Vol. 7, No. 8, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 14
Issue 8, 2001–2294
Issue 7, 1669–1999
Issue 6, 1331–1667
Issue 5, 1055–1329
Issue 4, 815–1054
Issue 3, 545–813
Issue 2, 275–544
Issue 1, 1–274

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editors' Interests
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
Essential $p$-dimension of algebraic groups whose connected component is a torus

Roland Lötscher, Mark MacDonald, Aurel Meyer and Zinovy Reichstein

Vol. 7 (2013), No. 8, 1817–1840
Abstract

Following up on our earlier work and the work of N. Karpenko and A. Merkurjev, we study the essential p-dimension of linear algebraic groups G whose connected component G0 is a torus.

Keywords
essential dimension, algebraic torus, twisted finite group, generically free representation
Mathematical Subject Classification 2010
Primary: 20G15, 11E72
Milestones
Received: 24 February 2012
Revised: 9 September 2012
Accepted: 23 October 2012
Published: 24 November 2013
Authors
Roland Lötscher
Mathematisches Institut
Ludwig-Maximilians-Universität München
D-80333 München
Germany
http://www.mathematik.uni-muenchen.de/~lotscher/
Mark MacDonald
Department of Mathematics and Statistics
Lancaster University
Lancaster
LA1 4YF
United Kingdom
http://www.maths.lancs.ac.uk/~macdonam/
Aurel Meyer
Départment de Mathématiques
Université Paris-Sud
Bâtiment 425
91405 Orsay
France
http://www.math.u-psud.fr/~ameyer/
Zinovy Reichstein
Department of Mathematics
University of British Columbia
1984 Mathematics Road
Vancouver, BC V6T1Z2
Canada
http://www.math.ubc.ca/~reichst