Vol. 7, No. 8, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
The operad structure of admissible $G$-covers

Dan Petersen

Vol. 7 (2013), No. 8, 1953–1975
Abstract

We describe the modular operad structure on the moduli spaces of pointed stable curves equipped with an admissible G-cover. To do this we are forced to introduce the notion of an operad colored not by a set but by the objects of a category. This construction interpolates in a sense between “framed” and “colored” versions of operads; we hope that it will be of independent interest. An algebra over the cohomology of this operad is the same thing as a G-equivariant CohFT, as defined by Jarvis, Kaufmann and Kimura. We prove that the (orbifold) Gromov–Witten invariants of global quotients [XG] give examples of G-CohFTs.

Keywords
modular operad, operad colored by groupoid, orbifold Gromov–Witten theory, cohomological field theory
Mathematical Subject Classification 2010
Primary: 18D50
Secondary: 14H10, 14D21
Milestones
Received: 4 June 2012
Revised: 18 January 2013
Accepted: 16 March 2013
Published: 24 November 2013
Authors
Dan Petersen
Department of Mathematics
KTH Royal Institute of Technology
100 44 Stockholm
Sweden