Vol. 7, No. 8, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 14
Issue 10, 2575–2813
Issue 9, 2295–2574
Issue 8, 2001–2294
Issue 7, 1669–1999
Issue 6, 1331–1667
Issue 5, 1055–1329
Issue 4, 815–1054
Issue 3, 545–813
Issue 2, 275–544
Issue 1, 1–274

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
Differential characterization of Wilson primes for $\mathbb{F}_q[t]$

Dinesh S. Thakur

Vol. 7 (2013), No. 8, 1841–1848
Abstract

We consider an analog, when is replaced by Fq[t], of Wilson primes, namely the primes satisfying Wilson’s congruence (p 1)! 1 to modulus p2 rather than the usual prime modulus p. We fully characterize these primes by connecting these or higher power congruences to other fundamental quantities such as higher derivatives and higher difference quotients as well as higher Fermat quotients. For example, in characteristic p > 2, we show that a prime of Fq[t] is a Wilson prime if and only if its second derivative with respect to t is 0 and in this case, further, that the congruence holds automatically modulo p1. For p = 2, the power p 1 is replaced by 4 1 = 3. For every q, we show that there are infinitely many such primes.

Dedicated to Barry Mazur on his 75th birthday

Keywords
Wilson prime, arithmetic derivative, Fermat quotient
Mathematical Subject Classification 2010
Primary: 11T55
Secondary: 11A41, 11N05, 11N69, 11A07
Milestones
Received: 9 May 2012
Revised: 10 September 2012
Accepted: 31 October 2012
Published: 24 November 2013
Authors
Dinesh S. Thakur
1013 Hylan Building
Department of Mathematics
University of Rochester
RC Box 270138
Rochester, NY 14627
United States