx/zbl/1068.11023
http://dx.doi.org/10.1515/crelle.2012.029
http://dx.doi.org/10.1515/CRELLE.2011.059
http://msp.org/idx/mr/2837009
http://msp.org/idx/zbl/1230.14021
http://msp.org/idx/arx/0909.4345v2
http://msp.org/idx/mr/52:10730
http://msp.org/idx/zbl/0306.14007
http://dx.doi.org/10.2307/1971141
http://msp.org/idx/mr/58:10924
http://msp.org/idx/zbl/0349.14004
http://msp.org/idx/mr/2003g:14001
http://msp.org/idx/zbl/0996.14005
http://msp.org/idx/mr/81j:14002
http://msp.org/idx/zbl/0433.14012
http://dx.doi.org/10.4007/annals.2010.172.1397
http://dx.doi.org/10.4007/annals.2010.172.1397
http://msp.org/idx/mr/2011g:11074
http://msp.org/idx/zbl/1208.11053
http://dx.doi.org/10.1007/BF01389096
http://msp.org/idx/mr/87j:11060
http://msp.org/idx/zbl/0609.13003
http://msp.org/idx/mr/90h:11053
http://msp.org/idx/zbl/0672.12006
http://msp.org/idx/mr/98d:16032
http://msp.org/idx/zbl/0902.16021
http://msp.org/idx/mr/99k:16036
http://dx.doi.org/10.1016/j.jalgebra.2007.03.003
http://msp.org/idx/mr/2008i:16018
http://msp.org/idx/zbl/1129.16014
http://dx.doi.org/10.1016/j.jalgebra.2008.02.028
http://msp.org/idx/mr/2009d:16028
http://msp.org/idx/zbl/1171.16011
http://dx.doi.org/10.1007/978-3-642-69971-9
http://msp.org/idx/mr/86k:11022
http://msp.org/idx/zbl/0584.10010
http://msp.org/idx/mr/96b:12010
http://msp.org/idx/zbl/0812.12002

1952 Yong Hu

[SGA 4.2 1972] M. Artin, A. Grothendieck, and J. L. Verdier, Séminaire de Géométrie Algébrique du
Bois Marie 1963 /64: Théorie des topos et cohomologie étale des schémas (SGA 4), tome 2, Lecture
Notes in Mathematics 270, Springer, Berlin, 1972. MR 50 #7131 Zbl 0237.00012

[SGA 4.3 1973] M. Artin, A. Grothendieck, and J. L. Verdier, Séminaire de Géométrie Algébrique du
Bois Marie 1963/64: Théorie des topos et cohomologie étale des schémas (SGA 4), tome 3, Lecture
Notes in Mathematics 305, Springer, Berlin, 1973. MR 50 #7132 Zbl 0245.00002

[Shafarevich 1966] 1. R. Shafarevich, Lectures on minimal models and birational transformations of
two dimensional schemes, Tata Inst. Fund. Res. Lectures on Math. and Phys. 37, Tata Institute of
Fundamental Research, Bombay, 1966. MR 36 #163 Zbl 0164.51704

Communicated by Raman Parimala
Received 2012-05-31 Revised 2012-09-09 Accepted 2012-10-15

hu1983yong@gmail.com Université Paris-Sud 11, 15 rue Georges Clemenceau,
Mathématiques, Batiment 425, 91405 Orsay Cedex, France

mathematical sciences publishers :.msp


http://library.msri.org/nonmsri/sga/sga/pdf/sga4-2.pdf
http://library.msri.org/nonmsri/sga/sga/pdf/sga4-2.pdf
http://msp.org/idx/mr/50:7131
http://msp.org/idx/zbl/0237.00012
http://library.msri.org/nonmsri/sga/sga/pdf/sga4-3.pdf
http://library.msri.org/nonmsri/sga/sga/pdf/sga4-3.pdf
http://msp.org/idx/mr/50:7132
http://msp.org/idx/zbl/0245.00002
http://msp.org/idx/mr/36:163
http://msp.org/idx/zbl/0164.51704
mailto:hu1983yong@gmail.com
http://msp.org

ALGEBRA AND NUMBER THEORY 7:8 (2013)
dx.doi.org/10.2140/ant.2013.7.1953

The operad structure of
admissible G-covers

Dan Petersen

We describe the modular operad structure on the moduli spaces of pointed stable
curves equipped with an admissible G-cover. To do this we are forced to introduce
the notion of an operad colored not by a set but by the objects of a category. This
construction interpolates in a sense between “framed” and “colored” versions
of operads; we hope that it will be of independent interest. An algebra over the
cohomology of this operad is the same thing as a G-equivariant CohFT, as defined
by Jarvis, Kaufmann and Kimura. We prove that the (orbifold) Gromov—Witten
invariants of global quotients [X/G] give examples of G-CohFTs.

1. Introduction

The notion of a cohomological field theory (CohFT) was introduced by Kontsevich
and Manin [1994] as a simpler algebro-geometric relative of the notion of a (141)-
dimensional topological conformal field theory, where holomorphic holes have been
replaced with marked points (so one gets a theory modeled on gluing of compact
Riemann surfaces along markings) and singular chains on moduli space have been
replaced by (co)homology. One can give a succinct definition of a CohFT in the
language of modular operads [Getzler and Kapranov 1998]: a CohFT is nothing
but a coalgebra over the modular co-operad H*(M ¢.n» @). The main examples of
CohFTs are the Gromov—Witten invariants of smooth projective varieties [Behrend
and Manin 1996; Behrend 1997; Behrend and Fantechi 1997].

Jarvis, Kaufmann and Kimura [Jarvis et al. 2005] defined a generalization called
a G-CohFT, where G is a finite group. Here one glues instead marked Riemann
surfaces C equipped with a branched covering P — C which forms a G-torsor
away from the markings. The gluing rules need to be slightly modified: firstly
because one needs a marked point on P over each marked point on C in order that
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the gluing is independent of choices, secondly because one needs to impose the
condition that the monodromies around the respective markings should be inverse
to each other. In algebraic language, going from CohFTs to G-CohFTs corresponds
to going from M ¢.n tO spaces /Wgn of admissible G-covers. One expects the
main source of G-CohFTs to be the Gromov—Witten invariants of a global quotient
[X/G] (in the sense of orbifolds or stacks) of a smooth projective variety by a
finite group [Chen and Ruan 2002; Abramovich et al. 2008]. Similar ideas can be
found in a letter from Kontsevich to Borisov from 1996, published in [Abramovich
2008].

Analogous constructions have existed for a longer time in the physics literature,
arising from Chern—Simons theory with a finite gauge group, see for example
[Dijkgraaf and Witten 1990; Freed 1994]. Also closely related is Turaev’s notion of
a homotopy quantum field theory [Turaev 2010], which is a TQFT where all spaces
and cobordisms are equipped with a map up to homotopy to a fixed target space X.
Taking X a K (G, 1) shows the similarity with G-CohFTs.

The definition of a G-CohFT in [Jarvis et al. 2005] is unsatisfactory in one minor
respect. A G-CohFT is defined by a list of axioms, but just as for ordinary CohFTs
one would expect it to be possible to bundle together these axioms by stating that a
G-CohFT is an algebra over a certain operad. And it is clear from the definition
that a G-CohFT is an algebra over something, it is just not clear in what sense the
spaces Mgn form an operad.

We claim that the correct definition is that {./Wgn} forms a modular operad
colored by a category. The category in question is the action groupoid of G acting
on itself by conjugation, the so-called loop groupoid of the group G. Moreover, this
groupoid carries an involution given by ‘“changing orientation of the loop”, which
corresponds to inversion in the group, and the gluing rules need to be modified in
order to accommodate this involution.

Let us give a brief outline of the article. Section 2 contains background. We
recall the notions of an admissible G-cover, of a category with duality, and of the
loop groupoid of a finite group. As we will see in this paper, the structure of a
category with duality is the “correct” structure to put on a category in order that it
can serve as the collection of colors of a modular operad. The loop groupoid of
a finite group is a category with duality, with the duality operation given by the
inversion described in the preceding paragraph.

Section 3 contains a formal definition of a colored modular operad where the
colors form a category with duality. We have not seen this defined in the literature.
Although it is quite easy to define what this should mean for an ordinary operad, it
is a bit subtle to come up with the “right” definition when one considers structures
defined by more general graphs than trees (that is, cyclic, wheeled, modular, etc.
versions of operads).
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After this we explain in Section 4 how the work of Jarvis, Kaufmann and Kimura
fits into this framework. We prove a result left open in their article, that the
Gromov—Witten invariants of a global quotient [ X/ G] endow the ring

H* (X, G)

of Fantechi and Gottsche with the structure of a G-CohFT.

In a sequel to this paper, we will extend the formalism of symmetric functions to
this setting, and prove an analogue of Getzler and Kapranov’s formula [Getzler and
Kapranov 1998] for the effect of the “free modular operad” functor on the level of
symmetric functions.

2. Background

In this section we begin by explaining the definition of an admissible G-cover, and
the stratification of the moduli space of such covers, in an operad-like way. After
that we recall the notion of a category with duality, that is, a category C equipped
with a coherent equivalence C = C°P. It turns out that whereas any category can
serve as the collection of colors of an ordinary operad, only a category with duality
can be the collection of colors of a cyclic or modular operad (or a similar operad-like
structure modeled on undirected graphs). This is analogous to how any vector space
can be an algebra over an operad, but only a vector space with an inner product can
be an algebra over a cyclic operad.

Finally we recall the notion of the loop groupoid £G associated to the finite
group G, and define the way in which we shall consider £G a category with duality.
The relevance of this groupoid is that the spaces of admissible G-covers turn out to
be an operad colored by £G whose algebras are exactly G-CohFTs. Let us remark
that the appearance of the groupoid £G is not a coincidence. For one thing, it turns
out that an algebra over a C-colored operad needs in particular to be a representation
of C. Moreover, a representation of £G is exactly the same as a module over the
Drinfel’d (quantum) double of the group G. This module structure is well known
in Dijkgraaf—Witten theory, see for example [Dijkgraaf et al. 1991; Freed 1994],
and the more recent references [Kaufmann and Pham 2009; Willerton 2008] on the
mathematical side.

Moduli of admissible G-covers. Consider first the topological version of the story:
let G be a (finite) group, and consider a variant of 2-dimensional TQFT modeled
on sewing of compact oriented surfaces with boundary, equipped with a G-bundle.
Then there is a basic compatibility condition needed in the definition of the sewing:
for each boundary component, we get a G-bundle on S!, and to glue surfaces we
need an isomorphism between these G-bundles.

In the algebraic version, there is no analogue of gluing surfaces with boundary,
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and one is forced to work with punctured or marked surfaces. Since the G-cover
will not in general extend across the punctures, one is moreover forced to work
with ramified covers instead.

Definition 2.1. Let G be a finite group, and C an n-pointed nodal curve. An
admissible G-cover is a covering w: P — C and a G-action on P, such that:

(1) the quotient P/G is identified with C via 7;
(2) the map = is a G-torsor away from the nodes and markings;

(3) if x € P is a node, then the stabilizer G, acts on the tangent spaces of the two
branches at x by characters which are inverses of each other.

Condition (3) is the algebraic analogue of the sewing condition in the topological
setting. Suppose we are given two Riemann surfaces C and C” with marked points y
and y’. Let C be the nodal surface obtained by gluing y and y’. Let P — C \ {y}
and P’ — C’\ {y’} be G-torsors. These extend uniquely to ramified covers of C
and C’, and by choosing points x, x" in the fibers over y and y’ they can be glued
together to a covering P — C whenever the isotropy groups G, and G, coincide.
But in general the resulting covering will not be smoothable, in the sense that there
is no family of G-covers P, — C; of smooth curves, such that the limit as t — 0 of
this family is P — C. Clearly, the topological obstruction to such a smoothing is
that the monodromies of P — C \ {y} and P’ — C’\ {y’}, computed with respect
to x and x’, are inverse to each other in G. This final condition is equivalent to
condition (3), which however makes sense over an arbitrary base field. Nevertheless,
we shall stick to the language of Riemann surfaces in this article.

Though the notion of an admissible cover predates their work (admissible covers
traditionally arise when one tries to compactify moduli spaces of unramified covers:
see [Beauville 1977; Harris and Mumford 1982]), Definition 2.1 was first written
down in this form in [Abramovich et al. 2003]. (They call coverings satisfying
(3) balanced. We omit this adjective, as there will be no need for unbalanced
coverings.) They also construct a moduli space for such covers. This theory arises
from Abramovich, Vistoli and their coauthors’ work on defining Gromov—Witten
invariants of stacks: it is the special case of stable maps where the target space is
the stack BG.

Definition 2.2. We denote by /\_/lgn the moduli stack parametrizing admissible
G-covers P — C, where C is a stable n-pointed curve of genus g, together with a
choice of a point x; € P over every marked point y; € C.

That we include liftings x; of the points y; is crucial in order for there to be a
natural operad structure.
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The operadic structure. The spaces /Wg ,, admit a kind of stratification by topolog-
ical type, analogous to that of M ¢.n- To an admissible cover P — C we associate
a stable graph, namely the dual graph of C. The choice of a point in the fiber
over each marking on C produces extra structure on this graph: by considering the
monodromy of the covering over each marked point, we find that the legs of the
graph are decorated by elements of G. Condition (3) above implies that the spaces
/Wgn have partially defined analogues of the gluing maps for M ¢.n- one can glue
together two legs precisely when they have mutually inverse decorations. So it
would seem that they form a kind of colored operad where there is an involution on
the collection of colors.

However, there is further structure present: the wreath product G:'S,, acts on
/\_/lgn, where S, acts by permuting the markings and each copy of G acts by
changing the choice of the lifted point x; € P. Changing the point x; to g - x; has
the effect of changing the monodromy by conjugation with g. Hence G acts both
on the spaces involved and on the set of colors (by conjugation), and the gluing
maps are equivariant for this G-action.

Moreover, since there are no distinguished points in P in the fibers over the
nodes of C, we see that gluing two points together also involves simultaneously
forgetting the choices of liftings over the two markings, that is, quotienting by a
diagonal action of G acting on both markings that are being glued together. It is
instructive to compare this to the framed little disks operad, which parametrizes
little disks equipped with a marked point on their boundaries, and gluing involves
forgetting about this marked point.

We claim that the correct formalism for describing all this data— the presence
of a coloring, the fact that gluing means simultaneously quotienting by the action
of a group acting “on the legs”, and compatibility with the action of the group on
the set of colors —is the following: the spaces Mgn form a colored operad where
the colors are the objects of the action groupoid [G/G] in which G acts on its
underlying set by conjugation. Finally there is the condition of inverse monodromy,
which is now most easily described as an involution of this groupoid.

Categories with duality. The notion of a category with duality appears to have first
arisen in K-theory, see for example [Knus 1991].

Definition 2.3. A category with duality is a category C equipped with a contravariant
functor v: C — C, and a natural isomorphism

n: ide > VoV,
such that the composition
nv v
V—>VoVoV —V

is the identity.
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Remark 2.4. To make sense of the last equation in the preceding definition, recall
that if ¢ : F' — G is a natural transformation, and H is a contravariant functor, then
the horizontal composition has reversed direction: one has He: HG — HF.

We write x rather than Vv (x), where x is either an object or a morphism in C.
An equivalent, more symmetric, definition is the following:

Definition 2.5. A category with duality is a category C equipped with a functor
Vv: C — C°, such that v and VP are quasi-inverses, and the resulting counit and
unit VPV — id¢ and idger — VP are opposites of each other.

Example 2.6. The category of finitely generated projective modules over a ring A
becomes a category with duality if we define MY = Hom(M, A). More generally,
any compact closed category is a category with duality.

Example 2.7. Any groupoid is a category with duality, with Vv the identity on
objects and g¥ = g~! on morphisms.

Example 2.8. A discrete category with duality is a set with an involution.

Definition 2.9. A pairing between two objects x and y of a category with duality
is a morphism ¢: x — y". (Equivalently, it is a morphism y — x.)

Definition 2.10. A pairing between x and itself is said to be symmetric if ¥ on, = ¢.

Example 2.11. In the category of finitely generated projective A-modules, a pairing
between M and N isamap M ® N — A, and a symmetric pairing is a symmetric
bilinear form.

If C and D are categories with duality, then so is the functor category [C, D]: if
F: C — D is a functor, its dual is defined as Vp o F o Vg.

Definition 2.12. A weak symmetric functor C — D is a functor F in [C, D] with a
symmetric pairing.

Explicitly, this means we have a functor F: C — D and a natural transformation
p: Fovg— VpoF
such that the diagram

Fove

VpolF
no ne
VpoVpoFoVe LN VpoFoVeoVe
commutes. If p is an isomorphism, then F is strong symmetric.

Example 2.13. A weak symmetric functor from the one-object one-morphism
category into C is an object of C with a symmetric pairing.
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Example 2.14. The category fdHilb is naturally a category with duality, with Vv
the identity on objects and 7" the adjoint of 7. Let G be a group, considered
as a category with duality as in Example 2.7. A (weak or strong) symmetric
functor G — fdHilb is a unitary representation of G.

Example 2.15. If F is weak symmetric, then a pairing between x and y induces a
pairing between F(x) and F(y).

The loop groupoid.

Definition 2.16. Let G be a group. We denote by £G the action groupoid of G
acting on its underlying set by conjugation, and call this the loop groupoid of G.

Remark 2.17. The groupoid £G can equivalently (and more generally) be de-
scribed as the functor category Fun(Z, G), where Z and G are considered as one-
object categories. Since |Z| ~ S I where | * | denotes geometric realization, this
explains the terminology.

Remark 2.18. One can show that for any two groupoids G and H, there is a
homotopy equivalence

|Fun(#, G)| ~ map(|H|, |G]),

see for instance [Strickland 2000]. In particular, |£G]| is the space LBG of free
loops on the classifying space BG. Another way to think about this is that £G is
isomorphic to the groupoid of C-points of the inertia stack of BG (see [Abramovich
2008, Section 5], for instance). The relationship between these viewpoints is that
the inertia stack 7 (/X) is in general defined as the fiber product X x yyx x X. On the
other hand, LX is given by the homotopy pullback X ngx x X, for any space X.

In any case, this leads to a geometrically appealing situation. We are trying to
combinatorially model gluing of surfaces equipped with G-torsors. In the topologi-
cal setting, we needed for any two boundary circles an isomorphism between the
respective G-bundles, which are (up to homotopy) points of LBG. Now we replace
surfaces with their dual graphs, and find that we must decorate legs by £G, which
is a combinatorial model of LBG.

Definition 2.19. Let C be a groupoid and k a field. We define the groupoid alge-
bra k[C] to be the k-algebra which is spanned as a vector space by the morphisms
in C, and whose product is defined on generators by

fog 1if this composition makes sense,

f*g={

0 otherwise.

This is extended bilinearly.
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Just as for finite groups, k[C] is naturally a Hopf algebra, and a representation
of C is a k[C]-module. If G is a finite group, then k[£G] is exactly the Drinfel’d
double of the usual group algebra k[G], as mentioned in the introduction.

We shall always consider £G as a category with duality in the following way:
first observe that Z and G, both being groups, carry a natural structure of category
with duality. As remarked earlier, the category of functors between two categories
with duality is again a category with duality, which gives a canonical such structure
on £G = Fun(Z, G). More explicitly, the equivalence G — (££G)°P is defined
on objects by g — g~!, on morphisms by

h _ _1 k! 1, —
(g = hgh™ > (g7 — hg™'n").

3. Operads colored by categories

In this section we give the general definition of an operad-like structure colored by
a category. By an operad-like structure we mean, for example, a cyclic or modular
operad, a (wheeled) PROP, a properad, a dioperad, etc. As we have remarked earlier,
there is a distinction between directed and undirected graphs. As we shall explain
in this section, the directed case is really a special case of the undirected one, so
that it suffices to give a definition of an undirected operad-like structure colored by
a category with duality.

However, we begin by giving a direct definition that works for ordinary operads,
and which is very similar to the usual one. The general case requires some more
combinatorics with graphs: in order to give a suitably general definition we define
a category of graphs colored, in an appropriate sense, by some fixed category with
duality, and construct the “free operad” functor combinatorially in terms of sums
over such graphs. This functor is naturally a monad and one can then define an
operad as an algebra over it. A pedagogical introduction to this point of view on
operads and related structures can be found in [Markl 2008].

The case of ordinary operads.

Definition 3.1. Suppose a finite group G acts on a category C. We define the
semidirect product C x G to be the category with the same objects as C, and whose
morphisms x — y are pairs (¢, g), where g € G and ¢ € Homg(x, yg). The
composition is defined by

(#,8) o (Y, h)=(@h) oy, g-h).

Definition 3.2. The wreath product C:'S, of a category with the symmetric group
on n letters is the semidirect product C" x S, with the obvious S, -action.
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For the remainder of this section, we fix a cocomplete symmetric monoidal
category &, and a small category C. We shall consider operads colored by C taking
values in £.

Definition 3.3. A C:S-module is a sequence V (n), n > 0, of functors
V(n): CP x(C:S,) — E&.
Definition 3.4. The tensor product of two C: S-modules is defined by

Vew)m = || i .s V)@ WQ).
k+l=n

By induction we mean here the left Kan extension along C:S; x C1S; — C1S,,
which is the usual induction functor when C is a group.

Definition 3.5. The plethysm of two C 1 S-modules is defined by the coend

C2§k
Vow)m =] [ V) ®cs, W () déf]_[/ V() ® WO ),
k>0 k>0

where W®¥(n) is considered as a C°P: Si-module by virtue of the fact that a k-fold
tensor product of a representation of C°P is a representation of C°P: Sy, using the
symmetric monoidal structure on £.

Proposition 3.6. The category of C v S-modules is monoidal with plethysm as
product.

Proof. Let e be the C : S-module concentrated in degree one, where it is given by
the composition
Hom(—,—

C® % C L Set % €,

where ¢(X) = [[,.y 1, with 1 the monoidal identity in £. In other words, we
are forming the copower Hom(—, —) ® 1. Then e is both a left and right unit for
plethysm, as one verifies using the canonical isomorphism (the “co-Yoneda lemma)

C
F(x)= / Home¢(—, x) © F(—)

for any functor F' defined on a category C. Associativity is immediate from the
fact that coproducts and coends can be freely commuted past each other, both
being colimits. ([

Example 3.7. If C = G is a group and £ = R-Mod, then e(1) is given by the group
ring R[G], considered as a left and right G-module.

Definition 3.8. A C-operad is a monoid in the monoidal category of C: S-modules.
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Remark 3.9. In the usual theory of operads one often visualizes V (n), the part of
the operad in arity n, as a vertex with n incoming legs (inputs) and one outgoing
leg (output). Then the S,-action on V (n) arises by permuting the input legs, and
the gluing maps of the operad correspond to attaching inputs to outputs.

In the C-colored case we imagine that there is a representation of C attached to
each input, and a representation of C°P attached to each output, which explains why
each V (n) is now a representation of C°? x (C:S,,) — there is one output and n
inputs. The gluing maps of the operad are defined by gluing input to output as
before, except we must in addition form the coend of the representation of C x CP
obtained from the input and output legs which are identified.

Example 3.10. Let C = X be a set, thought of as a discrete category. An X-operad
is the same thing as an operad colored by the set X.

Example 3.11. Let C = G be a group. A natural example here is the framed little
disks operad of [Getzler 1994], for G = SO(N), which we claim can be thought of
as a colored operad which has only one color, but where this color has a nontrivial
automorphism group.

Let Dy be the closed unit disk in RY. Let fDy(n) be the topological space
parametrizing maps

n
]_[ DN — DN,
i=1
where each factor is a composition of rotations, translations and positive dilations,
and the images are disjoint. Then { fDy (n)} is an SO(N)-operad in Spaces, with
edge contractions defined by composing embeddings with each other. In particular
the space fDy(n) has an action of

SO(N)?® x (SO(N)" %' S,).

We define this action by letting the first factor act by rotating the entire disk, and
the second factor act by rotations and permutations of the individual embedded
disks. The gluing maps are SO(N)-equivariant as required, in the sense that any
gluing map is invariant under the simultaneous action of SO(/N) on the input and
output legs that are being glued together.

More generally, any semidirect product operad P x G in the sense of [Salvatore
and Wahl 2003] is an example of a G-operad in our sense. The notion of a G-operad
is, however, more general. (Note that there is an unfortunate clash of notation:
Salvatore and Wahl use the word G-operad to mean an operad in the category of
spaces with a G-action.)

Remark 3.12. The preceding example also demonstrates that one should really
be working throughout in an enriched setting, although we have not done so for
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readability’s sake. Indeed, we do not want to think of SO(N) as just a group,
but a topological group, and we want its actions on spaces to be continuous. One
should therefore consider categories enriched over some closed symmetric monoidal
category V (in the preceding example, } = Spaces): £ is a V-cocomplete symmetric
monoidal V-category, C is a small V-category, and we are given a V-functor from
CP x C1S, to £. All coends, copowers, Kan extensions, etc. need to be replaced
with their V-analogues. We leave the details to the reader.

Remark 3.13. The author does not know a natural example of an operad colored
by a category where that category is not in fact a groupoid. Such an example would
perhaps be interesting.

Undirected graphs. We now wish to generalize to cyclic or modular operads, where
there is no distinction between input and output. In light of Remark 3.9, it will
thus be necessary to be able to identify C and C°P. So from now on we demand in
addition that our category of colors C is a category with duality.

We shall follow the definitions and conventions of [Getzler and Kapranov 1998]
regarding graphs, which we recall for the reader’s convenience. A graph I is a finite
set I of flags, a finite set V of vertices, a function h: F — V, and an involution
on F. The fixed points of t are called /legs and the orbits of length two are called
edges.

A morphism of graphs f: T — I’ consists of two functions f,: V — V'’ and
f*: F’ — F such that f* is bijective on legs, injective on edges, and for which

N N f /
F\f(F)TV%V
T

is a coequalizer. Informally, f is a composition of automorphisms and edge
contractions.

A graph with one vertex and no edges is called a corolla. For every v € V we
denote by y (v) the corolla with flag set 2! (v).

A dual graph is a graph with a genus function g: V — {0, 1,2, ...}. We denote
by n(I') the number of legs of a graph I'. For a vertex v, we use the shorthand
n() = n(y(v)). A morphism of dual graphs is a morphism f: ' — '’ of the
underlying graphs such that for all v’ € V' we have

22(0) —2+n0) = Y  (28() —2+n()).
Sfe()=v'

If " is a dual graph, then we declare its genus g(I") to be the unique integer satisfying

2(I) —24n() = (28(v) —2+n()).

veV
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A simple lemma shows that if f: I’ — I'” is a morphism of dual graphs, then
g(I") = g(I""). A dual graph is called stable if for each vertex v the inequality

2g(v)—24+n() >0
is satisfied.

Remark 3.14. The idea of a dual graph is best thought of topologically as follows.
We imagine that a vertex of genus g with n adjacent legs describes a compact
oriented surface of genus g with n boundary circles. Then the number 2g —2 +n
is just the negative of the Euler characteristic of the surface. If we think of an
edge contraction as an operation which glues together the corresponding boundary
components, then the formulas in the definition of a dual graph express that Euler
characteristic should be additive over gluing of circles.

Definition 3.15. A C-graph is a graph I with the following extra data: for every
flag x we are given an object A, of C, and for an edge connecting the flags x and y
we are given a pairing between A, and A,.

Definition 3.16. A morphism of C-graphs is a morphism I' — I'” of underlying
graphs, together with a morphism ¢, : A s«) — A, for every flag x of I/, such
that for an edge between x and y in I'/, the following diagram commutes:

Apriy — Ay

I

Ax—>A;

Remark 3.17. One can describe a C-graph as a graph I together with a symmetric
functor 7 — C, where F is an appropriate category with duality defined in terms
of the flags and edges of I". Then a morphism of C-graphs can be defined more
simply in terms of a natural transformation. We leave the details to the reader.

Operads as algebras.

Notation 3.18. Let S be the category of stable C-graphs. Let S° be the full subcat-
egory of corollas in S. Let [$°, £] denote the category of functors S° — &£.

Definition 3.19. We call the objects of [S?, £] stable C : S-modules.

Remark 3.20. Suppose C is trivial. Then a functor S° — £ is the same thing as a
stable S-module in the terminology of [Getzler and Kapranov 1998], as S° has the
obvious skeleton

= [[ s

g.n>0
2g—24n>0
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Hence a functor from S° to & is just a family of S,-representations indexed by g
and n, which recovers the definition of Getzler and Kapranov and justifies our
terminology. More generally one has for any C that

= ] cisa
g.n>0
2g—2+n>0
Notation 3.21. Let Bij(S) denote the full subcategory of S consisting of graph
morphisms which do not contract any edge.

Remark 3.22. Any functor V: S° — £ can be extended to a functor Bij(§) — &£ via

ViD= @ Vo).

veV ()
Note that if I" is stable then so are all the y (v).

Definition 3.23. Let M be the endofunctor on [S°, £] defined by

MV (y)= colim V()
TeBij(S)}y
for any corolla y. Here Bij(S) | y denotes the slice category over y; its objects
are graphs in S with a map to y, and its morphisms are morphisms over y which
do not contract any edges.

For any corolla y € SO there is a natural map V(y) — MV (y) induced by
sending id, to the corresponding morphism in Bij(S) | y. This defines a natural
transformation 77: idjgo gy — M. There is also a natural transformation M? — M,
defined as usual by “erasing braces” (see [Markl 2008]).

Proposition 3.24. The functor M is a monad with unit n and multiplication (.

Proof. A rather conceptual proof can be found in [Getzler and Kapranov 1998],
which carries through with only minor changes to the C-colored setting. The neces-
sary commutative diagrams can also be checked somewhat tediously by hand. [

Definition 3.25. A modular C-operad is an M-algebra.

Remark 3.26. A posteriori, the fact that M turns out to be a monad can be explained
by saying that M maps a stable CS-module V to the underlying stable C:S-module
of the free modular C-operad generated by V. Hence the fact that M is a monad
expresses the fact that the free modular operad functor is left adjoint to the forgetful
functor sending a modular operad to its underlying stable C : S-module.

Remark 3.27. One can describe modular C-operads more explicitly in the following
way. A modular C-operad A consists of:
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(1) for any g,n > 0O such that 2g — 2 +n > 0, and any n-tuple (x1, ..., x,) of
objects of C, an object
A(g’ -xl’ A ] xﬂ)

of &;
(2) forany o € S,, a map
A(g, X1, ..o, x0) = A(g, Xo(1)s - -+ s Xon))s
(3) for any morphism x; — x; in C a map
A, X5 vy Xiy ooy X)) = A(G, X1,y ooy Xy ey Xn);
(4) for any i and j and for every pairing between x; and y;, a gluing map
Agr, Xty o, X)) @ A(hy yi, oo ym) &> A +Hh, X1, oo Xy o Yoo, Ym)s
(5) for any i # j and for every pairing between x; and x;, a gluing map
A, X1, ooy xn) > A+ 1 x1, oo Xy o Xy, Xp).

One thinks of A(g, x1, ..., x,) as the value of .4 on a corolla of genus g with n
legs decorated by xi, ..., x,. We will not list the functoriality conditions and
commutative diagrams that these maps must satisfy.

Algebras over operads. The notion of an algebra over an operad can be defined in
various levels of generality. We assume in this section that the target category £ is
compact closed, that is, every object is dualizable, which will be sufficient for this
article. In particular, this implies that £ is a category with duality.

Definition 3.28. Suppose given a weak symmetric functor p: C — £. We associate
to p its endomorphism operad End,. In the notation of Remark 3.27, it is defined
on objects by

End, (g, x1, - ) = Q) p(xi).
i=1

Every pairing between x and y in C gives a pairing between p(x) and p(y) in £ in
the usual sense, that is, a map

pP(x)®p(y) =1,

where 1 is the monoidal unit in £. This pairing defines the gluing maps for the
modular C-operad End,,.

Definition 3.29. An algebra over a modular C-operad A is a weak symmetric
functor p: C — £ and a morphism A — End,,.
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Other operad-like structures. By considering some other category of graphs G
instead of S one can define in a similar way C-colored versions of other operad-like
constructions. One lets G° be the subcategory of corollas. In order for the definition
of M to make sense, one needs to assume that for any I' € ob(G) and v € V(T"), we
also have y (v) € ob(G). To define the multiplication map  one needs to assume
that G is closed under “erasing braces”. With these assumptions, it will remain true
that M is a monad.

For example, take G to be the full subcategory of trees in S. The algebras over
the corresponding monad are exactly the cyclic C-operads.

We would also like to be able to define C-colored versions of more ordinary
things like operads and PROPs, which are modeled on directed graphs. One could
repeat appropriate modification of all our definitions for digraphs, but there is a
quicker way. This is based on the observation that an ordinary operad is the same
thing as a two-colored cyclic operad whose colors are {input, output}, and where
the gluing rules have been twisted by an involution: one is only allowed to glue an
input leg to an output, and vice versa.

Observe that for any category C, there is an obvious structure of category with
duality on the disjoint union C LI C°P.

Definition 3.30. We define a C-digraph to be a (C LIC°P)-graph. Flags decorated by
objects in C are called incoming and flags decorated by objects in C°P are outgoing.

Remark 3.31. Note that every edge in a C-digraph consists of exactly one incoming
and one outgoing flag, by our definition of a pairing.

Let then for instance G be the category of C-digraphs which are trees, and where
each vertex is adjacent exactly one outgoing flag. Algebras over the resulting monad
are called C-operads. If G consists of arbitrary C-digraphs which are trees, then
we have defined the notion of a C-PROP. This also gives the correct notions of
algebras over C-operads and C-PROPs.

Proposition 3.32. This definition of a C-operad coincides with Definition 3.8.

Proof. We allow ourselves to be brief, as the proof is similar to the uncolored case
[Markl 2008, Theorem 40]. The only new subtlety in the C-colored situation is
that we must compare the coend appearing in Definition 3.5 with the colimit in
Definition 3.23.

Consider the full subcategory G of Bij(G) | y where the underlying graph is
given by some fixed graph I' with a single edge. An object of G consists of a
decoration of this edge, that is, two objects x and y of C LI C°P, and a pairing
between x and y. It follows that an object of G is an arrow in C. By comparing
with Definition 3.16, we see that a morphism between x — y and x" — y’ is a
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X y
x' y'.
In other words, G coincides with the so-called twisted arrow category of C, with its
natural map to C°P x C. If F is any functor on C°? x C, then

C
colimF:/ F,
g

see [MacLane 1971, Example 1X.6.3]. For a graph I with n edges, we find instead
the category C: S, and the coend over C: S,,. It is now not hard to show that the
two definitions of a C-operad coincide. U

commutative square

—_—

R

4. Equivariant CohFTs

The definition of a G-CohFT. Recall that ./\_/lgn is the moduli stack parametrizing
stable n-pointed curves C of genus g equipped with an admissible G-torsor P — C
and liftings of the n markings to P. Let S be the category of stable £G-graphs, and
again S the full subcategory of corollas. Let Stack be the category of DM-stacks
over some fixed base k where |G| is invertible. The analytically inclined reader can

also take Stack to be the category of complex orbispaces.

Remark 4.1. There are two minor issues at this point. We wish to consider op-
erads in Stack. Unfortunately, we formulated the earlier theory in a cocomplete
symmetric monoidal category, but Stack is not cocomplete, and it is a 2-category!
However, neither of these are serious problems. First of all, even though Stack is
not cocomplete, all colimits that occur in the definition of a modular £G-operad will
exist: indeed, whenever the category of colors is a finite groupoid, it is easy to see
that one only needs to assume the existence of coproducts and quotients by actions
of finite groups. Secondly, there are no 2-categorical surprises, either. As mentioned
in Remark 3.12 the definitions carry over to the enriched case, in particular when
the target category is Cat-enriched, that is, a strict 2-category. Then M becomes a
Cat-enriched monad, that is, a strict 2-monad. However, one should not define an
operad in this case as a strict algebra over it but as a pseudoalgebra: for instance,
the diagram

Mgt X Mo X Mgy — Mgt X Mgrignwin 11

o |

Mg+g’,n+n’+l X Mg”,n”-i—l - Mg+g’+g”,n+n’+n”
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does not commute strictly but only up to a canonical natural transformation.

Definition 4.2. For a corolla y € ob(S°) with genus g, and legs decorated by
Vi, -5 ¥, let M(y) be the open and closed substack of Mgn where the mon-
odromy around the i-th marking is given by y;, fori =1, ..., n. Then M naturally
becomes a stable £G ! S-module in Stack.

Theorem 4.3. The functor M extends naturally to a modular £G-operad in Stack.

Proof. The structure maps in the operad M are given by gluing together admissible
covers along markings. The monodromy condition ensures that this is well defined.
For the necessary associativity conditions, apply the 2-Yoneda lemma: on the level
of moduli functors, associativity is clear. (]

Since homology is a symmetric monoidal functor, one immediately obtains a
modular £G-operad H,(M) in the category of graded (D-vector spaces (assuming
that we are working over the complex numbers). Algebraically, it is more natural
to consider the co-operad H* (M) associated to some Weil cohomology theory. In
any case one can consider (co)algebras over the resulting (co)operads. The main
examples of such algebras are the G-equivariant cohomological field theories of
[Jarvis et al. 2005]. They assume the existence of a flat identity, which is not always
natural from the operadic perspective. If we agree that a nonunital CohFT is defined
by omitting axioms (iii) and (iv) from [loc. cit., Definition 4.1], then we can state
the following result.

Proposition 4.4. A coalgebra H over H*(M, Q) (in the category of finite-dimen-
sional vector spaces) is the same thing as a nonunital G-CohFT.

Proof. The usual proof that a coalgebra over H*(M ¢.n) 18 the same thing as a
CohFT carries through with only minor changes. ([

Remark 4.5. Axiom (i), that H is a G-graded G-module, just says that H is
a representation of £G. Write H = EByeG H,. We remark that any algebra
over H*(M, Q) has a natural structure of a nonunital braided commutative G-
Frobenius algebra obtained by imitating the construction in [Jarvis et al. 2005]. The
multiplication is defined by noting that /W(C)’: 5 1s a finite union of points (generally
with nontrivial automorphism group), each of which defines a partial multiplication
on H:

Hy @ Hyy = Hyy,

where y; is the monodromy around the i-th marked point. A total multiplication can
then be defined by summing over the distinguished points &£ (yy, y», )/2_1)/1_1); see
Section 2.5 of [Jarvis et al. 2005]. The arguments there extend to show associativity
(that is, the WDVV equation, via /Wg 4) and the trace axiom (via Mﬁl).
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Gromov-Witten invariants of global quotients. Just as the main example of a
CohFT is the cohomology of a smooth projective variety, it is expected that the
main example of a G-CohFT comes from a smooth projective variety with a G-
action. So let for the remainder of this section X be a smooth projective variety
acted upon by G. For simplicity, we work over the complex numbers, so that classes
of curves lie in the second integral homology group; it is well known also how to
describe this algebraically.

Definition 4.6. Let 8 € Hy(X/G, Z). Define Mgn(X , B) to be the moduli stack
parametrizing the following data:

 an admissible G-cover P — C, where C is a prestable n-pointed curve of
genus g

e a G-equivariant map f: P — X, such that the induced map f: C — X/G is
stable in the sense of Kontsevich and f,.[C] = 8;

« a section of P — C over each marked point of C.

Equivalently, we have
MG, (X, B) = Mgn(IX/ G, B) X 54, ,86) Megn>

where M ¢.n(X, B) denotes the usual space of stable maps to a stack.

It follows from [Behrend and Fantechi 1997; Abramovich et al. 2008] that
/Wgn(X , B) has a virtual fundamental class [/Wgn(X , B)IVI" defined by the rela-
tive obstruction theory given by the G-invariants of R, f*Tx, where m: P —
/Wgn(X , B) is the natural projection.

Definition 4.7. Denote by M (X, B) the stable £G : S-module in Stack given by
the spaces Mgn(X , B). We extend M (X, B) to a functor from stable £G-graphs
to stacks, but in a slightly different way than in Remark 3.22: for an £G-graph I'
with n vertices, we define

Mx.p@ =[] ][] M& By
Bit-+Bu=p veV ()
Definition 4.8. The inertia variety of X is defined by
Ix =] xs
geG

Note that IX is naturally a representation of £G in the category of algebraic
varieties, since the element & € G carries X8 to X hgh™"
Since X is smooth, its inertia variety is smooth too, see [Iversen 1972].
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Definition 4.9. Let Corr be the Q-linear category, whose objects are smooth and
proper DM-stacks, and whose morphisms are given by

Homcore (X, V) = A*(Y x X),

where the latter denotes the Chow ring with rational coefficients. Composition is
defined via the formula

fog=pi3(phrfUphe).

Remark 4.10. The category of spans of smooth proper DM-stacks, with morphisms
defined via pullbacks, sits naturally inside Corr: a span

xLlzsy
defines a morphism X — ) in Corr via (g X f).[Z].
Remark 4.11. Let Corr’ be the category defined in the same way, except with
varieties instead of stacks. The natural inclusion Corr’ < Corr induces an equiva-

lence of categories once one takes the pseudoabelian completion of both categories,
see [Toen 2000].

The category Corr is compact closed with every object equal to its own dual.
The counit is given by the span

XxXAXeSpeck,

and vice versa for the unit. This is a kind of motivic Poincaré duality; it gives the
usual Poincaré duality on any realization functor H*. Moreover, IX is a symmetric
functor $G — Corr since X¢ = X¢ . It follows that we can talk about the
endomorphism operad End(I1X), which is a modular £G-operad in Corr. Its value
on an n-tuple (g1, ..., g&,) of elements of G is the product []/_; X5i.

There are natural evaluation maps /\_/lgn (X, B) — IX, giving a diagram

M, — MS (X, ) — (IX)",

gn

equivariant for the £G:S,-action on all three spaces. We can write this as a diagram
of stable £G : S-modules in Stack:

M E MX, B) S End(I1X).

Pushing forward the virtual fundamental class defines a morphism M — End(I1X)
of £G :S-modules in Corr,

(ev x 1) [M(X, )]V € A*(End(IX) x M).

Theorem 4.12. For any fixed 8 € Hy(X/ G, Z), the morphism just defined gives the
inertia variety 1X the structure of an algebra over M in Corr.
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Proof. We need to show that for any morphism I' — I'” in S, the diagram
M@’y — End(IX)(I")

]

M(T) — End(IX)(I")

in Corr commutes. We may assume that I' — I’ is given by contracting a single
edge, which is decorated by g, g~' € G. In this case we have

End(IX)(I') = End(IX)(I") x X& x X¢ .

Unwinding the definition of composition in Corr, we see that we must study the
following diagram in Stack:

A —— M(X, B)(I") End(IX) (")

| o |

End(IX)(I') <22 End(IX)(I") x X*

| o]

M) ~— M(X, B)([T) B.

Here A is the diagonal map X8 — X¢& x X8 = X% x X¢, and gl is the gluing map
of the operad M in Stack. The spaces A and B are defined by the requirement
that the smaller squares are cartesian. What we need to show is that the pushfor-
wards of gl'[M(X, B)(I'")]Y' and A'[M (X, B)(I)]'"" to A*(End(IX)(I") x M(T))
coincide.

There is a natural morphism 4: B — A, which is not an isomorphism. Indeed,
after unwinding the fiber products one finds that B parametrizes all the same data
as M (X, B)(I'"), together with a decomposition of the admissible cover P — C
into two components whose genera and markings are determined by I'. The stack A
parametrizes the same thing, except one only has a decomposition of the stabilization
of P — C into two components. However, one can show that / is an isomorphism
on an open set, and then prove that 2, A'[M (X, B)(ID)V" = gl'[ M (X, B)(T)]'T,
which proves the claim. What we need are exactly the properties (III) and (IV) in
[Behrend and Manin 1996], which they refer to as “cutting edges” and “isogenies”.
These are not proven exactly in this form in [Abramovich et al. 2008], but they
follow by combining Propositions 5.3.1 and 5.3.2 there, the arguments of [Behrend
1997, Proposition 8], and the calculation immediately following Lemma 10 in this



The operad structure of admissible G-covers 1973

last reference, which generalize from prestable pointed curves to prestable pointed
curves with an admissible cover. U

Definition 4.13. We define ® to be the usual Novikov ring of X /G, that is, the
ring of formal power series in the variables ¢#, where 8 € H>(X/G, Z) is the class
of a curve, and gPgf = gPtF'.

Definition 4.14. Let Corr ® ®x be the category obtained by tensoring all hom-
spaces in Corr with .

We define a morphism ¢: M — End(I1X) in Corr ® ®x by

> (v x 1) M(X, B¢ € A*(End(IX) x M) ® Ox.
B

Theorem 4.15. With these maps, 1X is an algebra over M in Corr @ Oy.
Proof. This is clear from the preceding theorem. ([

The category Corr is equipped with realization functors associated to (Weil) co-
homology theories; similarly, the category Corr ® ® x has functors ¥ — H*(Y, Ox)
by the universal coefficients theorem. The cohomology of IX is exactly Fantechi
and Gottsche’s ring H* (X, G). Applying H* to the morphism M — EndIX, one
finds the following result:

Theorem 4.16. Let X be a smooth projective variety with an action of the finite
group G. Then the stringy cohomology ring H*(X, G), taken with coefficients in
the Novikov ring of X, is in a canonical way a G-CohFT.

Remark 4.17. In the above statement, we consider H*(X, G) just as a super vector
space, but one can with some care introduce a grading compatible with the algebra.
To do this, one needs to introduce a grading on ® via deg(¢?) = —2¢{[X/G]N B,
and equip H*(X, G) with the so-called age grading. We omit the details as this is
well known.

The above theorem was announced in [Jarvis et al. 2005], but a proof has not
appeared. Although it is certainly possible to prove this without the language of
operads, the author believes that the operadic framework has simplified the proof.
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The p-adic monodromy theorem
in the imperfect residue field case
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Let K be a complete discrete valuation field of mixed characteristic (0, p) and G
the absolute Galois group of K. In this paper, we will prove the p-adic mon-
odromy theorem for p-adic representations of Gx without any assumption on
the residue field of K, for example the finiteness of a p-basis of the residue field
of K. The main point of the proof is a construction of (¢, G )-module NX;(V)
for a de Rham representation V', which is a generalization of Pierre Colmez’s
N:i'g(V). In particular, our proof is essentially different from Kazuma Morita’s
proof in the case when the residue field admits a finite p-basis.

We also give a few applications of the p-adic monodromy theorem, which are
not mentioned in the literature. First, we prove a horizontal analogue of the p-adic
monodromy theorem. Secondly, we prove an equivalence of categories between
the category of horizontal de Rham representations of Gx and the category of
de Rham representations of an absolute Galois group of the canonical subfield
of K. Finally, we compute H'! of some p-adic representations of Gk, which is a
generalization of Osamu Hyodo’s results.
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Introduction

Let p be a prime and K a complete discrete valuation field of mixed characteris-
tic (0, p) with residue field kg. Let Gg be the absolute Galois group of K. When
kg is perfect, Jean-Marc Fontaine defined the notions of crystalline, semistable,
de Rham, Hodge-Tate representations for p-adic representations of Gg (see [Fon-
taine 1994a; 1994b] for example). The p-adic monodromy conjecture, which
asserts that de Rham representations are potentially semistable, was first proved
by Laurent Berger [2002, Théoréme 0.7] by using the theory of p-adic differential
equations. Precisely speaking, Berger used the p-adic local monodromy theorem
for p-adic differential equations with Frobenius structure due to Yves André,
Zoghman Mebkhout, and Kiran Kedlaya.

The notions of the above categories of representations were defined by Olivier
Brinon [2006] when kg admits a finite p-basis. In this case, the p-adic monodromy
theorem was proved by Kazuma Morita [2011, Corollary 1.2]. Roughly speaking,
he proved the p-adic monodromy theorem by studying some differential equations,
which are defined by Sen’s theory of Bgr due to Fabrizio Andreatta and Olivier
Brinon [2010]. In that reference, Tate—Sen formalism for a quotient I'y of Gk
is applied to establish Sen’s theory of Byr, where I'x is isomorphic to an open
subgroup of Z}j X ZP(I)JK with Jg 1= dimy,. Qlch/z < 00. To prove Tate—Sen
formalism, we iteratively use analogues of the normalized trace map due to John
Tate. Hence, we can not use Morita’s approach in the case Jx = oo.

Our main theorem in this paper is the p-adic monodromy theorem without any
assumption on the residue field kg. We also give the following applications of
the p-adic monodromy theorem, which are not mentioned in the literature: First, we
will prove a horizontal analogue of the p-adic monodromy theorem (Theorem 7.4).
Secondly, we will prove that the category of horizontal de Rham representations
of G is canonically equivalent to the category of de Rham representations of Gk,
(Theorem 7.6), where K., is the canonical subfield of K. Finally, we will calcu-
late H' of horizontal de Rham representations under a certain condition on Hodge—
Tate weights (Theorem 7.8). This calculation is a generalization of calculations
done by Hyodo for Z ,(n) with n € Z (Theorem 1.16).

Statement of Main Theorem. Let K and Gg be as above. We do not put any
assumption on the residue field kg of K, in particular, we may consider the case
that kg is imperfect with [kg : k};] = oo. In this setup, the notions of crystalline,
semistable, de Rham, Hodge—Tate representations are also defined (see Section 3).
Then, our main theorem is the following:

Main Theorem (p-adic monodromy theorem). Let V' be a de Rham representation
of Gg. Then, there exists a finite extension L /K such that the restriction V|1, is
semistable.
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Note that the converse can be easily proved by using Hilbert 90.

Strategy of proof. As is mentioned above, Kazuma Morita’s proof can not be
generalized directly. When the residue field kg is perfect, an alternative proof of
the p-adic monodromy theorem due to Pierre Colmez is available, which does not
need the theory of p-adic differential equations. We will prove the Main Theorem
by generalizing Colmez’s method. In the following, we will explain our strategy
after recalling Colmez’s proof in the case that V' is a 2-dimensional de Rham
representation. (We can prove the higher-dimensional case in a similar way.) After
replacing K by the maximal unramified extension of K and taking a Tate twist
of V, we may also assume that we have Dgr(V) = (B Ra, V)X and kg is
separably closed.

In this paragraph, assume that the residue field of K is perfect, that is, kg is
algebraically closed. We first fix notatlon Let Bng =), eN @ ([Ech) For h e N~ ¢
and a € N, denote Uy, , := (Bcns)w =P’ and U = (By )9" =P" . Note that we
have Uy o = [U;z,o = Qpn, where Q,n denotes the unramlﬁed extension of Q,
with [Q,r : Qp] = 1. We will recall Colmez’s proof: His proof has the following
two key ingredients. One is Dieudonné—Manin classification theorem over B,

rig*

Then, he applies this theorem to construct a rank 2 free [Br‘fg—submodule N+ (V)

of Brfg ®q, V with basis ¢, e,. Moreover, N+ (V) is stable by ¢ and Gk - actlons

and the following properties are satisfied:

(i) We have an isomorphism of B [Gx ]-modules

B D5z, NE(D) = BR).

(ii) There exist & € N5 and a 1-cocycle

Q% Una xi(g) ¢
C:Gg — /4 < | = Cy 1= g )
K ( 0 @ph) e ( 0 xa2(2)

such that we have g(e,,e,) = (¢,,e,)Cg for all g € Gg.

The second key ingredient is the H, ! = Hl-theorem for [U’ , With 1,a € N> o:
Let L/K be a finite extension. If a 1- cocycle GL — U glsa 1 coboundary in B,
then it is a 1-coboundary in [U’ . By using these facts Colmez proved the Main
Theorem as follows. When /1 = (), we may regard C as a p-adic representation of G,
which is Hodge-Tate of weights 0 by (i). By Sen’s theorem on C ,-representations,
C has a finite image, which implies the assertion. Therefore, we may assume 4 > 0.
By the cocycle condition of C, x; fori = 1, 2 is a character. By (i), x; fori = 1,2
is Hodge—Tate with weights 0 as a p-adic representation. By Sen’s theorem again,
there exists a finite extension L/ K such that y; (Gr) =1 fori =1, 2. By the cocycle
condition of C again, ¢ : Gy, — Uy, 4 is a 1-cocycle, which is a 1-coboundary in B
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by (i). By the H; = H_-theorem, there exists x € [U;l,a such that cg = (g —1)(x)
for all g € G. Therefore,

e, —xe; +e, € BY ®@+ T (V)CBf ®qg, V

rig

form a basis of Dg (V|1 ), which implies that V|7 is semistable.

We will outline our proof of the Main Theorem in the following: For simplicity,
we omit some details. We first fix notation: In the imperfect residue field case, we
can construct rings of p-adic periods B}, , B} and BJ;, on which connections V

Cris?

act. Let Bcvr:' and BV+ be the rings of the horizontal sections of B}, and By
respectlvely Let BX; = (Nyen @ (BCVHJ{) For h € Nsg and a € N, let Uy 4 :=
(Bcrls )‘p =P and U, .- (BZJF)“’ =P Even when kg may not be perfect, we
can easily prove a generalization of Sen’s theorem (Theorem 2.1) and an analogue
of Colmez’s Dieudonné—Manin classification theorem in an appropriate setting (see
Section 5). By using Dieudonné—Manin theorem, we can also give a functorial
construction NV+(V) for a de Rham representation V. Our object N (V) isa
rank 2 free BV+-subm0dule of BY," ®q, V with basis ¢, ¢,. Moreover NYF(V)
is stable by ¢ and Gg -actions and the following properties are satisfied:

(i) We have an isomorphism of Bj[Gx ]-modules

Bk ®ay+ Nig (V) = B

(ii) There exist 7 € N5 and a 1-cocycle

. @, Una) _(x1®)
core(3 ) en( 21
such that we have g(e,,e,) = (¢,,e,)Cg for all g € Gg.

By using NZ;'(V), we prove the Main Theorem as follows. In the case & = 0, the
same proof as above is valid, hence we assume /2 > 0. By the cocycle condition
of C, x; fori =1, 2 is a character, which is Hodge-Tate with weights 0 by (i). By
a generalization of Sen’s theorem, we may assume that x;(Gg) =1 fori = 1,2
after replacing K by some finite extension. Then, by the cocycle condition of C,
¢:Gg — Uy 4 is a 1-cocycle, which is a 1-coboundary in Bz . Unfortunately, an
analogue of the above H =H, !_theorem does not hold in the 1mperfect res1due field
case. Instead, we will prove that there exists x € (ch) k? and y € [B . such that
cg =(g—1)(x+y) for g € Gk (a special case of Lemma 6.6). Here Kpf denotes a
“perfection” of K, which is a complete discrete valuation field of mixed characteris-
tic (0, p) with residue field k})(f and we can regard an absolute Galois group G
of KP! as a closed subgroup of Gk. Since we have a canonical isomorphism
NX;‘(VNG ~ NT (V|GKpf) by functoriality, we can apply Colmez’s Hg} = H}-

KPf = rig
theorem to the 1-cocycle C|GKpf' As a consequence, there exists z € [U;l , such that
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cg = (g —1)(z) for all g € Ggpr. Since we have ¢g = (g —1)(p) for all g € Gk,
we have z — y € ([EBV‘F)GKPf which is included in BY;" by a calculation. Hence,
e ,—{x+(y—2)+tzle, +e, € B ®BV+ Nng (V) C Bf ® V forms a basis
of Dy (V |k ), which implies that V| is semistable.

Structure of paper. In Section 1, we will recall the preliminary facts used in the
paper. In Section 2, we will generalize Sen’s theorem on C ,-admissible representa-
tions, which is a special case of the Main Theorem and will be used in the following.
The next two sections are devoted to review rings of p-adic periods in the imperfect
residue field case. Although most of the results seem to be well-known, we will
give proofs for the convenience of the reader. In Section 3, we will recall basic
constructions and algebraic properties of rings of p-adic periods used in p-adic
Hodge theory in the imperfect residue field case. In Section 4, we will recall
Galois-theoretic properties of rings of p-adic periods constructed in the previous
section. In Section 5, we will construct the (¢, Gg )-modules Nng (V') for de Rham
representations V' after Tate twist. In Section 6, we will prove the Main Theorem
combining the results proved in the previous sections. In Section 7, we will give
applications of the Main Theorem.

Conventions

Throughout this paper, let p be a prime and K a complete discrete valuation field of
mixed characteristic (0, p). Denote the integer ring of K by O and a uniformizer
of Og by k. Put UI((") =1+ 70k for n € N»q. Denote by kg the residue field
of K. We denote by K" the p-adic completion of the maximal unramified extension
of K. Denote by e the absolute ramification index of K. For an extension L/K
of complete discrete valuation fields, we define the relative ramification index e, /K
of L/K by ep k= er/eg-

For a field F, fix an algebraic closure (resp. a separable closure) of F', denote
it by F¥ or F (resp. F**P) and let G be the absolute Galois group of F. For
a field k of characteristic p, let kpf = kpioo be the perfect closure in a fixed
algebraic closure of k. Let k7~ := =(N,en k7 " be the maximal perfect subfield of
k. Denote by C, and O¢,, the p- adlc completion of K and its integer ring. Let Vp
be the p-adic valuation of C, normalized by v,(p) = 1.

We fix a system of p-power roots of unity {{pn fnen., in K, that is, {pisa
primitive p-th root of unity and ¢? nt1 = Cpn forall n € N> . Let x: Gx — ZX be
the cyclotomic character defined by g({pn) = ¢ Xng forn e N

For a set S, denote by |S | the cardmahty of S Let Jg be an mdex set such that
we have an isomorphism 2} k)7 = kg K as kg -vector spaces. In this paper, we
do not assume |Jg | < co. Unless a partlcular mention is stated, we always fix a
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lift _{lj }jeJi of a p-basis g’g_IEK and sequences of p-power roots {tjp - YneN,jedx
in K, that is, we have (tjp )P = tjp for n € N5 .

For a ring R, denote the Witt ring with coefficients in R by W(R). If R has
characteristic p, then we denote the absolute Frobenius on R by ¢ : R — R
and also denote the ring homomorphism W(gp) : W(R) — W(R) by ¢. Denote
by [x] € W(R) the Teichmiiller lift of x € R.

For a p-adically Hausdorff abelian group M in which p is not a nonzero divisor,
we define the p-adic semivaluation of M as the map v : M — Z U {oco} such
that v(0) = oo and v(x) = n if x € p" M \ p"t! M. We have the properties

v(px)=14+v(x), v(x+yp)=inf(v(x),v(y)), v(x)=00 <= x =0,

for x, y € M. We can extend v to v: M [p~'] — ZU{oo}, which we call the p-adic
semivaluation defined by the lattice M. We also call the topology induced by v
the p-adic topology defined by the lattice M .

Let F be a nontrivial nonarchimedean complete valuation field with valuation v .
Assume that an F'-vector space V is endowed with a countable decreasing sequence
of valuations {v™ : V — R U {oo}}nen over F, that is, we have

vOx) > vWx) >, v®0x) = vp () + 0™ (x),
o™ (x + ) Z inf 0" (x), 0™ ()

forAe Fandx, ye V. Weregard V as a topological F-vector space whose topology
is generated by Vr(") ={x eV |v™(x)>r}fornreN. Then, we call V a
Fréchet space (over F) if V' is complete with respect to this topology (see [Schneider
2002, Section 8]). For Fréchet spaces V and W, we define the completed tensor
product V& g W as the inverse limit 1<i_111nJGN v/ V,(") QFW/ W,(n) (see [Schneider
2002, Section 17]).

For a multiset {a;};c; of elements in R U {o0}, we denote {a;}ic; — o0 if
the set {i € I,a; < n} is finite for all n € N, 4. Note that if |/| < oo, then the
condition {a;};e; — oo is always satisfied.

In this paper, we refer to the continuous cohomology group as the group
cohomology. For a profinite group G and a topological G-module M, denote
by H"(G, M) the n-th continuous group cohomology with coefficients in M. We
also denote H%(G, M) by M 9. We also consider H9(G, M) for ¢ = 0,1 if M is
a (noncommutative) topological G-group M .

We denote by e; € N®! the element whose i-th component is equal to 1 and
zero otherwise. We will use the following multi-index notation: Let M be a monoid.
For a subset {x;};c; of M and n = (n;);je; € NI, we define x" := [Licr xl'.“

and x":=TJ u?[/n,'! when it has a meaning. We denote by |nr| the sum ) _ n; for
iel iel
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(ni)ier € NI, If no particular mention is stated, for an index set I, we denote by
u; or v, the formal variables {u; };ey or {v;};es respectively.

For group homomorphisms f,g : M — N of abelian groups, we denote
by M /=% the kernel of themap / —g: M — N.

1. Preliminaries

This preliminary section is a miscellany of basic definitions, facts, conventions, and
remarks used in the paper. Although we will give some proofs for convenience, the
reader may skip the proofs by admitting the facts.

1A. Cohen ring. Let k be a field of characteristic p. Let C(k) be a Cohen ring
of k, that is, a complete discrete valuation ring with maximal ideal generated
by p and residue field k. This is unique up to a canonical isomorphism if & is
perfect (in fact, C(k) = W(k)) and unique up to noncanonical isomorphisms in
general. Denote J¢(xyp—1] by J for a while. For a lift {#}jes C C(k) of a p-
basis of k, we regard C(k) as a Z[Tj]je -algebra by T + ;. This morphism
is formally étale for the p-adic topologies. In fact, we may replace Z[Tj]jcs
by R:=(Z[T}ljes)(p)- Since C(k)/Ris flatand k /F,(T});e s is formally étale for
the discrete topologies, C(k)/R is formally étale by [Grothendieck 1964, 0.19.7.1
and 0.20.7.5].

By the lifting property, we have C(kg) — Ok, an injective algebra homomor-
phism which is totally ramified of degree e, . We will denote by K the fraction
field of the image of C (k) in K. We also note that Ok, is unique if kg is perfect and
nonunique otherwise. By the lifting property again, we have a lift ¢ : Og, — Ok, of
the absolute Frobenius of kg : It is unique if kg is perfect and nonunique otherwise.
An example of such a ¢ is ¢(fj) = t;’ for all j € Jg,. Moreover, when kg is
imperfect, the construction of Ky cannot be functorial in the following sense: For
a finite extension L /K, we cannot always choose Ko C K and Ly C L such
that Ko C Ly.

Finally, note that for a given lift {#;};cs, C Ok of a p-basis of kg, we can
choose Ok, such that {#;};cs, C Og,. In fact, we regard Ok as a Z[T}]je .-
algebra by sending 7 to t;. We choose a lift {t;}jeJK C C(kg) of the p-
basis {7;}jes, C kx and we regard C(kg) as a Z[Tj]je,-algebra by T; — t]f.
Then, we lift the projection C(kg ) — kg to a Z[Tj]jc s, -algebra homomorphism
C(kg) — Ok by the lifting property, whose image satisfies the condition. Thus, if
we choose a lift {#j};c s, of a p-basis of kg, we may always assume that we have

{tj}jEJK C KO-

1B. Canonical subfield. We first recall the following two lemmas, which are
proved in [Epp 1973, 0.4]. We give proofs for the reader.
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Lemma 1.1. Let k be a field of characteristic p.

(i) The field kP is algebraically closed in k. In particular, the fields (kP )P
and k are linearly disjoint over kP .

(ii) For a finite extension k' | kP™, we have k' = (kk')P™".
Proof.

(1) The assertion follows from the fact that any algebraic extension over a perfect
field is perfect.

(ii) As is mentioned in the above proof, k’ is perfect. We have kk’ = k ®j poo k'
by (i). Hence, we have (kk’)?" = k?" ® yoo k' and

(kk/)poo — ﬂ (kpn ®kp00 k/) — kpoo ®kp00 k/ — k,. 0
n

Lemma 1.2. Let [/ k be an algebraic extension of fields of characteristic p.

() Ifl/k is a (possibly infinite) Galois extension, then 17~ | kP is also a (possi-
ble infinite) Galois extension. Moreover, the canonical map

Gl/k — Glpoo/kpoo

is surjective.

(i) If 1/ k is finite, then [P~ | kP is also a finite extension. Moreover, we have
[P kP <[ : k).

Proof. (i) We may easily reduce to the case that //k is finite Galois. Obviously
any k-algebra endomorphism on / induces a k?" -algebra endomorphism on /?".
In particular, /?" and /P are G, /k-stable. Since the Frobenius commutes with the
action of Gy, we have (1P")G1/k = (]G1/k)P" = |cP" | By taking the intersection,
we have (177°)C1/k = [ P”  For x €177, let f(X) € k[X] be the monic irreducible
separable polynomial such that f(x) = 0. Then all the solutions of f belong to /7~
and we have f(X) e (177)9/k[X] = kP”[X]. This implies that /7" /kP™ is a
Galois extension. The latter assertion follows from the equality (/7”)C1/k = kP™ .

(i) We may assume that // k is purely inseparable or separable. If //k is purely
inseparable, then / is generated by finitely many elements of the form xP™"
with n € N and x € k as a k-algebra. Hence we have [P" C k for some n, that is,
kP™ =[P Assume that [/ k is separable. The first assertion is reduced to the
case that [/ k is a Galois extension, which follows from (i). Since the canonical
k-algebra homomorphism /7~ ® xpoe k — [ is injective by Lemma 1.1(i), we have
177 kP <[I : k]. O

Defintion 1.3. (i) (Compare [Hyodo 1986, Theorem 2].) We define the canonical
subfield K q, of K as the algebraic closure of W(k,’; )p~!]in K.
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(i1) (Compare [Hyodo 1986, (0-5)].) We define condition (H) as follows:

K contains a primitive p2-th root of unity and we have e K/ Koy = 1.

Note that K,y is a complete discrete valuation field of mixed characteristic (0, p)
with perfect residue field k;;oo. If kg is perfect, then we have K ., = K. We also
note that the restriction Gxg — Gk, is surjective since Kcq, is algebraically closed
in K. We will regard Gg__ as a quotient of Gk in the rest of the paper.

Remark 1.4. (i) In [Brinon 2006, Notation 2.29], K4, is denoted by K V since
K.an coincides with the kernel of the canonical derivation d : K — Q}(
(Proposition 1.13 below).

(i) The canonical morphism

Kean ®KC KO — K

an,0

is injective since we have Ko/ Kumo = 1 and Kcan/ Kcan,o is totally ramified.

Note that we have e = 1 if and only if the above morphism is surjective.

K/Kcan
The following are the basic properties of the canonical subfields used in this paper.

Lemma 1.5. Ler L/ K be a finite extension.

(i) The fields (Kcan)™® and K are linearly disjoint over K an.
(i) If L/ K is Galois, then Lean/ Kcan is also a finite Galois extension. Moreover,
the canonical map G g — G /K., IS surjective.

(iii) The field extension Lcan/ Kcan is finite with [Lean © Kean] < [L : K].
(iv) If K'/ K an is a finite extension, then we have (KK')can = K'.
Proof. (i) Since K.y, is algebraically closed in K, we have (Kcan)alg NK = K.,
which implies the assertion.
(ii) Since klljoo/klp(Oo is finite by Lemma 1.2(ii), we have L¢yy = L N (Kcan)alg.
Hence we have Lcyn N K = Kcan. Since Lean/ Kean is algebraic, Lea, and K are
linearly disjoint over K., by (i). Let x € L¢a, and f(X) € K an[X] be the monic
irreducible polynomial such that f(x) = 0. By the linearly disjointness, f(X) is
irreducible in K[X]. Since L/K is Galois, all the solutions of f(X) = 0 belong
to L N (Kcan)™® = Lean. This implies that Lcan/ Kcan is Galois. Since we have
(Lcan)GL/ K = Lean N K = Kcan, we have the rest of the assertion.
(iii) The finiteness of Lcan/ Kcan is reduced to the case that L/ K is Galois, which

follows from (ii). Since the canonical K-algebra homomorphism L¢,z ® k., K — L
is injective by (i), we have [Lcan : Kean] < [L : K].

(iv) The assertion follows from the inequalities

[K": Kean] < [(KK)ean : Kean] <[KK': K] =[K": Kean].
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where the second inequality follows from (iii) and the last equality follows from
the linear disjointness of K and K’ over K., by (i). O

Theorem 1.6 (the complete case of Epp’s theorem [1973]). There exists a finite
Galois extension of K’ | Kan such that KK’ satisfies condition (H).

Proof. By the original Epp’s theorem, we have a finite extension K’/ Ky, such that
we have CRKIIK = 1. We have only to prove that we have CxKr /K = 1 for any
finite extension K”/K’. In fact, if we choose K" as the Galois closure of K'(x,2)
over K., then K” satisfies the condition by Lemma 1.5(iv). Since we have
KK" = (KK') ® g, K" by Lemma 1.5(i) and (iv), we have exkn KK = CKn /K-
By multiplying with e KK’ = €gr We have e KK =€gns implying the assertion. [

Example 1.7 (the higher-dimensional local fields case). We say that K has a
structure of a higher-dimensional local field if K is isomorphic to a finite extension
over the fractional field of a Cohen ring of the field

Fq(X1))(X2)) ... (Xa))

with ¢ = pf (see [Zhukov 2000] about higher-dimensional local fields). In this
case, K., coincides Wlth the algebraic closure of @, in K. In fact, we have
only to prove that kp is a finite field. By Lemma 1.2(ii), we may reduce to the
case kx = Fg (X, )) .((X2)). Then, the assertion follows from an iterative use of
the following fact: If k is a field of characteristic p, then we have k(X))?" = kP~
Obviously, the RHS is contained in the LHS. Let f =", _  a, X" € k((X))? =
with a, € k. Since [ € k((X))?, we have a, =0 if p } n and a, € kP otherwise.
By repeating this argument, we have a, = 0 for n # 0 and f = ag € kP

1C. Canonical derivation.

Defintion 1.8 (Compare [Hyodo 1986, Section 4].). Let ¢ € N. For a complete
discrete valuation ring R with mixed characteristic (0, p), let

o9 ._1; q q
SZR.—hm QR/Z/anR/Z

andletd : R — Q' be the canonical derivation. Let Q% RIp—11= =Q%[p 1] forgez
and let d : R[p_l] — Q Ry be the canonical derivation and dj Q RIp-11
Qq+ -1 the morphism induced by the exterior derivation, which satisfies the usual
formula dg(Aw) = Adgw + (=1)9w AdA for A € K and o € Qq We endow
Q%[p_l] with the p-adic topology defined by the lattice Im(Qq G, 32[1;—1])'
Obviously, the derivation dq is continuous.

For g € Z ¢, we put Q4 Rlp—'1°= = 0 as a matter of convention.

The following are the basic properties of the canonical derivations used in the
sequel.
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Lemma 1.9. Let R be a discrete valuation ring with uniformizer 7g and « :
M — M’ a morphism of R-modules whose kernel and cokernel are killed by TR
for ¢ € N. Then, for any R-module M", the kernel and cokernel of the morphism
doa: M"@r M — M" Qg M’ are killed by w3¢. In particular, the kernel
and cokernel of a®7 : M®* — M'® gre killed by 73’

Proof. We prove the first assertion. If « is injective or surjective, then the cokernel
and kernel are killed by 7 by the calculation of Tor%. The general case follows
easily from these cases by writing o as a composition of an injection and a surjection.

The last assertion follows from the following decomposition and induction on g:

ida® a®id

M®(q+1) M® M®q M®RM/®” M QRr M/®q M/®(c1+l)

O
Lemma 1.10 [Hyodo 1986]. Ler g € N.
(1) We have the Ok, -linear isomorphism
Qf, =lim ((Oxy/p"Oky) ®2 NFZE7X): dj A Adj, > 1@ ej Ao e,
In particular, SAZgKO/(p”) is a free Ok, /(p")-module.
(i) We have a canonical isomorphism
961\, 04
(AkS2k) — Q%-
(iii) Let L be a finite extension over the completion of an unramified extension of K.
Then, we have a canonical isomorphism
L®g ﬁ% — ﬁqL

Proof. The assertions (i) and (ii) follow from [Hyodo 1986, Lemma (4.4), Remark 3]
respectively. The canonical exact sequence

0— 0r ®ox QéK/Z_)QéL/Z_)QéL/@K -0

(from [Scholl 1998, Section 3.4, footnote]) induces the exact sequence

@L/@K[p ] — 0L ®og @K/z/(p )_>Q L/z/(pn)ﬁgquL/@K/(pn)_)Ov

where Q@ 0k [p"] denotes the kernel of the multiplication by p” on Q@ ok
Fix ¢ € N such that chI 0, /0x = = 0. Then, the kernel and cokernel of «;, are killed
by p€. Denote by 2, and Qn the kernel of the canonical maps

®gL (@L Qok S-211(/2/(1)”)) - %L (@L Qo Q(lﬂ)K/z/(Pn)),
®6L @L/z/(Pn) — 2 L/Z/(pn)
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We consider the commutative diagram

q 1 1 1
o Rk Q6,7 . q OL ®ok 2, 7 o q R, /2
L® —m = Oa T o oL (pm)
i can. i can. i can.
0; ® QgK/Z can. q ©L ®©K Q(I@K/Z /\thn QgL/Z
L Yo
K (pm) =~ oL (p") (pm)

We have only to prove that the kernel and cokernel of /\?q;, are killed by p34¢
Indeed, if this is true, then we decompose the canonical map

aq @L ®©K @K/Z/(Pn) g Q /Z/(pn)
into the following exact sequences:

q inc. q n o q
0 — keray; —— O Qq Q@K/Z/(p ) —— Ima,; —— 0,

q inc. q n pr. q
0 —— Imay —— Q@L/Z/(p ) —— cokay; —— 0.

By passing to limits, we obtain the following exact sequences:
0 li k a fne. @[ ® Qq o li I a ’ li ! ki q
[ - ~ - -
ll'l'ln Croy, Ok g 1mn moy, 1mn Croy,,

. g inc. ~g pr. . q
0 — lim Ima; —— Qg —— lim cokay.
<—n L <~—n

Since ker o and cok «f are killed by pae, l(lr_n kero! and hm kerol, l(lr_ncok ol
are also killed by p39¢ [Neukirch et al. 2008, Proposmon 2.7. 4] Hence, the kernel
and cokernel of the canonical map 07 ®g QgK — Q%L are killed by p39¢ and p%9¢
respectively. By inverting p, we obtain the assertion.

Note that the kernel and cokernel of o ? are killed by p2?¢ by Lemma 1.9. By
the snake lemma, it suffices to prove that the cokernel of the map «$ : 9,, — O,
is killed by p42¢. The Op-module Q, is generated by the elements of the form
X:=Xx1® - ®x4 With x; € Ql /Z/(p”) such that x; = x; for somel # j. Since the
cokernel of w, is killed by p" there exist y1,..., Vg € OL ®¢j 2 @ /Z/(p”) such
that p°x; = a,(y;) and y; = yj. Hence we have p?9°x = (p°x1) ® - ® (pxq) =
2y ®-® Vg) and y1 ® --- ® y4 € 95, which implies the assertion. d

Remark L.11. If [kg : k%] = p? < oo, then dimg SAZ’}( = (Z) < oo for g € N
by Lemma 1.10. In particular, the canonical derivation d is K a,-linear since the

restriction d |k, factors through Q}(wn = 0 by functoriality.
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Defintion 1.12. Fix a lift {#j};c s, C Ok, of a p-basis of kx. By Lemma 1.10(i),
dx for x € Ok, can be uniquely written in the form } ;¢ ; dt; ® d;(x), where
{0j(x)}jese C Ok, is such that {v,(0;(x))}jes, — oo. Note that {3;};e s, are
mutually commutative derivations of Ok, by the formula d; o d = 0. We also note
that d; is continuous since we have the inequality v,(9;(x)) = vp(x) for x € Ok,
which we can check by taking modulo p.

The following is another characterization of the canonical subfields.

Proposition 1.13 [Brinon 2006, Proposition 2.28]. We have the exact sequence

inc.
0 —> Koy —> K ——= Ql

can K-

Proof. We first reduce to the case K = K. In the case that K satisfies condi-
tion (H), we obtain the exact sequence by applying K., ® k., , to the exact sequence
for K = Ky by Remark 1.4(ii) and Lemma 1.10(iii). In the general case, we choose
a finite Galois extension K’/ Ka, such that KK’ satisfies condition (H) by Epp’s
Theorem 1.6. Since we have (KK')can = K’ ' by Lemma 1.5(iv), K'®k., K=KK'
by Lemma 1.5(i) and (Q1 )GK’/ Kean Ql by Lemma 1.10(iii), the assertion
follows from Galois descent

We will prove the assertion in the case K = Ky. We may replace Kcan, K
and Ql by Og.,..Ok and Ql respectively. Notation is as above. Let ¢ be the
Frobemus on Ok given by <p(z]) = tp for j € Jx. Let g : Q& — QL be the
Frobenius induced by ¢. Since we have dop=¢@xod,bya 31mp1e calculatlon
we have dj op = ptjp_lgooa-, that is, (¢j0j) op = pgo(t;0;) for j € Jg.

The ring ¢(Og) is a complete discrete valuation ring of mixed characteris-
tic (0, p) and we may regard its residue field as kllé. Let A :={0,...,p—1}®/k.
Since the image of {t"},ca in kg forms a kﬁ—basis of kg, by approximation,
every element x € Og can be uniquely written in the form x = ), ¢(aa)t",
where a, € Ok is such that {v,(as)}nea — 00. We claim that if 9" (x) € kerd
with n € N and x € Ok, we have x € ¢(Og). Since the Frobenius ¢4 on Ql is
injective by Lemma 1.10(i) and the commutativity d o ¢ = @« o d, we may assume
n = 0. By definition, we have d;(x) = 0 for all j € Jx. We have

107 (x)= Y (t7900)@n)t" + Y ¢(an)tjd;j(t") =D ¢(ptjdj(an)+njan)t".
neA neA neA

Hence, we have a, = —nj_1 ptjdj(an)if nj # 0. Therefore, for n € A\ {0}, we have

Vp(an) > vp(an) + 1, that is, a, = 0, which implies the claim. By using the claim,

if we have x € kerd, then we have x € (),,cp ¢ (Ok). Since the complete d1screte

valuation ring (),cn ¢" (O k) is absolutely unramified with residue field kP , the

inclusion Og, C (),en ¢"(Ok) is an equality by approximation, which implies

can

the assertion. O
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1D. A spectral sequence of continuous group cohomology. The following lemma
is a basic fact when we calculate continuous Galois cohomology whose coefficient
is an inverse limit of p-adic Banach spaces with surjective transition maps. For
example, we need it later when we calculate cohomology of Bjy-modules.

Lemma 1.14 (Compare [Neukirch et al. 2008, Theorem 2.7.5].). Let G be a profi-
nite group and { My }nen be an inverse system of continuous G-modules (each My
may not be discrete) such that the transition map M, — My admits a continuous
section (as topological spaces) for all n € N. Let M be the continuous G-module
1(i£1 M, with the inverse limit topology. Then, we have a canonical exact sequence

— 11 1 q—1 —_— q — 11 q —_—
0 lim! H971(G, M,) HY(G, M) lim HY(G, My) 0

for all g € N, where lim® is the derived functor of l(ln in the category of inverse
systems of abelian groups indexed by N.

Proof. Let €% := €2, (G, M) (resp. €;, := €2, (G, My)) be the continuous
cochain complex of G with coefficients in M, (resp. My). Then, {€;,},en forms
an inverse system of cochain complexes and we have €3, = lim ;. Moreover,
the transition maps of the inverse system {6, },en are surjective by the existence of
continuous sections, in particular, {€}},en satisfies the Mittag—Leffler condition.
Then, the assertion follows from [Weibel 1994, Variant in pp.84]. O

1E. Hyodo’s calculations of Galois cohomology. We will recall Hyodo’s calcula-
tions of Galois cohomology. For n € Z, denote by Z,(n) the n-th Tate twist of Z .
For a Z 5[Gg]-module V, let V(n) :=V ®z, Zp(n).

Theorem 1.15 [Hyodo 1986, Theorem 1]. Forn € N and q € Z, we have canonical

isomorphisms

0 qg#n,n—1,
H"(Gg,C ~ ).
Gk Cr(@) {Q‘;( otherwise.

We will generalize the following theorem as an application of the Main Theorem
in Section 7.

Theorem 1.16. (i) [Hyodo 1986, Theorem 2] We have the exact sequence

0 —= H'(Gx,.Zp(1) ——= H'(Gg.Zp(1)) ——= H'(Gg.Cp(1)).

can’

(i1) [Hyodo 1987, Theorem (0-2)] If kg is separably closed, then

Inf: H'(Gk,

can’

Zp(n)) — H'(Gk.Z,(n))

is an isomorphism for n # 1.
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1F. Closed subgroups of Gk. Let L be an algebraic extension of K in C,. Let
L™ be the algebraic closure of LinC p- Let M be a finite extension of L and choose
a polynomial f(X) e Z[X] such that M =~ Z[X]/(f(X)). Let fo(X) € L[X] be
a polynomial such that the p-adic valuations of the coefficients of /" — f, are large
enough. Then, we have M =~ z[X 1/(fo(X)) by Krasner’s lemma. In particular,
the algebraic extension (M N L¥¢)/L is dense in M. Hence, we have a canonical
morphism of profinite groups G, — G, which is an isomorphism whose inverse
G; — G maps g to g|pae. In the sequel, we will identify Gz, with G; and we
also regard G'; as a closed subgroup of Gg.

1G. Perfection. For a subset J of Jg, we denote the p-adic completion of the
field U, en K({tp_n }jes) by Kj. Then, K is a complete discrete valuation field
of mixed characterlstlc (0, p) with e K, /K= = 1 and its residue field is isomorphic
to U, en kK ({t }JEJ) We also denote Ky, by KP', which is referred as a
perfection of K since the residue field k gpr = kp of KPis perfect. Since we may
assume that {7; } ;e s, is contained in Ky (Sectlon 1A), we may assume (Ko)y =
(K s)o, which is denoted by K ¢ for simplicity.

Let ?(Jg ) be the subsets of Jg consisting of subsets J € Jg such that Jg \ J
is finite. Note that we have [k, : klléJ] = pl/k\V| < o for J € P(Jg) since
{tj}jesi\s forms of a p-basis of kg ,. We regard P(Jk) as an inverse system with
respect to the reverse inclusion. Then, we have

K= lim Kj= ﬂ Ky,
Je?(Jk) Je?(Jk)

that is, K is represented by an inverse limit of complete discrete valuation fields,
whose residue fields admit a finite p-basis. In fact, if we endow Jx with a well-
order X by the axiom of choice, then for J € P(Jg), the subset

pavy M amp~"m
€ —{I}U{ "’tjm

172 jmeJ,0<aj < p"i €Nsy
(p.aj;) =1for1<i<meNsg

of K forms a basis of Ky as a K-Banach space. If J; C J, are in P (Jg), then
we have €, C €, and the assertion follows from the fact {1} = (" Jer(g) €J-

1H. G'-regular ring. We will recall basic facts about G-regular rings. For details,
see [Fontaine 1994b, Section 1].

Let E be a topological field and G a topological group. A finite-dimensional
E-vector space V is an E-representation of G if V' has a continuous E-linear action
of G. We denote the category of E-representations of G by RepyG. We call B
an (£, G)-ring if B is a commutative E-algebra and G acts on B by E-algebra auto-
morphisms. Let B be an (E, G)-ring. For V €RepzG, let Dp(V) := (B®fg V)C
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and we will call the following canonical homomorphism the comparison map:
ag(V): B ®pBc Dp(V)—> BQgV.
We say that an (£, G)-ring B is G-regular if the following is satisfied:

(G-R1) The ring B is reduced.
(G-Ry) For all V e Repg G, ap(V) is injective.
(G-R3) Every G-stable E-line in B is generated by an invertible element of B.

Here, a G-stable E-line in B means one-dimensional G-stable E-vector space
in B. The condition (G-R3) implies that BC is a field. We say that V € Rep G is
B-admissible if « (V') is an isomorphism. We denote the category of B-admissible
E-representations of G by Repp,rG, which is a Tannakian full subcategory
of Rep g G [Fontaine 1994b, Proposition 1.5.2].

Notation. We will call an object of Repg, Gk a p-adic representation of Gg . For

adm

a (Qp, Gk)-ring B, we denote Reppg /0, Gk by Repp™ Gk if no confusion arises.
We recall the basic facts about G-regular rings.

Lemma 1.17. Let B be a field and G a group acting on B by ring automorphisms.
Let M be a finite-dimensional B-vector space with semilinear G-action. Then, the
canonical map

BQpe MG - M
is injective. In particular, we have dimgc M G <dimp M.

Proof. Suppose that the assertion does not hold. Let #n € N be the smallest integer
such that there exist # elements vy, ..., v, € M Y which are linearly independent
over BY but not over B. Let > 1<i<n Aivi = 0 be a nontrivial relation with A; € B.
Since B is a field, we may assume that A; = 1. Then, we have

0=(g— 1)( > xivi) = Y () =i
1<i<n 1<i<n
Hence, we have A; € BY by assumption, which is a contradiction. O

Example 1.18 [Fontaine 1994b, Proposition 1.6.1]. All (E, G)-rings which are
fields are G-regular. In fact, we have only to verify (G-R,), which follows by
applying the above lemmato M := BQEg V.

Lemma 1.19 [Fontaine 1994b, Proposition 1.4.2]. Let B be a G-regular (E, G)-
ring and V an E-representation of G. Then, we have dimgec Dp(V) < dimg V.
Moreover, the equality holds if and only if V is B-admissible.
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Lemma 1.20 [Fontaine 1994b, Proposition 1.6.5]. Let B be a G-regular (E, G)-
ring and B’ an E-subalgebra of B stable by G. Assume that B’ satisfies (G-R3)
and that the canonical map B¢ ® B/G B’ — B is injective. Then, B’ is a G-
regular (E, G)-ring. Moreover, if V € RepgG is B'-admissible, then V is B-
admissible and the canonical map

B®® 46 Dp/(V) — Dp(V)
is an isomorphism.

Lemma 1.21 [Fontaine 1994b, Corollaire 1.6.6]. Let B’ be an integral domain
which is an (E, G)-ring, and B the fraction field of B'. If B’ satisfies (G-R3)
and B'® = BY  then B’ is G -regular:

Remark 1.22 (restriction). Let B be a G-regular (E, G)-ring and H a subgroup
of G such that B is H-regular as an (E, H)-ring. If V' € Repg G is B-admissible,
then V|g is also B-admissible in Repy H. Moreover, we have a canonical iso-
morphism B¥ ® ge Dp(V) = Dp(V|g). Indeed, the admissibility of V' implies
that we have the comparison isomorphism B ® gc Dp(V) = BQE V as B[Gk]-
modules. By taking H-invariants, we have BH ® gc Dp(V) = Dp(V|g). In
particular, we have dimgn Dp(V|g) = dimgc Dp(V) = dimg V', which implies
the B-admissibility of V' |g by Lemma 1.19.

2. A generalization of Sen’s theorem

The aim of this section is to prove the following generalization of Sen’s theorem
on Cp-admissible representations [Sen 1980, Corollary in (3.2)].

Theorem 2.1. Let V € Repg Gk The following are equivalent:

(1) There exists a finite extension L over the maximal unramified extension of K

such that G, acts trivially on V.

(ii) V is Cp-admissible.
(iii) V| gt is Cp-admissible as an object of Repg, Gt
Lemma 2.2. Let E be a field of characteristic 0 and p : U ) X [];e I Pz, —
GL;(E) a group homomorphism with n,r € N5 and (n,),el e N/, where the
action of UQ%Z) on[l;ef PMZp is given by scalar multiplication. If kerp contains
an open subgroup of UQS”) then the image of p is finite.
Proof. By shrinking UQF”) we may assume that ker p contains U@g”) Also, we may
assume that E is algebralcally closed. Let xog :=1+4 p" € U(”) xe€[lier "2y

By the fact that ker p is a normal subgroup of U := UQg 1) i ]‘[le] p"iZp and a
simple calculation, we have

(l,x)_l(xo,())(l,x)(xo_l,0) =(,(xo—1x)=(1, p"x) € kerp.
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In particular, ker p contains U (”) X [T;es P" 1" Z, as a normal subgroup. By taking
the quotient of U by this subgroup, p factors through a group homomorphism
p:(Z/p"D)! — GL,(E).

To prove the assertion, it suffices to prove that for any finite subset .S of Im p,
we have |S| < p"”. Any g € Im p is conjugate to a diagonal matrix whose diagonal
entries are in upn (E) since the order of g divides p”. Since the elements of S
commute, S is simultaneously diagonalizable. Hence, up to conjugation, S is
contained in the set {diag(ay,...,a,) | a; € upn(E)}, whose order is p"”. O

Proof of Theorem 2.1. The implication (i) = (ii) follows from Hilbert 90 and
(i1) = (iii) follows from Remark 1.22. We will prove (iii) = (i). Note that if kg is
perfect, then the assertion is a theorem of Sen ([1980, Corollary in (3.2)]).

By replacing K by a finite extension of K", we may assume that kg is separably
closed and K satisfies condition (H). In this case, the assertion to prove is that Gg
acts on V via a finite quotient. Since the residue field kpf of KP is algebraically
closed, Ggp = Ggeeo acts on V' via a finite quotient by Sen’s theorem, where
K=, en K ({t } jeJg)- Hence, there exists a finite extension L / K such that
G [ ko acts tr1V1a11y on V. In particular, if we put Koo := K#°(p1po), then G
acts trivially on V. In the following, we regard V as a p-adic representation of
Grk.,/L- Take abasis of V andlet p’: Gk, /1 — GL,(Q)) be the corresponding
matrix presentation of V' with r := dimg,, V. We have only to prove that the image
of p’ is finite.

Since K satisfies condition (H), we have an isomorphism Gk, x = Uy (”0) KZJK
where ny € N. ;| satisfies GK(u,,oo) /K = Uy (”0) via the cyclotomic character and
U, (ZO) acts on Z, Tx by scalar multlphcatlon (see [Hyodo 1986, Section 1] for
details). We have Gri./Lk= =< kerp’ <Jc Grk. /- By using the restriction
map Res KK and the above isomorphism, we may regard these groups as subgroups
of Ué”(’) X2y TK Since G LK.,/ L 1s an open subgroup of Gk __ /K, there exists n € N
and (n,)]GJK e N’k such that Grk./L contains U := U )|>< ]_[JGJ Pz,
as an open subgroup. Since Gpg_ /Ko 1S an open subgroup of Gk /Keeo =
Gk (upo0)/ K = ch’;‘)) >~ 7 p, ker p’ contains an open subgroup of UC%Z). Therefore,
the group homomorphism p := p'|yy : U — GL, (Q)) satisfies the assumption of
Lemma 2.2, hence, the image of p is finite. Since U is openin G g__ /1., we obtain
the assertion. O

3. Basic construction of rings of p-adic periods

Throughout this section, let 3 be a closed subfield of C, whose value group v, ()
is discrete. We will recall the construction of rings of p-adic periods

Aing,c,p /% Beris,cp/ats Bsuep/a Baryc,/a Bure, /o
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due to Fontaine [1994a], which is functorial with respect to C, and J. We also
recall abstract algebraic properties of these rings as in [Brinon 2006]. Although we
do not assume ¥ = K, standard techniques of proofs in the case 5 = K, which are
developed in [Fontaine 1994a; Brinon 2006], can be applied to our situation.

3A. Universal pro-infinitesimal thickenings.

Defintion 3.1 [Fontaine 1994a, Section 1]. A p-adically formal pro-infinitesimal
Os-thickening of Oc,, is a pair (D, p), where

o D is an Oy-algebra,

« p : D — O¢, is a surjective Oy-algebra homomorphism such that D is
(p, ker Op)-adic Hausdorff complete.

Obviously, p-adically formal Og-thickenings of Oc, form a category.

Theorem 3.2 [Fontaine 1994a, Théoreme 1.2.1]. The category of p-adically formal
pro-infinitesimal Oy -thickenings of Oc,, admits a universal object, that is, an initial
object.

Such an object is unique up to a canonical isomorphism and we denote it by
(Aint,c, 5 O, /20)- Note that Aypp ¢, 9 is functorial with respect to Cp and J. We
r-ecall the construction. Let Rg,, :=. l(i_rgﬁ_)xl, @@p. / pOc, be the perfection of the
ring Oc, / pOc,. We have the canonical isomorphism

l(iLn Oc, > Rc,; (x(n))neN = (x(n) mod pOc,)nen,

xX—>xP

where the addition and the multiplication of the LHS are given by
((x(”)) + (y(n)))n — limm(x("+m) + y(n-l-m))Pm’ (x(n)) . (y(n)) — (x(n)y(n)).

Let 0, /0, : W(Rc,) — Oc, be defined by _, cn P"[Xn] = D peny p”x,(lo). This
is a surjective Z p-algebra homomorphism. Let ¢,y : Oy ®z W(Rc,) — Oc,
be the linear extension of ¢ ,/q,. Then, Ay c, /g is the Hausdorff completion
of Oy ®z W(Rc,) with respect to the (p, ker 0, /5)-adic topology. We will give
an explicit description of Ay, ¢, /9 later: Note that the description, together with
the isomorphism W(Rc,) = Ajyt,c,/a, (Remark 3.5), immediately implies that
Ant,c,, /2 1s an integral d_olmain (at least) when we have 3 = ¥.

We define 7; := (#}, tf ....)E€Rc, anduj :=tj—[t;]€ker Oc,, s, Let vin,c, /5
be the p-adic semivaluation of Ay ¢, /5. We put

Aint,c, /0, Uy, ) 1=

Y. apu" |ap € Aint,c,p /@y 1Vinf,Cp/0p (@n)}nj=n —> o0 foralln € N }
neN®Jx
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If Jy is finite, Ajpr e, /0, {ujx} is a ring of formal power series with coefficients
in Ajyrc,/a,- Weextend Oc /g, to a surjective Ajyr ¢, /0, -algebra homomorphism
Y, /o Aint,c, /0, 10y, } = Oc, by Uc, /5 (u;j) = 0. Then, (Aintc,/a,{uy, . O, /)
is a p-adically formal Z ,-pro-infinitesimal thickening of O¢c,. We have a canoni-
cal Aypt,c,/0,-algebra homomorphism

. . n n
int,C /3 * Ainf,Cp/0p 0y, = Ainte, /o @ Ut

Lemma 3.3. If we assume X = Jo, then ting,c,, /5 is an isomorphism. In particular,
we have

Vint,C, /% (X) = Vin,C /@, (@n)
i

inf

neN®Jx
forx =3, cn@sy anu™ with ap € Aint,C /@,

Proof. Denote A = Ajyr e, /0, {uJ%} and & = ¢, /5. We regard Oy as a Z[Tj]je -
algebra as in Section 1A. We recall that since J = I, the map Z[Tj];cs, — Oy
is formally étale for the p-adic topology. We also regard s as a Z[Tj]jey,-
algebra by Tj > [;] + uj. Then, by the lifting property, we can lift the canonical
Og-algebra structure on s4/(p,kerd) = Oc,/(p) to an Oy-algebra structure on
A = l(iiin A/(p,ker)"™:

can.

Oy — Og,

N
~ 3
str. SO ?
N
N

str.
2Tjljer, —
By this structure map, we may regard & as a pro-infinitesimal Og-thickening
of Oc,. By universality, we have only to prove that tjy,c, /5 is an Oy-algebra
homomorphism. Let o : Oy — Aypc,/9 be the composition of the structure
map Oy — o and e, % Since tpgc, /% commutes with the projections ¢
and 0c, /5, we have the commutative diagram

can.
Oy —— Og,

o
Str. Ocp /e

str.
2Tjljex > Ainf,CDP/S}{v

where the horizontal structure map is given by 7 + ¢;. By this diagram and
the lifting property, o coincides with the structure map Oy — Ayup,c, /5 mod-
ulo (p, kerfc, /)" for all n € N. Since Ajprc, /3 is (p, ker O, /5)-adically Haus-
dorff complete, o coincides with the structure map Oy — Ayyg,c, /5, Which implies
the assertion. O
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For general ¥, we have:

Lemma 3.4. (i) The canonical map

Aint,c, /% = Alint,cp /300
is an isomorphism.

(i) If /X is a finite extension with [Kg : ky]sep = 1, then the canonical map

Oy ®0y Aint,c, /ot = Aint,Cp /¢
is an isomorphism.

(iii) Let & be a finite extension of the p-adic completion of an unramified extension
of K. Then, the canonical map

Aint,c, /P~ "1/ (ker b, j30)" = Ain.c,/2lp "1/ (ker b, /)"
is an isomorphism for all n € N.

Proof. (i) The assertion is equivalent to saying that the category of p-adically formal
Og;-pro-infinitesimal thickening of Oc,, is equivalent to the category of p-adically
formal Oyur-pro-infinitesimal thickening of Oc,,. Let (D, p) be a p-adically formal
Og-pro-infinitesimal thickening of Oc,. Then, we have only to prove that there
exists a unique Og-algebra homomorphism Oy — D such that 0p is an Ogpu-
algebra homomorphism. By dévissage, we may replace D by D/(p, ker 6p)” with
n € N. Since 6p induces an isomorphism D/(p,kerfp) = Oc,/(p) and Oyur /Oy
is p-adically formally étale, the assertion follows from the commutative diagram

can.
Ogpr —— Oc,,/(p)

~N
~_ 3
~
can. ~
~
N

@3( L D/(p,kerGD)”,

T (eD)*

where (6p)+« is the ring homomorphism induced by 0p.

(i) By assumption, the canonical map O¢®g 4 Ogr — Ogur is an isomorphism. By us-
ing this fact and (i), we may assume that 3 = X" and & = ¥"". In particular, we may
consider the case that kg is separably closed, where the condition [k : ky]sep = 1
is always satisfied. By faithfully flat descent, the assertion is reduced to the case
that £/ is Galois. Since £/ is a solvable extension [Fesenko and Vostokov 2002,
Exercise 2, Section 2, Chapter II], we may assume that &/ has prime degree.
By universality, we have only to prove that the LHS is a p-adically formal O¢-pro-
infinitesimal thickening of Oc,,. Hence, it suffices to verify that Oy ®q, Aint,c, /%
is (p, I)-adically Hausdorff complete, where I denotes the kernel of the canon-
ical map 1 ® Oc, /% : O ®oy Aint,c,/% — Oc,- Since we have an isomorphism
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of Ayy,c,,/5-modules Oy ®oy, Aing,c, /o = (Aint,c,y /3{)[5&%], we have only to prove
that the topologies on Og ®q,, Aint,c, /3 defined by the ideals (p, I) and (p, [ 0]
are equivalent, where I’ denotes the ideal of Oy ®g, Ay .C,/ generated by
ker (Oc, /% : Aint,c, /%t — Oc,). By definition, we have (p, I’) C (p, ). We have
only to prove that we have I C (7% ® 1, I’) for some n € N since p divides nj{

In the following, for x € Oc,, we denote by X any element X € Rc¢, such
that ¥(© = x. Since we have 75, ® 1 — 1 ® [77%] € I, we have (m; ® 1, 1 ® [77%]) C
(w3 ® 1, I). Note that if x € O is primitive, that is, 1, x, ... , x[H=1 g an Oy -
basis of O, then we have I C (x® 1—1®[X], I’). Hence, we have only to prove the
existence of a primitive element x € O satisfying (x @ | — 1 Q [¥])" € (73 ® 1, I")
for some n € N. In the case [£ : J] = e, Ja T is a primitive element of O«
and we have (79 @ 1 — 1 ® [7¢])?°%/* € (g ® 1,1 @ [73]). Otherwise, we
have [£ : K] = [kg : kylinsep = p. If we choose x € O¢ whose image in O /750
does not belong to ky;, then x is primitive by Nakayama’s lemma. Moreover, if we
choose a € Oy such that x? =a mod 750, then we have

xR1-1Q[XD)’ =a®l—1®[a] mod (% ®1,1Q [7%])

anda ® 1 — 1 ®[a] € I, which implies the assertion.

(iii) We denote the map by i and we will construct the inverse. By replacing ¥ and &
by J'" and £, we may assume [kg : kylsep = 1. By (ii), we identify Ajprc, /e
with Og ®q;, Ajgr,c,/%- Since £/ is étale, by a similar argument as in the proof
of (i), we have a unique J¥-algebra homomorphism

j - Ainf,@p/?f[p_l]/(ker 9‘]:17/%)”

such that ¢, /5% : Aing,c, sl p~ 1/ (ker O¢c,/%)" — Cp is an £-algebra homomor-
phism. Hence, we have the Ay ¢, /5-algebra homomorphism

J®id: Aee,selp™ "1/ (ker g, j9)" = At e, s/ (ker Oc, j50)".

By construction, we have (j ® id) oi = id. To prove i o (j ® id) = id, we have
only to prove that i o (j ® id) is an ¥-algebra homomorphism, which follows from
the uniqueness of j. O

Remark 3.5. We may identify Ajyrc,/0, With W(Rc,) [Fontaine 1994a, 1.2.4(¢e)]
and the kernel of 6c,/q, is principal by [Fontaine 1994a, 2.3.3]. Moreover,
if 3 = Ko and ky is perfect, then the canonical map Ayic,/a, = Aintc,/x
is an isomorphism [Fontaine 1994a, 1.2.4(e)]. Note that we have no canonical
choice of an embedding W(kalg)[ p~1]— C, when kg is imperfect, since different
perfections of K induce different embeddings. Thus, we can not endow Aiyf.c, /0,
with a canonical W(k g) -algebra structure induced by that of A, . o/ WS [p1]
via the above isomorphism as in the perfect residue field case.
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3B. Bgr and Byt. We define [Bjkcp Jo = 1(£nn Aint,c, sl p~ 1/ (ker ¢, /)" and

t:=log ([¢]) = Z (_1)n—lw € B;i,c:p/@p

neNs

with & := (1,8p,p2,...) € Rc,. We also define Byr,c, /o = BjR,@p/%[t_l].
We denote the projection By ¢ /5 — Cp by 6, /% again. Then, By ¢ 5 is a
Hausdorff complete local ring with maximal ideal ker 0¢ , /5. Moreover, Byg ¢, /%
is an integral domain. In fact, by the following explicit description of By ¢, /%, it
follows from the fact that Byr ¢, /0, 1s a field (Remark 3.6(ii) below).

We define the canonical topology on BcJﬁz,C,, /5 as follows. We regard

Aint,c, s~/ (ker b, j0)"

as a p-adic Banach space whose lattice is given by the image of Ayy¢ ¢, /. Then,
we endow [B(‘fk’@p /% With the inverse limit topology, which is a Fréchet complete
K-algebra. We also endow Bgg /9 With a limit of Fréchet topology by regard-
ing Byr,c, /2 as the direct limit of [B(J{R,@ /% With respect to the multiplication by 1.
Let véﬁ)’@p /3 be the semivaluation of By ¢ /5 induced by the p-adic semivaluation
of B;ﬁ{,@p st/ (ker 6, j5)" defined by the lattice

can.
Im(Ain,c, /e — B(}},@p/sy{/(kef Oc,/30)")-
Obviously, the semivaluations {véﬁ),c,, /3 tnen are decreasing.
We will give an explicit description of B&,Cp /- Let

B&E’Cp/@p {uJac}
> apu" |ay € [E’le}{,@p/@p, {v(({R)’Cp/@p(an)}“”:n — oo foralln,r €N }
neN®/k

+

This is a B&ﬁz,@,, /Q, -algebra. Then, the canonical B dR,Cp/Qp

phism

-algebra homomor-

.ot + R n
LdR,Cp /% - BdR,Cp/@p {ngc} - BdR,Cp/%C’ u —u

is an isomorphism. To prove this, by Remark 3.6(ii) below, we may reduce to
the case K = J. In this case, the assertion follows from the explicit description
of Aint,c,,/%-

For n € N, let Fil” B(‘fk’@p /% be the closed ideal of B(}’k’@p /% generated by the
ideal (ker 6, /)". We endow Bd'R,@p s with the decreasing filtration defined
by Fil"Bar,c, /% = D it j=n t'Fil/ ng,a:p /- Denote the graded Cp-algebra as-
sociated to the filtration by Byr,c, /5. We also denote by v; the image of u; /1
in Byr,c,/k,0 for j € Jg. Since the filtration is compatible with the multiplica-
tion by 7, that is, " Fil"Bag ¢, /% = Fil"t*" By ¢ ,/%> We have an isomorphism

Bur,c, /% = D Bur,c,/x,0t"-
nez
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Forn e N, let

Cotipdni={ X anv"|aneCp{vpan)tn — oo}
neN®Ji:n|=n

and C {VJ%} =@dC, {VJ%},,. We have a C -algebra homomorphism
neN

tar,c,p /.0 * Cplvy, ) = Burc,/mos V' =07,
which is an isomorphism. One reduces to the case 3 = Ky by Remark 3.6(ii)
below. Then, the assertion follows from the above explicit description of BEEI,C,, 9%
and the formula of the semivaluation vgﬁ)’@p /% (Remark 3.6(iii) below). By this
description, Byr,c,,/3 18 an integral domain.

Remark 3.6. (i) (The perfect residue field case) Assume that ks is perfect. Then,
we have a canonical isomorphism Bo ¢, /0, — Bo,c, /i for © € {dR, HT}. More-
over, Bar,c,/0, 1s @ complete discrete valuation field of equal characteristic 0 with
valuation ring B&liz,c,, /0, ! is a uniformizer and the residue field is C,. We also
have an isomorphism Byr ¢, /0, = D,,c7 Cpt". In fact, the first assertion follows
from Remark 3.5 and the latter assertion reduces to the case where kg is perfect by
regarding C, as the p-adic completion of (KP")¢ [Fontaine 1994a, 1.5.1].

(i1) (Invariance) The above structures on B;‘k,@p /% (ring structure, filtration, topol-
ogy) are invariant under finite or unramified extensions. As a consequence, we
may regard B&'k,@p /% as a %?2-algebra and a similar invariance for Bur,c,/% as
a graded Cp-algebra also holds. As for a filtered ring, the invariance follows
from Lemma 3.4(iii). To prove the rest of the assertion, we have only to prove
that for an unramified extension or a finite extension £/, the p-adic semivalu-
ations vé’ﬁ)ﬁp /o and vgﬁ)’@p /¢ are equivalent for all n € N. The unramified case
follows from Lemma 3.4(i). In the other case, let A§§’) (resp. Ag,f’)) be the im-
age of Ajnpc, /a0 (resp. Apc,/2) in B(TR,C,, sac/ (ker 6, /)" . Replacing J by the
maximal unramified extension of ¥ in &, we may assume that £ /¥ satisfies the
assumption in Lemma 3.4(i1). Since Ayypc,/¢ is a finite Ay c,/%-module by
Lemma 3.4(ii), there exists m € N such that p” AP c AM by Lemma 3 .4(iii).
Since we have A%?) C Agg) by definition, the two p-adic topologies induced by the
lattices Agz’) and Ag’) respectively are equivalent, which implies the assertion.

(iii) Assume J = FHy. Then, we have the formula

U((iﬁ),cp/ac(x) = |,ﬁl<fn vé’l:)ﬁp/@p (@n).

where we have x = ), .\ @y dntt" € [Bjk’@p/% with a, € [B;{i’@p/@p. This follows
from the explicit description of Ay ¢, /5
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3C. Connections on Bgr and Bgt. We denote by Q%®7{BdR ¢,/ the direct 11m1t
llgﬁ?%@g{BdR c,/%- Where the transition maps are the multiplication by 1 & ¢~
Then, the canomcal derivation d : ¥ — Qi uniquely extends to a Byr,c, /0, -linear
continuous derivation

. 515
V:Bar,c,/x — QLy®uBar,c, /-

Indeed, the canonical derivation d : Oy — Q@ extends to an Ay c,/0,-linear
derivation d : Ay c, /% — Q ®@%Amf Cp/ by the construction of Aj,r. After
inverting p, then taking the ker Oc, /-adic Hausdorff completion, we obtain a
desired derivation. Since the image of ¥ ®z Byr,c,/q, 1s dense in Byr ¢,/ by
construction, the uniqueness follows. More precisely, if we denote by {0; } jc s, the
derivations on Byr,c, /3 given by V(x) = ZJEJ% dtj ® dj(x), then {0;};c, are
mutually commutative continuous Byr c,/q,-derivations and we have d; = 9/du;.
More generally, the exterior derivation d, Qg{ — QqH for ¢ € N5 uniquely
extends to a Byr ¢, /0, -linear continuous homomorphlsm

.05 Od+15
Vg 1 Q25,Q%Bar,c,/a = Q23 @uBar,c, /%

such that we have Vg (0 ® x) = Vg(0) ® x + (=1)7w A V(x) for x € Bar,c, /%
and w € Qg{ Obviously, the connection V satisfies Griffith transversality

V(Flln BdR,Cp/‘jf) C Q;{®3{Filn_l BdR,Cp/‘jf

for n € Z. These connections are invariant under finite or unramified extensions by
Lemma 1.10(iii) and Remark 3.6(ii).

Notation. We will use the following notation:
V+ . (mt V=0 RV o V=0
Bar.c, /o = Barc,/a0) " Bar,c, /o = Bar,c, /%)
V . can.
Brir,c, /s = ImBur,c,/0, — Bur,c,/2)-

We endow the first two rings with induced filtrations and the last one with
an induced graded structure. Note that these rings are invariant under finite or
unramified extensions of J and that [BdR ¢,/ and BdR ¢,/ (Xesp. BHT c, /o) have
a canonical (Jcan)*'8-algebra (resp. Cp algebra) structure. By the above descnptlon
of the connection and the explicit descriptions of Byr,c /o and Byr,c,, /%, We have:

Lemma 3.7. The canonical maps

+ V+ v \Y%
Bir,c,/0, = Baric,/s0  Barc,/a, = Barc,/a:  Bur,c,/a, = Barc,/x

are isomorphisms. These maps are compatible with filtrations and gradings.
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Remark 3.8. Assume that [ks; : k;;] < 00. Since SA?;{ is a finite-dimensional J{-
vector space (Remark 1.11), the connection V : Bgr ¢, /5% — folc Qi Bar,c, /%
induces a Byr,c, /0, -linear derivation

. 51
V : Bur,c, /% = Qg ®x Bur,c, /%

More precisely, if we denote by {dj};e, the derivations on By, /5 defined
as above, then, by the explicit description of Byr,c, /%, {9;}jer, are commut-
ing Byr,c, /0, -linear derivations and we have d; = 73/dv;. In particular, BXT,CD /%
coincides with (Bur,c,, /g‘;{)v=0. In the general case, we must handle complicated
topologies to define such a connection. To avoid it, we define BIZT,CD /o 1n an ad-hoc
way as above.

We also have an analogue of Poincaré lemma.

Lemma 3.9. The complex

inc. vV oA Vi oA
V+ " mE - Ol 8. Bt L 828.BT
0 — Barlc,/x Bdr,c, /% 5 ®uBir ¢, /3 Q5 @uBar ¢, /%

is exact.

Proof. By the invariance of the above complex under a finite extension, we may
assume J{ = J{o. Recall the explicit description of Bé'k’@p /% 1n Section 3B. Since
we have v, (n!) < |n| for n € N®Jx, x e B&E,Cp /9 18 written uniquely in the form
X =) pen®Jx apu™ with a, € Baﬁ{’@p/@p such that {véfz),a:,,/@,, (@n)}jn|=n = 00
for all r,n € N. Moreover, we have the inequality

inf v{ an) +r > inf v{p nlay) = v X 1

A dR,Cp/Q, (@n) el dR.Cp/0, (M an) = Ve e, 5 (X) o))
by Remark 3.6(iii). We have only to prove that there exists x € BCJ{R,@I, /5% such
that V(x) =  for w € kerVy. Write w = Y-, dt; @ A; with A; € Bk ¢ /5
such that {véﬁ),cp/%(kj)}jejw — oo for all ¥ € N. The assumption w € ker V;
implies that we have d;/(A;) = dj(Aj/) for j, j" € Jy. As above, we can write
Aj =3 en@iy Ajntu™, where 4 5 € B&’i{,@,,/@p satisfies the convergence condi-
tion as above. We have the relation )\j,n—i-ej/ = )\j’,n+e,- for n e N®Jx and j.Jj' e Jy.
We will define a sequence {ap }, @7y D Bc—ﬁz,a:,, /a, 33 follows: Put ag equal to 0.
For n # 0, choose any j € Jy such that n; # 0 and define a, := )\j,n_ej. By the
above relation, this is independent of the choice of j. To prove the assertion, it
suffices to prove that we have {vé’R),Cp /Qp (@n)}|n|=n —> oo for all r,n € N. Indeed, if
this is proved, we see that the element x := )", @y apul®! belongs to [lek,@p J%
and we have V(x) = w. We have only to prove that, for fixed r,n, N € N, we
have vgﬁ)’cn/@p (an) = N for all but finitely many n € N® 7 such that |n| = n. We
may assume 7 > n. Choose a finite subset J of Jy such that vé’R)’Cp (i) =r+N
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for j € Jy \ J. Let n € N®JK such that |n| = n. If there exists j € Jy \ J such
that n; # 0, then we have

vf(irR)an/@p (an) = Uéﬁ),@,,/@,, (Aj.n—e;) > vc(irR),Cp/%()\‘j) —r>r+N-—-r=N,

where the first inequality follows from inequality (1). This implies the assertion
since our exceptional set {n € N’ | |n| = n} is finite. d
3D. Universal PD-thickenings.

Defintion 3.10. A p-adically formal Oy-PD-thickening of Oc,, is a triple

(D.0p.vp).

where
e D is a p-adically Hausdorff complete Oy-algebra,
* Op : D — O, is a surjective Oy-algebra homomorphism,

e yp is a PD-structure on ker fp, compatible with the canonical PD-structure
on the ideal (p).

Obviously, p-adically formal Og-thickenings of Oc, form a category.

Theorem 3.11 [Fontaine 1994b, Théoreme 2.2.1]. The category of p-adically
Jformal Oy-thickenings of Oc,, admits a universal object, that is, an initial object.

Such an object is unique up to a canonical isomorphism and we denote it
by (Acsis,c, /3 Oc, /3> ¥)- Let’s recall the construction. Let (O ®z W(Rq;p))PD be
the PD-envelope of Oy ®7 W(Rc,) with respect to the ideal

ker (Oc, /3 : Ox ®z W(Rc,) — Oc,),

compatible with the canonical PD-structure on the ideal (p). Then, A ¢, /% 1S
the p-adic Hausdorff completion of (Oy ®z W(R¢c p))PD.

Remark 3.12. (i) By [Fontaine 1994a, Remarques 2.2.3], if we have i = K,
and kg is perfect, then the canonical map A c,/a, —> Acris,c,/3 1S an
isomorphism.

(i) By a similar proof as Lemma 3.4(i), the canonical map

Acris,(Ep/f]{ - Acris,(l?p/?l ur

is an isomorphism. In general, we have no invariance for A c, /5 as in
Remark 3.6(ii) even after inverting p.

If 3 = Jlo and kg is perfect, then we have an explicit description of A ¢, /3

"
Acris,@p/?{ = { Z anﬁ

an € Aing,c,y /305 WVint,c /30 (@n) fnen — OO},
neN
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where @ denotes a generator of ker (6, /% : Ajs,c,,/% — Oc,)- Note that the se-
quence {ay}nen is not uniquely determined. Moreover, we have 1 € Ay ¢, /%
and A ¢,/ 1S an integral domain of characteristic 0 whose PD-structure is given
by ¥u(x) = x = x" /n! for x € ker Oc, /s In fact, the assertions follow from the
case i = Kp by Remark 3.5 and Remark 3.12(i), and the assertion in this case
follows from [Fontaine 1994a, 2.3.3].

We define B;is,@,,/% = Acris,Cp/f]{[p_l] and Bcris,Cp/fK = B(—:';is,([:p/%[t_l]' We
also define Ay ¢,/ ‘= Acrs,c,/[X], where x is a formal variable, and we set
Bjt,@,,/?}{ = Ast,q;p/g;{[p_l] and By c, /9 1= B;"t’@p/%[t_l]. We define a monodromy
operator N on By ¢,y as the Bes c,/x-derivation N := —d/dx. We denote
by Veris,c, /9 the p-adic semivaluation on Bétis,q:p /o (O Acgis ¢, /%) defined by the
lattice Acris,Cp /3

In the following, we will give an explicit description of A ¢, /3. Let

Acris,@l, /Qp (ujaf )

be the p-adic Hausdorff completion of the PD-polynomial A ¢, /0, -algebra on
the indeterminates {u;};jcys,. Note that the PD-structure is given by y;,(u;) =
”/n' = u[ ] forn e Nand j € Jy. We also have

Acris,(Dp/(l.:Dp (ujw )=

n
{ Z anu[ ] an € Acris,GZ,,/tI;D,,s {Ucris,C,,/@,,(an)}neN@Jw - OO}
neN®Jx

We regard A c, /9 as an Agigc,/0,-algebra by functoriality. Then, by the
universal property of PD-polynomial algebras, we have the A ¢, /0,-algebra
homomorphism

. . n n
Leris,Cp /5 - Acris,(IZp/(LZDp (qu,{) — Acris,fllp/%» u[ ] = ”[ ]-

Lemma 3.13. If 5t = Ko, then ici5,c, /3 is an isomorphism. Moreover, we have

Veri x) = inf v a
crls,Cp/fK( ) e ® I crls,Cp/@p( n)

— n + i +
forx =3, cndx aputl e Blis,c,/o With an € B ¢, /0,
We use the following lemma in the proof:

Lemma 3.14. We also assume that X = Ky and we use the notation in Section 1A.

(1) If R is a p-adically Hausdorff complete Z[Tj];c s, -algebra, then the canonical
map

HomZ[Tj]jeJ% (0%, R) — Hom[Fp[Tj]jeJ% (kst, R/(p))
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is bijective, where the Fp[T}]; e, -algebra structure on ky; (resp. R/(p)) is given
by Tj > t; (resp. is induced by Z[Tj)je s, — R). Moreover, the restriction map

ey - Homg, 1), ¢, (R, R/(p)) — Homg 7y, (ky. R/(p))

is bijective, where the [Fp[T |j e, -algebra structure on kff{’ (resp. R/(p)) is given
by Tp — Zp (resp. the composition of the inclusion [FP[T liesr, = FplTjljes, and
the above structure map Fp[Tjljcs, — R/(p)).

(ii) Let ¥ : S — R be a surjective homomorphism of p-adically Hausdorff com-
plete Z[Tj]je s, -algebras, whose kernel admits a PD-structure, compatible with the
canonical PD-structure on the ideal (p). Then, the canonical map

19* : HomZ[Tj]jer{ (©f7f7 S) g HomZ[Tj]jeJ% (GTK’ R), f —Uo f
is bijective.

Proof. (i) The first claim follows from the p-adic formal étaleness of Oy /Z[T}];e r,-
The latter assertion follows by using the isomorphism of kalg-algebras

k;g[n]jej;,{/({ij - _JI')}jng() = ky: Tjr>ij.

(i1) We denote by v : S/(p) — R/(p) the ring homomorphism induced by . By
the first assertion of (i), we have only to prove that the canonical map

Homg,(7,);. . (k. S/ (p)) = Homg (7,y; ., (ks R/(p)); [ V10 f,

which is denoted by 4 again, is bijective.

We first note the following: We regard R/(p) as a quotient of S/(p) by v.
Letx € R/(p) and let X1, X, € S /(p) be lifts of x. Then, we have X; —X, € ker ;.
Since a? = p'yp (a) € pS for a € ker ¥, where y denotes a PD-structure on ker 9,
we have fcl = x2 In particular, if we denote by X € S/(p) a lift of x € R/(p),
then X? depends only on x.

We prove the injectivity. Let f : ks — R/( p) be an [p[Tj]je s, -algebra homo-
morphism and f, f': kg — S/(p) lifts of f, that is, 9«(f) = 9«(f') = f.
For X € kg, f(X) and f'(X) € S/(p) are lifts of f(X) € R/(p), hence we
have f(X?) = f(X)? = f/(X)? = f/(XP) by the above remark. Hence, we
have f|kp =f’ |k1’ that is, / = f” by the latter assertion of (i).

We prove the surjectivity. Let f : ksy — R/(p) be an FplT}]jes,-algebra
homomorphism. We have only to construct an [Fp[T lje Ty~ algebra homomor-
phism f: kff{’ — S/(p) such that 9. (f)| k2 coincides with f| k2 where we en-
dow kylg and S/(p) with F [ 7] j e g algebra structures by a 51m11ar way as in the
statement of (i). In fact, we can uniquely extend f to a Z[T}];e j,-algebra homo-
morphism f : ky — S/(p) by the latter assertion of (i). Moreover, (¢x(/))| p=
U (f] ka?) coincides with f| k2 which implies 9« ( f) = f by the latter assertion
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of (i) again. The set-theoretic map f : kffg — S/(p) taking y to X?, where
% € S/(p) is any lift of f(y? _l) € R/(p), is well-defined by the above remark.
Moreover, f is a Z[Tj];e,-algebra homomorphism by a simple calculation and
U (f)] k2 coincides with f| k2 by construction, which implies the assertion. [

Proof of Lemma 3.13. Obviously, we have only to prove the first assertion. Put o =
Actis,Cp/0p (uJ%). Extend 0c,/0, : Adis,c,/0, = Oc, to a surjective Acsigc,/0,"
algebra homomorphism ¢ : s — Oc,, by ¥ (u nly = (. We first prove that 4 has an
Os-algebra structure such that 9 is an Oy-algebra homomorphism.

Denote by @ a generator of the kernel of 6¢,/q, : Acis,c,/0, —> Oc,- Then,
the PD-structure on the ideal ker 0c /g, of Acs,c,/0, canonically extends to a
PD-structure §; on the ideal (w) of «, compatible with the canonical PD-structure
on the ideal (p). By construction, the kernel of the map & : 4 — Aic,/0,
taking ul™l to 0 is endowed with a PD-structure §,, compatible with the canonical
PD-structure on the ideal (p). Since « is an integral domain of characteristic 0,
81 and 8, induce the same PD-structure on (w) Nker £. Hence, by [Berthelot and
Ogus 1978, Proposition 3.12], the ideal ker % = (w) + ker & admits a PD-structure,
compatible with the canonical PD-structure on the ideal (p). Then, the assertion
follows by applying Lemma 3.14(ii) to ¢:

can.
Oy —— Og,

2Tjljer — d,

where the horizontal structure map is given by 7 > u; + [7;] € .

By the above Og-structure, we may regard s as a p-adically formal Oy-PD-
thickening of Oc,. By universality, we have only to prove that i c, /% 1s an Oy-
algebra homomorphism. Let & : Oy — Ay, /5 be the composition of the structure
map Oy — o and tes,c, /9 SINCe Lers ¢, /% commutes with the projections ¢
and 6c, /5, we have the commutative diagram

can.
Oy —— > Oc,

o
Str. Ocp s

str.
2T}l jer > Acris,(Dp/SJC?

where the horizontal structure map is given by 7 +— ;. By Lemma 3.14(ii), o
coincides with the structure map Oy — A ¢, /9, Which implies the assertion. [

Finally, we remark that if K = o, then Beys ¢,/ and By ¢,/ are integral
domains by the above explicit description of A ¢, /%-
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3E. Connections and Frobenius on B and Bg. In this section, assume 3 = H.
We endow ch Cp/% with the p-adic topology defined by the lattice A ¢, /9. We
regard By ¢,/ as the direct limit of ch Cp/% under the multiplication by ¢!
and we set

/\q ~ T /\q ~ +
§25 @3 Beris,c, /o0 = 1im Qg @B ¢, 3¢

Then, the canonical derivation d : 5 — Q%f uniquely extends to a By ¢, /5¢c-linear
continuous derivation V : Begis c, joc — Q c®ff€ch ¢,/ by the explicit description
of Beris,c, /5 Note that V(x[”]) V(x)-x"=1 for x e ker O /- Asin Section 3C,
if we denote by {0} } j e s, the derivations on By ¢, /3 givenby V(x) =}, jer, dtj®
dj (x), then {9; }; e s, are commuting continuous B ¢, /q,-derivations and we have
dj = 0/0u;. We also have a canonical extension Vq of exterior derivations dg. Also,
we can uniquely extend V, to the map Vq Q {®3{Bst Cp/¥ = Qc,{ (X)%[EBSt Cp/%
by putting V(x) = 0, where we define Q% &yBy, Cp/o i= (QZ & Beis, c,p /30 [X]-

Let ¢ : O3y — Og be a lift of the absolute Frobenius on k3. The ring homomor-
phism ¢ ® ¢ : Oy ® W(Rc,) — Oy ® W(Rc,) induces a ring homomorphism
on A c,/5%- Although the resulting map depends on the choice of a Frobenius
lift of Oy in general, we denote it by ¢ again. By defining ¢(x) := px, we also
have a Frobenius on By ¢, /. By construction, the connection and the Frobenius
on By ¢,/ commute and we have the relation N o ¢ = pp o N by a simple
calculation.

Notation. We define BX,CD /5= Boc, /gf)V=° for <& € {cris, st}.

By the commutativity of V and ¢, these rings are endowed with ¢-actions.
Obviously, BX,C,, /3 18 endowed with the monodromy operator N. By the explicit
description of By ¢, /9, we have:

Lemma 3.15. For & € {cris, st}, the canonical map

v
Be.c,ra, = Bocp/u

is an isomorphism. Since this map is compatible with Frobenius, Frobenius
on B<> Cp/% is mdependent of the choice of a Frobenius lift of Oy. In particular, the
Frobenms on B<> cp/% IS injective.

3F. Compatibility with limit. When a p-basis of ks is not finite, some technical
difficulties occur. In this case, we will reduce to the finite p-basis case by using the
results of Section 1G and the following inverse limits.

Let the notation be as in Section 1G. By functoriality, we have canonical maps

Bo.c, /a0 _)hmJe@(J )Bo,c,,/ﬂcmv Bo Cp/vcﬁllmjegw )B@ Cp/Yss

where <> € {cris, st}, QO € {dR, HT}. Since these morphisms are compatible with
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the above explicit descriptions of these rings, it is easy to see that these maps are
injective.

3G. Embeddings of B.is and By into Bgr. Let
Je, s :=ker (B¢, 5 - Aunt,c, /5~ 1— Cp).

We endow the ideal Jc, 5/ J]ﬁép /5 of the Q-algebra Ay ¢, /5[ 1/ J]ﬁép /5 With the
unique PD-structure. This is compatible with the canonical PD-structure of Oy on
the ideal (p). Hence, the canonical map Oy ®7 W(Rc,) — Ajyr.c,/xl 1/ J]fép /%
factors through (O ®z W(Rc,))™ — Ainge,/xlp "1/ JE, s+ If we endow the
LHS and the RHS with the p-adic topology and the p-adic Banach space topol-
ogy respectively (see Section 3B), then the above morphism is continuous. In
fact, the canonical map times n! factors through the image of Ajypc, /. By
passing to limit, the map extends to Acss c, /% — B;ﬁz,qz,, s%- Thus, we have a
canonical H-algebra homomorphism By ¢ /5 — Bk c, /% Fixing jp € Re,
such that 5(® = p, we extend this map to B;t Cp/Ht = B&E,C,, /% by sending x
to log ([p]/p) := Zn€N>O (=1)"1([p])/p —1)"/n. Note that these morphisms are
compatible with connections.

Proposition 3.16. Assume that the algebraic closure of } in C is dense in Cp.
Then, the canonical maps

v v v v
Hean O%ean,0 Beris,c /0 = Bar,cp/os Hean @euno Bst,c, /310 = Bar,c, /a0
H ®ito Beris,cp /a0 = Bar,c,p /s, I Qo Bi,cpp /ot = Bar,cp /e
are injective.

Proof. By identifying C, with the p-adic completion of 22, we may assume H = K.
Note that if kg is perfect, then this is due to [Fontaine 1994a, 4.2.4]. We consider
the general case. We first prove the first two cases. We have only to prove the
semistable case. The canonical map Kcan ®k,,, Kgf — KPfis injective since
Kcan/ Kcan,o is totally ramified and Kgf is absolutely unramified. Hence, we have
the commutative diagram

v can. \v/
Kcan ®Kcan,0 BSt,Cp/K() BdRsCD/K

~ ~

can. .
¢ f
K ® Koo Bst,Cp/Kpr KP ®Kgf B

can.
(RN
) t.Cp/ KL Bar,c,/ Kot

where the vertical arrows are induced by base changes and the injectivity of the
bottom second arrow follows from the perfect residue field case. Then, the assertion
follows from the above diagram. We consider the latter two cases. By passing
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to limit (Section 3F), we may assume [k : k};] < 00. Then, the crystalline case
follows from [Brinon 2006, Proposition 2.47], where B¢,/ k, 1 denoted by Beyis.
We will prove the semistable case. By regarding K ® g, Beyis,c,,/ k, as a subring
of Frac(Bgr,c,/ k). the assertion is equivalent to saying that x is transcendental
over Frac(Beis,c,/k,)- Suppose that it is not the case. To deduce a contradiction,
we have only to construct a nonzero polynomial in Bcris,Cp / K(;))f[X ] which has x
as a zero. By assumption, we have a nonzero polynomial f(X) =) ;a; X' €
Bj;is,Cp /K, [X] such that f(x) = 0. Form € N®/x | we denote by d™ the product
H jesg O ; 7, where {0;} e, are the derivations defined in Section 3C. Denote by
fm(x) e B(—:i;is,Cp/Kgf[X] the image of the polynomial £ (X):=Y"; o™ (ai) X!
under the canonical homomorphism By ¢ /x — Bk c,/xer. Then, /@™ (X)
has x as a zero since we have x € BdVR—t_C,,/K' Write a; = ), cn®7k aj pul™
with a; p € B;—is,cp Ja, by using the explicit description of Bj;is,Cp /K, given in
Section 3D. We have 0™ (a;) = 3, eneu dintmu™ and fO(X) =3 aim X'
Hence, we obtain the desired polynomial f (m) (x) by choosing m € N®/k such
that we have a; , 7# 0 for some i. O

4. Basic properties of rings of p-adic periods

We will apply the preceding construction to the cases X = Q,, K, KP', among
others. The resulting rings of p-adic periods will have an appropriate Galois action
by the functoriality of the construction: For example, G acts on Byr ¢, /0, and
Bar,c,/ k> Gkt acts on Byg ¢,/ gor- In this section, we will review Galois theoretic
properties of these rings. The proofs of the properties are somewhat technical and the
reader may skip this section by admitting the results including the Gg -regularities
just below. We keep the notation of the previous section.

4A. Calculations of H® and verification of Gk -regularity. In this subsection,
we will prove the G -regularity of the (Q,, Gk )-rings
Bcris,ﬁp/K()’ Bst,Cp/K()v BdR,Cp/K7 BHT,CP/Kv
v v \Y \
Beis,cp/kor Bscp/kor Barc,/k:  Bare,/x

which are used later in the paper, and calculate their /°. Note that these rings are
integral domains by their explicit description.

Lemma 4.1. Let O € {dR, HT}.

(i) H°(Gk.Frac(Boc, k) = K.

(ii) The (Qp, Gg)-ring Bo,c,/k satisfies condition (G- R3) of Section IH.
(iii) The (Qp, Gk)-ring Bo ¢,/ k is Gk -regular.
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Proof. Assertion (iii) follows from (i), (ii) and Lemma 1.21. We will prove (i)
and (ii) separately in the Hodge—Tate case and the de Rham case.

(a) The Hodge—Tate case: We first verify (i). By Theorem 1.15, we have only
to prove that if we have nonzero x, y € Byr,c,/kx such that g(x)y = xg(y)
for all g € Gk, then we have x/y € C,. We first consider the case |Jx| < co.
Note that Bur,c,/x = Cplt, =1 {v; }jeJi] is a uniquely factorization domain.
Hence we may assume that x and y are relatively prime by dividing x and y by
their greatest common divisor. Then we have g(x) = cgx and g(y) = cgy for
cg € Bur,c,/x)* = U,ez Cpt" by assumption. By the explicit description of
Bur,c,/k» we can choose n € Nk such that

0"(x) € Brc,/k \ {0} 2= Cplt. 1711\ {0},

where d; = 19/dv; and 3" :=[]; 8}” (Remark 3.8). Write 0" (x) = ), ez ant”
with a,, € Cp. Then, we have g(3" (x)) = cg0" (x) by the commutativity of d; and
the G -action. Since c¢g is homogeneous with respect to 7, we have ¢y € Cj by
comparing degrees. By comparing the leading terms, we have cg = g(an)/anx"(g)
for all g € Gk, where n is the degree of 9" (x) with respect to z. Hence, we
have x/a,t" € (BHT,@,,/K)GK- Note that we have (BHT,CP/K)GK = K. This
follows from the facts that we have Byr,c,/x = U, en ™" Cplt, {2V} }jesi ] and

HY(Gi . t7"Cplt, {tvj}jes) = K

by [Brinon 2006, Lemme 2.15], where Cp[t, {tvj}je ] is written @, ¢ g (BFR)
in the reference. Thus, we have x € C;t”. By the same argument, we have y € (E;tm
for some m € Z. Write x = at”, y = bt with a,b € C;. Then, we have

gla/b) = X"""(g)(a/b)

for g € Gg. Since H°(Gg,Cp,(n — m)) is nonzero if and only if n =m by
Theorem 1.15, we must have n = m. In particular, we have x/y =a/b € C,,.

We consider the general case. Recall the notation in Section 1G. Let J € ?(Jg)
and denote by x, ys the image of x, y in Byt c,/k,- By applying the above
result to Jg = J, if x5 and y; are nonzero, then there exists Ay € C; such
that xy = Ay yy. Since this A s is uniquely determined, A = A s is independent
of the choice of J. Since Sy, :={J € P(Jg) | xj # 0 and y; # 0} is a cofinal
subset of 2(Jg) by the explicit description of Byr,c,/x, we have x = Ay by the
injection in Section 1G.

We will verify (ii). Let x € Byt c,/x be a generator of a Gk -stable Qp-line
in Byr,c,/ k- Write g(x) = cgx with ¢g € @;. We use the same notation as above.
By a similar argument as above, if xy # 0, then we have xy = ajt"’ foray € C;
and ny € N. Moreover, ay and ny are unique. In particular, {a s} and {n} are
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constant on the cofinal subset S, x of ?(Jk) and we have x € C31" C (Bur,c,/x)”™
by the injection in Section 1G.

(b) The de Rham case: To prove assertion (i), we have only to prove that if we
have nonzero x, y € Bar,c,/k such that g(x)y = xg(y) for all g € Gk, then we
have x/y € K. Let J € P(Jk) and denote by x s, yy € Bar ¢,/ k, the image of x, y.
Ifxy#0and yy #0,thenwehave xy/yy € HO(GKJ,Frac(BdR’@p/KJ))=KJ by
[Brinon 2006, Proposition 2.18], where Frac(Bagr,c,/k ) is denoted by Cgr. Since
the set {J € P(Jg)|xs #0 and yy # 0} is a cofinal subset of (Jg ) by the explicit
description of B(}’}{,CP/K, we have x/y € ﬂje@(h{) Ky = K by the injection in
Section 1G. We will verify (ii). By Remark 3.5(i), we may assume K = K". Let
V be a Gg-stable Qp-line in Byr c,/x generated by x. By Lemma 4.2 below
and Theorem 2.1, there exist n € Z and a finite extension L /K such that V" C
(BdR,@p/K)GL = (BdR’Cp/L)GL = L; in particular, we have x € (Bar,c,/x)™. O

Lemma 4.2. Let V be a Gk -stable Q p-line in Byr,c,/ k- Then, up to a Tate twist,
V is Cp-admissible as a p-adic representation.

Proof. We assume K = K" by Hilbert 90 and Remark 3.6(ii). Let x € Br ¢,/ x be
a generator of V. By multiplying by a power of ¢, we may assume x € B;i,@p /K-
Let p: Gg — @; be the character defined by p(g) = g(x)/x. By the explicit
description of [Bjk’@p /x (Section 3B), we have

X = E anpu”
neN®/k

with a, € B&’k,@,,/@p- Choose n € N®Jk such that ap # 0 and write a, = t"A
withn e Nand A € (B&,Cp/@p)x‘ Since we have g(an) = p(g)an for g € G,
we have (ox™")(g) = g(A)/A for g € Ggyr. By taking the Q p-linear map 6c,/q,,,

we have (px™")(g) = g(0c,/a,(1))/0c,/a,(*) for g € Gk, that is, px™"| o
is Cp-admissible. Hence, px™" is C,-admissible by Theorem 2.1. O

Corollary 4.3. We have
(BZiS,CP/Ko)GK = (BZ’CP/KO)GK = Becan,0,
(Bcris,Cp/Ko)GK = (Bst,Cl,/Ko)GK = KO’
(Bie'c, k) = Birc,/ k) = Kean,
4 4
Bir.c,/ ) = Bare, k) =K,
4
(Br.c,/x) %" = Bur.c,/x) = K.

Proof. Since we have trivial inclusions (such as Ko C (Bis,c,/ KO)GK ), we have
only to show the converse inclusions. By passing to limit (Section 1G and 3F),
we may assume [kg : k;;] < 0o0. We prove the Hodge-Tate case first. Since we
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have BXT,C,, /k = Dyez Cp(n) (Section 3B), the assertion for BXT,CI, sk follows
from Theorem 1.15. The assertion for Byt c,/x follows from [Brinon 2006,
Lemme 2.15].

We will prove the rest of the assertion. Since we have K¢an0 = (Ko)can b
comparing the residue fields, the assertions in the horizontal case follow from those
in the V-less case by taking horizontal sections. The de Rham case follows from
Lemma 4.1(i) and the crystalline and semistable cases follow from de Rham case
and Proposition 3.16. O

Lemma 4.4. The (Qp, Gk)-ring By ¢,/ k, satisfies (G-R3) for & € {cris, st}. In
particular, Be, ¢/, is Gk -regular.

Proof. Note that the last assertion is obtained by applying Lemma 1.20, whose
assumptions are satisfied by Proposition 3.16, Lemma 4.1(iii) and Corollary 4.3.
By Remark 3.12(ii), we may assume K = K. Let V' be a Gg-stable Q-line
in By ¢,/ Kk, With generator x. By Lemma 4.2, there exists n € Z such that V"
is Cp-admissible as a p-adic representation of Gx. By Theorem 2.1, the image of
the map p : Gg — @X that takes g to g(xt")/(xt") is included in (@p)torg, which
is killed by 2(p — 1) Therefore, we have (x¢")2(P~—1 ¢ (Be @p/KO)GK = Ky,
which implies x € BO,C,, /Ko g

Lemma 4.5. The (Q,, Gk )-rings

\Y% \Y v v
Bcris,Cp/Ko’ Bst,C,,/Ko’ BdR,Cp/K7 BHT,C,;/K
are G -regular.

Proof. The Gg-regularity of the field BdR Cp/K follows from Example 1.18.
Since we have a Ggpi-equivariant canonical 1somorphlsm [B<> Cp/Ko = Boc, /Kl
for < € {cris, st}, the verification of (G - R3) for B<> ¢,/ K, is reduced to that
for Beo ¢ b/ KD which follows from [Fontaine 1994b, Proposmon 5.1.2(i1)]. By
a similar reason, (G-R3) for BdR ¢,/ K 1s reduced to [Fontaine 1994b, Proposi-
tion 3.6]. The (Q,, Gg)-ring C p((t)) is a field containing the fractional field
of BHT Cp/ K = Cp[t t~!]. By Theorem 1.15 and dévissage, we have C, (1)%% =

(BHT Cp/ &) PK, where the last equality follows from Corollary 4.3. By apply-
ing Lemma 1.21, [E{%HT c,/k 18 Gg-regular. By Corollary 4.3, the Gk -regularity for
[B%CVrls .Cp/ K, and Bst cp/ K, follows from Lemma 1.20 and Proposition 3.16. O

Remark 4.6. For . € {cris, st,dR, HT}, the (Q,, Gg )-rings B-,C,,/@p and B, o /q,
are G -regular We also have

) = (B, k)

v G
Bec,/a,) * = Bec,/a, «.Cp/Ko

In fact, the assertion follows from canonical isomorphisms BY Cp/0, =Bec,/a, =
BY Cp/ Ko 38 (Qp, Gk )-rings.
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Notation. (i) We define the category of crystalline (resp. horizontal crystalline)

representations of Gg as Rep%dm Cpr i Gy (resp. Repaldm Gk), and we denote
crs.Lp Beyis Cp/

it by RepcmGK (resp. RepcmGK) The corresponding functor D B is denoted by
Deris (resp. IDcm) and the comparison map «g by Qcris,.c,/k, (resp. acvris,Cp / Ko)'
We define the category of semistable representations similarly, with “cris” in place
of “st”.
(i) We define the category of de Rham (resp. horizontal de Rham) representations
of Gk as Repﬁ’B‘i‘;C /KGK (resp. Repaldm GK) and we denote it by Repr Gk
(resp. RedeGK) The corresponding functor Dp is denoted by Dgr (resp. [I])(YR)
and the comparison map «pg (loc. cit.) by agr,c,/x (resp. ay dR,Cp/ x)- We define

the category of Hodge—Tate representations similarly, with “dR” in place of “HT”.

(iii) We define rings with Gg -actions and automorphisms ¢ by

nV+ nmV+
Bng,Cp/Ko m 4 (Bcris,Cp/Ko)’ Blog,Cp/Ko ﬂ 4 ( st Cp/Ko
neN neN

Note that we have [@X'E /Ky = [E‘%X‘E sk for & e {rig, log}.

@iv) In the rest of the paper, when kg is perfect we omit hyperscrlpts V to be
consistent with the usual notation; e.g., we write Bng Cp/ K instead of Bng Cp/ KD

Remark 4.7. Asis explained in Section 1A, there is no canonical choice of a Cohen
ring of kg nor a Frobenius lift when kg is not perfect. Since some definitions,
such as the definition of crystalline representations, involve these choices, we make
some remarks on the independence of definitions.

(i) Since we have a canonical isomorphism Bo, ¢, /0, = [B@ c,p/k for Qe {dR,HT}
(Lemma 3.7), [B@ Cp/K depend only on C, as an abstract ring.

(i1) Since we have a canonical 1som0rphlsm B<> Cp/Qp = B<> Cp/ Ko for & e {cris, st}
(Lemma 3.15), the category Rep<> Gk depends only on C, but not on the choice
of Ky. It also follows that B<> Cp/ Ko for & € {rig,log} is independent of the
choices of K¢ and ¢ as a Q) algebra with g-action. Moreover, for a finite exten-
sion L/K, BX,J(er /K, coincides with BX,J(er /Lo I B(YR‘!'CP /L-

(iii) By definition, the category RepQGK for & € {cris, st} may depend on the
choice of K. In the case [kg : k2 x| < oo with & = cris, the independence is
proved by Brinon [2006, Proposition 3.42]: He proves the assertion by introducing
a ring Amax, k» Which is independent of the choice of Ky and is slightly bigger
than Og ®q, Acris,C,/K,- Although a similar idea seems to work in the general
case, we do not treat this problem in this paper. Instead, we will state a precise
version of the Main Theorem later (see Section 6).

Remark 4.8 (Hilbert 90). Let V' €Repg, G . Then, V is crystalline or semistable if
and only if sois V| gur. In fact, we have By ¢,/ ko = Beris,c,/ Ky by Remark 3.12(i),
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whose Ggu-invariant is K" by Corollary 4.3. Hence, the assertion in the crystalline
case follows from Hilbert 90 and the same proof works also in the semistable case.
We can also prove that V' is de Rham or Hodge-Tate if and only if so is VL
for a finite extension L of the completion of an unramified extension of K. This
follows from the cases when L/K is finite or unramified and in these cases the
claim follows from Remark 3.6(i1) and Hilbert 90.

Algebraic structures of rings of p-adic period, which are compatible with the
action of Gk, induce additional structures on the corresponding . We do not
review these structures here since we do not need all of them to prove the Main
Theorem. For the reader interested in these structures, see [Brinon 2006, 3.5]
for example. We need only the connection on Dgr for the proof of the Main
Theorem: For V' € Repyr Gk, the finite-dimensional K-vector space Dgr (V') has a
connection V : Dgr (V) — SAZ}( ®xk Dgr(V), which is compatible with the canonical
derivation on K.

4B. Restriction to perfection. If we have V € Rep, Gg with « € {cris, st,dR, HT},
then we have V |gr € Rep, Ggrt. Moreover, we have canonical isomorphisms

f
K5 ®xk, Do (V) = Do Vg, KP @k Do(V) = Do(V k),

induced by the canonical map Be, c,/x, — B 6.Cp/ K" and Bo ¢,/ x = Bo,c,/ k"
for <> € {cris, st} and O € {dR, HT}. We first prove the de Rham case. By applying
Bar,c,/ Kk ®Bur ¢,/ x to the comparison isomorphism agg,c,/ x(V), we have a
G pe-equivariant isomorphism

BdR,Cp/KPf ®K [DdR(V) — BdR,Cp/KPf ®@p V.

By taking G -invariant, we have an isomorphism KP'® g Dgr (V') = Dar (V| o).
The other cases follow similarly.

S. Construction of Nng )

In this section, we construct a (¢, Gk )-module NX;(V) over B n_%@ /K, forade
Rham representation V' of Gg, possibly after a Tate twist. Our Nng coincides with
Colmez’s N:{g when the residue field kg is perfect.

We first recall Colmez’s Dieudonné—Manin theorem, which is a key ingredient of
the construction. Let M be a finite free [EBdR ¢,/ Kk -module of rank r > 0. We call N
a [BdR ¢,/ Kk -latticeof M if N isa [E’BdR Cp/K" submodule of finite type of M such that
N [Z 1] = M[t~']. Note that a BdR Cp/ K—lattlce of M is finite free of rank r over
BdR c,p/K since BdR cp/K 182 discrete valuation ring.

For n € Z, denote the composition

=~V Q" inc.
Brlg@ /K()C_>Brlg@ /KOC_)BdRC /K
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by ¢" again. By the commutative diagram

»V+ C . V+
Brig,Cp/Ko BdR,Cp/K

can. l = can. l =
n

Bt Y m+

Bre.c,/ k2" — Bar,c,/ ko

the proof of the following theorem is reduced to the perfect residue field case
[Colmez 2008, Proposition 0.3] (see also the remark below).

Theorem 5.1 (Colmez’s Dieudonné—Manin classification theorem). Let r € N+
and M be a BdR ¢,/ K “lattice of (BdVR—t_Gp/K)r' Let

Mg :={x € (@X;CD/KO)’ | " (x) € M foralln € Z}.

Then, Mg is a finite free [H%ng c,p/ Ko module of rank r with semilinear ¢-action and
there exists a basis e, ..., e, of Miig over Bng Cp/ Ko Such that:

(1) There exist h € Nug and a1 < --- < a, € N such that (,Oh(el-) _ p“"ei
for1 <i<r;

(i) ey,...,e, is a basis of M over BdVR—i,_C,,/K'

Remark 5.2. Though our condition (ii) is weaker than that in [Colmez 2008], the
conclusions of the theorem are the same for the following reason: By definition, ¢
acts on M,;y. Since @™ is an automorphism on Mg by (1), pi is also an automorphism
on M;;s. Hence, (ii) implies that ¢"(e,), ..., ¢"(e,) is a [Bng Cp/ Ko-Dasis of My
for all n € Z. In particular, ¢"(e,),...,¢"(e,) is a BdR Cp /K—bas1s of M.

In the rest of this section, let V' be a de Rham representation of Gg of dimension r
such that Dgr (V) = (Bjx Cp/ K BQ, V)9 . Note that the last assumption is satisfied
for any de Rham representation after some Tate twist. Let

NgR (V) :=Bik ¢,/ x ®k Dar(V).

It is a finite free B&E,C,, /x-module of rank r with Gk -action and V-action which
are commuting. By the comparison isomorphism «gr ¢,/ We have a canonical
isomorphism N&(V)[t_l] = Byr,c,/x ®a, V, in particular, we have

"Birc,/x ®a, V CNR(V) CBRe,/x ®a, V

for sufficiently large n € N. Taking horizontal sections, we see that NV+(V) =
f\J;iQ(V)v 0is a Gg-stable BdR ¢,/ K -lattice of BdR c,/k ®a, V. By applying
Theorem 5.1to M = N V), we have the following proposition: (In the following,
a (¢, Gg)-module over Brigf'@p /Ko (of rank r) means a finite free module (of rank r)
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over [BX;’CP /K, With a semilinear g-action and a semilinear Gk -action, which are
commuting.)

Proposition 5.3. The BY.Y: |k -module

Ny (V) :={x € BY ¢, ko ®a, V | ¢ ®id(x) € NI (V) forall n € Z}

is a (¢, Gk )-module over Bng Cp/ Ko of rank r. Moreover, we have a basise,, ..., e

of NX;‘(V) over Bng Cp/ Ko such that:

(1) There exist h € Nsg and a; < --- < a, € N such that (ph(ei) = pUe;
forl1 <i=<r;

r

(i) ey,...,e, lsabcmsofN F V) over[EBdRC S/K

Note that NX;(V) is independent of the choice of Ky by Remark 4.7(ii). We

will use the following property of NX;’ (V') in the proof of the Main Theorem.

Proposition 5.4. The canonical map
BdR Cp/K ®BdRC /K NV+(V) - N+ (V)

is a Gk -equivariant isomorphism. In particular, BdRC WK ®BV Ko ng T (V) is

isomorphic to (BdR c /K) as a By Cp/K[GK] module by Proposmon 5.3(ii).
Proof. Since V| g is de Rham and we have the canonical isomorphism Byr,c,/a,—

Bar,c,/ ko> We have the comparison isomorphism

Bar,c,/0, ® 6o (Bar,c,/0, ®0, V)K" = Bar c,/a, ®a, V.

Bar.cp/ap)
By taking the base change of this isomorphism by Byr,c,/0, = Bar,c,/x, We
obtain a canonical isomorphism of Bag ¢,/ x [Ggrr]-modules

o:Bar,c,/ k B Bar.c,pyay) K7 (Bar,c,/0, ®a, V)" = Ber.c,/k ®a, V. (2)
We also have the comparison isomorphism
agr,c,/K (V) :Bar,c,/k ®k Dar(V) = Bar,c,/x ®a, V-
Note that we have (Bjﬁz,cp /@p)GKpf = (Bar,c, /@p)GKpf since we have
(l_”B&,CP/@p/I "MBL e ,/Qp) Ckr' = (Cp(—n)) %k =0

for n € N~ . We have only to prove that there exists an isomorphism of BEE{,C,, /K-
modules

(N R(V) =) BdR cp/k @k Dar(V) =
G
B&»CP/K ®([B&|}-2 Cp/@p)GKPf (BdRscp/Qp ®@P V) Kot

which is compatible with the injections agr ¢,/ x (V) and «. Indeed, by taking the
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horizontal sections of both sides, we have

V+ V+ Gpopf
Neg (V) = Barc,/x ®(Béﬁ.w/@p)GKpf (Bar,c,/0, ®a, V)K",
which implies the assertion.
We have
Dar (V) = (Bar,c,/x ®a, V)K" =

B Crt B V) ket
s~ p ]
(Bar,c,/ k) K" @ yoxor (Bar.c,/0, ®a, V)K",

(Bar.cp/ap
where the equality follows by taking Ggpr-invariant of (2). Note that we have
+ G G
(Bar,c, k) 5" = Bar,c,/k) K"
Indeed, if we write x € LHS as x =¢t7" ) _\@sx anu” with a, € B;ﬁ{’@p/@p,
since {u; }jeg, are invariant by the action of Gk, we have
. G G
bn :=an/t" € Bar,c,/a,) K" = (ng’@p/@p) Ko
Therefore, we have x = ) @k bntt" € (B&,CP/K)GK'”. Hence we have a
canonical map
Dar(V) — B B V) Ok,
ar(V) dR,Cp/ K ®(B&Cp/@p)6,<pf( dR,C,/Q, B0, V)

This induces a canonical homomorphism of By ¢,/ Kk -modules

i B,k Ok Dr(V) = B¢,/ k ® @ ¢y 0y KT (Bar,c,/a, ®a, V),

which is compatible with the injections agr c,/x (V') and @ by construction. We
have only to prove the surjectivity of i. By Nakayama’s lemma, we have only
to prove the assertion after applying B&ﬁz,c,, JKPOBE (note that B&E,Cp /K =
B&’i{,@p /vt 1s a surjective homomorphism of local rings). We have the commutative
diagram
N aar.cp/K (V)
Bir,c,/ kv @Kk Dar(V) Bar,c,/ k7 ®a, V

I

O
Bik,c,/ k7 ® g s Bare, /0, ®a, V)" —= Barc, /v ®a, V

cﬁi,@p/@p
can. =
n gr,cp/ kP o)
Bik,c,/ kv ® ket Dar (V] gor) © Bar,c,/ kv ®a, V,

where the left lower arrow is induced by Byr,c,/0, = Bar,c,/ kv the Ggor-
equivariant isomorphism. Denote the composition of the left vertical arrows
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by i’. Since the canonical map Bar,c,/k — Bar,c, /Ko 1s Gger-equivariant,
by the diagram, the restriction of i’ to Dgr(V') coincides with the canonical
map Dgr(V) — Dar(V |get), which is an isomorphism after tensoring KP' (see
Section 4B). Therefore, i’ is an isomorphism and we obtain the assertion. O

6. Proof of the Main Theorem

We will restate our main theorem in the point of view of Remark 4.7(iii):

Main Theorem. Let V be a de Rham representation of Gg. Then, there exists a

finite extension L/ K such that the restriction V| is By ¢,/ L,-admissible for any
choice of Ly.

In this section, we give a proof of the Main Theorem in this form. Before the
proof, we prepare technical lemmas used in the proof. The reader may go to the
proof of the Main Theorem and back to the lemmas if necessary.

We first recall a slightly modified version of [Colmez 2008, Proposition 0.6]. In
the rest of this section, denote the unramified extension of @, of degree 1 € N5
by Q,n

Proposition 6.1. Assume that kg is perfect Let [Uh 2" (Blog C[)/KO)(p =P for h,
aeN. Let M be a (¢, Gg)-module over Bng Cp/ Ko of rank r € Ns.o with basis
el, ...,€e.. Assume that there exists an lsomorphlsm of BdR Cp /k[Gk]-modules
Bz Cp/ K ®B+ =~ (B, c, k)" andthat e, e, sansﬁes the following

2.Cp /K
conditions:

(1) There exists h € Nog and a; < --- < a, € N such that (ph(el.) = pUe,
forl1 <i<r.

(ii) Forall g € Gk, there exists cg € GL, (B:ﬁz,@p /K )» a (unique) upper triangular

matrix whose diagonal entries are 1, such that g(e,, ..., e,) = (ey,...,€,)cg.
. = + . - . ~ + .
Then there exists a Big, ¢ /g, -basis f1..... fr of Bigg ¢,/ Kk, ®Brt /Ky M satis-

fying the following conditions:

(a) f; is fixed by Gg;

®) fi =e¢;+ Xi<jzio1 Ojie; witheji €Uj, . (hence " (f;) = p® fp).
Proof. Note that we add the extra assumption (ii) and the slightly stronger con-
clusion (a) to the original proposition. Let U be the subgroup of GL, (ng,q:p /K)
consisting of upper triangular matrices whose diagonal entries are 1 and whose (i, j)-
component belongs to [U a; for i < j. We endow U with the subspace
topology of GL, (BdR Cp/ K) Then U is a topological Gg-group and the map
g+ ¢g; Gg — U is a continuous 1-cocycle. By [Colmez 2008, Proposition 0.6],
there exists a finite Galois extension L /K such that [c] is mapped to the trivial
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class in H'(Grw, U) by the composite Res}:ur o Resllg, where [¢] denotes the class
represented by c. Note that for all a € N+, we have

ur uolt=pa h_ pa
([U;l,a)GL C ((Bst,Cp/LO)GL )(p P = (Ll(;r)(p p — O,

where the first equality follows from Remark 3.12(ii) and Corollary 4.3 and the
last equality follows from [Colmez 2008, Lemme 10.9]. Hence U 92" = {1} and
[c] is mapped to the trivial class in H'(Gr, U) by the inflation-restriction exact
sequence. Hence, we have only to prove that the inverse image of the trivial element
by Resé : HY(Gg,U) — H' (G, U) consists of the trivial element.

We endow U with a Gk -stable decreasing filtration {% },en by Fp := {(x;j) €
U |xijj =0for0< j—i <n}. Then, we have Fo =U, F, = {1}, F,1 I F,
and %, /%, 4+ is isomorphic to a direct sum of copies of [U;w with @ € N. We have
only to prove that the inverse image of the trivial element under the restriction map
Resllg : HY(Gg, %p) — H' (G, %) for n € N consists of the trivial element. Since
there exists a Gg -equivariant set-theoretic section of the canonical projection ¥, —
Fn/Fn+1 (for example, we can identify

1+ in,i—i-n—i-lEi,i—l—n—l—l € Fn

i

with its image in %,/%,+1), the canonical maps %?K — (Fn/Fny1)9% and
%?L — (Fp/Fns1)CL are surjective. By using long exact sequences, we have the
commutative diagram

0 —= H'(Gx.Fns1) —> H' (Gg.Fn) —> H'(Gg.Fn/Fns1)

l Reslf( L Resk l Reslf(

can. can.
O _— HI(Gngn-i-l) I HI(GL»gn) e HI(GL’@H/@n-i-I)a

whose rows are exact as pointed sets. To prove the assertion, it sufﬁces to prove
the injectivity of the restriction map H' (G, [U;l y— HY(Gp, o) forh,a eN.
Indeed, it implies the injectivity of the right arrow in the diagram and we obtain the
assertion by dévissage and diagram chasing. We first consider the case a = 0, that
is, [U;l o = @, (Lemma 6.2 below). Since H WG /K> @thL) is killed by the multi-
phcatlon by [L : K] (using the corestriction) which induces an isomorphism on the
coefficients, we have H' (G, /K> @g}{“) = (. By the inflation-restriction sequence,
we obtain the assertion. Consider the case a > 0. We denote by x : Gg — Z; the
cyclotomic character. Then, we obtain the assertion by the following commutative
diagram:
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I(N*op™"),
H'(Gg, Uy — [Thxen H (Gx. B ¢ /) = [ xen Klogx

l Resf( [HRCS%
TI(N*o0p™").

HI(GL, )<—> ]_[nkeNH (GL,B;%,CF/K)g]_[n,keNLlogx,

where two isomorphisms follow by dévissage and Lemma 1.14, Theorem 1.15 (a
theorem of J. Tate) and the injectivity of the horizontal arrows follow from [Colmez
2008, Proposition 0.4(ii)]. O

Lemma 6.2. We have

~V4+ h_ —a V4 h_— —a
Brgc,/k)” ~ 7 = Bugc,/k,)” 7 =0 foraeNs,
BV+ =1 _ »V+ h=1 _
Bige,/k0)” ~ = Buoge,/x)” ~ = Qpn.

Proof. We first prove the first assertion. Suppose that we have a nonzero element x
. hep—a . ~ . . .

in ([B%lzg' cp/k)? T “. Since [Blzg' ¢,/ K, is an integral domain, we may assume
that we have x € Ay c,/k, by multlplymg by SOIZIG power of p. By assump-
tion and the g-stability of Ay ¢, /k,, X = p"?9""(x) € p"Ayc,/k,- Hence
X €, P"Aciis,c,/ ko[X] = 10} since Agisc,/k, is p-adically separated. Thus
x = 0, which is a contradiction.

We prove the latter assertion. By a simple calculation, we have

)(ph=1 _ h_—

»V+ »V+4
(Blog,Cp/Ko - (Brlg,Cl,/Ko)(p

By the canonical isomorphism [@rvig—fq:p /Ky = [@FiLg,Cp /KE> We may reduce to the
perfect residue field case, which follows from [Colmez 2002, Proposition 9.2]. [J

Lemma 6.3. Let D be a finite free BdR ¢,/ K -module with semilinear Gk -action.
Then, the canonical map BdR cp/K BK DSK > D is injective. In particular, we
have dimg DOk < rankBJﬁ - /KD < 00.

Proof. Suppose that we have linearly independent elements fi,..., f, € DY
over K, which have a nontrivial relation ) ; A; f; =0 with ; € B&lﬁ,cp /- Choose
the minimum 7 among such n’s. Then for 1 <i <n, we have g(A; /A1) = Xi/Aq
in Frac(Bgr,c,/x)- Hence we have both 4;/A; € H%(Gg, Frac(Bar,c,/x)) = K
and ) ;(A; /A1) fi =0, a contradiction. O

Lemma 6.4. Let W be an r-dimensional Qpn-vector space with semilinear Gk -
action. For 0 <i < h, we define the Q,n-vector space o, W with semilinear Gk -
action by ! W := W as Gg -module with scalar multiplication

Qi x W = W: (A, x) — @' ()x.
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If we have an isomorphism of B&FR,C,, /k[Gk]-modules

Bir,c,/k ®0,, ¢iW = Be, k)"
for0<i <h, then W is Cp-admissible as a p-adic representation of G .

Proof. By assumption, we have isomorphisms

+ ~ + W~ (BT h
Bir,c,/ k ®a, W = @ Bir,c,/x ®0,, ¢xW = Barc,/x)""
0<i<h
of Bc-ﬁz,c,, /k[Gk]-modules, which implies the assertion by tensoring with Cp
over B;ﬁz,c,,/K- g

Lemma 6.5. Assume that e K = 1. Then, the complex
+ Gept V.
K ®KO (Bcris,Cp/K()) kP —>
v
15 + G Lo2s + G
QK®K0 (Bcris,CH/Ko) K — QK®K0([H;cris,tﬁp/l(()) k¥,

which is induced by the inclusion K Q, Bj;is,([:p /Ko~ [B;&’@p /x (Proposition 3.16)
and Lemma 3.9, is exact. Here, we endow (B:;is,cp / KO)GK L with the p-adic topology
induced by the p-adic semivaluation Vs c, /K-

Proof. Note that the connections are K ,,-linear by Proposition 1.13. We may
reduce to the case K = K by Remark 1.4(ii) and Lemma 1.10(iii). Let w € ker V.
We can write 0 =} ¢y dij ® Aj with A € B;’I—'iS,Cp/K such that

{vcris,Cp/K()‘j)}jeJK —> OQ.

We can also write A; = >, @7k Aj au™ with Aj, € [Bj;is,cp/@p such that
{Veris,cp /@, (Ajn)}yen®@Ix — 00. Since uj is invariant under the action of G,
we have Aj , € (Bj;is,q:p/@p)GKPf. Recall the proof of Lemma 3.9: We define a9 =0
and a, = )Lj,,,_ej if nj # 0. Then, we have

X = Z a,,u["] S BdR,Cp/K

neN®J/k

and V(x) = w. Note that we have x € ([EBJ}{,CP / x) k. Hence, we have only
to prove x € B;tis,cp/l(- Fix N € N: we have to show that veisc,/kx (@n) = N
for all but finitely many n € N®/& . Choose a finite subset J of Jg such that
we have ves.c,/k (Aj) = N for j € Jg \ J. We also choose n € N such that
we have vesc,/0,(Ajn) = N for j € J and |n| = n. Letn € NS/ \ N7,
Then, we have vsc,/0,(@n) = Veis,c,/a, (Aj,n—e;) = N for some j € Jg \ J.
Let n € N7 with |n| > n. Then, we have Veris,Cpp /@, (@n) = Veris,cp j0, (Ajn—e;) = N
for some j € J. Since the set {n € N’ | |n| < n} is finite, these inequalities imply
the assertion. O
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Proof of Main Theorem. Obviously, we may assume r := dimg, V' > 0. By
Hilbert 90, we may replace K by K"". Hence, we may assume that kg is separably
closed. After some Tate twist, we may also assume that V' satisfies the assumption
of Section 5, that is, we have Dgr(V') = (B[ﬁ’@p/K ®a, V)Ok

We divide the rest of the proof into two steps: We will construct a finite exten-
sion L /K in Step 1 and after replacing K by L, we will prove the semistability
of V in Step 2. Note that only Step 2 involves the choice of K.

Step 1: Set M := NX;(V) and let e, ..., e, be as in Proposition 5.3. Also let
{a} <---<d,,} be the set of distinct elements in the multiset {ay,...,a,} and
m; the multiplicity of a} in the multiset for 1 <i <r’. Let {e&'), e, e,(f,?} be the
subset of ¢, € {e,, ..., e,} satisfying Q" (e;) = p"; e;. We define an exhaustive and

separated increasing filtration of [l by
0 ifn <0,
M= Dy < <n BYT, ke @ B BYY goem) if1<n<r,
M otherwise.

The filtration is stable under ¢ and G -actions. In fact, for 1 <i <n<r’and g € G,
we have

4 . . . P
(p(egl)), .. .,(p(e,(,g),g(egl)), .. .,g(e,(,’,z) eM? TP C My,
where the last inclusion follows from Lemma 6.2. We also define

h_ pal,
Wy = (Mn/Mn—l)(p =7

for 1 <n <r’. Since we have W,, = @phégn) & DQyn é;,’,? by Lemma 6.2 (where

él(”) denotes the image of el.(n) in My /My—1), Wy is an my,-dimensional Q i -vector
space with continuous semilinear Gg -action. Let

Dy = BE},CP/K ®F My

rivg—-Ep/ Ko
Then, we have the left exact sequence of finite K-vector spaces

inc. pr.
0 p% . pPx . (D,/D, ). 3)

n—1

Hence, we have the inequalities
dimg DY¥ <dimg DCX, + dimg (Dn/Dp—1)%% < dimg DEX, + my,

for n € Z by Lemma 6.3. By Proposition 5.4, we have an isomorphism of Bj[Gk |-
modules
M= (Ba‘i{’@p/[()r, 4)

+ -
Bar.c,/k DY, Ko

which implies dimg D,‘;? X = r for n > r’. Hence, the summation of the above
inequalities are equalities. Therefore, the above inequalities are equalities, in
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particular, the map pr. : D,,G K — (Dy/Dp_1)% in (3) is surjective. Thus, we have
the commutative diagram

G Gk
0 = B, k®k D5 = Blic,/x®k Dr* = B c,/x®k(Dn/Dp-1)°% — 0
0 Dn—l Dn Dn/Dn—l 0

with exact rows and injective vertical arrows by Lemma 6.3. Since the middle
vertical arrow is an isomorphism for n > r’ by (4), all vertical arrows are isomor-
phisms. In particular, for 1 < n < r’, we have isomorphisms of BdR Cp/ xlGk]-
modules By Cp/K Oy Wn = Dp/Dp—y = ~ (B} a:,,/K)m" Since W is stable
under the action of ¢, the map W, — L W, taking x to ¢'(x) is an isomorphism
of Q,n[Gg]-modules. In particular, we have isomorphisms of BdRC o/ xlGk]-
modules

Bir,c,/k ®a,, #xWn =B c,/x ®a,, Wn = Bk c,/x)™

for 1 <n <r’and 0 <i <h, which implies the C p-admissibility of W, by Lemma 6.4.
Hence, Gk acts on W,, factoring through a finite quotient by Theorem 2.1. We
choose a finite extension L/ K such that G acts on W, trivially forall 1 <n <’
and such that L satisfies condition (H).

Step 2: By replacing V by V|, we will prove that V' is semistable by calculating
Galois cohomology associated to Nng (V). In the following, we fix Ky and a
lift {#j} ey, of a p-basis of kg in Ko. We regard {¢;};c s, as a lift of a p-basis
of kg in K. We also fix notation: For a commutative ring R, let U, (R) C GL,(R)
be the group of unipotent upper triangular matrices. Let N, (R) C M, (R) be the
Lie algebra of U, (R), that is, the group of nilpotent upper triangular matrices. We
denote Ur = Ur(BR cp k) Uy d’; U, (BdR C /K) for simplicity.
By assumption, we have g(e,,...,e,) = (e,,...,e,)cg with 1-cocycle

. mV
C: GK — Ur (Brig+Cp/K0)'
Since we have Nng (V) cC Bng Cp/ Ko ®0, V and
(K ®KO BS[,CP/K() ®@p V) Gk =K ®K0 (Bj-t,(:p/K() ®®p V)GK,

we have only to prove that ¢ is a 1-coboundary in U, (K ®, B;t Cp/ K,)- We have
the exact sequence of pointed sets

S inc.x
(Ur—i:iR/ Urvd—i};)GK - Hl (GK’ Urvd—ili) —_— Hl (GKa Ur—j:iR)’ (5)
where U, dR/ ¥ denotes the left coset of Utk by UY, dR, that is, X ~ Y if

X7y € U, K- The class [c] € H'(Gg, U, dR) represented by ¢ is mapped to
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the trivial class in H'(Gg, U, dR) In fact, since we have e(”) € (Dy/Dy— 1) K
for 1 <n <r’and 1 <i <my, by assumption, there exists an element e( " e Dy, Ox
such that e(") — e(n) € D,_; by the exactness of (3). Then,

('éil) (1) é(n), ) ~(n))

ml,..., 1

isa B&’CP/K—basis of D, for 1 <n <r’ and we have a unique matrix U € UrerR
such that

1 4 / 1 ~ ~ ('
M eD e ey = @MDY
By a simple calculation, we have c¢g = U ~lg(U) for all g € Gk. Hence, the
class [c] is represented by an element of the image of (U dR /U X dJlg)GK under § by
the exact sequence (5). We regard K Qk, B;IS,CP /K, as a subring of Bcﬁz,a:,, /K by

Proposition 3.16. Then, we have the following lemma:

Lemma 6.6. Every element of (UrerR/ Urvd’l:)GK is represented by an element in

Uy (K ®K0 (Bcrls Cp/KO)GKpr)

We leave the proof of Lemma 6.6 to the end of the proof Thanks to the lemma,
there exist X1 € U, (K ®k, (Bcris,Cp/KO)GKpf) and X, e UY dR * such that

ce = X; ' X g (X))g(Xa) (6)

for all g € Gg.

Since the canonical isomorphism i : [@X‘;’r@p /Ko = [@:{g’@p /1" is compatible
with the actions of ¢ and Gg,r, we may regard M :=i*/ as a (¢, Ggpr)-module
over [EB;{g,Cp/Kgf. Then, the triple (M, {e,, ..., e,},i*c) satisfies the assumptions of
Proposition 6.1. Indeed, assumption (i) follows from Proposition 5.3, Proposition 5.4
and the functoriality. The image of ¢ is in U, (Brlg Cp/ K,)> Which implies assump-
tion (ii). Applying Proposmon 6.1 to the above triple, we have X} € U, ([BSt Cp/ Kpt)
such that z(cg) =(X3)~ g(X ). Hence, X3 :=1i 1(X ) e U, ([EBgt Cp /Ko) satlsﬁes
cg = X5 lg(X3) for g € Ggpr. Since we have cg = X5 lg(X5) for g € Gk by
(6), we have

X, X5 e U, +R)Gmf = U,((BXRTCP /x) %K),
Note that the canonical map

V+ G V+ G
Kean @Ko Beris,c, ko) K" = Barlc, k) "

is an 1som0rphlsm In fact, by using the canonical isomorphisms Bcrls Cp/Ko
B;’;B Cp/KY and [BdR Cp/K > BdR ¢,/ Kk it follows from the 1som0rphlsms

f
Kcan ®Kcan,0 Kg ~ K ®K0 Kg = Kpf,
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where the first isomorphism easily follows from Remark 1.4(ii) and the second one
is trivial. Thus, we have

e = (X1 - XX7 X)L (X - XXy XG)

for all g € Gg with X7, X2X3_1, X3 €U (K ®k, Bjt,@p/Ko)’ which implies the
assertion.

Now, we return to the proof of Lemma 6.6. We endow M, ([Bjk’@p /1K) =
(B&’i{,@p k) ? with the product topology. Let

d:MyBirc, k)= Qe®x My Bk e, k) (xij) = (V(xi)),

dy Q}(‘@KMr(BZ%,C,,/K) - Q%{®KMV(BIR,CP/K); (wij) = (Vi(@if))
be the derivations. For i € {1, 2}, we endow SAZ’K ®KMr(B$z,a:p/K) with the left

(resp. right) action of M, (Bc‘ﬁz,(ﬁp /i) induced by the left (resp. right) multiplication
on M, (BSFR’CP /k)- We also have the wedge product

A QE®K Ne(K) x Qg ®k Nr (B ¢, /x) = Qx Ok Nr B ¢, /)
(a),'j) X (a)l']) = ( Z Wik /\a),'cj).
1<k<r

Then, we have the formulas djod =0, d(XX')=dX - X'+ X -dX’, di(w-X) =
diw-X—wndX,and (wA0')- X =oA (0 X), for X, X/EQ}(@)KNr(Bjka/K),
wE Q}(@)KN, (K), and o’ € Q}(@)KNr (BcJﬁz,C,,/K)' We define a log differential

dlog: Ut — Qg ®k Nr Bl c,/x): X dX X1,

which is Gk -equivariant. (Note that it does not preserve the group laws in general.)
Since we have dlog(XA) = dlog(X) for 4 € UrYdJlg and X € UrJ’rdR by the above
formulas, dlog induces a morphism of Gg -sets

dlog, : Ut/ UYk — Qi &k Nr B ¢,/ x)-

Moreover, dlog,, is injective. Indeed, let X, Y e U r:tiR such that dlogX =dlogY. By
dE =d(Y~'Y) =0 and the above formulas, we have d(Y ~!) = —Y 14y .Y~ L.
Hence, we have

dlogY ' X)=@d¥ - X +Yldx)- X"y
=Y 'dy.- Yy '—dx-Xx"1.Yy=0.

Since the inverse image of {0} by dlog is UrYdJlg, we have X ~ Y. By tak-
ing H°(Gg ., —) of dlog,, we have an injection of sets

dlog, : (U} /U)K < G & N (K).
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We define a decreasing filtration on N, (B(‘ﬁ{,@p /x) by
Fil" Ny B c,/x) = {(@ij) € NrBrc,/x) | aij = 0if j —i <n}.
Then, we have Fil’N, B ¢,/x) = Nr Bk c,, K% and Fil"’ N, Bz ¢,/ x) = 0.
Let X € U,y such that we have [X] € (U /U R . Let  := dlog(X) €
QL ®k Ny (K). We will construct X € U, (K ®k, Beis ¢,/ k,) k™) for n € N
satisfying
w- X" =dx™ mod Qi ®kFil"N, (B c,/k)-

Set XY@ :=1. Suppose that we have constructed X ) Since we have w- X = dX,
we have djw - X = w A dX by taking d;. Hence, we have djw = (0 AdX)- X1 =
wAw. Letw' = (a)lfj) =w- XMW _gx®™ ¢ Q}((X)KFil”Nr([B;&’Cp/K). Then, by
a simple calculation using the above formulas, we have

dio' =on(@ XM —dX™)=wre0'=0 mod Qk &xFil" ' N, (B ¢, /x)-

which implies Vi (]

i i+ns1) = 0. Since we have

wl/] € Q}{ @K(K ®K() (Bj;is,CP/KO)GKpf)9

by Lemma 6.5, there exists xlf,l.+n+1 € K ®k, (B;is,a:p/K())GKpf such that

v(xz{,H-n—H) = wz{,i—f-n—f-l'
Let Xt = x4 37 x! 1 Eiipnt1 € Ur (K® kg, Bais ¢,/ ko) %) Then,

by a simple calculation, we have

w - X(n+1) _dX(n-H)

=w- X _gx®™ _g (Z X,{,i+n+1 Ei,i+n+1)
i
=0 =Y Vi) Eiigne1 =0 mod Qg @k Fil" N, (Bl ¢, /x0)-

4

Hence, we have dlog(X ")) = w, which implies the assertion. O

7. Applications

We will give applications of the Main Theorem. In Section 7A, we will recall linear
algebraic structures, which appear in the following. In Section 7B, we will prove
a horizontal analogue of the p-adic monodromy theorem. The results of the next
two subsections are applications of this theorem. In Section 7C, we will prove an
equivalence between the category of horizontal de Rham representations of Gx and
the category of de Rham representation of Gk . In Section 7D, we will prove a
generalization of Hyodo’s Theorem 1.16.
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In this section, unless partlcular mention is stated, we will denote B<> Cp/ Ko
(resp. [B@ c,p/K)bY BQ (resp. B@) for & € {cris, st} (resp. © € {dR, HT}): This nota-
tion is Justlﬁed by the facts that BO Cp/ Ko and B@ cp/K Are isomorphic to Be, ¢, /0,
and Bo ¢, /0, as (Qp, Gk)-rings respectlvely

7A. Additional structures. In the following, let V € Repg, Gk - The vector space
DY (V) has additional structures for « € {cris, st, dR, HT}, which we will recall
following [Fontaine 1994b].

« The Hodge-Tate case

We define a graded K-vector space as a finite-dimensional K-vector space D
endowed with a decomposition D = €, Dn. Denote by M Gk the category of
graded K-vector spaces. The graded ring structure on BIZT induces a graded K-
vector space structure on IDXT(V). Hence, we have a ®-functor

Dyr : RepyGx — M Gy

Assume that we have V' € RepZTGK. We define the Hodge—Tate weights of V' as
the multiset consisting of n € Z with multiplicity m, :=dimg (Cp(—n) ®q, V)Oxk.
Since the comparison isomorphism ong is compatible with Gg -actions and gradings,
by taking the degree zero part, we have an isomorphism of C,[Gg]-modules

Cp®a, V=P Cpm)™.
nez
which is referred to as the Hodge—Tate decomposition of V. Note that if V €
Repg, Gk admits such a decomposition, then it is horizontal Hodge—Tate.

« The de Rham case

We define a filtered K ,,-module as a finite-dimensional K,,-vector space
endowed with a decreasing filtration {Fil” D},ez of Ka,-subspaces such that
Fil"D = D for n < 0 and Fil"D = 0 for n >> 0. Denote by M Fg, the cate-

gory of filtered Kcan-modules. The filtration Fil"BY, = t"BY;" on B} induces a
filtered K ,,-module structure on [DdVR(V). Hence, we have a ®-functor

dn

« The crystalline and semistable cases
We first define filtered (¢, N, G/ x )-modules for our later use.

Defintion 7.1. (i) Let L/ K be a finite Galois extension. A filtered (¢, N, G,k )-
module is a finite-dimensional L,y o-vector space D endowed with

« the Frobenius endomorphism: a bijective ¢-semilinear map ¢ : D — D;

« the monodromy operator: an Ly, o-linear map N : D — D such that Ny =
PeN;
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« the Galois action: an L, 0-semilinear action of G /g, which commutes
with ¢ and NV;

o the filtration: a decreasing filtration {Fil" Dy }nez of G /g -stable Lcan-
subspaces of D, := Lcan ®L,, , D satisfying

can *

Fil"D; = Dy,

can can

forn <0 and FilI"Dy =0 forn> 0.

can

If L = K, then we call D a filtered (¢, N)-module relative to K.,,. Moreover,
if N =0, then we call D a filtered ¢-module relative to Kcyy.

A morphism Dy — D, of filtered (¢, N, G,k )-modules is an Ly, o-linear
map [ : Dy — D; such that / commutes with ¢ and N, G, -actions and we
have f(Fil"Dy ) CFil"D;, . forallneZ.

Denote by MF(¢,N,Gr k) (resp. MFk, (9. N), MFg_ (¢)) the category

of filtered (¢, N, G,k )-modules (resp. filtered (¢, N )-modules relative to Kcan,
filtered ¢-modules relative to K qp).

(i) Let D € MFg

can

(p, N) and r := dimg,_ , D. We define 7y (D) and 75 (D)
in the following way: First, we consider the case r = 1. If we have v € D \ {0}
and ¢(v) = Av, then v,(A) € Z is independent of the choice of v. We denote it
by tn (D). We denote by 7g7 (D) the maximum number n € Z such that Fil” Dg,_ #0.
In the general case, we define

tn(D) = ZN(/\rD), tg (D) = ZH(/\rD).

We say that D is weakly admissible if we have ¢y (D) =t (D) and ¢t (D’) >
tg (D') for any Koy o-subspace D’ of D which is stable by ¢ and N, with D/Km
endowed with the induced filtration of Dg_ .

Denote by M F¥(¢, N, G, k) the full subcategory of M F(¢, N, G ) whose
objects are weakly admissible as object of M Fr__ (¢, N). We define M F;g:‘an (. N)

and M Fg* (¢) similarly.

can

Let < € {cris, st}. By Proposition 3.16, we have a K ,,-linear injection
Kcan ®Kcan_0 DX(V) - [DdVR(V)-

We endow Kean ®k,, o [DX(V) with the induced filtration of [I])(YR(V). Together
with the Frobenius endomorphism ¢ and the monodromy operator N on BX, these

data induce a structure of a filtered (¢, N )-module over K, relative to Kcan,o0
on DY (V). Since we have DY, (V) = (DY (V))N=0, DY, (V) has a structure of a

cris cris
filtered ¢-module over Ky, relative to Kcap 0. Therefore, we have ®-functors
DV

cris

:RepcvrisGK — MFg._ (), I]])SVt : RepVGK — MFg_(¢,N).

can st can

For D € MFg._ (¢, N), we define

can

V(D) := (BY ®k,,, D)V ="=' nFi’(BY; ®x., DK..,)-
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For D € M Fk_ (¢), we define Vi5(D) := V(D). These are (possibly infinite-

can

dimensional) @Q ,-vector spaces with Gk -action.

Remark 7.2. Note that we have the hierarchy of full subcategories of Repg, Gk
RepCVriSGK C ReszK C RepdVRGK C RepZTGK.

In fact, if we have V € Rep; Gk, then we have dimg , V =dimg, DY, (V)<
dimg, I]]JSVt (V), which implies that V' is horizontal semistable by Lemma 1.19.
CVriS(V) — I]])SVt(V) is an isomorphism as
filtered (¢, N)-modules relative to K.,,. The inclusion ReszK C RepdVRGK
follows from Lemma 1.20, Proposition 3.16 and Corollary 4.3. Moreover, if we
have V € Repg G, then the canonical map Keun ®k.,, I]])SVt V) — ID(YR(V) is an
isomorphism of filtered K.,,-modules. Finally, let V' € Rep(jVRGK. We choose a
lift of a K¢ap-basis of gr” ID(YR(V) in Fil” ID)(YR(V) for all n € Z. We denote these
lifts by {e;} and let n; € Z such that ¢; € Fil"i Dy, (V) \Fil"i T!DY, (V). Then, {¢;}
forms a K.,,-basis of IDCYR(V). Consider the comparison isomorphism

an, 0

In this case, the canonical injection D

BdVR ®K [DdVR(V) - BdVR ®a, V.

can

which is compatible with the filtrations. By taking Fil” of both sides, we have

Ztn_ni By ¢; = "Bir” ®a, V.
i

By taking gr” of both sides and taking H%(Gg, —), we have
K @k, e"DR(V) = P Kei = (Cp(n) ®a, V)

i:nj=n

by Theorem 1.15. Hence, we have an isomorphism K ®g., ngDdVR(V) ~ [DZT(V)
of filtered K-vector spaces, which implies V € RepyGx by Lemma 1.19. In
particular, the multiset of Hodge—Tate weights of V' coincides with the multiset
consisting of n € Z with multiplicity dimg_, Fil™"DY, (V)/Fil™"*!DY, (V).

can

Proposition 7.3. The functors DY, and I]])SVt induce the functors

cris

Dy : Repyi Gk — MFY" (¢). Dy :Repy Gx — MFY" (. N).

cris
Moreover, these functors are fully faithful.

Proof. We first prove the weak admissibilities of the images. As noted in Remark 7.2,
if V is horizontal crystalline, then IDCVriS(V) coincides with IDSVt (V) as a filtered
(¢, N)-module relative to K.,,. Therefore, we may reduce to the case that V' is
horizontal semistable.

For a filtered (¢, N )-module D relative to K ,n, we endow the finite Kgf—vector

space Dk} with a structure of a filtered (¢, N)-module relative to KP as follows.
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We extend the Frobenius ¢ on D to Dg}f semilinearly and extend the monodromy
operator N on D to D k' linearly. We also define a filtration of D gt as Fil* D gpr :=
K ® K., Fil* Dk . Moreover, the scalar extension

K ®k., (=) MFg, (¢, N) = MFgu(p,N)

can

induces a functor. We have only to prove that the following diagram is commutative:

v
Repsvt Gg : MFg,_ (¢, N)
L ReSI[gpt L K8f®Kcan.0(_)
Rep, G kot MF (@, N)

In fact, since Dy (V| gor) = Kpf ® Keano V(V) is weakly admissible by [Fontaine
1994b, Proposition 5.4.2(1)], ID (V) is Weakly adm1531ble by definition.

By functoriality, the canomcal map i Kp ® Ko DY (V) — Dy(V|gw) is a
morphism of filtered (¢, N')-modules relative to K pf Cons1der the associated graded
homomorphism after applying K Pf® ki The resultmg homomorphism coincides
with the canonical map KPf @ ID (V) — Dur(V|get). Since V € RepHTGK
by Remark 7.2, a Hodge—Tate decomposmon CprRa, V=P,cnCp(m)™ of V
induces a Hodge—Tate decomposition of V' |gpr. In particular, V| gpr is also Hodge—
Tate and the above canonical map is an isomorphism. Since the filtrations of |]]>SVt V)
and Dy (V| gor) are separated and exhaustive, 7 is an isomorphism as filtered (¢, N )-
modules relative to Kg .

We prove the full faithfulness. We have the fundamental exact sequence

inc. cé

_ an.
0 @P (Bcns)(p_l - B(iVR/BtivR+ — 0.

Indeed, the exactness is reduced to [Colmez and Fontaine 2000, Proposition 9.25] by
identifying ch (resp. [EB(YR"', [BV R) With By ¢,/ K (resp [E’EdR cp/ k¥ Bar,c,/ K00)-
By the fundamental exact sequence we have \/M o IDst(V) =V (resp. Vs ©
CVHS(V) =V)forV e Rep Gk (resp. V € RepmsGK) This implies the full
faithfulness. U
In Proposition 7.5(ii), we will prove that the above functors induce equivalences

of categories, that is, are essentially surjective.

7B. A horizontal analogue of the p-adic monodromy theorem. The following is
a horizontal analogue of the p-adic monodromy theorem. Note that the converse is
true by Hilbert 90 and Corollary 4.3.

Theorem 7.4. Let V € RerRGK. Then, there exists a finite extension K’/ K a,
such that V| g g is horizontal semistable.
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Proof. First, the comparison isomorphism a Y.

dR,Cp/ K induces an isomorphism of
Bar,c,/k[Gk]-modules

BdRaCP/K ®I(can DCIVR(V) - BdR,Cp/K ®@p V

By taking H%(Gg, —), we have dimg Dgr (V) = dimg, V' by Corollary 4.3, which
implies V € Repyr Gk by Lemma 1.19. Hence, there exists a finite extension L/ K
such that V| is semistable by the Main Theorem. We may assume that L/ K is a
finite Galois extension satisfying condition (H) by the proof of the Main Theorem
(Step 1) and Epp’s Theorem 1.6. The extension L/ Kcan is finite Galois by
Lemma 1.5(ii). We will prove the assertion for K = Ly,.

We have canonical isomorphisms

Lean ®L 0 Dst(VIL) = L ®L, Dy(VL) = Dar(VL),

where the first one is induced by a canonical isomorphism Lcy, ®p, o Lo — L
(Remark 1.4(ii)), the second one follows by using Lemma 1.20 and Proposition 3.16.
Moreover, these maps are compatible with the residual Gy /g -actions and the V-
actions. By taking the horizontal sections, we have

DR (V1) = DR (VL) V=" = (Lean ® L., o Dot(V]2)) V=0
= Lcan ®Lcan,0 DSI(V|L)V=0 = Lcan ®Lcan,0 [stt(vlL)v

where the third equality follows from the fact V[ = 0. By taking Gr/k.1.,,
invariants, we have D(YR(V|K.LC“) = Lean ®L 0 [stt(V|K~Lcan)- Since V|k.L,,, 18

horizontal de Rham by Remark 1.22 and since (K- Lcan)can = Lcan by Lemma 1.5(iv),
we have

dimz, DR (VK Le,) = dima, V =dimz_ DY (V|K-L.):
which implies that V'|g.r . is horizontal semistable. O

7C. Equivalences of categories. The surjection of profinite groups * : Gg —
Gk.,,, induces a ®-functor of Tannakian categories

1 Repg, Gk.,, — Repg, Gk .

Obviously, the functor :* is fully faithful. Denote by C, the p-adic comple-
tion of the algebraic closure of K., in K. For.e {cris, st,dR}, we have a
Galois equivariant canonical injection B, ¢,/ k.., = BZGP /k by functoriality and
we have (B,,Cp/Kcan)GKcan o~ (BZQP/K)GK (= Kcan if « = dR, K4y 0 otherwise) by
Proposition 3.16. Hence, if we have V € Rep, Gk, , then we have 1*V € Rep,V Gg.
In fact, we have a canonical injection D,(V) C DY (1*V) of (B.,c, /. ) CKean -

can

vector spaces, which implies the BZCP / k -admissibility of 1*V e Repg,, Gk by
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Lemma 1.19. Hence, 1* induces a fully faithful ®-functor

1} :Rep,Gg.. — Repy G-

can

The following proposition is a direct consequence of théoréeme 4.3 in [Colmez
and Fontaine 2000].

%
cris
and 1}; induce equivalences

Proposition 7.5 (horizontal analogue of Colmez—Fontaine). (i) The functors 1
and 1}; are essentially surjective. In particular, 17
of Tannakian categories.

(ii) The functors

DY : Repyi Gk — MFg (¢), D : Repyy Gk — MFg, (9. N)

cris
induce equivalences of categories with quasi-inverses Vs, V.

Proof. We first prove the assertion in the semistable case. Together with the full
faithfulness of DY

«» we have only to prove the commutativity of the diagram

1*

can Repsvt GK

ELDSI LDX

id
MER (p.N) —= MFg (p.N).

Rep, Gk

where Dy, is an equivalence of categories by Colmez—Fontaine theorem [2000,
Théoreme 4.3]. As we mentioned above, the canonical map Dg (V') — IDX @*V),
which commutes with ¢ and N -actions, is an isomorphism of K,y o-vector spaces.
We have only to prove that the map also preserves the filtrations. Obviously, we
have Fil*Dg (V) C Fil'l]])svt (*V). To prove the converse, it suffices to prove that
the associated graded modules of both sides have the same dimension since the
filtrations are exhaustive and separated. Let C), ®q, V = @, Cp(n)™" be the
Hodge-Tate decomposition of V. Then, it induces the Hodge—Tate decomposition
of 1*V, thatis, Cp ®q, 1*V = ,c7 Cp(n)™", which implies the assertion.

In the horizontal crystalline case, a similar proof works by replacing *y and
MFI"}:n (¢, N) by s and MF}?ZH (p). d
Theorem 7.6. The functor 13y is essentially surjective. In particular, 1}, induces

an equivalence of Tannakian categories.

Proof. For a finite Galois extension L /K such that K - Ly = L, let 6,/ g be the
full subcategory of Rep(YRGK whose objects consist of V' € RepdVRGK such that V|,
is horizontal semistable. Recall the notation in Defintion 7.1. Then, we have an
equivalence of categories

DY €k — MF*™@.N.Grjx):  V>DY(VIp).
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In fact, we have the following quasi-inverse V . : For D € MF¥ (¢, N,Gr k),
we regard D as an object of MFW“l ((p N) and let V 1. (D) := V(D). We have

Vg, .(D) € Repz G by Proposmon 7. 5(ii) and V(D) has a canonical Gk -action,
which is an extension of the action of G, induced by the G/ -action on D. We
have D € 61,k by Remark 4.8 and Remark 7.2. We have V 1 o DY L = = ide, gk
and I]])gt 1 ° Vs, L =idpFvae, NG, k) by Proposition 7.5(ii).

The restriction map Rest Lo -Gk = GpL../ K., induces the equivalence of
categories

(Resf )*:MF“¢.N.Gr/k..) —> MF*(¢.N.GL/g).

can

We will prove that the diagram

L *
(Res Lcan)

MF*(,N,Gr/k)

MFY(@,N,GL.../Keu)

~ \%
= L \/sl,Lcan L \/sl L
*

Lar

(GLcan/Kcan %L/K

is commutative, where the bottom horizontal arrow is induced by i, : Repyr Gk.,, —
Repyp Gx - Indeed, we have the Gg -equivariant inclusion

1 © Ve Ly (D) C VY 1 o (Resp )*(D)

can

for De MF"(p,N,Gp,/Kk.,) by construction. Since both sides have the same
dimension over @, this inclusion is an equality. By the commutative diagram, the
functor 13 : 61 /K., = 6L,k is essentially surjective.

LetV € RepdVRGK. By Theorem 7.4, we have a finite Galois extension K’/ K,
such that V|g xx 18 horizontal semistable. Let L := KK’. By Lemma 1.5(iv), we
have L., = K, thatis, L /K satisfies the above assumption. Since we have V €
%L,k the assertion follows from the essential surjectivity of

*
ldR : %Lcan/Kcan - (GL/K O

The above equivalence induces a @ »-linear isomorphism of Ext! on Repyg Gx...
and Repy, Gx . Note that for V € Repyg G, we may regard EXtRedeGK‘an Qp. V)
and Extéepv G (Qp,1*V) as

(1 ®ld)*

Hy(Gk.,,. V) :=ker (H'(Gx.V) — H'(Gx.Barc,/ Ko ®0, V).

1®id) «
H}Y(Gg.1*V) :=ker (H' (Gg.1*V) (& H'(Gg. B c,/x ®a, V)

respectively. In particular:
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Corollary 7.7. For V € Repyr Gk,

can’

the inflation map

Inf: H'(Gk

can’

V) — H'(Gg,1*V)
induces the isomorphism

Inf : H; (G,

can’

V)= H}Y(Gg . 1*V).

7D. A comparison theorem on H 1. Notation is as in the previous subsection.

Theorem 7.8 (a generalization of Theorem 1.16). Let V' € Repg,Gk,,, be a
de Rham representation whose Hodge—Tate weights are greater than or equal
to 1. Then, we have the exact sequence

(1®id)«

0— H'(Gg_,. V) 2> H' (Gx.1*V) 22 HY(Gk.Cp®q,1*V)  (7)

an *

and a canonical isomorphism

(Cp ®q, V(—1))Cn @g QL =~ H(Gg,Cp ®q, 1*V). )

Moreover, if the Hodge—Tate weights of V are greater than or equal to 2, then
H'(Gg,C p ®a, 1*V) vanishes, in particular, the inflation map
Inf: H'(Gk

can’

V) — H'(Gg,1*V)

is an isomorphism.

Proof. We first prove the exactness of (7). Note that the injectivity of the inflation
map follows by definition. We have the commutative diagram

H'(Gg,,.V)

(1®id)«olInf
j a ®id)*\

Inf
H'(Gk,,,Cp®a, V) —= H'(Gk.Cp®aq, 1*V).

Since we have a Hodge-Tate decomposition Cp ®q, V = P, en., Cp(1)™", we

have H'(Gk,,,. Cp ®q, V) = 0 by Theorem 1.15, which implies (I ®id)s oInf = 0.
Let % := ker {(1 ®id)+ : H'(Gg.1*V) > H'(Gk,C, ®q, 1*V)}. We have

only to prove ¥ is contained in the image of Inf: H!(Gk_, V) — H'(Gg,1*V).

Consider the exact sequence

inc. 0

2 s
0 = Byr'c,/K = Byric,/k

with 6 := 0c,/g. By applying ®q,:*V and taking H*(Gg,—), we have the
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commutative diagram with exact row, where S stands for BXRfCP /K"

H'(Gg,1*V)
(1®id) «
(1®id)«
(inc.®id) % ®id)

HI(GK,IS®QPI*V) H! (Gg, S®@pl V)é H! (Gg,C ®@pl V).

Since V(1) is de Rham with Hodge—Tate weights > 2, we have
H'(Gk. 1BYc,/x ®a, 1*V) =0
by Theorem 1.15, Lemma 1.14 and dévissage. Hence, the canonical map
(1 ®id)« : % — H'(Gx.Big'c,/x ®a,1*V)

vanishes by the above exact sequence In particular, we have # C Hg} V(GK, *V).
By Corollary 7.7, we have Inf : H (G, V)~ HY V(GK 1*V), which implies
().

Then, we will prove the existence of the canonical isomorphism (8). By the
inclusion (Cp ®q, V(— 1))%ken C (C »®a, 1"V (= 1))% and the canonical isomor-
phism Ql — H'(Gg,Cp(1)) in Theorem 1.15, we can define a canonical map f
as the composite

can ’

inc.®can.

Gk .. A
(Cp ®a, V(1)) """ ®k,, QU
(Cp ®a, 1*V(=1)% @ H'(Gg,C,(1)) <> H'(Gg,C,p ®q, 1*V).

We will prove that f is an isomorphism. A Hodge-Tate decomposition of V'
induces a Hodge-Tate decomposition Cp ®q, 1"V = @B, en., Cp(n)™ of 1*V.
By replacing C, ®q,, V and C, ®q, 1V by their Hodge-Tate decompositions, we
may reduce to the case V' = Q,(n) with n € N> since the cup product commutes
with direct sums. Then, the assertion follows from Theorem 1.15.

We will prove the last assertion. The assumption implies that we have m1; = 0 in
the above notation, hence, we have H!(Gg, C » ®a, 1*V) = 0 by the Hodge-Tate
decomposition of 1*V and Theorem 1.15. O

Remark 7.9. (i) Originally, Theorem 1.16(i) and (ii) are proved separately by using
ramification theory in some sense.

(ii) (Finiteness) Suppose that we have [Kca, @ Qp] < 0o. For example, consider
the case that K has a structure of a higher-dimensional local field (Example 1.7).
Let V' € Repg , Gk be horizontal de Rham of Hodge-Tate weights greater than or
equal to 2. Then we have

dimg, H'(Gk, V) = [Keun : Qp]dimg, V < o0.
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Indeed, by Theorem 7.6 and 7.8, we may reduce to the case K = Ky,. By a
Hodge-Tate decomposition Cp ®q, V = Pen., Cp(m)™" with m, € N, we have
H°(Gg,V) C H°(Gg,C) ®aq, V) =0 and H*(Gg.,V) =~ HGg,VV(1)) C
H%(Gg,Cp ®q, V(1)) = 0 by the local Tate duality [Herr 1998, Théoreme in
Introduction], where ¥ denotes the dual. Then, the assertion follows from the
Euler-Poincaré characteristic formula (loc. cit).

Note that H!(Gg, V) is not finite over @, without the condition on Hodge-
Tate weights: For example, H'(Gg,Q,(1)) = Q, ®z, l(lr_nn K*/(KX)?" con-
tains Q, ®z, Ok, which is infinite-dimensional over Q) if kg is imperfect, via
the map Og — UI((I) that takes x to exp (2px).
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On the Manin—Mumford and Mordell-Lang
conjectures in positive characteristic

Damian Rossler

We prove that in positive characteristic, the Manin—-Mumford conjecture implies
the Mordell-Lang conjecture in the situation where the ambient variety is an
abelian variety defined over the function field of a smooth curve over a finite field
and the relevant group is a finitely generated group. In particular, in the setting of
the last sentence, we provide a proof of the Mordell-Lang conjecture that does
not depend on tools coming from model theory.

1. Introduction

Let B be a semiabelian variety over an algebraically closed field F of characteristic
p > 0. Let Y be an irreducible reduced closed subscheme of B. Let A € B(F) be
a subgroup. Suppose that A ®z Z,) is a finitely generated Z,)-module (here, as is
customary, we write Z(,) for the localization of Z at the prime p).

Let C := Stab(Y)™d, where Stab(Y) = Stabg(Y) is the translation stabilizer
of Y. This is the closed subgroup scheme of B that is characterized uniquely by
the fact that for any scheme S and any morphism b : § — B, translation by » on
the product B x r § maps the subscheme Y x § to itself if and only if b factors
through Stabp (Y). Its existence is proven in [Grothendieck et al. 1970b, Exposé
VIII, Exemples 6.5(¢)].

The Mordell-Lang conjecture for Y and B is now the following statement:

Theorem 1.1 (Mordell-Lang conjecture [Hrushovski 1996]). If Y N A is Zariski
dense in Y, then there are

e a semiabelian variety B’ over F,

e a homomorphism with finite kernel h : B — B/ C,

» a model B’ of B' over a finite subfield F,» C F,

e an irreducible reduced closed subscheme Y' — B’, and

e apointb € (B/C)(F) suchthatY/C = b+ h,(Y Xg,, F).

MSC2010: primary 14GO05; secondary 14K12, 14G17.
Keywords: function fields, rational points, positive characteristic, Manin-Mumford, Mordell-Lang.
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Here A, (Y' x Fpr F) refers to the scheme-theoretic image of Y’ x Fpr F by h. Since
h is finite and Y’ xf,, F is reduced, this implies that h (Y xf, F) is simply the
set-theoretic image of Y’ X, F by h endowed with its reduced-induced scheme
structure.

Theorem 1.1 in particular implies the following result, which will perhaps seem
more striking on first reading. Suppose that there are no nontrivial homomorphisms
from B to a semiabelian variety that has a model over a finite field. Then if Y N A
is Zariski dense in Y, then Y is the translate of an abelian subvariety of B.

Theorem 1.1 was first proven in 1996 by Hrushovski using deep results from
model theory, in particular the Hrushovski—Zilber theory of Zariski geometries (see
[Hrushovski and Zilber 1996]). An algebraic proof of Theorem 1.1 in the situation
where B is an ordinary abelian variety was given by Abramovich and Voloch [1992].
In the situation where Y is a smooth curve embedded into B as its Jacobian, the
theorem was known to be true much earlier. See for instance [Samuel 1966; Szpiro
et al. 1981]. The earlier proofs for curves relied on the use of heights, which do not
appear in the later approach of Voloch and Hrushovski, which is parallel and inspired
by Buium’s approach in characteristic 0 via differential equations (see below).

The Manin—-Mumford conjecture has exactly the same form as the Mordell-Lang
conjecture, but A is replaced by the group Tor(B(F)) of points of finite order
of B(F). For the record, we state it in full.

Theorem 1.2 (Manin—-Mumford conjecture [Pink and Rossler 2004]). Suppose
Y NTor(B(F)) is Zariski dense in Y. Then there are

e a semiabelian variety B’ over F,

e a homomorphism with finite kernel h : B — B/ C,

» a model B' of B’ over a finite subfield F,» C F,

o an irreducible reduced closed subscheme Y — B', and

e apointb € (B/C)(F) suchthatY/C = b+ h.(Y' x¢, F).

See also [Scanlon 2005] for a model-theoretic proof of the Manin—-Mumford
conjecture.

Remark (Important). Notice that the Manin—Mumford conjecture is not a special
case of the Mordell-Lang conjecture because Tor(A(F)) is not in general a finitely
generated Z,)-module (because Tor(A(F))[p™] is not finite in general). Never-
theless, it seems reasonable to conjecture that Theorem 1.1 should still be true
when the hypothesis that A ®7 Z ;) is finitely generated is replaced by the weaker
hypothesis that A ®7 Q is finitely generated. This last statement, which is still not
proven in general, is often called the full Mordell-Lang conjecture, and it would
have Theorems 1.1 and 1.2 as special cases. See [Ghioca and Moosa 2006] for
more about this.
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Now suppose that the group A is actually finitely generated and that B arises
by base-change to F' from an abelian variety By, which is defined over a function
field of transcendence degree 1 over a finite field. The main result of this text is
then the proof of the fact that the Manin—-Mumford conjecture in general implies
the Mordell-Lang conjecture in this situation. We follow here the lead of A. Pillay,
who suggested in a talk he gave in Paris on December 17, 2010 that it should be
possible to establish this logical link without proving the Mordell-Lang conjecture
first. See Theorem 1.3 and its corollary below for a precise statement.

The interest of an algebraic-geometric (in contrast with model-theoretic) proof of
the implication Manin—-Mumford = Mordell-Lang is that it provides in particular
an algebraic-geometric proof of the Mordell-Lang conjecture.

Let K, be the function field of a smooth curve over F p- Let A be an abelian
variety over Ky, and let X < A be a closed integral subscheme. We shall write +
for the group law on A.

Let I' C€ A(Kp) be a finitely generated subgroup.

Theorem 1.3. Suppose that for any field extension Lo|Ky and any Q € A(Ly), the
set X Z)Q NTor(A(Ly)) is not Zariski dense in X Z)Q. Then X NI is not Zariski dense
in X.

Here X ZOQ stands for the scheme-theoretic image of X, under the morphism
+ Q . ALO —> ALO .

Corollary 1.4. Suppose that X N T is Zariski dense in X. Then the conclusion
of the Mordell-Lang conjecture (Theorem 1.1) holds for F = Ko, B = Ag,. and
Y=X Ko

In an upcoming article, which builds on the present one, Corpet [2012] shows
that Theorem 1.3 (and thus its corollary) can be generalized; more specifically, he
shows that the hypothesis that K is of transcendence degree 1 can be dropped, that
the hypothesis that I" is finitely generated can be weakened to the hypothesis that
I’ ®z Z(p) is a finitely generated Z,)-module, and finally that it can be assumed
that A is only semiabelian. In particular, he gives a new proof of Theorem 1.1.

In the present article, we deliberately focus on the situation of an abelian variety
and a finitely generated group (which is probably the most important situation) in
order to avoid some technical issues, which we feel would obscure the structure of
the proof.

The structure of the article is the following. Section 2 contains some general
results on the geometry of relative jet schemes (or spaces), which are probably
known to many specialists but for which there doesn’t seem to be a coherent set
of references in the literature. The jet spaces considered in [Moosa and Scanlon
2010] do not seem to suffice for our purposes because they are defined in an
absolute situation, and the jet spaces considered in [Buium 1992] are only defined in



2042 Damian Rossler

characteristic O (although this is probably not an essential restriction); furthermore,
the latter are defined in Buium’s language of differential schemes whereas our
definition has the philological advantage of being based on the older notion of Weil
restriction. Section 2A contains the definition of jet schemes and a description of
the various torsor structures on the latter. Section 2B contains a short discussion on
the structure of the jet schemes of smooth commutative group schemes and various
natural maps that are associated with them. In Section 3, we use jet schemes to
construct some natural schemes in the geometrical context of the Mordell-Lang
conjecture. These “critical schemes” are devised to “catch rational points”; we then
proceed to show that these schemes must be of small dimension. This is deduced
from a general result on the sparsity of points over finite fields that are liftable to
highly p-divisible unramified points. This last result is proved in Section 4. Once
we know that the critical schemes are small, it is but a small step to the proofs
of Theorem 1.3 and Corollary 1.4. The terminology of the introduction is used
in Sections 2 and 3, but Section 4 has its own terminology and is also technically
independent of the rest of the text. A reader who would only be interested in its
main result (i.e., Theorem 4.1) can skip to Section 4 directly.

The use that we make of jet schemes in this note is in many ways similar to the
use that Buium [1992] makes of them in his article on the geometric Mordell-Lang
conjecture in characteristic 0. In the article [Buium and Voloch 1996], where some
of Buium’s techniques are adapted to the context of positive characteristic, the
authors give a proof of the Mordell conjecture for curves over function fields in
positive characteristic, which has exactly the same structure as ours if one leaves
out the proof of the result on the sparsity of liftable points mentioned above.

For more detailed explanations on this connection, see Remarks 4.8 and 4.9 at
the end of the text.

2. Preliminaries

We first recall the definition and existence theorem for the Weil restriction functor.
Let T be a scheme, and let 7" — T be a morphism. Let Z be a scheme over 7".
The Weil restriction Ry, 7 (Z) (if it exists) is a T-scheme that represents the functor
W/T — Homy (W xg T’, Z). It is shown in [Bosch et al. 1990, Section 7.6]
that Ry, 7 (Z) exists if T’ is finite, flat, and locally of finite presentation over 7.
The Weil restriction is naturally functorial in Z and sends closed immersions to
closed immersions. The same permanence property is satisfied for smooth and
étale morphisms. Finally notice that the definition of the Weil restriction implies
that there is a natural isomorphism Rz, 7 (Z) 1, =~ f)‘{r%l /Ti (ZT% ) for any scheme T
over T (in words, Weil restriction is invariant under base-change on T'). See [Bosch
et al. 1990, Chapter 7.6] for all this.
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2A. Jet schemes. Let kjy be a field, let U be a smooth scheme over kg, and let
A : U — U xy, U be the diagonal immersion. Let I C @UXA v be the ideal
sheaf of A U. Foralln e N, we let U, := @UXA U/I "+1 be the n- th infinitesimal
neighborhood of the diagonal in U xi, U.

Write w1, : U X ko U — U for the first and second projection morphisms,
respectively. Write rrl , U” : U, — U for the induced morphisms. We view U,
as a U-scheme via the ﬁrst projection T[lU .

We write iy, , : Uy, < U, for the natural inclusion morphism.

Lemma 2.1. The U-scheme U, is flat and finite.

Proof. As a U-scheme, U, is finite because it is quasifinite and proper over U since
U = A,(U). So we only have to prove that it is flat over U. For this purpose,
we may view U, as a coherent sheaf of Oy -algebras (via the second projection).

Let I := IA. For any n > 0, there are exact sequences of Oy, ,,-modules (and
hence Oy -modules)

0— 1"/ 1" - oy,,, — Oy, — 0.

Furthermore, 1"*!/1"+2 is naturally a Oy;,-module and isomorphic to Sym"Jrl (I1/1%)
as a Oy,-module because [ is locally generated by a regular sequence in U X U U
being smooth over kp). See [Matsumura 1989, Chapters 6 and 16] for this. Hence,
I"t1/1"+2 s locally free as a Oy-module. Since Uy = A, (U) is locally free as a
Oy-module, we may apply induction on n to prove that Oy, is locally free, which
is the claim. (]

Let W/ U be a scheme over U.

Definition 2.2. The n-th jet scheme J"(W/U) of W over U is the U-scheme
Uy, *
ERU,, /U(nz W)

By m," "W we mean the base-change of W to U, via the morphism n2 U, — U
described above.

If W, is another scheme over U and W — W is a morphism of U-schemes,
then the induced morphism 712 W — n2 W, over U, leads to a morphism of jet
schemes J"(W/U) — J" (W /U) over U so that the construction of jet schemes
is covariantly functorial in W.

Notice that the permanence properties of Weil restrictions show that if the mor-
phism W — W is a closed immersion, then the morphism J*(W/U) — J"(W/U)
is too. The same is true for smooth and étale morphisms.

To understand the nature of jet schemes better, let u € U be a closed point.
Suppose until the end of this paragraph that kg is algebraically closed. View u as
a closed reduced subscheme of U. Let u,, be the n-th infinitesimal neighborhood
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of u in U. From the definitions, we infer that there are canonical bijections
J"W/U) @) = J"(W/ Uy (ko) = Homu, (u g Un, 73" W)
= Homy, (un, W,,) = Hom,,, (u,, W,,,) = W (up,). (1)

In words, (1) says the set of geometric points of the fiber of J*(W/U) over u
corresponds to the set of sections of W over the n-th infinitesimal neighborhood
of u; the scheme J"(W/U), is often called the scheme of arcs of order n at u in
the literature [Moosa and Scanlon 2010, Example 2.5].

The family of U-morphisms i, , : U, = U, induce U-morphisms

AN, JNW/U) = J"(W/U)

for any m < n. These morphisms will be studied in detail in the proof of the next
lemma.

Lemma 2.3. Suppose that W is a smooth U -scheme. For all n > 1, the morphism
SRU,,/U(%U"’*W) — DciU,1_1/U(772U"71'>'<W)
makes Ry, /u (JTZU"’* W) into a Ry,_, /v (JTZU"’“*W)-torsor under the vector bundle
A;?,/b* (Qyy,1) @ Sym" (Qu/k,)-
Proof. Let T — U be an affine U-scheme. By definition,
Ry, v (03" *W)(T) =~ Homy, (T xy Uy, 73" *W),
Ry, v " W)(T) ~Homy, (T xy Up_1, 75" "W).
Now the immersion U,_; < U,, gives rise to a natural restriction map
Homy, (T xy Uy, 77" *W) — Homy, (T xy U,_1, 3" "W). (2)
This is the functorial description of the morphism
%Un/u(nzu"’*W) — SRUn_,/U(nZU"’I’*W).

Now notice that the ideal of U,,_ in U, is a square-0 ideal.

Let f e Homy, (T xy U,—1, nzu”’l’*W). View f as a U,-morphism

T xyU,_1 —> 7T2U”’*W

via the canonical closed immersions 712U""’*W — m, "*W and U,_; < U,. The
fiber over f of the map (2) then consists of the extensions of f to U,-morphisms
TxyU,— an "*W. The theory of infinitesimal extensions of morphisms to
smooth schemes (see [Grothendieck 1963, Exposé III, Proposition 5.1]) implies
that this fiber is an affine space under the group

HOT 50 Unets f*Q iy, ® N,
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where N is the conormal bundle of the closed immersion 7 xy U,,_; — T xy U,.
Since U, and U,,_ are flat over U, the coherent sheaf N is the pullback to 7' x U, —1
of the conormal bundle of the immersion U,_; < U,. Now since the diagonal is
regularly immersed in U x, U (because U is smooth over ko), the conormal bundle
of the immersion U,_; < U, is Sym" (Qyx,) (viewed as a sheaf in Oy, _,-modules
via the closed immersion Uy — U,_;). See [Matsumura 1989, Chapters 6 and 16].
Hence,

HY(T xu Unet, Q) ®N)

WU,
~ HYT xy Uy_1, f* szvy,,*

WU, ® Sym" (Qu/k,))
~ H(T. f3Qy,y ® Sym" (k).

where fj is the U-morphism 7' — W arising from f by base-change to U. ]

2B. The jet schemes of smooth commutative group schemes. We keep the termi-
nology of Section 2A. Let €/ U be a commutative group scheme over U with
zero-section € : U — €. If n € N, we shall write [n]¢ : € — % for the multiplication-
by-n morphism. The schemes J”(€/U) are then naturally group schemes over U.
Furthermore, for each n > m > 0, the morphism An m i J(€/U) — J"(€/U)
is a morphism of group schemes. If m = n — 1, the kernel of Af’m is the vector
bundle e"‘(SZ(6 /U) ® Sym" (Qy/k,). The torsor structure is realized by the natural
action of €*(2, /U) ® Sym" (Qy/k,) on J"(€/U). The details of the verification of
these facts are left to the reader.

Lemma 2.4. Let n > 1. Suppose that char(ky) = p. There is a U-morphism
[p"1°:6— J"(6/U) suchthatA o[p 1°=[p"l¢ and [p" 1y vy =P "]OOAf’O.

Proof. Let T — U be an affine U-scheme. Define a map
¢r.n : Homy (T, 6) — Homy, (T xy Uy, 75€)

by the following recipe. Let f € Homy (T, ), and take any extension f of f to
a morphism T xy U, — (7;€)y,; then define ¢7 ,(f) = p" - f . To see that this
does not depend on the choice of the extension f, notice that the kernel K,, of the
restriction map

Homy, (T xy Uy, 7546) — Homy (T, €)

is obtained by successive extensions by the groups H(T, f*Qx, u® Sym' (Qu/k,))
fori =1,...,n (see [Grothendieck 1963, Exposé III, Corollaire 5.3] for all this).
Hence, K, is annihilated by multiplication by p" because T is a scheme of charac-
teristic p.
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The definition of ¢r , is functorial in 7, and thus, by patching the morphisms
¢7., as T runs over the elements of an affine cover of €, we obtain the required
morphism [p"]°. O

Now notice that there is a canonical map )\rvlv :WW) - J*(W/U)(U) that
sends the U-morphism f : U — W to J"(f) : J"(U/U)=U — J*(W/U) for
any scheme W over U.

Lemma 2.5. The maps 1" have the following properties:
(@) Forn = m = 0, the identity A,vl‘fm oA =W holds.

(b) If W/ U is commutative group scheme over U, then )»XV is a homomorphism,
furthermore, on W (U) we then have the identity [p"]»w,u) © k,‘f’ =[p"]°.

(¢) If f: W — W, is a U-scheme morphism, then J"(f) oAV =W o f.
Proof. This is left as an exercise for the reader. O

Remark 2.6. An interesting feature of the map A is that it does not arise from a
morphism of schemes W — J"(W/U).

3. Proof of Theorem 1.3 and Corollary 1.4

We now turn to the proof of our main result. We shall use the terminology of the
preliminaries. Let kg := Fp, and suppose now that U is a smooth curve over kg
whose function field is Ky. We take U sufficiently small so that X extends to a flat
scheme & over U and so that A extends to an abelian scheme o over U. We also
suppose that the closed immersion X < A extends to a closed immersion & — .

Recall that the following hypothesis is supposed to hold: for any field extension
Lo|Ko and any Q € A(Ly), the set XZ)Q NTor(A(Lg)) is not Zariski dense in XZFOQ.

3A. The critical schemes. For all n > 0, we define
Crit" (%, A) :=[p"1.(J"(A/U)YNJ(X/U).

Here [p"]«(J"(sd/U)) is the scheme-theoretic image of J"(s4/U) by [p"]jnw/v)-
Notice that by Lemma 2.4, we have [p"](J"(A/U)) = [p"]°(sA), and since [p"]
is proper (because s is proper over U), we see that [p"](J"(4/U)) is closed and
that the natural morphism [p"].(J"(d/U)) — oA is finite.
The morphisms Aﬁ a1 2N/ U) — T "=1(s4/U) lead to a projective system
of U-schemes
oo Crit’ (X, o) — Crit" (X, o) — &

whose connecting morphisms are finite. We let Exc" (oA, ¥) < % be the scheme-
theoretic image of Crit" (s, &) in %.

For any Q € sd(U) = A(Kyp), we shall write %+t2 =% + Q for the translation
of X by Q in «A.
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Proposition 3.1. There exists o« = a(Ad, X) € N such that for all Q € ', the set
Exc®(sd, 19) is not dense in £12.

Remark 3.2. Proposition 3.1 should be compared to [Buium 1992, Theorem 1].

The following theorem, proved by Galois-theoretic methods in Section 4, will
play a crucial role in the proof of Proposition 3.1.

Let S := Specko[[t]. Let L := ko((¢)) be the function field of S. For any n € N,
let S, := Specko[t]/t"T! be the n-th infinitesimal neighborhood of the closed
point of S in S. Fix A9 € N*, and let R = R¥&40 :=F [[1] < koll]]. Let
Sl — galg.2o .= Spec R, There is an obvious morphism § — S@2,

Let 9% be an abelian scheme over S, and let Z < % be a closed integral subscheme.
Suppose that the abelian scheme has a model %€ over S¥¢ as an abelian scheme
and that the immersion % < 9 has a model %€ < %22 over $¥2. If ¢ € G(S),
write as usual Z1¢ := % + ¢ for the translation of % by ¢ in %. Let Dy and D be the
fibers of 9 over the closed and generic points of S, respectively. If ¢ € %(S), let Z(J{ ¢
and Z*¢ be the fibers of %1¢ over the closed and generic points of S, respectively.

Notice that there is a natural inclusion %#¢(5218) C ().

Theorem 3.3. Suppose that Tor(D(L)) N ch is not dense in X;C for all ¢ €
Pe(SUe) € B(S).

Then there exists a constant ng = ny(D, %) € N* such that for all ¢ € pale(gale)y
D(S) the set

{P € ZS (ko) | P lifts to an element of %£(Suy) N p"* - B(Sny)}
is not Zariski dense in Zar ‘.

Proof. This is a special case of Corollary 4.5. ([

Proof Proposition 3.1. Since & is flat over U and X is integral, we see that & is
also integral (see for instance [Liu 2002, 4.3.1, Proposition 3.8] for this). Hence,
it is sufficient to show that Exc” (s, ¥19), is not Zariski dense in %:Q for some
(any) closed point # € U. Now using (1) in the previous section, we see that

Crit" (sd, £79), (ko) = ([p"1(J" (s U)))u ko) N I (X2 Uy (ko)
={PeJ"&"C/U),(ko) | 3P € J"(sd/U)u(ko), p"- P =P}
={P X %u,) | 3P € A(uy), p"- P =P},

and thus,

Exc"(sd, #79), (ko)

= {P e %% (ko) | P lifts to an element of X7 (u,,) N p" - A(u,)}.

Now notice that s{ has a model s as an abelian scheme over a curve U , which is
smooth over a finite field; also since the group I' is finitely generated, we might



2048 Damian Rossler

assume that I" is the image of a group I" C A0). Finally, we might assume that the
immersion ¥ <> s has a model ¥ < < over U. We may thus apply Theorem 3.3
to the base-change of ¥ < « to the completion of U at u. We obtain that there is
an ng such that the set

{P € £ (ko) | P lifts to an element of %2 (u,,) N p" - (1)}
is not Zariski dense in &, for all Q € I'. So we may set o = ny. U

3B. End of proof. The proof of Theorem 1.3 is by contradiction. So suppose that
X NT is dense in X.

Let P, € I" be such that (X + P;) N p - I is dense, let P, € p - " such that
X+ P+ PN p2 -I" is dense in X 4+ P; 4+ P», and so forth. The existence of the
sequence of point (P;);en+ 1S guaranteed by the assumption on I', which implies
that p'T"/ p'*'T is finite for all i > 0.

Now let o = a(sA, &) be the natural number provided by Proposition 3.1. Let
Q = >, Pi. By construction, the set T2 N p® - T is dense in Z*¢. On the other
hand, by Lemma 2.5,

xeW)YNp*-T
= AL QI @2 N p* 1)) S AL L@ N (p* - T
C AL IY@T/U)Y N p* - T (A/UY(U)] S AL o[Crit® (o, 2F9)]
= Exc*(d, ¥79),

and thus, we deduce that Exc® (s, #79) is dense in 7€, This contradicts Proposi-
tion 3.1 and concludes the proof of Theorem 1.3.

The proof of Corollary 1.4 now follows directly from Theorem 1.3 and from the
following invariance lemma:

Lemma 3.4. Suppose that the hypotheses of Theorem 1.1 hold. Let F' be an
algebraically closed field, and let F'|F be a field extension. Then Theorem 1.1
holds if and only if Theorem 1.1 holds with F' in place of F, Yg <> B in place of
Y < B, and the image A g C Bp:/(F') of A in place of A.

Proof. The implication = follows from the fact that Yz N Aps is dense in Ypr
if and only if ¥ N A is dense in Y; indeed, the morphism Spec F’ — Spec F is
universally open (see [Grothendieck 1965, Exposé IV, 2.4.10] for this).

Now we prove the implication <=. Let C; := Stab(Y)™?, and suppose that
there exist

» a semiabelian variety B| over F’,
e a homomorphism with finite kernel # : B; — B/ Cy,

 amodel B} of B| over a finite subfield [, C F’,
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¢ an irreducible reduced closed subscheme Y’1 < By, and
e apoint by € (Bp//C1)(F') such that Yr/C1 = by + hy (Y] XF F.

Now, first notice that since Stab( - ) represents a functor, there is a natural isomor-
phism Stab(Y /) >~ Stab(Y) rs and, since F is algebraically closed, also a natural
isomorphism Stab(Y )™ ~ (Stab(Y)™) .. Secondly, we have F,» C F since F is
algebraically closed. Thirdly, if B, and B3 are semiabelian varieties over F' and
¢ : By pr — B3 pr is a homomorphism of group schemes over F’, then ¢ arises by
base-change from an F-morphism B, — Bs. This is a consequence of the facts that
the graph of ¢ has a dense set of torsion points in By ' X p B3 pr and torsion points
are defined in B; x ¢ Bj3. Putting these facts together, we deduce that there exist

« a semiabelian variety B’ over F,

e a homomorphism with finite kernel 4 : B — B/C,

« amodel B’ of B over a finite subfield F, C F,

« an irreducible reduced closed subscheme Y’ < B’, and

e apoint by € (Bp/Cp)(F') such that Yp/Cpr = by + hpr (Y xf, F'),

where C = Stab(Y)™. Now Transp(Yr//Cp/, hpr (Y x Fyr F"))(F") # & by the last
point in the list above. Here Transp( -) is the transporter, which is a generalization
of the stabilizer (see [Grothendieck et al. 1970b, Exposé VIII, 6] for the definition).
Thus, Transp(Y/C, h. (Y’ xg, F ))(F) # o, which is to say that there also exists

e apoint by € (B/C)(F) such that Y/C = by + h, (Y’ XF F). |

4. Sparsity of highly p-divisible unramified liftings

This section can be read independently of the rest of the text, and its results do not
rely on the previous ones. Also, unlike the previous sections, the terminology of
this section is independent of the terminology of Section 1.

Let S be the spectrum of a complete discrete local ring. Let k be the residue field
of its closed point. We suppose that & is a finite field of characteristic p. Let K be
the fraction field of S. Let S* be the spectrum of the strict henselization of S, and
let L be the fraction field of S*". We identify k with the residue field of the closed
point of S*. For any n € N, we shall write S, and S for the n-th infinitesimal
neighborhoods of the closed point of S in S and S*" in S*", respectively.

Let o be an abelian scheme over S, and let A := A g. Write A for the fiber
of o over the closed point of S.

Theorem 4.1. Let ¥ — o be a closed integral subscheme. Let X be the fiber of ¥
over the closed point of S, and let X := ¥g.
Suppose that Tor(A(K)) N X is not dense in X.
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Then there exists a constant m € N such that the set
(P € Xo(k) | P lifts to an element of%(S;h) np™ -&Q(SS?)}
is not Zariski dense in X.

Suppose for the next sentence that S is the spectrum of a complete discrete
valuation ring that is absolutely unramified and is the completion of a number field
along a nonarchimedean place. In this situation, Raynaud proves Theorem 4.1
and Corollary 4.5 below under the stronger hypothesis that X ¢ does not contain
any translates of positive-dimensional abelian subvarieties of A [Raynaud 1983a,
Proposition 1I.1.1]. See also [Raynaud 1983b, Theorem II, p. 207] for a more
precise result in the situation where X is a smooth curve.

In the case where S is the spectrum of the ring of integers of a finite extension
of Q, Theorem 4.1 implies versions of the Tate—Voloch conjecture (see [Tate and
Voloch 1996; Scanlon 1999]). We leave it to the reader to work out the details.

Preliminary to the proof of Theorem 4.1, we quote the following result. Let B
be an abelian variety over an algebraically closed field ', and let ¢ : B — B be an
endomorphism. Let R € Z[T] be a polynomial that has no roots of unity among its
complex roots. Suppose that R(i) = 0 in the ring of endomorphisms of B.

Proposition 4.2 (Pink—Rossler). Let Z C B be a closed irreducible subset such
that W (Z) = Z. Then Tor(B(F)) N Z is dense in Z.

The proof of Proposition 4.2 is based on a spreading-out argument, which is
used to reduce the problem to the case where F' is the algebraic closure of a finite
field. In this last case, the statement becomes obvious. See [Pink and Rossler 2004,
Proposition 6.1] for the details.

We shall use the map [ pe]O s Ag(k) — &Q(Szh), which is defined by the formula
[p*1°(x) = p*- X, where ¥ is any lifting of x (this does not depend on the lifting;
see [Katz 1981, after Theorem 2.1]).

Proof of Theorem 4.1. Let ¢ be a topological generator of Gal(k|k). By the Weil
conjectures for abelian varieties, there is a polynomial

QT) := T — (a1 T+ +ap)

with a; € Z such that Q(¢)(x) = 0 for all x € Ag(k) and such that Q(T) has no
roots of unity among its complex roots. Let M be the matrix

o1 0 0

0 0--- 0 1
ap ayp --+ dp—2 dg—|
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We view M as an endomorphism of abelian S-schemes %8 — %8, Let T
Autg(S*") be the canonical lifting of ¢. By construction, 7 induces an element of
Autg, (Szh) for any n > 0, which we also call 7. The reduction map A(SH) — &i(S,Slh)
is compatible with the action of T on both sides. Write

2g—1

u(x):=(x, 7(x), 2(x), ..., 2% 'x) € < ]_[ s&)(SSh)

s=0
for any element x € s4(S*"). Abusing notation, we shall also write

2g—1

u(x) = (x, T(x), T2(x), ..., ¥ 1 (x)) € ( I1 &4>(S,3h)

s=0

for any element x € &Q(S,Slh). By construction, for any x € s¢(S*") and x € sﬁ(SZh), the
equation Q(t)(x) = 0 implies the vector identity M (u(x)) = u(t(x)), respectively.
Now consider the closed S-subscheme of {28

2g—1

%::ﬂMi(ﬂ M”*(H 96))

t=0 r=0 s=0

where for any r > 0, M" is the r-th power of M. The symbol M.(-) refers to the
scheme-theoretic image, and the intersections are the scheme-theoretic intersections.
The intersections are finite by noetherianity.

Let A : J — € be a morphism of schemes. The construction of % implies that if

(i) M" o X factors through ]—[fi o' % for all r >0 and

(i) for all r > 0, there is a morphism ¢, : J — [, M“*(]_[figl 96) such that
A=M"o¢,,

then A factors through %.
In particular, if (i) is verified and M" o A = A for some r; > 1, then A factors
through #.

Remark 4.3. In particular, this implies that if x € %(S*") and x € Z(S5") have the
property that Q(7)(x) =0, then u(x) € %(S*) and u(x) € ZZ(S,ih), respectively.

Lemma 4.4. There is a set-theoretic identity M (%) = %.

Proof. Since M is proper, we have a set-theoretic identity

2g—1

%:ﬂM’(Q)M”“(H %))

t=0 s=0
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Now directly from the construction, we have

2g—1 2g—1

w(r () (i),
r=0 s=0 r=0 s=0
and hence, we have inclusions
2g—1 2g—1 2¢—1
e ({9l (110) -
r=0 s=0 r=0 s=0 r>=0 s=0
and thus, by noetherianity
2g—1 2g—1
(et (T ) =we (e (1))
r=0 s=0 r=0 s=0
for some £ > 0. This implies the result. U

Now we apply Proposition 4.2 and obtain that %z 4 N Tor(]—[fial A(K)) is

dense in X ;. Hence, the projection onto the first factor £x — X is not surjective
by hypothesis.

Let T be the scheme-theoretic image of the morphism ¥ — & given by the first
projection. Notice that X is a closed subscheme of T because every element P of
Xo(k) satisfies the equation Q(¢)(P) = 0. Let H be the closed subset of T that
is the union of the irreducible components of 7" that surject onto S. A reduced
irreducible component I of T that surjects onto S is flat over §; since H # &,
we have in particular I # &, and so we see that the dimension of the fiber of
over the closed point of S is strictly smaller than the dimension of Xy. Hence,
the intersection of H and Xy is a proper closed subset of X(. Let 77 be the open
subscheme 7'\ H of T. From the previous discussion, we see that the underlying
set of T} is a nonempty open subset of X.

We are now in a position to complete the proof of Theorem 4.1. The proof will
be by contradiction. So suppose that for all £ € N, the set

{P € Xo(k) | P lifts to an element of %(S5") N p* - A (S5}

is Zariski dense in Xj.

Choose an arbitrary £ € N, and let P e T; (k) be a point that lifts to an element
of %(Szh) Nnpt- &Q(Szh). This exists because the set of points in X (k) with this
property is assumed to be dense in Xo. Let P € &Q(Szh) be such that pt- P e %(Szh)
and such that pZ . 150 = P. Here f’o € Ao(k) is the IE—point induced by P. Since the
map [ pt1e : sly(k) — &Q(Szh) intertwines ¢ and 7, we see that

O(t)([p'1°(Py)) = 0.
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By Remark 4.3, we thus have
u([p'1°(Po)) € £(S).

Hence,
[p°1°(Po) € Ti(S™) S T(SPM).

This shows that T (Sl?h) # . Since £ was arbitrary, this shows that the generic
fiber T1 g of T; is not empty, which is a contradiction. O

Corollary 4.5. We keep the hypotheses of Theorem 4.1. We suppose furthermore
that Tor(A(K)) N X;%C is not dense in X;gc for all ¢ € A(S). Then there exists a
constant m € N such that for all ¢ € A(S) the set

{P e X{(k) | P lifts to an element of X7 (S N p™ - sA(S5M)}
is not Zariski dense in XaL ‘.

Here as usual £1¢ = % + c is the translate inside s of ¥ by ¢ € A(S). Slightly
abusing notation, we write X for (X¢)x and X for ().

Proof. We prove by contradiction. Write m (% 1¢) for the smallest integer m such that
{P € X{“(k) | P lifts to an element of (S5 N p™ - sA(S5M)}

is not Zariski dense in X¢. Suppose that there exists a sequence (a, € A(S)),en such
that m (% 19) strictly increases. Replace (a, € A(S)),en by one of its subsequences
so that lim,, a, = a € s(S), where the convergence is for the topology given by the
discrete valuation on the ring underlying S (notice that ${(S) is compact for this
topology because S is complete and has a finite residue field at its closed point).
Replace (a, € A(S)),en by one of its subsequences again so that the image of a,,
in #(S,) equals the image of a in s4(S,). By construction, we have m(¥7%) > n,
and hence, by definition m (%%) > n. Since this is true for all n > 0, this contradicts
Theorem 4.1. O

The following corollary should be viewed as a curiosity only since it is a special
case of Theorem 1.3. The interest lies in its proof, which avoids the use of jet
schemes, unlike the proof of Theorem 1.3.

Corollary 4.6. We keep the notation and assumptions of Corollary 4.5. Suppose
Sfurthermore that S is a ring of characteristic p and that the fibers of A over S are
ordinary abelian varieties. We also suppose that & is smooth over S. Let ' C A(K)
be a finitely generated subgroup. Then the set X N1 is not Zariski dense in X.

We shall call the topology on A(K) induced by the discrete valuation the v-adic
topology.

Before the proof of the corollary, recall a simple but crucial lemma of Voloch
(see [Abramovich and Voloch 1992, Lemma 1]).
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Lemma 4.7 (Voloch). Let Lg be a field, and let T be a reduced scheme of finite
type over Lg. Then T(LSEP) is dense in T if and only if T is geometrically reduced.

Proof of Corollary 4.6. The proof is by contradiction. We shall exhibit a translate
of X by an element of A(K), which violates the conclusion of Theorem 4.1. Suppose
that X NI is Zariski dense in X. Let P; € I" be such that (X + P;)N p-T" is dense, let
P, e p-T'suchthat (X+ P+ P>)N p2 -T" is dense in X, and so forth. The existence
of the sequence of points (P;) is guaranteed by the assumption on I', which implies
that the group p‘T"/p**!T is finite for all £ > 0. Since the v-adic topology on the
set A(K) is compact (because S is a discrete valuation ring with a finite residue
field), the sequence Q; = 2221 P, has a subsequence that converges in A(K). Let
Q be the limit point of such a subsequence. By construction, (X + Q) N p* - A(K)
is dense for all £ > 0. Let ¥t¢ :=% + Q.
Consider the morphism ([p*1*%+9) g — X<, There is a diagram

[P T Q) ea s ([p! T +2) — 7 o+0

Frob’, ¢
A/S o ( p() Ver o

where Fgs is the absolute Frobenius morphism on S, AP) = F f’*sﬁ is the base-
change of o by F £* . Froby /s is the Frobenius morphism relatively to S, and Ver
is the Verschiebung (see [Grothendieck et al. 1970a, Exposé VIla, 4.3] for the
latter). The square is cartesian (by definition). By assumption, the morphism Ver
is étale. Hence, Ver®*(%*9) is a disjoint union of schemes that are integral and
smooth over S. Let ¥; — Ver®*(¥12) be an irreducible component such that
X1.x ﬁFrobf‘ / x (A(K)) is dense. Let &5 := (Frobfﬁ’js (%1))req be the corresponding
reduced irreducible component.

Now notice that ¥, g is geometrically reduced since ¥,(K) is dense in &3 g
(Lemma 4.7). Furthermore, &, is flat over S because it is reduced and dominates S.
Hence, (%,)?") is also flat over S. Furthermore, by its very construction (% )"
is reduced since &, g is geometrically reduced. Hence, (%2)([)@) is reduced [Liu
2002, 4.3.8, p. 137]. Recall that (962)“’6 stands for the base-change of &, by Ff’*.
Notice that we have a commutative diagram

Frobgﬁ /s
%y — (%) ")

Frob*
/S &q(pz)

and that Frobg62 /s is bijective. Hence, (%2)(1,@) is isomorphic to &;. Now, since F is
faithfully flat and &5 is flat over S, we see that &, is actually smooth over § because
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&1 1s smooth over S. Hence, every point of &> (IE) can be lifted to a point in &, (S shy
(see for instance [Liu 2002, Corollary 6.2.13, p. 224]). Since the morphism [ pe] is
finite and flat and the scheme ¥*¢ is integral, we see that the map ¥» — ¥+ is
surjective. This implies that the map &, (k) > X2 (k) is surjective. We conclude
that every element of X1 C (k) is liftable to an element in XT2(S*) N p* - A(SM).
Since ¢ was arbitrary, this contradicts Theorem 4.1. ([

Now we want to conclude by:

Remark 4.8. Buium [1992] also introduces an “exceptional set”, which is very
similar to the set Exc considered here, and he makes a similar use of it (catching
rational points). There is nevertheless one important difference between Buium’s
and our methods: the proof of Theorem 3.3, which is crucial in our study of the
structure of Exc, uses “Galois equations” and not differential equations. In this
sense, our techniques also differ from the techniques employed in [Hrushovski
1996], which is close in spirit to [Buium 1992] and where the Galois-theoretic
language is not used either.

Remark 4.9. Although Corollary 1.4 shows that the Mordell-Lang conjecture may
be reduced to the Manin—-Mumford conjecture under the assumptions of Theorem 1.3,
the difficulty of circumventing the fact that the underlying abelian variety might
not be ordinary (which was a hurdle for some time) is not thus removed. Indeed,
the most difficult part of the algebraic-geometric proof of the Manin—-Mumford
conjecture given in [Pink and Rossler 2004] concerns the analysis of endomorphisms
of abelian varieties, which are not globally the composition of a separable isogeny
with a power of a relative Frobenius morphism.
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